

SUBSURFACE INVESTIGATION REPORT

FORMER CHEVRON SERVICE STATION CHEVRON SITE 9-2609 MILE 79 SEWARD HIGHWAY GIRDWOOD, ALASKA ADEC FILE ID: 2110.38.007

RECEIVED

NOV 2 3 2009

DEPT. OF ENVIRONMENTAL CONSERVATION

Prepared For: Mr. Robert Weimer Alaska Department of Environmental Quality

Susan Lear Staff Geologist

Jeffrey Cloud Chemist

NOVEMBER 17, 2009 Ref. no. 620911

Brian Duggen PE Project Engineer

> Prepared by: Conestoga-Rovers & Associates

2420 West 26th Ave, Suite 450-D Denver, CO 80211

Office: 720.975.9120 Fax: 720.975.9150

TABLE OF CONTENTS

	D _a	a	0
- 24	a	12	e
	_	-0	-

1.0		DUCTION	
2.0	SITE BA	CKGROUND	1
	2.1	SITE DESCRIPTION	1
	2.2	HYDROGEOLOGY	1
	2.3	REGIONAL GEOLOGY	2
3.0	2009 SU	BSURFACE INVESTIGATION	2
	3.1	SOIL SAMPLE LOCATION RATIONALE	
	3.2	INVESTIGATION DETAILS	
	3.2.1	SOIL BORING INSTALLATION.	2
	3.2.2	GROUNDWATER MONITORING WELL INSTALLATION	3
	3.2.3	LABORATORY ANALYSIS	3
	3.2.4	WASTE DISPOSAL	3
	3.3	SOIL SAMPLING RESULTS	4
4.0	CONCL	USIONS	4
5.0	RECOM	IMENDATIONS	4
6.0	CLOSIN	NG	4

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 SITE PLAN

FIGURE 3 PETROLEUM HYDROCARBON CONCENTRATIONS IN SOIL

LIST OF TABLES (Following Text)

TABLE 1SOIL ANALYTICAL DATA

LIST OF APPENDICES

- APPENDIX A ENVIRONMENTAL HISTORY
- APPENDIX B GEOPHYSICAL SURVEY
- APPENDIX C SOIL BORING LOGS
- APPENDIX D CRA'S STANDARD OPERATING PROCEDURES FOR SOIL BORINGS
- APPENDIX E DEPARTMENT OF NATURAL RESOURCES WATER WELL LOGS
- APPENDIX F WELL DEVELOPMENT FORMS
- APPENDIX G CRA'S STANDARD OPERATING PROCEDURES FOR WELL DEVELOPMENT
- APPENDIX H LANCASTER LABORATORIES ANALYTICAL REPORT
- APPENDIX I ADEC LABORATORY DATA REVIEW AND CHECKLIST

1.0 INTRODUCTION

Conestoga-Rovers & Associates is submitting this Subsurface Investigation Report to the Alaska Department of Environmental Conservation (ADEC) on behalf of Chevron Environmental Management Company (Chevron) for the site referenced above. CRA advanced two soil borings north and west of monitoring well MW-3 to delineate the downgradient extent of petroleum hydrocarbons in soil and groundwater (Figure 2). , The soil borings were completed as 2-inch groundwater monitoring wells MW-15 and MW-16. The site background, investigation details and conclusions are presented below.

2.0 SITE BACKGROUND

2.1 SITE DESCRIPTION

The site is a former Texaco-branded service station located at Mile 79 along the southbound lane of Seward Highway in Girdwood, Alaska (Figure 1). The site operated as a Texaco-branded service station from 1971 to 1979. Former site facilities consisted of seven underground storage tanks (USTs), dispenser islands, and associated product piping. Three USTs and associated piping were removed in 1980. Four USTs, two log cribs, dispenser islands, product piping, and a septic tank were removed in 2000. The site is currently vacant with the exception of an abandoned kiosk. Fourteen groundwater monitoring wells are located on and offsite and 10 are sampled semiannually (Figure 2). The site environmental history is presented in Appendix A.

2.2 HYDROGEOLOGY

The site is located in south central Alaska, at the eastern-most extent of the Turnagain Arm between Twenty Mile River and Portage Creek. No major principal aquifer system underlies the site, however the southern/southeastern extent of the Cook Inlet Aquifer System is slightly northwest/west of the site. The Cook Inlet Aquifer System consists of boulders, cobbles, and unconsolidated gravels, sands, silts, and clays deposited by glacial, alluvial, and colluvial processes. Historical static groundwater levels have ranged between 1.31 and 11.21 feet below grade (fbg) with groundwater flowing southwest. Local tidal influence can be as great as 37 feet (ft) which likely produces groundwater fluctuations in site monitoring wells. Long-term groundwater monitoring and sampling has been conducted at the site since 1995.

2.3 REGIONAL GEOLOGY

Bedrock in Girdwood, Alaska consists of Cretaceous to Upper Jurassic slate, greywacke, argillite, conglomerate, and volcanic units. The site subsurface sediments consist primarily of sand, sandy gravel, and silt, deposited by glaciofluvial and marine processes from tidal mud flats around Cook Inlet and glaciers, such as the retreating Portage glacier.

3.0 2009 SUBSURFACE INVESTIGATION

CRA conducted the event in accordance with ADEC's Monitoring Well Guidance, *February 2009,* and CRA's Chevron approved *Health and Safety Plan,* and *Journey Management Plan.* Details of the subsurface investigation are presented below.

3.1 SOIL SAMPLE LOCATION RATIONALE

DRO has been detected in groundwater near MW-3 since 1995, additional delineation is necessary downgradient of well MW-3. Groundwater sample MW-3 contained 19 milligrams per Liter (mg/L) DRO in August 2008. Historical groundwater flow direction near MW-3 is to the northwest. CRA advanced two soil borings approximately 60 feet north and northwest of groundwater monitoring well MW-3 to delineate the downgradient extent of petroleum hydrocarbons in soil and groundwater.

3.2 INVESTIGATION DETAILS

CRA prepared a site health and safety plan to inform site workers of known hazards and to provide health and safety guidance. The plans were onsite at all times and signed daily by all onsite personnel. Alaska Digline was notified prior to drilling to clear locations with utility companies. CRA used ground penetrating radar (GPR) and an electromagnetic buried metal detector (EM61) to locate underground structures throughout the drilling area. The geophysical survey results are presented in Appendix B. CRA personnel Eric Purcell and Susan Lear conducted all sampling and soil logging. Discovery Drilling advanced the borings and installed the groundwater monitoring wells under the direction of CRA. Soil sample locations with analytical results are presented on Figure 3.

3.2.1 SOIL BORING INSTALLATION

Two soil borings were advanced to 18 fbg and completed as groundwater monitoring wells MW-15 and MW-16 (Figure 2). Soil borings were advanced to first encountered groundwater using a CME 75 drill rig equipped with 8-inch outer diameter hollow-stem augers. Soil samples were collected with a 2 ft core barrel advanced by a 300 pound slide hammer at approximately 5 ft intervals between 5 fbg and 17 fbg. Soil was logged and field screened by a trained geologist and Alaska Qualified Person during drilling. Soil samples were screened for petroleum hydrocarbon constituents using a photo ionization detector (PID). Soil samples were submitted for laboratory analysis based on PID screening results and depth.

Subsurface sediments consist primarily of sand with organic material at the surface transitioning to very fine to medium grained sand from approximately 5 fbg to the total explored depth of 18 fbg. Soil boring logs are presented as Appendix C. CRA's standard operating procedures for soil borings are presented as Appendix D. Department of Natural Resources water well logs are presented as Appendix E.

3.2.2 GROUNDWATER MONITORING WELL INSTALLATION

Monitoring wells MW-15 and MW-16 were constructed of 2-inch diameter, schedule 40 PVC pipe with 0.020-inch screen and clean #10/20 silica sand. The wells are screened from 3 fbg to 18 fbg. The well was set in a stand up well vault and graded with concrete. CRA developed groundwater monitoring wells MW-15 and MW-16 on July 17, 2009 by agitating the water column for approximately ten minutes with a surge block, followed by purging to remove silt and draw in formation water. Well development forms are presented as Appendix F. CRA's standard operating procedures for well development are presented as Appendix G.

3.2.3 LABORATORY ANALYSIS

Soil samples collected on site were analyzed for the following:

- DRO by Alaska Series Method AK102,
- GRO by Alaska Series Method AK101,
- RRO by Alaska Series Method AK103, and
- BTEX by Method SW-846 8021B.

3.2.4 WASTE DISPOSAL

Soil cuttings produced during this investigation were temporarily stored onsite in two 55-gallon U.S. Department of Transportation (DOT) approved drums. Water produced during groundwater monitoring well development was temporarily stored onsite in one 55-gallon U.S. DOT approved drum. The ADEC approved soil cutting transportation and disposal in an August 20, 2009 e-mail to CRA.

3.3 SOIL SAMPLING RESULTS

No DRO, GRO, RRO, or BTEX concentrations exceeded the *ADEC Method II-Soil Cleanup Levels, Tables B1 and B2, Over 40-Inch Zone, Migration to Groundwater, ADEC 18 AAC* 75.341 (ADEC Method II Soil Cleanup Levels). DRO was detected below laboratory detection limits in soil sample SB09-1 and SB09-2. The maximum RRO (15 mg/kg) and benzene (0.02 mg/kg) was detected in soil sample SB09-02. The Lancaster Laboratories Analytical Report is presented in Appendix H. The ADEC laboratory data review and checklist is presented in Appendix I.

4.0 CONCLUSIONS

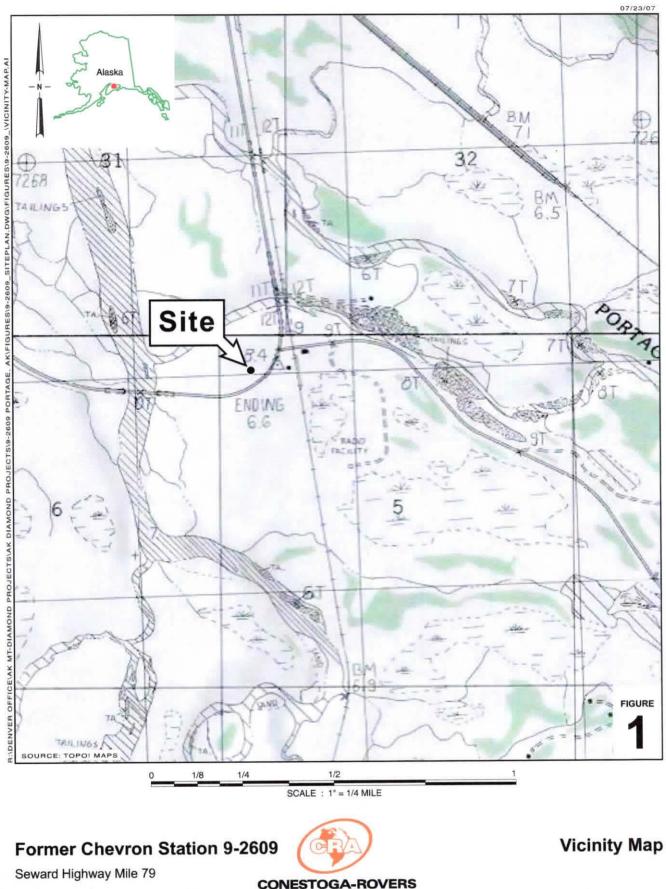
Subsurface sediments consist primarily of sand with organic matter at the surface transitioning to very fine to medium grained sand with trace silt from approximately 5 fbg to the total explored depth of 17 fbg. Groundwater was encountered at approximately 8 fbg in both soil borings.

No DRO, GRO, or RRO or BTEX was detected above ADEC Method II Soil Cleanup Levels in any collected samples. The extent of petroleum hydrocarbons in soil has been delineated downgradient of groundwater monitoring well MW-3.

5.0 RECOMMENDATIONS

CRA is preparing a corrective action plan to address petroleum hydrocarbon concentrations in soil and groundwater. CRA will continue groundwater monitoring and sampling in 2010.

6.0 CLOSING


We appreciate the opportunity to work with Chevron and the ADEC on this project. Alaska Qualified Personnel in accordance with *18 Alaska Administrative Code (AAC)* 75, *Article 3 and 18 AAC 78, Article 2, 6, and 9,* conducted and/or supervised all project work. Please call Brian Duggan at (720) 975-9128 with any questions regarding this report.

FIGURES

FIGURE 1: VICINITY MAP

FIGURE 2: SITE PLAN

FIGURE 3: PETROLEUM HYDROCARBON CONCENTRATIONS IN SOIL

Portage, Alaska

CONESTOGA-ROVERS & ASSOCIATES

TABLES

TABLE 1: SOIL ANALYTICAL DATA

Table 1 Soil Analytical Results Former Chevron Station 9-2609 Mile 79 Seward Highway Girdwood, Alaska

			HYD	DROCARBON	IS		PRIMA	RY VOCS	
Location ADEC Method II Cle	Date Units eanup Levels*	Sample Depth fbg	DRO mg/kg 230	GRO mg/kg 260	RRO mg/kg 9700	Benzene mg/kg 0.025	Toluene mg/kg 6.5	Ethyl-benzene mg/kg 6.9	Total Xylenes mg/kg 63
SB09-1	07/16/2009	5.0	<5.8 / <5.4	<0.9 / <0.8	57 / 53	<0.009 UJ / <0.008 UJ	<0.009 UJ / 0.02 J	<0.009 UJ / <0.008 UJ	<0.03 UJ / <0.02 U
SB09-2	07/16/2009	5.0	<5.1	<0.7	15 J	0.02 J	0.03 J	<0.006 UJ	<0.02 UJ
Trip Blank	07/16/2009	-	-	<0.5	-	<0.005	<0.005	<0.005	<0.02
Trip Blank**	07/16/2009	-	-	<0.010	-	<0.0005	<0.0005	<0.0005	<0.0015
Equipment Blank**	07/16/2009	-	<0.048	<0.010	<0.048	< 0.0005	< 0.0005	< 0.0005	<0.0015

Abbreviations and Methods:

RRO = Residual range organics by Alaska Series Method AK103

DRO = Diesel range organics by Alaska Series Method AK102

GRO = Gasoline range organics by Alaska Series Method AK101

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B

fbg = Feet below grade

mg/kg = Milligrams per kilogram

-- = Not analyzed / applicable

J = Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).

UJ = Estimated value below the MDL.

<x = Constituent not detected above x milligrams per kilogram

ADEC = Alaska Department of Environmental Conservation

* = Levels established in ADEC Method II - Soil Cleanup Levels, Tables B1 and B2, Over 40-Inch Zone, Migration to Groundwater, (ADEC, 18 AAC 75.341)

** = Concentrations in milligrams per liter

EPA = Environmental Protection Agency

APPENDIX A

ENVIRONMENTAL HISTORY

ENVIRONMENTAL HISTORY

1993 Site Assessment: In 1993, eight borings were advanced as part of an Alaska Department of Transportation investigation. Five borings were advanced onsite and three borings were advanced offsite. Soil sample TB-8-1 contained the maximum concentration of diesel range organics (DRO) at 870 milligrams per kilogram (mg/kg) and gasoline range organics (GRO) at 2,300 mg/kg.

1995 Well Installation: Three groundwater monitoring wells MW-1 through MW-3 were installed in 1995. Sampling indicated DRO is the primary constituent of concern, although results were not available at the time of this report.

1998 Subsurface Investigation and Well Installation: Eleven soil borings were advanced and five completed as monitoring wells MW-4 through MW-8 during a 1998 subsurface investigation to delineate the lateral extent of petroleum hydrocarbons in the soil and groundwater. Soil sample B-6 contained the maximum concentration of DRO at 2,490 mg/kg and benzene at 8.09 mg/kg. GRO was detected at a maximum concentration of 5,970 mg/kg (soil) and 80,500 milligrams per liter (mg/L) in sample B-7.

2000 UST Removal and Excavation: Four USTs, two log cribs, a dispenser island, associated product piping, and a septic tank were removed in 2000. Approximately 3,500 cubic yards of soil was excavated and removed from the site. DRO was detected at a maximum concentration of 4,500 mg/kg in sample Crib 1. Soil sample S-12-5 contained the maximum concentration of GRO (7,090 mg/kg) and benzene (32.9 mg/kg).

2001 Subsurface Investigation and Well Installation: Four soil borings were advanced and completed as groundwater monitoring wells MW-9 through MW-12 in September 2001. No DRO or benzene was detected above ADEC Method II Soil Cleanup Levels (ADEC, 18 Alaska Administrative Code (AAC) 75.341). GRO was detected in soil sample MW-11-10 at a maximum concentration of 464 mg/kg.

2001 Well Reinstallation: In October 2001 a water production well SW-1 was reinstalled to provide non-potable water to the site. No soil samples were analyzed. No petroleum hydrocarbons were detected above ADEC Table C Groundwater Cleanup Levels (ADEC, 18 AAC 75.345) in the groundwater sample.

2005 Well Installation: One soil boring was advanced and completed as groundwater monitoring well MW-13 in 2005. DRO was detected at a maximum concentration from soil sample MW-13-6 at 3,900 mg/kg. The maximum concentration of GRO was detected in soil sample MW-13-6 at 1,000 mg/kg.

2008 Subsurface Investigation and Well Installation: Seven soil borings were advanced and one completed as groundwater monitoring well MW-14 in 2008 to further assess the vertical and horizontal extent of hydrocarbons in soil and groundwater. DRO was detected at a maximum concentration in soil sample CB-6-5 at 3,900 mg/kg. Soil sample MW-14-10 contained the maximum GRO concentration of 3,800 mg/kg. The maximum concentration of benzene was detected in soil sample CB-1-10 at 2.20 mg/kg.

APPENDIX B

GEOPHYSICAL SURVEY

620911 (5)

651 Colby Drive, Waterloo, Ontario, Canada N2V 1C2 Telephone: (519) 884-0510 Fax: (519) 884-0525 www.CRAworld.com

	DRAFT MEMOR	ANDUM	
To:	Brian Duggan	Ref. No.:	620911-2009
From:	Sandy Serena/ck/1	DATE:	June 19, 2009
C.C.:	Andy Ellsmore, Joe Rothfischer		
RE:	Ground Penetrating Radar Survey - Borehole C Former Chevron Station Site 9-2609 Portage, AK	learance	

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) conducted a geophysical investigation on behalf of Chevron at the former Chevron Station 9-2609 (Site) located on Old Seward Highway in Portage, Alaska on May 13, 2009. The objective of the investigation was to verify the absence of potential utilities in the shallow subsurface (to a depth of 8 feet) at two proposed borehole locations (SB1 and SB2). The approximate location of SB1 and SB2 are presented on Figure 1.1. CRA conducted the investigation using a Ground Penetrating Radar (GPR) system. The investigation consisted of establishing a reference grid over the proposed boreholes, data collection, processing, and plotting.

GPR surveys are considered the industry-accepted standards for underground utility investigations. However, limitations to GPR surveys include signal attenuation (i.e., dissipation) in conductive soils and/or fill, and also conductive groundwater or seawater. In addition, surficial metal objects can potentially be sources of interference which mask subsurface responses.

2.0 <u>REFERENCE GRID</u>

A Cartesian coordinate system was adopted and applied to the two proposed borehole locations. The survey coverage measured approximately 16 feet by 16 feet. Survey lines were established at 2-foot spaced intervals over the proposed borehole locations approximately oriented in both the north-south and east-west directions, as presented on Figure 1.1. The center of each grid marked the proposed borehole location. The corners of the grids were staked with wooden stakes, and the proposed borehole locations were marked with metal rods. Due to heavy brush surrounding the two grid locations (SB1 and SB2), the survey grids were tied into two trees located on-Site. As such, each tree was marked with a metal pin, flagged with flagging tape and painted for future reference should the grids need to be re-established. A photo log of the survey grids for proposed borehole locations SB1 and SB2 is provided in Attachment A.

3.0 DATA COLLECTION

The GPR survey was conducted using a Noggin 250 Smart Cart System, which utilizes high frequency (MHz range) electromagnetic (EM) signals to investigate subsurface conditions. Pulsed EM waves emitted from a transmitting antenna are propagated into the ground, and travel at velocities determined by the electrical properties of earth materials. If a wave hits a buried object or boundary with different electrical properties as it moves downward, part of the wave energy is reflected back to the surface and is detected by a receiving antenna. The reflected wave is stored digitally, and processed as a trace of signal versus amplitude. As the antennas are moved along a survey line, a series of traces are recorded at discrete points. When presented collectively, these traces display a profile of the subsurface. The GPR data were collected using 2 foot spaced lines in each of the survey grids. Data traces were collected at equidistant intervals specified by the GPR operating system along the survey lines, and tracked by an attached odometer.

4.0 DATA PROCESSING AND RESULTS

The GPR data were processed as trace plots for each survey line, for each of the proposed borehole locations. The plots were examined for arc-shaped signatures indicative of buried utility responses. Typically, arc-shaped responses (ie. hyperbolic reflectors) that are delineated on three or more adjacent survey lines or display a linear trend are potentially indicative of buried utilities. Conversely, reflectors that are only delineated on single survey lines and not on adjacent lines do not indicate a linear trend. As such, these single responses likely do not represent buried utilities, and may be attributed to boulders or tree roots.

The GPR results for each of the survey locations (SB1 and SB2) are discussed in detail below.

<u>SB1</u>

Review of the GPR trace plots for SB1 indicates that the survey results yielded a depth of signal penetration of approximately 11 feet below ground surface (ft bgs). Figure 4.1 presents trace plots of the GPR responses in closest proximity and coincident with proposed boring location SB1. Review of the trace plots for all survey lines indicate that no distinct arc-shaped responses indicative of buried utilities were delineated in the surveyed area surrounding SB1, to a depth of approximately 11 ft bgs. However, two suspected boulders were delineated during review of the trace plots. These suspected boulders appear as strong, irregular arc-shaped features in the trace plots. The first suspected boulder was delineated north of proposed borehole SB1 (Lines 8E, 10E and 14N) along the north central edge of the grid, at an approximate depth of 3 ft bgs. The second suspected boulder was delineated south-west of proposed borehole SB1 (Lines 4E, 6E, 4Nand 6N) at an approximate depth of 4.5 ft bgs.

<u>SB2</u>

Review of the GPR trace plots for SB2 indicates that the survey results yielded a depth of signal penetration of approximately 10 ft bgs. Figure 4.2 presents trace plots of GPR responses in closest proximity and coincident with proposed boring location SB2. Review of the trace plots for all survey lines indicate that no distinct arc-shaped responses indicative of buried utilities were delineated in the surveyed area surrounding SB2 to a depth of approximately 10 ft bgs. However, two suspected boulders were delineated during review of the trace plots. These suspected boulders appear as strong, irregular arc-shaped features in the trace plots. The first suspected boulder was delineated beneath proposed borehole location SB2.

(Lines 8E, 10E, 6N and 8N at the center of the survey grid) at an approximate depth of 6.25 ft bgs. The second suspected boulder was delineated south-east of proposed borehole SB2 (Lines 2N and 4N) along the south east edge of the grid, at an approximate depth of 5.25 ft bgs.

5.0 <u>CONCLUSIONS</u>

As part of the health and safety procedures, Chevron requires that all proposed borehole locations be cleared up to 8 ft bgs for underground utilities prior borehole advancement. As such, the GPR results for proposed boreholes SB1 and SB2 yielded adequate depths of signal penetration beyond 8 ft bgs. Based on the GPR results presented, it is evident that no distinct arc-shaped responses indicative of buried utilities were delineated in any of the trace plots collected at the two proposed borehole locations. However, the survey results for both proposed borehole locations delineated suspected boulders within the surveyed areas. Of significance are the results for SB2, where one boulder was delineated beneath this proposed borehole location. Thus, it is recommended that proposed borehole location SB2 be moved four feet to the west along grid line 8N to avoid drilling through the suspected boulder.

Photo 1 Grid SB1 - View to the north

Photo 2 Grid SB1 - view to the east

Photo 3 Grid SB1 - View to the west

Photo 4 Grid SB1 - View to the south

Photo 5 Grid SB2 - View to the north

Photo 6 Grid SB2 - View to the west

Photo 7 Grid SB2 - view to the south

Photo 8 Grid SB2 - View to the east

Photo 9 Grid SB2 - View to the south

Conestoga - Rovers & Associates 2420 West 26th Avenue Suite 450-D

Denver, CO 80211 Telephone: 720-975-9120 Fax: 720-975-9150

CLIENT NAME Chevron EMC JOB/SITE NAME 9-2609 LOCATION Mile 79 Seward Hwy, Girdwood Alaska PROJECT NUMBER 620911 DRILLER Discovery (Tim, Bruce) DRILLING METHOD Hollow Stem Auger **BORING DIAMETER** 8-inches E. Purcell LOGGED BY **REVIEWED BY** B. Duggan, Colorado P.E. # 40693 REMARKS

BORING/WELL NAME	MW-15		
DRILLING STARTED			
DRILLING COMPLETED	16-Jul-09		
WELL DEVELOPMENT DA	17-Jul-09 (21 gailons)		
GROUND SURFACE ELEV	NA		
TOP OF CASING ELEVAT	24.25 ft above msl		
SCREENED INTERVALS	_	3 to 18 fbg	
DEPTH TO WATER (First I	Encountered)	7.80 fbg (16-Jul-09)	Ţ
DEPTH TO WATER (Static)	NA	Ţ

BORING / WELL LOG

CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW EXTENT U.S.C.S. GRAPHIC LOG DEPTH (fbg) LITHOLOGIC DESCRIPTION WELL DIAGRAM SAND Very fine to fine grained; Olive grey; Damp; Trace organic material Fiush-grade well box #10/20 Silica Sand Pack **Bentonite Chips** SP 5.0 5 1 0.3 SB09- 1-5 SAND Very fine to fine grained; Olive grey; Very loose; Moist; Trace silt 1 SP 6.0 SAND Very fine to fine grained; Grey; Very loose; Moist; Trace silt SP 7.0 SAND Very fine to fine grained; Grey; Very loose; Moist; Trace silt X SP 10 #10/20 Silica Sand Pack 2"-diam., 0.020 Slotted Schedule 40 PVC WELL LOG (PID) UNDENVER LOGSIS20911 MW-15,16.GPJ DEFAULT.GDT 10/2/09 12.0 SAND Very fine to medium grained; Grey; Compact; Wet; Trace silt SP 15 16.0 SAND Very fine to fine grained; Grey; Compact; Wet; 16.5 SP Trace silt SAND Fine to coarse grained; Grey; Compact; Wet; 17.0 SP Trace silt Bottom of Boring @ 17 fbg

PAGE 1 OF 1

CLIENT NAME

LOCATION

DRILLER

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Conestoga - Rovers & Associates 2420 West 26th Avenue Suite 450-D Denver, CO 80211 Telephone: 720-975-9120 Fax: 720-975-9150

Mile 79 Seward Hwy, Girdwood Alaska

B. Duggan, Colorado P.E. # 40693

Chevron EMC

Discovery (Tim, Bruce)

Hollow Stem Auger

9-2609

620911

8-inches

E. Purcell

BORING / WELL LOG

BORING/WELL NAME	MW-16		
DRILLING STARTED	16-Jul-09	· · · · · · · · · · · · · · · · · · ·	
DRILLING COMPLETED	16-Jul-09	· · · · · · · · · · · · · · · · · · ·	
WELL DEVELOPMENT DA	17-Jul-09 (20 gallons)		
GROUND SURFACE ELE	NA		
TOP OF CASING ELEVAT	23.61 ft above msl		
SCREENED INTERVALS	3 to 18 fbg		
DEPTH TO WATER (First	8.20 fbg (16-Jul-09)	Ţ	
DEPTH TO WATER (Statio	NA	T	

REMARKS

LOGGED BY

REVIEWED BY

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0.3	4 5 5	SB09- 2-6			SP SP SP		SAND: Very fine grained; Olive-gray; Damp; Trace organic material SAND: Very fine grained; Olive-gray; Compact; Damp; Trace silt SAND: Very fine grained; Gray; Compact; Damp; Trace silt SAND: Fine to medium grained; Gray; Compact; Damp; Trace silt	5.0 6.0 6.5	Flush-grade well bo # #10/20 Silica Sand Pack Bentonita Chips
R LOGS/620911 MW-15, 16. GP.J DEFAULT. GDT 10/209	2 4 3 5			- 10	SP SP		SAND: Very fine grained; Gray; Medium dense; Wet; Trace silt SAND: Fine to medium grained; Gray; Medium dense; Wet; Trace silt	10.0	#10/20 Silica Sand Pack Z-diam., 0.020 Slotted Schedule 40 PvC
WELL LOG (PD) U:DENVER LOGS(620911 MN	1 2 1	k c			SP		SAND: Very fine to fine grained; Gray; Loose; Wet; Trace silt	15.0	Bottom of Boring @ 18 fbg

APPENDIX D

CRA'S STANDARD OPERATING PROCEDURES FOR SOIL BORINGS

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Conestoga-Rovers & Associates' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate groundwater depth and quality and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist or engineer working under the supervision of an Alaska Qualified Person (AQP). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel),
- Approximate percentage of each grain size category,
- Color,
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- · Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic push technologies. Prior to drilling, the first 8 ft of the boring are cleared using an air or water knife and vacuum extraction. This minimizes the potential for impacting utilities.

At least one and one half feet of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is decontaminated per Alaska Department of Environmental Conservation regulations prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Single use plastic sterile-scoops are used to transfer approximately 20 to 40 grams of soil sample from the splitspoon sampler to 4 oz. amber glass jars with Teflon lined screw cap lids containing methanol preservative such that the entire vial of methanol covers the matrix. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

The some of the remaining soil from the split-spoon sampler is collected in a plastic bag and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector (PID) measures volatile hydrocarbon vapor concentrations in the bag headspace, extracting the vapor through a slit in the bag. PID measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Duplicates and Blanks

Blind duplicate water samples are collected at a rate of one blind sample for every 10 soil samples. Laboratorysupplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

11/17/09

F:\TEMPLATE\SOPs\Hand Auger Borings.doc

APPENDIX E

DEPARTMENT OF NATURAL RESOURCES WATER WELL LOGS

STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF MINING, LAND & WATER WATER WELL LOG

Drilling Started: 07 / 16 / 2009 . Completed: 07 / 16 / 2009

Company name: Discovery Drilling Mailing address: 11341 Olive Land City: Anchorage State: Alaska state law requires that a copy of this well log be forwarded to the Department of Natural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). If the well is within city limits, the City of Anchorage requires that a copy of this well log be forwarded to the owner of the property, on which the well is located, within 30 days. Alaska DNR, Division of Mining, Land and Water, 550 W 7 th Avenue, Suite 1020 City Permit Number: Alaska PNR, Division of Mining, Land and Water, 550 W 7 th Avenue, Suite 1020 Parcel Identification Number:	······································				
Mile 79 Seward Hishwav. Portae: Alaska Meridian Seward Township 8N Range 3W Section 5	City/Borough:	Subdivision:	BLOC	к Lот	Property Owner Name & Address:
Meridian Seward Towniship BN Range 3W Section 5 1/4 of					
BOREHOLE DATA: (from ground surface) Depth Material: Type, Color & wetness From To Well use: a Public supply, a Domestic, 2% other Environmental SAND; olive gray; moist; trace silt 5 6 Casing type.PVC Thickness inches asing stackup:ft SAND; gray; moist; trace silt 5 6 12 Liner type: Diameter: inches casing diameter. 2 inches casing diameter. 3 inches casing diameter. 4 inches casing diameter. 2 inches casing diameter. 2 inches casing diameter. 3 inches casing diameter. 3 inches casing diameter. 4 inches casing diameter. 3 inches inches casing diameter. 3 inches <t< td=""><td>Meridian Sewa</td><td>rd Township 8N</td><td>Range</td><td>3W ;</td><td></td></t<>	Meridian Sewa	rd Township 8N	Range	3W ;	
SAND; olive gray, moist; trace silt 5 6 Casing type: PVC Thicknessinches inches SAND; gray; moist; trace silt 6 12 Liner type:Diameter:inches Casing depthft ft SAND; gray; wet; trace silt 12 Incert type:Diameter:inches Casing depthft ft SAND; gray; wet; trace silt 12 Incert type:Diameter:inches Casing depthft ft SAND; gray; wet; trace silt 12 Incert type:			-	th	Drilling method:
SAND; gray; moist; trace silt 6 12 Inches Casing depth 18 ft SAND; gray; wet; trace silt 12 17 Note:	SAND; olive gra	ay; moist; trace organic i	0	5	Depth of hole: 18 ft, Casing stickup: ft
SAND; gray; moist; trace silt 6 12 Inches Casing depth 18 ft SAND; gray; wet; trace silt 12 17 Note:	SAND; olive gra	ay, moist; trace silt	5	6	Casing type: PVC Thickness inches
SAND; gray; wet; trace silt 12 17 Note:	SAND; gray; mo	oist: trace silt	6	12	Casing diameter: <u>2</u> inches Casing depth <u>18</u> ft
Static water (from top of casing): 7.80 ft on _7 / 16 / 2009 Pumping level & yield:feat afterhours atgpm Recovery rate:gpm. Method of testing: Development method: Purge and surgebrains: Well intake opening type: □ Open end □ Open hole. Other □ # Screen type: 0.020 Storen type: 0.020 Static stat:					
Well intake opening type: Dopen end Dopen hole. Other D # Screened; Start:					Static water (from top of casing): 7.80 ft on 7 / 16 / 2009 Pumping level & yield:feet afterhours atgpm Recovery rate:gpm, Method of testing:
Grout type: Bentonite Volume Depth; from ft, to ft Pump intake depth;					Well intake opening type: □ Open end □ Open hole , Other If Screened; Start: ft, Stopped 18 Screen type: 0.020 Slot/mesh size □ Perforated; Start: ft, Stopped ft Start: ft, Stopped ft Gravel packed □ Yes No From 3 ft to 18 ft
Depth; fromft, toft Pump intake depth:ft Pump intake depth:ft Pump sizehp Brand name Was well disinfected upon completion? □ Yes X0 No Method of disinfection: Driller comments/ disclaimers: Well installation Driller comments/ disclaimers: Well installation Driller comments/ disclaimers: Well installation Well driller name: Tim Beckner Company name: Discovery Drilling Mailing address: 11341 Olive Land City: Anchorage State: AK Zip 99501 Phone number : 907 344 6431 Drillers signature:					Note: #10/20 Sand pack
Pump intake depth: ft Pump size hp Brand name Pump size hp Brand name Was well disinfected upon completion? Yes x0 No Method of disinfection:		<u>·</u>			Depth: from ft to ft
Pump sizehp_Brand name Was well disinfected upon completion? □ Yes_X0 No Method of disinfection: Driller comments/ disclaimers: Well installation Driller comments/ disclaimers: Well installation Well driller name: Tim Beckner Company name: Discovery Drilling Mailing address: 11341 Olive Land City: Anchorage State: AK Zip 99501 Phone number : (907) 344 - 6431 Drillers signature: R R Drillers signature: R R Date: <u>II / 03 / 2009</u> R If the well is within city limits, the City of Anchorage requires that a copy of this well log be forwarded to the Department of Natural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable. Alaska DNR, Division of Mining, Land and Water, 550 W 7 th Avenue, Suite 1020 Anchorage, AK 99501-3562				_	Pump intake depth:
Alaska state law requires that a copy of this well og be forwarded to the Department of Natural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable. If the well is within city limits, the City of Anchorage requires that a copy of this well og be forwarded to the Department of Matural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable. If the well is within city limits, the City of Anchorage requires that a copy of this well og be forwarded to the Department of Matural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable. If the well is within city limits, the City of Anchorage requires that a copy of this log be forwarded to the owner of the property, on which the well is located, within 30 days. City Permit Number:	_				
Driller comments/ disclaimers: Well installation Driller comments/ disclaimers: Well installation Driller comments/ disclaimers: Well installation Well driller name: Tim Beckner Company name: Discovery Drilling Mailing address: 11341 Olive Land City: Anchorage State: AK Zip 99501 Phone number : (907) 344 Drillers signature: Fm< Discovery Drilling					Was well disinfected upon completion? Yes X No
Well driller name: Tim Beckner Company name: Discovery Drilling Mailing address: 11341 Olive Land City: Anchorage State: AK Zip 99501 Phone number : (_907_) _3446431 Drillers signature: Fm Date: _II _ 03 _ 1 2 cog fm Alaska state law requires that a copy of this well log be forwarded to the Department of Natural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable. If the well is within city limits, the City of Anchorage requires that a copy of this log be forwarded to the owner of the property, on which the well is located, within 30 days. City Permit Number:					Driller comments/ disclaimers: Well installation
Alaska state law requires that a copy of this well log be forwarded to the Department of Natural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable. If the well is within city limits, the City of Anchorage requires that a copy of this well log be forwarded to the city within 60 days and another copy of this log be forwarded to the owner of the property, on which the well is located, within 30 days. Alaska DNR, Division of Mining, Land and Water, 550 W 7 th Avenue, Suite 1020 City Permit Number:					Well driller name: Tim Beckner Company name: Discovery Drilling Mailing address: 11341 Olive Land City: Anchorage State: AK Zip 99501
forwarded to the Department of Natural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable. Alaska DNR, Division of Mining, Land and Water, 550 W 7 th Avenue, Suite 1020 Anchorage, AK 99501-3562					
550 W 7" Avenue, Suite 1020 Anchorage, AK 99501-3562 Parcel Identification Number:	forwarded to the 45 days (AK stat	Department of Natural R utes 38.05.020, 38.05.03	tesources 35, 41.08.0	within 20.	copy of this well log be forwarded to the city within 60 days and another copy of this log be forwarded to the owner of the property, on which the well is located, within 30 days.
	550 W 7 ^ຫ Avenເ	ue, Suite 1020	id Water,		
	Phone (907)269-	8639 and fax (907)269-8	947		Is well located at approved permit location? Yes or No

STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF MINING, LAND & WATER WATER WELL LOG

Drilling Started: 07 / 16 / 2009 Completed: 07 / 16 / 2009

City/Borough:	Subdivision:	BLOCK	LOT	Property Owner Name & Address:
				Robert Hall Mile 79 Seward Highway, Portage, Alaska
Meridian Sewa	rd Township8N	Range_3		Section 5 1/4 of 1/4 of 1/4 of 1/4
	ATA: (from ground surfa , Color & wetness	-		Drilling method:
SAND; olive gr	ay; damp; trace organic 1	0	5	Depth of hole: <u>18</u> ft, Casing stickup:ft
SAND; olive gr	ay; damp; trace silt	5	5	Depth of hole: 18 ft, Casing stickup: ft Casing type: PVC Thickness inches
SAND; gray; da	mp; trace silt	6	5.5	Casing diameter: 2 inches Casing depth 18 ft Liner type: Diameter: inches Depth: ft
SAND; gray; da	mp; trace silt	6.5	10	Note:
SAND; gray; we	et; trace silt	10	17	Static water (from top of casing): 8.20 ft on _7 / 16 / 2009 Pumping level & yield: feet after hours at gpm Recovery rate: gpm, Method of testing: Development method: Purge and surge Duration:
				Well intake opening type: □ Open end □ Open hole , Other □ M Screened; Start: ft, Stopped 18 ft Screen type: 0.020 Slot/mesh size ft □ Perforated; Start: ft, Stoppedft ft ft Start: ft, Stoppedft ft ft Gravel packed □ Yes IN No From 3 ft to 18 ft
				Note: #10/20 sand pack Grout type: Bentonite Volume Depth; from ft, to ft
				Pump intake depth:ft
				Pump size hp Brand name
				Was well disinfected upon completion? Yes No Method of disinfection:
				Driller comments/ disclaimers: Well installation
				Well driller name: Tim Beckner Company name: Discovery Drilling Mailing address: 11341 Olive Land City: Anchorage State: AK Zip 99501 Phone number : (907)3446431
				Drillers signature: B. B. Ar Discoursy Drilling Date: <u>11 / 05 / 2009</u>
Alaska state law requires that a copy of this well log be forwarded to the Department of Natural Resources within 45 days (AK statutes 38.05.020, 38.05.035, 41.08.020, 46.15.020 and AK regulations 11 AAC 93.140). Faxes are acceptable.				If the well is within city limits, the City of Anchorage requires that a copy of this well log be forwarded to the city within 60 days and another copy of this log be forwarded to the owner of the property, on which the well is located, within 30 days.
Alaska DNR, D 550 W 7 th Aven Anchorage, AK		nd Water,		City Permit Number:
Phone (907)269	-8639 and fax (907)269-1	394 7		Is well located at approved permit location? Yes 🗍 or No 📋

APPENDIX F

WELL DEVELOPMENT FORMS

1/

WELL DEVELOPMENT FORM

Project Name: 9-2009	CRA Mgr: B. DUGGAN)	Well ID: NW-15
Project Number: 620911	Date: 7/17/09	Well Yield:
Site Address: MILE 79.5 SENAROHNY GIRDWOOD, AK	Development Method:	Well Diameter: 2"
GIRDWOOD, AK.	JURGE BLOCK, KODS	Technician(s): EP/SL
Initial Depth to Water: 9.55	Total Well Depth: 21. 55	Water Column Height: 12.00
Volume/ft: 0.16	1 Casing Volume: 1.92	10 Casing Volumes: 19.2
Purging Device: PUNP	Did Well Dewater?: No	Total Gallons Purged: 1 20

1 Casing Volume = Water column height x Volume/ ft.

Well Diam,	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Activity	Water Depth	Gallons Purged	Comments	
1105	SURGE	9.55			
1122	PURGE SUKGE	1 2	~5		.:
1135	Purge,		~ ~	PTB 22.18	
1141	Surg.	10.36		<u> </u>	
1147	Diverse		10	Purch water became, clear very slight that	
1155	EUROE	9.70		DTP: 22.20	• •
·					
				· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	· <u> </u>			
· · · · ·	· · · ·				
		· · ·			
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · ·	

\\DEN-S1\SharedDenver\AlaskakField Forms\CRA Field Forms\Well Development Form.doc

WELL DEVELOPMENT FORM

Project Name: 9 - 2009	CRA Mgr. B. DUGGAN	Well ID: NW-10
Project Number: 620911	Date: 7/17/09	Well Yield:
Site Address: Wile 79.5 Server Havy GIRDWOOD, AK	Development Method:	Well Diameter: 2"
	SURGE BLOCK, ROOS	Technician(s): EP/SL
Initial Depth to Water: 8.88	Total Well Depth: 21-12	Water Column Height: 12.24
Volume/ft: 0.16	1 Casing Volume: NOL ~ 2,00	10 Casing Volumes: ~ 20. D
Purging Device: Purp	Did Well Dewater?: No	Total Gallons Purged: 20.10

1 Casing Volume = Water column height x Volume/ ft.

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Activity	Water Depth	Gallons Purged	Comments
1205	Surge	8.88		· · · · · · · · · · · · · · · · · · ·
1210	purge		5	
L [4	Surge	8.99		DtB - 21.72; hard bottom minimal Sectionent
6337	purge	8,91	15	DTB-21.84; HARD BOTOM; WAT OR BOXAME CLEAR
			· · · · · · · · · · · · · · · · · · ·	
		• • • • • • • • • • • • • • • • • • • •		
			<u>_</u>	
L			· · · · · · · · · · · · · · · · · · ·	
	<u> </u>		ļ	
	·			
		<u> </u>		

APPENDIX G

CRA'S STANDARD OPERATING PROCEDURES FOR WELL DEVELOPMENT

STANDARD FIELD PROCEDURES FOR MONITORING WELL DEVELOPMENT

This document presents standard field methods for developing groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

MONITORING WELL DEVELOPMENT

Objectives

Monitoring well development objectives include removal of sediments that may have accumulated in the water column during drilling operations, stabilize the filter pack and formation materials opposite the well screen, and ensure the well produces water free of suspended solids. All development activities are conducted by a trained geologist working under the supervision of an Alaska Qualified Personnel in accordance with 18 Alaska Administrative Code (AAC) 75, Article 3 and 18 AAC 78, Article 2, 6, and 9. Monitoring wells are developed no less than 24 hours post-installation as to allow the well seals and grout to set.

Well Development

Wells are developed using a combination of groundwater surging and purging. Surging includes the entire submerged portion of the screened interval with the use of surge blocks, bailers, or other equipment that frequently and repeatedly reverses the flow of water through the well screen. It is important that surging activities be started slowly and be increased in vigor as to free the fine particles from the sand pack, allowing them to be drawn into the water column, settling the coarser particles around the well screen and enhancing contact with the aquifer.

Purging is accomplished with the use of a bailer, submersible pump, or other equipment that adequately extracts groundwater from the water column. Development consists of a cycle of surging for several minutes followed by several minutes of purging to remove the fine sediments collecting in the well. This cycle is repeated for a minimum of 30 minutes. Purging continues until 10 well volumes of groundwater are removed or the extracted groundwater is free of suspended solids.

In the event the well is purged dry, an alternate development method is used. Following purging the well dry, one well casing volume of potable water is added to the well. The well is then surged vigorously for 10 minutes and purged dry again to complete the process. Additional water may be added to the well as necessary to properly develop the well, but should only be done as a

last resort. If the well does recover, continued development should occur only with formation water.

Groundwater Sampling

Following completion of well development activities, groundwater samples are collected for characterization using disposable bailers or the effluent portion of the pumping apparatus and decanted into the appropriate containers supplied by the analytical laboratory. Samples are labeled, placed in protective foam sleeves, stored on ice or other approved artificial cooling substance at $4^{\circ} \pm 2^{\circ}$ C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples per matrix, analysis, and cooler and are analyzed to check for cross-contamination. A duplicate sample is collected and submitted per matrix, analysis, and 10 project samples for quality assurance purposes. An equipment blank will be submitted for analysis if non-dedicated sampling equipment is used.

Waste Handling and Disposal

Groundwater removed during development is typically stored onsite in sealed 55-gallon steel drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification, and consultant contact. Upon receipt of analytical results, the water is either pumped out using a vacuum truck for transport or the individual drums are picked up and transported by licensed waste haulers to a licensed waste treatment/disposal facility where the drum contents are removed and appropriately disposed.

APPENDIX H

LANCASTER LABORATORIES ANALYTICAL REPORT

APPENDIX I

ADEC LABORATORY DATA REVIEW AND CHECKLIST

1420 80th St. SW., Suite A Everett, WA 98203 Telephone: (425) 212-5100 Fax: (425) 212-5199 www.CRAworld.com

MEMORANDUM

TO:	ADEC	REF. NO.:	620911
From: CC:	Jeffrey Cloud John Riggi	DATE: <u>Send via E-Ma</u>	August 5, 2009 ail and U.S. Mail
RE:	QA/QC Review ChevronTexaco Site # 9-2609 Job #1154032 July 2009		

INTRODUCTION

Groundwater samples were submitted to Lancaster Laboratories, located in Lancaster, Pennsylvania. Samples were analyzed for the methods requested on the Chain of Custody.

A full Level III data package was received from Lancaster Laboratories. The final results and supporting quality assurance/quality control (QA/QC) data were reviewed. Evaluation of the data was based on information obtained from the Chain of Custody forms, finished report forms, blank data, and spike recoveries.

OA/OC REVIEW

All samples were prepared and/or analyzed within the required holding times. All samples were properly preserved and maintained at $4^{\circ}C$ ($\pm 2^{\circ}C$).

All appropriate samples and blanks were spiked with surrogate compounds prior to sample preparation and/or analysis in accordance with the organic methods. All surrogate spike recoveries met the associated method criteria indicating adequate analytical efficiency with a few exceptions. Samples SB09-1-5, SB09-2-5 and DUP-1 had low 8021 surrogate recoveries. All 8021 results for samples SB09-1-5, SB09-2-5 and DUP-1 should be considered estimated due to an implied low bias.

Method blanks were prepared and analyzed with the samples for all parameters. All blank results were non-detect for the analytes of interest.

Laboratory control samples (LCS) were analyzed in duplicate for all parameters. All recoveries were within required control limits showing adequate analytical accuracy and precision.

Matrix spikes (MS) were prepared and analyzed for all parameters. The MS for DRO was analyzed in duplicate. All recoveries were within required control limits showing adequate analytical accuracy and precision.

Trip blanks were collected and analyzed with the investigative samples for all parameters. All trip blank results were non-detect for the compounds of interest.

A field duplicate was collected and submitted blind to the laboratory. The sample ID was SB09-1-5 and its duplicate was DUP-1. A comparison of the results showed good analytical and sampling precision with one exception. The toluene RPD was 86%. The toluene results for samples SB09-1-5 and DUP-1 should be considered estimated due to variability.

CONCLUSION

Based on the QA/QC review, the data submitted were judged to be acceptable for use with the qualifications noted.

Laboratory Data Review Checklist

Completed by:	Jeffrey Cloud
Title:	Project Chemist
Date:	8/5/09
CS Report Name:	Subsurface Investigation Report
Report Date:	7/28/09
Consultant Firm:	Conestoga-Rovers & Associates
Laboratory Name:	Lancaster Laboratories
Laboratory Report Nu	mber: 1154032
ADEC File Number:	
ADEC RecKey Numbe	er:
	EC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
C Yes	Comments:
*	les were transferred to another "network" laboratory or sub-contracted to an alternate was the laboratory performing the analyses ADEC CS approved?
C Yes	CNo Comments:
NA	

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?

🖸 Yes	C No	Comments:	
b. Correct ana	lyses requested	?	
C Yes	🕻 No	Comments:	

3. Laboratory Sample Receipt Documentation

	C Yes	C No	e documented and within range at receipt $(4^\circ \pm 2^\circ C)$? Comments:
b.		servation acceptorinated Solve	otable – acidified waters, Methanol preserved VOC soil (GRO, BTE) ents, etc.)?
	C Yes	C No	Comments:
لــــ c.	Sample cone	dition docume	nted – broken, leaking (Methanol), zero headspace (VOC vials)?
(C Yes	C No	Comments:
L			
d.		reservation, sa	ncies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or missing
	🗖 Yes	🖸 No	Comments:
			Commonds.
١	NA		
L	NA		
L	NA		ffected? Explain.
e.	NA Data quality		
e.	NA		ffected? Explain.
e.	NA Data quality		ffected? Explain.
e. N	NA Data quality JA <u>Narrative</u>	or usability at	ffected? Explain. Comments:
e. N	NA Data quality NA <u>Narrative</u> Present and	or usability at	ffected? Explain. Comments: e?
e. N se N	NA Data quality JA <u>Narrative</u>	or usability at	ffected? Explain. Comments:
e. N se N	NA Data quality NA <u>Narrative</u> Present and	or usability at	ffected? Explain. Comments: e?
e. <u>N</u> <u>se N</u> a.	NA Data quality NA <u>Narrative</u> Present and E Yes	or usability at understandable C No	ffected? Explain. Comments: e? Comments:
e. N se N a.	NA Data quality NA Narrative Present and E Yes Discrepanci	v or usability at understandable C No es, errors or Q	ffected? Explain. Comments: e? Comments: C failures identified by the lab?
e. N se N a.	NA Data quality NA <u>Narrative</u> Present and E Yes	or usability at understandable C No	ffected? Explain. Comments: e? Comments:
e. <u>N</u> <u>se N</u> a. b.	NA Data quality JA <u>Narrative</u> Present and E Yes Discrepanci E Yes	v or usability at understandable C No es, errors or Q C No	ffected? Explain. Comments: e? Comments: C failures identified by the lab?

d. What is the effect on data quality/usability according to the case narrative?

NA	

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

🖸 Yes	🗋 No	Comments:

b. All applicable holding times met?

E Yes C No Comments:

c. All soils reported on a dry weight basis?

d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project?

C Yes	C No	Comments:

e. Data quality or usability affected?

Comments:

NA

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?
 - Yes No Comments:
 - ii. All method blank results less than PQL?
 - E Yes C No Comments:

iii. If above PQL, what samples are affected?

Comments:

NA

NA D. Laborato i. C r E Y ii. N s C Y NA iii. A	Data quality or usa ory Control Sampl Organics – One LC required per AK m 'es E' No Metals/Inorganics samples? 'es E' No Accuracy – All per And project specifi	Comments: ability affected? Explain. Comments: le/Duplicate (LCS/LCSD) CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD nethods, LCS required per SW846) Comments: - one LCS and one sample duplicate reported per matrix, analysis and 2 Comments: rcent recoveries (%R) reported and within method or laboratory limits?
v. I NA D. Laborato i. (C r E Y ii. M s C Y NA iii. A	ory Control Sampl Organics – One LC required per AK m les C No Metals/Inorganics samples? les C No Accuracy – All per And project specifi	Comments: le/Duplicate (LCS/LCSD) CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD hethods, LCS required per SW846) Comments: – one LCS and one sample duplicate reported per matrix, analysis and 2 Comments: rcent recoveries (%R) reported and within method or laboratory limits?
NA b. Laborato i. C r E Y ii. N s C Y NA iii. A A A	ory Control Sampl Organics – One LC required per AK m les C No Metals/Inorganics samples? les C No Accuracy – All per And project specifi	Comments: le/Duplicate (LCS/LCSD) CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD hethods, LCS required per SW846) Comments: – one LCS and one sample duplicate reported per matrix, analysis and 2 Comments: rcent recoveries (%R) reported and within method or laboratory limits?
o. Laborato i. C r E Y ii. N s C Y NA iii. A A	Organics – One LC required per AK m les E No Metals/Inorganics samples? les E No Accuracy – All per And project specifi	CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD nethods, LCS required per SW846) Comments: – one LCS and one sample duplicate reported per matrix, analysis and 2 Comments: rcent recoveries (%R) reported and within method or laboratory limits?
i. C r EY ii. N s CY NA iii. A A	Organics – One LC required per AK m les E No Metals/Inorganics samples? les E No Accuracy – All per And project specifi	CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD nethods, LCS required per SW846) Comments: – one LCS and one sample duplicate reported per matrix, analysis and 2 Comments: rcent recoveries (%R) reported and within method or laboratory limits?
i. C r EY ii. N s CY NA iii. A A	Organics – One LC required per AK m les E No Metals/Inorganics samples? les E No Accuracy – All per And project specifi	CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD nethods, LCS required per SW846) Comments: – one LCS and one sample duplicate reported per matrix, analysis and 2 Comments: rcent recoveries (%R) reported and within method or laboratory limits?
ii. N s CY NA iii. A A	Metals/Inorganics samples? Yes CNo Accuracy – All per And project specifi	– one LCS and one sample duplicate reported per matrix, analysis and 2 Comments: rcent recoveries (%R) reported and within method or laboratory limits?
s CY NA iii. 4 A	samples? Yes C No Accuracy – All per And project specifi	Comments: rcent recoveries (%R) reported and within method or laboratory limits?
s CY NA iii. 4 A	samples? Yes C No Accuracy – All per And project specifi	Comments: rcent recoveries (%R) reported and within method or laboratory limits?
NA iii. 4 A	Accuracy – All per And project specifi	rcent recoveries (%R) reported and within method or laboratory limits?
iii. 4 4 4	And project specifi	
l I	And project specifi	
		 ied DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, 6, AK103 60%-120%; all other analyses see the laboratory QC pages) Comments:
l I	laboratory limits? A LCS/LCSD, MS/N	ative percent differences (RPD) reported and less than method or And project specified DQOs, if applicable. RPD reported from ASD, and or sample/sample duplicate. (AK Petroleum methods 20%; a the laboratory QC pages)
CΥ	les 🖸 No	Comments:
v. I	If %R or RPD is o	utside of acceptable limits, what samples are affected? Comments:
NA		
vi. I CY		mple(s) have data flags? If so, are the data flags clearly defined? Comments:
NA		

vii. Data quality or usability affected? (Use comment box to explain) Comments:

NA	
c. Surrogates – Organics Only	

- i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
 Yes No Comments:
- Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

CYes CNo Comments:

Samples SB09-1-5, SB09-2-5 and DUP-1 had low 8021 surrogate recovery.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

YesNoComments:

iv. Data quality or usability affected? (Use the comment box to explain.) Comments:

All 8021 results for samples SB09-1-5, SB09-2-5 and DUP-1 should be considered estimated due to an implied low bias.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (if not, enter explanation below.)

C Yes	C No	Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

CYes CNo Comments:

iii. All results less than PQL?

E Yes C No Comments:

iv. If above PQL, what samples are affected? Comments: NA v. Data quality or usability affected? Explain. Comments: NA e. Field Duplicate i. One field duplicate submitted per matrix, analysis and 10 project samples? • Yes C No Comments: ii. Submitted blind to lab? C Yes C No Comments: iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $(R_1 - R_2)$ x 100 $((R_1+R_2)/2)$ Where $R_1 =$ Sample Concentration R_2 = Field Duplicate Concentration C Yes 🖸 No Comments: SB09-1-5/DUP toluene RPD was 86%. iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments: The toluene results for samples SB09-1-5 and DUP-1 should be considered estimated due to variability.

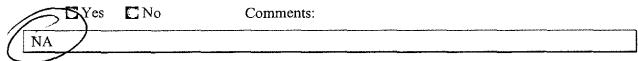
f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)

	C Yes	C No	🖸 Not Applicable
	i. All 1	esults less th	an PQL?
	C Yes	C No	Comments:
NA			
	ii. If ab	ove PQL, w	hat samples are affected?
			Comments:
NA			
	iii. Data	ı quality or u	sability affected? Explain.
			Comments:
NA			
Other Dat	ta Flags/Q	ualifiers (AC	COE, AFCEE, Lab Specific, etc.)
a. D	efined and	l appropriate	?
	🖸 Yes	C No	Comments:

7.

2100,38,007

Laboratory Data Review Checklist


Completed by:	Jeffrey Cloud
Title:	Project Chemist
Date:	8/5/09
CS Report Name:	Subsurface Investigation Report
Report Date:	7/28/09
Consultant Firm:	Conestoga-Rovers & Associates
Laboratory Name:	Lancaster Laboratories
Laboratory Report Nu	mber: 1154032
ADEC File Number:	2110,38,007
ADEC RecKey Numbe	er:

1. Laboratory

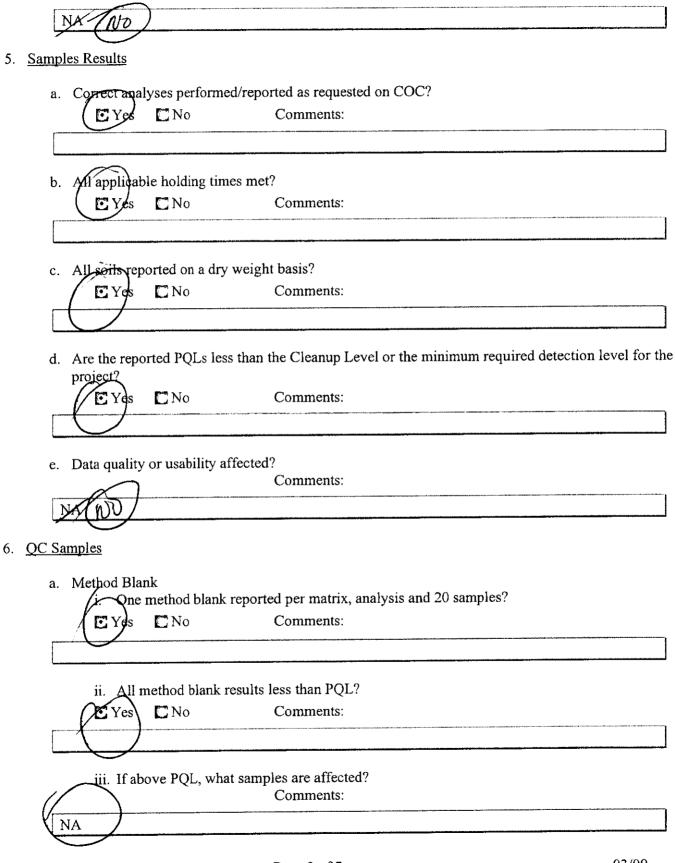
.

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

2. Chain of Custody (COC)

a.	GOC inform	ation compl	eted, signed, and dated (including rele	eased/received by)?
	Yes) 🗖 No	Comments:	
			аран с _{ана} нанан тараалан тараалан каралан каралан каралан каралан тараалан каралан каралан каралан каралан кара Тараалан	
1_			-49	_
D.	Correct anal	iyses request		
	<u>U</u> Yes	L INO	Comments:	
L.	<u> </u>			

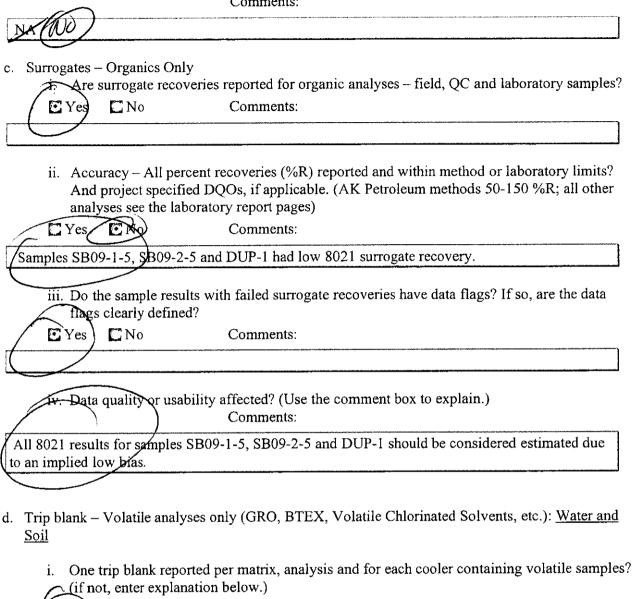

Version 2.6

3. Laboratory Sample Receipt Documentation

Sample/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$? a. C No • Yes Comments: b. Sample preservation acceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)? • Yes C No Comments: c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? E Yes CNo Comments: d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes Yes 🖸 No Comments: NA e. Data quality or usability affected? Explain. Comments: 4. Case Narrative a. Present and understandable? C Yeş C No Comments: b. Discrepancies, errors or QC failures identified by the lab? 🖸 Yes CNo Comments: Were all corrective actions documented? Yes 🗋 No Comments: NA

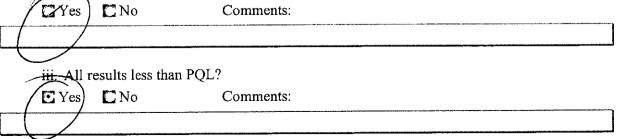
d. What is the effect on data quality/usability according to the case narrative?

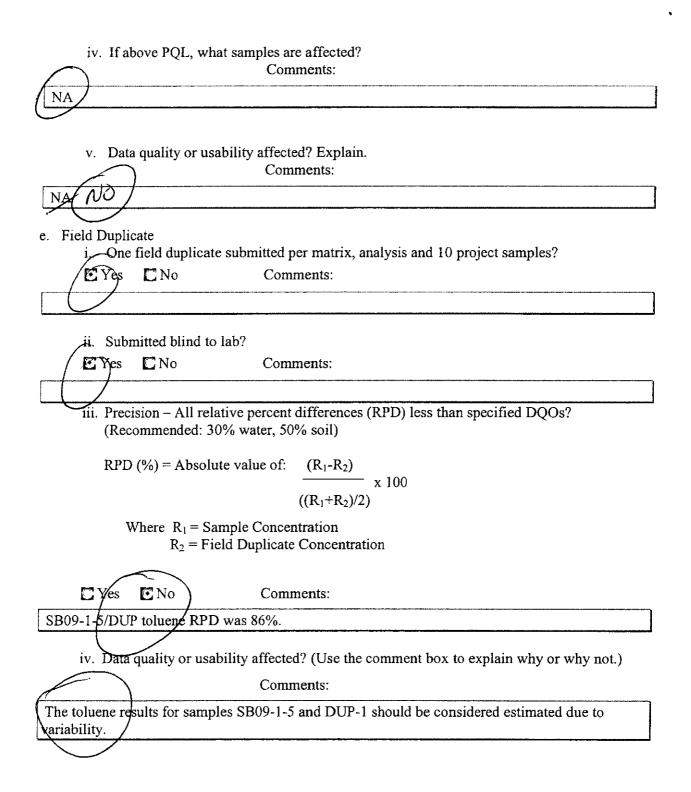
```
Comments:
```

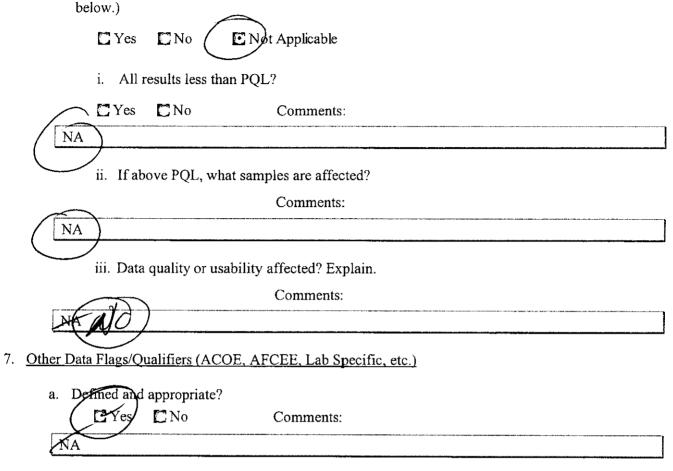


iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

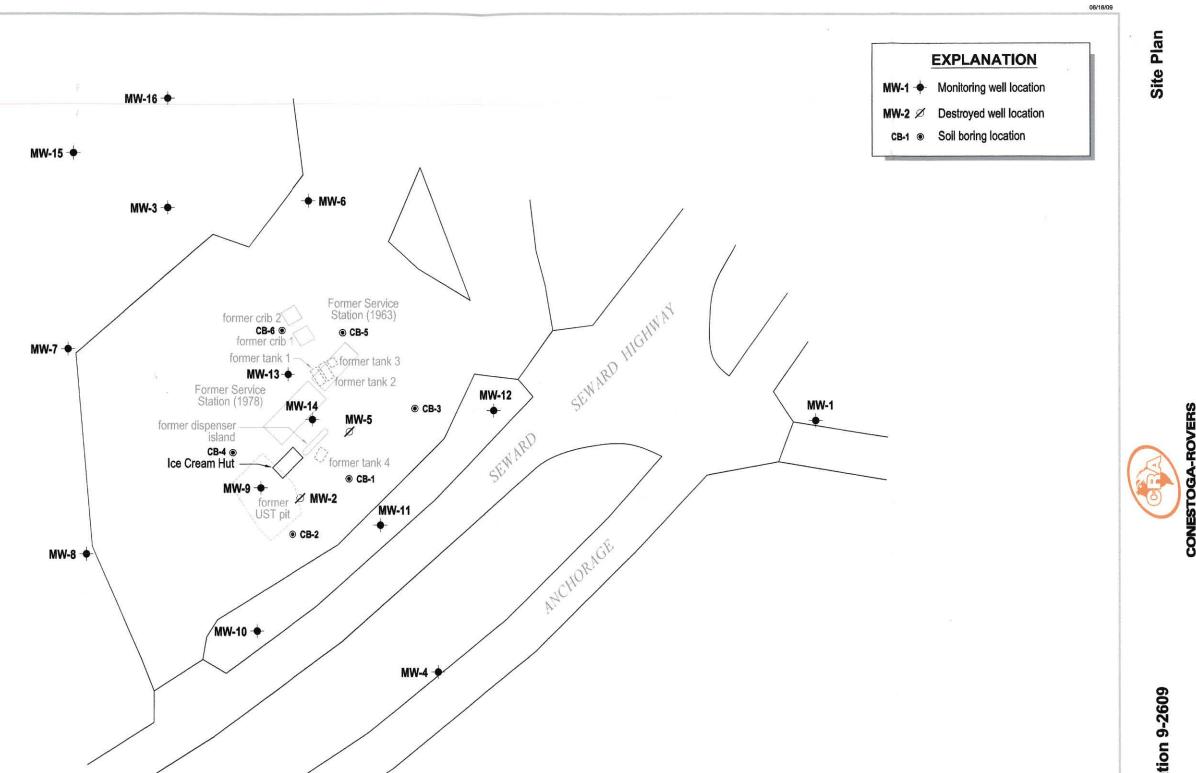
Yes C No Comments: NA v. Data quality or usability affected? Explain. Comments: b. Laboratory Control Sample/Duplicate (LCS/LCSD) Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD i. -required per AK methods, LCS required per SW846) CNo 🖸 Yez Comments: ii. Metals/Inorganics - one LCS and one sample duplicate reported per matrix, analysis and 20 samples? 🖒 Yes CNo Comments: NA iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) C Yes, CNo Comments: iv. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) E Yes CNo Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? C Yes C No Comments:

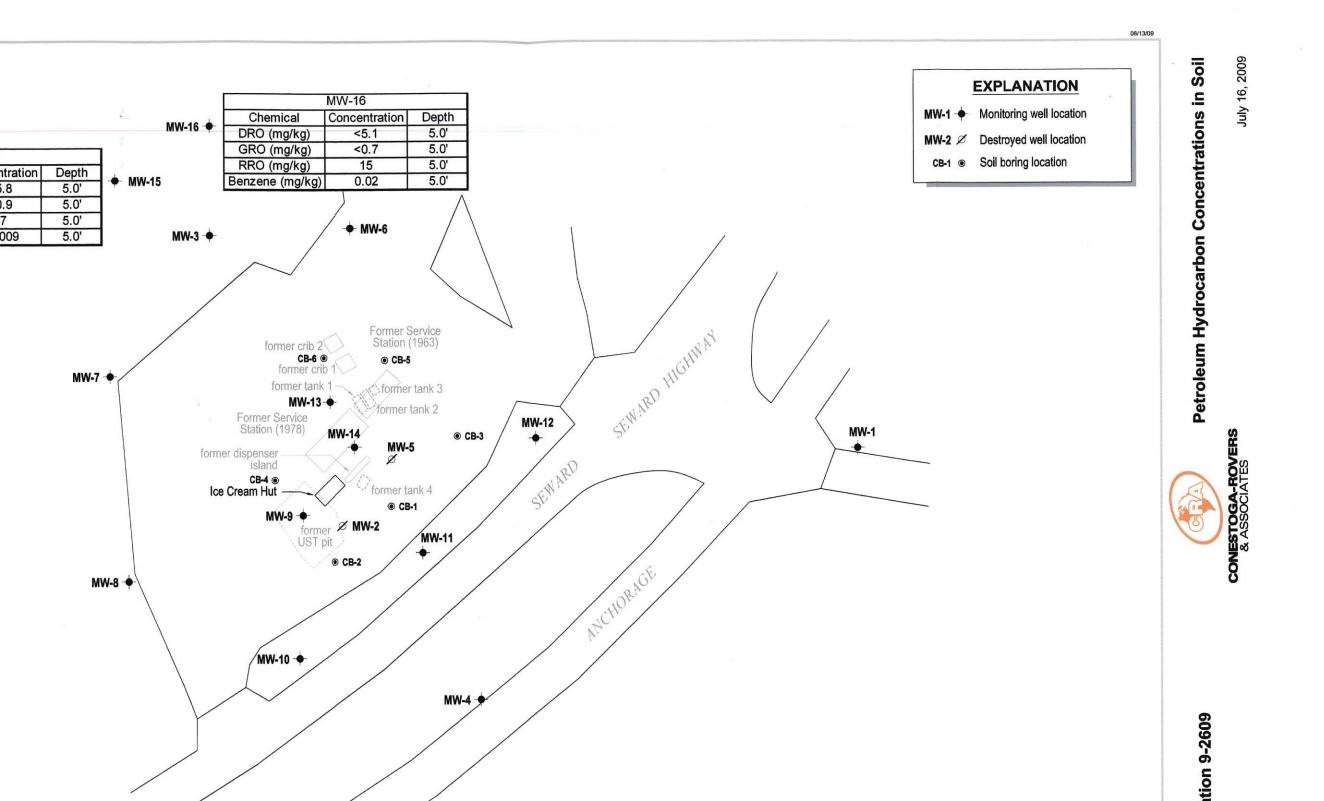
NA

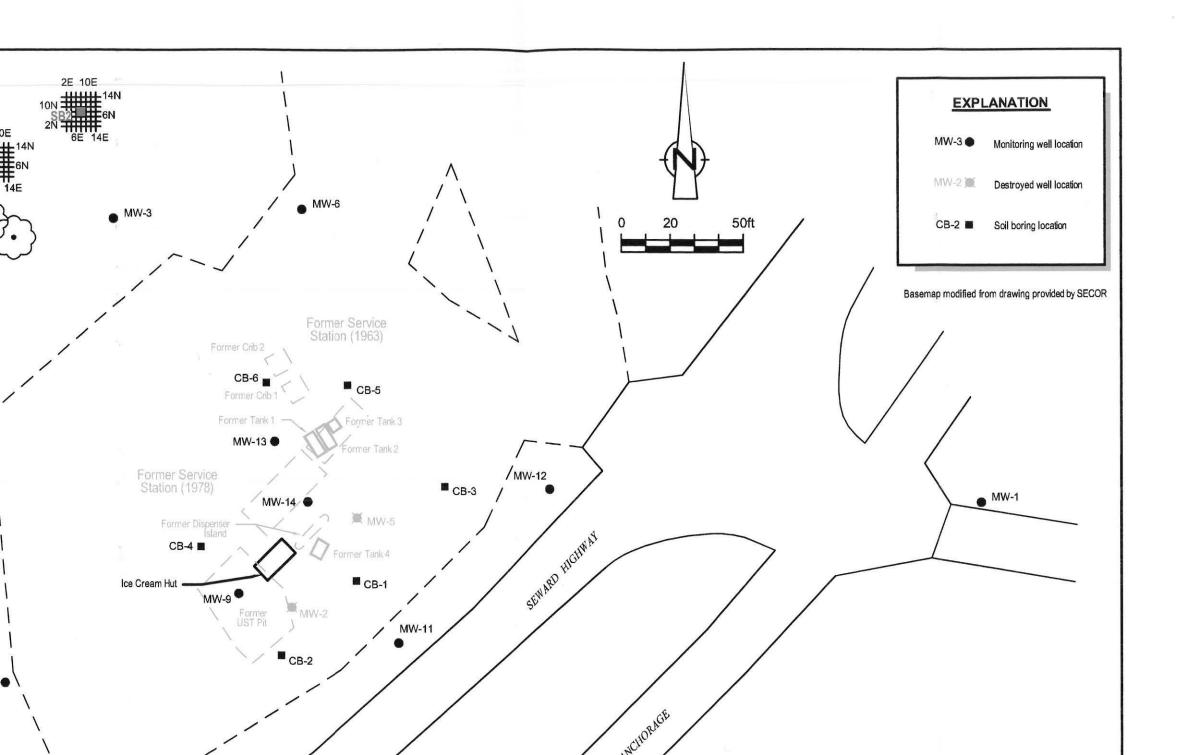

vii. Data quality or usability affected? (Use comment box to explain)

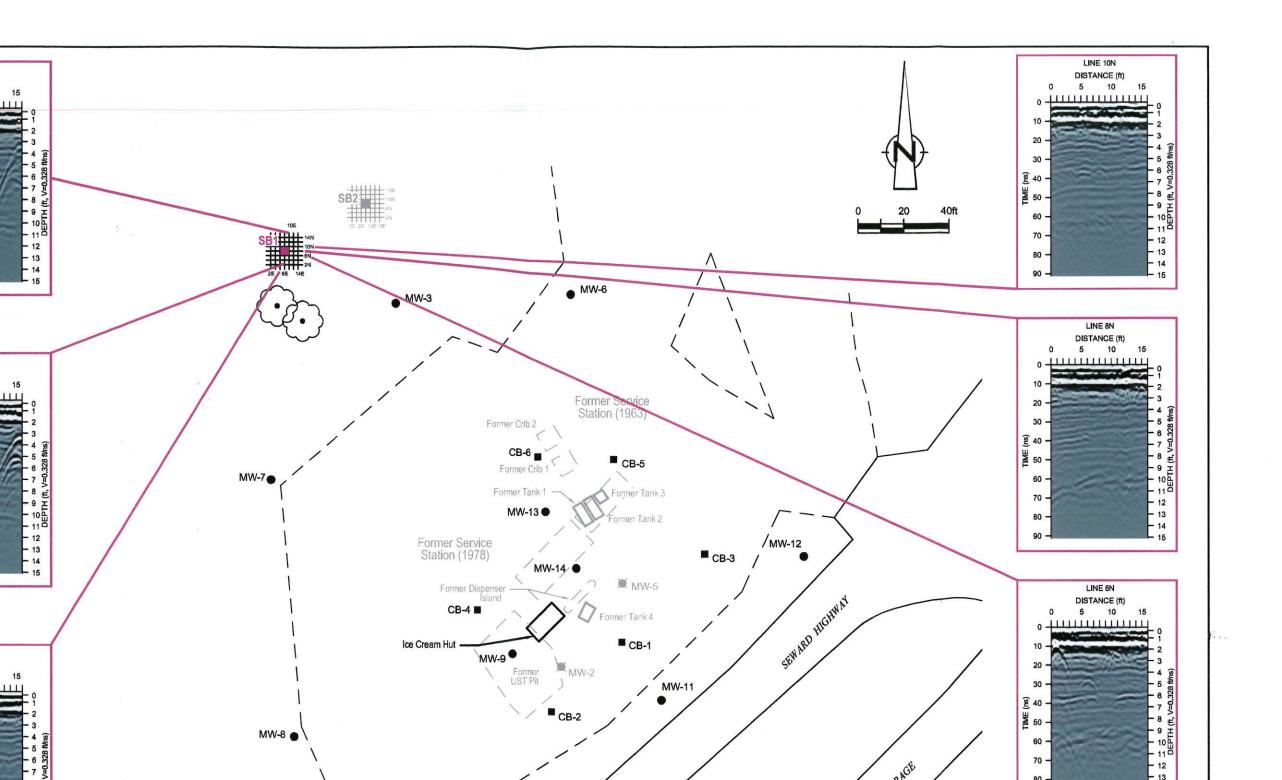


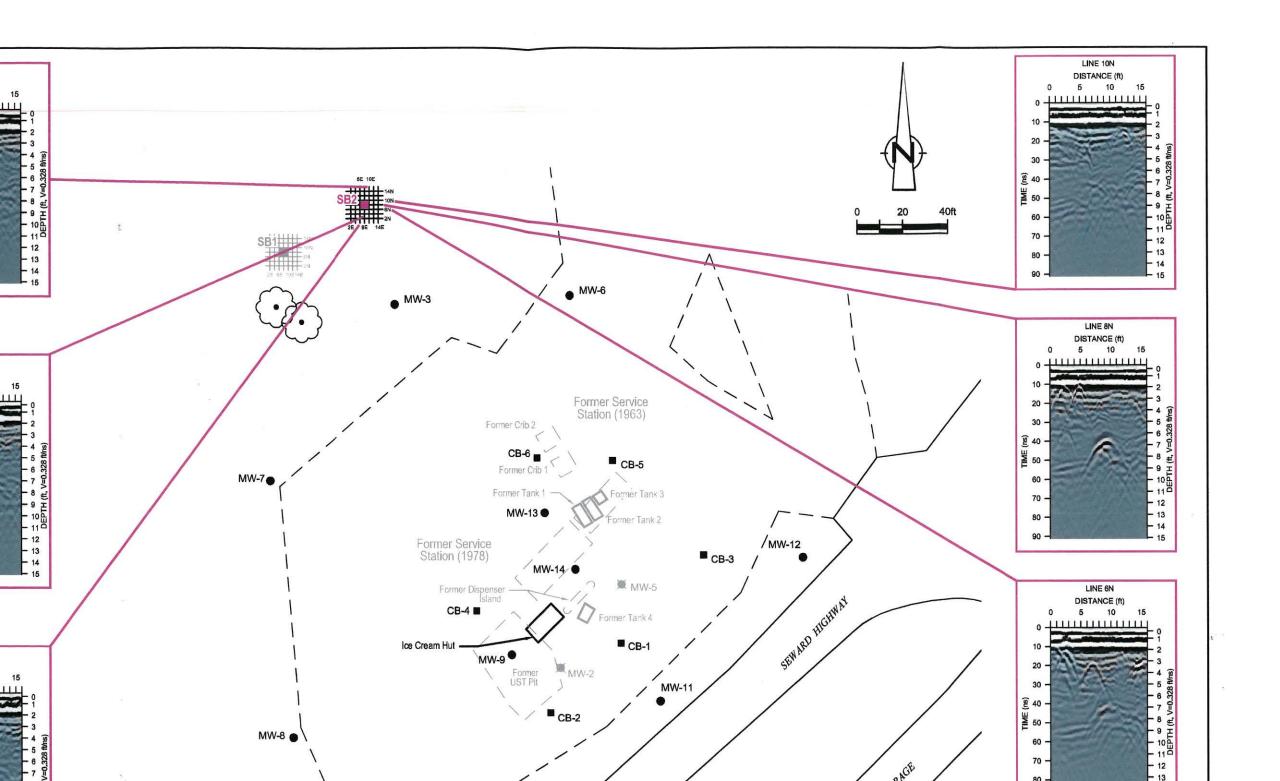

E Yes	C No	Comments:


ii.	Is th	e cooler u	sed to transp	ort the tri	ip blank and	VOA	samples	clearly	indicated	on the	COC?
\square	TIKn	ot, a com	nent explain	ing why r	nust be ente	red be	low)				
1	1 1		-	~ .							




f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below.)





CONESTOGA-ROVERS & ASSOCIATES

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Type III Data Package for ChevronTexaco

SDG# AKD28

Project: 92609 Soil, Water and Methanol Samples Collected on 07/16/09

GROUP		SAMPLE NUMBERS
1154032	ı	5726704-5726709

PA	Cert.	#	36-00037
NY	Cert.	#	10670
NJ	Cert.	#	PA011
NC	Cert.	#	521
ТΧ	Cert.	#	T104704194-08A-TX

Prepared by Mex Reviewed by Date

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Table of Contents for SDG# AKD28

1.	Sample Reference List 1
2.	Analysis Request, Field Chain-of-Custody Record 2
3.	Methodology Summary/Reference 5
4.	Analysis Reports
5.	Volatiles by GC Data (Soil) 16
	a. Case Narrative-Conformance/Nonconform. Summary 17
	b. QC Summary 20
	c. Sample Data 27
	d. Standards Data 50
	e. Raw QC Data 65
	f. Preparation Logs 81
6.	Volatiles by GC Data (Water) 83
	a. Case Narrative-Conformance/Nonconform. Summary 84
	b. QC Summary 88
	c. Sample Data 99
	d. Standards Data 112
	e. Raw QC Data 133
	f. Preparation Logs 139

SDG# AKD28

7.	TPH-I	DRO/RRO (AK) Data	141
	a.	Case Narrative-Conformance/Nonconform. Summary	142
	b.	QC Summary	146
	c.	Sample Data	156
	d.	Standards Data	178
	e.	Raw QC Data	203
	f.	Extraction/Distillation/Digestion Logs	212
8.	Moist	ure Data	215

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Reference List for SDG Number AKD28 with a Data Package Type of III 10880 - ChevronTexaco Project: 92609

Lab Sample	Lab Sample	
Number	Code	Client Sample Description
5726704	SHG91	S-620911-071609-SL-SB09-1-5 Grab Soil Sample Facility# 92609
5726705	SHGD1	DUP-1 Grab Soil Sample Facility# 92609
5726706	SHG92	S-620911-071609-SL-SB09-2-5 Grab Soil Sample Facility# 92609
5726707	SHGEB	W-620911-071609-SL-EB-1 Grab Water Sample Facility# 92609
5726708	SHGTM	Trip Blank Methanol Sample Facility# 92609
5726709	SHGTW	Trip_Blank Water Sample Facility# 92609

ARD28 8681

Ľ																															
.; 1	γķ	569 3		8	sulfate H			ion limits unds		alene	3	ist hit s			Ţ				-					<u> </u>	<u>1</u> 00	Time	Time		Time C	1	3568 Rev. 1/31/02
1	ustoc	013569 8333	033	Preservative Codes	T = Thiosulfate B = NaOH	0 = Other	ting needed	west detect 260 compo	virmation	E + Naphth St ha bu es	ts by 8260	oxy's on highest hit oxy's on all hits	Remarks	2	1230	ĭ									Date	-	Date		Date 7/10/00		3566 Rev
· · ·	Chevron Generic Analysis Request/Chain of Custody	scret:	C# 1124039	Preserva	1 1	S = H ₂ SO,	U J value reporting needed	L Must meet lowest detection limits possible for 8260 compounds	8021 MTBE Confirmation	Confirm MTBE + Naphthalene	Confirm all hits by 8260	C Run ov	ente	Brex /GRO	PRESERVED	NETHALOU									7			-	Haylere	Ves No	
	าลเ	dino							Ħ	K 17		W	X	Ż	X	Ē						T							Å	5	
	Ċ	₹ S					<u> </u>	0) 517	۶ ۲	/ /		22	K	X	X			$ \downarrow$						ļ)		$\left \right $		s Inta	client
	st	P B -	-		0		יו 70	い オー	শ হ ভাৱ	, ,		ゆの	段	Ķ	X			-		-+			_		ž,		р			Seat	y the
-	ue	For Lancaster Laboratories use only Sample # 5100704-09	Analyses Requested	Preservation Codes			UOILE	ROUTUR	nb[]	GIC		Hatwy	쓰	<u>^</u>	X				·	-		+	╋		Begeiverby:	Received by:	Received by:		Received by: HALDO	Custody Seals Intact?	656-; ned b
	be	0 8 0	Requ	lon O				WI .		0.0		13/Hd/										-	+		Ľ	¥	-		ď	<u>ਹ</u>	c retai
	R		898	ervat				teM (юО	1840	T beel													eŭ L	Line			I		425 uld be
	iiS	Пог 1. 1.	Analy	Pres(dnue C	ec) led Ray	Externo Boilitea		3 Hd.	L													لحم	_		H			605-2 by sho
	ly S	Samp									D Hd							_	_	\rightarrow	\downarrow	-		<u> </u>	2 Date	Date	Date				oA 17 Nk cog
	าล								{				-				┝╌┥	+		+	+	-		<u> </u> .	N	- 5		\dagger		8	ster, I
	Aı	Х Х			0 04	uden.		978	X LZ(+ X318	X	X	×		┝╺┦	-+	+	+	+	+			~					ပံ	anca les. 1
;'	ic	õ		Γ								leto1	ω	\$	3			╡		╈	-	+-			15	Ś			je je I	8	1425, I orator
	le/	08801# MOR		×	se,						τiΑ	0 I!O													•	1			Il Carrier Other		Box 12 er Lab
	ìer	٩		Matrix				ым [194 (j.	eteW													\					ceipt.	PO E
	ے G		· · ·				_			İ.	•	lios	Х	X	Х				_							~		,	PY Comp	on Re	Pike, to Lar
	UO.					1	.	÷.,	÷	-		Comp Grab							-			+-	╞		Å	Hished by:	n by			re Up	ottand
	Ņ								HEP	L			\square	X	X				-	+	_		+		alishe Q				alishe	eratui	ew Hi y san
	Che								Fax #:(313)433-3			Collecter	031		1125										Relinquished by:	Relipe	Relinquished by:		Helinquished by Commercial Carrier: UPS FedEx Other	Temperature Upon Receipt	Inc., 2425 N d accompan
					q	ן ד			સુ			_ Te	6	09	R																ories, shoul
		1/14	-		J	sulta			ax #:		SAR:	Date Collected	Poluite	[M]	HILe/07																borat ellow
		N.	/		团	d Col					ONON SAR:	\vdash	<u> </u>	Æ	₹			4		┿		+	-		ircle)	4					and y
		A Lancaster Laboratories	ŕ		79.5 Serger Hug Circowoo		Consultant/Office: CRA - DENVER	Consultant Pri, Mgr. B. DUGGAN	3050	•	Ē		- - - -		-2-2-					•			-		Turmarround Time Requested (TAT) (please circle)	48 hour 5 day	Data Package Options (please circle if required)	=) Form <u>at</u>	Office	Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.
• •		abora			25			Ą	Consultant Phone #(50) 435 - 3050			Å	1-1-1-2		S-620911-0741001-51-5809-2		•_	ł							ested (T.	72 hour 4 day	(please cir	Type I - Full	Disk / EDD Standard F	748-11 20	-
		ler L		5	Site Address: Mue 79	Chevron PM-B. D.	S S	ģ	X 4	X		i i	15-1		1-51	*									Requ	. •	ions (Г	יە ب		
		l Re			M	3	lice: (, Mgr	ione i	Sampler: S. LEAK	*	Sample Identification	160	k	Å										lime		ğ		lata)		
·		an X		6	issa.	Find	Introf	nt Prj	nt Ph	c,	Order	lenti	5		S S								Ì		L pur	_	kage	หญ	Zaw D DCB)		
				litv #	Addi	wron	sulta	sulta	sulta	npler.	Service Order #:	bje ic	ସ୍ଥ	200-	697		•			:					harou	24 hour	a Pac	ac surimary	Type VERaw Data) WP (RWOCB)		682
		V		Fac	Site	S	Sol	Con	Sol	San	Sen	Sam	<u>ي</u> ه:	A	2	ļ		ŀ	•]		Ē	24 hour	Dat	S	MP MP	Disk	

		Jevion Genenic Analysis Requesionani ol Gustody	C MIN	icyn	っての	duc	ミンシ		istoa	
A Lancaster Laboratories	41	Aoct. #: _	Act #: 10880 Sample #. 5726704-09	Sample	r Lancast # 570	r Laborat	-0 de or	1	01353	ر 335
				Ā	Analyses Requested	equested		CHIISH032	C COH	
Facility #7-21609		Matrix			Preservation Codes	n Codes			Preservative Codes	
Site Address Mire 79.5 Server Diwy, CIROLNOOD, Chevron PM: C. DARZYON Lead Consultant:	AK-		CC) yayaha			Ľ 		N = HCI N = HNO ₃ S = H ₂ SO ₄	I = Iniosuitate B = NaOH O = Other	
ENVer		SBO	_			uoge	Ç	□ J value reporting needed	ing needed	2
A C		dN []			ek) leð i ek) leð i tieM []	101,	201 201	Description in the section in the possible for 8260 compounds	west detectio 260 compoui	n limits nds
Consultant Phone #(203)432-2050 Fax #(5 Sampler: Dx 44~) [Fax	Fax #:(503) <u>+ 50- 393 +</u>		1208 -				אע אע	8021 MTBE Confirmation	firmation E + Naphthal	ene
Service Order #:		ر Air	i i i i i i i i i i i i i i i i i i i	Dryger		DH H I	0	Confirm all hits by 8260	est nit dy 826 Is by 8260	
	d Collected C C	Soil VVate Oil []			T beed T beed T beed		PC N	C Run Ox	oxy's on highest hit oxy's on all hits	L hit
12 (2021) - 071100 - 54 - E 0-1 - 1-1/10/09:			л Х				K	Comments / Remarks	Remarks	Γ
	1235									
						-				
								F		
								- -		
								·		
Turnaround Time Requested (TAT) (please circle)	Relinquished by			180	- H	Bassived			Date	Time
STD. TAT 72 hour 48 hour 24 hour 5 day 5 day	Aq Dawning			<u> </u>	Date Time	Received by:	ظ			
Data Package Options (please circle if required)	Relinquished by:			- i		Received by:	Þý:		Date	Time
Type I - Full Data) Disk / EDD <u>S</u> tanda <u>rd E</u> ol	Relinquished by UPS Fe	Relinquished by Commercial Carrier. UPS FedEx Other				Received by:	d by:	had 1000	Date 7//C/nd	Time 10:00
	Temperature Upon Receipt	on Receipt LS	с Х			Custody	Custody Seals Intact?	Ľ		
CD CD CD CD COPies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the cliant.	es, Inc., 2425 New Hollan ould accompany samples	1 Pike, PO Box 124 to Lancaster Labor	25, Lancaste atories. The	r, PA 176(pink copy	5-2425 (717) 656-2 retained by	300 the cliant.		3566 Rev. 1/31/02	1/31/02

V

2

ļ

2425 New Holland Pike • Lancaster, PA 17601

Environmental Sample Administration Receipt Documentation Log

Client/Project:	Chevron	Shipping Container	Sealed: YES	NO
Date of Receipt:	7/18/09	Custody Seal Preser	nt*: (YES)	NO
Time of Receipt:	60			
Source Code:	50-1	* Custody seal was intact u discrepancy secti		oted in the
Unpacker Emp. No.:	Z114	Package:	Chilled	Not Chilled

Temperature of Shipping Containers							
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments
1	0129975	1.8	TB	WI	Y	в	
2໌					Ľ		
3							
4							
5							
6		·					

Number of Trip Blanks received NOT listed on chain of custody: ____

Paperwork Discrepancy/Unpacking Problems:

Sampl	e Administration Int	emal Chain of	Custody
Name	Date	Time	Reason for Transfer
tota Hartlore	7/18/09	11:32	Unpacking to storage
ammy telo	7/18/09	1157	Place in Storage or Entry
			Entry AKD20 86
			Entry

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 · 717-656-2300 Fax: 717-656-2681 · www.lancasterlabs.com

01146 GC VOA Water Prep

An undiluted aliquot of the water sample or a dilution of the sample is purged with an inert gas and the volatiles are collected on an adsorbent trap that is subsequently desorbed onto a gas chromatographic column.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 5030B, December 1996.

01440 TPH-GRO AK water C6-C10

The volatile compounds are extracted by bubbling an inert gas through the sample and collecting them on a sorbent trap. The trap is thermally desorbed onto a capillary column and analysis is performed using gas chromatography with a flame ionization detector (FID) and, optionally, a photoionization detector (PID) in series. Quantitation for Gasoline Range Organics (GRO) is performed using the total peak area detected within the hydrocarbon range defined in the method.

Reference: Method AK101 for the Determination of Gasoline Range Organics, April 8, 2002

01451 TPH-GRO AK soil C6-C10

The volatile compounds are first extracted from the sample with methanol. The resulting extract is diluted prior to analysis. The volatile compounds are extracted by bubbling an inert gas through the sample and collecting them on a sorbent trap. The trap is thermally desorbed onto a capillary column and analysis is performed using gas chromatography with a flame ionization detector (FID) and, optionally, a photoionization detector (PID) in series. Quantitation for Gasoline Range Organics (GRO) is performed using the total peak area detected within the hydrocarbon range defined in the method.

Reference: Method AK101 for the Determination of Gasoline Range Organics, April 8, 2002

01588 BTEX

The volatile compounds are extracted by bubbling an inert gas through the sample and collecting them on a sorbent trap. The trap is thermally desorbed onto a capillary column and analysis is performed using gas chromatography with a photoionization detector (PID).

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 8021B, December 1996.

05878 BTEX

The volatile compounds are first extracted from the sample with methanol. The resulting extract is diluted prior to analysis. The volatile compounds are extracted by bubbling an inert gas through the sample and collecting them on a sorbent trap. The trap is thermally desorbed onto a capillary column and analysis is performed using gas chromatography with a photoionization detector (PID).

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 8021B, December 1996.

AKD28 8685

SDG# AKD28 III

02923 TPH-DRO/RRO (AK) water

Sample extracts in methylene chloride are analyzed by capillary chromatography using flame ionization detection. Quantitation is performed using the total peak area detected within the hydrocarbon ranges defined in the method.

Reference: AK 102/103 4/08/02 modified

01738 TPH-DRO/RRO (AK)

Sample extracts in methylene chloride are analyzed by capillary chromatography using flame ionization detection. Quantitation is performed using the total peak area detected within the hydrocarbon ranges defined in the method.

Reference: Alaska Method 102/103 for Determination of Diesel Range Organics, April 8, 2002.

02135 Extraction - DRO Water Special

An aliquot of sample is extracted with methylene chloride using either separatory funnel extraction or micro extraction technique.

Reference: Alaska Method 102/103 for Determination of Diesel Range Organics, April 8, 2002.

04833 Extraction / Fuel TPH (Soils)

Soil samples blended with sodium sulfate are serially extracted with methylene chloride using sonic probe. The serial extracts are combined, dried and concentrated.

Reference: Alaska Method 102/103 for Determination of Diesel Range Organics, April 8, 2002.

00111 Moisture

A well-mixed sample is placed in a tared container and dried to a constant weight in an oven at 103-105C. The increase in weight is the total solids.

Reference: Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998, Method 2540 G

06119 GC - Field Preserved (AK-101)

The sample is collected and preserved with methanol in the field using jars that were prepared and pre-weighed at the laboratory. The preparation consist of adding 25 ml of methanol and the appropriate amount of surrogate spiking solution to a 125 ml wide mouth amber glass jar. The jars are identified with a unique tracking number on the label and the mass of the vial, label, and methanol is determined prior to shipment into the field. Once in the field, 25g +/- 2.5 of soil is added to the jar and then iced at 4 +/- 2 degree C until the time they are returned to the lab. Upon receipt from the field, the container is then re-weighed to determine the exact weight of the soil added to the jar. Since an approximate amount of soil is added to the vials in the field, the dilution factors may vary from sample to sample.

Reference: Method AK101 for the Determination of Gasoline Range Organics, April 8, 2002

Analysis Report

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

July 28, 2009

SAMPLE GROUP

The sample group for this submittal is 1154032. Samples arrived at the laboratory on Saturday, July 18, 2009. The PO# for this group is 0015039416 and the release number is BARTON.

Client Description S-620911-071609-SL-SB09-1-5 Grab Soil Sample DUP-1 Grab Soil Sample S-620911-071609-SL-SB09-2-5 Grab Soil Sample W-620911-071609-SL-EB-1 Grab Water Sample Trip_Blank Methanol Sample Trip_Blank Water Sample Lancaster Labs Number 5726704 5726705 5726706 5726707 5726708 5726709

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	CRA	Attn: Nick Greco
ELECTRONIC	Chevron	Attn: CRA EDD
COPY TO ELECTRONIC	CRA	Attn: Eric Purcell
СОРҮ ТО		
ELECTRONIC COPY TO	CRA	Attn: Brian Duggan
1 COPY TO	Data Package Group	

AX028 6667

Analysis Report

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

a tangles

.

Valerie L. Tomayko Group Leader

AKDZO BEOD

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm C meq g ug ml m3	micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	F ib. kg mg I ul	degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s)

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight
basisResults printed under this heading have been adjusted for moisture content. This increases the analyte weight
concentration to approximate the value present in a similar sample without moisture. All other results are reported
on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- **C** Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- N Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \ge IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase of der of other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

Analysis Report

Lancaster Laboratories Sample No. SW 5726704	Group No. 1154032 AK
S-620911-071609-SL-SB09-1-5 Grab Soil Sample	
Facility# 92609 Wile 79 5 County Way Cinducad NV	
Mile 79.5 Seward Hwy - Girdwood, AK	
Collected: 07/16/2009 09:31 by SL	Account Number: 10880
Submitted: 07/18/2009 10:00	ChevronTexaco
Reported: 07/28/2009 at 13:59	6001 Bollinger Canyon Rd L4310

Subr Reported: 07/28/2009 at 13:59 Discard: 08/28/2009

SDG#: AKD28-01 SHG91

Dry Dry Method Limit of CAT Dry Dilution Analysis Name Detection Limit* Quantitation CAS Number No. Result Factor mg/kg mg/kg AK 101 GC Volatiles mg/kg 01451 TPH-GRO AK soil C6-C10 N.D. n.a. 0.9 8.7 30.25 GC Volatiles SW-846 8021B mg/kg ma/ka mg/kg 05878 Benzene N.D. 0.009 71-43-2 0.03 30.25 05878 Ethylbenzene 100-41-4 N.D. 0.009 0.03 30.25 05878 Toluene 108-88-3 N.D. 0.009 0.03 30.25 05878 Total Xylenes 1330-20-7 N.D. 30.25 0.03 0.09 AK 102/AK 103 GC Extractable TPH mg/kg mg/kg mg/kg 04/08/02 01738 C10-<C25 DRO N.D. 5.8 17 n.a. Ŀ. 01738 C25-C36 RRO n.a. 57 5.8 17 1 SM20 2540 G Wet Chemistry * * Я. 00111 Moisture n.a. 30.6 0.50 0.50 1 "Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an

San Ramon CA 94583

General Sample Comments

State of Alaska Lab Certification No. UST-061

as-received basis.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01451	TPH-GRO AK soil C6-C10	AK 101	1	09201A16B	07/21/2009 14:39	Marie D John	30.25
05878	BTEX	SW-846 8021B	1	09201A16B	07/21/2009 14:39	Marie D John	30.25
06119	GC - Field Preserved (AK- 101)	AK 101	1	200920118697	07/16/2009 09:31	Client Supplied	1
01738	TPH-DRO/RRO (AK)	AK 102/AK 103 04/08/02	1	092020025A	07/23/2009 11:33	Diane V Do	1
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	092020025A	07/22/2009 10:45	Olivia Arosemena	1
00111	Moisture	SM20 2540 G	1	09203820001A	07/22/2009 18:40	Scott W Freisher	1

AND28 8818

Lancaster Laboratories Sample No. SW 5726705	Group No. 1154032 AK
DUP-1 Grab Soil Sample Facility# 92609 Mile 78 5 Severad War Circlwood NK	
Mile 79.5 Seward Hwy - Girdwood, AK	
Collected: 07/16/2009 by SL	Account Number: 10880
Submitted: 07/18/2009 10:00	ChevronTexaco
Reported: 07/28/2009 at 13:59	6001 Bollinger Canyon Rd L4310
Discard: 08/28/2009	San Ramon CA 94583

SHGD1 SDG#: AKD28-02FD

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
AK 10	1	GC Vol	latiles	mg/kg	mg/kg	mg/kg	
01451	TPH-GRO AK soil C	6-C10	n.a.	N.D.	0.8	7.8	28.51
SW-84	6 8021B	GC Vol	Latiles	mg/kg	mg/kg	mg/kg	
05878	Benzene		71-43-2	N.D.	0.008	0.03	28.51
05878	Ethylbenzene		100-41-4	N.D.	0.008	0.03	28.51
05878	Toluene		108-88-3	0.02 J	0.008	0.03	28.51
05878	Total Xylenes		1330-20-7	N.D.	0.02	0.08	28.51
AK 102	2/AK 103	GC Ext	ractable TPH	mg/kg	mg/kg	mg/kg	
04/08	/02						
01738	C10- <c25 dro<="" td=""><td></td><td>n.a.</td><td>N.D.</td><td>5.4</td><td>16</td><td>1</td></c25>		n.a.	N.D.	5.4	16	1
01738	C25-C36 RRO		n.a.	53	5.4	16	1
SM20 2	2540 G	Wet Ch	nemistry	8	96	\$	
00111	Moisture		n.a.	26.6	0.50	0.50	1
"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.							

General Sample Comments

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01451	TPH-GRO AK soil C6-C10	AK 101	1	09201A16B	07/21/2009 15:17	Marie D John	28.51
05878	BTEX	SW-846 8021B	1	09201A16B	07/21/2009 15:17	Marie D John	28.51
06119	GC - Field Preserved (AK- 101)	AK 101	1	200920118697	07/16/2009 00:00	Client Supplied	1
01738	TPH-DRO/RRO (AK)	AK 102/AK 103 04/08/02	1	092020025A	07/23/2009 11:06	Diane V Do	1
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	092020025A	07/22/2009 10:45	Olivia Arosemena	1
00111	Moisture	SM20 2540 G	1	09203820001A	07/22/2009 18:40	Scott W Freisher	1

AKD28 8811

Lancaster Laboratories Sample No. SW 5726	5706
S-620911-071609-SL-SB09-2-5 Grab Soil Sam	ple
Facility# 92609 Mile 79.5 Seward Hwy - Girdwood, AK	

Collected: 07/16/2009 11:25 by SL

Submitted: 07/18/2009 10:00 Reported: 07/28/2009 at 13:59 Discard: 08/28/2009

SHG92 SDG#: AKD28-03

Dry Drv Limit of Method Dilution Dry CAT Detection Limit* Quantitation CAS Number Analysis Name Result Factor No. mg/kg mq/kq mg/kg AK 101 GC Volatiles N.D. 0.7 6.9 27.14 01451 TPH-GRO AK soil C6-C10 n.a. mg/kg mg/kg mg/kg GC Volatiles SW-846 8021B 27.14 0.02 0.006 0.03 05878 Benzene 71-43-2 J 27.14 Ethylbenzene 100-41-4 N.D. 0.006 0.03 05878 108-88-3 0.03 0.006 0.03 27.14 05878 Toluene 0.07 27.14 05878 Total Xylenes 1330-20-7 N.D. 0.02 mg/kg mg/kg mg/kg GC Extractable TPH AK 102/AK 103 04/08/02 01738 C10-<C25 DRO N.D. 5.1 15 1 n.a. J 15 Ŧ 15 5.1 01738 C25-C36 RRO n.a. 8 8 SM20 2540 G Wet Chemistry * 0.50 1 00111 Moisture n.a. 21 8 0.50 "Moisture" represents the loss in weight of the sample after oven drying at

Group No. 1154032

Account Number: 10880

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

ChevronTexaco

AK

103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

General Sample Comments

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01451	TPH-GRO AK soil C6-C10	AK 101	1	09201A16B	07/21/2009 15:55	Marie D John	27.14
05878	BTEX	SW-846 8021B	1	09201A16B	07/21/2009 15:55	Marie D John	27.14
06119	GC - Field Preserved (AK- 101)	AK 101	1	200920118697	07/16/2009 11:25	Client Supplied	1
01738	TPH-DRO/RRO (AK)	AK 102/AK 103 04/08/02	1	092020025A	07/23/2009 10:38	Diane V Do	1
04833	Extraction / Fuel TPH (Soils)	AK 102/AK 103 04/08/02	1	092020025A	07/22/2009 10:45	Olivia Arosemena	1
00111	Moisture	SM20 2540 G	1	09203820001A	07/22/2009 18:40	Scott W Freisher	1

AKD28 8812

Lancaster Laboratories Sample No. WW 5726707	Group No. 1154032 AK
W-620911-071609-SL-EB-1 Grab Water Sample Facility# 92609 Mile 79.5 Seward Hwy - Girdwood, AK	
Collected: 07/16/2009 12:35 by SL	Account Number: 10880
Submitted: 07/18/2009 10:00 Reported: 07/28/2009 at 13:59 Discard: 08/28/2009	ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SHGEB SDG#: AKD28-04EB

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
AK 10	1	GC	Volatiles	mg/l	mg/l	mg/l	
01440	TPH-GRO AK water C6	-C10) n.a.	N.D.	0.010	0.10	1
SW-84	6 8021B	GC	Volatiles	mg/l	mg/l	mg/l	
01588	Benzene		71-43-2	N.D.	0.0005	0.0020	1
01588	Ethylbenzene		100-41-4	N.D.	0.0005	0.0020	1
01588	Toluene		108-88-3	N.D.	0.0005	0.0020	1
01588	Total xylenes		1330-20-7	N.D.	0.0015	0.0050	1
AK 10 modif:	2/103 4/08/02 ied	GC	Extractable TPH	mg/l	mg/1	mg/l	
02923	C10- <c25 dro<="" td=""><td></td><td>n.a.</td><td>N.D.</td><td>0.048</td><td>2.4</td><td>1</td></c25>		n.a.	N.D.	0.048	2.4	1
02923	C25-C36 RRO		n.a.	N.D.	0.048	2.4	1

General Sample Comments

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01440	TPH-GRO AK water C6-C10	AK 101	1	09200A53A	07/20/2009 18:55	Carrie E Miller	1
01588	BTEX	SW-846 8021B	1	09200A53A	07/20/2009 18:55	Carrie E Miller	1
01146	GC VOA Water Prep	SW-846 5030B	1	09200A53A	07/20/2009 18:55	Carrie E Miller	1
02923	TPH-DRO/RRO (AK) water	AK 102/103 4/08/0 modified	02 1	092020011A	07/22/2009 13:40	Diane V Do	1
02135	Extraction - DRO Water Special	AK 102/AK 103 04/08/02	1	092020011A	07/22/2009 02:45	Tracy L Schickel	1

AXD28 8913

Lancaster Laboratories Sample No. G5 5726708	Group No. 1154032 AK
Trip_Blank Methanol Sample Facility# 92609 Mile 79.5 Seward Hwy - Girdwood, AK	
Collected: 07/16/2009	Account Number: 10880
Submitted: 07/18/2009 10:00 Reported: 07/28/2009 at 13:59 Discard: 08/28/2009	ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SHGTM SDG#: AKD28-05TB

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
AK 101	L	GC V	olatiles	mg/kg	mg/kg	mg/kg	
01451	TPH-GRO AK soil C	C6-C10	n.a.	N.D.	0.5	5.0	25
SW-84(5 8021B	GC V	olatiles	mg/kg	mg/kg	mg/kg	
05878	Benzene		71-43-2	N.D.	0.005	0.02	25
05878	Ethylbenzene		100-41-4	N.D.	0.005	0.02	25
05878	Toluene		108-88-3	N.D.	0.005	0.02	25
05878	Total Xylenes		1330-20-7	N .D.	0.02	0.05	25

General Sample Comments

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	1e	Analyst	Dilution Factor
01451	TPH-GRO AK soil C6-C10	AK 101	1	09201A16C	07/23/2009	10:26	Marie D John	25
05878	BTEX	SW-846 8021B	1	09201A16C	07/23/2009	10:26	Marie D John	25
06119	GC - Field Preserved (AK-	AK 101	1	200920118697	07/16/2009	00:00	Client Supplied	1
	101)							

AND28 8814

Lancaster Laboratories Sample No. WW 5726709	Group No. 1154032 AK
Trip_Blank Water Sample Facility# 92609 Mile 79.5 Seward Hwy - Girdwood, AK	
Collected: 07/16/2009	Account Number: 10880
Submitted: 07/18/2009 10:00 Reported: 07/28/2009 at 13:59 Discard: 08/28/2009	ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SHGTW SDG#: AKD28-06TB*

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
AK 10 1 01440	l TPH-GRO AK water	GC Volati C6-C10	l es n.a.	mg/1 N.D.	mg/1 0.010	mg/1 0.10	1
SW-84 01588 01588 01588 01588	6 8021B Benzene Ethylbenzene Toluene Total xylenes	GC Volatil	Les 71-43-2 100-41-4 108-88-3 1330-20-7	mg/1 N.D. N.D. N.D. N.D.	mg/1 0.0005 0.0005 0.0005 0.0005 0.0015	mg/1 0.0020 0.0020 0.0020 0.0050	1 1 1

General Sample Comments

State of Alaska Lab Certification No. UST-061

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01588	TPH-GRO AK water C6-C10 BTEX GC VOA Water Prep	AK 101 SW-846 8021B SW-846 5030B	1 1 1	09200A53A 09200A53A 09200A53A	07/20/2009 19:19 07/20/2009 19:19 07/20/2009 19:19	Carrie E Miller	1 1 1

AKD28 8815

Volatiles by GC Data (Soil)

ARDZ8 8816

Case Narrative Conformance/Nonconformance Summary

AKD28 8917

Case Narrative SDG# AKD28

Client: ChevronTexaco Volatiles by GC - Soil

SAMPLE ANALYSES

Sample	Matrix	
Designation	Soil Water	Comments
SHG91	Х	DF 30
SHGD1	Х	DF 29
SHG92	Х	DF 27
SHGTM	Х	DF 25
ROL ANALYSES		
	Х	DF 25 Method Blank
	Х	DF 25 Method Blank
	Х	DF 25 Method Blank
	х	Lab Control Sample
	Х	Lab Control Dup
	Х	DF 25 Lab Control Sample
	Х	DF 25 Lab Control Dup
	Designation SHG91 SHGD1 SHG92 SHGTM	Designation Soil Water SHG91 X SHGD1 X SHG92 X SHGTM X PROL ANALYSES X X X X X X X X X

SAMPLE PREPARATION

Sample #s 5726704,05,06 - The weight for these samples was found to be outside the 22.50g-27.50g requirement when reweighed at the laboratory. Please see the VOA Prep Summary sheet in the Preparation Log section for more information.

Dilutions were necessary for the samples as listed above in the comments section.

ANALYSIS

No problems were encountered during analysis.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY

See Conformance/Nonconformance Summary for the QC information.

DATA INTERPRETATION

No explanation is necessary for the data submitted.

Narrative reviewed and approved by:

Dana M. Kauffman Manager

AKB28 8818

Quality Control Summary SDG# AKD28

Conformance/Nonconformance Summary Volatiles by GC

Indicate

		No, N/A
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)	Yes
2.	Retention times for chromatograms provided	Yes
3.	Standards summary meet criteria	Yes
4.	Calibration - Initial calibration performed before sample analysis and continuing calibration performed within 24 hours of sample analysis	Yes
5.	Blank contamination - if yes, list compounds and concentrations in each blank	No
6.	Surrogate recoveries meet criteria If not met, list those compounds which fall outside the acceptable range	No
	Sample #Surrogate% Recovery%Limits5726704Trifluorotoluene (Soil - PID)72D80 - 1205726705Trifluorotoluene (Soil - PID)72D80 - 1205726706Trifluorotoluene (Soil - PID)73D80 - 120	
	If not met, were calculations checked and results qualified as "estimated"	N/A
7.	Matrix spike/Matrix spike duplicate/Lab control sample/Lab control sample duplicate recoveries meet criteria	Yes
8.	Retention time summary for the analysis met criteria	Yes
9.	Were samples run on dissimilar columns	N/A
10.	Extraction holding time met	N/A
	a 1 / 1 11 - 1're wet if not list number of drug succeeded for each comple	Vog

11. Analysis holding time met - if not, list number of days exceeded for each sample Yes

Additional Comments:

٥٩ Reviewed by

AKD29 18819

QC Summary

Quality Control Summary SDG# AKD28

Surrogate Recovery Volatiles by GC - Soil

	LL	Sample	Dilution	TFT~F	TFT-P	тот
ł	Sample#	Code	Factor	SoilFID	SoilPID	OUT
				% Recovery	<pre>% Recovery</pre>	
ĺ	5726704	SHG91	30.3	61	72 D	
	5726705	SHGD1	28.5	61	72 D	i i
	5726706	SHG92	27.1	61	73 D	Í
	5726708	SHGTM	25.0	86	96	Í
	BLK1642	METHOD BLANK	25.0	78	95	İİ
	BLK1643	METHOD BLANK	25.0	83	102	
	BLK1644	METHOD BLANK	25.0	74	94	i i
Ì	LCS1642	LAB CONTROL	1.0	-	93	Ì Í
Í	LCS1643	LAB CONTROL	25.0	81	-	i i
Í	LDS1642	LAB CON DUP	1.0	-	94	İİ
ľ	LDS1643	LAB CON DUP	25.0	83	-	İİ
Ì			İ			İİ

* = Values outside quality control limits.

D = Surrogates diluted - not counted towards total out. TOT OUT = Total # of surrogates with recovery outside control limits.

		Control Limits
		Lower Upper
$\mathbf{T}\mathbf{F}\mathbf{T}-\mathbf{F}$	= Trifluorotoluene (Soil - FID)	60 120
TFT-P	= Trifluorotoluene (Soil - PID)	80 120

Page 1 of 1

.

Quality Control Summary SDG# AKD28

Method Blank Volatiles by GC - Soil

Blank ID	BLK1642
Date:	07/20/09
Instrument	5341

Batch Number....: 09201A16A Time.....: 12:53 Matrix....: Methanol/Water

Sample Information						
LL Sample Analysis						
Sample#	Code	Date	Time			
· · · · · · · · · · · · · · · · · · ·	_	.	[
LCS1642	LAB CONTROL	07/20/09	13:31			
LDS1642	LAB CON DUP	07/20/09	14:09			
LCS1643	LAB CONTROL	07/20/09	14:47			
LDS1643	LAB CON DUP	07/20/09	15:24			
	_	.				

Method Blank Results						
CAS	Compound	Blank	LOQ	MDL		
Number		Conc.				
ĺ	ĺ	(UG/KG)	(UG/KG)	(UG/KG)		
1330-20-7	TOTAL XYLENES	ND	5	2		
0000-00-0	GRO	ND	100	10		
71-43-2	BENZENE	ND	2	.5		
108-88-3	TOLUENE	ND	2	.5		
100-41-4	ETHYLBENZENE	ND	2	.5		
			İ	İ		

LOQ = Limit of Quantitation; MDL = Method Detection Limit
ND = None Detected; * = Above Limit of Quantitation

Page 1 of 1

AND28 8822

Quality Control Summary SDG# AKD28

Method Blank Volatiles by GC - Soil

Blank ID:	BLK1643
Date:	07/21/09
Instrument	5341

Batch Number....: 09201A16B Time.....: 13:23 Matrix.....: Methanol/Water

Sample Information						
LL	Sample	Analy	ysis			
Sample#	Code	Date	Time			
5726704	SHG91	07/21/09	14:39			
5726705	SHGD1	07/21/09	15:17			
5726706	SHG92	07/21/09	15:55			

	Method Blank Res	sults		
CAS Number	Compound	Blank Conc.	LOQ	MDL
		(UG/KG)	(UG/KG)	(UG/KG)
1330-20-7	TOTAL XYLENES	ND		2
0000-00-0	GRO	ND	100	10
71-43-2	BENZENE	ND	2	.5
108-88-3	TOLUENE	ND	2	.5
100-41-4	ETHYLBENZENE	ND	2	.5
	_ [

LOQ = Limit of Quantitation; MDL = Method Detection Limit
ND = None Detected; * = Above Limit of Quantitation

Page 1 of 1

Quality Control Summary SDG# AKD28

Method Blank Volatiles by GC - Soil

 Blank ID.....
 BLK1644

 Date.....
 07/22/09

 Instrument.....
 5341

Batch Number....: 09201A16C Time..... 19:14 Matrix..... Methanol/Water

Sample Information					
LL Sample#	Sample Code	Analy Date	ysis Time		
5726708	SHGTM	07/23/09	10:26		

	Method Blank Results			
CAS	Compound	Blank	LOQ	MDL
Number		Conc.		
l		(UG/KG)	(UG/KG)	(UG/KG)
1330-20-7	TOTAL XYLENES	ND	5	2
0000-00-0	GRO	ND	100	10
71-43-2	BENZENE	ND	2	.5
108-88-3	TOLUENE	ND	2	.5
100-41-4	ETHYLBENZENE	ND	2	.5
			I	

LOQ = Limit of Quantitation; MDL = Method Detection Limit ND = None Detected; * = Above Limit of Quantitation

Page 1 of 1

AND28 0024

Lab Control/Lab Control Duplicate Petroleum Analysis - Soil

,

Lab Control Sample Number:	LCS1642
Lab Control Sample Number:	LDS1642
Method Reference:	8020/8021
Batch Number	09201216

Batch Number:	
Date:	07/20/09
Instrument	

Compound	Spike Added (UG/KG)	LCS Conc (UG/KG)	LDS Conc (UG/KG)	LCS % Recov	LDS % Recov	LCS Limits Recov	RPD	LCS Limits RPD
XYLENES (TOTAL)	60.0	62.4	63.7	104	106	78-115	2	30
BENZENE	20.0	22.2	22.4	111	112	76-118	1	30
TOLUENE	20.0	21.1	21.3	105	107	72-115	1	30
ETHYLBENZENE	20.0	20.3	20.6	101	103	77-115	2	30

LCS=Lab Control Sample; LDS=Lab Control Sample Duplicate; RPD=Relative Percent Difference

* = Value outside quality control limits.

Page 1 of 1

٩

.

.

Lab Control/Lab Control Duplicate Petroleum Analysis - Soil

Lab Control	Sample	Number:	LCS1643
Lab Control	Sample	Number:	LDS1643
Method Refer	cence		ALASKA

Batch Number..... 09201A16 Date..... 07/20/09 Instrument..... 5341

.

.

Compound	Spike Added (UG/KG)	LCS Conc (UG/KG)	LDS Conc (UG/KG)	LCS % Recov	LDS % Recov	LCS Limits Recov	RPD	LCS Limits RPD
GRO	11000	10400	10200	95	93	60-120	2	20

LCS=Lab Control Sample; LDS=Lab Control Sample Duplicate; RPD=Relative Percent Difference

* = Value outside quality control limits.

Page 1 of 1

Sample Data

.

.

.

AND28 8827

.

Analysis LOQ/MDL Report

Analysis: 05878 Name: BTEX

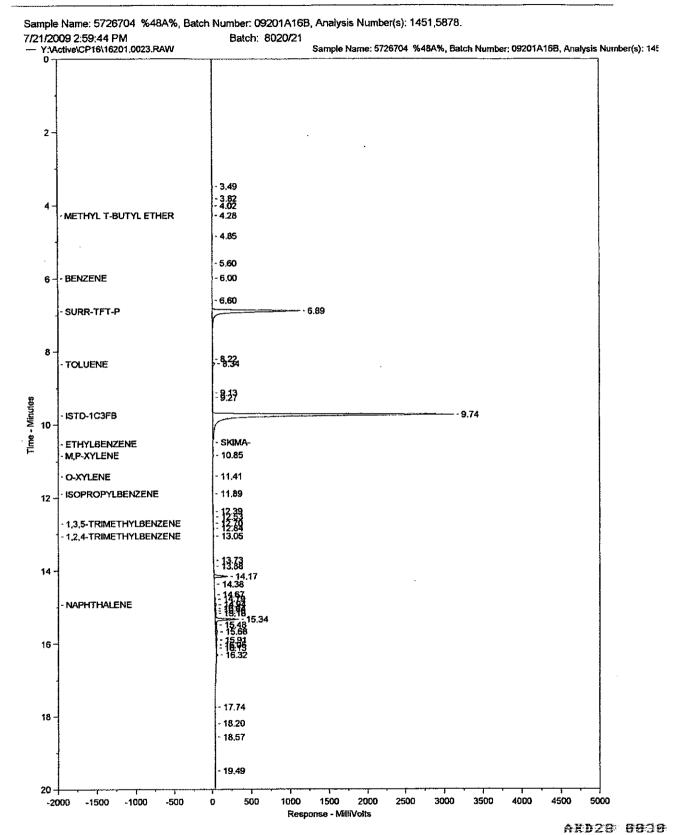
Description: Default Values

Compound	<u>Units</u>	LOQ	MDL
Ethylbenzene	mg/kg	0.02	0.005
TOLUENE	mg/kg	0.02	0.005
TOTAL XYLENES	mg/kg	0.05	0.015
BENZENE	mg/kg	0.02	0.005

AKD29 9828

Analysis LOQ/MDL Report

Name: TPH-GRO AK soil C6-C10


ı.

Description: Default Values

Analysis: 01451

Compound	<u>Units</u>	LOQ	<u>MDL</u>
GRO	mg/kg	5	0.5

ARD29 8829

Sample Name: 5726704 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878.

Date Acquired: 7/21/2009 2:39:44 PM Instrument: 6890-16--PID Units: ug/kg **Dilution Factor: 30.25** Raw File: Y:\Active\CP16\16201.0023.RAW Method File: C:\Methods\16\16022[8021].met Column: Analyst: 2001

Vial Position: VI#

Threshold: 6

Peak Table using calibration : C:\Cal\16\16022(8021).cal- Version 20 Number of Compounds: 12

Component	Ret.	Exp. Ret	Amount	Peak Area	Peak Height	
Name	Time	Time	ug/kg	(A)	(H)*	
METHYL T-BUTYL ETHER	4.28	4.28	7.68	23616	2411	
BENZENE	6.00	5.94	0.43	13844	2576	
SURR-TFT-P	6.89	6.87	650.51	4665877	1130485	
TOLUENE	8.34	8.31	5.67	151790	29570	
STD-1C3FB	9.74	9.75	30.00	12753490	3122883	
ETHYLBENZENE	0.00	10.54	0.00	0	0	
W.P-XYLENE	10.85	10.85	1.73	81418	7664	
O-XYLENE	11.41	11.42	0.64	17911	2786	
SOPROPYLBENZENE	11.89	11.90	0.24	3790	1045	
1,3,5-TRIMETHYLBENZENE	12.70	12.71	0.44	8457	3444	
1,2,4-TRIMETHYLBENZENE	13.05	13.06	0.89	22319	5354	
NAPHTHALENE	14.94	14.97	20.22	110166	20638	
Total Xylenes: 2,37PPB						ihis
Surrogate Percent Recovery: 71.68					\mathcal{O}	se Jhis R35 confirm
						(Lingin
Sample Name: 5726704 %48A% Ba	tab Num	hor: 00201016	D Apolysis N	umbor(c): 145	1 5878	Cont

Sample Name: 5726704 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. Batch: 8020/21 Analyst: 2001 Raw File: Y:\Active\CP16\16201.0023.RAW Method: C:\Methods\16\16022[8021].met Date: 7/23/2009 11:27:43 AM

Analyst: ဆ Verifier:

File: Y:\Active\CP16\16201.0023.RAW

Sample Name: 5726704 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. 7/21/2009 2:39:44 PM Batch: GRO Sample Name: 5726704 %48A%, Batch Number: 09201A16B, Analysis Number(s): 145 - Y:\Active\CP16\152018.0023.RAW 0 INT-SKIMA- COM+ 2 · INT+ ----- 2.64 - 3.47 >-3.82 4 > - 4.27 4.70-4.81 - 4,99 5.58 6 - 5.99 6.58 ----- 6.89 . - 7.92 - ^{8.22}- 8.33 8 8.80 9,12 Time - Minutes 01 --9.74 10.54 10.84 - 11.15 - 11.41 - 11.88 12 - 12.26_ 12.38_ 12.45_ 12.53 - 12.70_ 12.83 - 12.75 - 13.05 - 13.31 - 13.55 - 13.71 - 13.88 -14.01 - 14.16 14.33 14 - 14.55, 14.78 - 14.94, 15.04- 15.10, 15.17 - 15.67 - 15.67 - 16.04- 15.87 - 16.28 16 - 17.74 18 18.18 18.58 18.95 19.48 20 -100 0 100 200 300 400 500 600 700 800 900 1000 **Response - MilliVolts** AKD28 8832 Sample Name: 5726704 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878.

Date Acquired: 7/21/2009 2:39:44 PM Instrument: 6890-16--FID Units: ug/kg Vial Position: VI# Dilution Factor: 30.25 Raw File: Y:\Active\CP16\16201B.0023.RAW Method File: C:\Methods\16\AK16078.met Column: Analyst: 2001

Threshold: 2

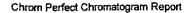
Peak Table using calibration : C:\Cal\16\AK16078.CAL-Version 22 Number of Compounds: 3

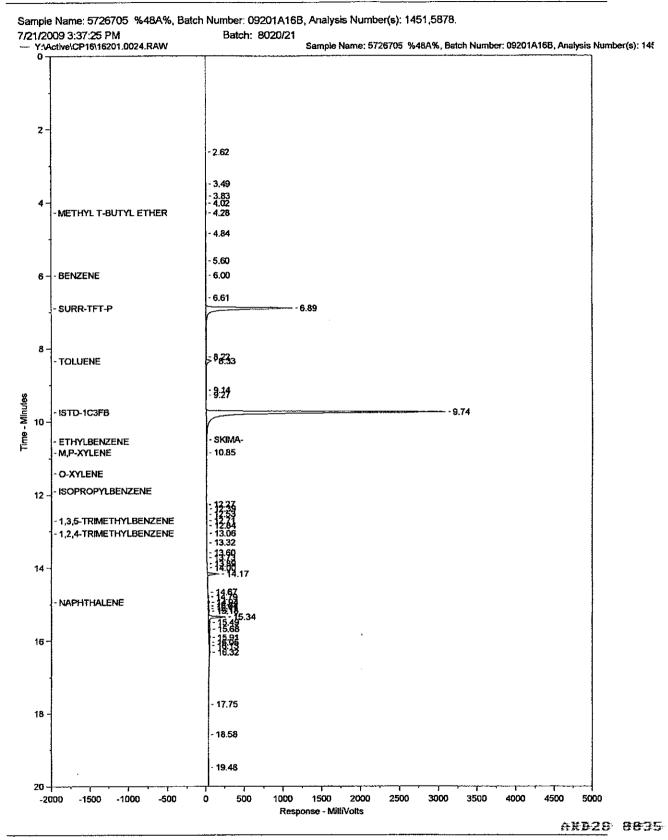
Component	Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name	Time	Time	ug/kg	(A)*	(H)
	2.64	0.00	0.00	6241527	672221.2
	3.47	0.00	0.00	150487	9763.682
	3.82	0.00	0.00	188457	18903.91
	4.27	0.00	0.00	314569	36113.82
	4.70	0.00	0.00	22225	3817.954
	4.81	0.00	0.00	31071	3185.14
	4.9 9	0.00	0.00	35918	3349.981
	5.58	0.00	0.00	30537	1951.031
	5.99	0.00	0.00	13399	1182.521
	6.58	0.00	0.00	13759	1035,256
SURR-TFT-F	6.89	6.89	550.87	1805739	479921.7
	7.92	0.00	0.00	5374	693.9213
	8.22	0.00	0.00	6804	1420.085
	8,33	0.00	0.00	40227	7438.931
	8.80	0.00	0.00	5772	678.7109
	9.12	0.00	0.00	1319	235.7598
SURR-1C3FB	9.74	9.73	811.21	2625195	703786.7
	10.54	0.00	0.00	15128	1440.686
	1 0.84	0.00	0.00	12126	1647.038
	11.15	0.00	0.00	1929	354.285
	11.41	0.00	0.00	1829	548.5811
	11.88	0.00	0.00	1868	480.768
	12.26	0.00	0.00	699	207.2198
	12.38	0.00	0.00	2586	602.73
	12.45	0.00	0.00	2720	882.2101
	12.53	0.00	0.00	4392	1095,265
	12.70	0.00	0.00	8039	1434.889
	12.83	0.00	0,00	26445	4724.429
	13.05	0.00	0.00	24563	2497.832
	13.31	0.00	0.00	5918	1244.247
	13.55	0.00	0.00	13748	1397.266
	13.71	0.00	0.00	7884	1560.375
	13.88	0.00	0.00	28915	3877.757
	14.01	0.00	0.00	18028	2990.209
	14.16	0.00	0.00	102603	26110.43
	14.33	0.00	0.00	73773	6533.816
	14.66	0.00	0.00	94977	12844.08
	14.78	0.00	0.00	83395	11562.74
	14.94	0.00	0.00	74979	11643.94
	15.04	0.00	0.00	49861	12400.6
	15.10	0.00	0.00	39567	12170.75
	15.17	0.00	0.00	87807	14326.97
	15.34	0.00	0.00	232184	47705.28
	15.49	0.00	0.00	115202	14470.01
	15.67	0.00	0.00	138231	18022.62
	15.87	0.00	0.00	145483	17197.06
	16.04	0.00	0.00	65906	13231.89
	16.13	0.00	0.00	89469	12817.3
		0.00 0.00	0.00 0.00	89469 211365	12817.3 12756.15

ARD28 8833

Component		Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name		Time	Time	ug/kg	(A)*	(H)
		18.18	0.00	0.00	19010	1268.96
		18.58	0.00	0.00	15806	980.0064
		18.95	0.00	0.00	16852	707.8161
		19.48	0.00	0.00	3488	354.3059
RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO		
4.59	12,72	4688655	4430934	257721		

Surrogate Percent Recovery: 60.70211


Total GRO Area: 257721.00 Total GRO Concentration: 107.41 PPB


Sample Name: 5726704 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. Batch: GRO Analyst: 2001 Raw File: Y:VActive\CP16\16201B.0023.RAW Method: C:\Methods\16VAK16078.met Date: 7/23/2009 11:33:16 AM

Analyst: MQ22001 ·231 ר Verifier.

File: Y:\Active\CP16\16201B.0023.RAW

.

Sample Name: 5726705 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878.

Date Acquired: 7/21/2009 3:17:25 PM Instrument: 6890-16--PiD Units: ug/kg **Dilution Factor: 28.51** Raw File: Y:\Active\CP16\16201.0024.RAW Method File: C:\Methods\16\16022[8021].met Column: Analyst: 2001

Vial Position: Vi#

Threshold: 6

Peak Table using calibration : C:\Cal\16\16022(8021).cal- Version 20 Number of Compounds: 12

Component	Ret.	Exp. Ret	Amount	Peak Area	Peak Height	
Name	Time	Time	ug/kg	(A)	(Ĥ)*	
METHYL T-BUTYL ETHER	4.28	4.28	8.29	24849	2733	
BENZENE	6.00	5.94	0.34	10364	2153	
SURR-TFT-P	6.89	6.87	615.51	4660690	1122913	
TOLUENE	8.33	8.31	12.61	317359	69092	
ISTD-1C3FB	9.74	9.75	30.00	12677380	3089811	
ETHYLBENZENE	0.00	10.54	0.00	0	0	
M,P-XYLENE	10.85	10.85	1.43	58373	6646	
O-XYLENE	0.00	11.42	0.00	0	0	
ISOPROPYLBENZENE	0.00	11.90	0.00	0	0	
1,3,5-TRIMETHYLBENZENE	12.71	12.71	0,38	7745	3141	
1,2,4-TRIMETHYLBENZENE	13.06	13.06	0.68	19977	4275	
NAPHTHALENE	14.94	14.97	16.75	95059	17951	

Total Xylenes: 1.43PPB

Surrogate Percent Recovery: 71.96

Sample Name: 5726705 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. Batch: 8020/21 Analyst: 2001 Raw File: Y:VActive/CP16\16201.0024.RAW Method: C:\Methods\16\16022[8021].met Date: 7/23/2009 11:27:47 AM

M Analyst: Verifier:

File; Y:\Active\CP16\16201.0024.RAW

use this confirms

Sample Name: 5726705 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. 7/21/2009 3:17:25 PM Batch: GRO Y:\Active\CP16\16201B.0024.RAW Sample Name: 5726705 %48A%, Batch Number: 09201A16B, Analysis Number(s): 145 0 - INT.-- SKIMA- COM+ 2 - INT+ - - 2.64 - 3.47 > • 3.82 4 > - 4.27 - 4.69- 4.81 4.99 5.59 5.89 6 6.59 - 7.91 8 ÷^{8.21}-8.33 8.80 - 9.12 Time - Minules --9.74 10 10.54 10.84 - 11.15 - 11.42 - 11.89 12 - 12.26 12.38 12.53 - 12.70- 12.83 - 13.05 - 13.31 - 13.59 - 13.88 - 13.88- 14.01 - 14.17 14 -14.33 - 14.67, 14.78 - 14.94- 15.04- 15.10- 15.17 - 15.34 15.49 - 15.67 - 15.67 - 16.04 - 15.87 - 16.29 - 16.13 - 16.29 - 16.44 16 - 17.74 18 - 18.57 19.49 20 -100 0 100 200 300 400 500 600 700 800 900 1000 1100 Response - MilliVolts

Sample Name: 5726705 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878.

Date Acquired:7/21/2009 3:17:25 PMInstrument:6890-16--FIDUnits:ug/kgVial Position:Units:ug/kgVial Position:Vilution Factor:28.51Raw File:Y:\Active\CP16\16201B.0024.RAWMethod File:C:\Methods\16\AK16078_metAnalyst:2001

Threshold: 2

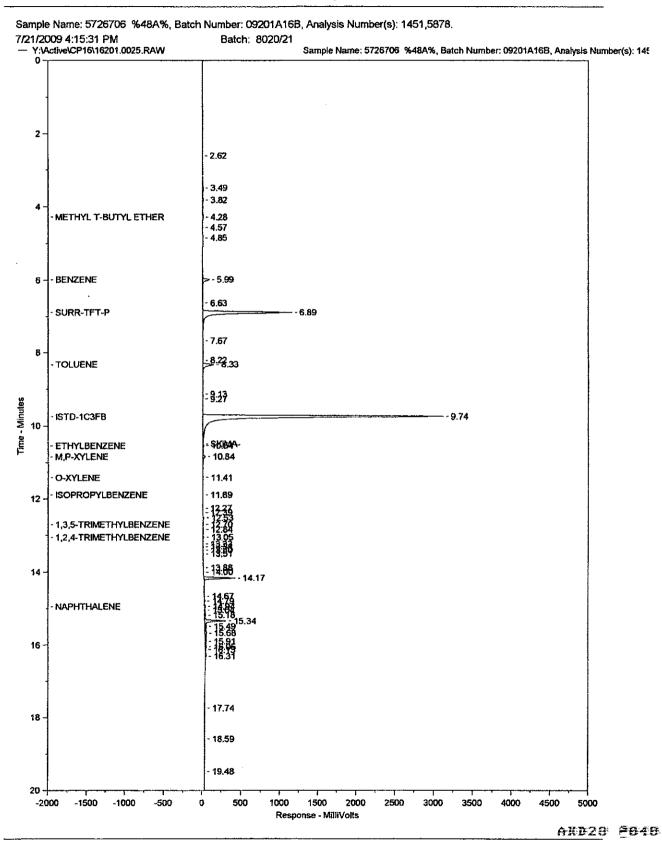
Peak Table using calibration : C:\Cal\16\AK16078.CAL- Version 22

Number of Compounds: 3					
Component	Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name	Time	Time	ug/kg	(A)*	(H)
	2.64	0.00	0.00	6938900	750664.6
	3.47	0.00	0.00	156134	10088.89
	3.82	0.00	0.00	205114	18997.69
	4.27	0.00	0.00	383403	44763.88
	4.69	0.00	0.00	25726	4238.901
	4.81	0.00	0.00	36737	3540.757
	4.99	0.00	0.00	39202	3651.961
	5.5 9	0.00	0.00	25401	2249.971
	5.89	0.00	0.00	9888	1362.849
	6.59	0.00	0.00	16587	1220.522
SURR-TFT-F	6.89	6.89	520.07	1808803	475880.6
	7.91	0.00	0.00	7631	945.0654
	8.21	0.00	0.00	8953	1686.178
	8.33	0.00	0.00	83487	17119.42
	8.80	0.00	0.00	7761	885.639
	9.12	0.00	0.00	3405	479.7184
SURR-1C3FB	9.74	9.73	760.61	2611684	696287.9
	10.54	0.00	0.00	10687	1350.635
	10.84	0.00	0.00	12839	1578.001
	11.15	0.00	0.00	2095	338.2506
	11.42	0.00	0.00	3369	601,8493
	11.89	0.00	0.00	1415	369.4971
	12.26	0.00	0.00	1250	318.8076
	12.38	0.00	0.00	8725	2151.766
	12.53	0.00	0.00	4312	1058.1
	12.70	0.00	0.00	5445	1241.773
	12.83	0.00	0.00	23180	3873.102
	13.05	0.00	0.00	9730	2003.77
	13.31	0.00	0.00	5241	1212.684
	13.59	0.00	0.00	11622	1216.785
	13.88	0.00	0.00	30747	3303.881
	14.01	0.00	0.00	17306	2914.864
	14.17	0.00	0.00	86536	23402.13
	14,33	0.00	0.00	26878	5357.189
	14.67	0.00	0.00	82066	11334.58
	14.78	0.00	0.00	76733	10304.02
	14.94	0,00	0.00	64961	10245.22
	15.04	0.00	0.00	44483	10987.37
	15.10	0.00	0.00	35543	11005.34
	15.17	0.00	0.00	79443	13060.21
	15.34	0.00	0.00	201374	38511.08
	15.49	0.00	0.00	100540	13302.53
	15.67	0.00	0.00	189689	16007.64
	15.87	0.00	0.00	134062	15606.17
	16.04	0.00	0.00	59149	11870.78
	16.13	0.00	0.00	79348	11360.77
	16.29	0.00	0.00	111860	11180.86
	16.44	0.00	0.00	119788	7767.149
	17.74	0.00	0.00	26669	1832.259
	18.57	0.00	0.00	19252	1134.991

AND 28 8838

Component		Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name		Time	Time	ug/kg	(A)*	(H)
		19.49	0.00	0.00	7080	508.5228
RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO		
4.59	12.72	4735400	4420487	314913		

Surrogate Percent Recovery: 60.80513


Total GRO Area: 314912.50 Total GRO Concentration: 123,70 PPB

Sample Name: 5726705 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. Batch: GRO Analyst: 2001 Raw File: Y:\Active\CP16\16201B.0024.RAW Method; C:\Methods\16\AK16078.met Date: 7/23/2009 11:33:21 AM

Analyst: MODOTOO) 0 Verifier:

File: Y:\Active\CP16\16201B.0024.RAW

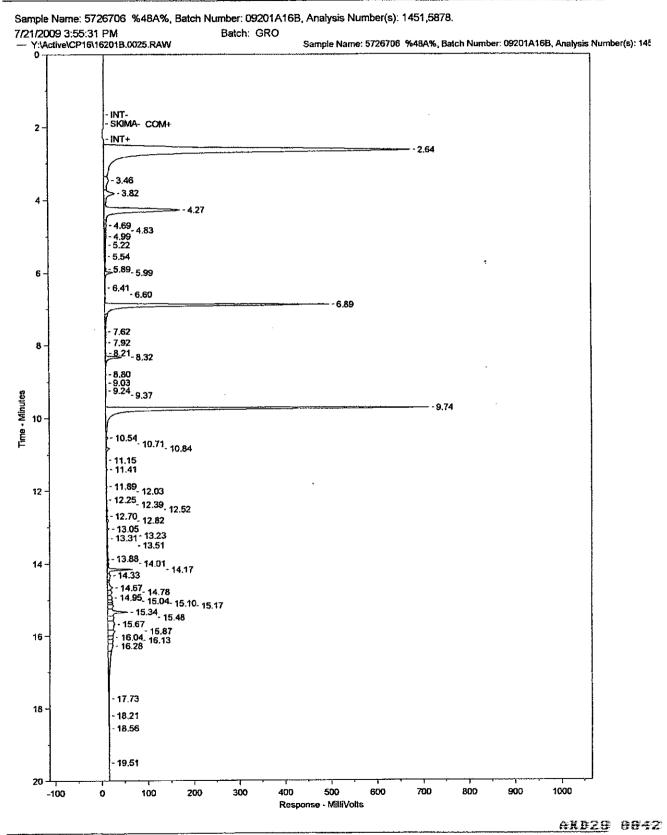
.

Sample Name: 5726706 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878.

Date Acquired: 7/21/2009 3:55:31 PM Instrument: 6890-16--PID Units: ug/kg Vial Position: VI# **Dilution Factor: 27.14** Raw File: Y:\Active\CP16\16201.0025.RAW Column: Method File: C:\Methods\16\16022[8021].met Analyst: 2001

Threshold: 6

Peak Table using calibration : C:\Cal\16\16022(8021).cal- Version 20 Number of Compounds: 12


Component	Ret.	Exp. Ret	Amount	Peak Area	Peak Height	
Name	Time	Time	ug/kg	<u>(A)</u>	<u>(H)*</u>	
METHYL T-BUTYL ETHER	4.28	4,28	26.61	75647	9308	-
BENZENE	5.99	5.94	13.20	375284	87978	
SURR-TFT-P	6.89	6.87	596.45	4671343	1155056	
TOLUENE	8.33	8.31	24.79	610525	144126	
ISTD-1C3FB	9.74	9.75	30.00	12763160	3122185	
ETHYLBENZENE	10.54	10.54	3.02	120284	14774	
M.P-XYLENE	10.84	10.85	6.25	185981	30805	
O-XYLENE	11.41	11.42	2.12	50983	10239	
ISOPROPYLBENZENE	11.89	11.90	0.64	9887	3083	
1,3,5-TRIMETHYLBENZENE	12.70	12.71	0.84	20600		
1,2,4-TRIMETHYLBENZENE	13.05	13.06	2.21	49758	14784	
NAPHTHALENE	14.94	14.97	14.42	94374	16403	
Total Xylenes: 8.36PPB						this confin
Surrogate Percent Recovery: 73.26					US	com.
					,	() S '

Sample Name: 5726706 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. Batch: 8020/21 Analyst: 2001 Raw File: Y:\Active\CP16\16201.0025.RAW Method: C:\Methods\16\16022[8021].met Date: 7/23/2009 11:27:52 AM

10000 Analyst: Verifier:

File: Y:\Active\CP16\16201.0025.RAW

Chrom Perfect Chromatogram Report

Sample Name: 5726706 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878.

Date Acquired: 7/21/2009 3:55:31 PM Instrument: 6890-16---FID Vial Position: Vi# Units: ug/kg Dilution Factor: 27.14 Raw File: Y:\Active\CP16\16201B.0025.RAW Column: Method File: C:\Methods\16\AK16078.met Analyst: 2001

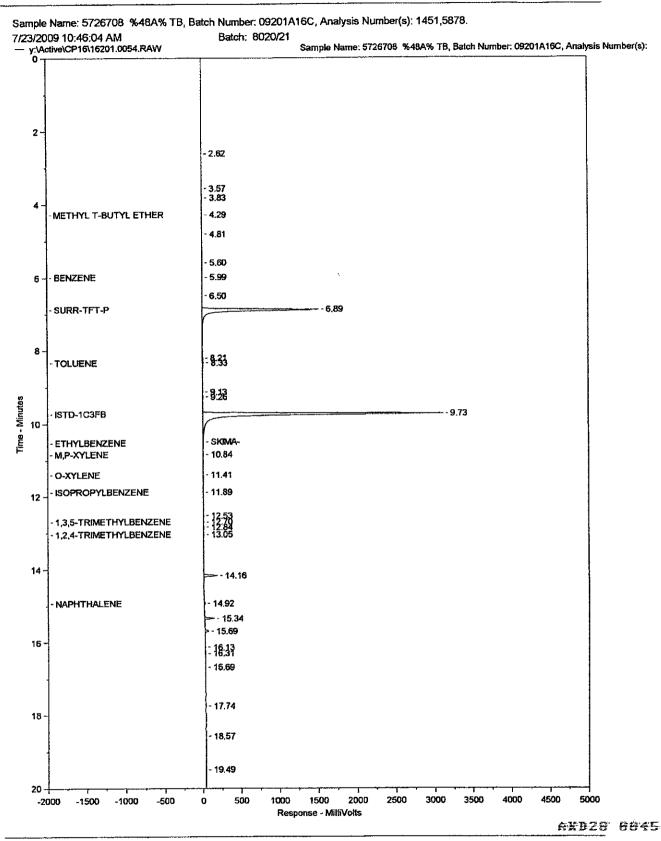
Threshold: 2

Peak Table using calibration : C:\Cal\16\AK16078.CAL- Version 22 Number of Compounds: 3

Component	Ret.	Exp. Ret	Amount	Peak Area	ak Height
Name	Time	Time	ug/kg	(A)*	(H)
	2.64	0.00	0.00	6164613	667396.1
	3.46	0.00	0,00	164318	10426.44
	3.82	0.00	0.00	209281	22776.95
	4.27	0.00	0.00	1135505	164872
	4.69	0.00	0.00	32486	5070.987
	4.83	0.00	0.00	34308	3947.323
	4.99	0.00	0.00	44969	4070.644
	5.22	0.00	0.00	47405	3103.592
	5.54	0.00	0.00	40089	2351.322
	5.89	0.00	0.00	19439	3231.322
	5.99	0.00	0.00	86261	18621.92
	6.41	0.00	0.00	18170	1449.879
	6.60	0.00	0.00	17935	1385.757
SURR-TFT-F	6.89	6.89	497.47	1817554	490596.1
	7.62	0.00	0.00	21866	1483.835
	7.92	0.00	0.00	11043	1497.361
	8.21	0.00	0.00	10054	1987.535
	8.32	0.00	0.00	155310	35383.17
	8.80	0,00	0.00	7197	1278.757
	9.03	0.00	0.00	3662	604.4025
	9.24	0.00	0.00	3116	526.1846
	9.37	0.00	0.00	4057	618.759
SURR-1C3FB	9,74	9,73	728.81	2628826	703999,1
001110012	10.54	0.00	0.00	20964	3601.538
	10.71	0.00	0.00	5523	1008.681
	10.84	0.00	0.00	41699	7589.771
	11.15	0.00	0.00	2765	502.0017
	11.41	0.00	0.00	14125	3012.636
	11.89	0.00	0.00	5218	1343.917
	12.03	0.00	0.00	1846	510.4643
	12.25	0.00	0.00	1786	345.1358
	12.39	0.00	0.00	3024	754.2198
	12.52	0.00	0.00	17205	3296,581
	12.70	0.00	0.00	8923	2232.626
	12.82	0.00	0.00	26622	4616.497
	13.05	0.00	0.00	26154	5118.613
	13.23	0.00	0.00	5162	1355.714
	13.31	0.00	0.00	15019	2279.538
	13.51	0.00	0,00	18675	2598.62
	13.88	0.00	0.00	31044	3938.621
	14.01	0.00	0.00	19897	3785.748
	14.17	0.00	0.00	163263	55098.45
	14.33	0.00	0.00	57708	6430.26
	14.33	0.00	0.00	87122	11636.26
	14.07	0.00	0.00	74443	10566,23
	14.70	0.00	0.00	68874	10066.33
	14.95	0.00	0.00	44882	11051.62
	15.04	0.00	0.00	35826	
		0.00	0.00	79686	11007.59 12955.81
	15.17 15.34	0.00	0.00	212352	43950.36
	10.04	0.00	0.00	212002	40000.00

AND29 8843

Component		Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name		Time	Time	ug/kg	(A)*	(H)
		15.48	0.00	0.00	106010	13346.04
		15.67	0.00	0.00	199698	15923.55
		15.87	0.00	0.00	124135	15724.81
		16.04	0.00	0.00	59026	11883.31
		16,13	0.00	0.00	78345	11258.98
		16.28	0.00	0.00	109072	10918,9
		17.73	0.00	0.00	23501	1701.065
		18,21	0.00	0.00	33685	1284.871
		18.56	0.00	0.00	19067	1015.543
		19.51	0.00	0.00	3646	357.3512
RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO		
4.59	12.72	5126826	4446380	680446		


Surrogate Percent Recovery: 61.0993

Total GRO Area: 680445.50 Total GRO Concentration: 254.44 PPB

Sample Name: 5726706 %48A%, Batch Number: 09201A16B, Analysis Number(s): 1451,5878. Batch: GRO Analyst: 2001 Raw File: Y:\Active\CP16\16201B.0025.RAW Method: C:\Methods\16\AK16078.met Date: 7/23/2009 11:33:25 AM

M٢ 1000 Analyst:_ di Verifier:

File: Y:\Active\CP16\16201B.0025.RAW

Printed on 7/23/2009 10:46:07 AM

Page 1 of 2

Sample Name: 5726708 %48A% TB, Batch Number: 09201A16C, Analysis Number(s): 1451,5878.

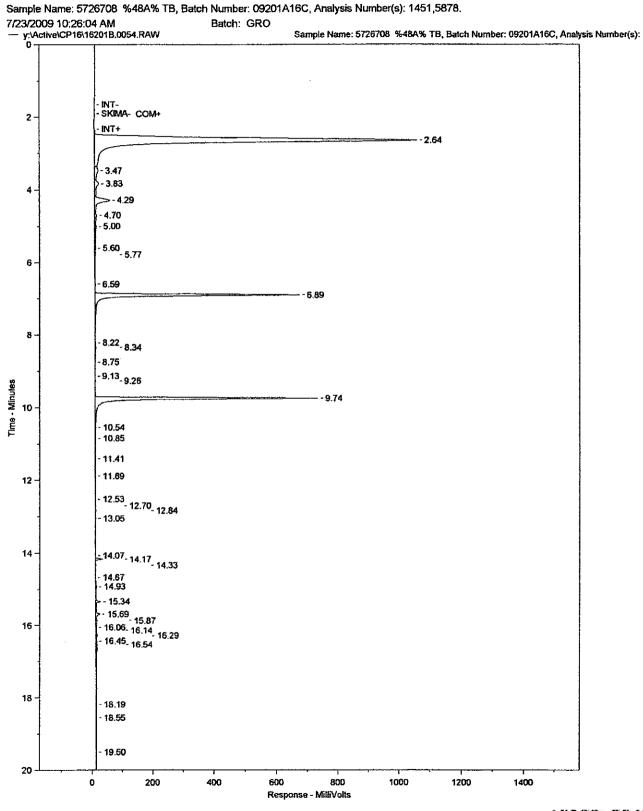
Date Acquired; 7/23/2009 10:26:04 AM Instrument: 6890-16--PID Units: ug/kg **Dilution Factor: 25** Raw File: y:\Active\CP16\16201.0054.RAW Method File: C:\Methods\16\16022[8021].met Column: Analyst: 2001

Vial Position: VI#

Threshold: 6

Peak Table using calibration : C:\Cal\16\16022(8021).cal- Version 20 Number of Compounds: 12

Component	Ret.	Exp. Ret	Amount	Peak Area	Peak Height	
Name	Time	Time	ug/kg	(A)	(H)*	
METHYL T-BUTYL ETHER	4.29	4.28	6,82	19429	2586	
BENZENE	5.99	5.94	0,24	10260	1768	
SURR-TFT-P	6.89	6.87	720.53	6185348	1513605	
TOLUENE	8.33	8.31	1.45	46743	9170	
STD-1C3FB	9,73	9.75	30.00	12642600	3119752	
ETHYLBENZENE	0.00	10.54	0.00	0	0	
M.P-XYLENE	10.84	10.85	1.22	81658	6533	
D-XYLENE	11.41	11.42	0.57	36955	2992	
SOPROPYLBENZENE	11.89	11.90	0.32	6356	1638	
1.3.5-TRIMETHYLBENZENE	12.70	12.71	0.59	20523	5605	
1,2,4-TRIMETHYLBENZENE	13.05	13.06	0.68	14732	4938	
NAPHTHALENE	14.92	14.97	11.79	62695	14551	


Total Xylenes: 1.79PPB

Surrogate Percent Recovery: 96.07

Sample Name: 5725708 %48A% TB, Batch Number: 09201A16C, Analysis Number(s): 1451,5878. Batch: 8020/21 Analyst: 2001 Raw File: y:\Active\CP16\16201.0054.RAW Method: C:\Methods\16\16022[8021].met Date: 7/23/2009 10:46:07 AM

VIA. Analyst: Ó Verifier:

File: y:\Active\CP16\16201.0054.RAW

Printed on 7/23/2009 10:46:12 AM

AKB28 8847

Page 1 of 3

Sample Name: 5726708 %48A% TB, Batch Number: 09201A16C, Analysis Number(s): 1451,5878.

Date Acquired: 7/23/2009 10:26:04 AM Instrument: 6890-16-FID Vial Position: Vi# Units: ug/kg **Dilution Factor: 25** Raw File: y:\Active\CP16\16201B.0054.RAW Method File: C:\Methods\16\AK16078.met Column: Analyst: 2001

Threshold: 2

Peak Table using calibration : C:\Cal\16\AK16078.CAL- Version 22 Number of Compounds: 3

Component		Ret.	Exp. Ret	Amount	Peak Area'e	
Name		Time	Time	ug/kg	(A)*	<u>(H)</u>
		2.64	0.00	0.00	9275058	1051034
		3.47	0.00	0.00	185623	11769.17
		3.83	0,00	0.00	178946	13749.68
		4.29	0.00	0.00	411930	50470.16
		4.70	0.00	0.00	44251	7776.501
		5.00	0.00	0.00	55629	5539.606
		5.60	0.00	0.00	29468	3126.536
		5.77	0.00	0.00	14119	2307.667
		6.59	0.00	0.00	31331	1842.954
SURR-TFT-F		6.89	6.89	646.28	2563366	665848
		8.22	0.00	0.00	11786	2106.417
		8.34	0.00	0.00	31935	3307.635
		8.75	0.00	0.00	11653	921.7198
		9.13	0.00	0.00	5666	730.4583
		9.26	0.00	0.00	7135	1229.865
SURR-1C3FB		9.74	9,73	689.50	2699911	725689.4
		10.54	0.00	0.00	21385	1874.59
		10.85	0.00	0.00	20605	1703.363
		11.41	0.00	0.00	14072	1053.236
		11,89	0.00	0.00	3249	718.3392
		12.53	0.00	0.00	11073	1187.864
		12.70	0.00	0.00	4953	1451.913
		12.84	0.00	0.00	13820	1996.842
		13.05	0.00	0.00	9177	1736.426
		14.07	0.00	0.00	692	178.4699
		14.17	0.00	0.00	58449	24038.42
		14.33	0.00	0.00	4466	1332.271
		14.67	0.00	0.00	2401	402.0217
		14.93	0.00	0.00	22252	3965.605
		15.34	0.00	0.00	62328	17400.12
		15.69	0.00	0.00	78235	14422.55
		15.87	0.00	0.00	21462	3909.633
		16.06	0.00	0.00	17384	2956.886
		16.14	0.00	0.00	12903	3157.844
		16.29	0.00	0.00	35463	3400.389
		16.45	0.00	0.00	14126	3173.157
		16.54	0.00	0.00	20959	3027.786
		18.19	0.00	0.00	25474	1478.665
		18.55	0.00	0.00	21541	1165.794
		19.50	0.00	0.00	5093	445.3793
	DT Char	Unedi COC) Totai Surr.	Adj. GRO		
RT Start	RT Stop	Unadj GRC		318311		
4.59	12.72	5581587	02032/0	910911		

KI Stan	κιδιύμ		Total Ourt.	
4.59	12.72	5581587	5263276	31

Surrogate Percent Recovery: 86.17066

Total GRO Area: 318310.50 Total GRO Concentration: 109.64 PPB

Sample Name: 5726708 %48A% TB, Batch Number: 09201A16C, Analysis Number(s): 1451,5878.

Batch; GRO Analyst: 2001 Raw File: y:\Active\CP16\16201B.0054.RAW Method: C:\Methods\16\AK16078.met Date: 7/23/2009 10:46:12 AM

7-23-09 MODDOOI Analyst: 78 Verifier: Ø

File: y:\Active\CP16\16201B.0054.RAW

Standards Data

AND28 8858

Initial Calibration Summary

Instrument ID: 5341 Calibration Batch: 09022A16A Method Reference: 8020/8021 Initial Calibration Date(s): 01/23/09-01/24/09(PID)

.

•

NO GAZISCA IJ. Met

.

.

STANDARD	Γ	LEVEL 1	LEVEL	5	LEVEL 3	LEVEL 4	LEVEL	5 LEVEL	- 9	LEVEL 7	LEVEL 8		
DATE INJECTED	•	01/23/09	0		ი	01/23/09		<u> </u>		6	· O		•
TIME INJECTED		18:44	19:		19:59	20:37	21:14	5		23:08	TO TO		
-		Retention Time	Time			Rel	Relative Re	Response F	Factor (R	(RRF) -			
COMPOUND (DETECTOR)	0	LEVEL 3 Window	Vindow	LEVELI	LEVEL2	LEVEL3	LEVEL4	LEVELS	LEVEL6	LEVEL7	LEVEL8	MEAN	* RSD
METHYL T-BUTYL ETHER	(DIG)	4.290	0.03		0.0945	0.0910	0.0892	0.0904	0.0939	0.0874	0.0921	0.0912	m
BENZENE	(DID)	5.950	0.03	1.8439	I.7833	1.7870	1.8054	1.8029	L.7597	1.6501	1.4724	1.7381	2
SURR-TFT-P	(DIG)	6.870	0.03	0.5167	0.5026	0.5046	0.5012	0.5000				0.5050	-
DOLUENE	(PID)	8.320	0.03.54	200-6295	1.5103	н.	1.5559	1.5654	1.5400	1.4610	1.3338	1.5162	9
ETHYLBENZENE	(DID)	10.540	0.03.1	T. 4459	1.2564	1.2650	1.2917	1.3077	1.2906	1.2228	1.1302	1.2763	7
M, P-XYLENE	(DIG)	10.850	0.03	1.3479	1.3003	1.3452	1.3705	1.3810	1.3260	1.2032	1.0154	1.2862	л0 Т
OF XYLLENE	(DII)	11.420	0.03 25	0.03 007503175	1.2520	1.2732	1.2954	1.3085	1.2906	1.2215	1.1324	1.2614	ŋ
ISOPROPYLBENZENE	(DIG)	11.900	0.03	. T. 2828	1.2505	1.2728	1.2964	1.3029	1.2722	1.2025	1.1109	1.2489	ۍ ۱
🕌 🏹 3 , 5 - TRIMETHYLBENZE	(PID)	12.710	0.03 27	12.5359	2.3485	2.3834	2.4115	2.4080	2.3272	2.1444	1.8417	2.3001	თ
1,2,4-TRIMETHYLBENZE	(DIJ)	13.060	0.03	1.7633	1.7368	1.7902	1.8255	1.8413	1.8095	1.6937	1.5226	1.7479	9
NAPHTHALENE	(DIG)	14.980	0.03		0.2812	0.2824	0.2984	0.3050	0.3113	0.2964	0.3016	0.2966	4
									•				

ч Page 1 of

d AMIS MU 56

AKD28 -8851

 \mathbf{z}_{1}^{i}

AK 16078

Initial Calibration Summary

Instrument ID: 5341 Calibration Batch: 09078A16A Method Reference: ALASKA Initial Calibration Date(s): 03/19/09(FID)

	a	00
	*	
	MEAN & RSD	72579.1 99158.4
<u>სი ი</u>	r (RRF) LEVELS	72997.8 101126.
17:28	se Facto LEVEL4	73682.0
LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 13/19/09 03/19/09 03/19/09 03/19/09 03/19/09 14:58 15:35 16:13 16:51 17:28 14:58 15:35 16:13 16:51 17:28	Relative Response Factor (RRF) LEVEL2 LEVEL3 LEVEL4 LEVEL5	71434.9 97676.7
EVEL 3 (/19/09 (16:13	Relativ LEVEL2	70597.8 98056.1
1L 2 L 709 03	LIBV31	74182.9 97675.8
LEVE 03/15	Time Tindow	0.03
LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 03/19/09 03/19/09 03/19/09 03/19/09 03/19/09 14:58 15:35 16:13 16:51 17:28	Retention Time Relative Response Factor (RRF) LEVEL 3 Window LEVELI LEVEL2 LEVEL3 LEVEL4 LEVEL5	2.000 0.03 74182.9 70597.8 71434.9 73682.0 72997.8 72579.1 2 6.870 0.03 97675.8 98056.1 97676.7 101257. 101126. 99158.4 2
rd Njectrd Njectrd	(DETECTOR)	(FID) (FID)
STANDARD DATE INJ TIME INJ	COMPOUND	GRO SURR-TFT-F

Page 1 of 1

_

pola la para

,

Instrument ID: 5341 Method Reference: 8020/8021 Data File: Y:\ACTIVE\CP16\16201B.0002.RAW Date Injected: 07/20/09 Time Injected: 11:00

	&DF LTN
%) 27	\$ DRIFT
LIMITS (+50/-50%) 1770409 - 5311227	RETENTION TIME THEORETICAL ACTUAL & DRIFT ACTUAL WINDOW CONCENTRATION CONCENTRATION
	L WINDOW WINDOW CONCENTRATION
(DETECT((FID)	LIME WINDOW
INTERNAL STANDARD (DETECTOR) AREA ISTD-1C3FB (FID) 3540818	ACTUAL WINDOW WINDOW
INTER ISTD-	UND (DETECTOR)
	15

COMPOUND (DETECTOR)	TECTOR)	ACTUAL	ACTUAL WINDOW	TIME WINDOW END	THEORETICAL CONCENTRATION (UG/KG)	ACTUAL CONCENTRATION (UG/KG)	\$ DRIFT	* H	*DRIFT LIMITS	ню
BENZENE	(DID)	5.980	5.930	6.030	20.0	20.9	4	-15	t C	+15
SURR-TFT-P	(DIA)	6.890	6.760	7.020	30.0	30.6	~	-28	4 4	+22
TOLUENE	(DIA)	8.320	8.270	8.270 8.370	20.0	20.1	0	- 15	t t	+15
ETHYLBENZENE	(DIG)	10.520	10.470	10.520 10.470 10.570	20.0	19.5	ň	- 15	4 4	+15
M, P-XYLENE	(DID)	10.830	10.780	10.830 10.780 10.880	40.0	40.2	-1	- 15	ц ц	+ 150 +
O-XYLENE	(DID)	11.400	11.350	11.400 11.350 11.450	20.0	19.6	-22	-15	t t	5 1 1 2 1 2

* = %DRIFT outside control limits.

Page 1 of 1

Instrument ID: 5341 Method Reference: ALASKA Data File: Y:\ACTIVE\CP16\16201B.0003.RAW Date Injected: 07/20/09 Time Injected: 11:38

CUMPOUND (D	(DETECTOR)	ACTUAL	TUAL WINDOW WINE START ENI	END MINDOW	ACTUAL WINDOW WINDOW CONCENTRATION CONCENTRATION (UG/KG)	CONCENTRATION (UG/KG)	* DRIFT	SLIWIT Tatvas	
GRO SURR - TFT - F	(FID) (FID)	6.880	6.880 6.780 6.980	6.980	214.6 30.0	204.0 26.4	-12	-25 to +25 -40 to +20	120 120

* = %DRIFT outside control limits.

Fage 1 of 1

•

Instrument ID: 5341 Method Reference: ALASKA Data File: Y:\ACTIVE\CP16\16201B.0016.RAW Date Injected: 07/20/09 Time Injected: 20:31

\$DRIFT LIMITS	-25 to +25 -40 to +20
\$ DRIFT	۳ ۳ ۹
	221.2
THEORETICAL ACTUAL CONCENTRATION CONCENTRATION (UG/KG) (UG/KG)	214.6 30.0
TME WINDOW END	6.990
TUAL WINDOW TIME TUAL WINDOW WINI START ENI	6.890 6.790 6.990
RETENTION TJ ACTUAL WINDOW W START	6.890
(DETECTOR)	(FID) (FID)
COMPOUND	GRO SURR - TFT - F

* = %DRIFT outside control limits.

Page 1 of 1

AND28 8855

Instrument ID: 5341 Method Reference: 8020/8021 Data File: Y:\ACTIVE\CP16\16201B.0018.RAW Date Injected: 07/21/09 Time Injected: 11:29

	&DRIFT LIMITS	to +15 to +15 to +15 to +15 to +15 to +15
	*DR LIM	
د د د د	\$ DRIFT	๛๛๛๛๛๛
LIMITS (+50/-50%) 1668090 - 5004269	ACTUAL CONCENTRATION (UG/KG)	21.3 30.8 4.024 4.09.8 9.8 9.8 8.8 9.5
(DETECTOR) AREA I (PID) 3336179 1	THEORETICAL CONCENTRATION (UG/XG)	20.00 20.000 20.000 20.000 20.000 20.00000000
(DETECI (PID)	TIME WINDOW END	5.930 6.030 6.760 7.020 8.270 8.370 0.470 10.570 0.780 10.880 1.350 11.450
NDARD	RETENTION TIME ACTUAL WINDOW WIND START ENU	5.980 5.930 6.030 6.890 6.760 7.020 8.320 8.270 8.370 10.520 10.470 10.570 10.830 10.780 10.880 11.400 11.350 11.450
INTERNAL STANDARD ISTD-1C3FB	RETEN	5.980 6.890 8.320 10.520 11.400 11.400
INTEI ISTD-	DETECTOR)	(014) (014) (014) (014)
	COMPOUND (DETECTOR)	BENZENE SURR - TFT - P TOLUENE ETHYLBENZENE M, P - XYLENE O - XYLENE

* = %DRIFT outside control limits.

Page 1 of 1

Instrument ID: 5341 Method Reference: ALASKA Data File: Y:\ACTIVE\CP16\16201B.0019.RAW Date Injected: 07/21/09 Time Injected: 12:07

COMPOUND	(DETECTOR)	RETEN	RETENTION TIME ACTUAL WINDOW WINI START ENI	LIME WINDOW END	THE THEORETICAL ACTUAL WINDOW CONCENTRATION CONCENTRATION END (UG/KG) (UG/KG)		& DRIFT	LIN LIN	&DRIFT LIMITS
GRO SURR-TFT-F	(FID) (FID)	6.890	6.890 6.790 6.990	6.990	214.6 30.0	188.6 25.0	-12 -17	-25 t -40 t	-25 to +25 -40 to +20

* = %DRIFT outside control limits.

Page 1 of 1

Instrument ID: 5341 Method Reference: 8020/8021 Data File: Y:\ACTIVE\CP16\16201B.0032.RAW Date Injected: 07/21/09 Time Injected: 20:21

	<u></u>	
	E+ KS	+ + + + + + 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	&DRIFT LIMITS	ដែះដូចូចូចូ
	5- Li	
ر پ 86	\$ DRIFT	счачай
LIMITS (+50/-50%) 1611266 - 4833798	ACTUAL CONCENTRATION (UG/KG)	21.4 30.2 4.0 19.7 19.6
) AREA 322532	RETENTION TIME THEORETICAL ACTUAL WINDOW WINDOW CONCENTRATION (START BND (UG/XG)	20.00 20.00 20.00 20.00
(DETECTOR (PID)	UTME WINDOW END	6.030 7.020 8.370 10.570 10.880 11.450
NDARD	RETENTION TIME TUAL WINDOW WIND START END	5.9805.9306.0306.8906.7607.0208.3208.2708.37010.52010.47010.57010.83010.78010.88011.40011.35011.450
INTERNAL STANDARD ISTD-1C3FB	RETEN	5.980 6.890 8.320 10.520 110.830 11.400
INTEL	COMPOUND (DETECTOR)	
	COMPOUND	BENZENE SURR - TFT - P TOLUENE ETHYLBENZENE M, P - XYLENE O - XYLENE

* = %DRIFT outside control limits.

Page 1 of 1

-

Instrument ID: 5341 Method Reference: ALASKA Data File: Y:\ACTIVE\CP16\16201B.0033.RAW Date Injected: 07/21/09 Time Injected: 20:59

	ACTUAL	RETENTION TIME TUAL WINDOW WINDO START END	LIME WINDOW END	RETENTION TIME THEORETICAL ACTUAL ACTUAL WINDOW WINDOW CONCENTRATION CONCENTRATION START END (UG/KG)		& DRIFT	LIN LIN	LIMIUS STIMIUS
RO (FID) URR-TFT-F (FID)	6.890	6.790	6.890 6.790 6.990	214.6 30.0	187.9 24.6	-12 -18		-25 to +25 -40 to +20

* = %DRIFT outside control limits.

Page 1 of 1

Instrument ID: 5341 Method Reference: 8020/8021 Data File: Y:\ACTIVE\CP16\16201B.0043.RAW Date Injected: 07/22/09 Time Injected: 17:19

LIMITS (+50/-50%)

AREA

INTERNAL STANDARD (DETECTOR)

	\$DRIFT LIMITS	-15 to +15	-28 to +22	-15 to +15	-15 to +15	-15 to +15	-15 to +15
82	& DRIFT	7	7	'n	-	5	- 2
1619161 - 4857482	ACTUAL CONCENTRATION (UG/KG)	21.4	30.7	20.5	19.8	40.8	19.5
3238321	RETENTION TIME THEORETICAL ACTUAL WINDOW WINDOW CONCENTRATION START END (UG/KG)	20.0	30.0	20.0	20.0	40.0	20.0
(DIA)	IME WINDOW END	6.030	7.020	8:370	10.570	10.870	11.440
	RETENTION TIME TUAL WINDOW WIND START END	5.980 5.930 6.030	6.890 6.760	8.270	10.470	10.770	11.390 11.340 11.440
STD-1C3FB	RETEN	5.980	6,890	8.320	10.520	10.820	11.390
ISTD	COMPOUND (DETECTOR)	(DIG)					E (FID)
	COM	BENZENE	SURR-TFT-P	TOLUENE	ETHYLBENZENE	M. P-XYLENE	O-XYLENE

* = %DRIFT outside control limits.

Page 1 of 1

.

Instrument ID: 5341 Method Reference: ALASKA Data File: Y:\ACTIVE\CP16\16201B.0044.RAW Date Injected: 07/22/09 Time Injected: 17:58

COMPOUND	(DETECTOR)	RETENT ACTUAL	RETENTION TIME TUAL WINDOW WINDC	TME WINDOW END	RETENTION TIME THEORETICAL ACTUAL ACTUAL WINDOW WINDOW CONCENTRATION ACTUAL START END CONCENTRATION START END (UG/KG) (UG/KG)		\$ DRIFT	17 17	&DRIFT LIMITS	
GRO SURR - TFT - F	(FID) (FID)	6.890 6.790 6.990	6.790	6.990	214.6 30.0	209.0 27.8	- 3	-25 to -40 to	-25 to +25 -40 to +20	50

* = %DRIFT outside control limits.

Page 1 of 1

AKD28 8861

Instrument ID: 5341 Method Reference: ALASKA Data File: Y:\ACTIVE\CP16\16201B.0050.RAW Date Injected: 07/22/09 Time Injected: 23:02

COMPOUND (DETECTOR	0R)	ACTUAL	TUAL WINDOW TIME	TIME WINDOW END	THEORETICAL CONCENTRATION (UG/KG)	ACTUAL WINDOW WINDOW CONCENTRATION CONCENTRATION START END (UG/KG) (UG/KG)	* DRIFT	L'HINLLS	SLI
GRO SURR-TFT-F	(FID) (FID)	6.890	6.790	6.890 6.790 6.990	214.6 30.0	220.5 29.7	μ μ	-25 to +25 -40 to +20	0 +25 0 +20

* = %DRIFT outside control limits.

•

Page 1 of 1

AKD28 8862

Instrument ID: 5341 Method Reference: 8020/8021 Data File: Y:\ACTIVE\CP16\16201B.0052.RAW Date Injected: 07/23/09 Time Injected: 09:10

- 5230382	
1743461	
3486921	
(DII)	
ISTD-1C3FB	
	(PID) 3486921 1743461

COMPOUND	COMPOUND (DETECTOR)	RETEN	RETENTION 7	TIME	THEORETICAL	ACTUAL	& DRIFT	₩.	& DRIFT	F-4
		ACTUAL	ACTUAL WINDOW	MDUDOW END	CONCENTRATION (UG/KG)	CONCENTRATION (UG/KG)		H	LIMITS	ŝ
BENZENE	(PID)	5.980	5.930	6.030	20.0	20.9	5	-15	2	+15
SURR-TFT-P	(DIG)	6.890	6.760	7.020	30.0	30.9	m	-28	ţ	+22
TOLUENE	(DIA)	8.320	8.270	8.370	20.0	20.1	0	-15	ц ц	+15
ETHYLBENZENE	(DIA)	10.520	10.470	10.570	20.0	19.4	ů	۲ .1 5	ţ	+15
M, P-XYLENE	(DIG)	10.820	10.770	10.820 10.770 10.870	40.0	40.1	0	- 15	t t	+15
O-XYLENE	(DIA)	11.400	11.400 11.350 11.450	11.450	20.0	19.5	ť,	170	4 t	+ 15

* = \$DRIFT outside control limits.

.

Page 1 of 1

AXD28 8863

•

Instrument ID: 5341 Method Reference: ALASKA Data File: Y:\ACTIVE\CP16\16201B.0055.RAW Date Injected: 07/23/09 Time Injected: 11:19

COMPOUND (DE:	DETECTOR)	ACTUAL	TUAL WINDOW WINDOW	ACTUAL WINDOW WINDOW	CONCENTRATION CONCENTRATION (UG/KG) (UG/KG)		1 JTX/1 &	STIMIL
GRO SURR-TFT-F	(FID) (FID)	6.890	6.890 6.790 6.990	6.990	214.6 30.0	204.6 27.4	სი ი ი ი	-25 to +25 -40 to +20

* = %DRIFT outside control limits.

Page 1 of 1

,

Raw QC Data

AKD28 8865

r:W	009 1:13:43 PM ctive\CP16\16201.0005.RAW	Batch: 8020/21 Sampl	e Name: BLK1642, Ba	tch Numb	er: 0920 [.]	1A16A, Ar	alysis Nu	mber(s): 14	50,145
0~									
	•								
2-									
-		- 2.62							
		- 2.02						·	
		- 3.48							
4-		- 3.82						÷	
	- METHYL T-BUTYL ETHER	- 4.82							
		- 4.02							
	BENZENE	- 5.99							
•	دميا 74 ت ا 74 ت ا								
	- SURR-TFT-P	- 6.60	39						
8-		- 8:34							
	- TOLUENE	- 8:34							
		- 9.13							
0-	- ISTD-1C3FB				4				
	- ETHYLBENZENE	- SKIMA-						r r	
	- M,P-XYLENE	- 10.84							
	- O-XYLENE	- 11.41							
2-	- ISOPROPYLBENZENE								
	- 1,3,5-TRIMETHYLBENZENE	- 12.52 - 12.84 - 13.05							
	- 1,2,4-TRIMETHYLBENZENE	- 13.05							
		- 13.87							
4-		- 14:34							
	- NAPHTHALENE	- 14,65) - 14,92							
		- 15.34							
6-		- 15.68 : 18.29							
		- 16.29 - 16.81							
		10.01							
		- 17.74							
8 -		10.57							
		- 18.57	N.						
		- 19.47	-						
o -						•••••	• <u>(</u>		
-20	00 -1500 -1000 -500	0 500 1000 1500 Response - M	2000 2500	3000	3500	4000	4500	5000	

.

Sample Name: BLK1642, Batch Number: 09201A16A, Analysis Number(s): 1450,1451,5878.

Date Acquired:7/20/2009 12:53:43 PMInstrument:6890-16--PIDUnits:ug/kgVial PosiDilution Factor:25Raw File:y:\Active\CP16\16201.0005.RAWMethod File:C:\Methods\16\16022[8021].metAnalyst:2001

Vial Position: VI#

Threshold: 6

Peak Table using calibration : C:\Cal\16\16022(8021).cal- Version 20

Number of Compounds, 12						
Component	Ret.	Exp. Ret	Amount	Peak Area	Peak Height	
Name	Time	Time	ug/kg	(A)	<u>(H)*</u>	
METHYL T-BUTYL ETHER	0.00	4.28	0.00	0	0	
BENZENE	5.99	5.94	0.15	8461	1033	
SURR-TFT-P	6.89	6.87	709.94	5771916	1450101	
TOLUENE	8.34	8.31	0.55	22792	3354	
ISTD-1C3FB	9,74	9.75	30.00	12393870	3033445	
ETHYLBENZENE	0.00	10.54	0.00	0	0	
M,P-XYLENE	10.84	10.85	1.19	75169	6183	
O-XYLENE	11.41	11,42	0.45	26104	2316	
ISOPROPYLBENZENE	0.00	11.90	0.00	0	0	
1,3,5-TRIMETHYLBENZENE	12.70	12.71	0.34	10365	3162	
1.2.4-TRIMETHYLBENZENE	13.05	13.06	1.20	39817	8457	
NAPHTHALENE	14.92	14.97	19.01	100524	22810	

Total Xylenes: 1.64PPB

Surrogate Percent Recovery: 94.66

Sample Name: BLK1642, Batch Number: 09201A16A, Analysis Number(s): 1450,1451,5878. Batch: 8020/21 Analyst: 2001 Raw File: y:\Active\CP16\16201.0005.RAW Method: C:\Methods\16\16022[8021].met Date: 7/20/2009 1:13:48 PM

Analyst:	NDJOOGOM	7-21-09
Verifier:	_	7/21/04

File: y:\Active\CP16\16201.0005.RAW

Chrom Perfect Chromatogram Report

/2009 12:5 /:VActive\CP1	16\16201B.0005.RAW	tch: GRO Sample Name: BLK1642, Batch Number: 092014	16A, Analysis Number(s): 1450,14
0			
1			
	-INT- -SKIMA- COM+		
2-	- INT+		
		- 2.64	
1	C.		
	- 3.46		
4-	>-3.82 -4.25		
4	- 4.69- 4.82 - 4.99		
	- 5.28		
6-	- 5.91		
	- 6.59		
		- 6.88	
	- 7.31		
8-			
	- 8.20 _{- 8.33}		
	- 8.74		
10 -		-9.73	
	- 10.53		
1	- 10.84		
	- 11.40		
12 -	- 11.89		
	40.50		
	- 12.52 12.69, 12.82		
	- 13.04		
	- 13.56 - 13.83		
14-	- 14.16- 14.33		
	<u>}</u> - 14,65		Ì
1	- 14.92 - 15.31		
	- 15.67		
16-	- 15.67 - 16.05- 15.87 - 16.05 <u>-</u> 16.13		
	- 16.56		
	- 17.46		
18	- 18.13		
	~ 18.59		
{			
	- 19.50		
20 	0 100 200 30	400 500 600 700 800 900	1000 1100
-100	0 100 200 30) 400 500 600 700 600 900 Response - MilliVolts	

Sample Name: BLK1642, Batch Number: 09201A16A, Analysis Number(s): 1450,1451,5878.

Date Acquired: 7/20/2009 12:53:43 PM Instrument: 6890-16--FID Units: ug/kg Vial Position: VI# **Dilution Factor: 25** Raw File: y:\Active\CP16\16201B.0005.RAW Method File: C:\Methods\16\AK16078.met Column: Analyst: 2001

Threshold: 2

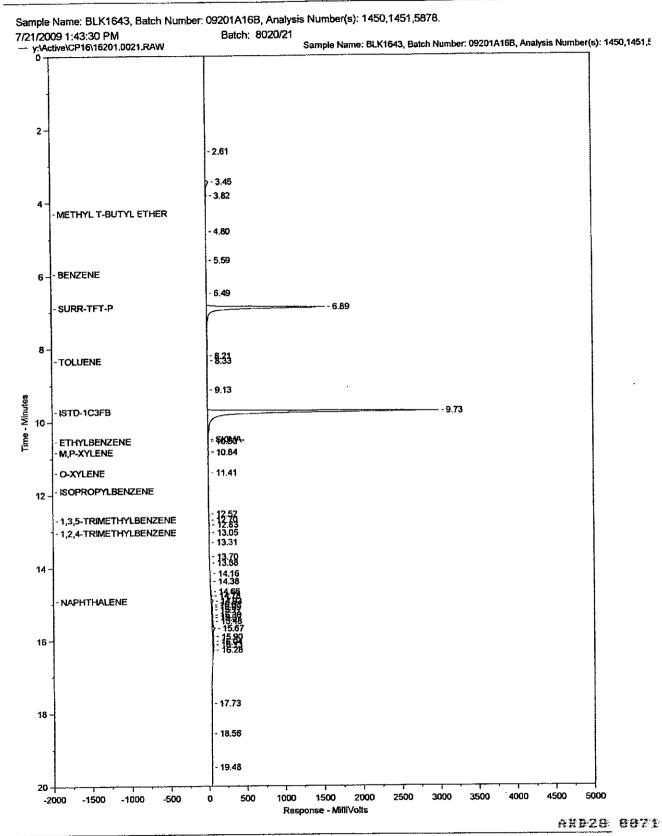
Peak Table using calibration : C:\Cal\16\AK16078.CAL- Version 20 Number of Compounds: 3

Component			Exp. Ret	Amount	Peak Area'e	ak Height
Name		Time	Time	ug/kg	(A)*	(H)
		2.64	0.00	0.00	7032807	771343.8
		3.46	0.00	0.00	160299	10548.23
		3.82	0.00	0.00	174010	14954.84
		4,25	0.00	0.00	137533	5158.551
		4,69	0.00	0.00	33829	4914
		4.82	0.00	0.00	42638	4276.347
		4.99	0.00	0.00	48103	4468.477
		5.28	0.00	0.00	46057	3233.773
		5.91	0.00	0.00	17729	1523.105
		6.59	0.00	0.00	24813	1860.84
SURR-TFT-F		6.88	6.88	583.06	2312604	614075.2
		7.31	0.00	0.00	75734	3781.537
		8.20	0.00	0.00	13691	2361.409
		8.33	0.00	0.00	21045	1802.736
		8.74	0.00	0.00	15315	906.4621
SURR-1C3FB		9.73	9.73	647.02	2533580	677556.6
		10.53	0.00	0.00	20220	1634.095
		10.84	0.00	0.00	16459	1496,196
		11.40	0.00	0.00	9954	729.1131
		11.89	0.00	0.00	1929	285.5505
		12.52	0.00	0.00	6833	915.8617
		12.69	0.00	0.00	10032	1523.763
		12.82	0.00	0.00	44903	6324.825
		13.04	0.00	0.00	17474	3146.76
		13.56	0.00	0.00	2860	304.0001
		13.83	0.00	0.00	13514	2010.391
		14.16	0.00	0.00	975	329.2147
		14,33	0.00	0.00	3468	522.665
		14.65	0.00	0.00	12525	3882.76
		14.92	0.00	0.00	29558	5563.304
		15.31	0.00	0.00	15658	1430.542
		15.67	0.00	0.00	56616	7750.208
		15.87	0.00	0.00	14589	2474.469
		16.05	0.00	0.00	13969	2493.09
		16.13	0.00	0.00	18873	2754.57
		16.56	0.00	0.00	33352	2864,169
		17.46	0.00	0.00	20446	1804.887
		18.13	0.00	0.00	20436	1251.684
		18.59	0.00	0.00	19083	1023.559
		19.50	0.00	0.00	3773	359.9262
BT Start	RT Stop	Unadi GRO	Totai Surr.	Adi, GRO		

RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO
4.58	12.71	5250562	4846184	404378

Surrogate Percent Recovery: 77.741

Total GRO Area: 404378.00 Total GRO Concentration: 139.29 PPB


Sample Name: BLK1642, Batch Number: 09201A16A, Analysis Number(s): 1450,1451,5878.

AKD28 8869

Batch: GRO Analyst: 2001 Raw File: y:\Active\CP16\16201B.0005.RAW Method: C:\Methods\16\AK16078.met Date: 7/20/2009 1:13:52 PM

7-21-09 Analyst: MDD2001 Tailor Verifier:

File: y:\Active\CP16\16201B.0005.RAW

Printed on 7/21/2009 1:43:34 PM

Page 1 of 2

Sample Name: BLK1643, Batch Number: 09201A16B, Analysis Number(s): 1450,1451,5878.

Date Acquired:7/21/2009 1:23:30 PMInstrument:6890-16--PiDUnits:ug/kgVial Position:Vi#Dilution Factor:25Raw File:y:\Active\CP16\16201.0021.RAWMethod File:C:\Methods\16\16022[8021].metColumn:Analyst:2001Column:

Threshold: 6

Peak Table using calibration : C:\Cal\16\16022(8021).cal- Version 20 Number of Compounds: 12

Component	Ret.	Exp. Ret	Amount	Peak Area	Peak Height	
Name	Time	Time	ug/kg	(A)	(H)*	
METHYL T-BUTYL ETHER	0.00	4.28	0.00	0	0	
BENZENE	0.00	5.94	0.00	0	0	
SURR-TFT-P	6.89	6.87	762.01	6327904	1536861	
TOLUENE	8.33	8.31	0.72	26971	4366	
STD-1C3FB	9.73	9.75	30.00	12267220	2995251	
ETHYLBENZENE	10.53	10.54	1.74	93702	8889	
M.P-XYLENE	10.84	10.85	1.94	92002	9947	
D-XYLENE	11.41	11.42	0.62	25050	3128	
SOPROPYLBENZENE	0.00	11.90	0.00	0	0	
.3.5-TRIMETHYLBENZENE	12.70	12.71	0.32	8221	2976	
1,2,4-TRIMETHYLBENZENE	13.05	13.06	1.40	38288	9753	
NAPHTHALENE	14.93	14.97	23.65	144968	28017	

Total Xylenes: 2.56PPB

Surrogate Percent Recovery: 101.60

Sample Name: BLK1643, Batch Number: 09201A16B, Analysis Number(s): 1450,1451,5878. Batch: 8020/21 Analyst: 2001 Raw File: y:\Active\CP16\16201.0021.RAW Method: C:\Methods\16\16022[8021].met Date: 7/21/2009 1:43:34 PM

 $\mathcal{D}\mathcal{A}\mathcal{O}\mathcal{O}$ Analyst: Verifier:

File: y:\Active\CP16\16201.0021.RAW

Batch: GRO 7/21/2009 1:23:30 PM - y:\Active\CP16\16201B.0021.RAW Sample Name: BLK1643, Batch Number: 09201A16B, Analysis Number(s): 1450,1451,5 INT-SKIMA- COM+ 2 INT+ - 3.44 > - 3.82 4 4.18 4.69. 4.79 - 4.99 - 5,59 - 5.77 6 - 6.50, 6.59 - 6.89 8 ^{- 8.21}- 8.33 - 8.74 9.14 Time - Minutes ---- - 9.74 10 10.54 10.85 - 11.41 - 11.89₋ 12.03 12 - 12.52 - 12.70_{- 12.82} - 13.05 13.31 - 13.55 - 13.70 - 13.88 14:17-14.24-14.38 14 - 14.66_ 14.78 - 14.93_ 15.03_ 15.10_ 15.17 - 15.30. 15.37 15.48 - 15.67 - 15.67 - 16.04, 16.13 - 16.28 16.44 16 17.74 18 18.57 19.51 20 500 600 700 800 900 1000 1100 1200 400 -100 100 200 300 0 Response - MilliVolts AXD28 6673

Sample Name: BLK1643, Batch Number: 09201A16B, Analysis Number(s): 1450,1451,5878.

Sample Name: BLK1643, Batch Number: 09201A16B, Analysis Number(s): 1450,1451,5878.

Date Acquired:7/21/2009 1:23:30 PMInstrument:6890-16--FIDUnits:ug/kgVial Position:Ulition Factor:25Raw File:y:\Active\CP16\16201B.0021.RAWMethod File:C:\Methods\16\AK16078.metAnalyst:2001

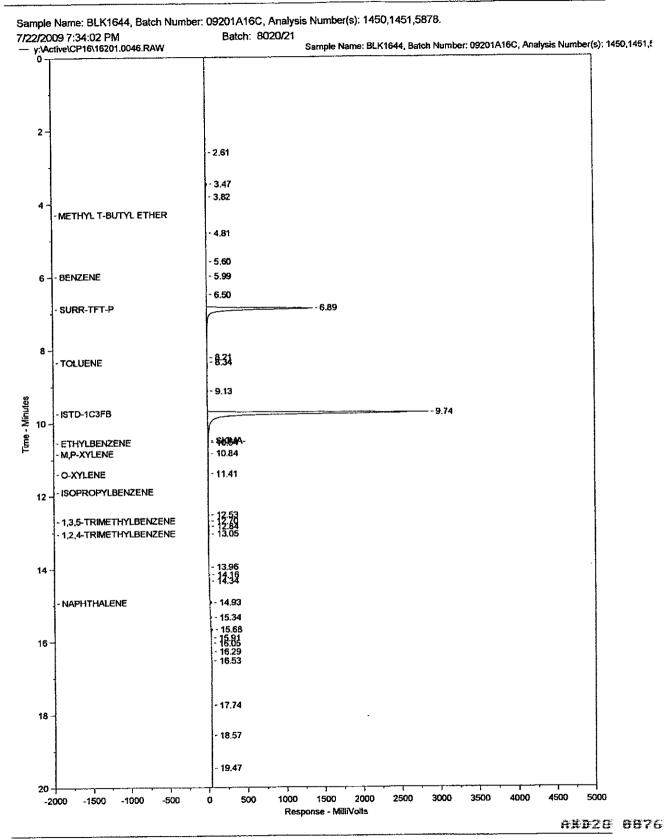
Threshold: 2

Peak Table using calibration : C:\Cal\16\AK16078.CAL- Version 21 Number of Compounds: 3

Component	Ret.	Exp. Ret	Amount	Peak Areate	-
Name	Time	Time	ug/kg	(A)*	(H
	2.64	0.00	0.00	7951360	856777.6
	3.44	0.00	0.00	169866	13870.36
	3.82	0.00	0.00	231963	24931.7
	4.18	0.00	0.00	131658	4745.45
	4.69	0.00	0.00	39776	7847.647
	4.79	0.00	0.00	39604	4410.072
-	4.99	0.00	0.00	45726	4546.65
	5.59	0.00	0.00	26441	2783.02
	5.77	0.00	0.00	19768	2059.03
	6.50	0.00	0.00	7394	1177.54
	6.59	0.00	0.00	16785	1391.97
SURR-TFT-F	6,89	6.89	622.09	2467419	656673.
	8.21	0.00	0.00	10114	1827.05
	8.33	0.00	0.00	17327	1764.27
	8.74	0.00	0.00	5529	565.853
	9.14	0.00	0.00	3742	330.296
SURR-1C3FB	9.74	9.74	644.79	2524828	674377
	10.54	0.00	0.00	18271	1994.59
	10.85	0.00	0.00	17490	2308.33
	11.41	0.00	0.00	6423	874.328
	11.89	0,00	0.00	1063	248.887
	12.03	0.00	0.00	763	288,187
	12.52	0.00	0.00	8725	1078.56
	12.70	0.00	0.00	8044	1584.3
	12.82	0.00	0.00	44957	7109.01
	13,05	0.00	0.00	28257	4075.71
	13.31	0.00	0.00	7514	1864.1
	13.55	0.00	0,00	19922	1849.57
	13.70	0.00	0.00	7839	2171.18
	13.88	0.00	0,00	37077	4464.2
	14.17	0.00	0.00	35683	4655.43
	14.24	0.00	0.00	16322	5046.69
	14.38	0.00	0.00	92955	7325.58
	14.66	0.00	0.00	99379	14375.
	14.78	0.00	0.00	96100	13124
	14.93	0.00	0.00	87617	14169.6
	15.03	0.00	0.00	60053	14396.1
	15.10	0.00	0.00	45514	13941.3
	15.17	0.00	0.00	99815	16155.9
	15.30	0.00	0.00	93082	21146.3
	15.37	0.00	0.00	73342	15704.2
	15.48	0.00	0.00	130556	15848.2
	15.67	0.00	0.00	254301	23678.1
	15.87	0.00	0.00	177079	20594.7
	16.04	0.00	0.00	82623	16612.7
	16.13	0.00	0.00	120505	16747.8
	16.28	0.00	0.00	160614	16902.7
	16.44	0.00	0.00	108503	11496.0
	17.74	0.00	0.00	26290	1706.28

Component		Ret.	Exp. Ret	Amount	Peak Area'eak Height	
Name		Time	Time	ug/kg	(A)*	(H)
		19.51	0.00	0.00	3204	330.5945
RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO		
4.59	12.72	5285231	4992247	292985		

Surrogate Percent Recovery: 82.94529


λ

Total GRO Area: 292984.50 Total GRO Concentration: 100.92 PPB

Sample Name: BLK1643, Batch Number: 09201A16B, Analysis Number(s): 1450,1451,5878. Batch: GRO Analyst: 2001 Raw File: y:\Active\CP16\16201B.0021.RAW Method: C:\Methods\16VAK16078.met Date: 7/21/2009 1:43:38 PM

Analyst MDD2001 7-23-Verifier:

File: y:\Active\CP16\16201B.0021.RAW

Sample Name: BLK1644, Batch Number: 09201A16C, Analysis Number(s): 1450,1451,5878.

Date Acquired: 7/22/2009 7:14:01 PM Instrument: 6890-16--PID Units: ug/kg **Dilution Factor: 25** Raw File: y:\Active\CP16\16201.0046.RAW Column: Method File: C:\Methods\16\16022[8021].met Analyst: 2001

Vial Position: Vi#

Threshold: 6

Peak Table using calibration : C:\Cal\16\16022(8021).cal- Version 20 Number of Compounds: 12

Number of Compounds. 12					77 1.14.1.1.h.h.h.	
Component	Ret.	Exp. Ret	Amount	Peak Area	Peak Height	
Name	Time	Time	ug/kg	(A)	<u>(H)*</u>	
METHYL T-BUTYL ETHER	0.00	4.28	0.00	0	0	
BENZENE	5,99	5.94	0.33	12389	2213	
SURR-TFT-P	6.89	6.87	706.38	5543194	1358731	
TOLUENE	8.34	8.31	0.67	24929	3880	
ISTD-1C3FB	9.74	9.75	30.00	11620460	2856645	
FTHYLBENZENE	10.54	10.54	1.69	87236	8193	
M,P-XYLENE	10.84	10.85	1.56	76718	7621	
0-XYLENE	11.41	11.42	0.55	15083	2652	
ISOPROPYLBENZENE	0.00	11.90	0.00	0	0	
1,3,5-TRIMETHYLBENZENE	12.70	12.71	0.33	8795	2903	
	13.05	13.06	1.21	57106	8074	
1,2,4-TRIMETHYLBENZENE NAPHTHALENE	14.93	14.97	21.11	88963	23851	

Total Xylenes: 2.11PPB

Surrogate Percent Recovery: 94.18

Sample Name: BLK1644, Batch Number: 09201A16C, Analysis Number(s): 1450,1451,5878. Batch: 8020/21 Analyst: 2001 Raw File: y:\Active\CP16\16201.0046.RAW Method: C:\Methods\16\16022[8021].met Date: 7/22/2009 7:34:05 PM

2001 MOE Analyst: Verifier:

File: y:\Active\CP16\16201.0046.RAW

Batch: GRO 7/22/2009 7:14:01 PM Sample Name: BLK1644, Batch Number: 09201A16C, Analysis Number(s): 1450,1451,5 INT-SKIMA- COM+ 2 INT+ --2.64 3.46 - 3,82 4 4.22 4.70-4.80 - 4,99 5.59 - 5,99 6 6.50- 6,60 --- 6.89 8 - 8.21_{- 8.34} Time - Minutes --9.74 10 10.55 10.85 - 11.41 - 11.90 12 - 12.53 - 12.71₋ 12.83 - 13.05 - 13.51 - 13.88 14 - 14.17 - 14.34 14.67 - 14.93 - 15.18 - 15.34 15.68 - 15.87 - 15.05, 16.14 - 16.29 16 ^{- 16.45}. 16.53 17.74 18.05 18.20 18 · 19.48 20 1100 400 500 600 700 800 900 1000 300 -100 0 100 200 Response - MilliVolts AKD28 8878

Sample Name: BLK1644, Batch Number: 09201A16C, Analysis Number(s): 1450,1451,5878.

.

Sample Name: BLK1644, Batch Number: 09201A16C, Analysis Number(s): 1450,1451,5878.

 Date Acquired: 7/22/2009 7:14:01 PM

 Instrument: 6890-16--FID

 Units: ug/kg
 Vial Position: V!#

 Dilution Factor: 25

 Raw File: y:\Active\CP16\16201B.0046.RAW

 Method File: C:\Methods\16\AK16078.met
 Column:

 Analyst: 2001

Threshold: 2

Peak Table using calibration : C:\Cal\16\AK16078.CAL- Version 22 Number of Compounds: 3

Component		Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name		Time	Time	ug/kg	(A)*	(H)
		2.64	0.00	0.00	6882048	739944.6
		3.46	0.00	0.00	166129	11074.81
		3.82	0.00	0.00	147772	10809.28
		4.22	0.00	0.00	146248	5103.946
		4.70	0.00	0.00	23281	4369.066
		4.80	0.00	0.00	47299	4608,503
		4.99	0.00	0.00	45583	4321.787
		5.59	0.00	0.00	38787	3130.297
		5.99	0.00	0.00	17392	1651.164
		6,50	0.00	0.00	9229	1343.078
		6.60	0.00	0.00	20033	1637.215
SURR-TFT-F		6.89	6.89	558.00	2213213	590361.8
		8.21	0.00	0.00	11984	1970.543
		8.34	0.00	0.00	23587	1778.985
SURR-1C3FB		9.74	9.73	624.76	2446419	656708
		10.55	0.00	0.00	21159	2044.537
		10.85	0.00	0.00	18934	1942.439
		11.41	0.00	0.00	10146	904.246
		11.90	0.00	0.00	2024	346.3817
		12.53	0.00	0.00	6547	750,8437
		12.71	0.00	0.00	6490	1354.638
		12.83	0.00	0.00	36398	5611.962
		13.05	0.00	0.00	21842	3160.661
		13.51	0.00	0,00	3896	401.9306
		13,88	0.00	0.00	1764	389.5696
		14.17	0.00	0.00	2010	670.6165
		14.34	0.00	0.00	4725	891.3929
		14.67	0.00	0.00	5307	910.6794
		14.93	0.00	0.00	36575	6612.76
		15.18	0.00	0.00	13784	2119,596
		15.34	0.00	0.00	29811	4404.594
		15.68	0.00	0.00	87567	9194.901
		15.87	0.00	0.00	42200	5227.162
		16.05	0.00	0.00	22199	3908.429
		16.14	0.00	0.00	26528	4096.173
		16.29	0.00	0.00	45929	4440.528
		16.45	0.00	0.00	16710	3987.305
		16.53	0.00	0.00	25368	3580,916
		17.74	0.00	0.00	25334	1885.513
		18.05	0.00	0.00	21923	1479.031
		18.20	0.00	0.00	19203	1479.553
		19.48	0.00	0.00	7279	537.5492
RT Start	RT Stop	Unadi GRO	Total Surr.	Adj. GRO		
NI Əlalı			i viai outt.	nuj. ono		

RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO
4.59	12.72	4962108	4659633	302476

Surrogate Percent Recovery: 74.39986

Total GRO Area: 302475.50 Total GRO Concentration: 104.19 PPB Sample Name: BLK1644, Batch Number: 09201A16C, Analysis Number(s): 1450,1451,5878. Batch: GRO Analyst: 2001 Raw File: y:VActive\CP16\16201B.0046.RAW Method: C:\Methods\16\AK16078.met Date: 7/22/2009 7:34:10 PM

07001 7-2309 MD-Analyst: Verifier:

File: y:\Active\CP16\16201B.0046.RAW

Preparation Logs

AXD28 8881

VOA Prep Summary by SDG: AKD28 25 - VOLATILES BY GC

r		-	-	-
Problem Codes				
	<	∢	<	
Final Extraction Vol (mL)	25.000	25.000	25.000	25.000
Preservative (volume)	SS0918725 MeOH w/surrogate (B	SS0918725 MeOH w/surrogate (SS0918725 MeOH w/surrogate (B	SS0918725 MeOH w/surrogate (B 25 mL)
Pres	MeOH 25 mL	MeOH		MeOH 25 mL)
Preserv. lot#	SS0918725 B	SS0918725 B	SS0918725 B	SS0918725 B
Meets require- ments?	z.	z	z	N/A
Final Net soil Weight Veight weight requirement	151.20 g 178.86 g 27.66 g 22.50 g - 27.50 g	154.60 g 183.20 g 28.60 g 22.50 g - 27.50 g	154.74 g 183.54 g 28.80 g 22.50 g - 27.50 g	TB
Final Net soil Weight weight	27.66 g	28.60 9	28.80 g	-0.70 g
Final Weight	178.86 g	183.20 g	183.54 g	151.96 g
Initial Weight	151.20 g	154.60 g	154.74 g	152.66 g 151.96 g -0.70 g
Prepared		07/16/09 00:00		
Collected	07/16/09 09:31 07/16/09 09:31	07/16/09 00:00 07/16/09 00:00	07/16/09 11:25 07/16/09 11:25	07/16/09 00:00 07/16/09 00:00
Used for Analysis?	۲	Y	۲	7
Vial ID	09200422	09200429	09200433	09200434
Sample Bottle Prep Number Code Analysis# Vial ID	06119			06119
Bottle Code	048A	048A	048A	048A
Sample Number	5726704 048A 06119	5726705 048A 06119	5726706 048A 06119	5726708 048A 06119

Final Extraction Vol학nL) = Preservative Vol + Added MeOH (if applicable) 법 KEY to problem co원es:

v 1.4.2

B = vial leaked C# where # = volume of MeOH added in mL due to sample not covered/matrix (tot #) E = effervescence observed F = pH >= 2 G = headspace in container A = wt. does not meet requirements D = sampler not the 2

7/29/2009 6:56:21AM

Volatiles by GC Data (Water)

AND28 8883

Case Narrative Conformance/Nonconformance Summary

AKD28 8884

CLIENT: ChevronTexaco SDG: AKD28

LANCASTER LABORATORIES

Alaska AK101 GRO/BTEX

			MATRIX						
LLI	SAMPLE	WATER	SOLID	LEACHATE	<u>COMMENT</u>				
<u>SAMPLE #</u>	CODE								
BLANKA	BLKQH	X			Method Blank				
LCSA	LCSXB	X			Laboratory				
					Control Spike				
LCSB	LCSXC	X			Laboratory				
					Control Spike				
LCSDA	LCSDHL	X			Laboratory				
					Control Spike				
					Dup				
LCSDB	LCSDHM	X			Laboratory				
					Control Spike				
					Dup				
5725297	335P2	X			Unspiked				
5725297MS	335P2MS	X			Matrix Spike				
5725299	33519	X			Unspiked				
5725299MS	33519MS	X			Matrix Spike				
5726707	SHGEB	X							
5726709	SHGTW	X			,				

A. Sample Preparation:

No dilutions were necessary for the samples listed above.

B. Analysis:

No problems were encountered during analysis.

C. Quality Control:

Matrix QC may not be included if site-specific QC were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method or by the client.

Surrogate recoveries that are outside the QC window are confirmed unless attributed to a dilution or otherwise noted.

The initial calibration verification for benzene and M/P xylenes on 7/15/09 at 22:44 is outside specifications.

See the Conformance/Nonconformance Summary for the QC information.

AKD20 8085

D. Data Interpretation:

No further interpretation is needed.

Narrative reviewed and approved by:

Dana Kauffman, Manager Data Deliverables

AKD29 8886

GC ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY SDG: AKD28

1	Indic Chromatograms labeled / Compounds identified (Field Samples & Method Blanks)	ate Yes, No, N/A YES
	Retention times for chromatograms provided	YES
		NO
	Standards summary meet criteria	
4.	Calibration - Initial calibration performed before sample analysis and continuing calibration performed within 24 hours of sample analysis.	YES
5.	Blank contamination If yes, list compounds and concentrations in each blank: N/A	NO
6.	Surrogate recoveries meet criteria If not met, list those compounds and the recoveries that fall outside the acceptable range:	YES
7.	If not met, were the calculations checked and the results qualified as "estimated"? N/A Matrix Spike / Matrix Spike Duplicate recoveries meet criteria. If not met, list those compounds and the recoveries that fall outside the acceptable range:	YES
8.	Retention time summaries for primary and confirmation analyses meet criteria	N/A
9.	Were samples run on dissimilar columns?	N/A
10). Extraction holding time met If not met, list number of days exceeded for each sample: N/A	N/A
11	. Analysis holding time met If not met, list number of days exceeded for each sample: N/A	YES

Additional Comments:

The initial calibration verification for benzene and M/P xylenes on 7/15/09 at 22:44 is outside specifications.

Summary reviewed and approved by:

Dana Kauffman, Manager Data Deliverables

UN 197

Date

AKD28 8887

QC Summary

•

AKD28 6888

2E WATER SURROGATE RECOVERY

Contract:

SAS No:

GC Column (2):

Lab Name: Lancaster Laboratories

Lab Code:

Case No.:

GC Column (1): J&W DB-VRX ID: 75

Batchnumber: 09200A53

SAMPLE	SAMPLE CODE NO.	TFTP 1 % REC #	TFTP 2 % REC #	TOT OUT
5725297	335P2	94		0
5725297 MS	335P2MS	95		0
5726707	SHGEB	95		0
5726709	SHGTW	96		0
BLANKA	BLKQH	95		0
LCSA	LCSXB	96		0
LCSDA	LCSDHL	96		0

DUIGODU	NOMBLE
ADVISORY OC LIMITS	NOMINAL CONCENTRATION
QC LIMITS	CONCENTION

TFTP = Trifluorotoluene-P

- # Column to be used to flag recovery values
- * Values outside of QC Limits
- D Surrogate diluted out

SDG No.: AKD28

ID:

2E WATER SURROGATE RECOVERY

Lab Name: Lancaster Laboratories

Lab Code:

SAS No:

Contract:

GC Column (2):

SDG No.: AKD28 ID:

GC Column (1): J&W DB-VRX ID: 75

Batchnumber: 09200A53

SAMPLE	SAMPLE CODE NO.	TFTF 1 % REC #	TFTF 2 % REC #	TOT OUT
5725299	33519	81		0
5725299 MS	33519MS	92		0
5726707	SHGEB	84		0
5726709	SHGTW	84		0
BLANKA	BLKQH	86		0
LCSB	LCSXC	97		0
LCSDB	LCSDHM	97		0

Case No.:

ADVISORY QC LIMITS	NOMINA CONCEN		ION	
(60 - 120)	30	ug/l	AKD28	8898

Column to be used to flag recovery values

* Values outside of QC Limits

TFTF = Trifluorotoluene-F

D Surrogate diluted out

~	_
-4	-
v	

Water Matrix Spike/Matrix Spike Duplicate Recovery

SAS No.:

Lab Name: Lancaster Laboratories

Case No.:

Contract:

SDG No.:

AND28 8891

Lab Code:

Matrix Spike - Sample Code No.: 335P2

	Spike Added	Sample Concen	MS Concen	MSD Concen	MS %	MSD % Rec _#	MS-MSD % REC Limits	% RPD	% RPD Lim
Compound	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Rec #			#	····
1,2,4-TRIMETHYLBENZENE	20	0.41	24		118		(79 - 136)		30
1,3,5-TRIMETHYLBENZENE	20	0.50	24		118		(80 - 120)		30
BENZENE	20	0.70	24		117		(70 - 152)		30
Cumene	20	0	25		125		(85 - 132)		30
Ethylbenzene	20	0.084	24		120		(75 - 133)		30
M/P-XYLENES	40	2.5	51		121		(78 - 130)		30
MTBE	20		22		110		(50 - 162)		30
Naphthaiene	20				91		(50 - 146)		30
o-xylene	20				119		(78 - 130)		30
TOLUENE	20				120		(78 - 129)		30
TOTAL XYLENES	60				121		(67 - 155)		30

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 11 outside limits Spike Recovery: 0 out of 11 outside limits

Comments:	Results calculated on as-received basis.	
	Sample No.: 5725297	Batch: 09200A53A

		3E		
	Water Matrix Spik	e/Matrix Spike Duplicate	Recovery	
Lab Name: Lanc	aster Laboratories	Contract:		•
Lab Code:	Case No.:	SAS No.:	SDG No.:	

.

AXD28 8892

.

.

Matrix Spike - Sample Code No.: 33519

Compound	Spike Added (ug/l)	Sample Concen (ug/l)	MS Concen (ug/l)	MSD Concen (ug/l)	MS % Rec _#	MSD % Rec _#	MS-MSD % REC Limits	% RPD #	L
GRO	1100	17	1000		89		(60 - 120)		20

. . . ,

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: 0 out of 1 outside limits Spike Recovery: 0 out of 1 outside limits

Comments:	Results calculated on as-received basis.	
	Sample No.: 5725299	Batch: 09200A53A

FORM III-1

20 23

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 11 outside limits Spike Recovery: 0 out of 22 outside limits

Comments:	Results calculated on as-received basis.		
	Sample No.: LCSA	Batch:	09200A53A

SDG No.: SAS No.: Case No.: Laboratory Control Spike - Sample Code No.: LCSXB LCSD LCS-LCSD % % LCS LCS LCSD Spike RPD % REC RPD % % Concen Concen Added Lim Rec # Limits Rec # # (ug/l) Compound (ug/l) (ug/l) 0 (80 - 120)1,2,4-TRIMETHYLBENZENE 23 115 115

23

23

23

23

47

21

21

22

23

69

115

115

115

115

118

105

100

115

115

115

115

115

115

115

118

105

105

110

115

115

23

23

23

23

23

47

21

23

69

3E Water Lab Control Spike/Lab Control Spike Duplicate Recovery Contract:

Lab Name: Lancaster Laboratories

1,3,5-TRIMETHYLBENZENE

Lab Code:

BENZENE

Ethylbenzene

Naphthalene

M/P-XYLENES

Cumene

MTBE

o-xylene

TOLUENE

TOTAL XYLENES

20

20

20

20

20

40

20

20

20

20

60

(80 - 120)

(80 - 120)

(80 - 120)

(80 - 120)

(80 - 120)

(77 - 132)

(52 - 136)

(80 - 120)

(80 - 120)

(80 - 120)

30

30

30

30

30

30

30

30

30

30

30

AKD28 0893

0

0

0

0

0

0

5

4

0

0

3E Water Lab Control Spike/Lab Control Spike Duplicate Recovery

Lab Name: Lancaster Laboratories Contract:

Lab Code: Case No.: SAS No.: SDG No.:

Laboratory Control Spike - Sample Code No.: LCSXC

Compound	Spike Added (ug/l)	LCS Concen (ug/l)	LCSD Concen (ug/l)	LCS % Rec _#	%	% REC	% RPD #	% RPD Lim
GRO	1100	1100	1100	100	100	(60 - 120)	0	20

Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits
RPD: 0 out of 1 outside limits

Spike Recovery: 0 out of 2 outside limits

Comments:	Results calculated on as-received basis.	
	Sample No.: LCSB	Batch: 09200A53A

AXD26 8894

n	4C METHOD BLANK	SUMMARY	ĺ	SAMPLE CODE NO. BLKQH		
Lab Name: Lancaster Laborator	ries Contract:					
Lab Code: Ca	ise No.:	SAS No.:		SDG No.: <u>AKD28</u>		
Lab Sample ID <u>BLANKA</u>	Batch 09200A53A		Lab f	File ID: <u>53200.0004.RA</u>		
Matrix: (soil/water) WATER			Extra	ction: (SepF/Cont/Sonc)		
Sulfur Cleanup: (Y/N) <u>N</u>			Date	Extracted:		
Date Analyzed (1): 7/20/2009			Date	Analyzed (2):		
Time Analyzed (1): 01:51:43			Time	Analyzed (2):		
Instrument ID (1): <u>10995P</u>			Instru	ument ID (2):		
GC Column: <u>J&W DB-VRX</u>	ID: <u>75</u> (mm)		GC C	Column:	ID:	(mm)
THIS METHOD BLANK	APPLIES TO THE FC	LLOWING SAM	IPLE S	S, MS, AND MSD		

LAB SAMPLEID DATE DATE SAMPLE ANALYZED 2 ANALYZED 1 CODE NO. 335P2 5725297 7/20/2009 01 7/20/2009 02 335P2MS 5725297 33519 7/20/2009 5725299 63 7/20/2009 5726707 04 SHGEB SHGTW 5726709 7/20/2009 05 7/20/2009 BLKQH BLANKA 06 7/20/2009 LCSXB LCSA 07 LCSDA 7/20/2009 LCSDHL 80

3047 7-30-09

COMMENTS:

AND28 8895

FORM IV PEST

1

	METH	4C IOD BLAN	K SUMMARY		SAMPLE CODE NO	D .	
Lab Name: Lancaster Labor	atories	Contract:					
Lab Code:	Case No	b .:	SAS No.:		SDG No.: <u>AKD28</u>		
Lab Sample ID BLANKA	Batch	09200A53A		Lab	File ID: <u>53200B.0004.R</u>		
Matrix: (soil/water) WATE	R			Extr	action: (SepF/Cont/Sonc)		
Sulfur Cleanup: (Y/N) <u>N</u>				Date	e Extracted:		
Date Analyzed (1): 7/20/20	009			Date	e Analyzed (2):		
Time Analyzed (1): 01:51:4	<u>3</u>			Tim	e Analyzed (2):		
Instrument ID (1): <u>10995F</u>				Inst	rument ID (2):		
GC Column: J&W DB-VRX	ID: <u>7</u>	<u>5</u> (mm)		GC	Column:	ID:	(m
THIS METHOD BLA		ES TO THE F	OLLOWING SA	MPLE	S, MS, AND MSD		

	SAMPLE CODE NO.	LAB SAMPLEID	DATE ANALYZED 1	DATE ANALYZED 2
01	33519	5725299	7/20/2009	
02	33519MS	5725299	7/20/2009	
03	SHGEB	5726707	7/20/2009	
04	SHGTW	5726709	7/20/2009	
05	BLKQH	BLANKA	7/20/2009	
06	LCSXC	LCSB	7/20/2009	
07	LCSDHM	LCSDB	7/20/2009	

.

COMMENTS:

Page 1 of 1

FORM IV PEST

AKD28 8896

SAMPLE CODE NO.

1.5U

BLKQH

ORGANICS ANALYSIS DATA SHEET

Lab Name: Lancaster I	<u>_aboratories</u>	Contract:	E	Batchnumber: <u>09200/</u>	<u> 453A</u>
Lab Code:	Case No	.:	SAS No.: SDG No.:		
Matrix: (soil/water) <u>W</u>	ATER			Lab Sample ID: <u>BL</u>	ANKA
Sample wt/vol:	<u>1</u> (g/ml)			Lab File ID: <u>53200</u>	.0004.RAW
% Moisture:	Decante	ed: (Y/N)	Date Received:		
Extraction: (SepF/Cont/Sonc)		Date Extracted:			
Concentrated Extract	Volume:	<u>1000</u> (uL)		Date Analyzed: 7/2	20/2009
Injection Volume:	<u>1</u> (uL)			Dilution Factor: 1	
GPC Cleanup: (Y/N)	N pH :			Sulfur Cleanup: ()	(/N) N
			CONCEN	TRATION UNITS	
CAS NO.	COMPOUND		(UG/L or	UG/KG) <u>ug/l</u>	Q
71-43-2	BENZENE			0	.50U
108-88-3	TOLUENE		î	0	.50U
100-41-4	Ethylbenzene	• • • • • • • • • • • • • • • • • • •		0	.50U

100-41-4 1330-20-7

.

Ethylbenzene

TOTAL XYLENES

			SAMPLE CODE NO. BLKQH
Lab Name: Lancaster	Laboratories Contract	t: Batch	number: <u>09200A53A</u>
Lab Code:	Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) <u>M</u>	VATER	La	b Sample ID: <u>BLANKA</u>
Sample wt/vol:	<u>1</u> (g/ml)	La	b File ID: <u>53200B.0004.RAW</u>
% Moisture:	Decanted: (Y/N)	Da	te Received:
Extraction: (SepF/Co	nt/Sonc)	Da	te Extracted:
Concentrated Extract	Volume: <u>1000</u> (uL	.) Da	te Analyzed: <u>7/20/2009</u>
Injection Volume:	<u>1</u> (uL)	Dil	lution Factor: <u>1</u>
GPC Cleanup: (Y/N)	N pH:	Su	lfur Cleanup: (Y/N) N
		CONCENTRAT	ION UNITS
CAS NO.	COMPOUND	(UG/L or UG/K	G) <u>ug/l Q</u>
PHCG	GRO		10 <mark>U</mark>

.

.

.

Sample Data

AND28 8899

Analysis LOQ/MDL Report

Analysis: 01588 Name: BTEX

Description: Default Values

Compound	<u>Units</u>	LOQ	<u>MDL</u>
Ethylbenzene	ug/l	2	0.5
TOLUENE	ug/l	2	0.5
TOTAL XYLENES	ug/l	5	1.5
BENZENE	ug/l	2	0.5

AKD28 8188

Analysis LOQ/MDL Report

Name: TPH-GRO AK water C6-C10

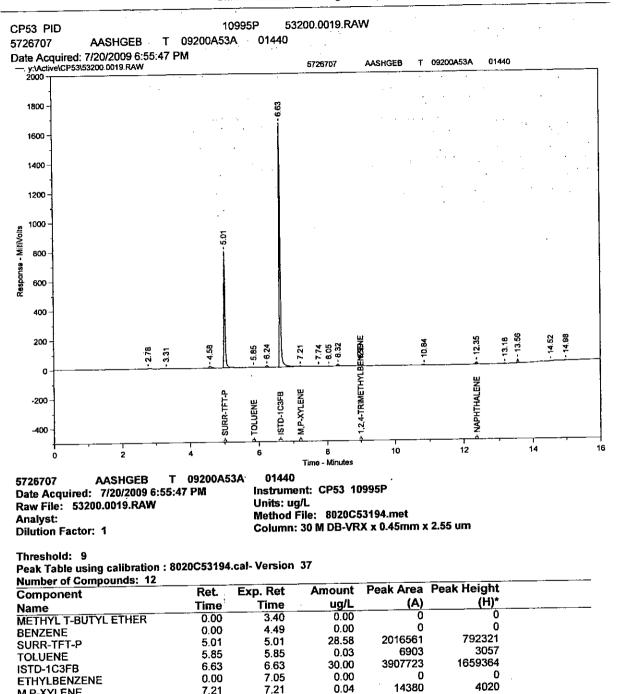
Description: Default Values

Analysis: 01440

.

Compound	<u>Units</u>	LOQ	<u>MDL</u>
GRO	ug/l	100	10

AXD28 8181


Lancaster Laboratories-Single Component Data Summary

Sample Name: 572670 Sample Amount: 1 Analyses: 01440 01588	07 Total Volu	SHGEB me: 1 ml	Sample ID: AA Analyst: 1991	Batchnumber: 09 SDG: AKD28	200A53A State: AK	
Analyses. 01440 01500		· · ·				
Instrument : CP53- Result file : 53200.0 Calibration file : 8020C	, 2009 18:55:47 10995P 0019.RAW 53194.cal 53194.met Conc.: 28.576273					
SURR-TFT-P 4.98 TOLUENE 5.81 ISTD-1C3FB 6.57 M,P-XYLENE 7.17 1,2,4-TRIMETHYLBEN 8.96	R.T.MaxHeight5.015.057923215.855.8830576.636.6716593647.217.2440208.999.03358712.3512.3915572	Amount 28.576273 30.000000 0.044450 0.050569 0.245252				
Summary Report Compound Name	<u>Detector</u>	Amount Found	LOQ	MDL Qualifiers Comr	nents	
METHYL T-BUTYL ETHER	<u> </u>			<0.5		
BENZENE	<u> </u>					_
SURR-TFT-P	<u> </u>	28.576273		<0.5		
TOLUENE	<u> </u>	0.031760				
ISTD-1C3FB	<u> </u>	30.00000	<u></u> <2	<0.5		_ _
ETHYLBENZENE	<u> </u>	0.044450				
M,P-XYLENE			<u> </u>			
O-XYLENE ISOPROPYLBENZENE	P				/	
1,3,5-TRIMETHYLBENZE	<u> </u>					
1,2,4-TRIMETHYLBENZE	 	0.05056	9			
NAPHTHALENE	_ <u>P</u>	0.245252				
TOTAL XYLENES		0.04445	<u> </u>	<1.5		_
Units: ug/l mg/l Reviewed by: Verified by:	cente	<u>491</u> <u>~</u>	Date: 7	21/09		

%Difference = High - Low Amount divided by the Average times 100 ** %Difference > 40 AKD28 6182

* Recovery outside QC Limits Printed on: 7/20/2009 19:14:02

Chrom Perfect Chromatogram Report

0.00

0.00

0.00

0.05

0.25

INTERING DENTENE

7.21

0.00

0.00

0.00

8.99

12.35

7.53

7.85

8.58

8.99

12.35

Total Xylenes: 0.04 ug/L

ISOPROPYLBENZENE

M.P-XYLENE

O-XYLENE

Surrogate Percent Recovery: 95.25

0

0

0

3587

15572

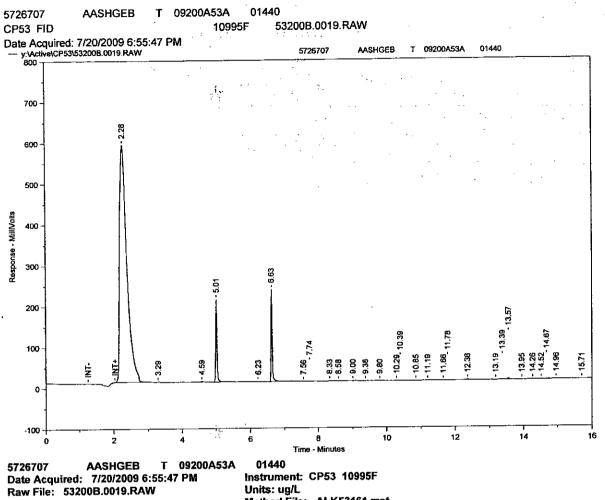
0

O.

0

13462

47699


Lancaster Laboratories-Range Data Summary

·. ·

Sample Name: (Sample Amount:	5726707 1.	SHGEB Total Volume:	1. ml	Sample ID: AA Analyst: 1991		
Analyses: 01440	01588					
Injection Summa Injected on Instrument Result file Calibration files Method files Setting	ry : 7/20/2009 18:55 : CP5310995F : 53200B.0019.R/ : ALK53161.cal : ALK53161.met : ALK53161				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Surrogate Recover SURR-1C3FB SURR-TFT-F Range SURR-TFT-F SURR-1C3FB GRO	<u>eries</u> 83.5%	Conc.: 25.059454 <u>Retention Times</u> 5.01 (4.99 - 5.06 6.63 (6.60 - 6.67 3.57 - 8.59)	<u>Area</u> 524176 523658 1076367	Amount LOQ 25.0595 23.6520 1.6219 <100	<u>MDL Flags Units</u> <u>ppb</u> ppb ppb

		.:	
Comments:			
			AKD28 \$184
Reviewed by:	(UM1991	Date:724.09	
Verified by:	htin	Date: <u> </u>	
			Page 1 of 1

Chrom Perfect Chromatogram Report

Analyst: **Dilution Factor: 1**

Peak Table using calibration : ALK53161.cal- Version 13

Method File: ALK53161.met Column: 30 M DB-VRX x 0.45mm x 2.55 um

Threshold: 3

Component	Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name	Time	Time	ug/L	(A)*	(H)
	2.28	0.00	0.00	8442923	580702.5
	3.29	0.00	0.00	9495	1042.537
	4.59	0.00	0.00	8439	1843.942
SURR-TFT-F	5.01	5.02	25.06	524176	202342.9
	6.23	0.00	0.00	4426	1092.719
SURR-1C3FB	6.63	6.63	23.65	523658	226010.1
	7.56	0.00	0.00	1366	496.5773
	7.74	0.00	0.00	2930	596.1922
	8.33	0.00	0.00	10203	1375.775
	8.58	0.00	0.00	1169	420.1581
	9.00	0.00	0.00	2415	657.8298
	9.38	0.00	0.00	1306	307.8087
	9.80	0.00	0.00	5332	381.8256
	10.29	0.00	0.00	4723	585.925
	10.39	0.00	0.00	6769	727.0059
	10.85	0.00	0.00	4674	765.2714
	11.19	0.00	0.00	3257	441.4477
	11.66	0.00	0.00	2516	420.2753

AXD28 9185

Chrom Perfect Chromatogram Report

Component		Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Component Name		Time	Time	ug/L	(A)*	<u>(H)</u>
Haine		11.78	0.00	0.00	2160	522.6305
		12.36	0.00	0.00	9963	2058.397
		13.19	0.00	0.00	3760	511.4291
		13.39	0.00	0.00	2600	475.6718
		13.57	0.00	0.00	8928	3523.67
	· · ·	13.95	0.00	0.00	3076	505.245
	· · · · ·	14.26	0.00	0.00	4780	673.2264
· · · · ·		14.52	0.00	0.00	2943	628.4683
		14.67	0.00	0.00	4293	579.2054
		14.96	0.00	0.00	5014	654.9664
		15.71	0.00	0.00	4606	357.5388
		16.27	0.00	0.00	1991	353.7297
		17.68	0.00	0.00	4786	486.4129
RT Start	RT Stop	Unadi GRO	Total Surr.	Adj. GRO		

RT Start	RIStop	Unadj GRU		
3.57	8.59	1076367	1047834	28533

Ъ.

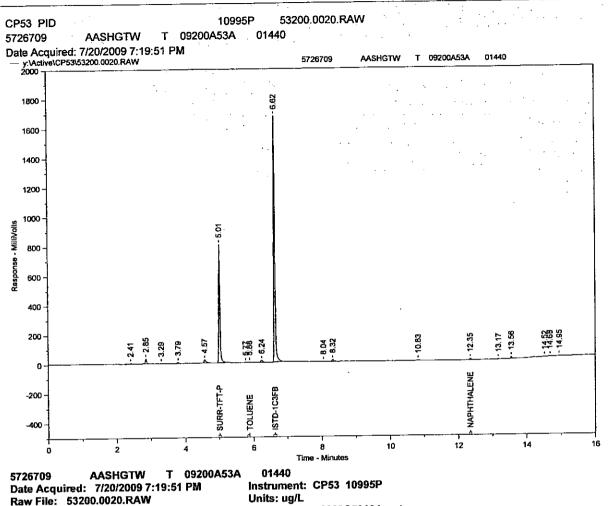
Surrogate Percent Recovery: 83.53151

Total GRO Area: 28532.94 Total GRO Concentration: 1.62 ug/L

File: y:\Active\CP53\53200B.0019.RAW

Lancaster Laboratories-Single Component Data Summary

Sample Name: Sample Amount: 1		709		Total Volu		GTW ml	Sample ID: A Analyst: 199		chnumb)G: AKD2		A53A State: AK	
Analyses: 01440 (01588											
Analysis Report (/ Injected on Instrument Result file Calibration file Method file %SSR(SURR-TFT-P	: JUL 20 : CP53- : 53200 : 8020C : 8020C	-10995 .0020.1 :53194 :53194	iP RAW .cal .met	28.681284	· · · ·						· · · · · · · · · · · · · · · · · · ·	
Peak name SURR-TFT-P TOLUENE ISTD-1C3FB NAPHTHALENE	<u>Min</u> 4.98 5.81 6.57	<u>R.T.</u> 5.01 5.88 6.62 12.35	<u>Max</u> 5.05 5.88 6.67 12.39	<u>Height</u> 804990 3394 1679723 8540	Amount 28.681284 0.034833 30.000000 0.132870							·
Summary Report										0		
Compound Name				Detector	<u>Amour</u>	nt Found	LOQ	<u>MDL</u>	Qualifiers	Comments		
METHYL T-BUTYL E BENZENE SURR-TFT-P TOLUENE ISTD-1C3FB ETHYLBENZENE M,P-XYLENE ISOPROPYLBENZE	NE			P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P -		3.681284 3.034833 3.000000	32	<0.5 <0.5 <0.5			· · · · · · · · · · · · · · · · · · ·	
1,3,5-TRIMETHYLBE 1,2,4-TRIMETHYLBE				<u> </u>	· · · · · · · · · · · ·							
NAPHTHALENE TOTAL XYLENES				<u> </u>	().13287(<5	<1.5				
Units: ug/l n	ng/l		_									
Reviewed by: Verified by:	. <u> </u>		_C	bur	agt		Date:	21/0	<u>।</u> 107			


%Difference = High - Low Amount divided by the Average times 100 ** %Difference > 40 * Recovery outside QC Limits

Printed on: 7/20/2009 19:38:05

AKD28 8187

Chrom Perfect Chromatogram Report

Method File: 8020C53194.met

Column: 30 M DB-VRX x 0.45mm x 2.55 um

Threshold: 9

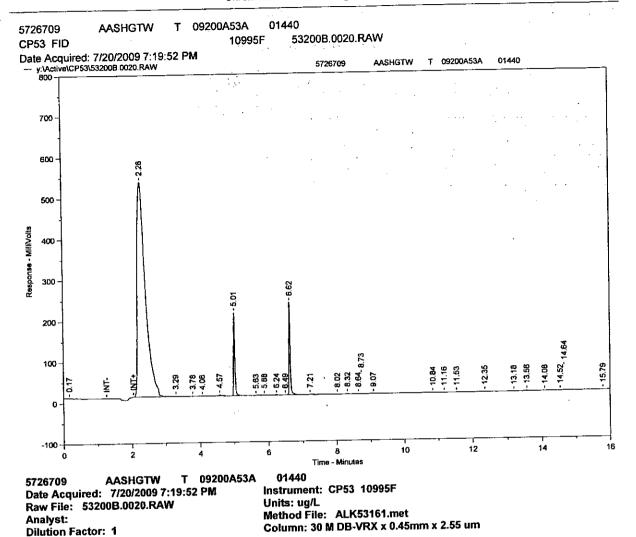
Dilution Factor: 1

Analyst:

Peak Table using calibration : 8020C53194.cal- Version 37 Number of Compounds: 12

1.51					
Ret	Exp. Ret	Amount			
Time	Time	ug/L	(A)	<u>(H)*</u>	
0.00	3.40	0.00	0	0	
0.00	4.49	0.00	0	0	
5.01	5.01	28.68			
5.88	5.85	0.03	12034	+	
6.62	6.63	30.00	3890027	1679723	
0.00	7.05	0.00	0	0	
0.00	7.21	0.00	0	0	
0.00	7.53	0.00	0	0	
0.00	7.85	0.00	0	0	
	8.58	0.00	0	0	
	8.99	0.00	0	0	
12.35	12.35	0.13	28802	8540	1
	Ret. Time 0.00 5.01 5.88 6.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Ret. Exp. Ret Time Time 0.00 3.40 0.00 4.49 5.01 5.01 5.88 5.85 6.62 6.63 0.00 7.05 0.00 7.21 0.00 7.85 0.00 8.58 0.00 8.58	Ret. Exp. Ret Amount Time Time ug/L 0.00 3.40 0.00 0.00 4.49 0.00 5.01 5.01 28.68 5.88 5.85 0.03 6.62 6.63 30.00 0.00 7.05 0.00 0.00 7.21 0.00 0.00 7.53 0.00 0.00 7.85 0.00 0.00 8.58 0.00	Ret. Exp. Ret Amount Peak Area Time Time ug/L (A) 0.00 3.40 0.00 0 0.00 4.49 0.00 0 5.01 5.01 28.68 2072478 5.88 5.85 0.03 12034 6.62 6.63 30.00 3890027 0.00 7.05 0.00 0 0.00 7.21 0.00 0 0.00 7.85 0.00 0 0.00 8.58 0.00 0 0.00 8.58 0.00 0 0.00 8.99 0.00 0	Ret. Exp. Ret Amount Peak Area Peak Height Time Time ug/L (A) (H)* 0.00 3.40 0.00 0 0 0.00 4.49 0.00 0 0 5.01 5.01 28.68 2072478 804990 5.88 5.85 0.03 12034 3394 6.62 6.63 30.00 3890027 1679723 0.00 7.05 0.00 0 0 0.00 7.21 0.00 0 0 0.00 7.85 0.00 0 0 0.00 8.58 0.00 0 0 0.00 8.58 0.00 0 0

Total Xylenes: 0.00 ug/L


Surrogate Percent Recovery: 95.60

Lancaster Laboratories-Range Data Summary

Sample Name: 572 Sample Amount:	26709 1.	SHGTW Total Volume:	1. mi	Sample ID: A Analyst: 199	• • • • • •	umber: 0 AKD28	9200A53A State: Ak	
Analyses: 01440	01588		• •	1.			-	
Injection Summary	7/20/2009 19:19:	52					-	
Instrument :	CP5310995F			• •	· ·		•	••• ••• •
Calibration files :	53200B.0020.RA ALK53161.cal ALK53161.met	\VV			. · .		- • • • •	• • • • •
1000.000	ALK53161	÷						
Surrogate Recoverie SURR-1C3FB SURR-TFT-F	<u>es</u> 83.9%	Conc.: 25.161129						
<u>Range</u> SURR-TFT-F		<u>Retention Times</u> 5.01 (4.99 - 5.06)		<u>Area</u> 526303	<u>Amount</u> 25.1611		<u>MDL</u>	Flags Units
SURR-1C3FB GRO		6.62 (6.60 - 6.67) 3.57 - 8.59		544978 1126268	24.6150 3.1256	<100	<10	ррb ррb

2 de 19

Comments:			
			AKD28 8169
Reviewed by: Verified by:	empagi	Date: 72109	
Verified by:	htm-	Date:7/2.1/0]	Page 1 of 1

Chrom Perfect Chromatogram Report

Threshold: 3

Number of Compounds: 3 Component	Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
-	Time	Time	ug/L	(A)*	(H)
Name	0.17	0.00	0.00	4024	520.6149
	2.28	0.00	0.00	8721278	525592.2
	3.29	0.00	0.00	10200	1277.515
	3.78	0.00	0.00	2211	853.5142
	4.06	0.00	0.00	923	270.4292
	4.57	0.00	0.00	14026	2899.244
SURR-TFT-F	5.01	5.02	25.16	526303	202916.1
SUKK-IFI-F	5.63	0.00	0.00	3245	438.6339
	5.88	0.00	[`] 0.00	2047	523.4527
	6.24	0.00	0.00	6419	1347.702
	6.49	0.00	0.00	1076	378.109
SURR-1C3FB	6.62	6.63	24.61	544978	227831
30KK-105FD	7.21	0.00	0.00	14869	854.431
	8.02	0.00	0.00	3405	621.1561
	8.32	0.00	0.00	6767	1222.649
	8.64	0.00	0.00	5539	522.2833
	8.73	0.00	0.00	2688	546.4001
	9.07	0.00	0.00	4462	653.5277

Peak Table using calibration : ALK53161.cal- Version 13 Number of Compounds: 3

AKD28 8115

Component		Ret	Exp. Ret	Amount	Peak Area'e	ak Height
Name		Time	Time	ug/L	(A)*	(H)
		10.84	0.00	0.00	2122	526.5379
	· .	11.16	0.00	0.00	4681	570.5073
		11.53	0.00	0.00	956	368.5507
		12.35	0.00	0.00	4807	1307.829
		13.18	0.00	0.00	2885	428.4627
		13.56	0.00	0.00	5219	1546.239
		14.08	0.00	0.00	2672	328.5517
		14.52	0.00	0.00	1381	466.1165
		14.64	0.00	0.00	4787	804.5372
		15.79	0.00	0.00	1005	419.3286
		16.19	0.00	0.00	1620	386,9907
		16.31	0.00	0.00	2719	505.3801
		16.50	0.00	0.00	5076	539.7424
		17.53	0.00	0.00	1677	308.3939
RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO		
3.57	8.59	1126268	1071281	54988		

÷

Chrom Perfect Chromatogram Report

Surrogate Percent Recovery: 83.87043

Total GRO Area: 54987.50 Total GRO Concentration: 3.13 ug/L

File: y:\Active\CP53\53200B.0020.RAW

Standards Data

AND28 8112

6D

INITIAL CALIBRATION - RETENTION TIME SUMMARY

Lab Name: Lancaster Laboratories

Contract:

SAS No.:

SE

SDG No.:

Calibration File: 8020C53194 Update File:

Instrument: <u>10995P</u>

Lab Code:

GC Column (1) : <u>J&W DB-VRX</u> ID: <u>75 (mm)</u>

Case No.:

Date(s) Analyzed: 7/14/2009 7/14/2009

		RT OF STANDARDS									RT WINDOW	
COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	LEVEL 6	LEVEL 7	LEVEL 8	RT	FROM	то	
МТВЕ	3.3	3.40	3.40	3.40	3.40	3.40	3.40	3.41	3.40	3.37	3.44	
BENZENE	4.4	4.49	4.49	4.49	4.49	4.49	4.49	4.50	4.49	4.45	4.52	
Trifluorotoluene-P	5.0	1 5.01	5.00	5.01	5.01				5.01	4.97	5.04	
TOLUENE	5.8	4 5.85	5.84	5.85	5.85	5.85	5.85	5.85	5.84	5.81	5.88	
1-Chloro-3-fluorobenzene	6.62	تقدحا	662	6.50	6.63	6.62	6.42	6.63	6.62	6.57	6.67	
Ethylbenzene	7.0	5 7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.01	7.08	
M/P-XYLENES	7.2	1 7.21	7.20	7.21	7.21	7.21	7.21	7.21	7.21	7.17	7.24	
o-xylene	7.5	3 7.53	7.52	7.53	7.53	7.53	7.53	7.53	7.53	7.49	7.56	
Cumene	7.8	5 7.85	7.85	7.85	7.85	7.85	7.85	7.86	7.85	7.82	7.89	
1.3.5-TRIMETHYLBENZENE	8.5	8 8.58	8.57	8.58	8.58	8.58	8.58	8.58	8.58	8.54	8.61	
1.2.4-TRIMETHYLBENZENE	8.9	9 8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.95	9.02	
Naphthalene	12.3	6 12.36	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.32	12.39	

6E INITIAL CALIBRATION - CALIBRATION FACTOR SUMMARY

Lab Name: Lancaster Laboratories	Contract:
Lab Code: Case No.:	SAS No.: SDG No.:
Instrument: <u>10995P</u>	Calibration File: 8020C53194
GC Column (1): <u>J&W DB-VRX</u> ID: <u>75 (r</u>	nm) Date(s) Analyzed: 7/14/2009 7/14/2009
· · · · · · · · · · · · · · · · · · ·	CALIBRATION FACTORS

	1	CALIBRATION FACTORS										
COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	LEVEL 6	LEVEL 7	LEVEL 8	MEAN	%RSD		
МТВЕ		6.88E-01	7.23E-01	7.06E-01	6.92E-01	6.54E-01	6.53E-01	5.87E-01	6.73E-01	6.3		
BENZENE	1.65E+00	1.72E+00	1.84E+00	1.75E+00	1.79E+00	1.73E+00	1.72E+00	1.65E+00	1.73E+00	3.6		
Trifluorotoluene-P	4.07E-01	4.72E-01	5.27E-01	5.39E-01	5.62E-01				5.01E-01	12.5		
TOLUENE	1	1.69E+00	1.85E+00	1.80E+00	1.81E+00	1.72E+00	1.69E+00	1.60E+00	1.74E+00	4.7		
1-Chloro-3-fluorobenzene	5.75E+04	5.86E+04	5.77E+04	5.90E+04	5.95E+04	6.08E+04	5.76E+04	5.71E+04	5.84E+04	2.4		
Ethylbenzene	1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	1.51E+00	1.66E+00	1.63E+00	1.62E+00	1.54E+00	1.49E+00	1.39E+00	1.55E+00	5.6		
M/P-XYLENES	an da mana mana karatar sa s '	1.64E+00	1.79E+00	1.76E+00	1.73E+00	1.62E+00	1.50E+00	1.38E+00	1.63E+00	8.7		
o-xylene		1.47E+00	1.59E+00	1.56E+00	1.56E+00	1.48E+00	1.45E+00	1.38E+00	1.50E+00	4.7		
Cumene		1.03E+00	1.18E+00	1.17E+00	1.17E+00	1.11E+00	1.09E+00	1.03E+00	1.11E+00	5.7		
1,3,5-TRIMETHYLBENZENE	· · · · · · · · · · · · · · · · · · ·	1.63E+00	1.82E+00	1.80E+00	1.78E+00	1.69E+00	1.65E+00	1.57E+00	1.70E+00	5.4		
1,2,4-TRIMETHYLBENZENE	ua: ()	1.21E+00	1.34E+00	1.34E+00	1.33E+00	1.27E+00	1.26E+00	1.21E+00	1.28E+00	4.2		
Naphthalene	6 6 9	, ayan a sana ana ang sana	1.11E+00	1.12E+00	1.17E+00	1.14E+00	1.18E+00	1.15E+00	1.15E+00	2.3		
the second second second second		·			·			Averane	% RSD	5 5083		

• •

Average % RSD: 5.5083

T

Т

6D INITIAL CALIBRATION - RETENTION TIME SUMMARY

Lab Name: Lancas	ter Laborato	ries		Contra	ct:					
Lab Code:		ase No.:		:	SAS No.:		S	DG No.:		
Instrument 1099	5F				Calib	ration File	: <u>ALK5</u>	<u>3161</u>		
GC Column (1): J		(ID: 7	5 (mm)		Upda	te File:				
00 00iuiiii (iyi <u>0</u>		· · · ·			Date(s) Analyzo	ed: <u>6/10</u>	<u>/2009</u> 6	<u>/12/2009</u>	
	<u> </u>		RTC	F STANDA	RDS			MIDPOINT	RT WIN	NDOM
COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	LEVEL 6	LEVEL 7	RT	FROM	то
1-Chloro-3-fluorobenzene	6.62	6.63	6.62	6.62	6.63	6.63	6.63	6.63	6.60	6.0
Trifluorotoluene-F	5.01	5.01	5.01	5.01	5.01	5.04	5.05	5.02	4.99	5.

6.67 5.06

Trifluorotoluene-F

6E
INITIAL CALIBRATION - CALIBRATION FACTOR SUMMARY

Lab Name: Lancaster Laboratories

Case No.: Lab Code:

Contract:

SDG No.:

Instrument: <u>10995F</u>

SAS No.:

Calibration File: ALK53161

GC Column (1): <u>J&W DB-VRX</u> ID: <u>75 (mm)</u>

Date(s) Analyzed: 6/10/2009

6/12/2009

		CALIBRATION FACTORS									
COMPOUND	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5	LEVEL 6	LEVEL 7	MEAN	%RSD		
1-Chloro-3-fluorobenzene	1.92E+04	1.93E+04	1.96E+04	2.12E+04	2.18E+04	2.66E+04	2.74E+04	2.21E+04	15.7		
Trifluorotoluene-F	2.07E+04	1.84E+04	2.12E+04	2.21E+04	2.22E+04			2.09E+04	7.3		
· · · · · · · · · · · · · · · · · · ·								AL 000	44 5		

Average % RSD: 11.5

m15728 6/18/09

,

AED28 8116

INITIAL CALIBRATION	OF MULTICOMPONENT ANALYTES

6F

Lab Name: Lancaster Laboratories

Lab Code: Case No.: Contract:

SDG No.:

Instrument: 10995F

SAS No.:

Calibration File: ALK53161

GC Column (1): J&W DB-VRX ID: <u>75 (mm)</u> Date(s) Analyzed: 6/10/2009 6/12/2009

			RT WIN	DOW	CALIBRATION		AMOUNT	PEAK	
COMPOUND	PEAK	RT	FROM	то	FACTOR	LEVEL	(ng)	AREA	%RSD
GRO	1		3.56	8.59	17593	1	21.5	391372	3.4
						2	53.6	939338	
						3	107.3	1923552	
						4	536.4	9113836	
						5	1072.8	18342580	
						6	2682	45574900	
						7	5364	98758624	

MISNENdoa

Lab Name: Lancaster Laboratories Lab Code: Case No.: Instrument: 10995P Detector: PID GC Column (1) : J&W DB-VRX ID: 75 (mm) Lab File ID: 53194.0038.RAW Lab Standard ID: PICVXAP

Contract:

SDG No.:

Init. Calib Date(s): 07/15/09 07/15/09 Date Analyzed: 07/15/09 Time Analyzed: 22:44 Initial Calibration: 8020C53194

Method: 8021B

SAS No .:

		RT WINE	w	CALC	NOM		,
COMPOUND	RT	FROM	то	AMOUNT	AMOUNT	%D	Limits
MTBE	3.41	3.37	3.44	21.52	20.00	7.6	-15 to +15
BENZENE	4.50	4.45	4.52	23.18	20.00	15.9*	-15 to +15
TOLUENE	5.85	5.81	5.88	22.89	20.00	14.4	-15 to +15
Ethylbenzene	7.06	7.01	7.08	22.86	20.00	14.3	-15 to +15
M/P-XYLENES	7.21	7.17	7.24	46.88	40.00	17.2*	-15 to +15
o-xylene	7.54	7.49	7.56	22.50	20.00	12.5	-15 to +15
Cumene	7.86	7.82	7.89	23.00	20.00	15.0	-15 to +15
1,3,5-TRIMETHYLBENZENE	8.59	8.54	8.61	22.76	20.00	13.8	-15 to +15
1,2,4-TRIMETHYLBENZENE	9.00	8.95	9.02	22.55	20.00	12.7	-15 to +15
Naphthalene	12.36	12.32	12.39	20.87	20.00	4.4	-15 to +15

Average of %D: 12.8

7E

CALIBRATION VERIFICATION SUMMARY

Lab Name: Lancaster Laboratories Lab Code: Case No.: Instrument: 10995F Detector: FID GC Column (1): J&W DB-VRX ID: 75 (mm) Lab File ID: 53165B.0012.RAW Lab Standard ID: LCSY9

Contract:

SAS No.:SDG No.:Init. Calib Date(s): 06/16/0906/16/09Date Analyzed:06/16/09Time Analyzed:0:50Initial Calibration:ALK53161Method:8015B

COMPOUND	RT	RT WIND FROM	TO		NOM AMOUNT	%D	Limits
GRO		3.56	8.59	1103.92	1100.00	0.4	-15 to +15
				A	verage of %D): .	.4

AED28 SIL9

Lab Name: Lancaster Laboratories Case No.: Lab Code: Detector: PID Instrument: 10995P GC Column (1) : J&W DB-VRX ID: 75 (mm) Lab File ID: 53200.0002.RAW Lab Standard ID: WCCPXCC

Contract:

SDG No.:

SAS No.: 07/14/09 Init. Calib Date(s): 07/13/09 Date Analyzed: 07/20/09 Time Analyzed: 1:03 Initial Calibration: 8020C53194 Method: 8021B

		RT WINDOW		CALC	NOM		
COMPOUND	RT	FROM	то	AMOUNT	AMOUNT	%D	Limits
	3.40	3.37	3.44	20.33	20.00	1.7	-15 to +15
MTBE	4.49	4.46	4.53	19.28	20.00	-3.6	-15 to +15
BENZENE	5.01	4.98	5.05	28.96	30.00	-3.5	-31 to +29
Trifluorotoluene-P	5.84	5.81	5.88	19.45	20.00	-2.7	-15 to +15
Ethylbenzene	7.04	7.01	7.08	19.43	20.00	-2.8	-15 to +15
M/P-XYLENES	7.20	7.17	7.24	40.18	40.00	0.4	-15 to +15
o-xylene	7.52	7.50	7.57	19.73	20.00	-1.4	-15 to +15
Cumene	7.85	7.82	7.89	19.22	20.00	-3.9	-15 to +15
1,3,5-TRIMETHYLBENZENE	8.57	8.55	8.62	19.51	20.00	-2.5	-15 to +15
1,2,4-TRIMETHYLBENZENE	8.98	8.96	9.03	19.83	20.00	-0.9	-15 to +15
Naphthalene	12.35	12.32	12.39		20.00	12.4	-15 to +15
				· A1	verage of %D	: 3.	3

· · · · . :

Lab Name: Lancaster Laboratorie	es	Contract:	·
	se No.:	SAS No.:	SDG No.:
Instrument: 10995F		Init. Calib Date(s):06/10	
GC Column (1) : J&W DB-VRX	ID: 75 (mm)	Date Analyzed:	07/20/09
Lab File ID: 53200B.0003.RAW		Time Analyzed:	1:27
Lab Standard ID: WGCCXMK		Initial Calibratio	n:ALK53161

COMPOUND	RT	RT WINE FROM	TO TO	CALC AMOUNT (ng/ml)	NOM AMOUNT (ng/ml)	%D
GRO		3.57	8.59	544.28	536.4	
Trifluorotoluene-F	5.01	4.99	5.06	26.07	30.00	-13.1
1-Chloro-3-fluorobenzene	6.62	6,60	6.67	25.24	30.00	-15.9
I-Chioro-J-haorobenzene			F.	/	Average of %D:	10.2

ARD28 8121

.

Lab Name: Lancaster Laboratories Lab Code: Case No.: Instrument: 10995P Detector: PID GC Column (1) : J&W DB-VRX ID: 75 (mm) Lab File ID: 53200.0017.RAW Lab Standard ID: WCCPXCM Contract:

SAS No.:

SDG No.:

Init. Calib Date(s): 07/20/0907/20/09Date Analyzed:07/20/09Time Analyzed:18:07Initial Calibration:8020C53194Method:8021B

			wo	CALC	NOM	~ -	Limits
COMPOUND	RT	FROM	то:	AMOUNT	AMOUNT	%D	Lanus
		0.07	3.44	20.97	20.00	4.9	-15 to +15
МТВЕ	3.40	3.37		21.32	20.00	6.6	-15 to +15
BENZENE	4.49	4.46	4.53		30.00	-4.0	-31 to +29
Trifluorotoluene-P	5.01	4.98	5.05			6.4	-15 to +15
TOLUENE	5.84		5.88			7.1	-15 to +15
Ethylbenzene	7.05		7.08		20.00		-15 to +15
M/P-XYLENES	7.20	7.17	7.24		40.00		
	7.53	7.50	7.57	21.27	20.00		-15 to +15
o-xylene	7.85		7.89	21.54	20.00	7.7	-15 to +15
Cumene	8.58		8.62		20.00	7.3	-15 to +15
1,3,5-TRIMETHYLBENZENE			9.03			6.2	-15 to +15
1,2,4-TRIMETHYLBENZENE	8.99	<u>_</u>					-15 to +15
Naphthalene	12.35	12.32	12.39		vergge of %F		· · ·

i

Average of %D:

AND29 8122

FORM VII

٠

Lab Name: Lancaster Laboratories Lab Code: Case No.: Instrument: 10995F GC Column (1) : J&W DB-VRX ID: 75 (mm) Lab File ID: 53200B.0018.RAW Lab Standard ID: WGCCXNC Contract:

۰.

SAS No.:

SDG No.:

Init. Calib Date(s):07/20/09 07/20/09

Date Analyzed: 07/20/09

Time Analyzed: 18:31

Initial Calibration: ALK53161

COMPOUND	RT	RT WINE FROM	TO TO	CALC AMOUNT (ng/ml)	NOM AMOUNT (ng/ml)	%D
GRO		3.57	8.59	571.10	536.4	6.5
Trifluorotoluene-F	5.02	4.99	5.06	26.89	30.00	-10.4
1-Chloro-3-fluorobenzene	6.63	6.60	6.67	25.98	30.00	-13.4
			*		Average of %D.	10.1

Average of %D: 10.1

.

7E

.....

٦

•

Lab Name: Lancaster Laboratori	es	Contract	
	ase No.:	SAS No.:	SDG No.:
Instrument: 10995F	•••••	Init. Calib Date(s):07/2	
GC Column (1): J&W DB-VRX	ID: 75 (mm)	Date Analyzed	
Lab File ID: 53200B.0026.RAW		Time Analyze	d: 21:45
Lab Standard ID: WGCCXML		Initial Calibrat	ion: ALK53161
		CALC	NOM

COMPOUND	RT	RT WINI FROM	DOW TO	AMOUNT (ng/ml)	AMOUNT (ng/ml)	%D
GRO		3.57	8.59	510.16	536.4	-4.9
Trifluorotoluene-F	5.01		5.06	25.73	30.00	-14.2
1-Chloro-3-fluorobenzene	6.63		6.67	24.69	30.00	
T-Chloro-5-lideroberizene				A	verage of %D:	12.3

SKD28 8124

....

1. j. 1. j.

Sequence:53194Lab Name:Lancaster laboratoriesContract:Lab Code:Case No.:SAS No:SDG No.:GC Column:JW DB-VRXID: 75Instrument:10995P

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TFTP
AA	CBLK	07/13/2009	21:48:00	8020C53194	5.01
2 AA	CBLK	07/13/2009	22:12:06	8020C53194	
3 AA	CBLK	07/13/2009	22:36:20	8020C53194	
4 AA	CBLK	07/13/2009	23:00:33	8020C53194	5.01
5 W8021AA	W80210925N	07/13/2009	23:24:49	8020C53194	5.01
6 W8022AA	W80220925M	07/13/2009	23:48:56	8020C53194	5.01
7 W8023AA	W80230925M	07/14/2009	00:13:04	8020C53194	5.01
8 W8024AA	W80240925M	07/14/2009	00:37:12	8020C53194	5.01
9 W8025AA	W80250925M	07/14/2009	01:01:21	8020C53194	5.01
0 W8026AA	W80260925M	07/14/2009	01:25:27	8020C53194	5.01
1 W8027AA	W80270925M	07/14/2009	01:49:34	8020C53194	
2 AA	CBLK	07/14/2009	02:13:36	8020C53194	5.01
3 W8028AA	W80280925M	07/14/2009	02:37:46	8020C53194	
4 AA	CBLK	07/14/2009	03:01:52	8020C53194	
5 AA	CBLK	07/14/2009	03:26:03	8020C53194	5.01
6 AA	CBLK	07/14/2009	03:50:16	8020C53194	5.01
7 AA	CBLK	07/14/2009	13:13:42	8020C53194	5.01
8 PMDLXAJ	PMDLX0925F	07/14/2009	13:37:29	8020C53194	5.01
9 AA	CBLK	07/14/2009	18:06:24	8020C53194	5.01
0 AA	CBLK	07/14/2009	18:30:23	8020C53194	
1 AA	CBLK	07/14/2009	18:54:32	8020C53194	
2 AA	CBLK	07/14/2009	19:18:48	8020C53194	
3 AA	CBLK	07/14/2009	19:43:15	8020C53194	
4 W8021AA	W80210925O	07/14/2009	20:07:23	8020C53194	5.00
5 W8022AA	W80220925N	07/14/2009	20:31:30	8020C53194	5.01
6 W8023AA	W80230925N	07/14/2009	20:55:36	8020C53194	5.00
7 W8024AA	W80240925N	07/14/2009	21:19:43	8020C53194	5.01
8 W8025AA	W80250925N	07/14/2009	21:43:52	8020C53194	5.01
9 AA	CBLK	07/14/2009	22:44:45	8020C53194	5.01
0 AA	CBLK	07/14/2009	23:19:21	8020C53194	5.01
1 AA	CBLK	07/14/2009	23:43:17	8020C53194	5.01
2 AA	CBLK	07/15/2009	00:07:24	8020C53194	5.00
3 PMDLXAK	PMDLX0925F	07/15/2009	00:31:34	8020C53194	5.00

8020C53194

07/13/2009 - 07/14/2009

ICAL Dates

TFTP = Trifluorotoluene-P

ICAL RT QC Limits 5.01 (4.97 - 5.05 Minutes)

Sequence: 53194	Lab Name:	Contract:	
Lab Code:	Case No.:	SAS No:	SDG No.:
GC Column: <u>JW DB-VRX</u>		ID: <u>75</u>	
Instrument: 10995P			

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TFTP
)34	PICVXAN	PICVX0925G	07/15/2009	00:55:47	8020C53194	5.01
)35	AA	CBLK	07/15/2009	17:50:38	8020C53194	5.01
36	PICVXAO	PICVX0925H	07/15/2009	18:14:38	8020C53194	5.01
37	WCCPXAH	WCCPX0925EN	07/15/2009	21:31:32	8020C53194	5.01
38	PICVXAP	PICVX0925H	07/15/2009	22:44:26	8020C53194	5.02

8020C53194

ICAL Dates 07/13/2009 - 07/14/2009

TFTP = Trifluorotoluene-P

ICAL RT QC Limits 5.01 (4.97 - 5.05 Minutes)

ARD28 9126

FORM VIII PEST

Sequence: 53161B	Lab Name: Lancaster L	aboratories	Contract:
Lab Code:	Case No.:	SAS No:	SDG No.:
GC Column: <u>JW DB-VRX</u>		ID: <u>75</u>	

Instrument: 10995F

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TFTF
1 44		GRO RT MARKI	06/10/2009	20:41:40	TPH53161	5.03
2 WG	GROIAA	WGRO10925AH	06/10/2009	21:54:30	8015B53161	5.01
	GRO2AA	WGRO20925AE	06/10/2009	22:18:29	8015B53161	5.01
4 WC	GRO3AA	WGRO30925AF	06/10/2009	22:42:32	8015B53161	5.01
5 WO	GRO4AA	WGRO40925AD	06/10/2009	23:06:53	8015B53161	5.01
	GRO5AA	WGRO50925AE	06/10/2009	23:31:27	8015B53161	5.01
-	GRO6AA	WGRO60925AB	06/10/2009	23:56:27	8015B53161	5.04
	GRO7AA	WGR070925Y	06/11/2009	00:20:21	8015B53161	5.04

8015B53161 ALK53161 TPH53161 ICAL Dates 06/10/2009 - 06/11/2009 06/11/2009 - 06/11/2009 06/10/2009 - 06/12/2009

 $\label{eq:TFTF} \begin{array}{l} \mathsf{TFTF}=\mathsf{Trifluorotolucnc}\mathsf{F}\\ \mathsf{TFTF}=\mathsf{Trifluorotolucnc}\mathsf{F}\\ \mathsf{TFTF}=\mathsf{Trifluorotolucnc}\mathsf{F} \end{array}$

ICAL RT QC Limits 5.02 (4.99 - 5.05 Minutes) 5.01 (4.97 - 5.04 Minutes) 5.02 (4.99 - 5.05 Minutes)

Sequence: 53162B	Lab Name: Lancaster i	aboratories	Contract:
Lab Code:	Case No.:	SAS No:	SDG No.:
GC Column: JW DB-VRX		ID: <u>75</u>	

Instrument: 10995F

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Ánalyzed	Calibration File	TTTT
001	WGRO7AA	WGRO70925Z	06/12/2009	00:33:59	TPH53161	5.04

TPH53161

ICAL Dates 06/10/2009 - 06/12/2009

TFTF = Trifluorotoluene-F

ICAL RT QC Limits 5.02 (4.99 - 5.05 Minutes)

AND28 B128

FORM VIII PEST

Sequence:53165BLab Name: Lancaster laboratoriesLab Code:Case No.:SAS No:

Contract:

SDG No.:

ICAL RT QC Limits

GC Column: JW DB-VRX

ID: <u>75</u>

Instrument 10995F

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TFTF
)1	AA	GRO MARKER	06/14/2009	21:02:28	8015B53161	5.01
)2	WCCPXRJ	WCCPX0925DM	06/14/2009	21:26:27	8015B53161	5.01
)3	WGCCXUD	WGCCX0925GM	06/14/2009	21:50:30	8015B53161	5.01
,,,)4	WGCCXUK	WGCCX0925GM	06/14/2009	22:27:15	8015B53161	5.01
)5	CBLKYN	CBLK	06/15/2009	20:52:27	8015B53161	5.01
)6	WCCPXSD	WCCPX0925DN	06/15/2009	21:16:28	8015B53161	5.01
 07	WGCCXVA	WGCCX0925GO	06/15/2009	21:40:46	8015B53161	5.01
08	BLKQF	BLANKA	06/15/2009	23:14:20	8015B53161	5.01
09	AA	GRO DLS	06/15/2009	23:38:15	TPH53161	5.00
10	LCSY8	LCSA	06/16/2009	00:02:20	8015B53161	5.01
11	LCSDTM	LCSDA	06/16/2009	00:26:27	8015B53161	5.01
12	LCSY9		106/16/2009	00:50:40	8015B53161	5.01
13	LCSDTN	LCSDB	06/16/2009	01:15:08	8015B53161	5.01
14	N	5694799	06/16/2009	01:39:04	8015B53161	5.01
15	N	5694793	06/16/2009	02:03:15	8015B53161	5.00
16	N	5694794	06/16/2009	02:27:20	8015B53161	5.00
17	WCCPXSE	WCCPX0925DO	06/16/2009	02:51:28	8015B53161	5.00
18	WGCCXVB	WGCCX0925GC		03:15:42	8015B53161	5.01
19	N	5694795	06/16/2009	03:39:45	8015B53161	5.01
20	N	5694796	06/16/2009	04:04:14	8015B53161	5.01
21	N	5694797	06/16/2009	04:28:28	8015B53161	5.01
22	N	5694798	06/16/2009	04:52:38	8015B53161	5.01
22	37606	5696712	06/16/2009	05:16:39	8015B53161	5.01
124	B7608	5696713	06/16/2009	05:40:42	8015B53161	5.00
)25	37607	5696714	06/16/2009	06:04:50	8015B53161	5.01
)26	37609	5696715	06/16/2009	06:28:56	8015B53161	5.01

ICAL Dates

8015B53161 06/10/2009 - 06/12/2009 ALK53161 06/10/2009 - 06/12/2009 GX53161 06/10/2009 - 06/11/2009 TPH53161 06/10/2009 - 06/12/2009	TFTF = Trifluorotoluene-F	5.02	(4.99 - 5.05 Minutes)
	TFTF = Trifluorotoluene-F	5.02	(4.98 - 5.06 Minutes)
	TFTF = Trifluorotoluene-F	5.02	(4.99 - 5.05 Minutes)
	TFTF = Trifluorotoluene-F	5.02	(4.99 - 5.05 Minutes)

Lab Name: Lancaster laboratories

Contract:

Lab Code:

Case No.:

SAS No: ID: <u>75</u>

SDG No.:

GC Column: JW DB-VRX

Instrument: 10995F

Sequence: 53165B

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TFTF
37602	5696716	06/16/2009	06:52:58	8015B53161	5.00
28 WCCPXSF	WCCPX0925DO	06/16/2009	07:17:06	8015B53161	5.01
29 WGCCXVC	WGCCX0925GO	06/16/2009	07:41:12	8015B53161	5.01
30 37604	5696718	06/16/2009	08:29:17	8015B53161	5.01
31 37605	5696719	06/16/2009	08:53:15	8015B53161	5.00
32 HJ066	5696823	06/16/2009	09:38:57	8015B53161	5.01
33 HJ079	5696824	06/16/2009	10:02:56	8015B53161	5.00
34 HJ080	5696825	06/16/2009	10:27:03	8015B53161	5.01
35 FPB09	5696860	06/16/2009	10:51:08	8015B53161	5.00
36 FPB08	5696861	06/16/2009	11:15:14	8015B53161	5.00
37 HJ080MS	5696825	06/16/2009	11:39:24	8015B53161	5.01
38 WCCPXSG	WCCPX0925DO	06/16/2009	12:03:22	8015B53161	5.00
39 WGCCXVD	WGCCX0925GC	06/16/2009	12:27:24	8015B53161	5.01
40 37608MS	5696713	06/16/2009	12:51:28	8015B53161	5.00
41 WCCPXSH	WCCPX0925DO	06/16/2009	13:15:30	8015B53161	5.01
42 WGCCXVE	WGCCX0925GC	06/16/2009	13:39:29	8015B53161	5.01

ICAL Dates 8015B53161 06/10/2009 - 06/12/2009 ALK53161 06/10/2009 - 06/12/2009 GX53161 06/10/2009 - 06/11/2009 TPH53161 06/10/2009 - 06/12/2009	TFTF = Trifluorotoluene-F TFTF = Trifluorotoluene-F TFTF = Trifluorotoluene-F TFTF = Trifluorotoluene-F	ICAL F 5.02 5.02 5.02 5.02 5.02	RT QC Limits (4.99 - 5.05 Minutes) (4.98 - 5.06 Minutes) (4.99 - 5.05 Minutes) (4.99 - 5.05 Minutes)
---	--	--	--

8D ANALYTICAL SEQUENCE Lab Name: Lancaster laboratories

Contract:

Lab Code:

Sequence: 53200

Case No.:

SAS No: ID: <u>75</u> SDG No.:

GC Column: JW DB-VRX

Instrument: 10995P

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TFTP
001	AA	GRO MARKER	07/20/2009	00:39:37	8020C53194	5.02
002	WCCPXCC	WCCPX0925ER	07/20/2009	01:03:36	8020C53194	5.01
003	WGCCXMK /	WGCCX0925IB	07/20/2009	01:27:37	8020C53194	5.01
	BLKQH	BLANKA	07/20/2009	01:51:43	8020C53194	5.01
005	LCSXB	LCSA	07/20/2009	02:15:47	8020C53194	5.01
006	LCSDHL	LCSDA	07/20/2009	02:39:54	8020C53194	5.01
007	LCSXC	LCSB	07/20/2009	03:03:54	8020C53194	5.01
008	LCSDHM	LCSDB	07/20/2009	03:28:05	8020C53194	5.01
009	335TB	5725301	07/20/2009	03:52:14	8020C53194	5.01
010	TBOLD	5725653	07/20/2009	04:16:20	8020C53194	5.01
011	335P1	5725296	07/20/2009	04:40:26	8020C53194	5.01
012	335P2	5725297	07/20/2009	05:04:35	8020C53194	5.01
013	335P3	5725298	07/20/2009	05:28:36	8020C53194	5.01
014	33519	5725299	07/20/2009	05:52:37	8020C53194	5.01
015	33520	5725300	07/20/2009	06:16:43	8020C53194	5.01
016	AA	CBLK	07/20/2009	17:43:24	8020C53194	5.02
017	WCCPXCM	WCCPX0925ES	07/20/2009	18:07:21	8020C53194	5.01
018	WGCCXNC	WGCCX0925IC	07/20/2009	18:31:29	8020C53194	5.01
019	SHGEB	5726707	07/20/2009	18:55:47	8020C53194	5.01
020	SHGTW	5726709	07/20/2009	19:19:51	8020C53194	5.01
021	SHEB1	5726720	07/20/2009	19:44:08	8020C53194	5.00
022	SHTBW	5726722	07/20/2009	20:08:13	8020C53194	5.01
023	P2OLD	5725654-	07/20/2009	20:32:21	8020C53194	5.01
024	335P2MS	5725297	07/20/2009	20:56:41	8020C53194	5.01
025	33519MS	5725299	07/20/2009	21:20:53	8020C53194	5.01
026	WGCCXML	WGCCX0925IB	07/20/2009	21:45:00	8020C53194	5.01

8020C53194

ICAL Dates 07/13/2009 - 07/14/2009

TFTP = Trifluorotoluene-P

ICAL RT QC Limits 5.01 (4.98 - 5.05 Minutes)

8D ANALYTICAL SEQUENCE Lab Name: Lancaster laboratories

Contract:

Lab Code:

Case No.:

SAS No: ID: <u>75</u>

SDG No.:

GC Column: JW DB-VRX

Instrument: 10995F

Sequence: 53200B

THIS ANALYTICAL SEQUENCE OF BLANKS, SAMPLES AND STANDARDS IS GIVEN BELOW:

	Sample Code No.	Lab Sample ID	Date Analyzed	Time Analyzed	Calibration File	TFTF
001	AA	GRO MARKER	07/20/2009	00:39:37	ALK53161	5.02
002	WCCPXCC	WCCPX0925ER	07/20/2009	01:03:35	ALK53161	5.01
003	WGCCXMK	WGCCX09251B	07/20/2009	01:27:38	ALK53161	5.01
004	BLKQH	BLANKA	07/20/2009	01:51:43	ALK53161	5.01
005	LCSXB	LCSA	07/20/2009	02:15:48	· ALK53161	5.01
006	LCSDHL	LCSDA	07/20/2009	02:39:54	ALK53161	5.01
007	LCSXC	LCSB	07/20/2009	03:03:54	ALK53161	5.01
008	LCSDHM	LCSDB	07/20/2009	03:28:06	ALK53161	5.01
009	335TB	5725301	07/20/2009	03:52:15	ALK53161	5.01
010	TBOLD	5725653	07/20/2009	04:16:20	ALK53161	5.01
011	335P1	5725296	07/20/2009	04:40:26	ALK53161	5.02
012	335P2	5725297	07/20/2009	05:04:34	ALK53161	5.01
013	335P3	5725298	07/20/2009	05:28:36	ALK53161	5.01
014	33519	5725299	07/20/2009	05:52:37	ALK53161	5.01
015	33520	5725300	07/20/2009	06:16:44	ALK53161	5.01
016	AA	CBLK	07/20/2009	17:43:25	ALK53161	5.01
017	WCCPXCM	WCCPX0925ES	07/20/2009	18:07:20	ALK53161	5.01
018	WGCCXNC	WGCCX0925IC	07/20/2009	18:31:29 -	ALK53161	5.02
019	SHGEB	5726707	07/20/2009	18:55:47	ALK53161	5.01
020	SHGTW	5726709	07/20/2009	19:19:52	ALK53161	5.01
021	SHEB1	5726720	07/20/2009	19:44:07	ALK53161	5.01
022	SHTBW	5726722	07/20/2009	20:08:13	ALK53161	5.01
023	P2OLD	5725654	07/20/2009	20:32:21	ALK53161	5.01
024	335P2MS	5725297	07/20/2009	20:56:41	ALK53161	5.01
025	33519MS	5725299	07/20/2009	21:20:54	ALK53161	5.01
026	WGCCXML	WGCCX0925IB	07/20/2009	21:45:00	ALK53161	5.01

ALK53161

ICAL Dates 06/10/2009 - 06/12/2009

TFTF = Trifluorotoluene-F

ICAL RT QC Limits 5.02 (4.98 - 5.06 Minutes)

AXD28 8132

FORM VIII PEST

Raw QC Data

1

AXD28 8133

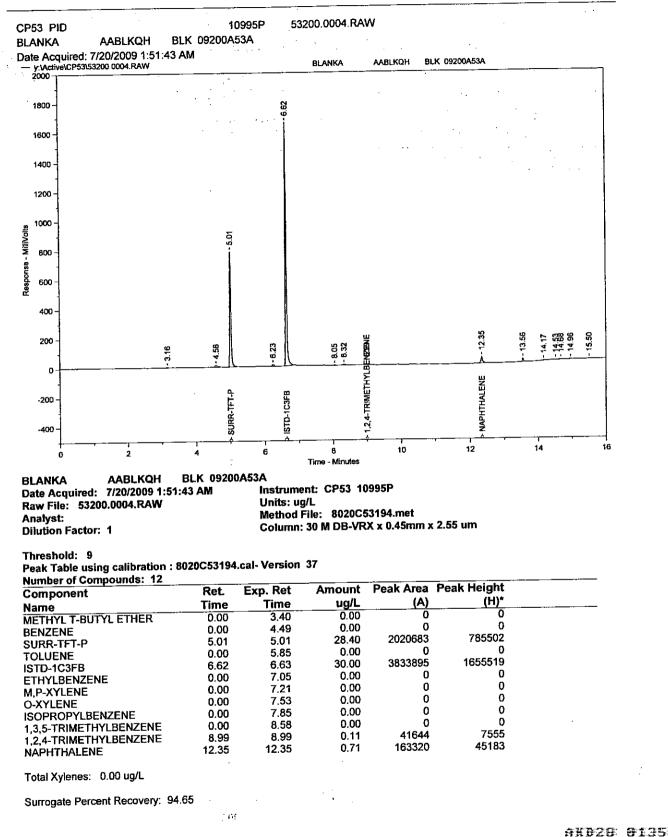
Lancaster Laboratories-Single Component Data Summary

Sample Name:BLANKABLKQHSample ID:AABatchnumber:09200A53ASample Amount: 1Total Volume: 1mlAnalyst:1991SDG:State:Analyses: 014400155101588016360172902102021590276304224058790646408207082130821408215Analyses: 082160821908227082670826808274083200832908805

Analysis Report (A)

Instrument Result file Calibration file	JUL 20 CP53 53200. 8020C 8020C	10995 0004.F 53194.	P AW cal	43	
%SSR(SURR-TFT-P	94.7%	C	onc.:	28.39613	
Peak name SURR-TFT-P ISTD-1C3FB 1,2,4-TRIMETHYLBE NAPHTHALENE	<u>Min</u> 4.98 6.57 № 8.96 12.32	<u>R.T.</u> 5.01 6.62 8.99 12.35	<u>Max</u> 5.05 6.67 9.03 12.39	<u>Height</u> 785502 1655519 7555 45183	<u>Amount</u> 28.396130 30.000000 0.106767 0.713264

NAPHTHALENE Summary Report


Compound Name	Detector	Amount Found	LOQ	<u>MDL</u>	<u>Qualifiers</u>	Comments
	<u> </u>		<u><1</u>	<0.15		
METHYL T-BUTYL ETHER	<u> </u>		<1	<0.3		
		··* .	<10	<2.5		
	P		<0.5	<u><0.15</u>	<u></u>	
BENZENE			<0.5	<0.2		
			<1	<0.2		
			<2	<0.5		
	P	28.396130				
SURR-TFT-P	 P		<1	<0.15		
TOLUENE	<u> </u>		<1	<0.2		
			<2	<0.5		
	Р					
ISTD-1C3FB	 P			<u><0.2</u>		·
ETHYLBENZENE			<2	<0.5		
	P			<0.4		
M,P-XYLENE	 P			<0.2		
O-XYLENE				<0.2		
ISOPROPYLBENZENE			<1	<0.2	<u> </u>	
1,3,5-TRIMETHYLBENZE	<u>P</u>	0.106767	<1	<0.2	<u>!</u>	
1,2,4-TRIMETHYLBENZE	_ <u>_</u>	0.713264	<5	<1		
NAPHTHALENE	_ <u>r</u>		<2	<0.4	<u> </u>	
M/P-XYLENES	<u>_</u> Р		<3	<0.4	L	
TOTAL XYLENES	<u>_</u>		<3	<0.6	5	
		:	<5	<1.5	5	

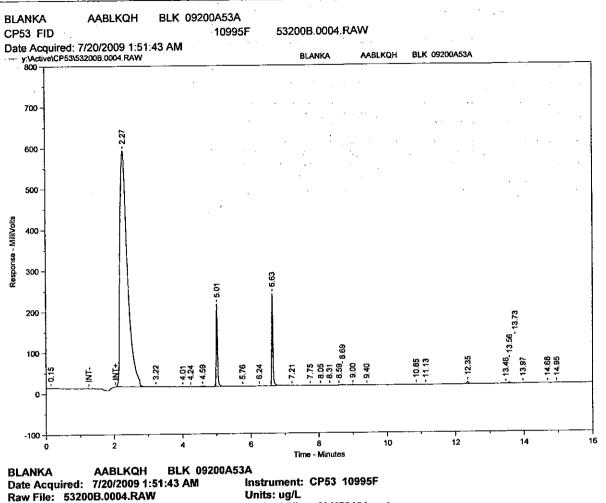
Units: Date: Reviewed by: Date: Verified by:

AXD28 6134

%Difference = High - Low Amount divided by the Average times 100 ** %Difference > 40 * Recovery outside QC Limits Printed on: 7/20/2009 02:10:04

Chrom Perfect Chromatogram Report

Printed on 7/20/2009 2:09:50 AM


Page 1 of 1

Lancaster Laboratories-Range Data Summary

Injection Summary Injected on 8274 : Instrument : Result file : Calibration files : Method files :	ANKA 1. 01551 01588 08207 08213 99999200998738 CP5310995F 53200B.0004.F ALK53161.cal ALK53161.met ALK53161	08214 1:498805 XAW		1. ml 02102 08216	Sample II Analyst: 02159 08219	1991 02763	Batchnu SDG: 04224 08267		9200A53A State:	
Surrogate Recoverie SURR-1C3FB SURR-TFT-F		Conc.:	25.826542 25.826542 25.826542							
Range SURR-TFT-F SURR-1C3FB GRO		5.01 (4. 6.63 (6.	<u>on Times</u> 99 - 5.06) 60 - 6.67) - 8.59	•.	<u>Area</u> 540221 525864 1102716		Amount 25.8265 23.7517 2.0821	LOQ 0.05 <50 <100 <100 <250	<u>MDL</u> Flac 0.02 <20 <10 <50 <50	<u>as Units</u> <u>ppb</u> <u>ppb</u> ppb

Comments:			
·			
			AKD28 8136
Reviewed by:	Cem 1991	Date: 72109	
Verified by:	htur	Date:7 2107	
7/20/09 2:10		•	Page 1 of 1

.

Chrom Perfect Chromatogram Report

Raw File: 53200B.0004.RAW Analyst: **Dilution Factor: 1**

Method File: ALK53161.met Column: 30 M DB-VRX x 0.45mm x 2.55 um

Threshold: 3

Component	Ret.	Exp. Ret	Amount	Peak Area'e	ak Height
Name	Time	Time	ug/L	(A)*	(H)
	0.15	0.00	0.00	3374	457.5961
	2.27	0.00	0.00	8722856	577259.9
	3.22	0.00	0.00	3417	1048.848
	4.01	0.00	0.00	3453	461.6824
	4.24	0.00	0.00	1261	325.3477
	4.59	0.00	0.00	13298	2063.217
SURR-TFT-F	5.01	5.02	25.83	540221	202850.6
oorar in the	5.76	0.00	0.00	4287	521.6151
	6.24	0.00	0.00	6421	1250.269
SURR-1C3FB	6.63	6.63	23.75	525864	227074.4
30111-1001 B	7.21	0.00	0.00	2644	590.0352
	7.75	0.00	0.00	1528	427,7959
	8.05	0.00	0.00	2528	494.8705
	8.31	0.00	0.00	1211	459.7743
	8.59	0.00	0.00	2648	566.0068
	8.69	0.00	0.00	8273	1850.037
	9.00	0.00	0.00	3690	1133.498
	9.40	0.00	0.00	994	371.7095

Peak Table using calibration : ALK53161.cal- Version 13

AED28 8137

Component		Ret.	Exp. Ret	Amount	Peak Area'eak Height			
Component Name		Time	Time	ug/L	(A)*	(H)		
	·····	10.85	0.00	0.00	1026	400.9891		
· ·	· · · · ·	11.13	0.00	0.00	1911	413.5003		
		12.35	0.00	0.00	21739	5615.906		
	1	13.46	0.00	0.00	1023	390.4643		
		13.56	0.00	0.00	9441	3206.603		
		13.73	0.00	0.00	1315	445.4898		
		13.97	0.00	0.00	1958	351.3217		
		14.68	0.00	0.00	4362	639.324		
		14.95	0.00	0.00	2390	508.1123		
RT Start	RT Stop	Unadj GRO	Total Surr.	Adj. GRO	· .			
3.57	8.59	1102716		36630				

Chrom Perfect Chromatogram Report

Surrogate Percent Recovery: 86.08847

Total GRO Area: 36630.38 Total GRO Concentration: 2.08 ug/L

File: y:\Active\CP53\53200B.0004.RAW

Preparation Logs

AK#28 8139

Batchlog Summary 09200A53A

...

ID	Sample Code	Amt	,		Amt (mL)	FV (mL)	sw	DF	PH	BC	Comments
AA	335P2MS	1.00	SS0917725A 0.000	2 MS0919625C					52	104B	<u> </u>
AA	33519MS	1.00	SS0917725A 0.000	2 MS0918725A	0.000220	1.00		1.00	52	104B	·
AA	BLKQH	1.00	SS0917725A 0.000	2		1.00		1.00			
AA	LCSXB	1.00	SS0917725A 0.000	2 MS0919625C	0.002000	1.00		1.00			
AA	LCSXC	1.00	SS0917725A 0.000	2 MS0918725A	0.000220	1.00		1.00			
AA	LCSDHL	1.00	SS0917725A 0.000	2 MS0919625C	0.002000	1.00		1.00			
AA	LCSDHM	1.00	SS0917725A 0.000	2 MS0918725A	0.000220	1.00		1.00			
	ID AA AA AA AA AA AA	AA 335P2MS AA 33519MS AA BLKQH AA LCSXB AA LCSXC AA LCSDHL	ID Code AA 335P2MS 1.00 AA 33519MS 1.00 AA BLKQH 1.00 AA LCSXB 1.00 AA LCSXC 1.00 AA LCSDHL 1.00	ID Code SS/IS S (mL) AA 335P2MS 1.00 \$\$0917725A 0.000 AA 33519MS 1.00 \$\$0917725A 0.000 AA 33519MS 1.00 \$\$0917725A 0.000 AA BLKQH 1.00 \$\$0917725A 0.000 AA LCSXB 1.00 \$\$0917725A 0.000 AA LCSXC 1.00 \$\$0917725A 0.000 AA LCSDHL 1.00 \$\$0917725A 0.000	ID Code SS/IS S (mL) MS Sol AA 335P2MS 1.00 \$\$0917725A 0.0002 M\$0919625C AA 33519MS 1.00 \$\$0917725A 0.0002 M\$0918725A AA 33519MS 1.00 \$\$0917725A 0.0002 M\$0918725A AA BLKQH 1.00 \$\$0917725A 0.0002 M\$0919625C AA LCSXB 1.00 \$\$0917725A 0.0002 M\$0919625C AA LCSXC 1.00 \$\$0917725A 0.0002 M\$0918725A AA LCSXC 1.00 \$\$0917725A 0.0002 M\$0918725A AA LCSDHL 1.00 \$\$0917725A 0.0002 M\$0919825C	ID Code SS/IS S (mL) MS Sol. (mL) AA 335P2MS 1.00 SS0917725A 0.0002 MS0919625C0.002000 AA 33519MS 1.00 SS0917725A 0.0002 MS0918725A 0.000220 AA 33519MS 1.00 SS0917725A 0.0002 MS0918725A 0.000220 AA BLKQH 1.00 SS0917725A 0.0002 MS0919625C 0.002000 AA LCSXB 1.00 SS0917725A 0.0002 MS0919625C 0.002000 AA LCSXC 1.00 SS0917725A 0.0002 MS0918725A 0.0002000 AA LCSDHL 1.00 SS0917725A 0.0002 MS0919625C 0.002000	ID Code SS/IS S (mL) MS Sol. (mL) (mL) (mL) AA 335P2MS 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00 AA 33519MS 1.00 \$\$0917725A 0.0002 MS0918725A 0.00020 1.00 AA 33519MS 1.00 \$\$0917725A 0.0002 MS0918725A 0.00020 1.00 AA BLKQH 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00 AA LCSXB 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00 AA LCSXC 1.00 \$\$0917725A 0.0002 MS0918725A 0.000220 1.00 AA LCSDHL 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00	ID Code SS/IS S (mL) MS Sol. (mL) (mL) SW AA 335P2MS 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00 AA 33519MS 1.00 \$\$0917725A 0.0002 MS0918725A 0.000200 1.00 AA 33519MS 1.00 \$\$0917725A 0.0002 1.00 AA BLKQH 1.00 \$\$0917725A 0.0002 1.00 AA LCSXB 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00 AA LCSXC 1.00 \$\$0917725A 0.0002 MS0918725A 0.000220 1.00 AA LCSXC 1.00 \$\$0917725A 0.0002 MS0918725A 0.000220 1.00 AA LCSDHL 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00	ID Code SS/IS S (mL) MS Sol. (mL) SW DF AA 335P2MS 1.00 SS0917725A 0.0002 MS0919625C0.002000 1.00 1.00 AA 33519MS 1.00 SS0917725A 0.0002 MS0918725A 0.000220 1.00 1.00 AA 33519MS 1.00 SS0917725A 0.0002 MS0918725A 0.000220 1.00 1.00 AA BLKQH 1.00 SS0917725A 0.0002 MS0919625C 0.002000 1.00 1.00 AA LCSXB 1.00 SS0917725A 0.0002 MS0919625C 0.002000 1.00 1.00 AA LCSXC 1.00 SS0917725A 0.0002 MS0919625C 0.002000 1.00 1.00 AA LCSXC 1.00 SS0917725A 0.0002 MS0919625C 0.002000 1.00 1.00 AA LCSDHL 1.00 SS0917725A 0.0002 MS0919625C 0.002000 1.00 1.00	ID Code SS/IS S (mL) MS Sol. (mL) (mL) SW DF PH AA 335P2MS 1.00 \$\$0917725A 0.0002 MS0919625C0.002000 1.00 1.00 <_2	ID Code SS/IS S (mL) MS Sol. (mL) (mL) SW DF PH BC AA 335P2MS 1.00 SS0917725A 0.0002 MS0919625C0.002000 1.00 4.00

•••

. .

Sample#	ID	Sample Code	Amt	An SS/IS Std. (mi	· · · · ·	sw	DF _	PH	BC	ĥŠ	Due Date	Hold Date	P Ar	nalyses	Comments	
5725296	AA	335P1	1.00	SS0917725A 0.000	2 1.00		1.00	52	104A	۵.	7/21	7/30	S 0'	1440 01	588	
5725297	AA	335P2	1.00	SS0917725A 0.000	z 1.00		1.00	1	104A	d	7/21	7/30	S 0'	1440 01	588	
5725298	AA	335P3	1.00	SS0917725A 0.000	2 1.00		1.00		104A	4	7/21	7/30	S 0	1440 01	588	
5725299	AA	33519	1.00	SS0917725A 0.000	2 1.00		1.00	T	104A	d	7/21	7/30	S 0'	1440 01	588	
5725300	AA	33520	1.00	SS0917725A 0.000	2 1.00		1.00		104A		7/21	7/30	S 0.	1440 01	588	
5725301	AA	335TB	1.00	SS0917725A 0.000	2 1.00		1.00		104A		7/21	7/30	S 0'	1440 01	588	
5725653	AA	TBOLD	1.00	SS0917725A 0.000	2 1.00		1.00	Γ	104A		7/27			1440 01		
5725654	AA	P2OLD	1.00	SS0917725A 0.004	0 1.00		20.00		104C/	<u>`D`</u>) 7/27	7/30	P 0	1440 01	588h.5-140a	ner Dfz(
5726707	AA	SHGEB	1.00	SS0917725A 0.000	z 1.00 ·		1.00		104A		7/28			1440 01		WF 24
5726709	AA	SHGTW	1.00	SS0917725A 0.000	2 1.00		1.00		104A	ф	7/28	7/30	P 0'	1440 01	588	
5726720	AA	SHEB1	1.00	SS0917725A 0.000	2 1.00		1.00		104A	ф	7/28	7/29	P 0'	1440 01	588	
5726722	AA	SHTBW	1.00	SS0917725A 0.000	2 1.00		1.00 -	\checkmark	104A		7/28	7/28	P 0'	1440 01	588	

Spike Solutions:

MS0918725A

MS0919625C

SS0917725A

Waters GRO Spike #2 Waters MI working Spike Waters 2 Component Surr. Sol.

Analyst: Date:

Verifier: රා Date: Comments

ARD28 8148

.

 $x \in \mathbb{R}$

.....

.

....

> مدد بالارديان an an ta . .

7/20/2009

368

-09

20

. .

1

TPH DRO/RRO (AK) Data

Case Narrative Conformance/Nonconformance Summary

ARD28 B142

CLIENT: ChevronTexaco SDG: AKD28

LANCASTER LABORATORIES TPH-DRO/RRO (AK)

MATRIX

LLI SAMPLE #	SAMPLE CODE	WATER	SOLID	COMMENT
BLANKA	PBLKSX	X		Method Blank
LCSA	LCSZW	X		Lab Control Spike
LCSDA	LCSDJ9	X		Lab Control Spike Dup
5726707	SHGEB	X		Client Blank
BLANKA	PBLKTO		X	Method Blank
LCSA	LCS0J		X	Lab Control Spike
LCSDA	LCSDJL		X	Lab Control Spike Dup
5726704	SHG91		X	Unspiked
5726704MS	SHG91MS		X	Matrix Spike
5726704MSD	SHG91MSD		X	Matrix Spike Dup
5726705	SHGD1		X	
5726706	SHG92		X	

A. Sample Preparation:

No problems were encountered with the preparation of the samples.

B. Analysis:

Due to software limitations, a form 7 (check standard summary) cannot be automatically generated. Raw data containing this information is in the standards section of this data package. No problems were encountered during analysis.

C. Quality Control:

Matrix QC may not be included if site-specific QC were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method or by the client.

For preparation/method blank results >LOQ, corrective action is not required if the sample result is >10 times the blank concentration, unless otherwise specified in the method or by the client.

Surrogate recoveries that are outside the QC window are confirmed unless attributed to a dilution or otherwise noted.

See the Conformance/Nonconformance Summary for the QC information.

D. Data Interpretation:

Data indicating manual integration requires the following codes:

- 1 = missed peak
- 2 = improper baseline

The peaks/area that have been manually changed are indicated with an "M" on the raw data.

No further interpretation is needed.

AXD28 8143

Narrative reviewed and approved by:

7/30/0 9 Date

Daga Kauffman, Manager Data Deliverables

ARD28 8144

GC ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY SDG: AKD28

	Indicate Yes, No, N/A YES
1. Chromatograms labeled / Compounds identified (Field Samples & Method Blanks)	1 25
2. Standards summary meet criteria	YES
3. Calibration - Initial calibration performed before sample analysis and continuing calibric performed within 24 hours of sample analysis.	ration YES
 Blank contamination If yes, list compounds and concentrations in each blank: N/A 	NO
5. Surrogate recoveries meet criteria (if applicable) If not met, list those compounds and their recoveries which fall outside the acceptable If not met, were the calculations checked and the results qualified as "estimated"? N/	YES range: N/A /A
6. Matrix Spike/Matrix Spike Dup recoveries meet criteria If not met, list those compounds and their recoveries which fall outside the acceptable	YES e range: N/A
7. Were samples run on dissimilar columns?	N/A
8. Extraction holding time met If not met, list number of days exceeded for each sample: N/A	YES
9. Analysis holding time met If not met, list number of days exceeded for each sample: N/A	YES

10. Chromatograms submitted for all standards, blanks, & samples if GC fingerprinting conducted N/A

Additional Comments: None.

Summary reviewed and approved by:

Dana Kauffman, Manager Data Deliverables

QC Summary

2E WATER SURROGATE RECOVERY

Lab Name: Lancaster Laboratories

Lab Code:

Case No.:

ID: .53 GC Column (1): RTX-5

GC Column (2):

Contract:

SAS No:

SDG No.: AKD28 ID:

Batchnumber: 092020011

	SAMPLE	0-TP 1	0-TP 2	C30 1	C30 2	ТОТ
SAMPLE	CODE NO.	% REC #	% REC #	% REC #	% REC #	Ουτ
5726707	SHGEB	101		95	•	0
BLANKA	PBLKSX	100		94		0
LCSA	LCSZW	102		86		0
LCSDA	LCSDJ9	98		84		0

NOMINAL ADVISORY CONCENTRATION QC LIMITS (60 - 120) 0.0200 mg/l O-TP = o-Terphenyl mg/l (60 - 120) 0.0200 = n-Triacontane-d62 C30

ANDZ8 8347

Column to be used to flag recovery values

* Values outside of QC Limits

D Surrogate diluted out

2F SOIL SURROGATE RECOVERY

Lab Name: Lancaster Laboratories

Lab Code:

Contract: SAS No:

SDG No.: AKD28

GC Column (1): RTX-5 ID: .53

GC Column (2):

ID:

Batchnumber: 092020025

	SAMPLE	O-TP 1	0-TP 2	C30 1	C30 2	TOT
SAMPLE	CODE NO.	% REC #	% REC #	% REC #	% REC #	OUT
5726704	SHG91	92		88		0
5726704 MS	SHG91MS	98		84		0
5726704 MSD	SHG91MSD	97		84		0
5726705	SHGD1	93		89		0
5726706	SHG92	94		92		0
BLANKA	PBLKTO	93		90		0
LCSA	LCS0J	95		84		0
LCSDA	LCSDJL	97		83		0

Case No.:

O-TP = o-Terphenyl C30 = n-Triacontane-d62

ADVISORY	NOMINAL			
QC LIMITS	CONCENTRATION			
(60 - 120)	0.800	mg/kg		
(60 - 120)	0.800	mg/kg		

AKD-29 9149

Column to be used to flag recovery values

* Values outside of QC Limits

D Surrogate diluted out

3F Soil Matrix Spike/Matrix Spike Duplicate Recovery

Lab Name: Lancaster Laboratories

Lab Code:

Contract: SAS No.:

SDG No.:

Matrix Spike - Sample Code No.: SHG91

Case No.:

Compound	Spike Added (mg/kg)	Sample Concen (mg/kg)	MS Concen (mg/kg)	MSD Concen (mg/kg)	MS % Rec _#	MSD % Rec _#	MS-MSD % REC Limits	% RPD #	% RPD Lim
C10- <c25 dro<="" td=""><td>57.79</td><td>0</td><td>55.91</td><td>54.22</td><td>97</td><td>94</td><td>(60 - 140)</td><td>3</td><td>50</td></c25>	57.79	0	55.91	54.22	97	94	(60 - 140)	3	50
C25-C36 RRO	103.75	57.29	161.67	139.80	101	80	(60 - 140)	15	50

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 2 outside limits Spike Recovery: 0 out of 4 outside limits

Comments:

Sample No.: 5726704

Batch: 092020025A

AND28 8149

3E Water Lab Control Spike/Lab Control Spike Duplicate Recovery caster Laboratories Contract:

Lab Name: Lancaster Laboratories

Lab Code: Case No.: SAS No.: SDG No.:

Laboratory Control Spike - Sample Code No.: LCSZW

Compound	Spike Added (mg/l)	LCS Concen (mg/l)	LCSD Concen (mg/l)	LCS % Rec _#	%	LCS-LCSD % REC Limits	% RPD #	% RPD Lim
C10- <c25 dro<="" td=""><td>0.70</td><td><u>_</u></td><td>0.65</td><td>96</td><td>93</td><td>(75 - 125)</td><td>3</td><td>20</td></c25>	0.70	<u>_</u>	0.65	96	93	(75 - 125)	3	20
C25-C36 RRO	1.2	1.3	1.2	108	100	(60 - 120)	8	20

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 2 outside limits Spike Recovery: 0 out of 4 outside limits

Comments:	Results calculated on as-received basis.		58:
	Sample No.: LCSA	Batch: 092020011A	

3F Soil Lab Control Spike/Lab Control Spike Duplicate Recovery aster Laboratories Contract:

Lab Name: Lancaster Laboratories

Lab Code: Case No.: SAS No.: SDG No.:

Laboratory Control Spike - Sample Code No.: LCS0J

Compound	Spike Added (mg/kg)	LCS Concen (mg/kg)	LCSD Concen (mg/kg)	LCS % Rec _#	%	LCS-LCSD % REC Limits	% RPD #	% RPD Lim
C10- <c25 dro<="" td=""><td>40.11</td><td>38.12</td><td>37.76</td><td>95</td><td>94</td><td>(75 - 125)</td><td>1</td><td>50</td></c25>	40.11	38.12	37.76	95	94	(75 - 125)	1	50
C25-C36 RRO	72.00	71.62	72.09	99	100	(75 - 125)	1	50

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 2 outside limits Spike Recovery: 0 out of 4 outside limits

Comments:	Results calculated on as-received basis.	ARDZE		
	Sample No.: LCSA	Batch: 092020025A		

4C METHOD BLANK SUMMARY		SAMPLE CODE NO. PBLKSX			
Lab Name: Lancaster Labor	atories Contr	act:			
Lab Code:	Case No.:	SAS No.:	SDG No.: <u>AKD28</u>		
Lab Sample ID BLANKA	Batch 09202	20011A	Lab File ID: M201.70R		
Matrix: (soil/water) WATE	R		Extraction: (SepF/Cont/Sonc)	<u>SEPF</u>	
Sulfur Cleanup: (Y/N) <u>N</u>			Date Extracted: 7/22/2009		
Date Analyzed (1): 7/22/20	009		Date Analyzed (2):		
Time Analyzed (1): <u>12:17:3</u>	<u>33</u>		Time Analyzed (2):		
Instrument ID (1): H5386B			Instrument ID (2):		
GC Column: <u>RTX-5</u>	ID: <u>0,53</u> (mm	ו)	GC Column:	ID:	
THIS METHOD BLA	NK APPLIES TO	THE FOLLOWING SA	MPLES, MS, AND MSD		

	SAMPLE CODE NO.	LAB SAMPLEID	DATE ANALYZED 1	DATE ANALYZED 2
01	SHGEB	5726707	7/22/2009	
02	PBLKSX	BLANKA	7/22/2009	
03	LCSZW	LCSA	7/22/2009	
04	LCSDJ9	LCSDA	7/22/2009	

COMMENTS:

.

1D	
ORGANICS ANALYSIS	DATA SHEET

SAMPLE CODE NO.

PBLKSX

Lab Name: Lancaste	r Laboratories Contract:	Batchnumber: 092020011A
Lab Code:	Case No.:	SAS No.: SDG No.:
Matrix: (soil/water)	WATER	Lab Sample ID: <u>BLANKA</u>
Sample wt/vol:	<u></u> <u>1000</u> (g/ml) <u>ml</u>	Lab File ID: <u>M201.70R</u>
% Moisture:	Decanted: (Y/N)	Date Received:
Extraction: (SepF/C	ont/Sonc) <u>SEPF</u>	Date Extracted: 7/22/2009
Concentrated Extrac	ct Volume: <u>1000</u> (uL)	Date Analyzed: 7/22/2009
Injection Volume:	<u>1</u> (uL)	Dilution Factor: 1
GPC Cleanup: (Y/N)) N pH:	Sulfur Cleanup: (Y/N) N
		CONCENTRATION UNITS
CAS NO.	COMPOUND	(UG/L or UG/KG) <u>mg/l</u> Q
C10- <c25 dro<="" td=""><td>C10-<c25 dro<="" td=""><td>0.050U</td></c25></td></c25>	C10- <c25 dro<="" td=""><td>0.050U</td></c25>	0.050U
C25-C36 RRO	C25-C36 RRO	0.050U

C25-C36 RRO

AXB28 8153

C25-C36 RRO

	METHO	4C D BLANK SUMMARY	SAMPLE CODE NO).	
Lab Name: Lancaster Labora	atories C	contract:		}	
Lab Code:	Case No.:	SAS No.:	SDG No.: AKD28		
Lab Sample ID BLANKA	Batch 09	92020025A	Lab File ID: M204.07R		
Matrix: (soil/water) <u>SOIL</u>			Extraction: (SepF/Cont/Sonc)	<u>SONC</u>	
Sulfur Cleanup: (Y/N) <u>N</u>			Date Extracted: 7/22/2009		
Date Analyzed (1): 7/23/200	<u>09</u>		Date Analyzed (2):		
Time Analyzed (1): 10:10:5	1		Time Analyzed (2):		
Instrument ID (1): H5386B			Instrument ID (2):		
GC Column: RTX-5	ID: <u>0.53</u>	(m m)	GC Column:	iD:	(mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD

	SAMPLE CODE NO.	LAB SAMPLEID	DATE ANALYZED 1	DATE ANALYZED 2
01	SHG91	5726704	7/23/2009	
02	SHG91MS	5726704	7/23/2009	
03	SHG91MSD	5726704	7/23/2009	
04	SHGD1	5726705	7/23/2009	
05	SHG92	5726706	7/23/2009	
06	PBLKTO	BLANKA	7/23/2009	
07	LCS0J	LCSA	7/23/2009	<u></u>
08	LCSDJL	LCSDA	7/23/2009	

COMMENTS: _____

AXD29 9154

FORM IV PEST

1D

SAMPLE CODE NO.

PBLKTO

ORGANICS ANALYSIS DATA SHEET

.

Laboratories Contract:	Batchnumber: 092020025A			
Case No.:	SAS No.: SDG No.:			
SOIL	Lab Sample ID: <u>BLANKA</u>			
<u>25</u> (g/ml) g	Lab File ID: M204.07R			
Decanted: (Y/N)	Date Received:			
ont/Sonc) <u>SONC</u>	Date Extracted: 7/22/2009			
t Volume: <u>1000</u> (uL)	Date Analyzed: 7/23/2009			
<u>1</u> (uL)	Dilution Factor: <u>1</u>			
N pH:	Sulfur Cleanup: (Y/N) N			
	CONCENTRATION UNITS			
COMPOUND	(UG/L or UG/KG) <u>mg/kg</u> Q			
C10- <c25 dro<="" td=""><td>4.0U</td></c25>	4.0U			
C25-C36 RRO	4.0U			
	Case No.: <u>25</u> (g/ml) g Decanted: (Y/N) ont/Sonc) <u>SONC</u> Volume: <u>1000</u> (uL) <u>1</u> (uL) N pH: <u>COMPOUND</u> <u>C10-<c25 dro<="" u=""></c25></u>			

Sample Data

.

AND28 8156

Analysis LOQ/MDL Report

Name: TPH-DRO/RRO (AK)

Description: Default Values

Analysis: 01738

Compound	<u>Units</u>	LOQ	<u>MDL</u>
C10- <c25 dro<="" td=""><td>mg/kg</td><td>12</td><td>4</td></c25>	mg/kg	12	4
C25-C36 RRO	mg/kg	12	4

AKB28 8155

.

Analysis LOQ/MDL Report

Name: TPH-DRO/RRO (AK) water

Description: Default Values

Analysis: 02923

Compound	Units	LOQ	MDL
C10- <c25 dro<="" td=""><td>mg/l</td><td>2.5</td><td>0.05</td></c25>	mg/l	2.5	0.05
C25-C36 RRO	mg/l	2.5	0.05

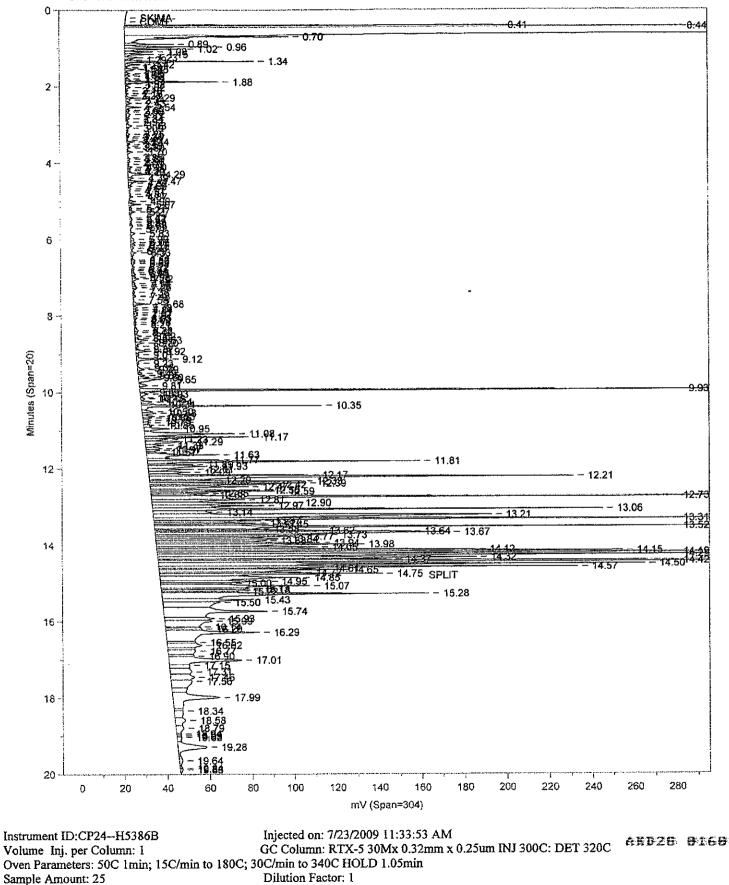
ARD23 8158

.

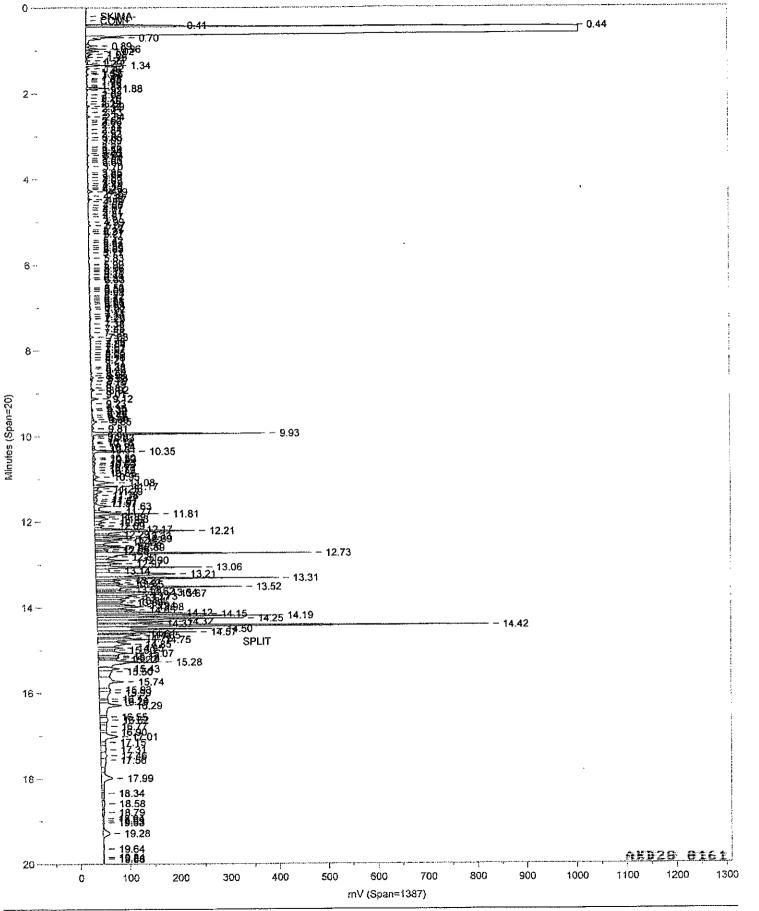
(

Lancaster Laboratories-Range Data Summary

Sample Name: 5726704Sample Amount:25.Analyses: 0173802238	SHG91 Total Volume: 1. ml	Sample ID: AA Analyst: 2105	Batchnu SDG:	Imber: () AKD28	9202002 State: A		
Injection SummaryInjected on: 7/23/09 11:33:5Instrument: CP24H5386BResult file: M204.10RCalibration files: AKRM061B.CAMethod files: AKRMSUM.MESetting: AKRM061B	NL.						
Surrogate RecoveriesO-TERPHENYL SURR91.9%C30-D62 SURR88.2%							
Range C10- <c25 dro<br="">C25-C36 RRO o-Terphenyl SURR C30-d62 SURR</c25>	<u>Retention Times</u> 2.60 - 12.11 12.11 - 14.73 9.93 (9.88 - 9.98) 13.31 (13.26 - 13.36)	<u>Area</u> 2365110 12471524 541098 418376	Amount 3.1571 39.7617 0.7354 0.7059	LOQ <12 12	<u>MDL</u> <4 4	Flags	Units ppm ppm ppm ppm


Comments:				
<u></u>			<u> </u>	
				28 8±59
Reviewed by: Verified by:	Myer	Date: 7/73/0		
Ventied by:	<u>nuny</u>	Date:		
7/23/09 13:33		/	Page 1	of 1

.


.

5726704 AASHG91 T 092020025A 01738

C:\CPWIN\DATA1\M204.10R

AK 102/103

 Sample ID: 5726704
 AASHG91
 T
 092020025A
 01738

 Instrument ID:CP24--H5386B
 Injected on: 7/23/2009 11:33:53 AM
 Injected on: 7/23/2009 11:33:53 AM

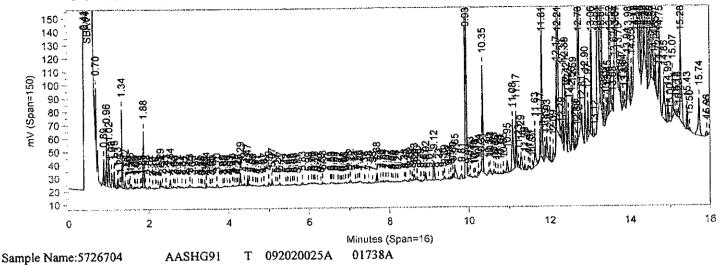
 Volume Inj. per Column: 1
 GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C

 Oven Parameters: 50C Imin; 15C/min to 180C; 30C/min to 340C HOLD 1.05min
 Dilution Factor: 1

 Analyst: 2105
 Dilution Factor: 1

Peak #	Ret Time (min)	Peak Na	me	Amount PPM	Peak Area	Peak Wic (min)	lth	Peak Height
33	2.722	C10			9533		.075 .024	2028 347737
127	9.933		nyl SURR	.7442	547575			27930
155	11. 9 35	C24		•	95984		.036	
159	12.209	C25		•	485952		.029	202058
176	13.31	C30-d62	SURR	1.0069	596844		.021	367513
201	14.614	C36			115811		.017	76380
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	2	.600	12.110	18.605	42.497	2365110.0		1.023
2	ç	.880	9.980	18.605	42.497	547575.3		2.552
3	-	2.110	14.730	25.174	57.503	12471530.0	53	8.126
4		3.260	13.360	25.174	57.503	596843.7		2.782

Total slice amount= 87.556 Total slice amount %= 200.0 Total slice area= 15981050.0 Total slice area %= 74.5



C10- <c25 area<br="" dro="">C10-<c25 amt<="" dro="" th=""><th>=</th><th>1817535 3.145898 PPM</th></c25></c25>	=	1817535 3.145898 PPM
C25-C36 RRO AREA C25-C36 RRO AMT	-	1.187468E+07 39.17301 PPM

FILES:

Area File: C:\CPWIN\DATA1\M204.10A Method File: C:\CPWIN\DATA1\AKRMSUM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSUM.FMT Area file created on: 7/23/2009 11:54:00 AM File reported on: 7/23/2009 at 11:54:03 AM

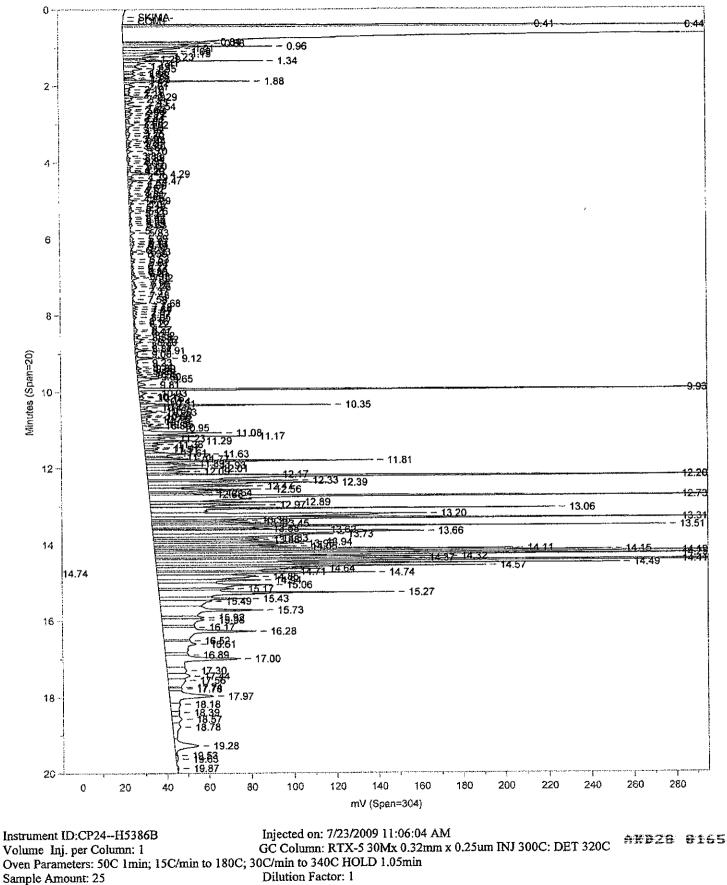
Instrument ID:CP24--H5386BInjected on: 7/23/2009 11:33:53 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minDilution Factor: 1Sample Amount: 25Dilution Factor: 1

Peak #	Ret Time (min)	Peak Name	Amount PPM	Peak Area	Peak W (min)	idth	Peak Height
33	2.722	C10		5787		.075	1558
127	9.933	o-Terphenyl SURR	.7354	541098		.024	346487
	•			34150		.036	15898
155	11.935	C24	· ·	320539		.029	171428
159	12.209	C25					322862
176	13.31	C30-d62 SURR	.7059	418376		.021	
201	14.614	C36		12068		.017	14501
Slice	Start Ti	me Stop Time	Slice Amount	Amount %	Slice Area	Ar	rea %

Total slice amount= 0.000 Total slice amount %= 0.0

Total slice area= 0.0 Total slice area %= 0.0

O-TERPHENYL % RECOVERY = 91.92222 % C30-D62 SURR % RECOVERY = 88.23141 %


FILES: Area File: C:\CPWIN\DATA1\M204.10A Method File: C:\CPWIN\DATA1\REAKRM.MET Calibration File: C:\CPWIN\DATA1\REAKRM.61B.CAL Format File: C:\CPWIN\DATA1\REAKRM.FMT Area file created on: 7/23/2009 11:54:18 AM File reported on: 7/23/2009 at 11:54:19 AM

Lancaster Laboratories-Range Data Summary

Sample Name:5726705Sample Amount:25.Analyses:01738	SHGD1 Total Volume: 1. m	Sample ID: AA Analyst: 2105		I mber: () AKD28	92020025A State: AK	
Injection SummaryInjected on: 7/23/09 11:06Instrument: CP24H5386Result file: M204.09RCalibration files: AKRM061B.CMethod files: AKRMSUM.MSetting: AKRM061B	B					
Surrogate RecoveriesO-TERPHENYL SURR92.6C30-D62 SURR89.5						
Range C10- <c25 dro<br="">C25-C36 RRO o-Terphenyl SURR C30-d62 SURR</c25>	<u>Retention Times</u> 2.60 - 12.11 12.11 - 14.73 9.93 (9.88 - 9.98) 13.31 (13.26 - 13.36)	<u>Area</u> 2388275 12197382 545509 424154	<u>Amount</u> 3.1896 _ 38.8383 _ 0.7414 _ 0.7156 _	LOQ <12 12	<u>MDL</u> Flag	s <u>Units</u> ppm ppm ppm ppm

Comments:				
				·····
		<u></u> .	· · · · · · · · · · · · · · · · · · ·	
Reviewed by:	MZEA	Date: 🕂	36	
Verified by:	Proclay	Date:	7-5.1-0.9	
7/23/09 13:33	Υ L		/	Page 1 of 1

C:\CPWIN\DATA1\M204.09R

9.96 1.34 1.88 0.41

- 9.93

SRWA-

Ē

int hit is that is the law,

TELEVISION OF A DESCRIPTION OF A DESCRIP

11111 13

- 10.35

0...

2 ---

4 ---

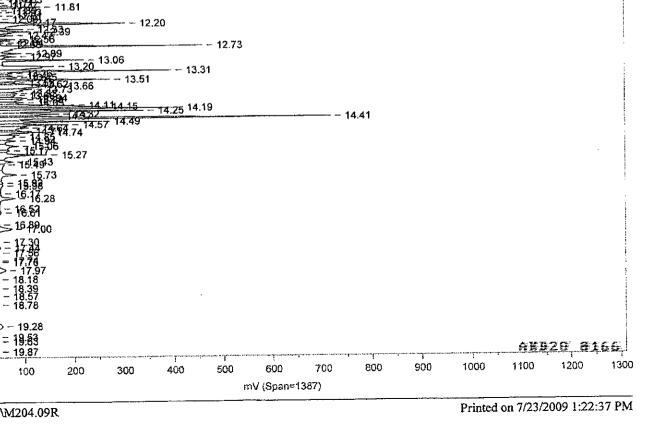
S --

8.--

10-

12-

14 -


16 --

18--

20 ----

14.74

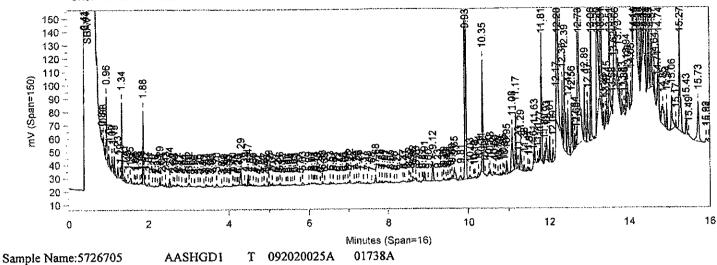
Minutes (Span=20)

C:\CPWIN\DATA1\M204.09R

0

AK 102/103

Sample ID: 5726705AASHGD1T092020025A01738Instrument ID:CP24--H5386BInjected on: 7/23/2009 11:06:04 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minSample Amount: 25Dilution Factor: 1Analyst: 2105


Peak #	Ret Time (min)	Peak N	ame	Amount PPM	Peak Area	Peak Wid (min)	ith	Peak Height
32	2.722	C10			10466		.043	3401
129	9.932		enyl SURR	.7456	548610		.025	338200
159	11.933	C24		•	90272		.033	28054
163	12.201	C25		•	740914		.031	275104
175	13.309	C30-d6	2 SURR	1.0561	625970		.021	377830
198	14.641	C36			338745		.057	74703
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	2	.600	12.110	18.640	41.383	2388275.0	1	1.235
2	9	0.880	9.980	18.640	41.383	548609.7		2.581
3	12	2.110	14.730	26.402	58.617	12197380.0	5'	7.379
4	13	3.260	13.360	26.402	58.617	625970.0	2	2.945

Total slice amount= 90.084 Total slice amount %= 200.0 Total slice area= 15760240.0 Total slice area %= 74.1

FILES:

Area File: C:\CPWIN\DATA1\M204.09A Method File: C:\CPWIN\DATA1\AKRMSUM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSUM.FMT Area file created on: 7/23/2009 11:26:12 AM File reported on: 7/23/2009 at 11:26:14 AM

Instrument ID:CP24--H5386BInjected on: 7/23/2009 11:06:04 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C Imin; 15C/min to 180C; 30C/min to 340C HOLD 1.05minSample Amount: 25

Analyst: 2105

Peak #	Ret Time (min)	Peak Name	Amount PPM	Peak Area	Peak W (min)	idth	Peak Height
32	2.722	C10		2954		.043	1631
129	9.932	o-Terphenyl SURR	.7414	545509		.025	337693
159	11.933	C24		32315		.033	16854
163	12.201	C25		469899		.031	236011
105	13.309	C30-d62 SURR	.7156	424154		.021	332235
198	14.641	C36		32054		.055	20093
Slice	Start Ti	me Stop Time	Slice Amount	Amount %	Slice Area	A	rea %

Slice Start Time

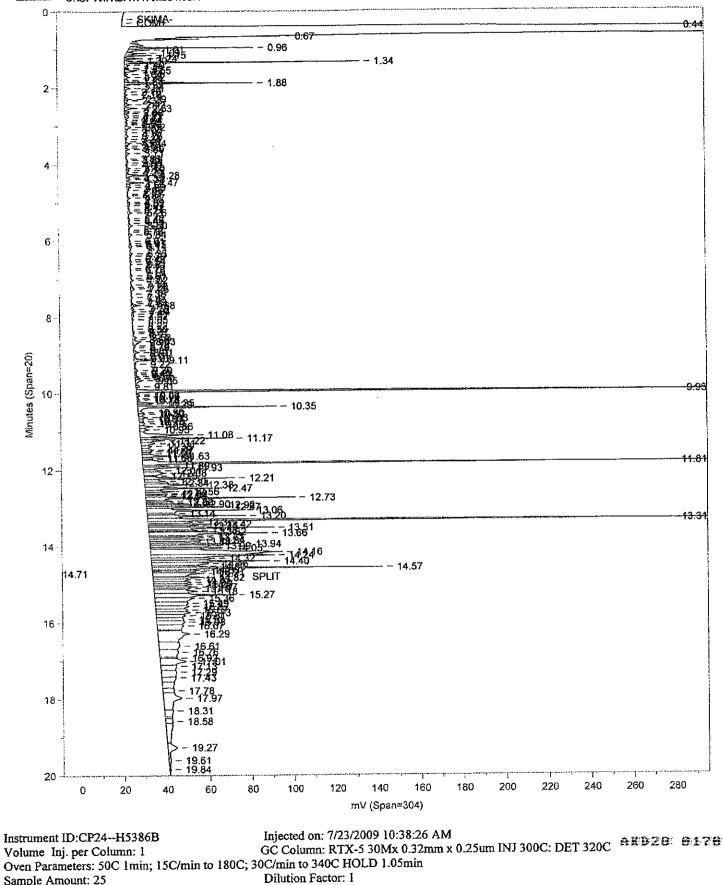
Total slice amount= 0.000 Total slice amount %= 0.0 Total slice area= 0.0 Total slice area %= 0.0

O-TERPHENYL % RECOVERY = 92.67165 % C30-D62 SURR % RECOVERY = 89.44992 %

FILES: Area File: C:\CPWIN\DATA1\M204.09A Method File: C:\CPWIN\DATA1\REAKRM.MET Calibration File: C:\CPWIN\DATA1\REAKRM.61B.CAL Format File: C:\CPWIN\DATA1\REAKRM.FMT Area file created on: 7/23/2009 11:26:28 AM File reported on: 7/23/2009 at 11:26:30 AM

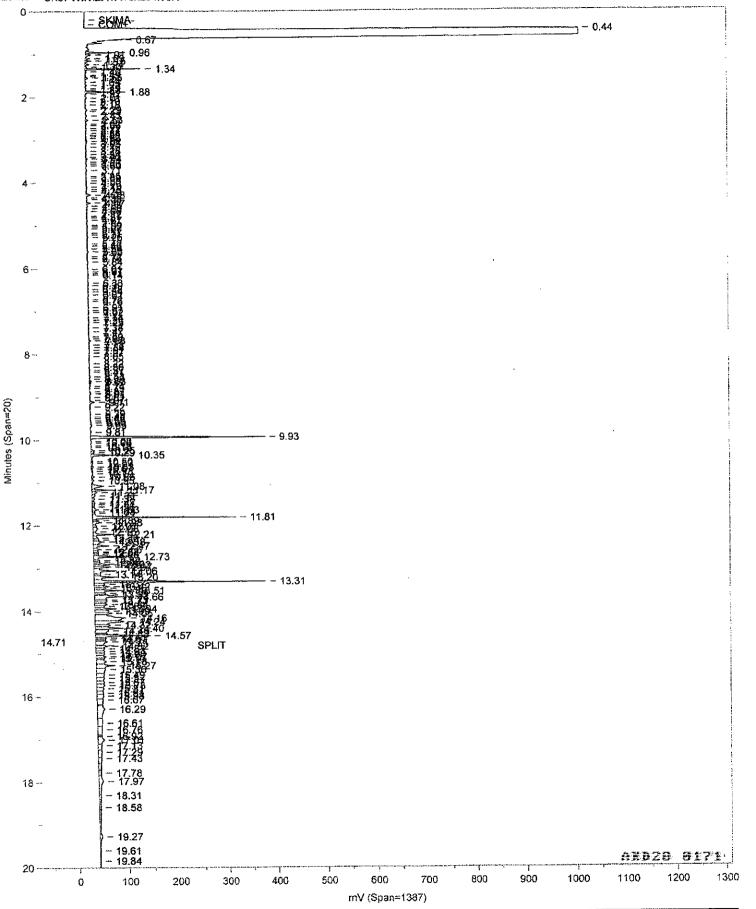
AKB28 6568

Lancaster Laboratories-Range Data Summary


Sample Name: 5726 Sample Amount: Analyses: 01738	706 25.	SHG92 Total Volume:	1. ml	Sample ID: AA Analyst: 2105		umber: () AKD28	9202002 State: A		
Instrument : CI Result file : M Calibration files : Al Method files : Al	23/09 10:38:27 P24H5386B 204.08R KRM061B.CAL KRMSUM.MET KRM061B		1ET				·		
Surrogate Recoveries O-TERPHENYL SURR C30-D62 SURR Range	93.8% 91.6%	Conc.: 0.751037 Conc.: 0.732404 <u>Retention Times</u>		Area	Amount	LOQ	MDL	<u>Flags</u>	
C10- <c25 dro<br="">C25-C36 RRO o-Terphenyl SURR C30-d62 SURR</c25>		2.60 - 12.11 12.11 - 14.73 9.93 (9.88 - 9.98) 13.31 (13.26 - 13.36)	-	1982092 4012867 552620 434115	2.4742 11.8058 0.7510 0.7324	<12 <12	4 		ppm ppm ppm ppm

Comments:				· · · · · · · · · · · · · · · · · · ·		
	s				<u></u>	
					<u></u>	
		· · · · · · · · · · · · · · · · · · ·				8 8±69
Reviewed by:		W1212	Date:	the		
Verified by:		DOCIAL	Date:	7-27-04		
7/23/09 13:33					Page 1 c	of 1

AK 102/103


01738 AASHG92 T 092020025A 5726706

C:\CPWIN\DATA1\M204.08R

C:\CPWIN\DATA1\M204.08R

Sample Amount: 25

AK 102/103

 Sample ID: 5726706
 AASHG92
 T
 092020025A
 01738

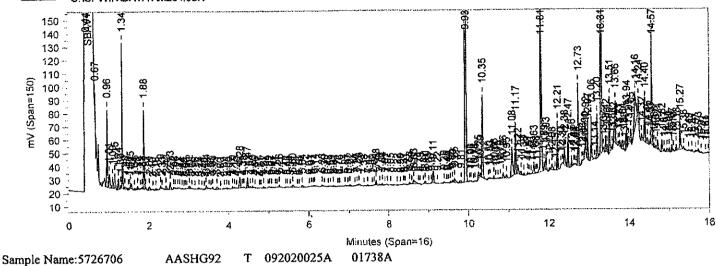
 Instrument ID:CP24--H5386B
 Injected on: 7/23/2009 10:38:26 AM

 Volume Inj. per Column: 1
 GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C

 Oven Parameters: 50C Imin; 15C/min to 180C; 30C/min to 340C HOLD 1.05min

 Sample Amount: 25
 Dilution Factor: 1

Peak #	Ret Time (min)	Peak N	ame	Amount PPM	Peak Area	Peak Wie (min)	dth	Peak Height
29	2,723	C10			6159		.052	1761
125	9.933	o-Terph	enyl SURR	.7548	555356		.025	349660
154	11.931	C24	•		42382		.023	18604
158	12.211	C25		•	73754		.02	42564
176	13.308	C30-d6	2 SURR	.8705	515957		.021	354841
198	14.628	C36		•	40752		.018	22114
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	2	.600	12.110	18.869	46.440	1982092.0	2	1.920
2	9	.880	9.980	18.869	46.440	555356.4		5.142
3	12	2.110	14.730	21.762	53.560	4012867.0	4	4.379
4	13	.260	13.360	21.762	53.560	515957.4		5.706


Total slice amount= 81.262 Total slice amount %= 200.0 Total slice area= 7066273.0 Total slice area %= 78.1

FILES:

Area File: C:\CPWIN\DATA1\M204.08A Method File: C:\CPWIN\DATA1\AKRMSUM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSUM.FMT Area file created on: 7/23/2009 10:58:34 AM File reported on: 7/23/2009 at 10:58:36 AM

AXD28 6172

Instrument ID:CP24--H5386BInjected on: 7/23/2009 10:38:26 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C Imin; 15C/min to 180C; 30C/min to 340C HOLD 1.05minDilution Factor: 1

Analyst: 2105

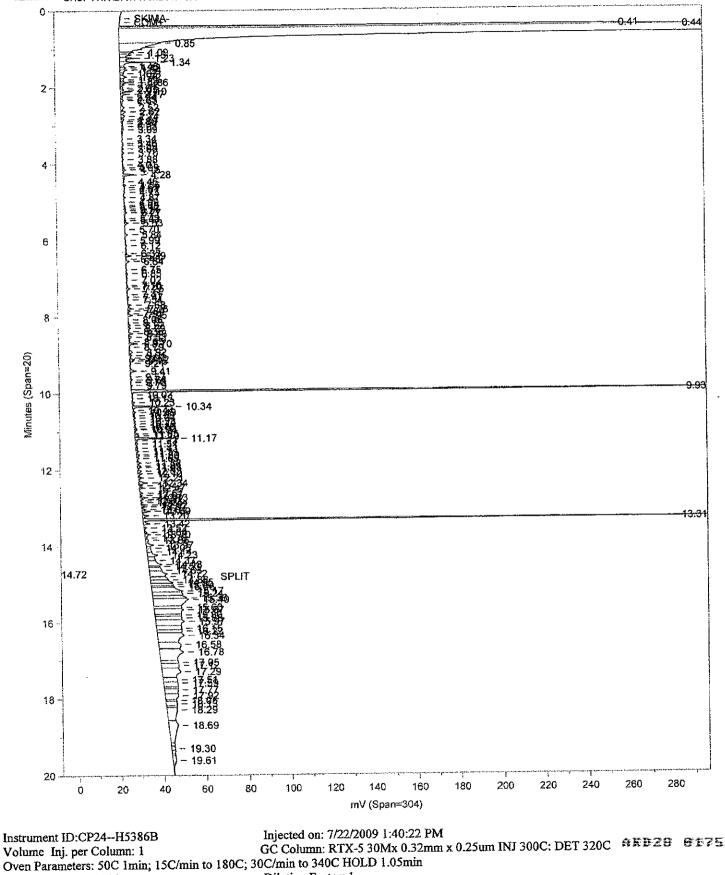
Peak #	Ret Time (min)	Peak Name	Amount PPM	Peak Area	Peak Wi (min)	idth	Peak Height
29	2.723	C10		1545		.052	705
125	9.933	o-Terphenyl SURR	.751	552620		.025	349230
154	11.931	C24	•	16301		.023	12290
158	12.211	C25		46172		.02	36561
176	13.308	C30-d62 SURR	7324	434115		.021	338125
198	14.628	C36		3418		.018	3447
Slice	Start Ti	me Stop Time	Slice Amount	Amount %	Slice Area	A	rea %

Slice Start T

Total slice amount= 0.000 Total slice amount %= 0.0 Total slice area= 0.0 Total slice area %= 0.0

O-TERPHENYL % RECOVERY = 93.87966 % C30-D62 SURR % RECOVERY = 91.55048 %

FILES: Area File: C:\CPWIN\DATA1\M204.08A Method File: C:\CPWIN\DATA1\REAKRM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRM.FMT Area file created on: 7/23/2009 10:58:50 AM File reported on: 7/23/2009 at 10:58:51 AM


AND28 8173

Lancaster Laboratories-Range Data Summary

-

Sample Name: 57 Sample Amount: Analyses: 02923	726707 1046.	SHGEB Total Volume:	1, ml	Sample ID: AA Analyst: 2105		umber: () 6:AKD28	9202001 State: /	
Instrument Result file Calibration files Method files	y : 7/22/09 13:40:23 : CP24H5386B : M201.73R : AKRM061B.CAL : AKRMSUM.MET : AKRM061B		I.MET		~			
Surrogate Recover O-TERPHENYL SURR C30-D62 SURR		Conc.: 0.019259 Conc.: 0.018162						
Range C10- <c25 dro<br="">C25-C36 RRO o-Terphenyl SURF C30-d62 SURR</c25>		<u>Retention Times</u> 2.60 - 12.11 12.11 - 14.73 9.93 (9.88 - 9.98 13.31 (13.26 - 13.3		<u>Area</u> 945220 790372 592919 450408	Amount 0.0146 0.0268 0.0193 0.0182	LOQ <2.3901 <2.3901	<u>MDL</u> <0.0478 <0.0478	 Units ppm ppm ppm ppm

Comments:		
Reviewed by:	M267 Date:	
Verified by:	Date:	
7/23/09 13:31		Page 1 of 1

Dilution Factor: 1

C:\CPWIN\DATAI\M201.73R

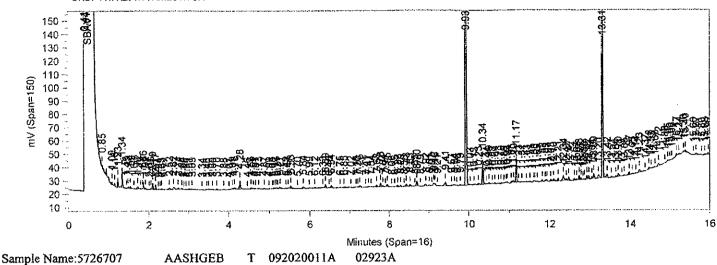
Sample Amount: 1046

AK 102/103

Sample ID: 5726707 AASHGEB T 092020011A 02923 Injected on: 7/22/2009 1:40:22 PM Instrument ID:CP24--H5386B GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min Sample Amount: 1046 Dilution Factor: 1 Analyst: 2105

Peak #	Ret Time (min)	Peak N	lame	Amount PPM	Peak Area	Peak Widt (min)	th	Peak Height
26	2.744	C10			6391		046	1746
100	9.933	o-Terph	nenyl SURR	.0193	593221		023	394356
126	11.93	C24 Û	•		3857	•	023	1952
129	12.212	C25			4816		021	2629
144	13.308	C30-d6	2 SURR	.0183	453400	•	021	350616
158	14.63	C36		•	31847		071	5941
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	Α	rea %
1	2	600	12.110	20.155	51.314	945220.4	1	6.878
2	9	.880	9.980	20.155	51.314	593220.6	1	0.592
3	12	.110	14.730	19.124	48.686	790371.9	1	4.113
4	13	.260	13.360	19.124	48.686	453399.8	;	8.096

Total slice amount= 78.558 Total slice amount %= 200.0 Total slice area= 2782213.0 Total slice area %= 49.7


C10-<C25 DRO AMT

C10-<C25 DRO AREA = 351999.8 = 1.456172E-02 PPM

C25-C36 RRO AREA 336972 ÷ 2.656851E-02 PPM C25-C36 RRO AMT ==

FILES:

Area File: C:\CPWIN\DATA1\M201.73A Method File: C:\CPWIN\DATA1\AKRMSUM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSUM.FMT Area file created on: 7/22/2009 2:00:30 PM File reported on: 7/22/2009 at 2:00:32 PM

Injected on: 7/22/2009 1:40:22 PM Instrument ID:CP24--H5386B GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min **Dilution Factor: 1** Sample Amount: 1046 Analyst: 2105

Peak #	Ret Time (min)	Peak Name	Amount PPM	Peak Area	Peak W (min)	idth	Peak Height
26	2.744	C10		2359		.046	923
100	9.933	o-Terphenyl SURR	.0193	592919		.023	394323
126	11.93	C24		1282		.021	1229
129	12.212	C25		3873		.021	2478
144	13.308	C30-d62 SURR	.0182	450408		.021	350087
158	14.63	C36		1480		.071	313
Slice	Start Ti	me Stop Time	Slice Amount	Amount %	Slice Area	A	rea %

Slice Start Time

Total slice amount= 0.000 Total slice amount %= 0.0 Total slice area= 0.0 Total slice area %= 0.0

O-TERPHENYL % RECOVERY = 100.7257 % C30-D62 SURR % RECOVERY = 94.98663 %

FILES: Area File: C:\CPWIN\DATA1\M201.73A Method File; C:\CPWIN\DATA1\REAKRM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRM.FMT Area file created on: 7/22/2009 2:00:44 PM File reported on: 7/22/2009 at 2:00:46 PM

Standards Data

AND28 8178

Chrom	Perfect	Calibration	File

Calibration File Name: C:\CPWIN\DATA1\AKRM061A.CAL Version = 7 External standard calibration No injection volume correction No sample weight correction Area reject threshold = 0 Reference peak area reject threshold = 0 Amount units = PPM 8 components with 5 levels each

1 DRO RF C10-<C25

Retention time = 0.001 min., Search window = 0.000 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 23109.9 No retention time reference component Single peak quantification by area

Lavel	Amount	Area	Area/Amt	Source	Date and time
		778303.9	19457.6	Manual	3/9/2009 12:04:4
· 1	40.000		20987.13	Manual	3/9/2009 12:04:4
2	360.000	7555367.0			••••••
3	920,000	22994960.0	24994.52	Manual	3/9/2009 12:04:4
.4	1400.000	35127440.0	25091.03	Manual	3/9/2009 12:04:4
; ,51	2000.000	-,50038460.0	25019.23	Manual	3/9/2009 12:07:2
	1				

Calibration formula: Y = 23109.9 X Fit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 0.9839, Average error = 10.00% Average CF = 23109.9000 with RSD = 11.64%

2 RRO RF C25-C36

Retention time = 0.016 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 12125.37 No retention time reference component Single peak quantification by area

Level	Amount	Area	Area/Amt	Source	Date and time
÷ ·					
1	70.000	790246.4	11289.23	Manual	3/9/2009 12:04:4
2	600.000	7858144.0	13096.91	Manual	3/9/2009 12:04:4
3	1600,000	19370130.0	12106.33	Manual	3/9/2009 12:04:4
4	2400.000	28908370.0	12045.15	Manual	3/9/2009 12:04:4
5	3500.000	42312320.0	12089.23	Manual	3/9/2009 12:07:2

Calibration formula: Y = 12125.37 X Fit type = Avg @F with equal weighting, forced to origin Coefficient of determination = 0.9996, Average error = 3.20% Average CF = 12125.3700 with RSD = 5.30%

3 C10

111

Retention time = 2.830 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 0

Used Moul. 05-09

Molel. 14-20 Artical Dunzor

3-10-09

3/9/09

ICV-MOGI. 25 DRO90D=1676 RR090D=4.55 Min 375 NUS FIZELO9

1.1.1

<u>а</u>.

2

		Chrom Per	fect Calibration File	Page 2
pretention time refe	rence compone	nt		
ngle peak quantifica				
		0	Date and time	
vel Amount Area	Area/Amt	Source	Date and time	
1 1.000	0.0 0	Manual	3/9/2009 12:04:4	
	0		3/9/2009 12:04:4	
24 T	0	•	3/9/2009 12:04:4	18 ³ .
4 -1.000	0	, Manual	3/9/2009 12:04:4	
5 -1.000	0	Manual	3/9/2009 12:07:2	
alibration formula:	No data points to	o graph		
t type = Ava CF with	equal weighting	g, forced to	origin	
oefficient of determi	nation = 1.0000	, Average ei	ror = 100.00%	
verage CF = 0.0000	with RSD = 0.0	0%		
o-Terphenyl SU	RR			
etention time = 10.0	80 min., Search	\mathbf{w} window = 0).050 min.	
ow alarm amount =	0, High alarm ar	mount = 0	N 07	
roup number = 0, C	omponent const	tant = 29432	2.37	
o retention time refe	rence compone	ent		
ingle peak quantific	ation by area			
evel Amount Area	Area/Amt	Source	Date and time	···
	Pacan and			
1 2.000 633	46.0 31673	Manual	3/9/2009 12:04:4	
2 8.000 2416		Manual	3/9/2009 12:04:4	
3 16.000 4598		Manual	3/9/2009 12:04:4	
4 20.000 5761		Manual	3/9/2009 12:04:4	
-5 40.000 11096	17.0 27740.43	Manual	3/9/2009 12:07:2	
alibration formula:	Y = 29432.37	X		
it type ≕Ava CF wit	h equal weightir	ng, forced to	origin	
Coefficient of determ	ination = 0.9923	3, Average e	error = 4.09%	
verage CF = 29432	3700 with RSD	= 5.19%		
C24		h	0.050 min	
Retention time = 12.	030 min., Searci	n window –	0.050 mm.	
ow alarm amount =	0, High alann a	mount = 0		
Group number = 0, 0	Somponent cons	ont		
to retention tinks ref Single peak quantific	erence compon-	Git		
sayle peak quanting	adon by alca			
	Area/Amt	Source	Date and time	
Level Amount Area				
Level Amount Area	0.0 0	Manual	3/9/2009 12:04:4	
Level Amount Area 1 1.000	0.0			
1 1.000 2 -1.000	0	Manual	3/9/2009 12:04:4	:
1 1.000 2 -1.000 3 -1.000	0	Manual	3/9/2009 12:04:4	:
1 1.000 2 -1.000	0		3/9/2009 12:04:4 3/9/2009 12:04:4	:

Fit type = Avg CF with equal weighting, forced to origin

C:\CPWIN\DATA1\AKRM061A.CAL

<u></u>	Chionir	erfect Calibration File	Page 3
Coefficient of determina Average CF = 0.0000 w	ation = 1.0000, Average (/ith RSD = 0.00%	error = 100.00%	
C25			
	0 min., Search window =	0.050 min	
	High alarm amount = 0	0.000 mm.	
Group number = 0, Cor			
No retention time refere	ence component		
Single peak quantificati	on by area		
Level Amount Area	Area/Amt Source	Date and time	
1 1.000 0.0	0 0 Manual	3/9/2009 12:04:4	
2 -1.000	0 Manual	3/9/2009 12:04:4	
3 -1.000	0 Manual	3/9/2009 12:04:4	1974 - A.
	0 Manual		
5 -1.000	0 g Manual	3/9/2009 12:07:2	
Alleration formulas M	o data nainte to granh		
Calibration formula: No	equal weighting, forced t	o oriain	
Coefficient of determin	ation = 1.0000, Average	error = 100.00%	
Average CF = 0.0000 v	with RSD = 0.00%		
7 C30-d62 SURR			
Retention time = 13.40	0 min., Search window =	• 0.050 min.	
Retention time = 13.40 Low alarm amount = 0	, High alarm amount = 0		
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co	, High alarm amount = 0 mponent constant = 237		
Retention time = 13.40 Low alarm amount = 0 Group number = 0, Co No retention time refer	, High alarm amount = 0 mponent constant = 237 ence component		
Retention time = 13.40 Low alarm amount = 0 Group number = 0, Co No retention time refer	, High alarm amount = 0 mponent constant = 237 ence component		
Retention time = 13.40 Low alarm amount = 0 Group number = 0, Co No retention time refer	, High alarm amount = 0 mponent constant = 237 ence component		
Retention time = 13.40 Low alarm amount = 0 Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source	09.04 Date and time	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source .0 25954 Manua	09.04 Date and time 1 3/9/2009 12:04:4	9%)
Retention time = 13.40Low alarm amount = 0.Group number = 0, CoNo retention time referSingle peak quantificatLevel Amount Area12.00028.000194062	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua	09.04 Date and time 1 3/9/2009 12:04:4 1 3/9/2009 12:04:4	
Retention time = 13.40Low alarm amount = 0.Group number = 0, CoNo retention time referSingle peak quantificatLevel Amount Area12.00028.000194062316.000368300	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua	09.04 Date and time 1 3/9/2009 12:04:4 1 3/9/2009 12:04:4 1 3/9/2009 12:04:4	
Retention time = 13.40Low alarm amount = 0Group number = 0, CoNo retention time referSingle peak quantificatLevel Amount Area12.00028.000316.000368300	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua	09.04 Date and time 3/9/2009 12:04:4 1 3/9/2009 12:04:4 1 3/9/2009 12:04:4 1 3/9/2009 12:04:4	
Retention time = 13.40Low alarm amount = 0Group number = 0, CoNo retention time referSingle peak quantificatLevel Amount Area12.00028.000120.000316.00033683001420.000	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua	09.04 Date and time 3/9/2009 12:04:4 1 3/9/2009 12:04:4 1 3/9/2009 12:04:4 1 3/9/2009 12:04:4	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y	High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source .0 25954 Manua .0 24257.75 Manua .0 23018.75 Manua .0 23007.45 Manua .0 22307.22 Manua	09.04 Date and time 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:07:2	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -it type = Avg CF with	High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua 0 22307.22 Manua = 23709.04 X equal weighting, forced	09.04 Date and time 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:07:2	
Retention time = 13.40 Low alarm amount = 0 Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -if type = Avg CF with Coefficient of determin	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua 0 23007.45 Manua = 23709.04 X equal weighting, forced fraction = 0.9915, Average	09.04 Date and time 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:07:2	
Retention time = 13.40 Low alarm amount = 0 Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.009 460149 5 40.000 892289 Calibration formula: Y -if type = Avg CF with Coefficient of determin	High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua 0 22307.22 Manua = 23709.04 X equal weighting, forced	09.04 Date and time 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:07:2	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -if type = Avg CF with Coefficient of determin Average CF = 23709.0	, High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua 0 23007.45 Manua = 23709.04 X equal weighting, forced fraction = 0.9915, Average	09.04 Date and time 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:04:4 3/9/2009 12:07:2	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -if type = Avg CF with Coefficient of determin Average CF = 23709.0 8 C36 Retention time = 14.71	 High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua 0 23007.45 Manua 0 22307.22 Manua = 23709.04 X equal weighting, forced for ation = 0.9915, Average 0400 with RSD = 6.07% 10 min., Search window = 	09.04 Date and time 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:07:2$ to origin error = 4.71% = 0.050 min.	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -if type = Avg CF with Coefficient of determin Average CF = 23709.0 3 C36 Retention time = 14.71 Low alarm amount = 0	 High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua 0 23007.45 Manua 0 2307.22 Manua = 23709.04 X equal weighting, forced for tation = 0.9915, Average 0400 with RSD = 6.07% 0 min., Search window = High alarm amount = 0 	09.04 Date and time 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:07:2$ to origin error = 4.71% = 0.050 min.	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -iit type = Avg CF with Coefficient of determin Average CF = 23709.0 3 C36 Retention time = 14.71 Low alarm amount = 0 Group number = 0, Co	 High alarm amount = 0 mponent constant = 237 ence component ion by area Area/Amt Source 0 25954 Manua 0 24257.75 Manua 0 23018.75 Manua 0 23007.45 Manua 0 23007.45 Manua 0 23007.22 Manua = 23709.04 X equal weighting, forced for tation = 0.9915, Average 0 400 with RSD = 6.07% 10 min., Search window = heigh alarm amount = 0 0 mponent constant = 0 	09.04 Date and time 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:07:2$ to origin error = 4.71% = 0.050 min.	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -it type = Avg CF with Coefficient of determin Average CF = 23709.0 3 C36 Retention time = 14.71 Low alarm amount = 0 Group number = 0, Co No retention time refer	High alarm amount = 0 mponent constant = 237ence component ion by areaArea/AmtSource025954Manua024257.75Manua023018.75Manua023007.45Manua022307.22Manua=23709.04Xequal weighting, forced fation = 0.9915, Average0400 with RSD = 6.07%10 min., Search window = nponent constant = 0 mponent constant = 0	09.04 Date and time 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:07:2$ to origin error = 4.71% = 0.050 min.	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -iit type = Avg CF with Coefficient of determin Average CF = 23709.0 3 C36 Retention time = 14.71 Low alarm amount = 0 Group number = 0, Co	High alarm amount = 0 mponent constant = 237ence component ion by areaArea/AmtSource025954Manua024257.75Manua023018.75Manua023007.45Manua022307.22Manua=23709.04Xequal weighting, forced fation = 0.9915, Average0400 with RSD = 6.07%10 min., Search window = nponent constant = 0 mponent constant = 0	09.04 Date and time 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:07:2$ to origin error = 4.71% = 0.050 min.	
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -if type = Avg CF with Coefficient of determin Average CF = 23709.0 8 C36 Retention time = 14.71 Low alarm amount = 0 Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area	High alarm amount = 0 mponent constant = 237ence component ion by areaArea/AmtSource025954Manua024257.75Manua023018.75Manua023007.45Manua022307.22Manua=23709.04Xequal weighting, forced fation = 0.9915, Average0400 with RSD = 6.07%10 min., Search window = nponent constant = 0 mponent constant = 0	09.04 Date and time 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:07:2$ to origin error = 4.71% = 0.050 min.	AKD28: 618
Retention time = 13.40 Low alarm amount = 0. Group number = 0, Co No retention time refer Single peak quantificat Level Amount Area 1 2.000 51908 2 8.000 194062 3 16:000 368300 4 20.000 460149 5 40.000 892289 Calibration formula: Y -if type = Avg CF with Coefficient of determin Average CF = 23709.0 8 C36 Retention time = 14.71 Low alarm amount = 0 Group number = 0, Co No retention time refer Single peak quantificat	High alarm amount = 0 mponent constant = 237ence component ion by areaArea/AmtSource025954Manua024257.75Manua023018.75Manua023007.45Manua022307.22Manua=23709.04Xequal weighting, forced fation = 0.9915, Average0400 with RSD = 6.07%10 min., Search window = 0, High alarm amount = 0mponent constant = 0mponent constant = 0mponent constant = 0mponent constant = 0manual Area/AmtSource	09.04 Date and time 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:04:4$ 1 $3/9/2009 12:07:2$ to origin error = 4.71% = 0.050 min.	

C:\CPWIN\DATA1\AKRM061A.CAL

		Chrom Perfect Calibration File	Page 4
vel Amount An	ea Area/Amt	Source Date and time	1.
	-		
2 -1.000 3 -1.000	0	Manual 3/9/2009 12:04:4 Manual 3/9/2009 12:04:4	
4 -1.000	0 0	Manual 3/9/2009 12:04:4	
5 -1.000	0	Manual 3/9/2009 12:07:2	
		•	
alibration formula	: No data points	to graph	
t type = Avg CF v	with equal weight	ing, forced to origin	
efficient of determined of the contract of t	000 with RSD = 0	00, Average error = 100.00%	
			in sta
		:	1 m.j.4 <u>4</u>
· .			
	• •		
	¢		
· · ·			
• • • •			
•			
			2 Z
`.			
-			
-			
:			
· · · ·			
·			
-			
<i>.</i> .			
			AKD28 818

C:\CPWIN\DATA1\AKRM061A.CAL

19 m e

Calibration File Name: C:\CPWIN\DATA1\AKRM061B.CAL Version = 1 External standard calibration No injection volume correction No sample weight correction Area reject threshold = 0 Reference peak area reject threshold = 0 Amount units = PPM 8 components with 5 levels each

1 DRO RF C10-<C25

Retention time = 0.001 min., Search window = 0.000 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 23109.9 No retention time reference component Single peak quantification by area

Amount	Area	Area/Amt	Source	Date and time
40.000	778303.9	19457.6	Manual	3/9/2009 12:04:4
360.000	7555367.0	20987.13	Manual	3/9/2009 12:04:4
920.000	22994960.0	24994.52	Manual	3/9/2009 12:04:4
1400.000	35127440.0	25091.03	Manual	3/9/2009 12:04:4
2000.000	50038460.0	25019.23	Manual	3/9/2009 12:08:0
	40.000 360.000 920.000 1400.000	40.000 778303.9 360.000 7555367.0 920.000 22994960.0 1400.000 35127440.0	40.000 778303.9 19457.6 360.000 7555367.0 20987.13 920.000 22994960.0 24994.52 1400.000 35127440.0 25091.03	40.000 778303.9 19457.6 Manual 360.000 7555367.0 20987.13 Manual 920.000 22994960.0 24994.52 Manual 1400.000 35127440.0 25091.03 Manual

Calibration formula: Y = 23109.9 X Fit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 0.9839, Average error = 10.00%Average CF = 23109.9000 with RSD = 11.64%

2 RRO RF C25-C36

Retention time = 0.016 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 12125.37 No retention time reference component Single peak quantification by area

Level	Amount	Area	Area/Amt	Source	Date and time
1	70.000	790246.4	11289.23	Manual	3/9/2009 12:04:4
2	600.000	7858144.0	13096.91	Manual	3/9/2009 12:04:4
З	1600.000	19370130.0	12106.33	Manual	3/9/2009 12:04:4
4	2400.000	28908370.0	12045.15	Manual	3/9/2009 12:04:4
5	3500.000	42312320.0	12089.23	Manual	3/9/2009 12:08:0

Calibration formula: Y = 12125.37 X Fit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 0.9996, Average error = 3.20%Average CF = 12125.3700 with RSD = 5.30%

3 C10

Retention time = 2.700 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 0

fre KAMpolate Dunzu Hulon

UXOL M201.27

V Troday 7-21-09

AKB28 8183

No retention time reference component Single peak quantification by area

. Level	Amount	Area	Area/Amt	Source	Date and time
1	1.000	0.0	0	Manual	3/9/2009 12:04:4
2	-1.000	· 0		Manual	3/9/2009 12:04:4
З	-1.000	0		Manual	3/9/2009 12:04:4
4	-1.000	0		Manual	3/9/2009 12:04:4
5	-1.000	0		Manual	3/9/2009 12:08:0

Calibration formula: No data points to graph Fit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 1.0000, Average error = 100.00%Average CF = 0.0000 with RSD = 0.00%

4 o-Terphenyl SURR

Retention time = 9.930 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 29432.37 No retention time reference component Single peak quantification by area

Level	Amount	Area	Area/Amt	Source	Date and time
1	2.000	63346.0	31673	Manual	3/9/2009 12:04:4
2	8.000	241629.0	30203.63	Manual	3/9/2009 12:04:4
3	16.000	459814.0	28738.38	Manual	3/9/2009 12:04:4
4	20.000	576128.0	28806.4	Manual	3/9/2009 12:04:4
5	40.000	1109617.0	27740.43	Manual	3/9/2009 12:08:0

Calibration formula: Y = 29432.37 X Fit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 0.9923, Average error = 4.09%Average CF = 29432.3700 with RSD = 5.19%

5 C24

Retention time = 11.930 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 0 No retention time reference component Single peak quantification by area

Level	Amount	Area	Area/Amt	Source	Date and time
			•		
1	1.000	0.0	0	Manual	3/9/2009 12:04:4
2	-1.000	0		Manual	3/9/2009 12:04:4
3	-1.000	0		Manual	3/9/2009 12:04:4
4	-1.000	0		Manual	3/9/2009 12:04:4
5	-1.000	0		Manual	3/9/2009 12:08:0

Calibration formula: No data points to graph Fit type = Avg CF with equal weighting, forced to origin

Coefficient of determination = 1.0000, Average error = 100.00% Average CF = 0.0000 with RSD = 0.00%

6 C25

Retention time = 12.210 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 0 No retention time reference component Single peak quantification by area

Level	Amount	Area	Area/Amt	Source	Date and time
1	1.000	0.0	0	Manual	3/9/2009 12:04:4
2	-1.000	0		Manual	3/9/2009 12:04:4
3	-1.000	0		Manual	3/9/2009 12:04:4
4	-1.000	0		Manual	3/9/2009 12:04:4
5	-1.000	0		Manual	3/9/2009 12:08:0

Calibration formula: No data points to graph Fit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 1.0000, Average error = 100.00%Average CF = 0.0000 with RSD = 0.00%

7 C30-d62 SURR

Retention time = 13.310 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 23709.04 No retention time reference component Single peak quantification by area

Level	Amount	Area	Area/Amt	Source	Date and time
1	2.000	51908.0	25954	Manual	3/9/2009 12:04:4
2	8.000	194062.0	24257.75	Manual	3/9/2009 12:04:4
3	16.000	368300.0	23018.75	Manual	3/9/2009 12:04:4
4	20.000	460149.0	23007.45	Manual	3/9/2009 12:04:4
5	40.000	892289.0	22307.22	Manual	3/9/2009 12:08:0

Calibration formula: Y = 23709.04 XFit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 0.9915, Average error = 4.71% Average CF = 23709.0400 with RSD = 6.07%

8 C36

Retention time = 14.630 min., Search window = 0.050 min. Low alarm amount = 0, High alarm amount = 0 Group number = 0, Component constant = 0 No retention time reference component Single peak quantification by area

Level	Amount	Area	Area/Amt	Source	Date and time	â	KD28	8185
1	1.000	0.0	0	Manual	3/9/2009 12:04:4			

Level	Amount	Area	Area/Amt	Source	Date and time
2	-1.000	٥		Manual	3/9/2009 12:04:4
3	-1.000	0		Manual	3/9/2009 12:04:4
4	-1.000	0		Manual	3/9/2009 12:04:4
5	-1.000	0		Manual	3/9/2009 12:08:0

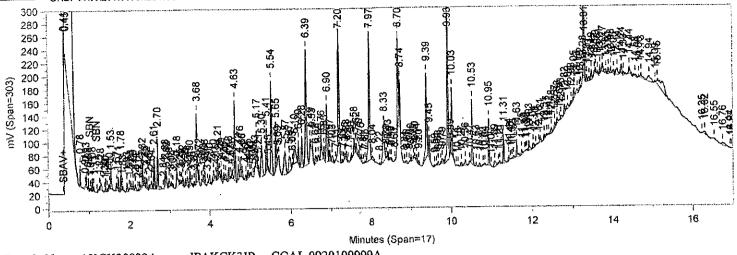
Calibration formula: No data points to graph Fit type = Avg CF with equal weighting, forced to origin Coefficient of determination = 1.0000, Average error = 100.00%Average CF = 0.0000 with RSD = 0.00%

ARB28 8186

AK 102/103

IPAKCK3IP CCAL 0920199999 Sample ID: AKCK30932A Injected on: 7/22/2009 11:49:53 AM Instrument ID:CP24--H5386B GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min Dilution Factor: 1 Sample Amount: 1 Analyst: 2105

Peak #	Ret Time (min)	Peak Na	me	Amount PPM	Peak Area	Peak Wid (min)	th	Peak Height
35 143 171 175 192 209	2.7 9.934 11.934 12.213 13.311 14.583	C10 o-Terpho C24 C25 C30-d62 C36	enyi SURR	24.2362	152464 713330 274106 286143 882865 818090		.022 .026 .022 .038 .02 .055	79659 319678 53292 60126 470829 147768
Slice	Start Ti	ne	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1 2 3 4	12 9	.600 .110 .880 .260	12.110 14.730 9.980 13.360	24.236 37.238 24.236 37.238	39.425 60.575 39.425 60.575	19962020.0 19377710.0 713329.9 1310314.0	2	0.449 9.558 1.088 1.999


Total slice amount= 122.948 Total slice amount %= 200.0

Total slice area= 41363370.0 Total slice area %= 63.1

******	RESULTS TABLE ************************************
C10- <c25 area="</td" dro=""><td>1.924869E+07</td></c25>	1.924869E+07
C10- <c25 amt="</td" dro=""><td>832.9198 PPM</td></c25>	832.9198 PPM
C25-C36 RRO AREA =	1.806739E+07
C25-C36 RRO AMT =	1490.049 PPM
Level #2 % DRO Difference =	131.3666 %
Level #2 % RRO Difference =	148.3414 %
Level #3 % DRO Difference =	-9.465241 %
Level #3 % RRO Difference =	-6.871957 %
Level #4 % DRO Difference =	-40.50573 %
Level #4 % RRO Difference =	-37.91464 %
FILES:	

Area File: C:\CPWIN\DATA1\M201.69A Method File: C:\CPWIN\DATA1\AKRMSTD.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSTD.FMT Area file created on: 7/22/2009 12:10:02 PM File reported on: 7/22/2009 at 12:10:04 PM

AK 102/103 SURROGATE AKCK30932A CCAL 0920199999 **IPAKCK3IP** C:\CPWIN\DATA1\M201.69R

IPAKCK3IP Sample Name: AKCK30932A

CCAL 0920199999A

Injected on: 7/22/2009 11:49:53 AM

GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C

Instrument ID:CP24--H5386B Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min Sample Amount: 1

Analyst: 2105 Peak Width Peak Peak Amount Peak Ret Time Height (min) PPM Area Peak Name (min) # 76637 124307 .022 2.7 C10 34 .026 291015 17.2837 508701 o-Terphenyl SURR 142 9.934 15592 29990 .022 11.934 C24 170 10798 .038 20459 12.213 C25 174 .02 326569 402001 16.9556 C30-d62 SURR 13.311 191 .064 3618 8195 C36 14.583 208 Area % nt 0/2 Slice Area

Dilution Factor: 1

Slice	Start Time	Stop Time	Slice Amount	Amount 70	Silce Area	Filta 70
1	9.880	9.980	17.284	50.479	508701.2	2.874
2	13.260	13.360	16.956	49.521	410403.1	2.319

Total slice amount= 34.239 Total slice amount %= 100.0 Total slice area= 919104.3 Total slice area %= 5.2

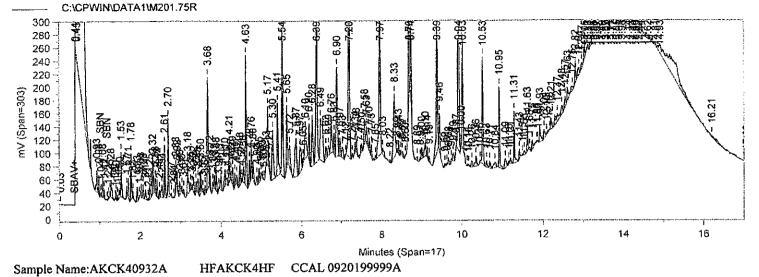
o-Terphenyl Level 2 % Difference =	72.83736 %
C30-d62 Level 2 % Difference =	69.55624 %
o-Terphenyl Level 3 % Difference =	-13.58132 %
C30-d62 Level 3 % Difference =	-15.22188 %
o-Terphenyl Level 4 % Difference =	-56.79066 %
C30-d62 Level 4 % Difference =	-57.61094 %

FILES:

Area File: C:\CPWIN\DATA1\M201.69A Method File: C:\CPWIN\DATA1\REAKRMST.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRMST.FMT Area file created on: 7/22/2009 12:10:20 PM File reported on: 7/22/2009 at 12:10:22 PM

HFAKCK4HF CCAL 0920199999 Sample ID: AKCK40932A Injected on: 7/22/2009 2:35:37 PM Instrument ID:CP24-H5386B GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min Dilution Factor: 1 Sample Amount: 1 Analyst: 2105

Peak #	Ret Time (min)	Peak Na	me	Amount PPM	Peak Area	Peak Wid (min)	th	Peak Height
34 137 162 166 180 196	2.701 9.937 11.933 12.213 13.312 14.622	C10 o-Terphe C24 C25 C30-d62 C36	nyl SURR SURR	47.7426 73.4028	226248 1405178 528833 634733 1740309 29635		.022 .025 .021 .037 .02 .01-80	127003 729674 100876 111809 928525 00044000
Slice	Start Time		Stop Time	Slice Amount	Amount %	Slice Area	Ar	ea %
1 2 3 4	2.600 12.110 9.880 13.260		12.110 14.730 9.980 13.360	47.743 73.403 47.743 73.403	39.409 60.591 39.409 60.591	36741240.0 34428850.0 1405178.0 2548212.0	33 1	.271 .051 .349 2.446


Total slice amount= 242.291 Total slice amount %= 200.0 Total slice area= 75123490.0 Total slice area %= 72.1

********	RESULTS TABLE ************************************
C10- <c25 amt="</th" area="C10-<C25" dro=""><th>3.533607E+07 1529.045 PPM</th></c25>	3.533607E+07 1529.045 PPM
C25-C36 RRO AREA =	3.188064E+07
C25-C36 RRO AMT =	2629.25 PPM
Level #2 % DRO Difference =	324.7346 %
Level #2 % RRO Difference =	338.2084 %
Level #3 % DRO Difference =	66.20049 %
Level #3 % RRO Difference =	64.32816 %
Level #4 % DRO Difference =	9.217464 %
Level #4 % RRO Difference =	9.552109 %
FILES:	
Area File: C:\CPWIN\DATA1\M201.75A	

Area File: C:\CPWIN\DATA1\M201./5A Method File: C:\CPWIN\DATA1\AKRMSTD.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSTD.FMT Area file created on: 7/22/2009 2:55:44 PM File reported on: 7/22/2009 at 2:55:46 PM

ARD28 8589

AK 102/103 SURROGATE AKCK40932A HFAKCK4HF CCAL 0920199999

Instrument ID:CP24--H5386BInjected on: 7/22/2009 2:35:37 PMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minDilution Factor: 1

Sample Amount: 1 Analyst: 2105

Peak #	Ret Time (min)	Peak N	ame	Amount PPM	Peak Area	Peak Wid (min)	th	Peak Height
1	.027	RRO R	F C25-C36	.022	267		045	140
34	2.701	C10			174709	-	022	118628
137	9.937	o-Terph	enyl SURR	34.9303	1028081		025	665880
162	11.933	C24	•	,	52021		021	26185
166	12.213	C25			33377		037	18065
180	13.312	C30-d62 SURR		35.0672	831410		.02	679866
195	14.621	C36			2188		029	3846
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
I	9	.880	9.980	34.930	49.887	1028081.0	4	4.261
. 2	13	.260	13.360	35.067	50.082	840748.8		3.485

Total slice amount= 69.997 Total slice amount %= 100.0 Total slice area= 1868830.0 Total slice area %= 7.7

o-Terphenyl Level 2 % Difference =	249.3028 %				
C30-d62 Level 2 % Difference =	250.6721 %				
o-Terphenyl Level 3 % Difference =	74.6514 %				
C30-d62 Level 3 % Difference =	75.33605 %				
o-Ternhenyl Level 4 % Difference =	-12.6743 %				

0-replicity Dever 4 /0 Difference	-12.0745 70
C30-d62 Level 4 % Difference =	-12.33197 %

FILES:

Area File: C:\CPWIN\DATA1\M201.75A Method File: C:\CPWIN\DATA1\REAKRMST.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRMST.FMT Area file created on: 7/22/2009 2:56:00 PM File reported on: 7/22/2009 at 2:56:03 PM

AKD28 8198

AK 102/103 RT

Sample ID: AKRTX0932BZNAKRTXZNCCAL 0920099999Instrument ID:CP24--H5386BInjected on: 7/22/2009 3:03:11 PMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minDilution Factor: 1Sample Amount: 1Dilution Factor: 1

Peak #	Ret Time (min)	Peak N	lame	Amount PPM	Peak Area	Peak Wid (min)	lth	Peak Height
1	.033	RRO RF C25-C36		.0129	. 156		.022	219
18	2.701	C10			262011		.022	192463
75	9.932	o-Terphenyl SURR		10.1134	297661		.024	191942
94	11.932	C24			285762		.019	233151
97	12.212	C25			233321		.018	199579
m	13.307	C30-d6	2 SURR	10.4813	248501		.02	197846
124	14.63	C36			44142		.023	31024
Slice	Start Time		Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	10	0.030	10.130	0.000	0.000	1623.6	(0.011
2	13	.350	13.450	0.000	0.000	5689.9	I	0.039
		000		Total alice area 7	212 /			

Total slice amount= 0.000 Total slice amount %= 0.0 Total slice area= 7313.4 Total slice area %= 0.1

TZ (C24 - C25) = 19.20247

FILES:

Area File: C:\CPWIN\DATA1\M201.76A Method File: C:\CPWIN\DATA1\AKRTM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRTM.FMT Area file created on: 7/22/2009 3:19:18 PM File reported on: 7/22/2009 at 3:19:20 PM

AK 102/103 RT

Sample ID: AKRTX0932BZNAKRTXZNCCAL 0920099999Instrument ID:CP24--H5386BInjected on: 7/23/2009 7:52:17 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minSample Amount: 1Dilution Factor: 1Analyst: 2105

Peak #	Ret Time (min)	Peak 1	Jame	Amount PPM	Peak Area	Peak Wie (min)	lth	Peak Height
18	2.699	C10			212070		.021	157281
67	9.932	o-Terp	henyl SURR	9.6679	284548		.024	186304
83	11.933	C24	•		247399		.019	202628
86	12.213	C25			229106		.02	187401
99	13.309	C30-d(52 SURR	9.1158	216127		.021	167414
109	14.623	C36			117531	•	.021	88968
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	10.030		10.130	0.000	0.000	1349.8	(0.010
2	13	.350	13.450	0.000	0.000	3770.0	(0.029

Total slice amount= 0.000 Total slice amount %= 0.0 Total slice area= 5119.8 Total slice area %= 0.0

TZ (C24 - C25) = 18.59054

FILES:

Area File: C:\CPWIN\DATA1\M204.02A Method File: C:\CPWIN\DATA1\AKRTM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRTM.FMT Area file created on: 7/23/2009 8:08:26 AM File reported on: 7/23/2009 at 8:08:27 AM

AED28 8192

Sample ID: AKCK20932AJFAKCK2JFCCAL 0920199999Instrument ID:CP24-H5386BInjected on: 7/23/2009 8:19:52 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C Imin; 15C/min to 180C; 30C/min to 340C HOLD 1.05minDilution Factor: 1Sample Amount: 1Dilution Factor: 1

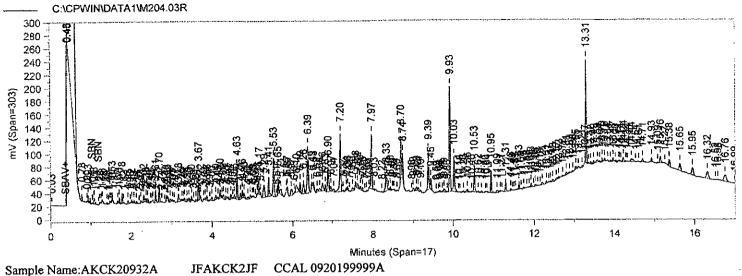
Peak #	Ret Time (min)	Peak Na	me	Amount PPM	Peak Area	Peak Wi (min)	dth	Peak Height
35	2.698	C10			49732		.022	31190
142	9.931	o-Terphe	enyl SURR	10.1514	298780		.026	169658
168	11.932	C24	-	•	50776		.02	17569
173	12.212	C25			92326		.026	18911
188	13.307	C30-d62	SURR	17.3881	412256		.02	205130
208	14.613	C36		•	263450		.078	47651
Slice	Start Ti	ne	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	2	.600	12.110	10.151	36.861	7302068.0	23	3.827
2	12	.110	14.730	17.388	63.139	6521107.0	2	l.279
3	9	.880	9.980	10.151	36.861	298779.8	().975
4	13	.260	13.360	17.388	63.139	546781.7]	1.784

Total slice amount= 55.079 Total slice amount %= 200.0 Total slice area= 14668740.0 Total slice area %= 47.9

C10-<C25 DRO AREA = 7003288 C10-<C25 DRO AMT = 303.0428 PPM

C25-C36 RRO AREA = 5974326 C25-C36 RRO AMT = 492.7128 PPM

Level #2 % DRO Difference = Level #2 % RRO Difference =	-15.82146 % -17.8812 %
Level #3 % DRO Difference =	-67.06056 %
Level #3 % RRO Difference =	-69.20545 %
Level #4 % DRO Difference =	-78.35409 %


Level #4 % RRO Difference = -79.4703 %

FILES:

Area File: C:\CPWIN\DATA1\M204.03A Method File: C:\CPWIN\DATA1\AKRMSTD.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSTD.FMT Area file created on: 7/23/2009 8:40:00 AM File reported on: 7/23/2009 at 8:40:02 AM

ARD28 8193

AK 102/103 SURROGATE AKCK20932A JFAKCK2JF CCAL 0920199999

Instrument ID:CP24--H5386BInjected on: 7/23/2009 8:19:52 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minDilution Factor: 1

Analyst: 2105

Peak #	Ret Time (min)	Peak N	ame	Amount PPM	Peak Area	Peak Widt (min)	h	Peak Height
1	.032	RRO RI	F C25-C36	.0136	165		039	149
35	2.698	C10			40650		022	29027
142	9.931		enyl SURR	8.9909	264625		026	162211
168	11.932	C24	,,		8376		.02	6070
173	12.212	C25			7455		026	4120
188	13.307	C30-d62 SURR		8.294	196643		.02	158641
208	14.613	C36			2393		038	1535
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	9	.880	9.980	8.991	51.975	264624.5	2	2.050
2	-	.260	13.360	8.294	47.946	198743.3	1	1.540

Total slice amount= 17.285 Total slice amount %= 99.9 Total slice area= 463367.8 Total slice area %= 3.6

o-Terphenyl Level 2 % Difference =	-10.09064 %
C30-d62 Level 2 % Difference =	-17.05989 %
o-Terphenyl Level 3 % Difference =	-55.04532 %
C30-d62 Level 3 % Difference =	-58.52994 %
o-Terphenyl Level 4 % Difference =	-77.52266 %
C30-d62 Level 4 % Difference =	-79.26498 %

FILES:

Area File: C:\CPWIN\DATA1\M204.03A Method File: C:\CPWIN\DATA1\REAKRMST.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRMST.FMT Area file created on: 7/23/2009 8:40:18 AM File reported on: 7/23/2009 at 8:40:20 AM

AKD28 6194

Sample ID: AKCK30932AIQAKCK3IQCCAL 0920199999Instrument ID:CP24--H5386BInjected on: 7/23/2009 12:56:55 PMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minSample Amount: 1Dilution Factor: 1Analyst: 2105

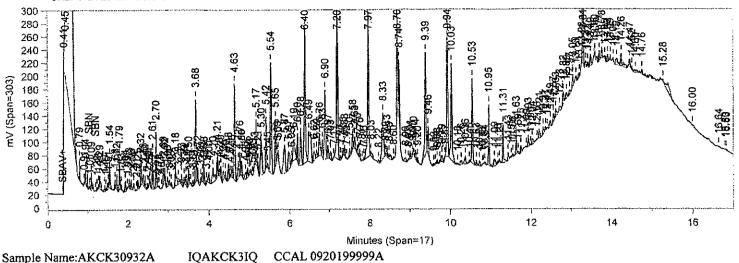
Peak #	Ret Time (min)	Peak Na	ame	Amount PPM	Peak Area	Peak Wid (min)	th	Peak Height
34	2.703	C10			146891		.023	92472
138	9.935	o-Terphe	enyl SURR	26.421	777634		.026	387476
162	11.934	C24	•		266970		.023	69059
166	12.212	C25		,	456469		.039	77312
181	13.312	C30-d62	SURR	51.6752	1225169		.019	564306
197	14.605	C36		,	1870811		.151	163301
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	2	2.600	12.110	26.421	33.831	25062350.0	32	2.623
2	12	2.110	14.730	51.675	66.169	23479310.0	30	0.563
3	9	9.880	9.980	26.421	33.831	777633.5		1.012
4	13	3.260	13.360	51.675	66.169	1791808.0	1	2.332

Total slice amount= 156.192 Total slice amount %= 200.0 Total slice area= 51111100.0 Total slice area %= 66.5

----------	--

C10- <c25 area<="" dro="" th=""><th>==</th><th>2.428472E+07</th></c25>	==	2.428472E+07
C10- <c25 amt<="" dro="" td=""><td>=</td><td>1050.836 PPM</td></c25>	=	1050.836 PPM

C25-C36 RRO AREA	=	2.16875E+07
C25-C36 RRO AMT		1788.605 PPM


Level #2 % DRO Difference =	191.8989 %
Level #2 % RRO Difference =	198.1009 %
Level #3 % DRO Difference =	14.22131 %
Level #3 % RRO Difference =	11.78783 %
	24.04009.0/

Level #4 % DRO Difference = -24.94028 % Level #4 % RRO Difference = -25.47478 %

FILES:

Area File: C:\CPWIN\DATA1\M204.13A Method File: C:\CPWIN\DATA1\AKRMSTD.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSTD.FMT Area file created on: 7/23/2009 1:17:04 PM File reported on: 7/23/2009 at 1:17:06 PM

AK 102/103 SURROGATE IQAKCK3IQ CCAL 0920199999 AKCK30932A C:\CPWIN\DATA1\M204,13R

Sample Name: AKCK30932A

IQAKCK3IQ

13.360

Injected on: 7/23/2009 12:56:55 PM Instrument ID:CP24-H5386B GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min **Dilution Factor: 1** Sample Amount: 1

Analyst: 2105

Peak #	Ret Time (min)	Peak Na	me	Amount PPM	Peak Area	Peak Wid (min)	th	Peak Height
							~~~	01110
34	2.703	C10			123453		.023	86663
140	9.935	o-Terphe	enyl SURR	19.2181	565633		.026	348022
164	11.934	C24	•		27710		.023	18047
168	12.212	C25			26808		.039	13771
183	13.312	C30-d62	SURR	20.0086	474384		.02	390308
199	14.605	C36		•	21654		.101	4858
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	A	rea %
1	9	.880	9.980	19.218	48.992	565633.2		2.835

Total slice amount= 39.227 Total slice amount %= 100.0

13.260

Total slice area= 1049407.0 Total slice area %= 5.3

20.009

51.008

o-Terphenyl Level 2 % Difference =	92.18067 %
C30-d62 Level 2 % Difference =	100.0859 %
o-Terphenyl Level 3 % Difference =	-3.909665 %
C30-d62 Level 3 % Difference =	4.293919E-02 %
o-Terphenyl Level 4 % Difference =	-51.95483 %
C30-d62 Level 4 % Difference =	-49.97853 %

#### FILES:

2

Area File: C:\CPWIN\DATA1\M204.13A Method File: C:\CPWIN\DATA1\REAKRMST.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRMST.FMT Area file created on: 7/23/2009 1:17:20 PM File reported on: 7/23/2009 at 1:17:22 PM

AND28 8196

2.425

483773.6

#### Lancaster Laboratories = CHROM PERFECT SEQUENCE FILE =

#### Sequence File: \\cp24\C-Drive\CPWIN\DATA1\m061.seq Chromatography Directory: \\cp24\C-Drive\cpwin\DATA1 Method Directory: \\cp24\C-Drive\cpwin\DATA1

Number of Entries: 52

Samplename 1 CONDITIONER	<u>Code</u> MISC	<u>ID</u> AA		<u>Method</u> AKDMSTD.M	<u>Samp Wt</u> ET 1	DF 1	Int Std 1	Batch Number 096099999	Analysis	
2 CONDITIONER	MISC	AA	m061.02R	AKDMSTD.M		1		0960999999		
3 CONDITIONER	MISC		m061.03R	AKDMSTD.M		1	1	0960999999		
4 AKRTX0832E	CCAL		m061.04R	AKRTM.MET	1	1	1	0960999999		
(SAKSS10832B	ICAL		m061.05R	AKRMSTD.M		1	1			
E KSS20832B	ICAL	AA		AKRMSTD.M		1	1			
AKSS30832B	ICAL		m061.07R	AKRMSTD.M		1	1			
BAKSS40832B	ICAL		m061.08R	AKRMSTD.M		1	-	0960999999	•	- N
9 AKSS50832B	ICAL	AA		AKRMSTD.M		1		096099999		
10 1FUL10932A	ICAL	AA	m061.10R	AKDMSTD.M		1		096099999		
-11.1FUL20932A	ICAL		m061.11R	AKDMSTD.M		1		096099999		,
12 1FUL30932A	ICAL		m061.12R	AKDMSTD,M		1		096099999		۰.
13 1FUL40832J	ICAL		m061.13R	AKDMSTD.M		1		096099999		
14 1FUL50932A	ICAL		m061.14R	AKDMSTD.M		1	1			
15 MECL2	MISC		m061.15R	AKRLSTD.ME		1	1			
(6 AKSW10832B	ICAL		m061.16R	AKRMSTD.M		1	1			
17 AKSW20832B	ICAL		m061.17R	AKRMSTD.M		1	1			
(18) KSW30832B	ICAL		m061.18R	AKRMSTD.M		1	1			
19 AKSW40832B	ICAL		m061.19R	AKRMSTD,M		1	1	096099999		
20 KSW50832B	ICAL		m061.20R	AKRMSTD.M		1	1	096099999		
21 MECL2	MISC		m061.21R	AKRMSTD.M		1	1			
22 1MDLX0832E	CCAL		m061.22R	AKDMSTD.M		1	1			
COSAKMDX0832B	CCAL		m061.23R	AKRMSTD.M		1	1	096099999		
24 AKCDX0832B	CCAL		m061.24R	AKDMSTD.M		1	1			
C5 AKCRX0832B	CCAL		m061.25R	AKRMSTD.M		1	1	096099999		•
26 AKRTX0832E	CCAL	xv	m061.26R	AKRTM.MET	1	1	1			114 Y
27 MECL2	MISC	AA	m061.27R	AKRLSTD.ME	ET 1	1	1			
28 CNIC10832C	ICAL		m061.28R	CTMSTD.ME	Г 1	1	1	096099999		
29 CNIC20832C	ICAL	AA	m061.29R	CTMSTD.ME	Т 1	1	1	096099999		
30 CNIC30832C	ICAL	AA	m061.30R	CTMSTD.ME	т 1	1	1	096099999		
31 CNIC40832C	ICAL	AA	m061.31R	CTMSTD.ME	۳ 1	1	1	096099999		
32 CNIC50832C	ICAL	AA	m061.32R	CTMSTD.ME	T 1	1	1	096099999		
33 MECL2	MISC	AA	m061,33R	AKRLSTD.ME	T 1	1	1	096099999		
34 FLA_10832D	ICAL	AA	m061.34R	FLAMSTD,ME	ET 1	1	1	096099999		
35 FLA_20832D	1CAL	AA	m061.35R	FLAMSTD.ME	ET 1	1	1	096099999		
36 FLA_30832D	ICAL	AA	m061.36R	FLAMSTD.ME	ET 1	1	1	096099999	•	
37 FLA_40832D	ICAL	AA	m061.37R	FLAMSTD.ME	ET 1	1	1	096099999		
38 FLA_50832D	ICAL	AA	m061.38R	FLAMSTD.ME	ET 1	1	1	096099999		
39 MECL2	MISC	AA	m061.39R	AKRLSTD.ME	T 1	1	1	096099999		
40 FPCKX0832B	CCAL	BA	m061.40R	FLAMSTD.ME	ET 1	1	1	096099999		
41 TPH_10832C	ICAL	AA	m061.41R	TNMCK.MET	1	1	1	096099999		
42 TPH_20932A	ICAL	AA	m061.42R	TNMCK.MET	1	1	1	096099999		
43 TPH_30932A	ICAL	AA	m061.43R	TNMCK.MET	1	1	1	096099999		
44 TPH_40932A	ICAL		m061.44R	TNMCK.MET	1	1	1	096099999		
45 TPH_50832C	ICAL		m061.45R	TNMCK.MET	1	1	1	096099999		
46 TNIC10832B	ICAL		m061.46R	TNMCK.MET	1	1	1	096099999		-
47 TNIC20832B	ICAL		m061.47R	TNMCK.MET	1	1	1	096099999		
48 TNIC30832B	ICAL		m061.48R	TNMCK.MET	1	1		096099999		
49 TŃIC40832B	ICAL		m061.49R	TNMCK.MET	1	1		096099999	AUBOO	<b>310</b> 7
50 TNIC50832B	ICAL	AA	m061.50R	TNMCK.MET	1	1	1	096099999	AKD28	UI 76

3/10/09

472

. . . .

:

Lancaster Laboratories		
CHROM PERFECT SEQUENCE	FILE	-

## Sequence File: \\cp24\C-Drive\CPWIN\DATA1\m061.seq

Chromatography Directory: \\cp24\C-Drive\cpwin\DATA1;

#### Method Directory: \\cp24\C-Drive\cpwin\DATA1

Number of Entries: 52		· ·							
									• •
Samplename	<u>Code</u>	ID FileName	Method	Samp Wt	DF	Int Std	Batch Number	<u>Analysis</u>	
51 MECL2	MISC	AA m061.51R	AKRLSTD.ME	Г 1	1	1	096099999		
52 TNCKX0832C	CCAL	OM m061.52R	TNMCK.MET	1	1	1	096099999		

#### · •.•

	· : .	• .•
• • •	27 <b>I</b> 7.7	
• :		
	· · · ·	
· ·.		
· • •		
'		
•. • • • •		

-			

## . ..

# .

Mar Date:

#### AKD28 8£98

.ņ

Ģ

Page 2 of 2

## Lancaster Laboratories = CHROM PERFECT SEQUENCE FILE _____

#### Sequence File: \\cp24\C-Drive\CPWIN\DATA1\M201.seq Chromatography Directory: \\cp24\C-Drive\cpwin\DATA1 Method Directory: \\cp24\C-Drive\cpwin\DATA1 Number of Entries: 76

Complements	Code	ID	FileName	Method Sa	mp Wt	DF	Int Std	Batch Number	Analysis
Samplename 1 CONDITIONER	MISC	_	M201.01R	WILSTD.MET	1	1	1	0920099999	
2 CONDITIONER	MISC		M201.02R	WILSTD.MET	1	1	1	0920099999	
3 CONDITIONER	MISC		M201.03R	WILSTD.MET	1	1	1	09200999999	
4 CONDITIONER	MISC		M201.04R	WILSTD.MET	1	1	1	0920099999	
5 AKRTX0932B	CCÁL			AKRTM.MET	1	1	1	0920099999	
6 AKFL20932A	CCAL	LE	M201.06R	AKDMSTD.MET	1	1	· 1	0920099999	
7 BLANKA 7/20/09	BLK		M201.07R	AKDMSUM.ME1	1000	1	1	091990009A	01741
8 LCSA 7/20/09	LCS		M201.08R	AKDMSUM.ME1	1000	1	1	091990009A	01741
9 LCSDA 7/20/09	LCSD		M201.09R	AKDMSUM.MET	1000	1	1	091990009A	01741
10 5725296	T		M201.10R	AKDMSUM.MET	1008	1	1	091990009A	01741
	Т	AA	· · · · ·	AKDMSUM.MET	1060	1	1	091990009A	01741
11 5725297	Т	AA		AKDMSUM.MET	927	1	1	091990009A	01741
12 5725298	Ť	AA		AKDMSUM.ME1	1005	1	1	091990009A	01741
13 5725299	Ϋ́		M201.14R	AKDMSUM.MET	938	1	1	091990009A	01741
14 5725300	Ť		M201.15R	AKDMSUM.ME1	895	10	1	091990009A	01741
15 5725654DF10	CCAL		M201.16R	AKDMSTD.MET	1	1	1	0920099999	
16 AKFL30932A	BLK		M201.17R	AKDMSUM.MET	25	1	1	091990006A	01742
17 BLANKA 7/19/09	LCS		M201.18R	AKDMSUM.MET	25	1	1	091990006A	01742
18 LCSA 7/19/09	LCSD	AA		AKDMSUM.MET	25	1	1	091990006A	01742
19 LCSDA 7/19/09			M201.19R M201.20R	AKDMSUM.MET	25	1	1	091990006A	01742
20 5725304	T T			AKDMSUM.MET	25	1	4	091990006A	01742
21 5725302	T	- AA		AKDMSUM.MET	25	1	•	091990006A	01742
22 5725302MS	MS	AA		AKDMSUM.MET	25	1		091990006A	01742
23 5725302MSD	MSD	AA		WIMSUM.MET	1	1		0920099999	
24 MECL2	MISC	AA		AKDMSUM.ME1	25	10		1 091990006A	01742
25 5725303DF10	20		M201.25R	AKDMSTD.MET	1	1			
	CCAL	- KA 	M201.26R	AKRTM.MET	1	1		1 0920099999	
27 AKRTX0932B	CCAL			WILSTD.MET	1	1		1 0920099999	
28 CONDITIONER	MISC	AA The			1	1		1 0920099999	
	gccal				1	1		1 0920099999	
30 AKFL30932A 4121	• CCAL			AKDMSTD.MET		50		1 091990006A	01742
31 5725302DF50	T	AE		AKDMSUM.ME1		10		1 091990009A	01741
32 5725300DF10	т	AE		AKDMSUM.MET		1		1 091990009A	01741
33 5725654	Т		A M201.33R	AKDMSUM.MET		20		1 091990009A	01741
34 5725300DF20	Т	AC		AKDMSUM.MET		20		1 0920099999	••••
35 AKFL20932A	CCAL			AKDMSTD.MET		1		1 0920099999	
36 AKRTX0932B	CCAL		M201.36R	AKRTM.MET	1	1		1 0920199999	
37 AKCK20932A	CCAL			AKRMSTD.MET		1		1 092010024A	01738
38 BLANKA 7/20/09	BLK		A M201.38R	AKRMSUM MET		40		1 091990009A	01741
39 5725300DF40	T		D M201.39R	AKDLSUM.MET				1 0920099999	
40 AKFL40932A	CCAL	. KI	B M201.40R	AKDMSTD.MET		1			
41 AKFL40932A	CCAL		B M201.41R	AKDMSTD.MET		1		1 0920099999 1 0920199999	
42 AKCK20932A	CCAL	JE	D M201.42R	AKRMSTD.MET		1			01738
43 LCSA 7/20/09	LCS		A M201.43R	AKRMSUM.ME		1		1 092010024A	01738
44 LCSDA 7/20/09	LCSE	) A	A M201.44R	AKRMSUM.ME		1		1 092010024A	
45 5726710	Ŧ	A	A M201.45R	AKRMSUM.ME		1		1 092010024A	01738
46 5726710MS	MS	A	A M201.46R	AKRMSUM.ME		1		1 092010024A	01738
47 5726710MSD	MSD	A	A M201.47R	AKRMSUM.ME		1		1 092010024A	01738
48 5726711	т	A.	A M201.48R	AKRMSUM.ME		1		1 092010024A	01738
49 5726712	T	A	A M201.49R	AKRMSUM.ME		1		1 092010024A	01738
50 AKCK30932A	CCA	L IC	0 M201.50R	AKRMSTD.ME	Γ 1	1		1 0920199999	AKD28 8199

## Lancaster Laboratories = CHROM PERFECT SEQUENCE FILE ==

#### Sequence File: \\cp24\C-Drive\CPWIN\DATA1\M201.seq Chromatography Directory: \\cp24\C-Drive\cpwin\DATA1 Method Directory: \\cp24\C-Drive\cpwin\DATA1 Number of Entries: 76

Samplename	Code	ID	<b>FileName</b>	Method	Samp Wt	DF	Int Std	Batch Number	<u>Analysis</u>
51 5726713	т	AA	M201.51R	AKRMSUM.ME	a 25	1	1	092010024A	01738
52 5726714	Т	AA	M201.52R	AKRMSUM.ME	n 25	1	1	092010024A	01738
53 5726719	τ	AA	M201.53R	AKRMSUM.ME	25	1	1	092010024A	01738
54 5726718	т	AA	M201.54R	AKRMSUM.ME	ET 25	1	1	092010024A	01738
55 5726717	Т	AA	M201.55R	AKRMSUM.ME	-1 25	1	1	092010024A	01738
56 5726716DF5	Т	AB	M201.56R	AKRMSUM.ME	-1 25	5	1	092010024A	01738
57 5726715DF10	т	AB	M201.57R	AKRMSUM.ME	-1 25	10	1	092010024A	01738
58 AKCK40932A	CCAL	HE	M201.58R	AKRMSTD.ME	<b>T</b> 1	1	1	0920199999	
59 AKRTX0932B	CCAL	ZN	M201.59R	AKRTM.MET	1	1	1	0920099999	
60 CONDITIONER	MISC	AA	M201.60R	WILSTD.MET	1	1	1	0920099999	
61 AKRTX0932B	CCAL	ZN	M201.61R	AKRTM.MET	1	1	1	0920099999	
62 AKCK20932A	CCAL	JE	M201.62R	AKRMSTD.ME	T 1	1	1	0920199999	
63 5726714 RI	Т	AA	M201.63R	AKRLSUM.ME	T 25	1	1	092010024A	01738
64 5726718 RI	Т	AA	M201.64R	AKRLSUM.ME	T 25	1	1	092010024A	01738
65 5726717DF20	Т	AB	M201.65R	AKRLSUM.ME	T 25	20	1	092010024A	01738
66 5726716DF5	т	AB	M201.66R	AKRLSUM.ME	T 25	5	1	092010024A	01738
67 5726715	Ŧ	AA	M201.67R	AKRLSUM.ME	T 25	1	1	092010024A	01738
68 MECL2	MISC	AA	M201.68R	WILSTD.MET	1	1	1	0920299999	
(69)AKCK30932A	CCAL	IP	M201.69R	AKRMSTD.ME	ET 1	1	1	0920199999	
00 BLANKA 7/22/09	BLK	AA	M201.70R	AKRMSUM.M	ET 1000	1	1	092020011A	02923
CSA 7/22/09	LCS	AA	M201.71R	AKRMSUM.MI	ET 1000	1	1	092020011A	02923
72LCSDA 7/22/09	LCSD	AA	M201.72R	AKRMSUM.M	EN 1000	1	1	092020011A	02923
73 6726707	Т	AA	M201.73R	AKRMSUM.M	EN 1046	1	1	092020011A	02923
74 5726720	Т	AA	M201,74R	AKRMSUM.M	ET 964	1	1	092020011A	02923
AKCK40932A	CCAL	HF	M201.75R	AKRMSTD.ME	ET 1	1	1	0920199999	
6 AKRTX0932B	CCAL	ZN	M201.76R	AKRTM.MET	1	1	1	0920099999	

ARD28 6568

Mary A ble Date: 1-22-09

## Lancaster Laboratories = CHROM PERFECT SEQUENCE FILE ------

#### Sequence File: \\cp24\C-Drive\cpwin\DATA1\M204.seq Chromatography Directory: \\cp24\C-Drive\cpwin\DATA1 Method Directory: \\cp24\C-Drive\cpwin\DATA1 Number of Entries: 99

Samplename	Code		FileName	Method	Samp Wt	DF		Batch Number	Analysis
1 CONDITIONER	MISC		M204.01R	WILSTD.MET	1	1		0920099999	
ZAKRTX0932B	CCAL		M204.02R	AKRTM.MET	1	1		0920099999	
AKCK20932A	CCAL	JF	M204.03R	AKRMSTD.ME		1		0920199999	01720
4 5726717DF10	т	AC	M204.04R	AKRMSUM.ME		10		092010024A	01738
(51CSA 7/22/09	LCS		M204.05R	AKRMSUM.ME		1	1	092020025A	01738
CSDA 7/22/09	LCSD	AA	M204.06R	AKRMSUM.M		1	1	092020025A	01738
(7) BLANKA 7/22/09	BLK	AA	M204.07R	AKRMSUM.MI		1	1	092020025A	01738
<b>4</b> 5726706	т	AA	M204.08R	AKRMSUM.M		1	1	092020025A	01738
9 \$726705	Т	AA	M204.09R	AKRMSUM.MI		1		092020025A	01738
5726704	т	AA	M204.10R	AKRMSUM.MI		1	1	•	01738
CTX5726704MS	MS	AA	M204.11R	AKRMSUM.M		1	1	092020025A	01738
12 5726704MSD	MSD	AA	M204.12R	AKRMSUM.M		1	1		01738
(рз AKCK30932A	CCAL	IQ	M204.13R	AKRMSTD.ME		1	1	0920199999	
14 CNIC20932A	CCAL	RW	M204.14R	CTMSTD.MET		1	1	0920399999	
15 BLANKA 7/22/09S	BLK	AB	M204.15R	CTMSUM.ME		1	1	092020026A	02769
16 LCSA 7/22/09S	LCS	AB	M204,16R	CTMSUM.ME	Г 30	1	1		02769
17 5727655S DF10	Ť	AC	M204.17R	CTMSUM.ME	г 30	10	1	092020026A	02769
18 5727656S DF10	т	AC	M204.18R	CTMSUM.ME	T 30	10	1	092020026A	02769
19 5727657S DF10	Т	AC	M204.19R	CTMSUM.ME	т 30	10	1		02769
20 5727658S DF10	т	AC	M204.20R	CTMSUM.ME	T 30	10	1	092020026A	02769
21 5727654 7/22/09S DF20	DUP	AC	M204.21R	CTMSUM.ME	т 30	20	1		02769
22 5727654S DF20	т	AC	M204.22R	CTMSUM.ME	T 30	20	1	092020026A	02769
23 5727654MSS DF20	MS	AC	M204.23R	CTMSUM.ME	T 30	20	1	092020026A	02769
24 MECL2	MISC	AA	M204.24R	WILSTD.MET	1	1	1	0920399999	
25 CNIC30932A	CCAL	ΤК	M204.25R	CTMSTD.MET	Г 1	1	1	0920399999	
26 AKRTX0932B	CCAL	ΖN	M204,26R	AKRTM.MET	1	1	1	0920099999	
27 CONDITIONER	MISC	AA	M204.27R	WILSTD.MET	1	1	1		
28 AKRTX0932B	CCAL	ZN	M204.28R	AKRTM.MET	1	1	1	0920099999	
29 AKCK40932A	CCAL	HG	M204.29R	AKRMSTD.M	ET 1	1	1	0920199999	
30 BLANKA 7/23/09	BLK	AA	M204.30R	AKRMSUM.M	El 25	1	1	092040008A	01738
31 LCSA 7/23/09	LCS	AA	M204.31R	AKRMSUM.M	ET 25	1	1	092040008A	01738
32 LCSDA 7/23/09	LCSD	AA	M204.32R	AKRMSUM.M	El 25	1	1	092040008A	01738
33 5726710R	т	AA	M204.33R	AKRMSUM.M	EI 25	1	1	092040008A	01738
34 5726711R	Т	AA	M204.34R	AKRMSUM.M	E1 25	1	1	092040008A	01738
35 5726714R	т	AA	M204.35R	AKRMSUM.M	ET 25	1	1	092040008A	01738
36 5726718R	т	AA	M204.36R	AKRMSUM.M	ET 25	. 1	1	092040008A	01738
37 AKCK20932A	CCAL	JG	M204.37R	AKRMSTD.M	ET 1	1	1	0920199999	
38 AKFL20932A	CCAL	LG	M204.38R	AKDMSTD.M	ET 1	1	1	0920499999	
39 BLANKA 7/23/09	BLK	AA	M204.39R	AKDMSUM.M	IE1 1000	1	1	092040014A	01741
40 5726718RDF20	т	AB	M204.40R	AKRMSUM.M	IET 25	20	1	092040008A	01738
41 AKCK30932A	CCAL	iR	M204.41R	AKRMSTD.M	ET 1	1	1	0920199999	
42 LCSA 7/23/09	LCS	AA	M204.42R	AKDMSUM.N	IE1 1000	1	1	092040014A	01741
43 LCSDA 7/23/09	LCSD	AA	M204.43R	AKDMSUM.M	IET 1000	1	1	092040014A	01741
44 5729057	т	AA	M204.44R	AKDMSUM.N	IEI 885	1	1	092040014A	01741
45 5729058	т		M204.45R	AKDMSUM.M	IEI 936	1	1	092040014A	01741
46 5729059	Т		M204.46R	AKDMSUM.N	IEI 989	1	1	092040014A	01741
47 5729061	т		M204.47R	AKDMSUM.N	IET 1007	1	1	092040014A	01741
48 5730498	т		M204.48R	AKDMSUM.N	IEI 1003	1	1	092040014A	01741
49 AKFL30932A	CCAL		M204.49R	AKDMSTD.M	ET 1	1	1	0920499999	
50 5730499	т		M204.50R	AKDMSUM.N	IET 912	1	1	092040014A	0份站于28

8281

## Lancaster Laboratories —— CHROM PERFECT SEQUENCE FILE ——

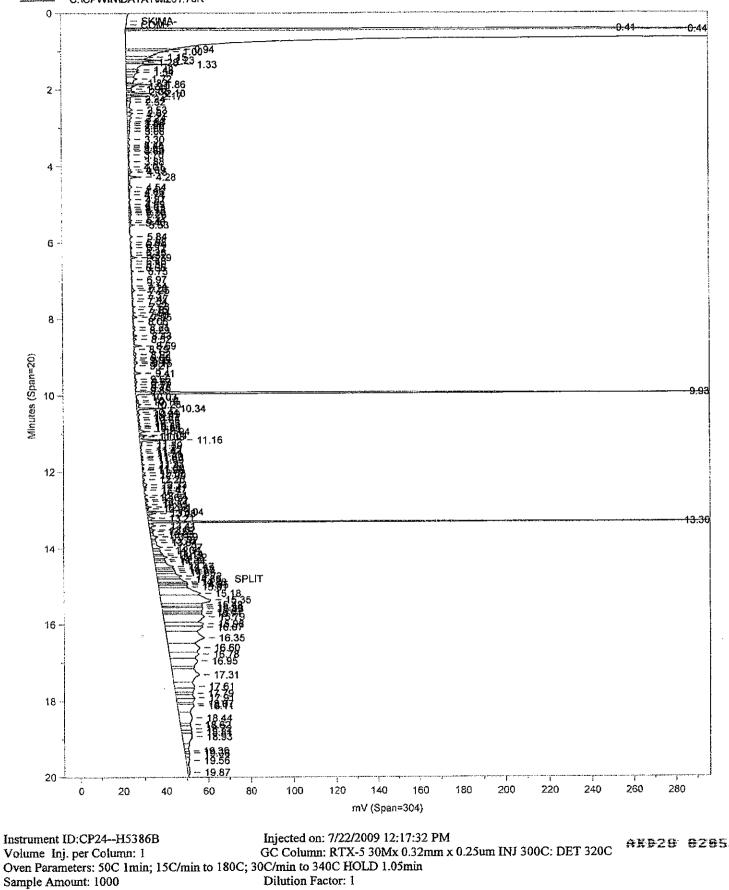
#### Sequence File: \\cp24\C-Drive\cpwin\DATA1\W204.seq Chromatography Directory: \\cp24\C-Drive\cpwin\DATA1 Method Directory: \\cp24\C-Drive\cpwin\DATA1 Number of Entries: 99

Samplename	Code	<u>ID</u>	<b>FileName</b>	Method Sa	mp Wt	DF	Int Std	Batch Number	Analysis
51 5730500	т	AA	M204.51R	AKDMSUM.MET	926	1	1		01741
52 5730501	Т	AA	M204.52R	AKDMSUM.ME1	938	1	1	092040014A	01741
53 5730502	Т	AA	M204.53R	AKDMSUM.ME1	987	1	1		01741
54 5730503	т	AA	M204.54R	AKDMSUM.ME1	913	1	1		01741
55 5730504	т	AA	M204.55R	AKDMSUM.ME1	960	1	1	092040014A	01741
56 5730505	т	AA	M204.56R	AKDMSUM.ME1	932	1	1		01741
57 5729060	Т	AA	M204.57R	AKDMSUM.ME1	957	1	1		01741
58 AKFL40932A	CCAL	KC	M204.58R	AKDMSTD.MET	1	1	1		
59 AKRTX0932B	CCAL	ZN	M204.59R	AKRTM.MET	1	1	1	0920099999	
60 CNIC40932A	CCAL	RT	M204.60R	CTMSTD MET	1	1	1	0920399999	
61 5727658S	т	AB	M204.61R	CTMSUM.MET	30	1	1	092020026A	02769
62 5727656S DF2	т	AD	M204.62R	CTMSUM.MET	30	2	1	092020026A	02769
63 MECL2	MISC	AA	M204.63R	WILSTD.MET	1	1	1	0920499999	
64 CNIC20932A	CCAL	RX	M204.64R	CTMSTD.MET	1	1	1	0920399999	
65 CONDITIONER	MISC	AA	M204.65R	WILSTD.MET	1	1	1	0920099999	
66 CONDITIONER	MISC	AA	M204.66R	WILSTD.MET	1	1	1	0920099999	
67 CONDITIONER	MISC	AA	M204.67R	WILSTD.MET	1	1	1	0920099999	
68 AKRTX0932B	CCAL	ZN	M204.68R	AKRTM.MET	1	1	1	0920099999	
69 AKFL20932A	CCAL	ш	M204.69R	AKDMSTD.MET	1	1	1	0920499999	
70 BLANKA 7/24/09	BLK	AA	M204.70R	AKDMSUM.MET	25	1	1	092050010A	01742
71 LCSA 7/24/09	LCS	AA	M204.71R	AKDMSUM.ME1	25	1	1	092050010A	01742
72 LCSDA 7/24/09	LCSD	AA	M204.72R	AKDMSUM.ME1	25	1	1	092050010A	01742
73 5731561	τ	AA	M204.73R	AKDMSUM.MET	25	1	1	092050010A	01742
74 5731560DF5	т	AB	M204.74R	AKDMSUM.ME1	25	5	1	092050010A	01742
75 5730658DF5	т	AB	M204.75R	AKDMSUM.MET	25	5	1	092050010A	01742
76 5731560	т	AA	M204.76R	AKDMSUM.MET	25	1	1	092050010A	01742
77 5730658	т	AA	M204.77R	AKDMSUM.MET	25	1	1	092050010A	01742
78 5730658MS	MS	AA	M204.78R	AKDMSUM.MET	25	1	1	092050010A	01742
79 5730658MSD	MSD	AA	M204.79R	AKDMSUM.ME'I	25	1	1	092050010A	01742
80 AKFL30932B	CCAL	LS	M204.80R	AKDMSTD.MET	1	1	1	0920499999	
81 MECL2	MISC	AA	M204.81R	WILSTD.MET	1	1	ſ	0920799999	
82 5730662	т	AA	M204.82R	AKDMSUM.MET	25	1	1	092050010A	01742
83 5730663	т	AA	M204.83R	AKDMSUM.MET	25	1	1	092050010A	01742
84 5730659	т	AA	M204.84R	AKDMSUM.ME1	25	1		092050010A	01742
85 5729058DF10	т	AB	M204.85R	AKDMSUM.MET	936	10		092040014A	01741
86 5730498DF2	т	AB	M204.86R	AKDMSUM.ME1	1003	2		092040014A	01741
87 5730503DF2	т	AB	M204.87R	AKDMSUM.MET	913	2		092040014A	01741
88 5730504DF5	т	AB	M204.88R	AKDMSUM.ME1	960	5		092040014A	01741
89 5730505DF5	T	AB	M204.89R	AKDMSUM.MET	932	5		092040014A	01741
90 AKFL40932B	CCAL		M204.90R	AKDMSTD.MET	1	1		0920499999	
91 5730499 RI	Т	AA	M204.91R	AKDMSUM.ME1	912	1		092040014A	01741
92 5730500 RI	т	AA	M204.92R	AKDMSUM.MET	926	1		I 092040014A	01741
93 5730501 RI	т	AA	M204.93R	AKDMSUM.ME1	938	1		092040014A	01741
94 5730502 RI	т	AA	M204.94R	AKDMSUM.ME1	987	1		092040014A	01741
95 5729060 RI	т		M204.95R	AKDMSUM.MET	957	1		1 092040014A	01741
96 AKFL20932B	CCAL		M204.96R	AKDMSTD.MET	1	1		0920499999	
97 AKRTX0932B	CCAL		M204.97R	AKRTM.MET	1	1		0920099999	
98 MS0920532A	MISC		M204.98R	AKRMSUM.MET	1	1		0920799999	
99 MS0920532B	MISC		M204.99R	AKRMSUM.MET	1	1		0920799999	
	-								64 B 2

_ Date: _____428

Nande

Set-up by: 7/28/09


# Raw QC Data

## Lancaster Laboratories-Range Data Summary

Sample Name: BLANKA 7/22/09 Sample Amount: 1000 Analyses: 02923	PBLKSX Total Volume: 1. ml	Sample ID: AA Analyst: 2105	Batchnu SDG:	mber: ()	92020011A State:	
Injection SummaryInjected on: 7/22/09 12:17:3Instrument: CP24H5386EResult file: M201.70RCalibration files: AKRM061B.CAMethod files: AKRMSUM.MESetting: AKRM061B	NL.					
Surrogate RecoveriesO-TERPHENYL SURR99.8%C30-D62 SURR94%	Conc.: 0.019966 Conc.: 0.018808					
Range C10- <c25 dro<br="">C25-C36 RRO o-Terphenyl SURR C30-d62 SURR</c25>	<u>Retention Times</u> 2.60 - 12.11 12.11 - 14.73 9.93 (9.88 - 9.98) 13.30 (13.26 - 13.36)	<u>Area</u> 955587 871784 587647 445915	Amount 0.0159 0.0351 0.0200 0.0188	LOQ <2.5 <2.5	<u>MDL</u> Flags <0.05 <0.05	Units ppm ppm ppm ppm

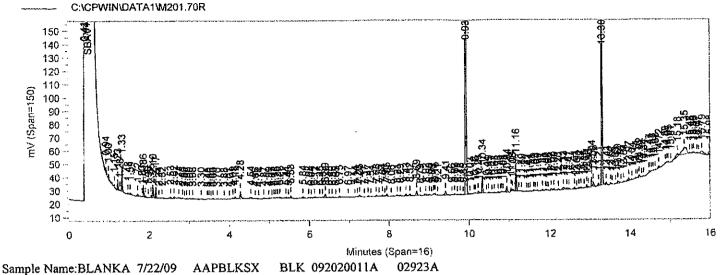
Comments:	 			······································	
					928 6264
Reviewed by:	M210-	Date:	2/23/2	_	
Verified by:	 	Date:		•	
7/23/09 13:30				Page	1 of 1

BLANKA 7/22/09 AAPBLKSX BLK 092020011A 02923



Sample ID: BLANKA 7/22/09AAPBLKSXBLK 092020011A02923Instrument ID:CP24--H5386BInjected on: 7/22/200912:17:32 PMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minDilution Factor: 1Sample Amount: 1000Dilution Factor: 1

Peak #	Ret Time (min)	Peak N	lame	Amount PPM	Peak Area	Peak Wid (min)	lth	Peak Height
23	2.741	C10			10652		.048	1 <b>98</b> 1
95	9.928	o-Terp	henyl SURR	.02	588665		.024	387996
123	11.925	C24	,		1299		.017	926
127	12.205	C25			2614		.047	957
141	13.303	C30-d6	2 SURR	.0191	452848		.02	355750
159	14.628	C36			32675		.042	9104
Slice	Start Tir	me	Stop Time	Slice Amount	Amount %	Slice Area	А	rea %
1	2	2.600	12.110	20.001	51.151	955587.1	1	4.215
2	9	0.880	9.980	20.001	51.151	588664.5		8.757
3	12	2.110	14.730	19.100	48.849	871784.3	1:	2.969
4		260	13.360	19.100	48.849	452847.9	1	6.737


Total slice amount= 78.202 Total slice amount %= 200.0 Total slice area= 2868884.0 Total slice area %= 42.7

********	RESULTS TABLE ************************************			
C10- <c25 amt="&lt;/th" area="C10-&lt;C25" dro=""><th>366922.6 1.587729E-02 PPM</th></c25>	366922.6 1.587729E-02 PPM			
C25-C36 RRO AREA = C25-C36 RRO AMT =	418936.3 3.455039E-02 PPM			

FILES:

Area File: C:\CPWIN\DATA1\M201.70A Method File: C:\CPWIN\DATA1\AKRMSUM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSUM.FMT Area file created on: 7/22/2009 12:37:40 PM File reported on: 7/22/2009 at 12:37:41 PM

#### AK 102/103 BLANKA 7/22/09 AAPBLKSX 02923 BLK 092020011A



Injected on: 7/22/2009 12:17:32 PM Instrument ID:CP24-H5386B GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min **Dilution Factor: 1** Sample Amount: 1000

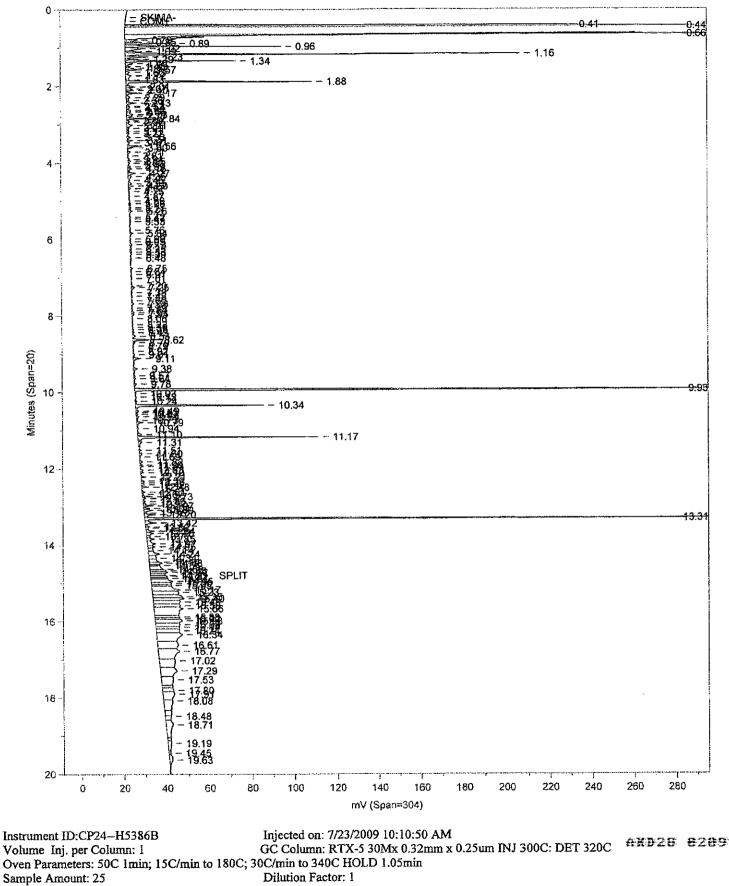
Analyst: 2105	Anal	lyst:	21	05
---------------	------	-------	----	----

Peak #	Ret Time (min)	Peak Name	Amount PPM	Peak Area	Peak Wi (min)	idth	Peak Height
23	2.741	C10		2504		.048	857
95	9.928	o-Terphenyl SURR	.02	587647		.024	387890
123	11.925	C24		448		.017	535
127	12.205	C25		2169		.047	875
141	13.303	C30-d62 SURR	.0188	445915		.02	354531
159	14.628	C36	•	563		.041	339
Slice	Start Ti	me Stop Time	Slice Amount	Amount %	Slice Area	A	rea %

Slice Start Time

Total slice amount= 0.000 Total slice amount %= 0.0 Total slice area= 0.0 Total slice area %= 0.0

O-TERPHENYL % RECOVERY = 99.83002 % C30-D62 SURR % RECOVERY = 94.03895 %


FILES: Area File: C:\CPWIN\DATA1\M201.70A Method File: C:\CPWIN\DATA1\REAKRM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRM.FMT Area file created on: 7/22/2009 12:37:54 PM File reported on: 7/22/2009 at 12:37:56 PM

## Lancaster Laboratories-Range Data Summary

Sample Name:BLANKA7/22/09Sample Amount:25.Analyses:0173802238	PBLKTO Total Volume: 1. ml	Sample ID: AA Analyst: 2105	Batchnumber: ( SDG:	992020025A State:
Injection SummaryInjected on: 7/23/09 10:10:5Instrument: CP24H5386BResult file: M204.07RCalibration files: AKRM061B.CAMethod files: AKRMSUM.MESetting: AKRM061B	L			
Surrogate RecoveriesO-TERPHENYL SURR93.2%C30-D62 SURR89.8%	Conc.: 0.745928 Conc.: 0.718593			
Range C10- <c25 dro<br="">C25-C36 RRO o-Terphenyl SURR C30-d62 SURR</c25>	Retention Times 2.60 - 12.11 12.11 - 14.73 9.93 (9.88 - 9.98) 13.31 (13.26 - 13.36)	<u>Area</u> 1058720 764252 548861 425929	Amount         LOQ           0.8825         <12	MDL         Flags         Units           <4

Comments:			
<u></u>			
<b></b>			AXD28 6269
Reviewed by:	MIZIK	Date: 7/23/	
Verified by:	nund	Date: 7-220	
7/23/09 13:32		/	Page 1 of 1

BLANKA 7/22/09 AAPBLKTO BLK 092020025A 01738 ———— C:\CPWIN\DATA1\M204.07R



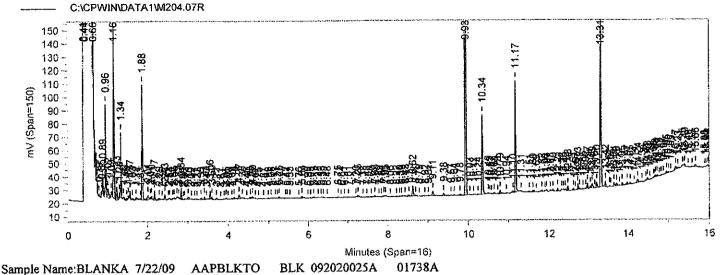
C:\CPWIN\DATA1\M204.07R

Sample ID: BLANKA 7/22/09AAPBLKTOBLK 092020025A01738Instrument ID:CP24--H5386BInjected on: 7/23/2009 10:10:50 AMVolume Inj. per Column: 1GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320COven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05minSample Amount: 25Dilution Factor: 1Analyst: 2105

Peak #	Ret Time (min)	Peak N	ame	Amount PPM	Peak Area	Peak Widt (min)	h	Peak Height
33	2.732	C10			8556		038	3000
109	9.932	o-Terph	enyl SURR	.7475	550026		025	352149
129	11.931	C24			2732		022	1704
132	12.212	C25			3474		.02	2338
148	13.309	C30-d62	2 SURR	.7299	432658		021	335315
164	14.632	C36		•	30417		046	6066
Slice	Start Ti	me	Stop Time	Slice Amount	Amount %	Slice Area	А	rea %
1	2	.600	12.110	18.688	50.594	1058720.0	1	6.820
2	9	.880	9.980	18.688	50.594	550025.5		8.738
3	12	2.110	14.730	18.249	49.406	764251.6	1	2.142
4	13	.260	13.360	18.249	49.406	432658.1		6.874

Total slice amount= 73.873 Total slice amount %= 200.0 Total slice area= 2805655.0 Total slice area %= 44.6

#### 


C10- <c25 amt<="" dro="" th=""><th>=</th><th>0.8804789 PP</th><th>M</th></c25>	=	0.8804789 PP	M
C25-C36 RRO AREA	н	331593.5	Л
C25-C36 RRO AMT	П	1.093883 PPN	

FILES:

Area File: C:\CPWIN\DATA1\M204.07A Method File: C:\CPWIN\DATA1\AKRMSUM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\AKRMSUM.FMT Area file created on: 7/23/2009 10:30:58 AM File reported on: 7/23/2009 at 10:30:59 AM

AKD28 8218

AK 102/103 BLANKA 7/22/09 AAPBLKTO BLK 092020025A 01738



Injected on: 7/23/2009 10:10:50 AM Instrument ID:CP24--H5386B GC Column: RTX-5 30Mx 0.32mm x 0.25um INJ 300C: DET 320C Volume Inj. per Column: 1 Oven Parameters: 50C 1min; 15C/min to 180C; 30C/min to 340C HOLD 1.05min **Dilution Factor: 1** Sample Amount: 25

Peak #	Ret Time (min)	Peak Name	Amount PPM	Peak Area	Peak Wi (min)	dth	Peak Height
33	2.732	C10		2676		.038	1448
109	9.932	o-Terphenyl SURR	.7459	548861		.025	352017
129	11.931	C24		1338		.02	1287
132	12.212	C25		3431		.02	2337
148	13.309	C30-d62 SURR	.7186	425929		.021	334140
164	14.632	C36		350		.019	195
Slice	Start Ti	me Stop Time	Slice Amount	Amount %	Slice Area	A	rea %

Slice Start Time

Total slice amount= 0.000 Total slice amount %= 0.0

Analyst: 2105

Total slice area= 0.0 Total slice area %= 0.0

O-TERPHENYL % RECOVERY = 93.24104 % C30-D62 SURR % RECOVERY = 89.82413 %

FILES: Area File: C:\CPWIN\DATA1\M204.07A Method File: C:\CPWIN\DATA1\REAKRM.MET Calibration File: C:\CPWIN\DATA1\AKRM061B.CAL Format File: C:\CPWIN\DATA1\REAKRM.FMT Area file created on: 7/23/2009 10:31:12 AM File reported on: 7/23/2009 at 10:31:14 AM

ARD28-8211

# Extraction/Distillation/Digestion

ARD28 8212

Organic Exti	Organic Extraction Batchlog	092020011A	Tech 1: IDAU Shickel Tech 2:	Start Date: 7 30 09 Start Time: 3: 45
Prep Group # 327 QC Co BLANKA PE LCSA LC LCSDA LC	327 AK TPH/DRO/RRO in Water Dept: 32 Prep Sample Amt Sant Amt Ms Sol. Code (NL) SS/IS Sol. (mL) MS Sol. PBLKSX (OCC) SS0918332B A.O. LCSZW SS0918332B A.O. MS091732B LCSDJ9 SS0918332B A. MS0917732B	Prep Analysis #     02135     Extraction - DRO Water Special       Sol.     Amt     FV     pH     BC     Comme       Sol.     (mL)     (mL)     PH     BC     Comme       1     (mL)     ANANA     ANAA     ANAA       1338     1.0     A     A     A       1338     1.0     A     A     A	Atter Special     Solvent Used       Comments     1:1 HCl       Methylene Chloride     Soldium Suifate       Spike Solutions:     \$\$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$	Used     Lot No.       le     HITE35       le     HITE35       s:     Witness:       AK SURROGATE STANDARD       AK 102/103 WATER SPIKE
* Odded sample # 1 5726707 2 5726720	*COLOCE 1: 1 HOL FOLD POLON / LCS / LCS O       Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample # Sample #	Planth, LCS, LCSD FV PH PH BC I.D & NH39A CLEOF HA®	Comments	Analyses         Due         Pr           2923         7/28/2009         P           2923         7/28/2009         P
4 7 6 5 1 2 7 7 9 9 0 1 1 0 1 1 0				
11 12 13 14 15 16 16 17 18 18				
20 AU AU AU AU AU AU AU AU AU AU AU AU AU	Work Station: Balance # FV = Final Volume [page 1 of 1	HAOLO S-bath ID N GO °C S-bath ID Documented temps are NIST corrected	ID °C N-Evap °C M-vap	092020011A

____

							1						1401 2.		-	ſ
Prep Group #	427 AK TPH/DRO/RRO in Soil	O/RRO II	n Soil	Dept: 32		Prep Analysi	# 5	04833 Extra		ITPH (S	soils)	Ň	Solvent Used		Lot No.	10
ဗ္ဂ	Sample A Code (	Amt (q.) S	SS/IS Sol.		MS Sol.	Amt (mL)	لي 5 ۳	Hq Hq		prest	Leal Comments a		Chloride		C110/1	22
BLANKA	Ċ	30, 55	SS0918332B	2 L		<u> </u>	0.1	NA NA	NĄ	AD THE	By OTTAWA Sand	ottawa Sand	nd Ifata	a v v	<u> 2030/0-4</u>	444
LCSA		30,4 85	S.30* SS091832B	SM	MS0917732A	9-1- 	1							5	N	
LCSDA		30,485	35304 SS0918332B	SW -	MS0917732A					3	7	Spike Solutions:	lutions:	Witness:	Witness: KRR0224	Q TC
5726704MS	SHG91MS	SS	SS0918332B	SW	MS0917732A		-		494	nei	tout grow	SS0918332B	32B AI	AK SURROGATE STANDARD	STANDARD	-
STRETOAASS	USWIGOHS	88	SS0918332B	SW F	VCELTIBOSW	<b>P</b>					5 0 7	MS09177		( SOIL 102/103 S	Р!Кп	
										V	IAN TAN	Brearb				
	0 ¥	(2898 (	.60/cclu @	,00 [,]												
Sample #	# Sample	e at		¥ I	3	Hd Hd	BC			ပိ	Comments			Analyses	Due Date	
5726704 bkg		3 - Å	SS0918332B		1-0	NA NA	191	mein	T Dan	1	1111		11	1738	7/28/2009	6003
5726705	SHGD1	3 4	SS0918332B		1 T	-		-		ļ .			17	1738	7/28/2009	6003
5726706	SHG92	a v	SS0918332B						<b> </b> -	┝			V	1738	7/28/2009	6003
		×					╫					Ņ				
					[											
											$\overline{\mathbf{X}}$					
										N						
					•					$\backslash$						
									Ν							
												-				
							Y							,		
							$\overline{\ }$					7	-			
				- vul 11	· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N						10 1 1 V	A.	$\mathbf{N}$		
			-	150m	7											
and:																
Rack ID: C			Work Station:しの	hoù:	Hora	S	S-bath	S-bath ID / <del>3-</del> 9	90 °C S-bath ID	oath ID	°C N-Evap		°C M-vap	ိ	092020025A	0025A
Internal Standard	tard		Dalaana H				1				-					

# **Moisture Data**

AKB28 8215



#### **CLIENT: ChevronTexaco** SDG: AKD28

#### SAMPLE NUMBERS:

<u>Sample #</u> 5726704 5726705 5726706	<u>Sample Code</u> SHG91 SHGD1FD SHG92					
		Laborato	ory Com	pliance Q	Juality	Control
<u>Analysis Name</u>		LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number	09203820001A	Sample	number(	s): 5726704	1-572670	)6
Moisture		100		99-101		
		San	nple Ma	trix Quali	ty Con	trol

Analysis Name	BKG <u>Conc</u>	DUP <u>Conc</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: 09203820001A	Sample (		): 572670	4-5726706
Moisture	19.7		1	15

* - Outside of specification

(1) - The result for one or both determinations was less than five times the LOQ.

#### **Moisture Data Report**

Batch #: 09203820001							Analysis	Verified
<u>Sample ID</u> LCS 89.5% Std. 5726704 5726705FD 5726706	Batch ID A A A	<u>Analysis#</u> 00111 00111 00111	<u>Tare Wt</u> 1.1060 1.1046 1.0972 1.0934	Sample <u>Wt</u> 5.0150 7.5818 8.8356 9.4450	Dry Wt 1.6369 6.3643 7.5803 8.4822	30,63	Date (Emp#) 7/22/09 (1201/SWF 7/22/09 (1201/SWF 7/22/09 (1201/SWF	Date (Emp#) ) 7/23/09 (0236/CW) ) 7/23/09 (0236/CW) ) 7/23/09 (0236/CW) ) 7/23/09 (0236/CW)