

INTERIM GROUNDWATER MONITORING REPORT Beluga River Unit

Beluga River, Alaska

Prepared by

November 2021

Attachment B

TABLE OF CONTENTS

<u>Se</u>	CTIO	<u>on</u>	PAGE
1	Intro	duction	1
2	Field	d Work	2
	2.1	Monitoring Well development	
	2.2	Groundwater Sampling	
	2.3	Site-Specific Details	3
	2.4	Quality Control Samples	6
	2.5	Investigative Derived Waste	6
3	Resi	ults and Recommendations	7
	3.1	Beluga River 221-23	7
	3.2	Beluga River 224-13	7
	3.3	Beluga River Abandoned Diesel Tank Farm	7
	3.4	Beluga River Pump Area Assessment	
	3.5	Beluga River Tank Farm	
	3.6	Data Quality Assessment	9
4	Refe	erences	10
Fi	gures		
Fiç	gure 1	Location Map	
Fi	gure 2	Site Vicinity Locations	
Fi	gure 3	Beluga River Unit 221-23	
Fi	gure 4	Monitoring Wells – Beluga River 224-13 (M Pad)	
Fi	gure 5	Monitoring Wells – Beluga River Abandoned Diesel Tank Farm (A Pad)
Fi	gure 6	Monitoring Wells – Beluga River Pump Area Assessment (E Pad)	
Fi	gure 7	Monitoring Wells – Beluga River Tank Farm (P&S Yard)	
<u>Ta</u>	bles		
Та	ble 1	BRU 224-13 Analytical Groundwater Results	
Ta	ble 2	BRU Abandoned Diesel Tank Farm Analytical Groundwater Results	
Ta	ble 3	BRU Pump Area Assessment Analytical Groundwater Results	
Ta	ble 4	BRU Tank Farm Analytical Groundwater Results	
<u>At</u>	tachn	nents_	
Αt	tachm	ent A Monitoring Well Development Records	

Groundwater Sampling Forms

Attachment C Laboratory Analytical Report

Attachment D ADEC Laboratory Data Review Checklist and Data Quality Memo

Acronyms and Abbreviations

μg/L micrograms per liter

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

ADS Arctic Data Services, LLC

AK Alaska Method

bgs below ground surface
BRU Beluga River Unit
BTOC below top of casing
CoC chain-of-custody
DO dissolved oxygen
DRO diesel range organics

EPA U.S. Environmental Protection Agency

GRO gasoline range organics
Hilcorp Alaska, LLC
LCS lab control spike

LCSD lab control spike duplicate

LOD level of detection
LOQ limit of quantitation
mg/kg milligrams per kilogram
mg/L micrograms per liter

NTU nephelometric turbidity units
ORP oxidized redox potential
PAL project action levels

QA/QC quality assurance/quality control

RPD relative percent difference
RRO residual range organics
SGS SGS Environmental

Susitna Susitna Environmental, LLC
TPH total petroleum hydrocarbons
VOC volatile organic compounds

YSI YSI 556 Multiparameter Instrument

1 INTRODUCTION

This document has been prepared on behalf of Hilcorp Alaska, LLC (Hilcorp) by Susitna Environmental, LLC (Susitna) to summarize the results of the 2021 groundwater sampling event at Beluga River Unit (BRU) (Figure 1). Each site is listed as an active site in the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program Database and are listed below:

- Beluga River 221-23 ADEC Hazard ID: 656 | ADEC File Number: 2337.38.026 | Status: Active (Figure 3)
- Beluga River 224-13 ADEC Hazard ID: 989 | ADEC File Number: 2337.38.021 | Status: Active (Figure 4)
- Beluga River Abandoned Diesel Tank Farm ADEC Hazard ID: 1000 | ADEC File Number: 2337.38.015 | Status: Active (Figure 5)
- Beluga River Pump Area Assessment ADEC Hazard ID: 990 | ADEC File Number: 2337.38.031 | Status: Active (Figure 6)
- Beluga River Tank Farm ADEC Hazard ID: 991 | ADEC File Number: 2337.38.029 | Status: Active (Figure 7)

Historical groundwater contamination was previously documented at each of the above-listed sites. Therefore, follow-up groundwater sampling was conducted in 2021 to assess the current condition of the contaminant plume at each site. Groundwater sampling was conducted at all sites except the former North Stockpile at the Beluga River 221-23 site; a historical site evaluation was conducted instead and is summarized in Section 2.3. Each site location is shown on Figure 2 and site-specific information is shown on Figures 3 through Figure 7.

2 FIELD WORK

To meet the project objectives, existing monitoring wells were re-developed and sampled at sites Beluga River 224-13, Beluga River Abandoned Diesel Tank Farm, Beluga River Pump Area Assessment and Beluga River Tank Farm. Monitoring Well Development Records are provided in Attachment 1 and Groundwater Sampling Records are provided in Attachment 2.

2.1 MONITORING WELL DEVELOPMENT

In July 2021, viable groundwater monitoring wells at each site were developed and sampled according to the Monitoring Well Guidance (ADEC 2013b) and relevant standard operating procedures. Prior to groundwater sampling, each monitoring well was re-developed to remove any sediment that had settled in the well over time and to ensure proper hydraulic connection to the aquifer. Once well development was complete, each monitoring well was allowed to sit for at least 24 hours prior to sampling. Groundwater volumes removed from each well are provided in each of the following site-specific sections.

2.2 GROUNDWATER SAMPLING

After a 24-hour period had passed since well development, groundwater sampling was conducted using a submersible pump. Depth to groundwater was measured from the top of each well casing and documented on groundwater field forms prior to purging the well. All depth measurements were taken from a marked measuring point on the well casing. The field team purged the monitoring wells in accordance with low-flow techniques outlined in the U.S Environmental Protection Agency (EPA) Low Stress (low flow) Purging and Sampling Procedures for the Collection of Ground Water Samples from Monitoring Wells published in 2017 (EPA, 2017) and the ADEC Field Sampling Guidance (ADEC, 2019). Water was pumped through a flow-through cell connected to a YSI 556 Multiparameter Instrument (YSI) and water quality parameters were monitored and recorded on field forms. Parameters are considered stable when three successive readings, collected three to five minutes apart, are within:

- ± 3% for temperature (minimum of ± 0.2°C),
- ± 0.1 for pH,
- ± 3% for conductivity,
- ± 10 mv for oxidized redox potential (ORP),
- ± 10% or ≤ 5 nephelometric turbidity units (NTU) for turbidity, and
- ± 10% for dissolved oxygen (DO).

While purging, the field team monitored the depth to water to avoid water level drawdown greater than 0.3 feet.

Prior to sampling, groundwater was purged until at least three of the water quality parameters stabilized. All development and purge water was containerized at each site in 55-gallon drums for subsequent recycling or disposal. Groundwater samples were analyzed according to the site-specific list of analytes as described in the following site-specific sections and include some or all of the following list of analytes and methods:

- Gasoline range organics (GRO) by Alaska Method (AK)101
- Diesel range organics (DRO) by AK102
- Residual range organics (RRO) by AK103
- Petroleum-volatile organic compounds (VOCs) by SW8260C
- Polycyclic aromatic hydrocarbons (PAHs) by SW8270D-SIM

Groundwater sample results are compared to ADEC Title 18 Alaska Administrative Code (AAC) 75 Table C, Groundwater Human Health cleanup levels (ADEC, 2020). Groundwater sample results are summarized in site-specific Tables 1 through 4. Groundwater samples were submitted to SGS Environmental, LLC (SGS) in Anchorage, Alaska, under chain-of custody for laboratory analyses.

2.3 SITE-SPECIFIC DETAILS

2.3.1 Beluga River 221-23

Site Beluga River 221-23 was the location for stockpiling (Former Northern Stockpile) impacted material from a spill that occurred at the Contactor Sump. Well Beluga River 221-23 is located on L Pad (Figure 3), 2.6 miles northeast of the airstrip and 2.5 miles west of Beluga River at latitude 61°12'32.38" N and longitude 151° 1'24.70"W. Currently, the well is out of production, and the gravel pad is used for materials storage/materials stockpiles to support activities throughout the Beluga River Unit.

In June of 1989, diesel fuel was identified seeping from the eastern toe of the gravel pad near the dehydrator building contactor sump (Spill No. 1989-23-01-180-02). The sump was removed in July 1989; in June 1990, approximately 650 cubic yards of impacted soil was excavated and placed into a lined and bermed containment area on the pad (Former North Stockpile Site, File # 2337.38.026).

Contaminated soils stockpiled on pad from the Beluga River 221-23 Contactor sump spill were approved for land spreading with the stipulation that an assessment of the soils below the stockpiles be conducted to ensure the underlying and adjacent soils were not contaminated due to the extended time that the stockpiles were staged.

Soil samples collected from the north stockpile footprint in 1992 identified DRO concentrations up to 725 milligrams per kilogram (mg/kg), and total petroleum hydrocarbons (TPH) concentrations from 6.0 to 1,100 mg/kg between 0 and 2 feet below ground surface (bgs). In 1993, samples collected from the former north stockpile contained DRO concentrations in soil between 161 and 3,500 mg/kg from 4 to 5 feet bgs and DRO in groundwater between 0.4 and 2.5 milligrams per liter (mg/L).

At the time of the spill, impacted soil was stockpiled on a liner and contained by berms to keep the soils in place. The depth of the 1993 soil and groundwater impact indicates the contamination is not a result of the stored stockpile but is likely associated with historical field activities. In 1995, the Site Closure letter for the Contactor Sump issued by ADEC did not include the contamination encountered beneath the stockpile area. However, the letter did acknowledge that the limited contamination encountered beneath the stockpile was "from an unrelated source from this spill."

2.3.2 Beluga River 224-13

Beluga River 224-13 is located on M pad (Figure 3), approximately 3.25 miles northeast of the airstrip and west of Beluga River at latitude 61°12'46.05" N and longitude 150°59'31.02" W. This is an active pad in good condition.

On July 28 and 29, 2021, groundwater monitoring well 224-13-2 was re-developed and sampled, respectively. The monitoring well was in good condition, located next to a facility building. Approximately 31.5 gallons of water was removed during development and three gallons of water was purged prior to groundwater sampling. The depth to water was 9.92 feet below top of casing (BTOC). One primary groundwater sample (224132-072921) and one duplicate (224133-072921) were collected and submitted to SGS for analysis. Both samples were analyzed for GRO, DRO, RRO, petroleum-VOCs, and PAHs.

2.3.3 Beluga River Abandoned Diesel Tank Farm

Beluga River Abandoned Diesel Tank Farm is located on A Pad (Figure 4), 1 mile southwest of the airstrip at latitude 61° 9'21.78" N and longitude 151° 3'34.09" W. The pad is in good condition and used for storage of various equipment and supplies. There are no active production wells on this pad.

Monitoring wells ATF-3, ATF-8 and ATF-10 were found to be in good condition, each located where risk to damage is minimal. Each well was re-developed in preparation for groundwater sampling, and approximately 40 gallons, 32 gallons and 17.5 gallons of groundwater were removed from the wells, respectively. Monitoring well ATF-11 was located after initially identifying it as well ATF-8. Approximately 21 gallons of groundwater was removed prior to discovering the correct well identification. No sheen or petroleum odor was observed in ATF-11. Because ATF-11 sampling was not part of the project scope, no groundwater samples were collected from this well.

The depth to water in wells ATF-3, ATF-8 and ATF-10 ranged between 15.76 to 17.85 feet BTOC. One primary groundwater sample was collected from each monitoring well and submitted to SGS and analyzed for GRO, DRO, BTEX and PAHs.

2.3.4 Beluga River Pump Area Assessment

Beluga River Pump Area Assessment is located along the eastern side of Beluga Airstrip runway 18-36, at the BRU Office Building Pad, and continuing southeast to the entrance of E Pad (Figure 5). The site is located at approximately 61°10'37.47" N latitude and 151° 2'13.56" W longitude. Two groundwater plumes were previously identified at the site, one beginning near monitoring well FG-03 (western plume), and another in the vicinity of monitoring wells FG-24 and FG-25 (eastern plume). Although some of the groundwater monitoring wells are located near high traffic areas, there appears little risk to their integrity.

Monitoring wells FG-3, FG-10, FG-14, and FG-21 were re-developed and sampled to determine current contaminant concentrations in the western plume. Wells FG-20, FG-23 and FG-24 were re-developed and sampled to determine current contaminant concentrations in the eastern plume. Approximately 28 gallons, 15 gallons, 35 gallons, and 36 gallons were removed from western plume wells; approximately 27 gallons, 20 gallons and 20 gallons were removed from the eastern plume wells, respectively. Although monitoring well FG-25 was located, the well casing was blocked, and sampling was not possible with the submersible pump.

The depth to water in FG-3, FG-10, FG-14, FG-20, FG-21, FG-23 and FG-24 ranged between 6.66 to 18.23 feet BTOC. One primary groundwater sample was collected from each monitoring well and submitted to SGS and analyzed for GRO, DRO and BTEX.

2.3.5 Beluga River Tank Farm

Beluga River Tank Farm is located on the P&S Yard (Figure 6) at the HOS building site, immediately northeast of the Beluga airstrip. The site is located at approximately 61°10'33.74" N latitude and 151° 2'17.93" W longitude. An attempt was made to locate well HOS-11 in 2021, but it was not found. This is a high traffic area and wells may have been removed to ease traffic patterns or lost from traffic use. Monitoring well HOS-5, located off roadways, was re-developed

in preparation for groundwater sampling and approximately 23 gallons was removed from the well. The depth to water was 12.78 feet BTOC. One primary groundwater sample (HOS5-072921) and one duplicate (HOS6-072921) was collected and submitted to SGS for analysis. All groundwater samples were analyzed for GRO, DRO and BTEX.

2.4 QUALITY CONTROL SAMPLES

Analytical sampling included collection of duplicate samples at a frequency of ten percent. One primary and one duplicate sample set was collected from both monitoring wells 224-13 and HOS-5. In addition, matrix spike / matrix spike duplicate (MS/MSD) samples were collected at a frequency of twenty percent; one MS/MSD was collected from monitoring well FG-20. All data generated by the laboratory was reviewed by Arctic Data Services, LLC (ADS). The data quality review conducted by ADS evaluated precision, accuracy, sensitivity, representativeness, comparability, and completeness of the data by reviewing laboratory-supplied quality assurance/quality control (QA/QC) information as well as conducting independent QA/QC checks on the data. The review was conducted in accordance with ADS Standard Operating Procedures for Stage 2A Data Validation v1.1, which meet requirements of the ADEC Technical Memorandum on Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling (ADEC, 2017). Laboratory QC sample recoveries and relative percent differences (RPDs) were compared to laboratory control limits. Field-duplicate RPDs were compared to ADEC-recommended measurement quality objectives.

2.5 INVESTIGATIVE DERIVED WASTE

Waste generated during this project included monitoring well purge water, and trash, such as nitrile gloves, plastic cores, and paper towels. Waste such as nitrile gloves, plastic cores, and paper towels were disposed as household waste. Purge water was stored in 55-gallon drums staged at each site while analytical results were pending. Once results were received, the water was injected into Wastewater Well BRU 232-9.

3 RESULTS AND RECOMMENDATIONS

Analytical groundwater samples were submitted to SGS for analysis of GRO, DRO, RRO, BTEX, petroleum-VOCs and PAHs based on site-specific requirements. Groundwater analytical results were compared to 18 AAC 75.345 Table C Groundwater Cleanup Levels (ADEC, 2020). Detected analytes are reported in Tables 1 through 4. The complete analytical laboratory report is provided in Attachment D.

3.1 BELUGA RIVER 221-23

The source of contamination near the former north stockpile area has not been determined. Historically, DRO contamination in soil ranged from 161 to 3,500 mg/kg (4 to 5 ft bgs), and in groundwater ranged from 0.4 to 2.5 mg/L (including silica gel cleanup results). It is recommended that ADEC close this site and open a separate site to address the potential subsurface soil and groundwater impact that may be present at this location.

3.2 BELUGA RIVER 224-13

Monitoring well 224-13-2 contained concentrations of DRO (0.239 milligrams per liter [mg/L]) and phenanthrene (0.0446 micrograms per liter [µg/L]) below ADEC cleanup levels. All other analytes were non-detect. There was no indication of surface water at or near the monitoring well location, and no apparent risk to the integrity of the well. One more round of groundwater sampling is recommended to move the site towards closure.

3.3 BELUGA RIVER ABANDONED DIESEL TANK FARM

Monitoring wells ATF-3 (in-source), ATF-8 and ATF-10 exhibited concentrations of DRO (0.463 mg/L, 0.851 mg/L, and 0.296 mg/L, respectively) that were below the ADEC cleanup level. Monitoring wells ATF-3 and ATF-8 also exhibited concentrations of phenanthrene (0.0264 μ g/L and 0.0241 μ g/L, respectively, below the ADEC cleanup level. Additionally, ATF-8 had detectable concentrations of ethylbenzene, xylenes, 1-methylnaphthalene, acenaphthene, fluorene and naphthalene that were also below ADEC cleanup levels (Table 2). All other analytes in the three monitoring wells were non-detect.

In-source monitoring well ATF-3 showed a DRO concentration reduction from 31 mg/L in 2013 to 0.463 mg/L in 2021. The DRO concentration in downgradient well ATF-8 reduced from 4.0 mg/L in 2013 to 0.851 mg/L in 2021; downgradient well ATF-10 DRO concentration increased slightly from 0.2 mg/L in 2013 to 0.296 mg/L in 2021. There was no nearby surface water noted during this monitoring event, and no apparent risk to the integrity of the monitoring wells. DRO concentrations have decreased significantly at this site; one additional round of groundwater sampling is recommended to progress the site to closure.

3.4 BELUGA RIVER PUMP AREA ASSESSMENT

All seven monitoring wells sampled at the Pump Area Assessment had detectable concentrations of DRO that were below the ADEC cleanup level (Table 3). Monitoring well FG-24 also exhibited a concentration of GRO that was below the ADEC cleanup level, and well FG-3 contained benzene below the ADEC cleanup level. There were no other detections in groundwater wells at this site.

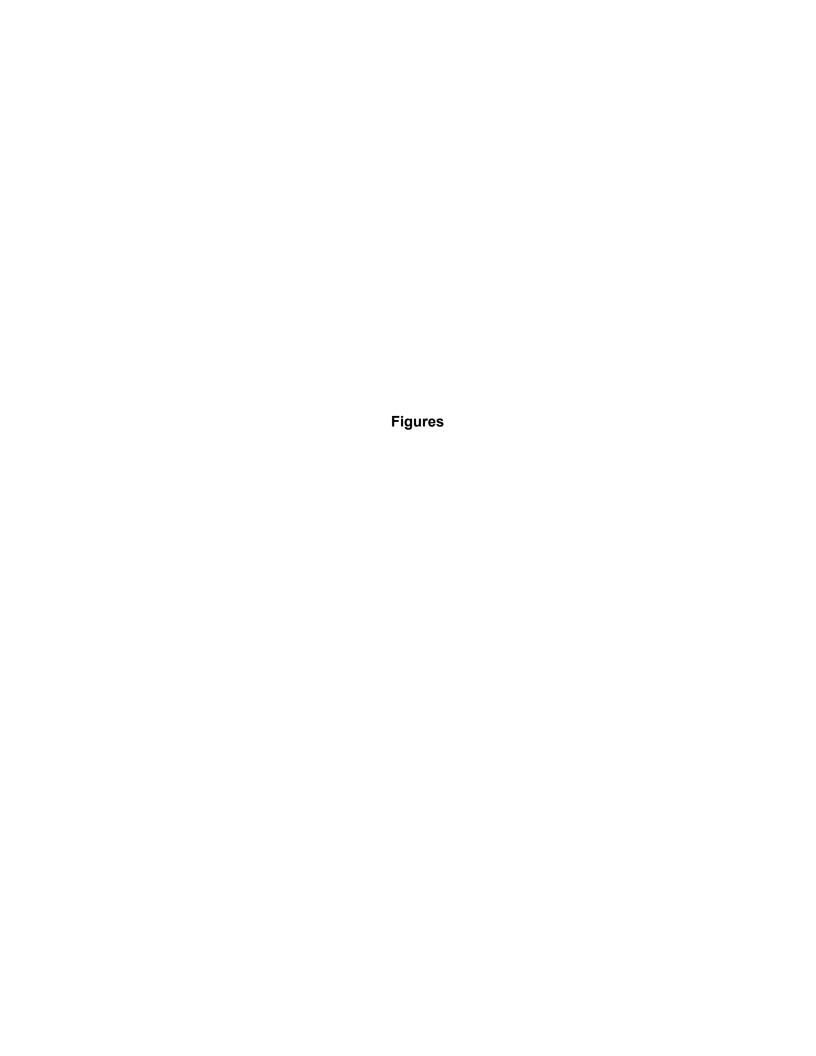
In 2005, the western plume in-source monitoring well, FG-3, had DRO and benzene concentrations above ADEC Table C cleanup levels, with DRO at 2.0 mg/L and benzene at 5.41 μ g/L. In 2021, FG-3 had reduced concentrations of DRO at 0.628 mg/L and benzene at 0.209 μ g/L, both below cleanup levels (Table 3). In 2005, the DRO concentration in downgradient well FG-8 was 3.5 mg/L and benzene was 1.1 μ g/L. FG-8 was not relocated in 2019 or 2021; however, FG-10 was located and sampled in 2021 with no detections above ADEC cleanup levels. In 2021, western plume downgradient wells FG-14 and FG-21 had DRO concentrations of 0.192 mg/L and 0.498 mg/L, respectively, with no detections of benzene in either well.

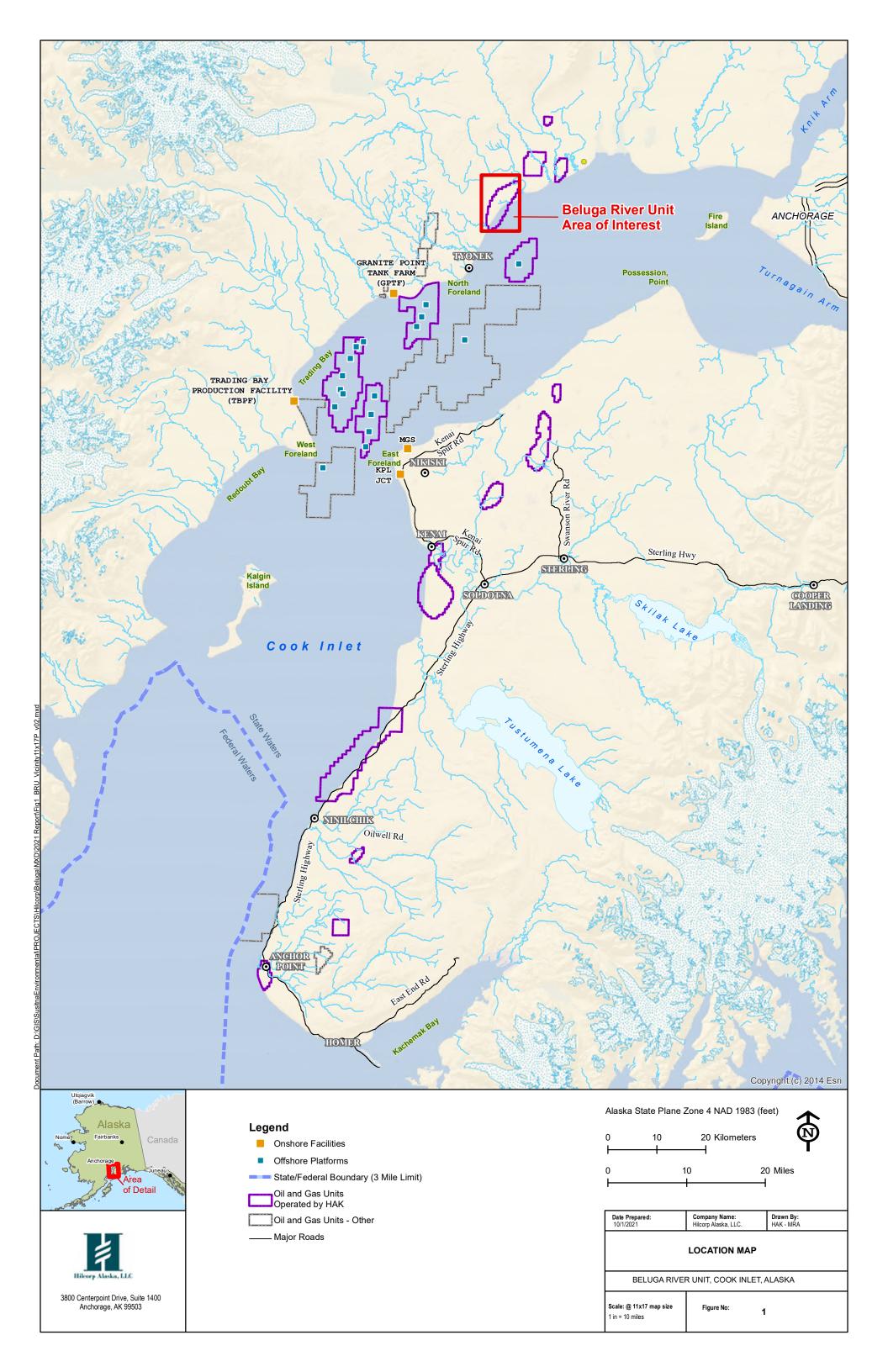
The DRO concentration in the eastern plume in-source monitoring well, FG-24, has significantly decreased from 31 mg/L in 2005 to 1.11 mg/L in 2021. Eastern plume wells, FG-20 and FG-23 had no detections above ADEC cleanup levels in 2021.

There was no nearby surface water noted during this monitoring event, and no apparent risk to the integrity of the monitoring wells. One more round of groundwater sampling is recommended for the same suite of wells to move the site towards closure. Downgradient well FG-25 had a DRO concentration of 4.43 mg/L in 2005 but the well couldn't be sampled in 2021 with the submersible pump due to an obstruction in the well or frost jacking. Sampling well FG-25 with a peristaltic pump, a narrow bailer, or a bladder pump for DRO is recommended.

3.5 BELUGA RIVER TANK FARM

Monitoring well HOS-5 was the only well located at this site and exhibited concentrations of DRO (2.06 mg/L) and benzene (28 µg/L) that were above the respective ADEC Table C cleanup levels. All other analytes were either non-detect or below ADEC cleanup levels. Well HOS-11 was not located in 2021. There was no nearby surface water noted during this monitoring event, and no apparent risk to the integrity of the monitoring wells. Further monitoring of contaminants in groundwater is recommended and annual sampling of HOS-5 should be implemented. In addition, another attempt should be made to locate downgradient wells HOS-10 and HOS-13. If located, these wells should be sampled to evaluate whether contaminants have migrated. If these wells cannot be located, then one downgradient well should be installed, developed, and sampled in 2022.

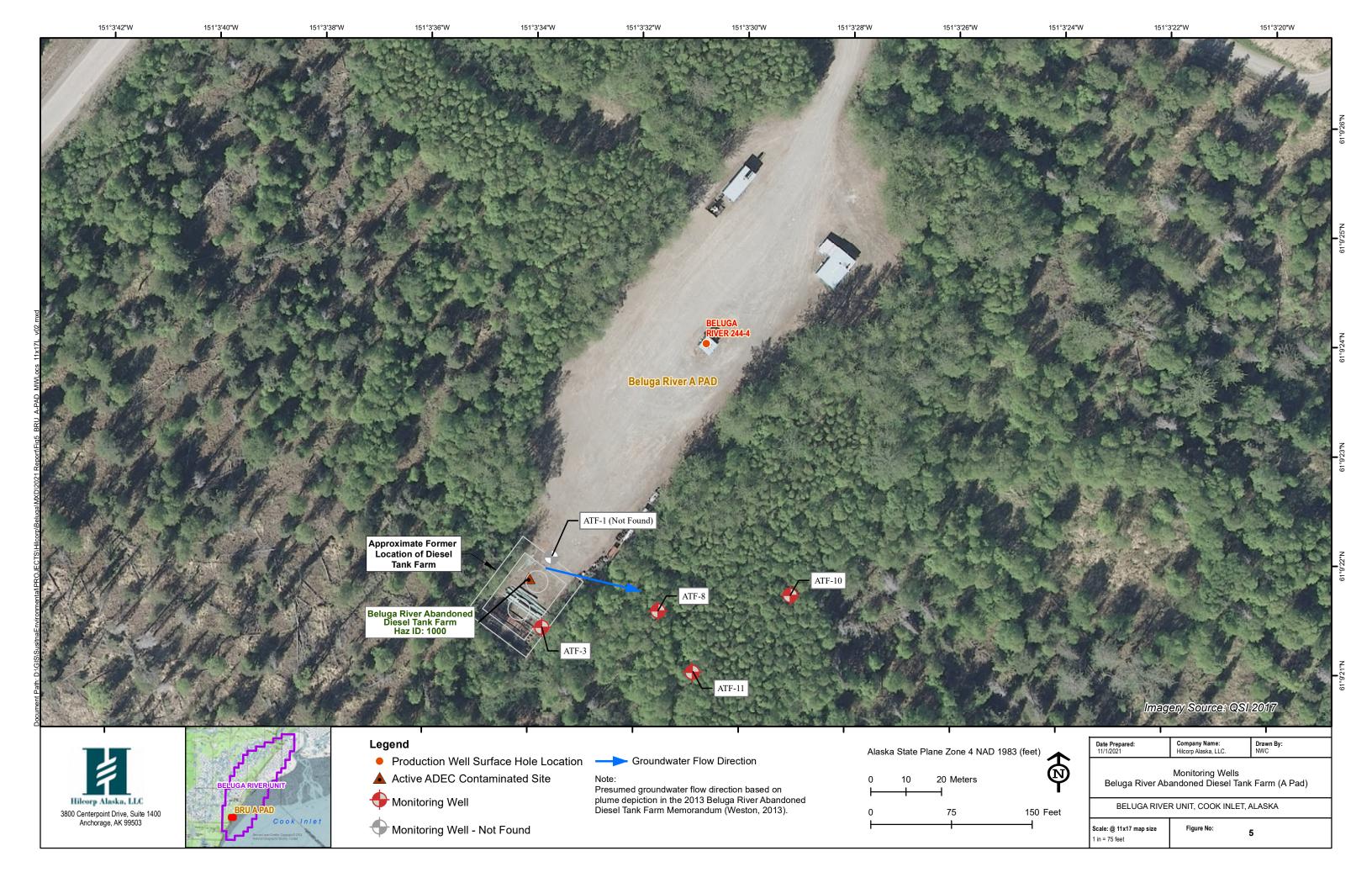

3.6 DATA QUALITY ASSESSMENT

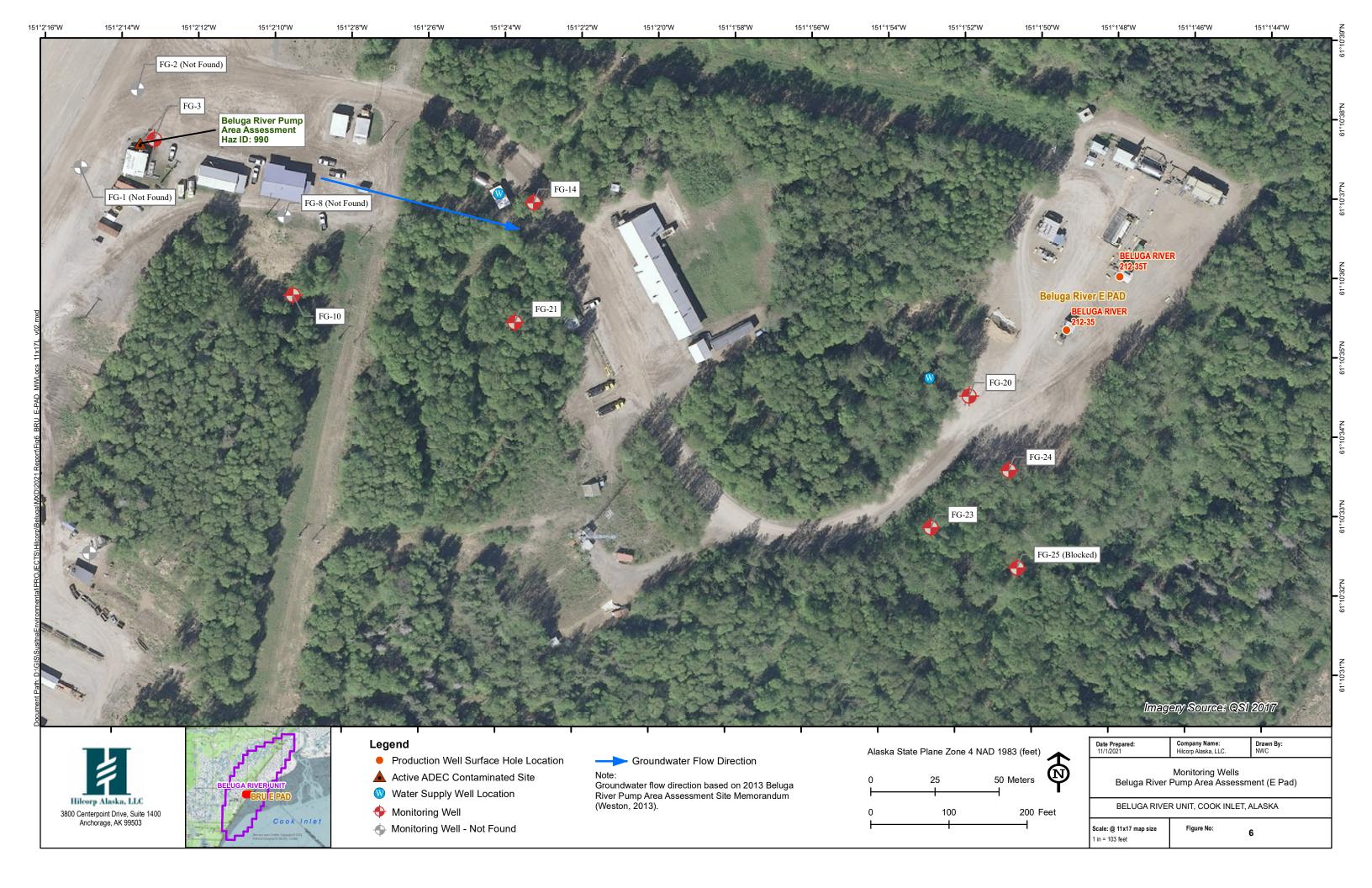

Precision, accuracy, sensitivity, representativeness, comparability, and completeness of the data were evaluated by reviewing laboratory-supplied quality assurance/quality control (QA/QC) information as well as conducting independent QC checks on the data. The following information briefly summarizes the findings for each QA/QC element reviewed; anomalies that had no impact to data quality are discussed in the ADEC data review checklists and are not further described herein. Additional details on data quality are included in the Data Quality Assessment report in Appendix D. The ADEC laboratory data review checklist is also included in Appendix D.

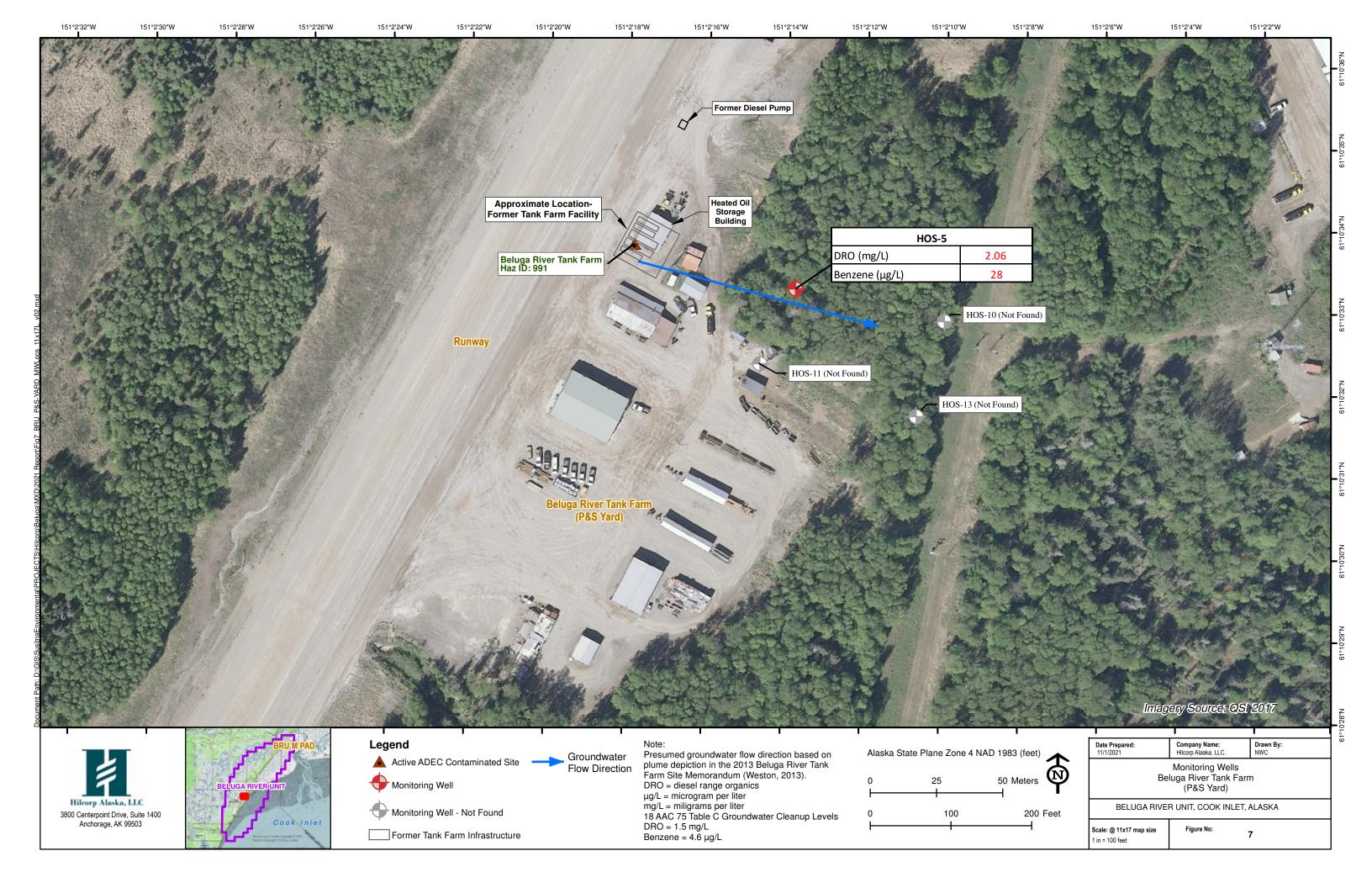
There was no sample preservation, handling, custody, or holding time failures affecting project-sample data quality. There were no non-detect results with level of detections (LOD) or limit of quantitation's (LOQs) that exceeded relevant PALs. Phenanthrene was detected below the LOQ in the method blank sample, but the impact to data usability for these results is minimal. GRO was detected in the trip blank detection and two GRO results were affected. Affected GRO results are qualified as estimated and flagged 'J+', indicating a high bias. There were no lab control spike/lab control duplicate (LCS/LCSD) recovery or RPD failures affecting project-sample data quality. There were no matrix spike/matrix spike duplicate failures and a surrogate recovery failure occurred but did not affect project-sample data quality; please refer to the Data Quality Assessment report for further details. Field duplicate samples were collected and submitted, with at least one pair for each matrix and analysis. There were no field duplicate sample pairs RPD failures.

4 REFERENCES

- Alaska Department of Environmental Conservation (ADEC), 2020. Title 18 Alaska Administrative Code (AAC), Chapter 75, Table B1 and Table B2. Method Two Soil Cleanup Levels Table and Table C Groundwater Cleanup Levels. November.
- ADEC, 2019. Field Sampling Guidance. October.
- ADEC, 2017. ADEC Technical Memorandum: Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling. March.
- U.S. Environmental Protection Agency (EPA), 2017. Low Stress (low flow) Purging and Sampling Procedures for the Collection of Ground Water Samples from Monitoring Wells. September.







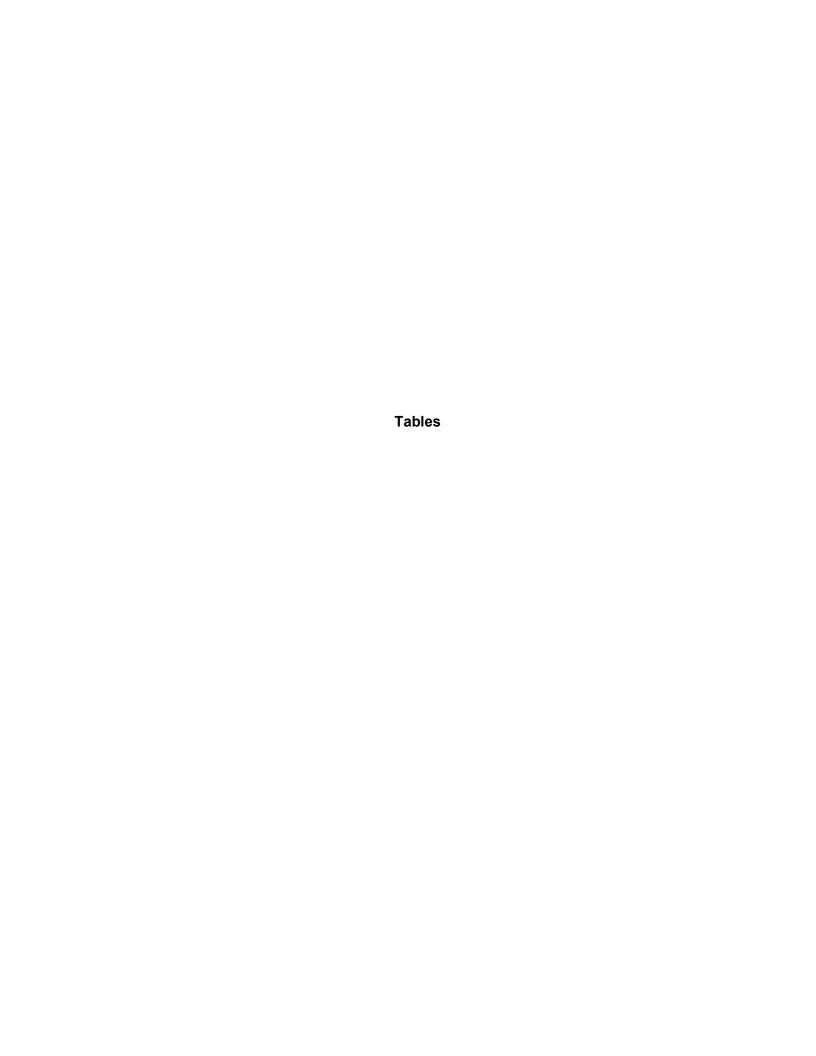


Table 1 BRU 224-13 Analytical Groundwater Results

				Well ID	224-	-13-2	NA
				Sample ID	224132-072921	224133-072921	Trip Blank
	Hilcorp Beluga River Unit			SDG	1214733	1214733	1214733
	2021 Groundwater Sampling			Sample Type	Primary	Field Duplicate	Trip Blank
				Collected Date	07/29/2021 14:50:00	07/29/2021 15:50:00	07/28/2021 08:00:00
Method	Analyte	CAS	Units	PAL	Result	Result	Result
8260D	1,2,4-Trimethylbenzene	95-63-6	μg/L	56	0.500 U	0.500 U	NA
	1,2-Dibromoethane	106-93-4	μg/L	0.075	0.0375 U	0.0375 U	NA
	1,2-Dichloroethane	107-06-2	μg/L	1.7	0.250 U	0.250 U	NA
	1,3,5-Trimethylbenzene	108-67-8	μg/L	60	0.500 U	0.500 U	NA
	Benzene	71-43-2	μg/L	4.6	0.200 U	0.200 U	0.200 U
	Ethylbenzene	100-41-4	μg/L	15	0.500 U	0.500 U	0.500 U
	Isopropylbenzene	98-82-8	μg/L	450	0.500 U	0.500 U	NA
	Methyl-tert-butyl ether (MTBE)	1634-04-4	μg/L	140	5.00 U	5.00 U	NA
	Naphthalene	91-20-3	μg/L	1.7	0.500 U	0.500 U	NA
	Toluene	108-88-3	μg/L	1100	0.500 U	0.500 U	0.500 U
	Xylene, Isomers m & p	179601-23-1	μg/L	NA	1.00 U	1.00 U	1.00 U
	Xylenes	1330-20-7	μg/L	190	1.50 U	1.50 U	1.50 U
	n-Butylbenzene	104-51-8	μg/L	1000	0.500 U	0.500 U	NA
	o-Xylene	95-47-6	μg/L	NA	0.500 U	0.500 U	0.500 U
	sec-Butylbenzene	135-98-8	μg/L	2000	0.500 U	0.500 U	NA
	tert-Butylbenzene	98-06-6	μg/L	NA	0.500 U	0.500 U	NA
8270DSIM	1-Methylnaphthalene	90-12-0	μg/L	11	0.0250 U	0.0250 U	NA
	2-Methylnaphthalene	91-57-6	μg/L	36	0.0250 U	0.0250 U	NA
	Acenaphthene	83-32-9	μg/L	530	0.0250 U	0.0250 U	NA
	Acenaphthylene	208-96-8	μg/L	260	0.0250 U	0.0250 U	NA
	Anthracene	120-12-7	μg/L	43	0.0250 U	0.0250 U	NA
	Benzo(a)anthracene	56-55-3	μg/L	0.3	0.0250 U	0.0250 U	NA
	Benzo(a)pyrene	50-32-8	μg/L	0.25	0.0100 U	0.0100 U	NA
	Benzo(b)fluoranthene	205-99-2	μg/L	2.5	0.0250 U	0.0250 U	NA
	Benzo(g,h,i)perylene	191-24-2	μg/L	0.26	0.0250 U	0.0250 U	NA
	Benzo(k)fluoranthene	207-08-9	μg/L	0.8	0.0250 U	0.0250 U	NA
	Chrysene	218-01-9	μg/L	2	0.0250 U	0.0250 U	NA
	Dibenzo(a,h)anthracene	53-70-3	μg/L	0.25	0.0100 U	0.0100 U	NA
	Fluoranthene	206-44-0	μg/L	260	0.0250 U	0.0250 U	NA
	Fluorene	86-73-7	μg/L	290	0.0250 U	0.0250 U	NA
	Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.19	0.0250 U	0.0250 U	NA
	Naphthalene	91-20-3	μg/L	1.7	0.0500 U	0.0500 U	NA
	Phenanthrene	85-01-8	μg/L	NA	0.0285 J B	0.0446 J B	NA
	Pyrene	129-00-0	μg/L	120	0.0250 U	0.0250 U	NA
AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	2.2	0.0500 U	0.0500 U	0.0591 J
AK102	Diesel Range Organics (C10-C25)	DRO-C10-C25	mg/L	1.5	0.239 J	0.239 J	NA
AK103	Residual Range Organics (C25-C360	RRO-C25-C36	mg/L	1.1	0.255 U	0.250 U	NA

Notes

- **bold** The analyte was detected.
- CAS Chemical Abstract Service registry number
- ${\sf CALC} \quad {\sf Indicates\,the\,result\,was\,calculated\,by\,the\,validator\,following\,ADEC\,guidelines}.$
- PAL project action limit; PALs are the 18 Alaska Administrative Code 75.345 Table C Groundwater Cleanup Levels
- QC quality control
- NA not applicable / not analyzed
- μg/L micrograms per liter
- mg/L milligrams per liter

Data Qualifiers

- J+ The quantitation is considered estimated, biased high, due to a QC anomaly.
- B The result is considered estimated, biased high, and a potential false-positive detection, due to contamination.
- J The result is considered estimated, with an unknown direction of bias, either due to a QC anomaly (validator-applied) or detection below the LOQ (laboratory-
- U non-detect

Table 2 BRU Abandoned Diesel Tank Farm Analytical Groundwater Results

	Hilcorp Beluga River Unit 2021 Groundwater Sampling			Sample ID	ATF3-072921	ATEC 070004		
					A1F3-072321	ATF8-072921	ATF10-072921	Trip Blank
	2021 Groundwater Sampling			SDG	1214733	1214733	1214733	1214733
				Sample Type	Primary	Primary	Primary	Trip Blank
				Collected Date	07/29/2021 13:20:00	07/29/2021 14:31:00	07/29/2021 13:18:00	07/28/2021 08:00:00
Method	Analyte	CAS	Units	PAL	Result	Result	Result	Result
8260D	Benzene	71-43-2	μg/L	4.6	0.200 U	0.200 U	0.200 U	0.200 U
	Ethylbenzene	100-41-4	μg/L	15	0.500 U	0.467 J	0.500 U	0.500 U
	Toluene	108-88-3	μg/L	1100	0.500 U	0.500 U	0.500 U	0.500 U
	Xylene, Isomers m & p	179601-23-1	μg/L	NA	1.00 U	3.14	1.00 U	1.00 U
	Xylenes	1330-20-7	μg/L	190	1.50 U	4.64	1.50 U	1.50 U
	o-Xylene	95-47-6	μg/L	NA	0.500 U	1.50	0.500 U	0.500 U
8270DSIM	1-Methylnaphthalene	90-12-0	μg/L	11	0.0255 U	0.721	0.0245 U	NA
	2-Methylnaphthalene	91-57-6	μg/L	36	0.0255 U	0.0240 U	0.0245 U	NA
	Acenaphthene	83-32-9	μg/L	530	0.0255 U	0.0452 J	0.0245 U	NA
	Acenaphthylene	208-96-8	μg/L	260	0.0255 U	0.0240 U	0.0245 U	NA
	Anthracene	120-12-7	μg/L	43	0.0255 U	0.0240 U	0.0245 U	NA
	Benzo(a)anthracene	56-55-3	μg/L	0.3	0.0255 U	0.0240 U	0.0245 U	NA
	Benzo(a)pyrene	50-32-8	μg/L	0.25	0.0102 U	0.00960 U	0.00980 U	NA
	Benzo(b)fluoranthene	205-99-2	μg/L	2.5	0.0255 U	0.0240 U	0.0245 U	NA
	Benzo(g,h,i)perylene	191-24-2	μg/L	0.26	0.0255 U	0.0240 U	0.0245 U	NA
	Benzo(k)fluoranthene	207-08-9	μg/L	0.8	0.0255 U	0.0240 U	0.0245 U	NA
	Chrysene	218-01-9	μg/L	2	0.0255 U	0.0240 U	0.0245 U	NA
	Dibenzo(a,h)anthracene	53-70-3	μg/L	0.25	0.0102 U	0.00960 U	0.00980 U	NA
	Fluoranthene	206-44-0	μg/L	260	0.0255 U	0.0240 U	0.0245 U	NA
	Fluorene	86-73-7	μg/L	290	0.0255 U	0.0683	0.0245 U	NA
	Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.19	0.0255 U	0.0240 U	0.0245 U	NA
Г	Naphthalene	91-20-3	μg/L	1.7	0.0510 U	1.02	0.0490 U	NA
Г	Phenanthrene	85-01-8	μg/L	NA	0.0264 J B	0.0241 J B	0.0245 U	NA
	Pyrene	129-00-0	μg/L	120	0.0255 U	0.0240 U	0.0245 U	NA
AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	2.2	0.0500 U	0.101 B	0.0500 U	0.0591 J
AK102	Diesel Range Organics (C10-C25)	DRO-C10-C25	mg/L	1.5	0.463 J	0.851	0.296 J	NA

Notes

- **bold** The analyte was detected.
- CAS Chemical Abstract Service registry number
- CALC Indicates the result was calculated by the validator following ADEC guidelines.
- PAL project action limit; PALs are the 18 Alaska Administrative Code 75.345 Table C Groundwater Cleanup Levels
- QC quality control
- NA not applicable / not analyzed
- μg/L micrograms per liter
- mg/L milligrams per liter

Data Qualifiers

- J+ The quantitation is considered estimated, biased high, due to a QC anomaly.
- B The result is considered estimated, biased high, and a potential false-positive detection, due to contamination.

 J The result is considered estimated, with an unknown direction of bias, either due to a QC anomaly (validator-applied) or detection below the LOQ (laboratory-applied).
- U non-detect

Table 3 BRU Pump Area Assessment Analytical Groundwater Results

				Well ID	FG-3	FG-10	FG-14	FG-21	FG-20	FG-23	FG-24	NA
Hilcorp Beluga River Unit 2021 Groundwater Sampling				Sample ID	FG3-072921	FG10-072921	FG14-072921	FG21-072921	FG20-072821	FG-23-072921	FG24-072821	Trip Blank
				SDG	1214733	1214733	1214733	1214733	1214733	1214733	1214733	1214733
				Sample Type	West Primary	West Primary	West Primary	West Primary	East Primary	East Primary	East Primary	Trip Blank
				Collected Date	07/29/2021 09:26:00	07/29/2021 09:31:00	07/29/2021 08:15:00	07/29/2021 08:15:00	07/28/2021 15:45:00	07/29/2021 10:43:00	07/28/2021 15:47:00	07/28/2021 08:00:00
Method	Analyte	CAS	Units	PAL	Result							
8260D	Benzene	71-43-2	μg/L	4.6	0.209 J	0.200 U						
	Ethylbenzene	100-41-4	μg/L	15	0.500 U							
	Toluene	108-88-3	μg/L	1100	0.500 U							
	Xylene, Isomers m & p	179601-23-1	μg/L	NA	1.00 U							
	Xylenes	1330-20-7	μg/L	190	1.50 U							
	o-Xylene	95-47-6	μg/L	NA	0.500 U							
AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	2.2	0.0500 U	0.0453 J B	0.0591 J					
AK102	Diesel Range Organics (C10-C25)	DRO-C10-C25	mg/L	1.5	0.628	0.280 J	0.192 J	0.498 J	0.184 J	0.431 J	1.11	NA

Notes

bold The analyte was detected.

Data Qualifiers

CAS Chemical Abstract Service registry number

CALC Indicates the result was calculated by the validator following ADEC guidelines.

PAL project action limit; PALs are the 18 Alaska Administrative Code 75.345 Table C Groundwater Cleanup Levels

QC quality control

NA not applicable / not analyzed

μg/L micrograms per liter

mg/L milligrams per liter

- B The result is considered estimated, biased high, and a potential false-positive detection, due to contamination.
- J The result is considered estimated, with an unknown direction of bias, either due to a QC anomaly (validator-applied) or detection below the LOQ (laboratory-applied).
- U non-detect

Table 4 BRU Tank Farm Analytical Groundwater Results

				Well ID	HC)S-5	NA
	Hilcorp Beluga River Unit			Sample ID	HOS5-072921	HOS6-072921	Trip Blank
				SDG	1214733	1214733	1214733
	2021 Groundwater Sampling			Sample Type	Primary	Field Duplicate	Trip Blank
				Collected Date	07/29/2021 10:52:00	07/29/2021 10:45:00	07/28/2021 08:00:00
Method	Analyte	CAS	Units	PAL	Result	Result	Result
8260D	Benzene	71-43-2	μg/L	4.6	28.0	25.8	0.200 U
	Ethylbenzene	100-41-4	μg/L	15	13.4	12.4	0.500 U
	Toluene	108-88-3	μg/L	1100	0.500 U	0.500 U	0.500 U
	Xylene, Isomers m & p	179601-23-1	μg/L	NA	35.5	32.8	1.00 U
	Xylenes	1330-20-7	μg/L	190	35.9	33.2	1.50 U
	o-Xylene	95-47-6	μg/L	NA	0.393 J	0.379 J	0.500 U
AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	2.2	0.401 J+	0.383 J+	0.0591 J
AK102	Diesel Range Organics (C10-C25)	DRO-C10-C25	mg/L	1.5	2.06	1.97	NA

Notes

red highlight The analyte was detected at a concentration exceeding the PAL.

bold The analyte was detected.

CAS Chemical Abstract Service registry number

 ${\sf CALC} \quad {\sf Indicates \, the \, result \, was \, calculated \, by \, the \, validator \, following \, ADEC \, guidelines.}$

PAL project action limit; PALs are the 18 Alaska Administrative Code 75.345 Table C Groundwater Cleanup Levels

QC quality control

NA not applicable / not analyzed

 $\mu g/L$ micrograms per liter

mg/L milligrams per liter

Data Qualifiers

J+ The quantitation is considered estimated, biased high, due to a QC anomaly.

J The result is considered estimated, with an unknown direction of bias, either due to a QC anomaly (validator-applied) or detection below the LOQ (laboratory-applied).

U non-detect

Well Development Date: 07 / 28/21 Well ID: 224-13-2 Well Evacuation / Field Parameters Time Depth to Volume Temp (°C) Cond -DOpH OPR Color/ Water (gallons) (µS/cm) (mg/L) (mV) Turbidity (TOC) screen interval 9.83 4 1255 Dark Brown, very Turbid w/sift bottom 247.2 1305 10 light brown w/ some Turbidity pottom 137.1 1315 15 Clear brown some Turbia bottom 69.28 1325 19 Clear brown w/ Turbids 436.5 middle 1335 24 clear/brown w/Turbids middle 206-3 1345 28 plear | slightly brown of Turbids middle 109.5 1355 31.5 clear wi some Turbias 35.89 Notes: DTW = 9.83 DTB - 17.35 - 9.83 = 7.52 x.163 = 1.23 gal Stort Stort

DTW = 9.86 end

DTB = 17.38

Date: 7/	70/21		IN	-	relopmen		
		tion / Fi	eld Paraı	Well ID:	ATF-3		
Time	Depth to Water (TOC)	Volume (gallons)	Temp (*C) Color	Gend (µS/cm)	DO (mg/L)	PH OPR (mV)	Color/ Turbidity
0823 0833 0853 0905 0913 0923 0933	17.85	48 gal 13 20 25 30 35 40	Brown, V	Turbid, Subject of the subject of th	my silts my silts	for bottom	548.7 754.8 418.8 208.0 208.0 131.5 173.6 75.05
	W-17.81 W-17.	85	DTB - 24. (start) DTB - 24. (end)	6		Total purged: 3 = 1.13 gallons	
NO WHILL	cap - ao	and cap	Pay ATF-3				

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	well screen	OPR (m∀)	Colo Turbio
235	15.65	/	VERY	SILTY/	SANDY			_
250	/	15.0	it	1 6	110	11	17	565.
1255		20.0	_ very	coup	Y	11	1	282.
306		28.0	_ ccou	DY		11	1	Z03.
310		29.0	Sligh-	lly clou	dy	1.1		85.7
313		30.0		y clea		11		58.9
318	V	31.5	- (1) ((100 T T T T T T T T T T T T T T T T T T	11		60.8
320	15.74	32.0		((((35.6
s: Dr	M = 15	5 00	2-715/					
(stai		(34	mrt)			163 - 0,9	-	(33.7)
	N=15.7	4 DT	B=21.15 (end)	Pe	irged	32 gal or		uns

Well Development Date: 07/28/21 ATF-10 Well Evacuation / Field Parameters Time Depth to Volume Temp (*C) -Gond ĐO-TH-OPR" Color/ Water (gallons) (uS/cm) (mg/L) well soveen introd Turbidity (TOC) 0959 17.36 Slightly Groy w/ some silt (very little) bottom 59,74 1014 10 Grey w/ silts 331.3 bottom 1021 13 Clear NO silts botton 12.64 1031 17.5 Cloar No sit middle 11.3 Notes: DTW-17.36 19.99 DTB -Water column = 2.63 2.163 = Stort 3tort \$.43 gal # 4 B Neil volumes DTW - 1979 DTB- 19.99 end 17,45

Time	Depth to Water	Volume (gallons)	Temp (°C)	meters	DO	рН	OPR	Color/
	(TOC)		COLUTE	(μS/cm)	(mg/L)	wetl screen interval	(mV)	Turbidity
0847	16.01		DARV GR	EY CLOU	DY	Bottom		1,100
		- /o-D		P	out as			
			200				-11 -20-1	
					THE SECOND			
	STOPPED	Deva	.0P/NUS /	A PTEY 2	21661	WEKE PU	Pas D	
tes: D	TW=16.	OI DT	B=19.4	3 -> 3.4	2' x 0.	163 = 0.5	6gal	
Slower	for a w	e rate; hile, th	Well does	int pum + let it	P dry fully	but almos recharge but foun	t. Pun	ip+

WELL DEVELOPMENT

Time	Depth to Water (TOC)	Volume (gallons)	Color	Cond (µS/cm)	DO (mg/L)	Well Screen (mv)	Color/ Turbidity
0719 0729 0740 0743 0751 0753 0805 0805 0813	9.99	20.0 27.0 23.5 25.0 26.0 27.0	Cloudy	y no oc	dor		258.8 1100 775.7 916.6 1665.7 272.2 420.5 145.9 93.04 110.4 92.69
827 827	W=9	27.5 28.0	mostly.		→ 8.91	bothm bothm ft × 0.163 =	1.45go

Time	Depth to	Volume	eld Para	Cond	-DO 1	⊸pH OPR	Color/
	(TOC)	(gallons)	color	(µS/cm)	(mg/L)	Well Screen (mV)	Turbidity
84-	16.61	-	red orgo	inics, sli	cloudy	Bottom	79.91
855	_	3.0	- 11		"	((750.6
904		5.0	1,	No. of the	1.0	1.1	182.3
10	_	10.0	light se	d	11	(1	118.5
17	_	12.5	Clear		16	11	59.17
127	6.61	15.0	Clear		41	16.6	8.09
t							
	TW= 6.	.61	DTB = 8	47 -) 1.86ft	× 0.163 = 0.3	30 gal
(ev	TW= 6.1 d) B= 10.15 Pura	jed 1	good r 5.0 gallor well vo	echarg ns		surged TOP, w + Bottom well so	of

	vacuat	IOII / FIE	ld Parar	meters				
Time	Depth to Water (TOC)	Volume (gallons)	Temp(°G)	Gorid (µS/em)	(mg/L)	Well screen Interval	OPR (mV)	Color/ Turbidity
1327	10.81		ERYTH	UC/CLOUR	y/Mu	IDDY BUHON	- (1	_
402		20	VERY	CLOUR	Y	Bolton		1100
1407	_/_	28 23				Bottom		269-2
1414		28	Slight	ly cloud	dy	11		98,99
1419		30.5	((11	1	1.5		49.81
430	10.83	35.0	mostly	clear		Bottom		18.96
			/	же П		E may		
		- N D	Re Elem	Adlerand			Direction of	
		10	The same	· collect			-	
				Name :		b ₂		
						-		
1 - 6						Mary Street, Square, S	10 10	0
	-			Marine .				
-								-
							- 4	
-		-				-		
					-		-	
- 75								-
	_							-
Start	W = 10.9	BI DTE	3 = 18.40	→ 7.5	9' x 0	1.163 = [1.2	4gal,	
,		riddle 4	bottom	PA	urged	35 gal or	28.2	2 well
	J= 10.8.		B-17:	T.			VOIC	rinte 3

	127/21	Wi		Well ID:	FG	-20	400
Well	Evacuat	tion / Fi	eld Para	meters		AVTTO	
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µ8/cm)	'DO (mg/L)	Well Screen (mV)	Color/ Turbidity
1030	15.29	VERY	THICK	CLOUDY	/MUPD	Y WATER	_
1051		15.0	orange	grey +	nick	bottom	169.7
1058		225	sti clo		rey	pollom	120.9
1104		24.0	slig	htly c	loudy	**	55.31
1109		26.0		11	"	1.8	43.88
1113	15.31	27.0	- (1.0	((29.23
					-	Daniel Commence	
				d Maria	- Pi	Assessed Physics	
							100100
				_			
				47147			
							_
					-		
*	Purae	1 77	cale 1	1 17	1.	11 . 1	
	- Large	0 0-1	gais	7 17	, 6 We	Ivolumes	
			_/				
	- u1 -	V 21	DT	2 - 2//	~		
	cond	15.31	D 1 12	3=24.0	00		
	(cha)						
tes:							
tes:	= WIC	15,29	DTB:	15-87	55.0 (6	X 0.163 > (200
KVPF	Start)	bollows .	_	40.20			my g
1. 0 61	y soft	n	NO	24.65	-)9.30	0 x 0.163 = 1.	53.
last	well mea	bottom co	it was				
A BIUI	Mass on	top of i	water Dr	evented	Mitia	I DTB measur	rement
- EMMON	cond	zogal.	first dorganics	tuen s	tarted r	eadings	
M MEd	sand in	gww)	organics			,	
* Clar	mps of	organics	/possible	y roots	*	surged top, mic	ddle
rem	loved th	om well					
						+ bottom	

Date: 7/	27/2021		Well	Develop			
Well E	vacuat	ion / Fi	eld Para	Well ID:	FG-2		
Time .	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond	DO (mg/L)	pH OPR vellscreen (mV)	¹ Color/ Turbidit
1407 1417 1427 1439 1447 1457 1520 531	9.5	4 9 19 21 24 34 36	brown brown brown brown brown brown brown	very han very on very on the turbid	turbid turbid turbid	bottom middle d_middle d_middle	421.2 64.5 499.6 158.2 239.5 676.3 126.8 96.17
eno	L DTW	= 9.5	TD== 36 gal	21.59		(0.163)=[1.98 excellent rech	

	/ _{27/202}		eld Paramete	ID: FG-2	3	
Time	Depth to Water (TOC)	Volume (gallons)	Temp(°C) Cond (#S/em	ĐO	TH Waterope Columniany) Placement	Color/- Turbidity
1258	18.2	_	brown, very	turbid	botton	NTU 105.7
1308	_	_ 5	grey turk	10	bettom	63.81
1318	_	_13_	grey tul		middle	37.25
331331	-	20	mostly clea		111	6.37
1				D series	Daniel Commission	
*		was E	On D action	est C and	manh El a mgi n	
			and only in			-
		,	and the same of			1400
				-		
-		-		-		- 1
				3	•	
-		us Fi	ma Filmon	b	an and	
		-				
		í de	(Melydanes)	Part with 1		
tes: Star	+ DIN	s (btic)	= 18,2° Tį)(bloc) = 25	5.05-06.85 (0.1	(3) = ,12 ga
End	DTW = 1	18:21	TD = 25.03	total pur	ged: 20 gol =	
		Excell	ent produce	ge .	17.9 Well	Vol.

17.26	7 15 20	Silty, gr. " mostly mostly	" no	odor	bottom	7.55 254,4
7		mostly	" no	odor	bottom	
		mostly	Clear			659 4
	20				Middle	
					middle	
-			To The	production of	Tribate_	8,11
	1					
	1		at D	LOST TO SERVICE		
		and Trans	apres la	P		
		-	ally team			
		Name of Street				
						-
			-			
- 14,		-		-		-
-			-	-	-	
			-	-		
		-				
		_		-	The part	
_				-		
			_			
			_			
			1	0 110	F	
+ DTW	= 17.26	TD = 2 TD(end) = 2	25.07 - 15.05	-07.81	× 0.163	= 1.27 gal/
NTIL)-	1776	Excelle	ut recl	narge		
01102	11.25	total	word -	20	1/	
		Total p			Volumes	
			DTW= 17.25 Excelle	DTW= 17.25 Excellent rock	DTW= 17.25 Excellent recharge	

Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	meters Cond (#8/cm)	DO (mg/L)	well screen Interval	OPR (mV)	Color Turbid
				in page 2				
				Hilland				
					dar	(207		
_		-at 15			-	B man		- 20
		N						
		X	1/2				*	
1	0		-					
				-				
_				1 -	- 10	90		
DT (star	W = 16.7 +)	7 DTE	3=18.02	→ 1,25	' x 0.1	63 = 0.29	21	

			Well De	velopm	ent		,	1000
	127/2			Well ID:	Hos	5-5		The Little
Well E	vacuat	ion / Fi	eld Para	meters		AMT	181	
Time	Depth to Water (TOC)	Volume (gallons)	Temp(C)	(pS/cm)	DO (mg/L)	well screen	OPR (mV)	Color/ Turbidity
1557	12.72	-/	DERY	COUDY	w/511	-T Bottom		/
1608		12.0	15		- (1	Botom		283.8
1613		15.0	_ clou	DY W	SILT	11		283.7
1621		20.0	_ (104	DY w/	SILT	11		282.6
& Br	eak fo	r dinn	er; sta	rt deve	elopm	ent 0 172	-3	/
726	/	22.0	slight	ly do	dy	11	n	91.37
730		23.6	most	y clear	_ 0	TV =		56,45
				1			mini	
								Lange
	_			no i moi				
	-			100/201				Market In
						1		
-								
-								
-	4		11500					
	-		0					
-		100	and the same				0.0	
_	-				1			4
-	-							
-								
ites:	(Start)	7.72	DTR-1	8 U2 ×	5301	x0.163 =	- 0	2 (
			dle, bot					_
				ion	Pur	ged 23 g	jallo	ins
			Euce)			r 24.7 u	sell v	olumes
* Pet	to odor	, sheen	(100Ks 4	emulsifi.	ecl)			
A Ac	ided a	PUC US	ell cap					- 1

SUSITN	Gr	oundwater Sampling Record
Project Name: BRU GIV	V Sampling v	Vell ID: 224-13-2
Project Location: M - Pad	s	Sample No.: 224-13-2-07292+ 224132-0
Project Number: 215-019	84 s	Sampler(s): BL, MM (DUP + 224133-4
Date/Time: <u>7/29/2</u>]	/1421 v	Veather: Overcast, slight wind, 56°F
Water Level Measurements and Time Depth of (TO)	Well Depth to Water C) (TOC)	Feet of Water Gallons per Well Volume in Well (2" dia. = 0.163 gal/ft, 4" dia. = 0.653 gal/ft) 7.17 J.17 gal - 3.51(3 well Vo
Water Level Measurement Metho	d: 🗍 Electric Tape 🔯	Other: Water Level Meter
_		nersible Pump 🔲 Bailer 🗂 Other:
Purge Rate:		
Begin Purge: Time: 1428	<u></u> т	otal Volume Purged: 3 galluns
End Purge: Time: 444		Vell Volumes Purged: 85 WITT VOLVINS
Purge Water Disposed: 55		Tank Ground Liquabin Gother:
Sample Collection Method & Ar	-	
Sample Type: Groundwate		Other:
Sample Time: 1450 Dup	<u>-1</u> 550	
Sample Collection Method:	Pump Type: SUD	Dedicated ☐ Y ☐ N ☐ Bailer ☐ Other:
Decon Procedure: N/A	Alconox Wash 🔲 T	ap Rinse 🗵 DI Water 🔲 Other:
Sample Description (color, turbidi	ty, odor, sheen, etc.):	
Sample Containers Quantity Dupli(aKS Size	Bottle Type	Laboratory Analysis
30 40 mc	☐ Glass ☐ Plastic	24n
3 6 40 m	☐ Glass ☐ Plastic	Dahari tura 1/0/ - PTTs
84 250 m	☐ Glass ☐ Plastic	TORO / 1000
4 250mL	☐ Glass ☐ Plastic	and Man Programmed
	Clace C Plactic	

Notes:

Date: 7	29/21	······································		Well ID:	224-13	-2	—————————————————————————————————————		
Well I	Evacuat	ion / Fie	ld Para	meters		• •			
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C) = 270	Cond (µS/cm)	ÐO (mg/L) ± 107ø	PH ≟0, 	OPR (mV)	Color/ Turbidity -1076 a	± 5
1428	9.92		10.11	85	5.40	5.63	191-1	63.92	
1433	9.90	_ · 50_	10.02	84	3.99	5.69	173.0	42.31	
1438	9.93	.80	9.83	84_	3.83	5.69	1634	36-10	
1443	9,93	1,0	F0.0i	84	<u>3.69</u>	5.70	153,5	55,07	
					• •				
					.3				
									
					·			<u></u>	
						······································		·	
	····				······································				
									
							······································		
				<u></u> , , , , , , , , , , , , , , , , , ,				. ,,	

Notes:		•							
		V-							

Project Name:	BRU GW	Sampling	Well ID:	ATF-3
Project Location	: Alandoned	Tank Fam	7 Sample No.:	ATF3-072921
Project Number:	215-019	84	Sampler(s):	mm/BL
Date/Time:	7/29/2021	1 238	Weather:	Cloudy, 580F, Wind 0-5mph
Water Level Me	asurements and Pu	ırge Data		····
Time	Depth of Wei (TOC)	ll Depth to Water (TOC)		
1239	24.68	17.85	6.83	1.11 (3) = 3.33 gal for
				3 well vol
	asurement Method:			
Well Evacuation	Method: Peris	taltic Pump 🔀 St	ibmersible Pum	p 🗖 Bailer 🗖 Other:
Purge Rate:	0.097			
Begin Purge:	Time: 1244	-	Total Volume	Purged: 3.2 gal
End Purge:	Time: <u>1317</u>		Well Volumes	s Purged: 2,9
Purge Water Dis	posed: 💢 55-ga	l Drum 🔲 Stora	ge Tank 🔲	Ground 🗖 Liquabin 🗖 Other:
Sample Collecti	ion Method & Analy	/sis	 	
Sample Type:	Groundwater	Surface Water	Other:	
Sample Time:	·			
				🗖 N 🗖 Bailer 🗖 Other:
Decon Procedure	e: 🗍 N/A 💢 A	Nconox Wash	Tap Rinse	DI Water DOther:
Sample Descript	ion (color, turbidity, c	odor, sheen, etc.): _	Slight Po	Lodor, Slightly turbed forange
Sample Contain Quantity	i ers Size	Bottle Type	اماد ا	oratory Analysis
3	40m L		/	alo
· · · · · · · · · · · · · · · · · · ·		♥ Glass ☐ Pla	· ·	
	40mL	Ø Glass ☐ Pla		TEX
	250 mL	A Glass ☐ Pla	stic	DRO
	250mL	AGlass ☐ Pla	stic	PAHS
		☐ Glass ☐ Plas	stic	
· · · · · · · · · · · · · · · · · · ·		🗇 Glass 🔟 Plas	stic	***************************************
Notes: Phys	, sel @ 21	btoc		

Date:	29/2021			Well ID:	ATF-	3		· · · · · · · · · · · · · · · · · · ·	
Well	Evacuat	ion / Fie	eld Para	meters				٠.	
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C) ⁺ 2 %	Cond (μS/cm) ± 3%	DO (mg/L) ± 10 %	pH / = 0.1	OPR (mV) <i>I</i> 10	Color/ Turbidity ±1075 o	<u>4</u> 5un
1246	The second secon	0.1_	5.98	50	2.34	5.72	158.1	528.8	:
1251	17.89	0.4	6.34	49	2.65	5.76	<u> /35.3</u>	290.4	: :
1256	17.89	0.75	6.07	_47	1.62	<u>578</u>	125.8	171.4	
1302	17.9	_t31.2	5.67	44	0.89	5,75	1175	76.91	
1307	17,89	2	5.34	42	0.76	<u>5.75</u>	110.1	41.49	
1312	17.88	2.5	5.58	42_	0.75	5.76	104.2	<u>38,38 </u>	
1317	17.88	2.9	_5.8 <i>[</i> _	<u>43</u>	0.77	5.75	101.7	37.56	
						<u></u>		·	
				·····					
							····		
·····								- 114.	
						***************************************		· - · · · · · · · · · · · · · · · · · ·	

							-		
Notes:									
									i i
			`.						

W 1		•						
Project Name:	Beluga R	iver		Well ID:	AT	=-8		
Project Location	: Diesel Ta	nk Fa	rm	Sample No.:	ATF	3-072	921	
Project Number				Sampler(s):	MU	RB		
Date/Time:	7/29/21				Over	coust	~54°	F
Water Level Me	easurements and Pu	rge Data						
Time	Depth of Well (TOC)	Depth t		Feet of Wate in Well		-	r Well Volume 3 gal/ft, 4" dia.=0	
1357	2(.13) Meas. (1 His	•		5.37		0.84	2	_
	asurement Method:	-0	_					
	Method: Perist				p 🗖 Baile	er 🗖 Othe	er:	
	0.097				,			
Begin Purge:	Time: 14/00			Total Volume	Purged:	2.9		
End Purge:	Time: 1430	_		Well Volumes	s Purged: _	3,4		
Purge Water Dis	sposed: 🎾 55-gal	Drum 🗖	Storag	ge Tank	Ground [J Liquabír	Othe	er:
Sample Collect	ion Method & Analys	sis						
-	Groundwater		Water	Other:				
Sample Time:	1431							
Sample Collection	on Method: Pun	Me ip Type: Ma	nsoon	Dedicated 1	ON 🗖	Bailer [Other:	
	re: 🗖 N/A 🔯 A			_		_	er:	
Sample Descrip	tion (color, turbidity, o	dor, sheen,	etc.):		1			
Sample Contail	ners							
Quantity	Size	Bot	tle Type	Lab	oratory Ana	lysis		
	250ml (HCL)	🗇 Glass	☐ Plast	tic <u>D</u>	RO			_
	250ml (un)	☐ Glass	☐ Plast	tic Pr	74			_
6_	40ml HCL	☐ Glass	☐ Plast	tic <u>GR</u>	O/BIE	X:		_
		☐ Glass	☐ Plast	tic				
		☐ Glass	Plast	ic				
		☐ Glass	☐ Plast	tic				
Notes:								
	Set pun	p O	181	Broc				

Date:	7/29/2	1	6	Well ID:	ATF-	8		
Well	Evacuat	ion / Fie	eld Par					1.2
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C) ± 2°/ _°	Cond (µS/cm)	DO (mg/L) ± 10%	pH 1	OPR (mV)	Color/ Turbidity -10% ov
1410	15.78	1.0	5.15	45	0.37	5.10	170.7	53.91
1415	15.77	1.7	5.11	42	0.28	5.07	-149.2	54.51
1420	15.80	2.0	5.66	43	0.26	5.15	-176.0	29.52
1425	15.86	2,4	4.92	41	0.15	5.07	-1712	15.07
1430	15.85	2.9	4.65	_41	0.14	5,08	-170.8	10.63
					17,			-
							-	
					1.7			
Notes:	and to 1	main ta	in lou	fow,	water	flucu	ates gra	ratly_
							0	0
	Tubing	lett iv	the 1	ne ()				
					2			

SUSITNA ENVIRONMENTAL, LLC	Groundwater Sampling Record
Project Name: Beluga River	Well ID: ATF-10
Project Location: Diesel Tank Farm	1 Sample No.: <u>ATFIO - 072921</u>
Project Number:	Sampler(s): ML/RB
Date/Time: 7/29/21	Weather: Overcast 54°F
Water Level Measurements and Purge Data Time Depth of Well Depth to W (TOC) (TOC) 1250 19.99 17.60 Meas. Thist. Initial	in Well (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft) 2,39
Water Level Measurement Method: Taj Electric Taj	
	Submersible Pump Bailer Other:
Purge Rate: 0.10 gal/min	
Begin Purge: Time: 1252	Total Volume Purged:
End Purge: Time: 1317	Well Volumes Purged:Co. L
Purge Water Disposed: 55-gai Drum	torage Tank Ground Liquabin Other:
Sample Collection Method & Analysis	-
Sample Type: Surface Wa	ster U Other:
Sample Collection Method: Pump Type: Manso	
Decon Procedure: N/A Alconox Wash	
Sample Description (color, turbidity, odor, sheen, etc.)	
Sample Containers	
Quantity Size Bottle 7	Type Laboratory Analysis
2 250ml (HCL) & Glass 0	Plastic DRO
250m1(un) of Glass 0	Plastic PAH
6 40ml HCL MGlass 0	Plastic GRO BTEX
	Plastic
	Plastic
	Plastic
Notes: Set pump @ 18' BTO	C

ı

Date: _=	129/21			Well ID:	ATF-	10		
Well E	vacuati	on / Fie	eld Para	meters	1			
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	OPR (mV)	Color/ Turbidity
1307		0.9	<u>4.96</u> <u>4.95</u> <u>5.17</u>	39 39 38	0.51	4.73	-159.6 -156.5 -137.9 -165.7	2.09
	Purged o	ver					t in to	e well

*

Project Name:	BRCI GW S	ampling	We‼ ID:	<u>F6-3</u>
Project Location	: Pump Area	<u>Assessman</u> (Sample No.:	FG3-072921
Project Number:	215-01	984	Sampler(s):	mm/BL
Date/Time:	0846 7	29/21	Weather:	Cloudy, 55°F, breeze (23mm)
Water Level Me	asurements and Pu	rge Data		
Time	Depth of Wel (TOC)		Feet of Water	er Gallons per Well Volume (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
0850	19.22	10.07		1.5 (4.5 gal = 3 well vol)
	CMeas. CH	st. Initial		J
Water Level Mea	surement Method:	Electric Tape	Other: _	
Well Evacuation	Method: Perist	altic Pump 🗵 Su	ibmersible Pum	Bailer Other:
Purge Rate:	0.067gal/1	uin		
	Time: <u>AROL</u>		Total Volume	Purged: 2.0 gal
End Purge:	Time: <u>0931</u>	-		Purged: 1.3
Purge Water Dis	posed: 🔀 55-ga	Drum 🗖 Stora	ge Tank	Ground Liquabin D Other:
Sample Collecti	on Method & Analy	sis		
	X Groundwater		Others	
		Ourlace Water	La Oner.	
Sample Time:		an Till Style	5	a., A. B
			_	ØN Bailer Other:
Decon Procedure	e: LJ N/A LXJ A	llconox Wash 🔟	Tap Rinse L	Dt Water Other:
		dor, sheen, etc.): _	Slightly	turbed, no odor, no sheen
Sample Contain Quantity	ers : Size	Bottle Type	e Lab	pratory Analysis
3	40ml	on Glass ☐ Plas	0.0	11
3	40ml	TA Glass □ Plas	n.	TEX HEL
2	250mL	Ö LGlass ☐ Plas		ro Hel
		☐ Glass ☐ Plas		
		☐ Glass ☐ Plas		
······		☐ Glass ☐ Plas		
		iii waaa iii ii las		
Notes: place	pump@1	4.5' bfoc		

Date:	7/29/21			Well ID:	FG-3	***************************************		**************************************
Well	Evacuat	ion / Fie	eld Para	meters				
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond / (μS/cm) ± 3 %	DO (mg/L) ゴ /ひ?:	pH /	OPR (mV) ± /0	Color/ Turbidity
0902	10.14	0.1	7.49	<u> 88</u>	1.61	5.95	129.3	45.74
0907	10.11	0,3	7.63	_86	0.99	6.03	105,9	p roduces
0912	10.12	0.5	8.01	_ ୧5_	_1,13_	6.05	94.5	41.34
0918	10.11	0.75	814	84	0.9	6.05	88.7	41.25
0923	10.11	0.9	8.25	_84	0.99	6.05	_85.3_	35.64
							<u></u>	

						:		
					 .			
	·- ·							<u></u>
								
								·
				<u> </u>		 		······································
	,			-				
	<u> </u>							:
			****		·			
	-							
Notes:						······		
						•		

Project Name: Beluga River	Well ID:FG -10
Project Location: Pump Area Assess.	Sample No.:FG10 - 072921
Project Number:	Sampler(s): ML/RB
Date/Time: 7/29/21	Weather: Overcast 52°F
Water Level Measurements and Purge Data	
Time Depth of Well Depth to Water (TOC) (TOC)	Feet of Water Gallons per Well Volume in Well (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
` , ,	· ·
857 10.15 6.66 Pomeas. Thist. Initial	
Water Level Measurement Method: 💋 Electric Tape	Other:
Well Evacuation Method: Peristaltic Pump D Su	abmersible Pump Bailer Other:
Purge Rate:0 , 0 73	
Begin Purge: Time: 900	Total Volume Purged: 2.2
End Purge: Time: 930	Well Volumes Purged:
Purge Water Disposed: 55-gal Drum Stora	nge Tank
Sample Collection Method & Analysis	
Sample Type: Groundwater Surface Water	Other:
Sample Time: 936	
Sample Collection Method: Pump Type: Mega	Dedicated Y N Bailer Other:
Decon Procedure: N/A Alconox Wash	
Sample Description (color, turbidity, odor, sheen, etc.):	orange tint, no odor or sheen
Sample Containers Quantity Size Bottle Type	e Laboratory Analysis
2 250 m (HKL) poglass of Pla	A CONTRACTOR OF THE CONTRACTOR
6 40 ml (HCC) gaglass O Pla	stic GRO/BTEX
Glass 🗆 Pla	
☐ Glass ☐ Pla	stic
	estic
Notes: Set pump 1 8	BTOC

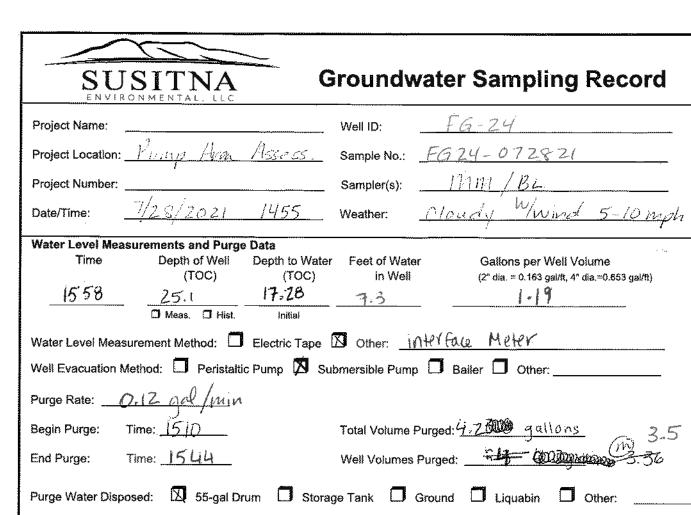
	₹/29	tion / Fid	eld Para		_FG-1				
Time	Depth to Water (TOC)	Volume	Temp (°C)	Cond (µS/cm)	DO (mg/L) ± 10%	pH + 0.1	OPR (mV)	Color/ Turbidity	4
910	0.6	6.68	5.87	63	6.12	3,40		9.78	
715	1.3	6.68	5.61	62	4.90	3.59	-95.4	6.42	
920	1.8	6.68	5.89	63	3.779	4:14	-127.4	3.41	
125	2.0	6,48	6,28	64	3,45	4.78	-158.0	2.90	
130	2.2	6.48	5.83	65	3.10	5,05	-171.2	2.28	
						-1			
						4			
							*		
						(
								l-i	
								1	
								-	
		-			, III		1	100	
								-	
		-						- 1	
						_	-		
es:	ŧ	P =					11.5	-	
P	urged	more to	nan 3 u	Jell Vol	umes				
-7 (ubing	left ir	the w	ie II					
				4					

SI	USITNA	Ground	water Sampling Record
Project Name:	Beluga River	Well ID:	FG-14
Project Location	on: Pump Area A	5505, Sample No.:	FG14-072921
Project Number	or:	Sampler(s):	ML/RB
Date/Time:	7/29/21		,
Water Level N Time	10.68 18.	to Water Feet of Wa (TOC) in We	(2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
Water Level M	easurement Method: 🗵 Electri	ic Tape Other:	AND ES HOLL SIG
	n Method: Peristaltic Pump		np 🗖 Bailer 🗖 Other:
Purge Rate: _	0.073 gal/min		
Begin Purge:	Time: 737	Total Volume	e Purged: 2.7
End Purge:	Time: 814		es Purged: 2.
	isposed: 🗖 55-gal Drum 🗓	Storage Tank	Ground Liquabin Other:
Sample Collec	ction Method & Analysis		
	Groundwater Surface	e Water Other:	
Sample Time:		Mega	Y 🗆 N 🔲 Bailer 🔲 Other:
	ure: N/A Alconox Wa		
Sample Descri	ption (color, turbidity, odor, sheen	etc.): orange	tint, no odor or sheen
Sample Conta Quantity		ottle Type La	boratory Analysis
2	250 m (HCL) p Glass	☐ Plastic	DRO
6	40ml (HCL) DGlass	Plastic G	RO / BTEX.
	Glass	☐ Plastic	
1	Glass	☐ Plastic	
1	☐ Glass	□ Plastic	
	☐ Glass	☐ Plastic	
Notes:			
0.0000	Set pump @ 10	& BTOC	
	, ,		

	-129/21		ald Dave		FG-	14		
Time	Depth to Water (TOC)	Volume (gallons)	eld Para Temp (*C) ± 20/0	Cond (µS/cm)	DO (mg/L) ± 10 %	pH ± 0-1	OPR (mV)	Color/ Turbidity
47	10.69	1.0	7.78	88	6.00	3.71	-92.7	39.90
52	10.69	1,3	7.85	88	0.90	4.63	-148.7	32,89
57	10.71	1.7	7.98	89	0.66	4.85	-158.2	23.51
02	10.66	2.0	7.61	88	0,58	4.69	-145.5	19.63
7	10.68	2.2	7.70	87	0.62	4.84	-159.4	14.24
10	10.69	2,4	7.76	87	0.61	4.75	-151.6	13.91
13	10.69	2,7	7.40	86	0.69		-150,2	12.69
_					- 6			
_					_	Service Service	0.01	100 100
		_		-	_			200
_				-				-5-1
				-		-		
								_
					-		-	
							-	
				-		-		-
_	-						_	-
	-							_
_			_		_	-		79111
s:								
-	Tubing	left !	n the v	vell				
								-

SUSIT	IL, LLC		E (2)	
Project Name: Belug			FG-20	
Project Location: Pump	2 Avea Asso		: FG20-0	
Project Number:			MLIRB	
Date/Time: 7/28	121	Weather:	Overcast	~ 60°F
1455 24 Mess	of Well Depth to TOC) (T	oc) in W 32 9,33	ell (2° dia. = 0	per Well Volume 0.163 gal/ft, 4" dia.=0.653 gal/ft)
Water Level Measurement Me				
Well Evacuation Method:		Submersible P	ump 🔲 Bailer 📙 🤇	Other:
Purge Rate: 0.078	gal/min			
Begin Purge: Time: 15	03	Total Volum	ne Purged: 3.2	-
1 100			2 1	
Purge Water Disposed:	55-gal Drum	Storage Tank	741	abin D Other:
Purge Water Disposed: Sample Collection Method of Sample Type: Sample Time: 1545 Sample Collection Method:	SAnalysis vater Surface	Water Othe	Ground Lique	abin Other:
Purge Water Disposed: Sample Collection Method of Sample Type: Sample Time: Sample Time: Sample Collection Method: Decon Procedure: N/A	SAnalysis vater Surface	Water Othe	Ground Lique	abin Other:
Purge Water Disposed: Sample Collection Method & Sample Type: Sample Time: Sample Time: Sample Collection Method: Decon Procedure: N/A	SAnalysis vater Surface Pump Type: Add	Storage Tank Water Othe Once Sible onse Dedicated Ch	Ground Lique	Other:
Purge Water Disposed: Sample Collection Method of Sample Type: Sample Time: Sample Collection Method: Decon Procedure: N/A Sample Description (color, turns) Sample Containers Quantity, Size	SAnalysis vater Surface Pump Type: Alconox Wash	Water Other Water Tap Rinse etc.):	Ground Lique	Other:
Purge Water Disposed: Sample Collection Method of Sample Type: Sample Time: Sample Collection Method: Decon Procedure: N/A Sample Description (color, turns	SAnalysis vater Surface Pump Type: Alconox Wash	Water Other Water Dedicated Ch Tap Rinse etc.):	Ground Lique	Other:
Purge Water Disposed: Sample Collection Method of Sample Type: Sample Time: Sample Collection Method: Decon Procedure: N/A Sample Description (color, turns Sample Containers Quantity Size	So-gal Drum Solvater Surface Surface Alconox Wash bidity, odor, sheen, of	Water Other Water Dedicated Character Tap Rinse etc.):	Ground ☐ Liqual Y ☐ N ☐ Bailer ☐ DI Water ☐ C Sheen; aboratory Analysis	other: other: other: ms/D
Purge Water Disposed: Sample Collection Method of Sample Type: Sample Time: Sample Collection Method: Decon Procedure: Sample Description (color, turns Sample Containers Quantity Size	SAnalysis vater Surface Pump Type: Add Alconox Wash rbidity, odor, sheen, o	Water Other Water Dedicated Character Tap Rinse etc.):	Ground Lique YON Bailer DI Water O Sheen',	other: other: other: ms/D
Purge Water Disposed: Sample Collection Method & Sample Type: Sample Time: Sample Collection Method: Decon Procedure: Sample Description (color, turns Sample Containers Quantity Size	SAnalysis vater Surface Pump Type: Add Alconox Wash bidity, odor, sheen, of	Storage Tank Water Other Oth	Ground ☐ Liqual Y ☐ N ☐ Bailer ☐ DI Water ☐ C Sheen; aboratory Analysis	other: other: other: ms/D
Purge Water Disposed: Sample Collection Method of Sample Type: Sample Time: Sample Collection Method: Decon Procedure: Sample Description (color, turns Sample Containers Quantity Size	SAnalysis vater Surface Pump Type: Add Alconox Wash bidity, odor, sheen, e Bott Glass Glass Glass	Storage Tank Water Other Oth	Ground ☐ Liqual Y ☐ N ☐ Bailer ☐ DI Water ☐ C Sheen; aboratory Analysis	other: other: other: ms/D
Purge Water Disposed: Sample Collection Method & Sample Type: Sample Time: Sample Collection Method: Decon Procedure: Sample Description (color, turn Sample Containers Quantity Size	SAnalysis vater Surface Pump Type: Add Alconox Wasi rbidity, odor, sheen, e Bott Glass Glass	Storage Tank Water Othe Other Othe	Ground ☐ Liqual Y ☐ N ☐ Bailer ☐ DI Water ☐ C Sheen; aboratory Analysis	other: other: other: ms/D

Well Evacuation / Field Parameters									
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (μS/cm) = 3°/ο	DO (mg/L) ± 10°/o	pH ± 0.1	OPR + (mV) - 10	Color/ Turbidity	
1513	15,34	0.8	7.32	201	6.77	4.22	- 188.1	27.67	
1518	15.34	1.0	7.03	197	0.72	5.01	-228.9		
523	15.34	1.7	6.58	188	0.71	4.16	-178,0	17.63	
528	15.35	2.0	7.05	185	0.73	5.11	-230,2	13.63	
532	15.36	2.2	6.69	181	0.70	4.99	-223.9	8,26	
536	15.34	2,5	6.61	175	0.70	4.86	-217.0	6.39	
540	15.34	2.9	6.77	172	0.68	5.20	-234.5	5,35	
543	15,38	3.2	5.87	171	0.70	4.98	-220,5	2.90	
						÷ 1	TO TO		
	0/5FV	777		4					
tes: Left	dedica	ted tu	bing in	n the	well.		Lore Gu	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	



Project Name: 2021 GW Sam	pling Well ID:	FG21
		FG21-072921
Project Number: 215 - 01984	Sampler(s):	mm/BL
		Cloudy, 52°F, no wind
Water Level Measurements and Purge Da	ıta	
Time Depth of Well De (TOC)	epth to Water Feet of Wat (TOC) in Well	(2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
0732 9.55 2 7 LMeas. ☐ Hist.	21.61 12.06 Initial	
Water Level Measurement Method: 2 El	ectric Tape Other: _	
Well Evacuation Method: Peristaltic Pu	ump 🔽 Submersible Pum	p 🗖 Bailer 🗖 Other:
Purge Rate: O. II gal/min		
Begin Purge: Time: 0738 420	Total Volume	Purged: 4.5 gal
End Purge: Time: <u>0820</u>	Well Volume	s Purged: 2.28
Purge Water Disposed: 55-gal Drum	Storage Tank	Ground
Sample Collection Method & Analysis		
Sample Type: Groundwater Su	urface Water	
Sample Time: <u>()815</u>		يسم يسم
Sample Collection Method: Z Pump Type	e: <u>Sub.</u> Dedicated 🗖 🕆	r MSLN ■ Baller ■ Other:
Decon Procedure: N/A Alconox		<u></u>
Sample Description (color, turbidity, odor, sh	een, etc.): <u>Somewha</u>	+ turbid, no odor
Sample Containers		
Quantity Size	Bottle Type Lat	poratory Analysis
3 40mL oxigin	ass 🗆 Plastic 🔝 🧘	aro Hel
3 40 mL 15 Gla	ass Cl Plastic	BTEX HCI
2 250 m L VIGI	ass 🗇 Plastic	DRO Hel
	ass 🗇 Plastic	
	ass 🗇 Plastic	
	ass 🗇 Plastic	
Notes: Pump Sel @ 16	bloc =	
Slight Sulfur odor		Th=
-		

Date:	7/29/21		, ₁₀	Well ID:	FG-2	. <u>i</u>			4
Well	Evacuat	ion / Fie	eld Para	meters					
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C) + 2 %	Cond √ (µS/cm) ± 3%	DO / (mg/L)	± 0.1	OPR (mV) ± 10	Color/ Turbidity = 10%	45 mu
0740	9.57	0.2	6.39	99	2.41	6.03	76.1	606.9	
0745	9.57	0.5_	6.11	101	1.29	6.09	40.9	284.7	
0750	9.58	1.0	5.78	99	6.71	6.09	46.7	146.2	·
0755	9.58	1.6	5.57	101	0,47	6.10	56.8	104.0	
0800	9.56	2.0	5.97	<u>loi</u>	0.53	6.09	67.3	74.83	
Ø805	9.56	2.5	5.83	101	0.53	6.09	42,2	72.95	
0810	9.57	<u> 3:0 </u>	5.74	loi	_0.5i	6.11	57.9	62.46	·
									· ·
<u> </u>								-	
<u></u>							<u> </u>	· • • • • • • • • • • • • • • • • • • •	
							-	• •	
	******			*******	····	· · · · · · · · · · · · · · · · · · · 		· <u> </u>	
ļ									
<u> </u>									
						<u></u>	1.,		·
		·						-	
								<u></u>	

								-	
Notes:									
									· ·
									· · · · · · · · · · · · · · · · · · ·
l .									1

S	USITN	IA	Groundw	ater Sam	pling Record
Project Name	BRU GW	Sampling	_ Well ID:	FG-23	
Project Locati	on: BRU		Sample No.:	FG23-0	72921
Project Numb	er: 215-	01984	Sampler(s):	mm/	BL
Date/Time:	1010	7/29/2021	_ Weather:	Cloudy,	58 oF, no wind.
	JO Meas.	Well Depth to War (TOC) (TOC)	in Well 6.78	(2" dia. =	per Well Volume 0.163 gal/ft, 4° dia.=0.653 gal/ft) 3) - 3,3 gof (3 Well Vd)
		eristaltic Pump		□ Paller □	Other
	. 18 gal/min		oubmersible Fump	D Ballet D	Julei.
Begin Purge:	Time: 1023		Total Volume F	Purged: 3 ga	(
End Purge:	Time:			Purged: _2.73	
Sample Colle	ction Method & Ar	nalysis			abin D Other:
Sample Time:	1043				
Sample Collec	ction Method:	Pump Type: SVb	Dedicated TY	MIN Bailer	☐ Other:
		Alconox Wash ty, odor, sheen, etc.):		DI Water 🔲	Other:
Sample Cont Quantity	ainers Size	Bottle Ty	ne Laho	ratory Analysis	
3	40m		lastic GI		
3	Hom			EX HCI	
2	250mL			20 Hel	THE STATE OF THE S
	270110		lastic	TIC!	
			astic	6	
Notes: pu	mp set @		lastic		

	7/29/21				FG-23		1	
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C) ± 2%	Cond (µS/cm)	DO (mg/L)	pH tooi	OPR ≠ (mV) = 10	Color/ Turbidity
1073	18.37	. 25	5-12	150	3.09	5.33	188.6	46.19
1028		1	4.72	176	1.23		148.6	
033	18.33	1.5	5.06	179	1.23	5.56	133.5	
1038	18:31	2	4.92	175	1.31	5.57	127.2	6.84
			-	E S S	6571	120		- 100
				and I				
	-	-10	- C	Radion	- K -	-		
						diskt	wille	
			1000	_		73		

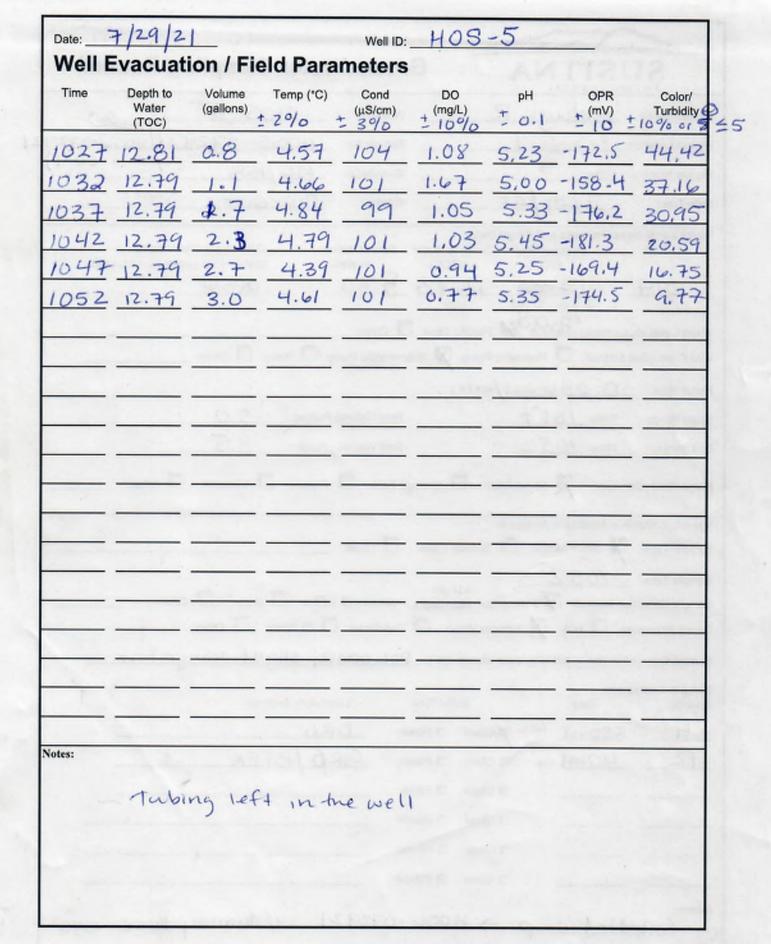
								-
							CHU	
		-	-	-				
		and the last	-					
					-10			7/9
otos			1. 10	A			-11-4	
otes:	W = 18.3	7	1 200					

Sample Collection Method & Analysis	
Sample Type: Surface Water Other:	
Sample Time: 1547 - 1553	
Sample Collection Method: Pump Type: SUD Dedicated Y N Bailer	Other:
Decon Procedure: N/A Alconox Wash Tap Rinse Al Di Water	Other:

Sample Description (color, turbidity, odor, sheen, etc.): (Way w) POL ador Slight to moderate, No Turbids

Sample Conta Quantity	ainers Size	Во	ttle Type	Łaboratory A	nalysis	
<u>3</u>	VOQ 40 mil	🕱 Glass	☐ Plastic	<u> </u>	1101	
3	VOA 40 mil	🥦 Glass	☐ Plastic	BTEX	_ ett/lc/	
_2	250 mei	₫ Glass	☐ Plastic	plo	HCI	
		☐ Glass	☐ Plastic	·····		
		☐ Glass	☐ Plastic			
	<u></u>	Glass	☐ Plastic		•	

Notes: DTW= 17.35 DTB = 25.1 - DTubing will be left in the wen.


DTW = 17.29 Start

Sel pump @ 21'btoc

Date: 07/	28/21			Well ID:	FG1-24				
WellE	Evacuat	ion / Fie	eld Para	meters			• • • • • • • • • • • • • • • • • • • •		
Time 1513	Depth to Water (TOC)	Volume (gallons)	Temp (°C) <u>†</u> 27₀	Cond√ (µS/cm) ± 37°	DO (mg/L) ± 10%	pH√ ±0.1	OPR (mV) ± 10	Color/ Turbidity 1/07, or	± 2 5
1513	17.35	0.25	6.21	179	88 _	5.19	97.1	14.16	
1518	17.32	0.75	5.53	166	92_	5.73	21.4	8-21	
1523	17.35	1.0	6.01	174	65_	<u>5,83</u>	-14.60	4.92	
15 2 2	17.34	_2	4.70	169	.49	5.99	-36.0	2.62	
1534	17.36	2.5	5,60	174	_ ,44	5.98	=46.8	1.28	
1539	17.34	3.1	4.77	167	.39	6,03	-69.1	1.29	
1544	17.36	3 2	4.89	166	28	6.05	-92.0	1,35_	
									:
	<u> </u>						· .	·	

									<u> </u>
									
								·········	

					·		***************************************	···	
					***************************************	· · · · · · · · · · · · · · · · · · ·	· · ·	<u></u>	
N								······································	1
Notes:									

	Beluga			ID: _	HO:	5-5	(Ho	(m)
Project Location	P+S Yava	1	Sam	ple No.:	HOS5	-07Z	921/HO	56-072
Project Number			Sam	pler(s):	ML/R	2B	/	(Du
Date/Time:	7/29/	21	Wea	ther:	Overco	ast	540 F	=
	easurements and P	_				8 5		1100
Time	Depth of We (TOC)		OC)	in Well			Well Volume gal/ft, 4* dia.=0.65	3 gal/ft)
1014	Litot			.30	(0.86		
	18-08							
	easurement Method:				_	-		
/ell Evacuation	Method: Peris	staltic Pump	Submers	sible Pump	☐ Bailer	Other	:	
urge Rate: _	0.086 g	al/min						
	- 1017			I Values D	rand:	3,0		
egin Purge:	Time: 1017		Tota	i volume Pu	ilgeu.		_	
nd Purge: urge Water Di	Time: 1017 Time: 1052 sposed: \$\square\$ 55-g: tion Method & Anal	al Drum	Well	Volumes P	urged:	3.5		
end Purge: Purge Water Di Sample Collec	Time: 1052	al Drum 🗖	Well Storage Tar	Volumes Pi	round	3.5		
ind Purge: Purge Water Di sample Collect sample Type:	Time: 1052 sposed: 55-gi	al Drum ysis Surface	Storage Tar	Volumes Pi	round	3.5		
nd Purge: urge Water Di ample Collect ample Type: ample Time:	Time: 1052 sposed: 55-ga tion Method & Anal Groundwater	al Drum	Storage Tar	Volumes Prink G	round	3.5 Liquabin	Other:	
nd Purge: urge Water Di ample Collect ample Type: ample Time: ample Collect	Time: 1052 sposed: 55-ga tion Method & Anal Groundwater 1052	ysis Surface Memorype:Mai	Storage Tar Water ga nsoon Ded	Other:	round D	3.5 Liquabin	Other:	
nd Purge: urge Water Di ample Collect ample Type: ample Time: ample Collect econ Procedu	Time: 1052 sposed: 55-ga tion Method & Anal Groundwater 1052 ion Method: 7 Pu re: N/A	ysis Surface Me mp Type: Mai	Water Ded	Other:	round D	3.5 Liquabin	Other:	
ample Collect ample Collect ample Time: ample Collect ample Collect ample Descrip	sposed: 55-gi sposed: 55-gi tion Method & Anal Groundwater /052 ion Method: 7 Pu re: N/A A	ysis Surface Me mp Type: Mai	Water Ded	Other:	round D	3.5 Liquabin	Other:	
ample Collect ample Collect ample Collect ample Collect ample Collect ample Descrip	sposed: 55-gi sposed: 55-gi tion Method & Anal Groundwater /052 ion Method: 7 Pu re: N/A A	ysis Surface Me mp Type: Moi	Water Ded	Other:	round D	Liquabin ailer Other	Other:	
ample Collect ample Collect ample Type: ample Time: ample Collect econ Procedu ample Descrip	sposed: 55-gi tion Method & Anal Groundwater / 0 5 2 Ion Method: Pu re: N/A A potion (color, turbidity, iners	ysis Surface Me mp Type: Moi Alconox Wash odor, sheen, o	Water Water Ded	Other:	round B DI Water Sligh	Liquabin ailer Other	Other:	
ample Collect ample Collect ample Type: ample Time: ample Collect econ Procedu ample Descrip	Time: 1052 sposed: 55-ga tion Method & Anal Groundwater 1052 ion Method: Pu re: N/A A stion (color, turbidity, iners	ysis Surface Me mp Type: Moi Alconox Wash odor, sheen, o	Water Water Ded	Other:	round B DI Water Sligh	Liquabin Other	Other:	
ample Collect ample Collect ample Type: ample Time: ample Collect econ Procedu ample Descrip	sposed: 55-gastion Method & Anal Groundwater / 052 ion Method: Pure: N/A Dition (color, turbidity, iners Size	ysis Surface Me mp Type: Moi Alconox Wash odor, sheen, o	Water Water Ded	Other:	round B DI Water Sligh	Liquabin Other	Other:	
ample Collect ample Collect ample Collect ample Collect ample Descrip	sposed: 55-gastion Method & Anal Groundwater / 052 ion Method: Pure: N/A Dition (color, turbidity, iners Size	ysis Surface Me mp Type: Mai Alconox Wash odor, sheen, o	Water Water Ded h Tap etc.): POL tle Type Plastic Plastic	Other:	round B DI Water Sligh	Liquabin Other	Other:	
ample Collect ample Collect ample Type: ample Time: ample Collect econ Procedu ample Descrip	sposed: 55-gastion Method & Anal Groundwater / 052 ion Method: Pure: N/A Dition (color, turbidity, iners Size	ysis Surface Me mp Type: Mo Alconox Wash odor, sheen, o Bott Glass Glass Glass	Water Water Water Ded MS001 Ded h Tap etc.): POL tle Type Plastic Plastic Plastic	Other:	round B DI Water Sligh	Liquabin Other	Other:	
End Purge: Purge Water Di Sample Collect Sample Time: Sample Collect Decon Procedu	sposed: 55-gastion Method & Anal Groundwater / 052 ion Method: Pure: N/A Dition (color, turbidity, iners Size	ysis Surface Me mp Type: Mai Alconox Wash odor, sheen, o	Water Water Ded h Tap etc.): POL tle Type Plastic Plastic	Other:	round B DI Water Sligh	Liquabin Other	Other:	
ample Collect ample Collect ample Collect ample Collect ample Collect ample Descrip	sposed: 55-gastion Method & Anal Groundwater / 052 ion Method: Pure: N/A Dition (color, turbidity, iners Size	ysis Surface Me mp Type: Mo Alconox Wash odor, sheen, o Bott Glass Glass Glass	Water Water Water Ded MS001 Ded Tap etc.): POL tle Type Plastic Plastic	Other:	round B DI Water Sligh	Liquabin Other	Other:	

Laboratory Report of Analysis

To: Hilcorp Alaska, LLC

3800 Centerpoint Dr Anchorage, AK 99503 (907)777-8300

Report Number: 1214733

Client Project: WBS

Dear Kelly Nixon,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Date

Sincerely, SGS North America Inc.

Justin.Nelson@sgs.com

Justin Nelson Project Manager

Print Date: 09/30/2021 4:36:21PM Results via Engage

Case Narrative

SGS Client: Hilcorp Alaska, LLC SGS Project: 1214733 Project Name/Site: WBS Project Contact: Kelly Nixon

Refer to sample receipt form for information on sample condition.

HOS5-072921 (1214733010) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria, due to matrix interference.

HOS6-072921 (1214733011) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria, due to matrix interference.

224133-072921 (1214733016) PS

Revised Report - Petroleum VOCs and RRO have been added, per the COC.

LB for HBN 1823672 [TCLP/11325 (1628574) LB

8260D - Benzene was detected in the LB greater than the LOQ. This analyte was not reported above the LOQ in the associated samples.

MB for HBN 1823448 [XXX/45308] (1627703) MB

8270D SIM - Phenanthrene is detect in the PAH method blank at less than the LOQ. Associated samples contain this analyte at less than the LOQ.

1214798010MS (1627705) MS

8270D SIM - PAH MS recoveries for multiple analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

1214798010MSD (1627706) MSD

8270D SIM - PAH MSD recoveries for multiple analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

8270D SIM - PAH MS/MSD RPD for multiple analytes does not meet QC criteria. These analytes are not detected above the LOQ in the parent sample.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/30/2021 4:36:22PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOG

LOD Limit of Detection (i.e., 1/2 of the LOQ)
LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

SGS North America Inc.

Print Date: 09/30/2021 4:36:24PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sami	le Summary	,

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
FG20-072821	1214733001	07/28/2021	07/30/2021	Water (Surface, Eff., Ground)
FG20-072821(1214733001BMS)	1214733002	07/28/2021	07/30/2021	Water (Surface, Eff., Ground)
FG20-072821(1214733001BMSD	1214733003	07/28/2021	07/30/2021	Water (Surface, Eff., Ground)
FG24-072821	1214733004	07/28/2021	07/30/2021	Water (Surface, Eff., Ground)
FG14-072921	1214733005	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
FG21-072921	1214733006	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
FG3-072921	1214733007	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
FG10-072921	1214733008	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
FG-23-072921	1214733009	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
HOS5-072921	1214733010	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
HOS6-072921	1214733011	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
ATF10-072921	1214733012	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
ATF3-072921	1214733013	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
ATF8-072921	1214733014	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
224132-072921	1214733015	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
224133-072921	1214733016	07/29/2021	07/30/2021	Water (Surface, Eff., Ground)
Trip Blank	1214733017	07/28/2021	07/30/2021	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK102DRO Low Volume (W)AK102DRO/RRO Low Volume Water

AK103 DRO/RRO Low Volume Water
AK101 Gasoline Range Organics (W)
SW8260D Volatile Organic Compounds (W)

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: FG20-072821			
Lab Sample ID: 1214733001	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.184J	mg/L
Client Sample ID: FG24-072821			
Lab Sample ID: 1214733004	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1.11	mg/L
Volatile Fuels	Gasoline Range Organics	0.0453J	mg/L
Client Sample ID: FG14-072921			
Lab Sample ID: 1214733005	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.192J	mg/L
Client Sample ID: FG21-072921	ů ů		· ·
Lab Sample ID: 1214733006	Davassatas	Danult	l leite
	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 0.498J	<u>Units</u> mg/L
Semivolatile Organic Fuels	Diesel Kange Organics	0.4903	IIIg/L
Client Sample ID: FG3-072921			
Lab Sample ID: 1214733007	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.628	mg/L
Volatile GC/MS	Benzene	0.209J	ug/L
Client Sample ID: FG10-072921			
Lab Sample ID: 1214733008	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.280J	mg/L
Client Sample ID: FG-23-072921			
Lab Sample ID: 1214733009	Parameter	<u>Result</u>	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.431J	mg/L
Client Sample ID: HOS5-072921			
Lab Sample ID: 1214733010	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	2.06	mg/L
Volatile Fuels	Gasoline Range Organics	0.401	mg/L
Volatile GC/MS	Benzene	28.0	ug/L
	Ethylbenzene	13.4	ug/L
	o-Xylene	0.393J	ug/L
	P & M -Xylene	35.5	ug/L
	Xylenes (total)	35.9	ug/L
Client Sample ID: HOS6-072921			
Lab Sample ID: 1214733011	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1.97	mg/L
Volatile Fuels	Gasoline Range Organics	0.383	mg/L
Volatile GC/MS	Benzene	25.8	ug/L
	Ethylbenzene	12.4	ug/L
	o-Xylene	0.379J	ug/L
	P & M -Xylene	32.8	ug/L
	Xylenes (total)	33.2	ug/L

Print Date: 09/30/2021 4:36:27PM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: ATF10-072921 Lab Sample ID: 1214733012 Semivolatile Organic Fuels Client Sample ID: ATF3-072921	<u>Parameter</u> Diesel Range Organics	Result 0.296J	<u>Units</u> mg/L
Lab Sample ID: 1214733013	<u>Parameter</u> Phenanthrene	<u>Result</u> 0.0264J	<u>Units</u>
Polynuclear Aromatics GC/MS Semivolatile Organic Fuels	Diesel Range Organics	0.0264J 0.463J	ug/L mg/L
Client Sample ID: ATF8-072921			
Lab Sample ID: 1214733014	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.721	ug/L
	Acenaphthene	0.0452J	ug/L
	Fluorene	0.0683	ug/L
	Naphthalene	1.02	ug/L
	Phenanthrene	0.0241J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.851	mg/L
Volatile Fuels	Gasoline Range Organics	0.101	mg/L
Volatile GC/MS	Ethylbenzene	0.467J	ug/L
	o-Xylene	1.50	ug/L
	P & M -Xylene	3.14	ug/L
	Xylenes (total)	4.64	ug/L
Client Sample ID: 224132-072921			
Lab Sample ID: 1214733015	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	Phenanthrene	0.0285J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.239J	mg/L
Client Sample ID: 224133-072921			
Lab Sample ID: 1214733016	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	Phenanthrene	0.0446J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.239J	mg/L
Client Sample ID: Trip Blank			
Lab Sample ID: 1214733017	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	0.0591J	mg/L

Print Date: 09/30/2021 4:36:27PM

6 of 87

Results of FG20-072821

Client Sample ID: **FG20-072821** Client Project ID: **WBS** Lab Sample ID: 1214733001 Lab Project ID: 1214733 Collection Date: 07/28/21 15:45 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-20

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.184 J	0.577	0.173	mg/L	1	Limits	08/09/21 16:23
Surrogates 5a Androstane (surr)	94.9	50-150		%	1		08/09/21 16:23

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 16:23 Container ID: 1214733001-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Results of FG20-072821

Client Sample ID: **FG20-072821** Client Project ID: **WBS** Lab Sample ID: 1214733001

Lab Project ID: 1214733

Collection Date: 07/28/21 15:45 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-20

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/03/21 02:06
Surrogates							
4-Bromofluorobenzene (surr)	91.8	50-150		%	1		08/03/21 02:06

Batch Information

Analytical Batch: VFC15745 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/03/21 02:06 Container ID: 1214733001-A Prep Batch: VXX37557
Prep Method: SW5030B
Prep Date/Time: 08/02/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of FG20-072821

Client Sample ID: **FG20-072821**Client Project ID: **WBS**

Lab Sample ID: 1214733001 Lab Project ID: 1214733 Collection Date: 07/28/21 15:45 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-20

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 21:18
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:18
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:18
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 21:18
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:18
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 21:18
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/05/21 21:18
4-Bromofluorobenzene (surr)	102	85-114		%	1		08/05/21 21:18
Toluene-d8 (surr)	100	89-112		%	1		08/05/21 21:18

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 21:18 Container ID: 1214733001-D Prep Batch: VXX37591 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of FG24-072821

Client Sample ID: FG24-072821 Client Project ID: WBS Lab Sample ID: 1214733004 Lab Project ID: 1214733

Collection Date: 07/28/21 15:47 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-24

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL 0.612	<u>DL</u> 0.184	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/09/21 16:52
Surrogates 5a Androstane (surr)	103	50-150		%	1		08/09/21 16:52

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102 Analyst: IVM

Analytical Date/Time: 08/09/21 16:52 Container ID: 1214733004-G

Prep Batch: XXX45314 Prep Method: SW3520C Prep Date/Time: 08/04/21 16:50 Prep Initial Wt./Vol.: 245 mL Prep Extract Vol: 1 mL

Results of FG24-072821

Client Sample ID: **FG24-072821** Client Project ID: **WBS** Lab Sample ID: 1214733004

Lab Project ID: 1214733

Collection Date: 07/28/21 15:47 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-24

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.0453 J	0.100	0.0450	mg/L	1		08/03/21 03:00
Surrogates							
4-Bromofluorobenzene (surr)	98.1	50-150		%	1		08/03/21 03:00

Batch Information

Analytical Batch: VFC15745 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/03/21 03:00 Container ID: 1214733004-A Prep Batch: VXX37557
Prep Method: SW5030B
Prep Date/Time: 08/02/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of FG24-072821

Client Sample ID: **FG24-072821** Client Project ID: **WBS** Lab Sample ID: 1214733004

Lab Project ID: 1214733

Collection Date: 07/28/21 15:47 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-24

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 21:33
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:33
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:33
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 21:33
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:33
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 21:33
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1		08/05/21 21:33
4-Bromofluorobenzene (surr)	97.9	85-114		%	1		08/05/21 21:33
Toluene-d8 (surr)	100	89-112		%	1		08/05/21 21:33

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 21:33 Container ID: 1214733004-D Prep Batch: VXX37591 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of FG14-072921

Client Sample ID: **FG14-072921** Client Project ID: **WBS** Lab Sample ID: 1214733005 Lab Project ID: 1214733 Collection Date: 07/29/21 08:15 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-14

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.192 J	0.600	0.180	mg/L	1	Limits	08/09/21 17:02
Surrogates 5a Androstane (surr)	92.9	50-150		%	1		08/09/21 17:02

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 17:02 Container ID: 1214733005-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Results of FG14-072921

Client Sample ID: **FG14-072921** Client Project ID: **WBS** Lab Sample ID: 1214733005 Lab Project ID: 1214733 Collection Date: 07/29/21 08:15 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-14

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 19:43
Surrogates							
4-Bromofluorobenzene (surr)	91.7	50-150		%	1		08/05/21 19:43

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 19:43 Container ID: 1214733005-A Prep Batch: VXX37587
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of FG14-072921

Client Sample ID: **FG14-072921** Client Project ID: **WBS** Lab Sample ID: 1214733005 Lab Project ID: 1214733 Collection Date: 07/29/21 08:15 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-14

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 21:48
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:48
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:48
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 21:48
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 21:48
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 21:48
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/05/21 21:48
4-Bromofluorobenzene (surr)	99.8	85-114		%	1		08/05/21 21:48
Toluene-d8 (surr)	101	89-112		%	1		08/05/21 21:48

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 21:48 Container ID: 1214733005-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of FG21-072921

Client Sample ID: **FG21-072921** Client Project ID: **WBS** Lab Sample ID: 1214733006 Lab Project ID: 1214733 Collection Date: 07/29/21 08:15 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-21

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.498 J	0.600	0.180	mg/L	1	Limits	08/09/21 17:12
Surrogates 5a Androstane (surr)	96.6	50-150		%	1		08/09/21 17:12

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 17:12 Container ID: 1214733006-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Results of FG21-072921

Client Sample ID: **FG21-072921** Client Project ID: **WBS** Lab Sample ID: 1214733006 Lab Project ID: 1214733 Collection Date: 07/29/21 08:15 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-21

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 20:19
Surrogates							
4-Bromofluorobenzene (surr)	89.6	50-150		%	1		08/05/21 20:19

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 20:19 Container ID: 1214733006-A Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of FG21-072921

Client Sample ID: **FG21-072921** Client Project ID: **WBS** Lab Sample ID: 1214733006 Lab Project ID: 1214733 Collection Date: 07/29/21 08:15 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-21

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 22:03
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:03
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:03
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 22:03
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:03
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 22:03
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/05/21 22:03
4-Bromofluorobenzene (surr)	100	85-114		%	1		08/05/21 22:03
Toluene-d8 (surr)	100	89-112		%	1		08/05/21 22:03

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 22:03 Container ID: 1214733006-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of **FG3-072921**

Client Sample ID: FG3-072921 Client Project ID: WBS Lab Sample ID: 1214733007 Lab Project ID: 1214733 Collection Date: 07/29/21 09:26 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-3

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.628	0.625	0.188	mg/L	1	Limits	08/09/21 17:22
Surrogates 5a Androstane (surr)	100	50-150		%	1		08/09/21 17:22

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 17:22 Container ID: 1214733007-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Results of **FG3-072921**

Client Sample ID: FG3-072921 Client Project ID: WBS Lab Sample ID: 1214733007 Lab Project ID: 1214733

Collection Date: 07/29/21 09:26 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-3

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual	LOQ/CL 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/05/21 20:37
Surrogates 4-Bromofluorobenzene (surr)	87.7	50-150		%	1		08/05/21 20:37

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 20:37 Container ID: 1214733007-A

Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of **FG3-072921**

Client Sample ID: FG3-072921 Client Project ID: WBS Lab Sample ID: 1214733007 Lab Project ID: 1214733 Collection Date: 07/29/21 09:26 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-3

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.209 J	0.400	0.120	ug/L	1		08/05/21 22:18
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:18
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:18
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 22:18
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:18
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 22:18
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		08/05/21 22:18
4-Bromofluorobenzene (surr)	99.3	85-114		%	1		08/05/21 22:18
Toluene-d8 (surr)	99.8	89-112		%	1		08/05/21 22:18

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 22:18 Container ID: 1214733007-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of FG10-072921

Client Sample ID: **FG10-072921** Client Project ID: **WBS** Lab Sample ID: 1214733008 Lab Project ID: 1214733 Collection Date: 07/29/21 09:31 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-10

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 0.280 J	<u>LOQ/CL</u> 0.566	<u>DL</u> 0.170	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/09/21 17:31
Surrogates 5a Androstane (surr)	96	50-150		%	1		08/09/21 17:31

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 17:31 Container ID: 1214733008-G

Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 265 mL
Prep Extract Vol: 1 mL

Results of FG10-072921

Client Sample ID: **FG10-072921** Client Project ID: **WBS** Lab Sample ID: 1214733008 Lab Project ID: 1214733 Collection Date: 07/29/21 09:31 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-10

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 21:31
Surrogates							
4-Bromofluorobenzene (surr)	88.7	50-150		%	1		08/05/21 21:31

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 21:31 Container ID: 1214733008-A

Prep Batch: VXX37587
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of FG10-072921

Client Sample ID: **FG10-072921** Client Project ID: **WBS** Lab Sample ID: 1214733008 Lab Project ID: 1214733 Collection Date: 07/29/21 09:31 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-10

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 22:34
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:34
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:34
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 22:34
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:34
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 22:34
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/05/21 22:34
4-Bromofluorobenzene (surr)	101	85-114		%	1		08/05/21 22:34
Toluene-d8 (surr)	101	89-112		%	1		08/05/21 22:34

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 22:34 Container ID: 1214733008-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of FG-23-072921

Client Sample ID: FG-23-072921

Client Project ID: **WBS**Lab Sample ID: 1214733009
Lab Project ID: 1214733

Collection Date: 07/29/21 10:43 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-10

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.431 J	0.600	0.180	mg/L	1	Limits	08/09/21 17:41
Surrogates 5a Androstane (surr)	98.2	50-150		%	1		08/09/21 17:41

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 17:41 Container ID: 1214733009-G

Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Results of FG-23-072921

Client Sample ID: FG-23-072921

Client Project ID: WBS Lab Sample ID: 1214733009 Lab Project ID: 1214733

Collection Date: 07/29/21 10:43 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-10

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 21:49
Surrogates							
4-Bromofluorobenzene (surr)	90.6	50-150		%	1		08/05/21 21:49

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 21:49 Container ID: 1214733009-A

Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of FG-23-072921

Client Sample ID: FG-23-072921

Client Project ID: **WBS**Lab Sample ID: 1214733009
Lab Project ID: 1214733

Collection Date: 07/29/21 10:43 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: FG-10

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 22:49
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:49
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:49
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 22:49
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 22:49
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 22:49
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/05/21 22:49
4-Bromofluorobenzene (surr)	99.1	85-114		%	1		08/05/21 22:49
Toluene-d8 (surr)	99.8	89-112		%	1		08/05/21 22:49

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 22:49 Container ID: 1214733009-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of HOS5-072921

Client Sample ID: HOS5-072921

Client Project ID: **WBS**Lab Sample ID: 1214733010
Lab Project ID: 1214733

Collection Date: 07/29/21 10:52 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: HOS-5

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u> 08/09/21 17:51
Diesel Range Organics	2.06	0.600	0.180	mg/L	1	Limits	
Surrogates 5a Androstane (surr)	91.9	50-150		%	1		08/09/21 17:51

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 17:51 Container ID: 1214733010-G

Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Results of HOS5-072921

Client Sample ID: HOS5-072921

Client Project ID: **WBS**Lab Sample ID: 1214733010
Lab Project ID: 1214733

Collection Date: 07/29/21 10:52 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: HOS-5

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.401	0.100	0.0450	mg/L	1		08/05/21 22:06
Surrogates							
4-Bromofluorobenzene (surr)	169 *	50-150		%	1		08/05/21 22:06

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/05/21 22:06 Container ID: 1214733010-A Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of HOS5-072921

Client Sample ID: HOS5-072921

Client Project ID: **WBS**Lab Sample ID: 1214733010
Lab Project ID: 1214733

Collection Date: 07/29/21 10:52 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: HOS-5

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	28.0	0.400	0.120	ug/L	1		08/05/21 23:04
Ethylbenzene	13.4	1.00	0.310	ug/L	1		08/05/21 23:04
o-Xylene	0.393 J	1.00	0.310	ug/L	1		08/05/21 23:04
P & M -Xylene	35.5	2.00	0.620	ug/L	1		08/05/21 23:04
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:04
Xylenes (total)	35.9	3.00	1.00	ug/L	1		08/05/21 23:04
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/05/21 23:04
4-Bromofluorobenzene (surr)	102	85-114		%	1		08/05/21 23:04
Toluene-d8 (surr)	100	89-112		%	1		08/05/21 23:04

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 23:04 Container ID: 1214733010-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of HOS6-072921

Client Sample ID: HOS6-072921

Client Project ID: **WBS**Lab Sample ID: 1214733011
Lab Project ID: 1214733

Collection Date: 07/29/21 10:45 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: HOS-6

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	1.97	0.577	0.173	mg/L	1	Limits	08/09/21 18:01
Surrogates 5a Androstane (surr)	94.8	50-150		%	1		08/09/21 18:01

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 18:01 Container ID: 1214733011-G

Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Results of HOS6-072921

Client Sample ID: HOS6-072921

Client Project ID: WBS Lab Sample ID: 1214733011 Lab Project ID: 1214733

Collection Date: 07/29/21 10:45 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: HOS-6

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.383	0.100	0.0450	mg/L	1		08/05/21 22:24
Surrogates							
4-Bromofluorobenzene (surr)	165 *	50-150		%	1		08/05/21 22:24

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 22:24 Container ID: 1214733011-A

Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of HOS6-072921

Client Sample ID: HOS6-072921

Client Project ID: **WBS**Lab Sample ID: 1214733011
Lab Project ID: 1214733

Collection Date: 07/29/21 10:45 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: HOS-6

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	25.8	0.400	0.120	ug/L	1		08/05/21 23:19
Ethylbenzene	12.4	1.00	0.310	ug/L	1		08/05/21 23:19
o-Xylene	0.379 J	1.00	0.310	ug/L	1		08/05/21 23:19
P & M -Xylene	32.8	2.00	0.620	ug/L	1		08/05/21 23:19
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:19
Xylenes (total)	33.2	3.00	1.00	ug/L	1		08/05/21 23:19
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		08/05/21 23:19
4-Bromofluorobenzene (surr)	103	85-114		%	1		08/05/21 23:19
Toluene-d8 (surr)	99.5	89-112		%	1		08/05/21 23:19

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 23:19 Container ID: 1214733011-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: ATF10-072921

Client Project ID: **WBS**Lab Sample ID: 1214733012
Lab Project ID: 1214733

Collection Date: 07/29/21 13:18 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-10

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
2-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1	08/15/21 00:05
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1	08/15/21 00:05
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Naphthalene	0.0490 U	0.0980	0.0304	ug/L	1	08/15/21 00:05
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1	08/15/21 00:05
Surrogates						
2-Methylnaphthalene-d10 (surr)	67.3	42-86		%	1	08/15/21 00:05
Fluoranthene-d10 (surr)	79.8	50-97		%	1	08/15/21 00:05

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/15/21 00:05

Container ID: 1214733012-I

Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 255 mL

Prep Extract Vol: 1 mL

Client Sample ID: ATF10-072921

Client Project ID: **WBS**Lab Sample ID: 1214733012
Lab Project ID: 1214733

Collection Date: 07/29/21 13:18 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-10

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.296 J	0.577	0.173	mg/L	1		08/09/21 18:11
Surrogates							
5a Androstane (surr)	86.9	50-150		%	1		08/09/21 18:11

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 18:11 Container ID: 1214733012-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM J flagging is activated

Client Sample ID: ATF10-072921

Client Project ID: **WBS**Lab Sample ID: 1214733012
Lab Project ID: 1214733

Collection Date: 07/29/21 13:18 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-10

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 22:42
Surrogates 4-Bromofluorobenzene (surr)	90.7	50-150		%	1		08/05/21 22:42

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 22:42 Container ID: 1214733012-A Prep Batch: VXX37587
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: ATF10-072921

Client Project ID: **WBS**Lab Sample ID: 1214733012
Lab Project ID: 1214733

Collection Date: 07/29/21 13:18 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-10

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 23:35
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:35
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:35
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 23:35
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:35
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 23:35
Surrogates							
1,2-Dichloroethane-D4 (surr)	100	81-118		%	1		08/05/21 23:35
4-Bromofluorobenzene (surr)	103	85-114		%	1		08/05/21 23:35
Toluene-d8 (surr)	100	89-112		%	1		08/05/21 23:35

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 23:35 Container ID: 1214733012-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: ATF3-072921 Client Project ID: WBS Lab Sample ID: 1214733013 Lab Project ID: 1214733 Collection Date: 07/29/21 13:20 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-3

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
2-Methylnaphthalene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Acenaphthene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Acenaphthylene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Anthracene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Benzo(a)Anthracene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Benzo[a]pyrene	0.0102 U	0.0204	0.00633	ug/L	1		08/15/21 00:25
Benzo[b]Fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Benzo[g,h,i]perylene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Benzo[k]fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Chrysene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Dibenzo[a,h]anthracene	0.0102 U	0.0204	0.00633	ug/L	1		08/15/21 00:25
Fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Fluorene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Indeno[1,2,3-c,d] pyrene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Naphthalene	0.0510 U	0.102	0.0316	ug/L	1		08/15/21 00:25
Phenanthrene	0.0264 J	0.0510	0.0153	ug/L	1		08/15/21 00:25
Pyrene	0.0255 U	0.0510	0.0153	ug/L	1		08/15/21 00:25
Surrogates							
2-Methylnaphthalene-d10 (surr)	52.5	42-86		%	1		08/15/21 00:25
Fluoranthene-d10 (surr)	79.6	50-97		%	1		08/15/21 00:25

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/15/21 00:25 Container ID: 1214733013-I Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 245 mL Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: ATF3-072921 Client Project ID: WBS Lab Sample ID: 1214733013 Lab Project ID: 1214733 Collection Date: 07/29/21 13:20 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-3

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 0.463 J	LOQ/CL 0.638	<u>DL</u> 0.191	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/09/21 18:21
Surrogates 5a Androstane (surr)	87.6	50-150		%	1		08/09/21 18:21

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 18:21 Container ID: 1214733013-G

Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 235 mL
Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM J flagging is activated

Client Sample ID: ATF3-072921 Client Project ID: WBS Lab Sample ID: 1214733013 Lab Project ID: 1214733

Collection Date: 07/29/21 13:20 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-3

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	0.0500 U	0.100	0.0450	mg/L	1	Limits	08/05/21 23:00
Surrogates 4-Bromofluorobenzene (surr)	91.7	50-150		%	1		08/05/21 23:00

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 23:00 Container ID: 1214733013-A

Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM J flagging is activated

Client Sample ID: ATF3-072921 Client Project ID: WBS Lab Sample ID: 1214733013 Lab Project ID: 1214733 Collection Date: 07/29/21 13:20 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-3

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/05/21 23:50
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:50
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:50
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/05/21 23:50
Toluene	0.500 U	1.00	0.310	ug/L	1		08/05/21 23:50
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/05/21 23:50
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/05/21 23:50
4-Bromofluorobenzene (surr)	100	85-114		%	1		08/05/21 23:50
Toluene-d8 (surr)	99.9	89-112		%	1		08/05/21 23:50

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/05/21 23:50 Container ID: 1214733013-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: ATF8-072921 Client Project ID: WBS Lab Sample ID: 1214733014 Lab Project ID: 1214733 Collection Date: 07/29/21 14:31 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-8

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.721	0.0481	0.0144	ug/L	1		08/15/21 00:46
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Acenaphthene	0.0452 J	0.0481	0.0144	ug/L	1		08/15/21 00:46
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		08/15/21 00:46
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		08/15/21 00:46
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Fluorene	0.0683	0.0481	0.0144	ug/L	1		08/15/21 00:46
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Naphthalene	1.02	0.0962	0.0298	ug/L	1		08/15/21 00:46
Phenanthrene	0.0241 J	0.0481	0.0144	ug/L	1		08/15/21 00:46
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		08/15/21 00:46
Surrogates							
2-Methylnaphthalene-d10 (surr)	45.3	42-86		%	1		08/15/21 00:46
Fluoranthene-d10 (surr)	70.6	50-97		%	1		08/15/21 00:46

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/15/21 00:46 Container ID: 1214733014-I Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: ATF8-072921 Client Project ID: WBS Lab Sample ID: 1214733014 Lab Project ID: 1214733 Collection Date: 07/29/21 14:31 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-8

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.851	0.577	0.173	mg/L	1		08/09/21 19:20
Surrogates							
5a Androstane (surr)	92.1	50-150		%	1		08/09/21 19:20

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 19:20 Container ID: 1214733014-G

Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM J flagging is activated

Client Sample ID: ATF8-072921 Client Project ID: WBS Lab Sample ID: 1214733014 Lab Project ID: 1214733 Collection Date: 07/29/21 14:31 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-8

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.101	0.100	0.0450	mg/L	1		08/05/21 23:18
Surrogates							
4-Bromofluorobenzene (surr)	114	50-150		%	1		08/05/21 23:18

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/05/21 23:18 Container ID: 1214733014-A Prep Batch: VXX37587
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM J flagging is activated

Client Sample ID: ATF8-072921 Client Project ID: WBS Lab Sample ID: 1214733014 Lab Project ID: 1214733 Collection Date: 07/29/21 14:31 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location: ATF-8

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/06/21 00:05
Ethylbenzene	0.467 J	1.00	0.310	ug/L	1		08/06/21 00:05
o-Xylene	1.50	1.00	0.310	ug/L	1		08/06/21 00:05
P & M -Xylene	3.14	2.00	0.620	ug/L	1		08/06/21 00:05
Toluene	0.500 U	1.00	0.310	ug/L	1		08/06/21 00:05
Xylenes (total)	4.64	3.00	1.00	ug/L	1		08/06/21 00:05
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	81-118		%	1		08/06/21 00:05
4-Bromofluorobenzene (surr)	99.4	85-114		%	1		08/06/21 00:05
Toluene-d8 (surr)	99.7	89-112		%	1		08/06/21 00:05

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D

Analyst: JMG

Analytical Date/Time: 08/06/21 00:05 Container ID: 1214733014-D Prep Batch: VXX37591
Prep Method: SW5030B
Prep Date/Time: 08/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224132-072921

Client Project ID: **WBS**Lab Sample ID: 1214733015
Lab Project ID: 1214733

Collection Date: 07/29/21 14:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-2

Results by Polynuclear Aromatics GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1	08/15/21 01:07
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1	08/15/21 01:07
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1	08/15/21 01:07
Phenanthrene	0.0285 J	0.0500	0.0150	ug/L	1	08/15/21 01:07
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1	08/15/21 01:07
Surrogates						
2-Methylnaphthalene-d10 (surr)	52.9	42-86		%	1	08/15/21 01:07
Fluoranthene-d10 (surr)	71.4	50-97		%	1	08/15/21 01:07

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/15/21 01:07 Container ID: 1214733015-I Prep Batch: XXX45308
Prep Method: SW3535A
Prep Date/Time: 08/04/21 14:27
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224132-072921

Client Project ID: **WBS**Lab Sample ID: 1214733015
Lab Project ID: 1214733

Collection Date: 07/29/21 14:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-2

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.239 J	0.612	0.184	mg/L	1		08/09/21 19:29
Surrogates							
5a Androstane (surr)	93.2	50-150		%	1		08/09/21 19:29

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 19:29 Container ID: 1214733015-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.255 U	0.510	0.153	mg/L	1		08/09/21 19:29
Surrogates							
n-Triacontane-d62 (surr)	109	50-150		%	1		08/09/21 19:29

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/09/21 19:29 Container ID: 1214733015-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224132-072921

Client Project ID: **WBS**Lab Sample ID: 1214733015
Lab Project ID: 1214733

Collection Date: 07/29/21 14:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-2

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 23:36
Surrogates 4-Bromofluorobenzene (surr)	88.8	50-150		%	1		08/05/21 23:36

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 23:36 Container ID: 1214733015-A Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224132-072921

Client Project ID: **WBS**Lab Sample ID: 1214733015
Lab Project ID: 1214733

Collection Date: 07/29/21 14:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-2

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/10/21 03:26
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/10/21 03:26
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 03:26
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/10/21 03:26
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 03:26
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:26
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 03:26
Surrogates							
1,2-Dichloroethane-D4 (surr)	98.7	81-118		%	1		08/10/21 03:26
4-Bromofluorobenzene (surr)	105	85-114		%	1		08/10/21 03:26
Toluene-d8 (surr)	97.7	89-112		%	1		08/10/21 03:26

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 03:26 Container ID: 1214733015-D Prep Batch: VXX37617
Prep Method: SW5030B
Prep Date/Time: 08/09/21 20:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224133-072921

Client Project ID: **WBS**Lab Sample ID: 1214733016
Lab Project ID: 1214733

Collection Date: 07/29/21 15:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-3

Results by Polynuclear Aromatics GC/MS

	5 " 6 "	1.00/01				Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		08/15/21 01:28
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		08/15/21 01:28
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1		08/15/21 01:28
Phenanthrene	0.0446 J	0.0500	0.0150	ug/L	1		08/15/21 01:28
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		08/15/21 01:28
Surrogates							
2-Methylnaphthalene-d10 (surr)	58.4	42-86		%	1		08/15/21 01:28
Fluoranthene-d10 (surr)	77.8	50-97		%	1		08/15/21 01:28

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 08/15/21 01:28 Container ID: 1214733016-I Prep Batch: XXX45308 Prep Method: SW3535A Prep Date/Time: 08/04/21 14:27 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224133-072921

Client Project ID: **WBS**Lab Sample ID: 1214733016
Lab Project ID: 1214733

Collection Date: 07/29/21 15:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-3

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 0.239 J	LOQ/CL 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/09/21 19:39
Surrogates							
5a Androstane (surr)	86.4	50-150		%	1		08/09/21 19:39

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/09/21 19:39 Container ID: 1214733016-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.250 U	0.500	0.150	mg/L	1		08/09/21 19:39
Surrogates							
n-Triacontane-d62 (surr)	97.8	50-150		%	1		08/09/21 19:39

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/09/21 19:39 Container ID: 1214733016-G Prep Batch: XXX45314
Prep Method: SW3520C
Prep Date/Time: 08/04/21 16:50
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224133-072921

Client Project ID: WBS Lab Sample ID: 1214733016 Lab Project ID: 1214733

Collection Date: 07/29/21 15:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-3

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/05/21 23:54
Surrogates 4-Bromofluorobenzene (surr)	91	50-150		%	1		08/05/21 23:54

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 23:54 Container ID: 1214733016-A

Prep Batch: VXX37588 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Client Sample ID: 224133-072921

Client Project ID: **WBS**Lab Sample ID: 1214733016
Lab Project ID: 1214733

Collection Date: 07/29/21 15:50 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%):

Location: 224-13-3

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		08/10/21 03:41
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		08/10/21 03:41
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
Benzene	0.200 U	0.400	0.120	ug/L	1		08/10/21 03:41
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		08/10/21 03:41
Naphthalene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/10/21 03:41
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
Toluene	0.500 U	1.00	0.310	ug/L	1		08/10/21 03:41
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/10/21 03:41
Surrogates							
1,2-Dichloroethane-D4 (surr)	100	81-118		%	1		08/10/21 03:41
4-Bromofluorobenzene (surr)	104	85-114		%	1		08/10/21 03:41
Toluene-d8 (surr)	96.9	89-112		%	1		08/10/21 03:41

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/10/21 03:41 Container ID: 1214733016-D Prep Batch: VXX37617
Prep Method: SW5030B
Prep Date/Time: 08/09/21 20:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Results of Trip Blank

Client Sample ID: Trip Blank Client Project ID: WBS Lab Sample ID: 1214733017 Lab Project ID: 1214733

Collection Date: 07/28/21 08:00 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0591 J	0.100	0.0450	mg/L	1	Limits	08/05/21 17:02
Surrogates 4-Bromofluorobenzene (surr)	89.8	50-150		%	1		08/05/21 17:02

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/05/21 17:02 Container ID: 1214733017-A

Prep Batch: VXX37587 Prep Method: SW5030B Prep Date/Time: 08/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM J flagging is activated

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **WBS**Lab Sample ID: 1214733017
Lab Project ID: 1214733

Collection Date: 07/28/21 08:00 Received Date: 07/30/21 12:45 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		08/09/21 23:27
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		08/09/21 23:27
o-Xylene	0.500 U	1.00	0.310	ug/L	1		08/09/21 23:27
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		08/09/21 23:27
Toluene	0.500 U	1.00	0.310	ug/L	1		08/09/21 23:27
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		08/09/21 23:27
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.8	81-118		%	1		08/09/21 23:27
4-Bromofluorobenzene (surr)	103	85-114		%	1		08/09/21 23:27
Toluene-d8 (surr)	99.2	89-112		%	1		08/09/21 23:27

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 08/09/21 23:27 Container ID: 1214733017-B Prep Batch: VXX37616
Prep Method: SW5030B
Prep Date/Time: 08/09/21 20:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:28PM

Method Blank

Blank ID: MB for HBN 1823396 [VXX/37557]

Blank Lab ID: 1627470

QC for Samples:

1214733001, 1214733004

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0450
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 92.9 50-150 %

Batch Information

Analytical Batch: VFC15745 Prep Batch: VXX37557
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/2/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/3/2021 1:49:00AM Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:31PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [VXX37557]

Blank Spike Lab ID: 1627471 Date Analyzed: 08/03/2021 00:02 Spike Duplicate ID: LCSD for HBN 1214733

[VXX37557]

Spike Duplicate Lab ID: 1627472 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733001, 1214733004

Results by AK101

	1	Blank Spike	(mg/L)		Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.968	97	1.00	1.02	102	(60-120)	5.50	(< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 107 0.0500 104 (50-150) 2.50

Batch Information

Analytical Batch: VFC15745 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37557 Prep Method: SW5030B

Prep Date/Time: 08/02/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:34PM

Billable Matrix Spike Summary

Original Sample ID: 1214733001 MS Sample ID: 1214733002 BMS MSD Sample ID: 1214733003 BMSD

QC for Samples:

Analysis Date: 08/03/2021 2:06 Analysis Date: 08/03/2021 2:24 Analysis Date: 08/03/2021 2:42 Matrix: Water (Surface, Eff., Ground)

Results by AK101

Matrix Spike (mg/L) Spike Duplicate (mg/L) <u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Gasoline Range Organics 0.0500U 101 1.00 1.04 104 1.00 1.01 60-120 2.70 (< 20) **Surrogates** 4-Bromofluorobenzene (surr) 0.0500 0.0535 107 0.0500 0.0523 105 50-150 2.10

Batch Information

Analytical Batch: VFC15745 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Analytical Date/Time: 8/3/2021 2:24:00AM

Prep Batch: VXX37557

Prep Method: Volatile Fuels Extraction (W)
Prep Date/Time: 8/2/2021 6:00:00AM

Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 09/30/2021 4:36:35PM

Matrix: Water (Surface, Eff., Ground)

Method Blank

Blank ID: MB for HBN 1823607 [VXX/37587]

Blank Lab ID: 1628353

QC for Samples:

1214733005, 1214733006, 1214733007, 1214733008, 1214733009, 1214733010, 1214733011, 1214733012, 1214733013,

1214733014, 1214733015, 1214733017

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0450mg/L

Surrogates

4-Bromofluorobenzene (surr) 83.9 50-150 %

Batch Information

Analytical Batch: VFC15751 Prep Batch: VXX37587
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/5/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/5/2021 10:47:00AM Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:37PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [VXX37587]

Blank Spike Lab ID: 1628354

Date Analyzed: 08/05/2021 11:40

Spike Duplicate ID: LCSD for HBN 1214733

[VXX37587]

Spike Duplicate Lab ID: 1628355

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733005, 1214733006, 1214733007, 1214733008, 1214733009, 1214733010, 1214733011,

 $1214733012,\, 1214733013,\, 1214733014,\, 1214733015,\, 1214733017$

Results by AK101

	ı	зіапк эріке	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.991	99	1.00	1.09	109	(60-120)	9.10	(< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 **99** 0.0500 **104** (50-150) **4.30**

Batch Information

Analytical Batch: VFC15751
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37587 Prep Method: SW5030B

Prep Date/Time: 08/05/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:39PM

Method Blank

Blank ID: MB for HBN 1823608 [VXX/37588]

Blank Lab ID: 1628356

QC for Samples: 1214733016

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0450
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 88.7 50-150 %

Batch Information

Analytical Batch: VFC15751 Prep Batch: VXX37588
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/5/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/6/2021 12:11:00AM Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:42PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [VXX37588]

Blank Spike Lab ID: 1628359 Date Analyzed: 08/06/2021 03:28 Spike Duplicate ID: LCSD for HBN 1214733

[VXX37588]

Spike Duplicate Lab ID: 1628360 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733016

Results by AK101

	I	Blank Spike	(mg/L)		Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.998	100	1.00	1.02	102	(60-120)	2.30	(< 20)

Surrogates

0.0500 4-Bromofluorobenzene (surr) 0.0500 93 93 (50-150) 0.71

Batch Information

Analytical Batch: VFC15751 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37588 Prep Method: SW5030B

Prep Date/Time: 08/05/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:43PM

Method Blank

Blank ID: MB for HBN 1823630 [VXX/37591]

Blank Lab ID: 1628454

QC for Samples:

1214733001, 1214733004, 1214733005, 1214733006, 1214733007, 1214733008, 1214733009, 1214733010, 1214733011, 121473011, 121473011, 121473011, 121473011, 121473011, 121473011, 121473011, 1214733011, 1214733011,

1214733012, 1214733013, 1214733014

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	104	81-118		%
4-Bromofluorobenzene (surr)	100	85-114		%
Toluene-d8 (surr)	100	89-112		%

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Analytical Date/Time: 8/5/2021 4:34:00PM

Prep Batch: VXX37591 Prep Method: SW5030B

Prep Date/Time: 8/5/2021 6:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:46PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [VXX37591]

Blank Spike Lab ID: 1628455 Date Analyzed: 08/05/2021 16:49 Spike Duplicate ID: LCSD for HBN 1214733

[VXX37591]

Spike Duplicate Lab ID: 1628456 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733001, 1214733004, 1214733005, 1214733006, 1214733007, 1214733008, 1214733009,

 $1214733010,\, 1214733011,\, 1214733012,\, 1214733013,\, 1214733014$

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	30	30.0	100	30	30.3	101	(79-120)	1.20	(< 20)
Ethylbenzene	30	30.6	102	30	30.5	102	(79-121)	0.34	(< 20)
o-Xylene	30	30.7	102	30	30.7	102	(78-122)	0.02	(< 20)
P & M -Xylene	60	61.5	102	60	61.4	102	(80-121)	0.16	(< 20)
Toluene	30	29.4	98	30	29.6	99	(80-121)	0.67	(< 20)
Xylenes (total)	90	92.2	102	90	92.1	102	(79-121)	0.10	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		101	30		100	(81-118)	0.06	
4-Bromofluorobenzene (surr)	30		97	30		99	(85-114)	1.70	
Toluene-d8 (surr)	30		101	30		100	(89-112)	0.35	

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Prep Batch: VXX37591
Prep Method: SW5030B

Prep Date/Time: 08/05/2021 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:48PM

Billable Matrix Spike Summary

Original Sample ID: 1214733001 MS Sample ID: 1214733002 BMS MSD Sample ID: 1214733003 BMSD

QC for Samples:

Analysis Date: 08/05/2021 21:18 Analysis Date: 08/05/2021 17:59 Analysis Date: 08/05/2021 18:15 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Ma	trix Spike ((ug/L)	Spik	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	0.200U	30.0	30.3	101	30.0	30.3	101	79-120	0.08	(< 20)
Ethylbenzene	0.500U	30.0	32	107	30.0	31.4	105	79-121	2.00	(< 20)
o-Xylene	0.500U	30.0	32.1	107	30.0	31.6	105	78-122	1.50	(< 20)
P & M -Xylene	1.00U	60.0	63.7	106	60.0	63.0	105	80-121	1.00	(< 20)
Toluene	0.500U	30.0	30.7	102	30.0	30.2	101	80-121	1.90	(< 20)
Xylenes (total)	1.50U	90.0	95.7	106	90.0	94.6	105	79-121	1.20	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		30.0	29.8	99	30.0	29.2	98	81-118	1.80	
4-Bromofluorobenzene (surr)		30.0	29.7	99	30.0	29.8	99	85-114	0.37	
Toluene-d8 (surr)		30.0	30.5	102	30.0	30.1	100	89-112	1.20	

Batch Information

Analytical Batch: VMS21023 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JMG

Analytical Date/Time: 8/5/2021 5:59:00PM

Prep Batch: VXX37591

Prep Method: Volatiles Extraction 8240/8260 Prep Date/Time: 8/5/2021 6:00:00AM

Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 09/30/2021 4:36:49PM

Method Blank

Blank ID: MB for HBN 1823902 [VXX/37616]

Blank Lab ID: 1629308

QC for Samples: 1214733017

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	97	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	98.7	89-112		%

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/9/2021 8:28:00PM

Prep Batch: VXX37616 Prep Method: SW5030B

Prep Date/Time: 8/9/2021 8:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:50PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [VXX37616]

Blank Spike Lab ID: 1629309 Date Analyzed: 08/09/2021 20:43

QC for Samples: 1214733017

Spike Duplicate ID: LCSD for HBN 1214733

[VXX37616]

Spike Duplicate Lab ID: 1629310 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	30	30.9	103	30	31.1	104	(79-120)	0.85	(< 20)
Ethylbenzene	30	30.5	102	30	30.8	103	(79-121)	1.00	(< 20)
o-Xylene	30	30.7	102	30	30.8	103	(78-122)	0.57	(< 20)
P & M -Xylene	60	60.8	101	60	60.9	102	(80-121)	0.22	(< 20)
Toluene	30	30.1	100	30	29.9	100	(80-121)	0.77	(< 20)
Xylenes (total)	90	91.5	102	90	91.8	102	(79-121)	0.34	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		97	30		97	(81-118)	0.12	
4-Bromofluorobenzene (surr)	30		100	30		100	(85-114)	0.23	
Toluene-d8 (surr)	30		99	30		99	(89-112)	0.71	

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX37616
Prep Method: SW5030B

Prep Date/Time: 08/09/2021 20:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:52PM

Method Blank

Blank ID: MB for HBN 1823903 [VXX/37617]

Blank Lab ID: 1629311

QC for Samples:

1214733015, 1214733016

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	98.2	81-118		%
4-Bromofluorobenzene (surr)	101	85-114		%
Toluene-d8 (surr)	99.8	89-112		%

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/9/2021 10:27:00PM

Prep Batch: VXX37617 Prep Method: SW5030B

Prep Date/Time: 8/9/2021 8:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:55PM

Leaching Blank

Blank ID: LB for HBN 1823672 [TCLP/11325

Blank Lab ID: 1628574

QC for Samples:

1214733015, 1214733016

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
Benzene	24.7*	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	101	81-118		%
4-Bromofluorobenzene (surr)	104	85-114		%
Toluene-d8 (surr)	96.4	89-112		%

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/10/2021 6:40:00AM

Prep Batch: VXX37617 Prep Method: SW5030B

Prep Date/Time: 8/9/2021 8:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:55PM

Leaching Blank

Blank ID: LB for HBN 1823734 [TCLP/11327

Blank Lab ID: 1628641

QC for Samples:

1214733015, 1214733016

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	100	81-118		%
4-Bromofluorobenzene (surr)	105	85-114		%
Toluene-d8 (surr)	97	89-112		%

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/10/2021 6:55:00AM

Prep Batch: VXX37617 Prep Method: SW5030B

Prep Date/Time: 8/9/2021 8:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:55PM

Leaching Blank

Blank ID: LB for HBN 1823756 [TCLP/11328

Blank Lab ID: 1628752

QC for Samples:

1214733015, 1214733016

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2-Dichloroethane	12.5U	25.0	7.50	ug/L
Benzene	10.0U	20.0	6.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	99.6	81-118		%
4-Bromofluorobenzene (surr)	104	85-114		%
Toluene-d8 (surr)	96.3	89-112		%

Batch Information

Analytical Batch: VMS21035 Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 8/10/2021 7:10:00AM

Prep Batch: VXX37617 Prep Method: SW5030B

Prep Date/Time: 8/9/2021 8:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:55PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [VXX37617]

Blank Spike Lab ID: 1629312 Date Analyzed: 08/09/2021 21:13

QC for Samples: 1214733015, 1214733016

Spike Duplicate ID: LCSD for HBN 1214733

[VXX37617]

Spike Duplicate Lab ID: 1629313 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2,4-Trimethylbenzene	30	31.9	106	30	32.0	107	(79-124)	0.06	(< 20)
1,2-Dibromoethane	30	29.5	98	30	29.6	99	(77-121)	0.36	(< 20)
1,2-Dichloroethane	30	28.8	96	30	29.0	97	(73-128)	0.53	(< 20)
1,3,5-Trimethylbenzene	30	31.8	106	30	31.9	106	(75-124)	80.0	(< 20)
Benzene	30	31.5	105	30	31.0	103	(79-120)	1.50	(< 20)
Ethylbenzene	30	30.6	102	30	30.5	102	(79-121)	0.50	(< 20)
Isopropylbenzene (Cumene)	30	31.3	104	30	31.3	104	(72-131)	0.24	(< 20)
Methyl-t-butyl ether	45	45.1	100	45	45.4	101	(71-124)	0.49	(< 20)
Naphthalene	30	30.4	101	30	31.0	103	(61-128)	1.90	(< 20)
n-Butylbenzene	30	31.4	105	30	31.6	105	(75-128)	0.65	(< 20)
o-Xylene	30	30.7	102	30	30.8	103	(78-122)	0.17	(< 20)
P & M -Xylene	60	61.1	102	60	60.7	101	(80-121)	0.70	(< 20)
sec-Butylbenzene	30	31.3	104	30	31.0	103	(77-126)	0.90	(< 20)
tert-Butylbenzene	30	31.5	105	30	31.2	104	(78-124)	0.79	(< 20)
Toluene	30	30.1	100	30	29.7	99	(80-121)	1.20	(< 20)
Xylenes (total)	90	91.8	102	90	91.5	102	(79-121)	0.41	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		97	30		97	(81-118)	0.06	
4-Bromofluorobenzene (surr)	30		100	30		101	(85-114)	1.10	
Toluene-d8 (surr)	30		99	30		99	(89-112)	0.06	

Batch Information

Analytical Batch: VMS21035
Analytical Method: SW8260D

Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX37617
Prep Method: SW5030B

Prep Date/Time: 08/09/2021 20:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/30/2021 4:36:57PM

Method Blank

Blank ID: MB for HBN 1823448 [XXX/45308]

Blank Lab ID: 1627703

QC for Samples:

 $1214733012,\, 1214733013,\, 1214733014,\, 1214733015,\, 1214733016$

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0300J	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	63.2	42-86		%
Fluoranthene-d10 (surr)	81.4	50-97		%

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/14/2021 8:59:00PM

Prep Batch: XXX45308 Prep Method: SW3535A

Prep Date/Time: 8/4/2021 2:27:53PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:37:00PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [XXX45308]

Blank Spike Lab ID: 1627704 Date Analyzed: 08/14/2021 21:20

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733012, 1214733013, 1214733014, 1214733015, 1214733016

Results by 8270D SIM LV (PAH)

		Blank Spike	(ug/L)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	2	1.12	56	(41-115)
2-Methylnaphthalene	2	1.12	56	(39-114)
Acenaphthene	2	1.25	63	(48-114)
Acenaphthylene	2	1.27	64	(35-121)
Anthracene	2	1.32	66	(53-119)
Benzo(a)Anthracene	2	1.41	71	(59-120)
Benzo[a]pyrene	2	1.48	74	(53-120)
Benzo[b]Fluoranthene	2	1.46	73	(53-126)
Benzo[g,h,i]perylene	2	1.58	79	(44-128)
Benzo[k]fluoranthene	2	1.51	75	(54-125)
Chrysene	2	1.48	74	(57-120)
Dibenzo[a,h]anthracene	2	1.59	80	(44-131)
Fluoranthene	2	1.33	66	(58-120)
Fluorene	2	1.30	65	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.56	78	(48-130)
Naphthalene	2	1.14	57	(43-114)
Phenanthrene	2	1.31	65	(53-115)
Pyrene	2	1.33	67	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2		55	(42-86)
Fluoranthene-d10 (surr)	2		68	(50-97)

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Prep Batch: XXX45308 Prep Method: SW3535A

Prep Date/Time: 08/04/2021 14:27

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/30/2021 4:37:02PM

Matrix Spike Summary

 Original Sample ID: 1214798010
 Analysis Date: 08/15/2021 4:12

 MS Sample ID: 1627705 MS
 Analysis Date: 08/15/2021 4:33

 MSD Sample ID: 1627706 MSD
 Analysis Date: 08/15/2021 4:54

 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733012, 1214733013, 1214733014, 1214733015, 1214733016

Results by 8270D SIM LV (PAH)

		Ма	trix Spike (ug/L)	Spik	e Duplicat	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%	RPD CL
1-Methylnaphthalene	0.0232U	1.92	1.2	62	1.82	0.985	54	41-115	19.60	(< 20)
2-Methylnaphthalene	0.0232U	1.92	1.11	58	1.82	0.907	50	39-114	20.40	* (< 20)
Acenaphthene	0.0232U	1.92	1.26	66	1.82	1.04	57	48-114	19.40	(< 20)
Acenaphthylene	0.0232U	1.92	1.27	66	1.82	1.08	59	35-121	16.90	(< 20)
Anthracene	0.0232U	1.92	1.25	65	1.82	1.06	58	53-119	16.70	(< 20)
Benzo(a)Anthracene	0.0232U	1.92	1.12	58 *	1.82	0.800	44 *	59-120	33.60	* (< 20)
Benzo[a]pyrene	0.00925U	1.92	.765	40 *	1.82	0.465	26 *	53-120	48.80	* (< 20)
Benzo[b]Fluoranthene	0.0232U	1.92	1.06	55	1.82	0.733	40 *	53-126	36.50	* (< 20)
Benzo[g,h,i]perylene	0.0232U	1.92	.377	20 *	1.82	0.258	14 *	44-128	37.50	* (< 20)
Benzo[k]fluoranthene	0.0232U	1.92	.749	39 *	1.82	0.457	25 *	54-125	48.50	* (< 20)
Chrysene	0.0232U	1.92	.948	49 *	1.82	0.601	33 *	57-120	44.90	* (< 20)
Dibenzo[a,h]anthracene	0.00925U	1.92	.358	19 *	1.82	0.252	14 *	44-131	34.80	* (< 20)
Fluoranthene	0.0232U	1.92	1.38	72	1.82	1.13	62	58-120	19.60	(< 20)
Fluorene	0.0232U	1.92	1.3	68	1.82	1.11	61	50-118	15.60	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0232U	1.92	.487	25 *	1.82	0.313	17 *	48-130	43.40	* (< 20)
Naphthalene	0.0463U	1.92	1.22	64	1.82	0.976	54	43-114	22.40	* (< 20)
Phenanthrene	0.0232U	1.92	1.26	65	1.82	1.09	60	53-115	14.00	(< 20)
Pyrene	0.0232U	1.92	1.38	72	1.82	1.15	63	53-121	18.20	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		1.92	1.28	67	1.82	1.04	57	42-86	21.30	
Fluoranthene-d10 (surr)		1.92	1.43	75	1.82	1.21	67	50-97	17.00	

Batch Information

Analytical Batch: XMS12829

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/15/2021 4:33:00AM

Prep Batch: XXX45308

Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV

Prep Date/Time: 8/4/2021 2:27:53PM

Prep Initial Wt./Vol.: 260.00mL Prep Extract Vol: 1.00mL

Print Date: 09/30/2021 4:37:03PM

Matrix: Water (Surface, Eff., Ground)

Method Blank

Blank ID: MB for HBN 1823531 [XXX/45314]

Blank Lab ID: 1627963

QC for Samples:

1214733001, 1214733004, 1214733005, 1214733006, 1214733007, 1214733008, 1214733009, 1214733010, 1214733011,

1214733012, 1214733013, 1214733014, 1214733015, 1214733016

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 96.1 60-120 %

Batch Information

Analytical Batch: XFC16037 Prep Batch: XXX45314
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B R Prep Date/Time: 8/4/2021 4:50:52PM

Analyst: IVM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 8/9/2021 3:14:00PM Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:37:05PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [XXX45314]

Blank Spike Lab ID: 1627964

Date Analyzed: 08/09/2021 16:03

Spike Duplicate ID: LCSD for HBN 1214733

[XXX45314]

Spike Duplicate Lab ID: 1627965

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733001, 1214733004, 1214733005, 1214733006, 1214733007, 1214733008, 1214733009,

 $1214733010,\, 1214733011,\, 1214733012,\, 1214733013,\, 1214733014,\, 1214733015,\, 1214733016$

Results by AK102

		Blank Spike	(mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	21.9	110	20	21.8	109	(75-125)	0.45	(< 20)
Surrogates									
5a Androstane (surr)	0.4		113	0.4		112	(60-120)	1.40	

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Instrument: Agilent 7890B R

Analyst: IVM

Prep Batch: XXX45314
Prep Method: SW3520C

Prep Date/Time: 08/04/2021 16:50

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/30/2021 4:37:07PM

Billable Matrix Spike Summary

Original Sample ID: 1214733001 MS Sample ID: 1214733002 BMS MSD Sample ID: 1214733003 BMSD

QC for Samples:

Analysis Date: 08/09/2021 16:23 Analysis Date: 08/09/2021 16:33 Analysis Date: 08/09/2021 16:42 Matrix: Water (Surface, Eff., Ground)

Results by AK102

		Mat	rix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
Parameter Diesel Range Organics	Sample 0.184J	<u>Spike</u> 18.9	Result 19.6	Rec (%) 103	<u>Spike</u> 20.0	Result 21.5	Rec (%) 107	<u>CL</u> 75-125	RPD (%) 9.60	RPD CL (< 30)
Surrogates 5a Androstane (surr)		0.377	.416	110	0.400	0.449	112	50-150	7.70	

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK102

Instrument: Agilent 7890B R Analyst: IVM

Analytical Date/Time: 8/9/2021 4:33:00PM

Prep Batch: XXX45314

Prep Method: Cont. Liq/Liq Ext. for AK102 Low Volume

Prep Date/Time: 8/4/2021 4:50:52PM Prep Initial Wt./Vol.: 265.00mL Prep Extract Vol: 1.00mL

Print Date: 09/30/2021 4:37:09PM

Matrix: Water (Surface, Eff., Ground)

Method Blank

Blank ID: MB for HBN 1823531 [XXX/45314]

Blank Lab ID: 1627963

QC for Samples:

1214733001, 1214733004, 1214733005, 1214733006, 1214733007, 1214733008, 1214733009, 1214733010, 1214733011,

1214733012, 1214733013, 1214733014, 1214733015, 1214733016

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 102 60-120 %

Batch Information

Analytical Batch: XFC16037 Prep Batch: XXX45314
Analytical Method: AK103 Prep Method: SW3520C

Instrument: Agilent 7890B R Prep Date/Time: 8/4/2021 4:50:52PM

Analyst: IVM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 8/9/2021 3:14:00PM Prep Extract Vol: 1 mL

Print Date: 09/30/2021 4:37:10PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1214733 [XXX45314]

Blank Spike Lab ID: 1627964

Date Analyzed: 08/09/2021 16:03

Spike Duplicate ID: LCSD for HBN 1214733

[XXX45314]

Spike Duplicate Lab ID: 1627965

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1214733001, 1214733004, 1214733005, 1214733006, 1214733007, 1214733008, 1214733009,

 $1214733010,\, 1214733011,\, 1214733012,\, 1214733013,\, 1214733014,\, 1214733015,\, 1214733016$

Results by AK103

		Blank Spike	e (mg/L)		Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Residual Range Organics	20	22.2	111	20	21.3	106	(60-120)	4.20	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4		117	0.4		114	(60-120)	2.00	

Batch Information

Analytical Batch: XFC16037 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: IVM

Prep Batch: XXX45314
Prep Method: SW3520C

Prep Date/Time: 08/04/2021 16:50

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/30/2021 4:37:13PM

364160 /72 1 3693608e08eport - Revision 1

						Chain-of-C	Custody Rep	ort			Revised Repo	IT - KEVISIOIT I
Callection Organization: Bill to Hilcorp	Susitna Environ WBS #215-0198	4			Ch	ain-of-Custody;	· · · · · · · · · · · · · · · · · · ·	Cooler ID	: BELUGA : Susina Environmental	***************************************	NPDL Number: Report To:	PAGE 1 OF 3 Susina Environmental
COC Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Preservative	Matrix	Analyses Requested Group	QC	TAT	Notes:
FG20-072821	FG-20	28-Jul-21	1545	ML/RB	9	40 ml -VOA	4°C +/- 2°	GW	AK101 GRO	MS/D	STANDARD	
FG20-072821	FG-20	28-Jul-21	1545	ML/RB	9	40 ml -VOA	4°C +/- 2°	GW	SW8260 BTEX Only	MS/D	STANDARD(
FG24-072821	FG-24	28-Jul-21	1547	MS/BL	3	40 ml -VOA	4°C +/- 2°	GW	AK101 GRO		STANDARD	A4AO
FG24-072821	FG-24	28-Jul-21	1547	MS/BL	3	40 ml -VOA	4°C +/- 2°	GW	SW8260 BTEX Only		STANDARD	(HDF)
FG14-072921	FG-14	29-Jul-21	0815	ML/RB	3	40 ml -VOA	4°C +/- 2°	GW	AK101 GRO		STANDARD	
FG14-072921	FG-14	29-Jul-21	0815	ML/RB	3	40 ml -VOA	4°C +/- 2°	GW	SW8260 BTEX Only		STANDARD	50F)
FG21-072921	FG-21	29-Jul-21	0815	MS/BL	3	40 ml -VOA	4°C +/- 2°	GW	AK101 GRO		STANDARD	
FG21-072921	FG-21	29-Jul-21	0815	MS/BL	3	40 ml -VOA	4°C +/- 2°	GW	SW8260 BTEX Only		STANDARD	(EVF)
FG3-072921	FG-3	29-JuJ-21	0926	MS/BL	3	40 ml -VOA	4°C ÷/- 2°	GW	AK101 GRO		STANDARD	7A O
FG3-072921	FG-3	29-Jul-21	0926	MS/BL	3	40 ml -VOA	4°C +/- 2°	GW	SW8260 BTEX Only		STANDARD	(7DF)
FG10-072921	FG-10	29-Jul-21	0931	ML/RB	3	40 ml -VOA	4°C 1/- 2°	GW	AK101 GRO		STANDARD	CAD
FG10-072921	FG-10	- 29-Jul-21	0931	ML/RB	3	40 ml -VOA	4°C ÷/- 2°	GW	SW8260 BTEX Only		STANDARD	(PDF)
FG23-072921	FG-23	29-Jul-21	1043	MS/BL	3	40 ml -VOA	4°C ±/- 2°	GW	AKJ01 GRO		STANDARD	(SAP)
FG23-072921	FG-23	29-Jul-21	1043	MS/BL	3	40 ml -VOA	4°C ÷/- 2°	GW	SW8260 BTEX Only		STANDARD	(GDF)
HOS5-072921	HOS-5	29-Jul-21	1052	ML/RB	3	40 ml -VOA	4°C +/- 2°	GW	AK101 GRO		STANDARD	(10A)C)
HOS5-072921	HOS-5	29-Jul-21	1052	ML/RB	3	40 ml -VOA	4°C +/- 2°	GW	SW8260 BTEX Only		STANDARD	(10DD)
HOS6-072921	HOS-6	29-Jul-21	1045	ML/RB	3	40 ml -VOA	4°C +/- 2°	GW	AKJ01 GRO		STANDARÐ	()IAC)
HOS6-072921	HOS-6	29-Jul-21	1045	ML/RB	3	40 ml -VOA	4°C +/- 2°	GW	SW8260 BTEX Only		STANDARD	(1100)
ATF10-072921	ATF-10	29-Jul-21	1318	ML/RB	3	40 ml -VOA	4°C +/- 2°	GW	AK101 GRO		STANDARD	(2AC)
ATF10-072921	ATF-10	29-Jul-21	1318	ML/RB	3	40 ml-VOA	4°C +/- 2°	GW	SW8260 BTEX Only		STANDARD	(12DF)
ATF3-072921	ATF-3	29-Jul-21	1320	MS/BL	3	40 ml -VOA	4°C +/- 2°	GW	AK101 GRO		STANDARD	13A8)
ATF3-072921	ATF-3	29-Jul-21	1320	MS/BL	3	40 ml -VOA	4°C ÷/- 2°	GW	SW8260 BTEX Only		STANDARD	(13DE)
pecial Instructions:							mmmmmmmmmnnnnnn					
Relinquish By: M-	12	7_		7/30	1/21	1245	Received By:		1214733			
elinguish By:	Signature/Printed Nam				,	Date/Time Date/Time	Received By:	Signature/Pri Signature/Pri		-		Date/Time
leiinquish By:	Signature/Printed Num	e				Date/Time	Received By:	Signature Printed	Vario			Date/Time
***************************************			·····			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		25 6	200		0	2/20/21 1245

81 of 872 9 cc 057

2,9 V

e-Sam<u>ple Receipt Form</u>

SGS Workorder #:

1214733

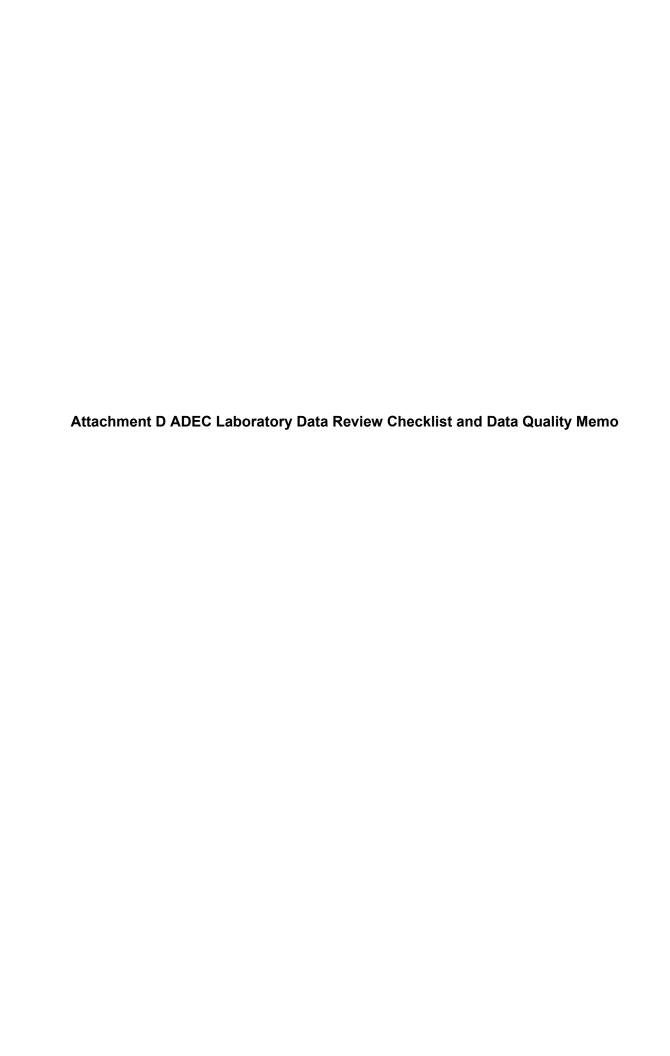
1214733

Review Criteria	Condition (Yes	No, N/A	Exc	ceptions No	oted below	
Chain of Custody / Temperature Requi	rements	Υ	es Exemption p	ermitted if sam	npler hand carries/deli	vers.
Were Custody Seals intact? Note # &	location N/A	absent				
COC accompanied sa						
DOD: Were samples received in COC corresponding of	coolers? N/A					
N/A **Exemption permitted if		cted <8 hou	irs ago, or for sa	mples where c	chilling is not required	
Temperature blank compliant* (i.e., 0-6 °C after		Cooler ID:	Beluga	@	2.8 °C Therm. ID:	D57
remperature biank compliant (i.e., 0-0 °C and	Yes	Cooler ID:	River	@	2.4 °C Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" wil			KIVEI		°C Therm. ID:	D03
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "cf		Cooler ID:		@		
be noted if neither is available.		Cooler ID:		@	°C Therm. ID:	
		Cooler ID:		@	°C Therm. ID:	
*If >6°C, were samples collected <8 hours	s ago? N/A					
If <0°C, were sample containers ice	e free? N/A					
		Ī				
Note: Identify containers received at non-compliant tempe						
Use form FS-0029 if more space is n	needed.					
Holding Time / Documentation / Sample Condition Re	equirements	Note: Refer t	o form F-083 "Sam	ple Guide" for sp	ecific holding times.	
Were samples received within holding	g time? Yes					
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes					
**Note: If times differ <1hr, record details & login per C						
***Note: If sample information on containers differs from COC, SGS will default to 0						
Were analytical requests clear? (i.e., method is specified for ar with multiple option for analysis (Ex: BTEX,						
with multiple option for analysis (Ex. BTEX,	iviciais)					
			/A ***Exemption	n permitted for	metals (e.g,200.8/602	20A).
Were proper containers (type/mass/volume/preservative***	')used? Yes					
		I				
Volatile / LL-Hg Req						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa						
Were all water VOA vials free of headspace (i.e., bubbles ≤	6mm)? Yes					
Were all soil VOAs field extracted with MeOH	I+BFB? N/A					
Note to Client: Any "No", answer above indicates no	n-compliance	with standa	rd procedures an	nd may impact	data quality.	
Additiona	al notes (if a	pplicable)	:			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	Container Condition
1214733001-A	HCL to pH < 2	ОК	1214733007-B	HCL to pH < 2	OK
1214733001-B	HCL to pH < 2	OK	1214733007-C	HCL to pH < 2	OK
1214733001-C	HCL to pH < 2	OK	1214733007-D	HCL to pH < 2	OK
1214733001-D	HCL to pH < 2	OK	1214733007-E	HCL to pH < 2	OK
1214733001-E	HCL to pH < 2	OK	1214733007-F	HCL to pH < 2	OK
1214733001-F	HCL to pH < 2	OK	1214733007-G	HCL to pH < 2	OK
1214733001-G	HCL to pH < 2	OK	1214733007-H	HCL to pH < 2	OK
1214733001-H	HCL to pH < 2	OK	1214733008-A	HCL to pH < 2	OK
1214733002-A	HCL to pH < 2	OK	1214733008-B	HCL to pH < 2	OK
1214733002-В	HCL to pH < 2	OK	1214733008-C	HCL to pH < 2	OK
1214733002-C	HCL to pH < 2	OK	1214733008-D	HCL to pH < 2	OK
1214733002-D	HCL to pH < 2	OK	1214733008-E	HCL to pH < 2	OK
1214733002-E	HCL to pH < 2	OK	1214733008-F	HCL to pH < 2	OK
1214733002-F	HCL to pH < 2	OK	1214733008-G	HCL to pH < 2	OK
1214733002-G	HCL to pH < 2	OK	1214733008-H	HCL to pH < 2	OK
1214733002-H	HCL to pH < 2	OK	1214733009-A	HCL to pH < 2	OK
1214733003-A	HCL to pH < 2	OK	1214733009-B	HCL to pH < 2	OK
1214733003-B	HCL to pH < 2	OK	1214733009-C	HCL to pH < 2	OK
1214733003-C	HCL to pH < 2	OK	1214733009-D	HCL to pH < 2	OK
1214733003-D	HCL to pH < 2	OK	1214733009-E	HCL to pH < 2	OK
1214733003-E	HCL to pH < 2	OK	1214733009-F	HCL to pH < 2	OK
1214733003-F	HCL to pH < 2	OK	1214733009-G	HCL to pH < 2	OK
1214733003-G	HCL to pH < 2	ОК	1214733009-H	HCL to pH < 2	OK
1214733003-H	HCL to pH < 2	ОК	1214733010-A	HCL to pH < 2	OK
1214733004-A	HCL to pH < 2	ОК	1214733010-B	HCL to pH < 2	OK
1214733004-B	HCL to pH < 2	OK	1214733010-C	HCL to pH < 2	OK
1214733004-C	HCL to pH < 2	ОК	1214733010-D	HCL to pH < 2	OK
1214733004-D	HCL to pH < 2	ОК	1214733010-E	HCL to pH < 2	OK
1214733004-E	HCL to pH < 2	ОК	1214733010-F	HCL to pH < 2	OK
1214733004-F	HCL to pH < 2	OK	1214733010-G	HCL to pH < 2	OK
1214733004-G	HCL to pH < 2	OK	1214733010-H	HCL to pH < 2	OK
1214733004-H	HCL to pH < 2	OK	1214733011-A	HCL to pH < 2	OK
1214733005-A	HCL to pH < 2	OK	1214733011-B	HCL to pH < 2	OK
1214733005-B	HCL to pH < 2	OK	1214733011-C	HCL to pH < 2	OK
1214733005-C	HCL to pH < 2	OK	1214733011-D	HCL to $pH < 2$	OK
1214733005-D	HCL to pH < 2	OK	1214733011-E	HCL to pH < 2	OK
1214733005-E	HCL to pH < 2	OK	1214733011-F	HCL to pH < 2	OK
1214733005-F	HCL to pH < 2	OK	1214733011-G	HCL to pH < 2	OK
1214733005-G	HCL to pH < 2	OK	1214733011-H	HCL to pH < 2	OK
1214733005-H	HCL to pH < 2	OK	1214733012-A	HCL to pH < 2	OK
1214733006-A	HCL to pH < 2	OK	1214733012-B	HCL to pH < 2	OK
1214733006-B	HCL to pH < 2	OK	1214733012-C	HCL to pH < 2	OK
1214733006-C	HCL to pH < 2	OK	1214733012-D	HCL to pH < 2	OK
1214733006-D	HCL to pH < 2	OK	1214733012-E	HCL to pH < 2	OK
1214733006-E	HCL to pH < 2	OK	1214733012-F	HCL to pH < 2	OK
1214733006-F	HCL to pH < 2	OK	1214733012-G	HCL to pH < 2	OK
1214733006-G	HCL to pH < 2	OK	1214733012-H	HCL to pH < 2	OK
1214733006-H	HCL to pH < 2	OK	1214733012-I	No Preservative Required	OK
1214733007-A	HCL to pH < 2	OK	1214733012-J	No Preservative Required	OK

85 of 87


Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	<u>Container</u> Revised Report - Re <u>visip</u> शारी <u>ion</u>
1214733013-A	HCL to pH < 2	OK			
1214733013 A	HCL to pH < 2	OK			
1214733013 B	HCL to pH < 2	OK			
1214733013 C	HCL to pH < 2	OK			
1214733013 E	HCL to pH < 2	OK			
1214733013 E	HCL to pH < 2	OK			
1214733013 T	HCL to pH < 2	OK			
1214733013 G	HCL to pH < 2	OK			
1214733013 H	No Preservative Required	OK			
1214733013 I	No Preservative Required	OK			
1214733014-A	HCL to pH < 2	OK			
1214733014-B	HCL to pH < 2	OK			
1214733014-C	HCL to pH < 2	OK			
1214733014-D	HCL to pH < 2	OK			
1214733014-E	HCL to pH < 2	OK			
1214733014-F	HCL to pH < 2	OK			
1214733014-G	HCL to pH < 2	OK			
1214733014 G	HCL to pH < 2	OK			
1214733014-I	No Preservative Required	OK			
1214733014-J	No Preservative Required	OK			
1214733015-A	HCL to pH < 2	OK			
1214733015 A	HCL to pH < 2	OK			
1214733015-C	HCL to pH < 2	OK			
1214733015-D	HCL to pH < 2	OK			
1214733015-E	HCL to pH < 2	OK			
1214733015 E	HCL to pH < 2	OK			
1214733015 T	HCL to pH < 2	OK			
1214733015-H	HCL to pH < 2	OK			
1214733015-I	No Preservative Required	OK			
1214733015-J	No Preservative Required	OK			
1214733016-A	HCL to pH < 2	OK			
1214733016-B	HCL to pH < 2	OK			
1214733016-C	HCL to pH < 2	OK			
1214733016-D	HCL to pH < 2	OK			
1214733016-E	HCL to pH < 2	OK			
1214733016-F	HCL to pH < 2	OK			
1214733016-G	HCL to pH < 2	OK			
1214733016-H	HCL to pH < 2	OK			
1214733016-I	No Preservative Required	OK			
1214733016-J	No Preservative Required	OK			
1214733017-A	HCL to pH < 2	OK			
1214733017-B	HCL to pH < 2	OK			
1214733017-C	HCL to pH < 2	OK			
1214733017-D	HCL to pH < 2	OK			
1214733017-Е	HCL to pH < 2	OK			
1214733017-F	HCL to pH < 2	OK			

<u>Container Id Preservative Container Container Id Preservative Container Container Id Preservative Container Revision</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

250 Cushman St. Ste. 3D Fairbanks, AK 99701 907-457-3147

Date: 10/4/2021

Project name: Hilcorp Beluga River Unit - 2021

Laboratory: SGS North America, Inc. – Anchorage, AK (SGSA)

Sample Delivery Groups: 1214733

Reviewed by: Alex Thompson

Title: Chemist

Approved by: Rodney Guritz
Title: Principal Chemist

To: Ms. Melissa Mayer

Susitna Environmental, LLC 2419 McKenzie Drive

Anchorage, AK 99517

Data Quality Assessment

This letter summarizes the findings of a data quality assessment (DQA) conducted by Arctic Data Services, LLC (ADS) on behalf of Susitna Environmental, LLC (Susitna) for the above-referenced project data. Precision, accuracy, sensitivity, representativeness, comparability, and completeness of the data were evaluated by reviewing laboratory-supplied quality assurance/quality control (QA/QC) information as well as conducting independent QC checks on the data. A Stage 2A validation was conducted in general accordance with the US Environmental Protection Agency (USEPA) National Functional Guidelines for Organic Superfund Methods Data Review (2017). Stage 2A validation includes reviewing sample handling, custody, and sample-batch level QC information and applying data qualifiers to sample results affected by anomalies and QC failures and summarizing the impacts to data quality. Instrument-level QC information was not reviewed. This validation meets the requirements of the Alaska Department of Environmental Conservation (ADEC) Technical Memorandum on Data Quality Objectives, Checklists, Quality Assurance Requirements for Laboratory Data, and Sample Handling (March 2017). In the absence of project-specific control limits or measurement quality objectives (MQOs), QC-sample recoveries and relative percent differences (RPDs) were compared to laboratory control limits. Field-duplicate RPDs were compared to ADEC-recommended MQOs. To evaluate analytical sensitivity, limits of quantitation (LOQs) and limits of detection (LODs) were compared to the following project action limits (PALs): 18 Alaska Administrative Code (AAC) 75.345 Table C groundwater cleanup levels (GCLs) for water samples.

An ADEC laboratory data review checklist was completed for the single sample delivery group (SDG) and is attached to this DQA. Also attached is a tabular summary of data qualified during the course of this review (Table 1). The following sections provide a summary of the findings for each QA/QC element reviewed; anomalies that had no impact to data quality are discussed in the checklist and are not further described herein.

Hilcorp Beluga River Unit - 2021 Data Quality Assessment 10/4/2021 Page 2 of 6

Sample Analysis Summary

Analytical results for 14 groundwater samples (including QC field duplicates) were reviewed. The samples were submitted in a single SDG to SGSA for analysis of one or more of the following:

- Gasoline range organics (GRO) by Alaska Method AK101;
- Diesel range organics (DRO) by Alaska Method AK102;
- Polycyclic aromatics hydrocarbons (PAHs) by EPA SW846 Method 8270D with selected ion monitoring (SIM);
- Benzene, ethylbenzene, toluene, and xylenes (BTEX) by EPA SW846 Method 8260D;
- Petroleum related volatile organic compounds (VOCs) by EPA SW846 Method 8260D.

Please note that petroleum VOC results were not included in the original laboratory report. The laboratory issued a revised report on September 30, 2021 which included petroleum VOC results for samples 224132-072921 and 224133-072921.

Sample Preservation, Handling, Custody, and Holding Times

Sample receipt forms (SRFs) were reviewed to check that samples were received in good condition, properly preserved, and within the required temperature range. Chain of custody (COC) forms were reviewed to confirm that custody was not breached during sample handling. Dates of sample collection, preparation, and analysis were compared to check that method holding times were not exceeded.

There were no sample preservation, handling, custody, or holding time failures affecting project-sample data quality.

Analytical Sensitivity

Analytical sensitivity was evaluated by checking that LOQs and LODs were below relevant PALs where target analytes were not detected.

There were no non-detect results with LODs or LOQs exceeding relevant PALs.

Method Blanks

The laboratory analyzed and reported a method blank (MB) for each preparatory batch, to check for laboratory-based sample contamination. Associated project-sample results were considered affected where the analyte was detected within 10 times the MB concentration. Results affected by blank contamination are qualified as estimated and flagged 'B', indicating a high bias and potential false-positive detection.

Hilcorp Beluga River Unit - 2021 Data Quality Assessment 10/4/2021 Page 3 of 6

The following MB detections were determined to affect project-sample data quality:

1214733. Phenanthrene was detected below the LOQ in the MB sample associated with 8270DSIM prep batch XXX45308. Four phenanthrene results were considered affected and qualified, following the procedure outlined above. The impact to data usability was minimal, as all affected results are below relevant cleanup levels, despite the potential high bias. Refer to table 1 for a full list of affected results.

Trip Blanks

Trip blank samples (TBs) were submitted alongside volatile organic analysis samples and analyzed for GRO and VOCs, to check for cross-contamination of samples during sampling, shipment, or storage. Associated project-sample results would be considered affected where the analyte was detected within 10 times the TB concentration.

The following trip blank detections were determined to affect project sample data quality:

1214733. GRO was detected below the LOQ in the trip blank sample. Two GRO results were considered
affected and qualified, following the procedure outlined above. The impact to data usability was minimal,
as all affected results are below relevant cleanup levels, despite the potential high bias. Refer to Table 1
for a full list of affected results.

Laboratory Control Samples

The laboratory analyzed and reported laboratory control samples (LCSs) for each preparatory batch, to assess laboratory extraction efficiency and analytical accuracy. In some cases, LCS duplicates (LCSDs) were used to assess analytical precision. LCS and LCSD recovery information and LCS/LCSD RPD information (where available) were reviewed.

There were no LCS/LCSD recovery or RPD failures affecting project-sample data quality.

Matrix Spike Samples

Matrix spikes (MS) and MS duplicates (MSD) were analyzed for organic batches, to evaluate potential matrix interference affecting accuracy and/or precision. MS/MSD recovery and RPDs were evaluated only if the parent sample (the sample spiked for the MS/MSD) was in the project-sample set. MS/MSD recovery was only evaluated if the spiking concentration was greater than the native analyte concentration.

There were no MS/MSD recovery failures affecting project-sample data quality. Refer to the checklist for further discussion.

Hilcorp Beluga River Unit - 2021 Data Quality Assessment 10/4/2021 Page 4 of 6

Surrogate Recovery

Samples submitted for analysis of organic compounds were spiked with analyte surrogates to evaluate extraction efficiency and to check for matrix interference. Surrogate recoveries were reviewed for each project sample and analysis. Surrogate recovery failures are only considered to affect project results for samples that are not heavily diluted (dilution factor < 10).

The following surrogate recovery failures were determined to affect project-sample data quality:

• **1214733.** The AK101 surrogate, 4-bromofluorobenzene (4-BFB), was recovered above laboratory control limits in two samples. Affected results are qualified as estimated and flagged 'J+', indicating a high bias. The impact to data usability for GRO results is minimal as the affected GRO results are below the cleanup level, despite the potential high bias. Refer to Table 1 for a full list of affected results.

Field Duplicates

Two field duplicate sample pairs were collected and submitted, meeting the 10% minimum required frequency. RPDs between field-duplicate results were calculated where at least one of the results was quantitatively detected (above the LOQ). In the case that one result was not detected, RPDs were calculated using the LOD for the non-detect result.

There were no field duplicate sample pair RPD failures affecting project-sample data quality.

Resolution of Multiple Flags

In the instance a result was affected by multiple QC anomalies, imparting differing qualifiers, professional judgement was used to determine the most appropriate and conservative qualifier retained for final reporting. The GRO results for samples HOS5-072921 and HOS6-072921 were affected by a high surrogate recovery failures ('J+'-flag) and sample cross contamination, identified in a trip blank sample ('B'-flag). As both results were detected above the LOQ, and were only marginally within the ten times blank contamination concentration threshold, the results retain the 'J+' flag as the final qualifiers.

Summary of Data Quality Indicators

The following sections summarize the findings of the above review with respect to the six data quality indicators: sensitivity, precision, accuracy, representativeness, comparability, and completeness. Note that this evaluation of representativeness, comparability, and completeness is limited to consideration of analytical data quality only. Assessment of data usability in the context of the project must be conducted by the project team as a whole, taking into account the data quality issues summarized herein, as well as overall project objectives.

Hilcorp Beluga River Unit - 2021 Data Quality Assessment 10/4/2021 Page 5 of 6

Sensitivity

Sensitivity describes the ability of the sampling and analytical methodology to meet detection and/or quantitation limit objectives. There were no non-detect results with LODs or LOQs exceeding relevant PALs. Overall sensitivity was deemed acceptable for the purposes of this project.

Precision

Precision is a measure of the reproducibility of repetitive measurements. Precision was evaluated based on laboratory QC-sample and field-duplicate sample RPDs. There were no laboratory QC sample duplicate or field sample duplicate pair RPD failures affecting project-sample data quality. Overall precision was deemed acceptable.

Accuracy

Accuracy is a measure of the correctness, or the closeness, between the true value and the quantity detected. Accuracy was evaluated based on analyte recoveries for laboratory QC samples and recovery of surrogate spikes for project samples. Sample handling and preservation anomalies that may have impacted data accuracy are also taken into consideration.

No sample handling and preservation anomalies affected project data for the submitted SDG. Laboratory QC-sample recovery indicated generally adequate analytical accuracy. However, two GRO results were affected by surrogate recovery failures, and four phenanthrene results and two GRO results were affected by contamination, as identified by detections in a corresponding blank sample. These results are qualified as estimated, and a direction of bias given, where discernible. Results affected by contamination and qualified 'B', may be potential false-positive detections. The impact to data usability for these results was minimal in all cases, and overall accuracy is deemed acceptable.

Representativeness

Representativeness describes the degree to which data accurately and precisely represent site characteristics. Representativeness is affected by factors such as sample frequency and matrix or contaminant heterogeneity, as well as analytical performance (including sensitivity, accuracy, and precision) and sample cross-contamination.

Samples were collected in accordance with an approved work plan. Six results were qualified due to laboratory-based or sample cross contamination. These results are qualified as estimated, biased high, and may be false-positive detections. Additionally, two results were affected by high surrogate recovery failures. Results affected by QC anomalies affecting accuracy should not be considered as wholly representative of site conditions. However, impact to data usability was generally minor as the affected results were below cleanup levels despite

Arctic Data Services, LLC

Hilcorp Beluga River Unit - 2021 Data Quality Assessment 10/4/2021

Page 6 of 6

the potential high bias. Overall representativeness is deemed acceptable for the purposes of this project, with the exceptions described above taken into account.

Comparability

Comparability describes whether two data sets can be considered equivalent with respect to project goals. Comparability is affected by factors such as sampling methodology and analytical performance (including sensitivity, accuracy, and precision). Comparability was evaluated by checking that standard analytical methods were employed, and analytical performance was acceptable. Data review findings generally support that the dataset is comparable; however, comparability should be evaluated by the project team considering sample collection methodology and historic results alongside data quality and analytical methodology.

Completeness

Completeness describes the amount of valid data obtained from the sampling event. It is calculated as the percentage of usable measurements compared to the total number of measurements. The groundwater data are 100% complete, with no results rejected in the course of this review.

Conclusions and Limitations

Sensitivity, precision, accuracy, representativeness, comparability, and completeness were deemed acceptable, and the data are usable for the purposes of this project. Project sample results affected by the QC anomalies described above have been flagged accordingly (Table 1).

This review was based solely on information provided by the analytical laboratory in the laboratory reports for the SDG reviewed. ADS did not review instrument-level QC elements, such as calibration verification or internal standard response, except to the extent that the laboratory identified instrument-level anomalies in the case narrative. ADS did not conduct independent validation of the data (e.g. recalculating results based on instrument responses) or review any raw chemical data (e.g. chromatograms). A data quality assessment helps reduce the risk of reliance on data of compromised quality, however, it does not eliminate that risk.

Attachments:

Table 1 Summary of Qualified Data

ADEC Laboratory Data Review Checklists: 1214733

Table 1 Summary of Qualified Data Hilcorp Beluga River Unit - 2021 Data Quality Assessment

Client Sample ID	Lab Sample ID	Matrix	Method	Analyte	CAS	Units	DL	LOD	LOQ	Result	Lab Flags	QC Flags	Note	Final Qualified Result
FG24-072821	1214733004	Ground_Water	AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	0.0450	0.0500	0.100	0.0453	J	В	TB	0.0453 J B
HOS5-072921	1214733010	Ground_Water	AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	0.0450	0.0500	0.100	0.401		J+, B	SUR_%R, TB	0.401 J+
HOS6-072921	1214733011	Ground_Water	AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	0.0450	0.0500	0.100	0.383		J+, B	TB, SUR_%R	0.383 J+
ATF3-072921	1214733013	Ground_Water	8270DSIM	Phenanthrene	85-01-8	μg/L	0.0153	0.0255	0.0510	0.0264	J	В	MB	0.0264 J B
ATF8-072921	1214733014	Ground_Water	8270DSIM	Phenanthrene	85-01-8	ug/L	0.0144	0.0240	0.0481	0.0241	J	В	MB	0.0241 J B
ATF8-072921	1214733014	Ground_Water	AK101	Gasoline Range Organics (C6-C10)	GRO-C6-C10	mg/L	0.0450	0.0500	0.100	0.101		В	ТВ	0.101 B
224132-072921	1214733015	Ground_Water	8270DSIM	Phenanthrene	85-01-8	μg/L	0.0150	0.0250	0.0500	0.0285	J	В	MB	0.0285 J B
224133-072921	1214733016	Ground_Water	8270DSIM	Phenanthrene	85-01-8	μg/L	0.0150	0.0250	0.0500	0.0446	J	В	MB	0.0446 J B

Notes

TB Trip blank detection

SUR_%R Surrogate recovery failure

MB Method Blank Detection

Data Qualifiers

J+ The quantitation is considered estimated, biased high, due to a QC anomaly.

B The result is considered estimated, biased high, and a potential false-positive detection, due to contamination.

J The result is considered estimated, with an unknown direction of bias, either due to a QC anomaly (validator-applied) or detection below the LOQ (laboratory-applied).

Definitions

CAS Chemical Abstract Service registry number

DL detection limit

LOD limit of detection

LOQ limit of quantitation

QC quality control

NA not applicable

Laboratory Data Review Checklist

Completed By:
Alexander Thompson
Title:
Chemist
Date:
October 1 st , 2021
Consultant Firm:
Arctic Data Services, LLC for Susitna Environmental, LLC
Laboratory Name:
SGS North America, Inc. – Anchorage, AK
Laboratory Report Number:
1214733
Laboratory Report Date:
August 20 th , 2021 Rev1 Date: September 30, 2021
CS Site Name:
Hilcorp Beluga River Unit
ADEC File Number:
NA
Hazard Identification Number:
NA

Note: Any N/A or No box checked must have an explanation in the comments box.

1.	<u>Laboratory</u>
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	All samples were received and analyzed by SGS North America, Inc. in Anchorage, AK, which is ADEC CS approved for the analyses performed.
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	$Yes \square No \square N/A \boxtimes Comments:$
	No samples were transferred to another laboratory
2.	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. Correct analyses requested?
	$Yes \boxtimes No \square N/A \square$ Comments:
3.	<u>Laboratory Sample Receipt Documentation</u>
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes⊠ No□ N/A□ Comments:
	Samples were hand delivered in a two coolers directly to the SGS Anchorage laboratory; both were received within the acceptable temperature range.
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
	Yes⊠ No□ N/A□ Comments:
	Samples were received in good condition.
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	$Yes \square No \square N/A \boxtimes Comments:$
	There were no sample receiving discrepancies.

e. Data quality or usability affected?
Comments:
Data quality and usability were not affected.
4. <u>Case Narrative</u>
a. Present and understandable?
Yes \boxtimes No \square N/A \square Comments:
b. Discrepancies, errors, or QC failures identified by the lab?
Yes \boxtimes No \square N/A \square Comments:
The laboratory report case narrative documented a number of QC anomalies which are addressed in the following relevant sections of this checklist. The case narrative also mentions a benzene detection in a leaching blank sample, however no TCLP
analyses were request, nor were TCLP results reported. Correspondence with laboratory confirmed that the statement was left in error and a revised report can be issued upon request.
c. Were all corrective actions documented?
$Yes \square No \square N/A \boxtimes Comments:$
No corrective actions were documented or performed.
d. What is the effect on data quality/usability according to the case narrative?
Comments:
The laboratory does not make any conclusions regarding data quality or usability in the provided case narrative.
Samples Results
a. Correct analyses performed/reported as requested on COC?
Yes□ No⊠ N/A□ Comments:
Petroleum-VOCs and RRO analysis were requested for samples 224132-072921, 224133-072921 and the trip blank sample, but results were not included in the original laboratory report. The laboratory provided a revised report with the missing results for samples 224132-072921 and 224133-072921 included.
b. All applicable holding times met?
Yes⊠ No□ N/A□ Comments:
c. All soils reported on a dry weight basis?
$Yes \square No \square N/A \boxtimes Comments:$
No soil samples were submitted for this work order.

	d.	Are the rep the project		LOQs less	s than the C	Cleanup Level	or the m	ninimun	n requii	red detecti	ion level for
		Yes⊠	No□	N/A□	Comr	nents:					
		-		-		8 AAC 75.345 xceeding appli			ndwatei	Cleanup	Levels
	e.	Data qualit	y or us	ability af	fected?						
	Da	ta quality ar	nd usab	ility were	e not affect	ed.					
6. <u>Q</u> (C Sa	<u>mples</u>									
	a.	Method Bla	ank								
		i. One m	ethod l	blank rep	orted per m	natrix, analysis	and 20	sample	es?		
		Yes⊠	No□	N/A 🗆	Comr	nents:					
	1					-	titation	(LOQ)	or proj	ect specifi	ied objectives?
	D1			N/A 🗆		ments:	1	• .	1 1.1	0270501	N. T 1
						Q in the MB safurther details.	ample a	ssoc1ate	ed with	82/0DSI	M prep batch
				Method	Batch	Analyte	Units	MB Co	onc. LC	Q	
				8270DSIN	/ XXX45308		e ug/L	0.03	0.	05	
		iii. If abov	ve LOC	or proje	ct specified	l objectives, w	hat sam	ples are	e affect	ed?	
					Com	ments:					
		<i>J</i>				cted if the ana concentration	•				
		,				o the table belo					
			San	nple ID	Method	Analyte	Units	Result	LOQ	QC Flag	
				2-072921	8270DSIM	Phenanthrene	ug/L	0.0285	0.05	В	
				3-072921	8270DSIM	Phenanthrene	ug/L	0.0446	0.05	В	
				072921 072921	8270DSIM	Phenanthrene	ug/L	0.0264	0.051	В	
			AIF8-U	71 7271	8270DSIM	Phenanthrene	ug/L	0.0241	0.0481	В	
			00		/ \ 1	G 0.70		1		1 1 0	10
				-		ata flags? If so	, are the	e data fl	ags clea	arly defin	ed?
	(P)			N/A 🗆		ments:	, 1	1 (1	1402	1	1:11:
		_			_	lified as estimate to laboratory-l				indicating	a high bias
	an	a potentiai i	шъс-ро	bilive uct	ection duc	to laboratory-t	Juscu Cl	J114111111	uuon.		

v. Data quality or usability affected?

Comments:

Data quality is affected as described above. The impact to data usability is minimal, as the affected results are below the cleanup level, despite the potential high bias.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \boxtimes No \square N/A \square Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
No inorganic analyses were performed in this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
There were no LCS/LCSD recovery failures identified.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:
There were no LCS/LCSD RPD failures identified.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
There were no LCS/LCSD recovery or RPD failures identified.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
NA; see above.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
Data quality and usability were not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? $Yes \boxtimes No \square N/A \square$ Comments: Additional volume was submitted with sample FG20-072821 for organic analysis matrix spiking. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes \square No \square N/A \boxtimes Comments: No inorganic analyses were performed in this work order. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? $Yes \square No \boxtimes N/A \square$ Comments: There were a number of MS/MSD recovery and RPD failures in the MS/MSD for 8270DSIM preparatory batch XXX45308; however, the spiked parent sample is not associated with the project, so these failures have no effect to data quality or usability for the samples submitted in this work order. Recoveries were within control limits for all analytes for the spiked project sample (FG20-072821). iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. $Yes \square No \boxtimes N/A \square$ Comments: See above. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: There were no MS/MSD recovery or RPD failures affecting project-sample data quality. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: No project-sample results were qualified; see above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Data quality and usability were not affected. d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \boxtimes No \square N/A \square$ Comments:

	project specifi	ed objectiv	ves, if applicable? (AK for QC samples; all other	Petro	leum methods	s 50-150 9	%R for field	l
	Yes□ No⊠	N/A□	Comments:					
	_		luorobenzene, was reco	vered	l above labora	tory conti	ol limits in	two
samp	oles. Refer to the t	able below	for further details.					
			Т .					
	Client Sample I			DF 1.0	PercentRecove	-	recovery	
							high high	
	11030-072321	WITOI	- DIGINONGO ODENZENE	1.0	103.0	1 130.0	111611	
GRO	flags clearly d $Yes \boxtimes No \square$ results for these	efined? N/A□ samples ar	th failed surrogate/IDA Comments: re considered affected a sed high. Refer to the ta	nd ar	e qualified as	estimated	and flagge	
	Client Sample ID	Na - th - al	Analista		CAC	Desult (mo	-(I) OC Flor	
	HOS5-072921	Method AK101 G	Analyte Gasoline Range Organics (C6	5-C10)	GRO-C6-C10	Result (mg	g/L) QC Flag	5
	HOS6-072921		Gasoline Range Organics (C6					
Data	•	d as describ	Comments: bed above. The impact		ta usability is	minimal,	as the affec	ted
Data resul	quality is affected ts are below the c	d as describ	Comments:		ta usability is	minimal,	as the affec	ted
Data resulte. T	quality is affected ts are below the c	d as describ	Comments: bed above. The impact		ta usability is	minimal,	as the affec	ted
Data resulte. T	quality is affected ts are below the care below the care blanks Trip Blanks One trip blank	d as describle anup lever	Comments: bed above. The impact el, despite the high bias per matrix, analysis and	S				
Data resulte. T	quality is affected ts are below the c	d as describle anup lever	Comments: bed above. The impact el, despite the high bias per matrix, analysis and	S				
Data resulte. T	quality is affected ts are below the c rip Blanks One trip blank (If not, enter e	l as describle anup lever reported proported p	Comments: bed above. The impact el, despite the high bias per matrix, analysis and a below.) Comments:	s. I for e	each cooler co	ntaining v	olatile sam	ples?
Data resulted and	quality is affected to are below the corip Blanks One trip blank (If not, enter expression Now ble 'Trip Blank' work by AK101. Petrox analyte results analyte results analyte in sample.	reported preparation N/A vas submitted as were included as described	Comments: bed above. The impact el, despite the high bias per matrix, analysis and below.)	for emple d for atory 7292	each cooler coes and analyze the trip blank report. No add 1 (where petro	ntaining v d for BTE sample, h lditional p	volatile sam EX by 82601 nowever onletroleum an	ples? D and y nalytes
Data resulted and	quality is affected to are below the corip Blanks One trip blank (If not, enter expression Now by AK101. Petrox analyte results detected in samplested) thus no result.	reported paragraph of the second of the seco	Comments: bed above. The impact el, despite the high bias per matrix, analysis and a below.) Comments: ted alongside project sa C analysis was requeste ded in the revised labor 2-072921 and 224133-0	for earnple d for ratory 7292 s omi	es and analyze the trip blank report. No ad 1 (where petro ssion.	ntaining v d for BTE sample, h lditional p	Tolatile same (X by 8260) aowever on the troleum and (C analysis	ples? D and y nalytes was
Data resulted in the second se	quality is affected to are below the corip Blanks One trip blank (If not, enter expected in Samplested) thus no results (If not, a communication of the cooler upon).	reported preparation N/A vas submitted and VOC were included a 224132 alts are consed to transent explanation N/A N/A	Comments: bed above. The impact el, despite the high bias per matrix, analysis and a below.) Comments: ted alongside project sa C analysis was requeste ded in the revised labor 2-072921 and 224133-0 asidered affected by this sport the trip blank and ining why must be enter	imple d for ratory 7292 s omi	each cooler coes and analyzed the trip blank report. No add 1 (where petrossion. A samples cleanelow)	ntaining versions of for BTE sample, helditional poleum VO	EX by 8260 nowever only etroleum and C analysis	ples? D and y nalytes was COC?
Data resulted and	quality is affected to are below the contribution of the contribut	reported preparation N/A reported preparation nent explain nent explain N/A reported preparation nent explain N/A reported preparation nent explain nent explain nent	Comments: bed above. The impact el, despite the high bias per matrix, analysis and below.) Comments: ted alongside project sa C analysis was requeste ded in the revised labor 2-072921 and 224133-0 asidered affected by this sport the trip blank and ining why must be enter	ample d for ratory 7292 s omi	each cooler coes and analyze the trip blank report. No add (where petrossion. A samples cleanelow)	ntaining versions of for BTE sample, helditional poleum VO	EX by 8260 nowever only etroleum and C analysis	ples? D and y nalytes was COC?

	iii. All results	less than L	LOQ and	d project specified objectives?				
	Yes□ No[N/A□		Comments:				
GR0 deta		below the	LOQ in	the trip blank sample. Refer to	o the tabl	e belo	w for furth	ier
F	Client Sample ID	QC Type	Metho	od Analyte		AS	TB Result	LOQ
	Trip Blank					C6-C10	0.0591 J	0.1
Pro			(cified objectives, what sample Comments:			d within 1	Ov the
asso	, <u> </u>	k concentr		Four GRO results were conside				
	Client Sa	ample ID N	Method	Analyte	Result	LOQ	QC Flag	
	Client Sa HOS6-07	-	Method AK101	Analyte Gasoline Range Organics (C6-C10)	Result 0.383	LOQ 0.1	QC Flag	
		72921 A		•				
	HOS6-07	72921 A	AK101	Gasoline Range Organics (C6-C10)	0.383	0.1	В	
	HOS6-07	72921 A 72921 A 72821 A	AK101 AK101	Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10)	0.383 0.401	0.1	B B	
	HOS6-07 HOS5-07 FG24-07 ATF8-07 v. Data qualit	72921 A 72921 A 72821 A 72921 A 72921 A	AK101 AK101 AK101 AK101 AK101 AK101	Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) cted? Comments:	0.383 0.401 0.0453 J 0.101	0.1 0.1 0.1 0.1	B B B B	
	HOS6-07 HOS5-07 FG24-07 ATF8-07 v. Data quality a quality is affer	72921 A 72921 A 72921 A 72821 A 72921 A 72921 A	AK101 AK101 AK101 AK101 AK101 lity affer (Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) cted?	0.383 0.401 0.0453 J 0.101	0.1 0.1 0.1 0.1	B B B B	fected
resu	HOS6-07 HOS5-07 FG24-07 ATF8-07 v. Data quality a quality is affer	y or usabilated as desire cleanup	AK101 AK101 AK101 AK101 AK101 lity affer (Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) cted? Comments: above. The impact to data usab	0.383 0.401 0.0453 J 0.101	0.1 0.1 0.1 0.1	B B B B	fected
resu	HOS6-07 HOS5-07 FG24-07 ATF8-07 V. Data quality a quality is affealts are below the Field Duplicate	y or usabilated as desire cleanup	AK101 AK101 AK101 AK101 lity affe (scribed a level, d	Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) Gasoline Range Organics (C6-C10) cted? Comments: above. The impact to data usab	0.383 0.401 0.0453 J 0.101	0.1 0.1 0.1 0.1	B B B B	fected

Sample HOS6-072921 was submitted as a field duplicate of sample HOS5-072921. Sample 224133-072921 was submitted as a field duplicate of 224132-072921.

Comments:

May 2020 Page 8

ii. Submitted blind to lab?

 $Yes \boxtimes No \square N/A \square$

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)
(Recommended: 50% water, 50% soft) $RPD (\%) = Absolute value of: (R1-R2) x 100$
$((R_1+R_2)/2)$
Where $R_1 = $ Sample Concentration
R_2 = Field Duplicate Concentration
Yes No N/A Comments:
RPDs were calculated and compared to the ADEC recommended measurement quality objective (MQO) of 30% for water sample duplicate pairs, where an analyte was quantitatively detected (above the LOQ) in at least one sample. There were no field duplicate sample pair RPD failures affecting project-sample data quality.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
Data quality and usability were not affected.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes \square No \boxtimes N/A \square Comments:
No equipment blank was submitted.
i. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
NA; see above.
ii. If above LOQ or project specified objectives, what samples are affected? Comments:
No samples were affected; see above.
iii. Data quality or usability affected? Comments:
Data quality and usability were not affected. Low-level detected results (below the LOQ) should be used with a degree of caution; due to the absence of analysis of an appropriate equipment blank, it cannot be ruled out that these results may be biased high or potential false-positives due to sampling-equipment cross contamination.
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
Yes \square No \square N/A \boxtimes Comments:
There were no additional laboratory-specific qualifiers applied.