

May 22, 2020

Debenham Properties, LLC 2960 C Street, Suite 202 Anchorage, Alaska 99503

Attn: Mr. Shaun Debenham

RE: ADDITIONAL SITE CHARACTERIZATION ACTIVITIES, SOUTH PARK ESTATES MOBILE HOME PARK, ANCHORAGE, ALASKA; ADEC FILE NO. 2100.38.454

This letter presents the results of Shannon & Wilson's additional site characterization activities conducted at the South Park Mobile Home Park in Anchorage, Alaska. The property is located northwest of the intersection of West 31st Avenue and Cheechako Street. The property consists of Block 6, Lots 2 through 11, Block 9, Lots 1 through 12, and Block 10, Lots 1 through 12 of the Northern Lights Subdivision. Two sets of trailers, which front driveways or roadways are present on each block. A vicinity map showing the project site and surrounding area is included as Figure 1.

During previous site characterization activities, free-phase product was documented northwest of the intersection of Cheechako Street and West 30th Avenue in Monitoring Well B6MW. The purpose of this project is to evaluate whether a potential upgradient source is contributing to the contamination identified in Well B6MW.

Authorization to proceed with the project was received by Mr. Shaun Debenham of Debenham Properties, LLC (Debenham Properties) in the form of a signed proposal dated February 26, 2020. The project was conducted in material accordance with our March 4, 2020 work plan which was approved by Mr. Randy Guintu of the Alaska Department of Environmental Conservation (ADEC) in an email dated March 6, 2020.

BACKGROUND

Between 2005 and 2020, Shannon & Wilson conducted site assessment and characterization activities at the site. In addition, the Environmental Protection Agency (EPA) funded a Targeted Brownfields Assessment (TBA) of the property in 2019. The following provides a limited summary of previous site activities. The primary purpose of this summary is to provide a discussion of contamination identified in the vicinity of Well B6MW.

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 2 of 10

2005 Phase I Environmental Site Assessment (ESA)

As documented in our February 2005 *Phase I Environmental Site Assessment, South Park Trailer Court, 3007 Arctic Boulevard, Anchorage, Alaska* report, a trailer court was present onsite prior to the availability of natural gas service. Therefore, it was concluded that an alternative heating fuel source, including diesel fuel/heating oil, propane, and/or electrical heat may have been used at the site. If heating oil was used, it was concluded that underground storage tanks (USTs) and/or fuel distribution piping may remain onsite.

Based on a review of historical aerial photographs, a former creek bed was observed that extended through the trailer court along the north side of West 30th Avenue from the intersection of West 30th Avenue and Cheechako Street to the intersection of West 30th Avenue and Bering Street. The former creek then appeared to extend south along the east side of Bering Street to the intersection of West 31st Avenue and Bering Street. The approximate location of the creek bed is shown on Figure 2.

2005 Phase II ESA and Release Investigation

As documented in our October 2005 *Phase II ESA and Release Investigation, South Park Trailer Court, 3007 Arctic Boulevard, Anchorage, Alaska* report, a project consisting of Phase II ESA and release investigation tasks was implemented at the site using a phased approach. To evaluate the potential concerns identified in the Phase I ESA, 11 soil borings (Borings B1 through B11), three temporary wells (Wells B1MW, B2MW, and B3MW), and eight monitoring wells (Wells B4MW through B11MW) were advanced/installed at the project site between February and July 2005. In addition, two hand dug test pits (Test Pits TP-A and TP-B) were advanced in August 2015 in the vicinity of a buried fuel pipeline, located north of West 30th Avenue. At this time, groundwater flow direction was measured to the northwest. The approximate locations of the borings, monitoring wells, and test pits are shown on Figure 2.

The Phase II ESA consisted of advancing Borings B1, B2, and B3, which were completed as Temporary Wells B1MW, B2MW, and B3MW, respectively. The soil and groundwater samples collected from Boring B2/Temporary Well B2MW contained concentrations of diesel range organics (DRO) which exceeded the applicable ADEC cleanup levels. In addition, the groundwater sample also contained a concentration of residual range organics (RRO) which exceeded the ADEC Table C cleanup level.

Initial release investigation activities were conducted to further evaluate the nature and extent of petroleum hydrocarbon contamination identified during the Phase II ESA efforts. The initial release investigation consisted of advancing Borings B4 throughB7, which were completed as

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 3 of 10

Monitoring Wells B4MW through B7MW, respectively. The groundwater samples collected from Wells B5MW and B6MW contained concentrations of DRO exceeding the applicable ADEC Table C cleanup levels. In addition, the sample collected from Well B6MW contained a concentration of benzene exceeding the ADEC Table C cleanup level. Based on the initial release investigation activities we concluded that impacted groundwater was present north of West 30th Avenue within the former creek bed at the locations of Monitoring Wells B5MW and B6MW.

The second phase of the release investigation activities included advancing borings and installing wells in the downstream portion of the former creek (Boring B7/Well B7MW) and downgradient of Well B6MW (Boring B8/Well B8MW). The soil and groundwater samples collected from these borings and wells did not contain detectable contaminant concentrations.

Next, an interim evaluation was conducted to evaluate the potential for diesel contamination to migrate onto the property from an upgradient source. The evaluation included reviewing aerial photographs, conducting interviews with local residents, and reviewing local, state and federal databases. An attempt was also made to contact fuel delivery and insurance companies to identify properties that used fuel storage tanks. Our primary focus was on the upgradient lots located along the former creek bed. We concluded that several structures located topographically upgradient of the property, predated the availability of natural gas, and likely utilized heating oil. Documented fuel spills or contaminates were not identified on these upgradient lots. Although, based on the locations of intermittent creeks or drainage ditches identified during the aerial photography review, we concluded that it was possible that releases from upgradient parcels may have migrated into the former creek bed, resulting in the diesel contaminated encountered in Monitoring Wells B5MW and B6MW.

To evaluate these potential off-site sources, Borings B10 and B11, which were completed as Monitoring Wells B10MW and B11MW, respectively, were advanced in the vicinity of the former creek bed upgradient and east of the property. The soil and groundwater samples collected from the borings and wells did not contain detectable concentrations of the analytes tested. Therefore, a potential upgradient source of contamination was not identified.

Test pits (TP-A and TP-B) were advanced on the north side of West 30th Avenue in an effort to locate potential former fuel distribution pipelines and to identify the potential source of on-site contamination. Four separate piping runs were documented in Test Pit TP-B, which was advanced about 75 feet west of Well B6MW. Diesel fuel was discovered within one of the piping runs when a vent valve was opened. A soil sample collected from Test Pit TP-B

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 4 of 10

contained 11,100 milligrams per kilogram (mg/kg) DRO, which exceeds the ADEC Method Two migration to groundwater cleanup level of 250 mg/kg.

2009 to 2011 Site Activities

As documented in our August 26, 2009 *Groundwater Monitoring, 3007 Artic Boulevard, Anchorage, Alaska; ADEC File No. 2100.38.454* report, free-phase product, which was assumed to be diesel fuel or heating oil, was documented in Well B6MW. As documented in our December 20, 2011 *Groundwater Monitoring and Product Recovery, 3007 Arctic Boulevard, Anchorage, Alaska; ADEC No. 2100.38.454* report, free-phase product recovery and groundwater monitoring activities were conducted in 2010 and 2011. With the exception of the August 2011 event, measurable free product (0.1 to 5.6 feet) was documented in Well B6MW during each of the 18 product measuring events conducted between August 2010 and August 2011. A sample collected from Well B5MW in 2011 contained a concentration of DRO exceeding the ADEC Table C cleanup level. Samples collected from the remaining wells did not contain contaminant concentrations in excess of the applicable cleanup levels. During these events the groundwater flow direction was to the west/northwest.

2018 Buried Fuel Piping Removal

Buried piping associated with a former fuel distribution system was formerly located at the site. As documented in our October 28, 2018 *Buried Fuel Pipeline Removal, South Park Estates Mobile Home Park, Anchorage, Alaska; ADEC File No. 2100.38.454* report, three pipelines were identified and removed at the site. Approximately 1,600 linear feet of piping were removed, and an additional 200 feet of piping was capped and left in-place. The piping system terminated east of Cheechako Street on Lot 4, Block 11 of the Northern Lights Subdivision. The three pipelines were designated Fuel Lines Nos. 1, 2, and 3. Fuel Line No. 1 extended north from the southwest corner of the intersection of West 30th Avenue and Cheechako Street and ran along the northern portion of West 30th Avenue. Two lines extended north from Fuel Line No. 1 between the trailers located east of Bering Street and west of Cheechako Street. Fuel Line No. 2 was orientated east/west between mobile homes which front West 30th Avenue and an unnamed shared driveway to the south. Fuel Line No. 3 was oriented east/west and was located north of the mobile homes which front West 31st Avenue and an unnamed shared driveway to the north.

A total of 157 field screening and 18 analytical samples, including three duplicates, were collected from the piping excavations. Based on the analytical sample results, contaminated soil was identified in four locations, which included one location along Fuel Line No. 1 (Sample HD29), two locations along Fuel Line No. 2 (Duplicate Samples HD32/HD32D and Sample

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 5 of 10

HD70), and near the potential former fuel distribution location (Duplicate Samples ES1/ES1D). The former pipelines and approximate contaminated soil sample locations are shown on Figure 2.

2019 Targeted Brownfield Assessment

The results of the TBA are presented in the August 2019 *South Parks Estates, Mobile Home Park Site, Targeted Brownfields Assessment* prepared by Ecology and Environment, Inc. The TBA included advancing 17 borings (SP01 through SP17) and collecting soil and groundwater samples. The approximate boring locations are shown on Figure 2. The borings advanced in the vicinity or downgradient of Well B6MW are discussed below.

- Borings SP04, SP05, and SP06 were advanced in the vicinity of Well B6MW. The soil and groundwater samples collected from each boring contained concentrations of volatile organic compounds (VOCs) and/or DRO exceeding the ADEC cleanup levels.
- Boring SP07 was advanced in the vicinity of Test Pit TP-B, identified as Sample S1 in the TBA report. The soil and groundwater samples collected from the boring contained concentrations of VOCs and DRO exceeding the ADEC cleanup levels.
- Boring SP13 was advanced downgradient of Test Pit TP-B and Well B6MW. A
 groundwater sample collected from the boring contained concentrations of VOCs and
 DRO exceeding the ADEC cleanup levels. Soil samples were not collected from the
 boring.

PROJECT ACTIVITIES

The project activities consisted of advancing two soil borings, installing two temporary monitoring wells, and collecting soil and groundwater samples. Discovery Drilling, Inc. (Discovery) provided the equipment and personnel to advance the borings and install the temporary wells. Soil and groundwater samples were submitted to SGS North America (SGS) for laboratory analysis.

Prior to conducting field activities, the utility locate center was contacted to mark buried utilities within the project area and identify potential conflicts. The locations of the borings and general site features are shown on Figure 2. Site photographs are included in Attachment 1, boring logs are included in Attachment 2, and field notes are included in Attachment 3.

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 6 of 10

Soil Borings and Sampling

Two soil borings (Borings B12 and B13) were advanced by Discovery using a GeoProbe® direct-push drilling rig. Boring B12 was advanced east and upgradient of Well B6MW, within the former creek bed. Boring B13 was advanced northeast of Well B6MW. Soil samples were recovered on a continuous basis using 5-foot sampling sleeves to 10 to 12 feet below ground surface (bgs). Field screening and analytical soil samples were collected from each sampling sleeve. Two field screening samples were collected from each sample interval. Immediately following retrieval and opening of the sampling sleeves, the analytical samples and field screening samples were collected as discussed below. Each soil sample was visually described and "screened" for volatile organic compounds using a photoionization detector (PID) and ADEC-approved headspace screening techniques. The PID was calibrated before screening activities with 100 parts per million (ppm) isobutylene standard gas. The field screening samples were collected by partially filling re-sealable plastic bags (one-third to one-half), warmed to a least 40° Fahrenheit, agitated for 15 seconds at the beginning and end of the headspace development period, and tested within 10 and 60 minutes of collection.

One analytical soil sample was collected from each boring. In each boring the highest PID measurement (maximum of 1.8 ppm) was recorded in the 0 to 2.5-foot sample interval. These samples were collected from directly beneath the asphalt roadway. Therefore, the samples with the next highest PID readings were collected. The analytical sample jars for volatile analyses were collected first, then in order of volatility, followed by the field screening sample. All samples were transferred to the appropriate laboratory supplied jars using decontaminated stainless-steel spoons and transferred to the laboratory in coolers with ice packs using chain-of-custody procedures.

The soil samples were submitted to SGS for analysis using chain-of-custody procedures on a 4 to 5-day rush turnaround time and tested for DRO by Alaska Method (AK) 102, VOCs by EPA Method 8260C, and polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D selective-ion method (SIM). A trip blank accompanied the samples and was analyzed for VOCs by EPA Method 8260C.

Temporary Monitoring Wells

During drilling, groundwater was documented at approximately 10.5 feet bgs in Boring B12 and 9 feet bgs in Boring B13. Therefore, the borings were advanced to approximately 15 feet bgs, to facilitate the installation of temporary monitoring wells. The temporary wells consisted of 1-inch diameter, polyvinyl chloride (PVC) pipe. The bottom section of the wells consisted of a 10-foot section of 1-inch diameter, slotted, PVC pipe. A solid section of piping extended to the

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 7 of 10

ground surface. The slotted section extended from approximately 5 to 15 feet bgs. Prior to sampling, depth to water was measured with an electronic water level indicator to an accuracy of 0.01 foot. A product/water interface probe was used to measure whether free-phase product was present. Product was not encountered during the March 2020 groundwater sampling activities.

A grab groundwater sample was collected with disposable polyethylene micro-bailers from each temporary well. The wells were not purged or developed prior to sampling. Groundwater data obtained from the temporary wells is considered "screening level data" because the wells were not constructed with filter sand and were not developed prior to sampling. However, the data allows us to evaluate the presence or absence of the compounds analyzed.

Analytical samples were collected by transferring water directly from the bailers into the laboratory supplied containers. The sample jars were filled in decreasing order of volatility. The groundwater samples were analyzed for DRO by AK 102, VOCs by EPA Method 8260C, and PAHs by EPA Method 8270D SIM. A trip blank accompanied the samples and was analyzed for VOCs by EPA Method 8260C.

Following sampling, the temporary wells were removed, and the boreholes were backfilled with the drill cuttings and bentonite chips. The ground surface was repaired with asphalt. The borings were backfilled within one hour of advancement. Disposable sampling equipment was treated as unregulated waste.

DISCUSSION OF ANALYTICAL RESULTS

The analytical soil and groundwater sample results were compared to the ADEC cleanup levels presented in the October 2018, 18 Alaska Administrative Code (AAC) 75 regulations. The applicable soil and groundwater criteria consist of the most stringent ADEC Method Two cleanup levels listed in Tables B1 and B2 of 18 AAC 75.341, for the "under 40-inch (precipitation) zone. The analytical soil and groundwater results are summarized in Tables 2 and 3. The analytical laboratory report is included as Attachment 4.

Soil Samples

Concentrations of DRO were detected in Samples B12S4 (164 milligrams per kilogram [mg/kg]) and B13S4 (8.30 J mg/kg) less than the ADEC Method Two cleanup levels of 250 mg/kg. The remaining tested analytes were not detected in the soil samples.

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 8 of 10

Groundwater Samples

Three VOCs (benzene, 2-butanone, and chloromethane) and five PAHs (1-methylnaphthalene, 2-methylnaphthalene, anthracene, naphthalene, and phenanthrene) were detected in Samples B12MW and/or B13MW at concentrations significantly less than their respective ADEC Table C cleanup levels. The remaining tested analytes were not detected in the groundwater samples.

Quality Control

The project laboratory follows on-going quality assurance/quality control procedures to evaluate conformance to applicable ADEC data quality objectives (DQOs). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spike/matrix spike duplicates (MS/MSD), and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to assess precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a brief narrative concerning the problem in the case narrative of their laboratory report (see Attachment 4).

External quality controls included one methanol soil trip blanks (STB) and one water trip blank (WTB). Trip blanks accompanied the sample, as appropriate, from the laboratory to the site during sampling activities and back again to SGS. The trip blanks did not contain detectable concentration of target analytes.

An estimated concentration of DRO was detected in method blanks associated with the groundwater samples. Concentrations of DRO detected in Samples B12MW, B13MW, and the method blank are reported at levels less than the LOQ; therefore, the sample concentration is reported as non-detect at the LOQ in Table 3. Additionally, PAH surrogate recoveries for Samples B12MW and B13MW are outside QC criteria. Shannon & Wilson-applied data flags ("J-") are presented on Table 3 to indicate the analytical results are potentially biased low due to surrogate failure.

Shannon & Wilson conducted a limited data assessment to review the laboratory's compliance with precision, accuracy, sensitivity, and completeness to the DQOs. Shannon & Wilson reviewed the SGS data deliverables and completed the ADEC's Laboratory Data Review Checklist, which is included in Attachment 4. Non-conformances that would adversely affect the quality or usability of the data were not identified, with the exception of the issues discussed above.

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 9 of 10

CONCLUSIONS

Project activities consisted of advancing two borings, installing two temporary monitoring wells, and collecting soil and groundwater samples. During previous site characterization activities, free-phase product was documented northwest of the intersection of Cheechako Street and West 30th Avenue in Monitoring Well B6MW. The purpose of the project was to evaluate whether a potential upgradient source is contributing to the contamination previously identified in Well B6MW.

To date, four borings (B10 through B14), completed as wells (B10MW through B14MW), have been advanced east and upgradient/cross-gradient of Well B6MW. Wells B10MW and B12MW were advanced within a former creek bed, which was formerly considered a potential transport mechanism for off-site contamination, resulting in the contamination previously identified in Well B6MW. As noted in our 2005 Phase II ESA, and further supported by our February 2020 sampling activities, it does not appear that the former creek bed transported potential off-site contamination onto the property. In addition, the results of the soil and groundwater samples collected from Borings B11 and B13 and Wells B11MW and B13MW, respectively, do not support a potential off-site contaminant source.

CLOSURE/LIMITATIONS

This report was prepared for the exclusive use of Debenham Properties and its representatives in the study of this site. The findings we have presented within this report are based on the limited sampling and analyses that was conducted. They should not be construed as definite conclusions regarding the site's soil or groundwater. It is possible that our tests missed higher levels of target contaminants, although our intention was to sample areas likely to be impacted and in accordance with our proposal. As a result, the sampling, analyses, and data interpretations can provide you with only our professional judgment as to the environmental characteristics of this site, and in no way guarantee that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the time of our site assessment. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study, except with your permission or as required by law.

SHANNON & WILSON, INC.

Debenham Properties, LLC Mr. Shaun Debenham May 22, 2020 Page 10 of 10

Shannon & Wilson has prepared the documents in Attachment 5, "Important Information About Your Geotechnical/Environmental Report", to assist you and others in understanding the use and limitations of our report.

We appreciate the opportunity to be of service with the characterization of this site. Please contact the undersigned at (907) 561-2120 with questions or comments concerning this report.

Sincerely,

SHANNON & WILSON, INC.

Dan P. McMahon, PMP Senior Associate

Encl: Tables 1 through 3, Figures 1 and 2, and Attachments 1 through 5

TABLE 1 SAMPLE LOCATIONS

Sample Number	Date	Sample Location (See Figure 2 and Attachment 2)	Depth (feet)^	Headspace (ppm) ^^
Soil Samples				
Boring B12				
B12S1	3/12/2020	Boring B12, Sample S1	0-2.5	0.8
* B12S2	3/12/2020	Boring B12, Sample S2	2.5-5	0.5
B12S3	3/12/2020	Boring B12, Sample S3	5-7.5	0.1
B12S4	3/12/2020	Boring B12, Sample S4	7.5-10	0.1
B12S5	3/12/2020	Boring B12, Sample S5	10-12	0.1
Boring B13				
B13S1	3/12/2020	Boring B13, Sample S1	0-2.5	1.8
B13S2	3/12/2020	Boring B13, Sample S2	2.5-5	0.8
B13S3	3/12/2020	Boring B13, Sample S3	5-7.5	0.5
* B13S4	3/12/2020	Boring B13, Sample S4	7.5-10	0.8
Water Samples		-		
* B12MW	3/12/2020	Temporary Well B12MW	9.0	-
* B13MW	3/12/2020	Temporary Well B13MW	9.2	-
Quality Control Samples				
* STB	3/12/2020	Soil Trip Blank	_	-
* WTB	3/12/2020	Water Trip Blank	-	-

Notes:

- * = Sample analyzed by the project laboratory (See Tables 2 and 3).
- Depth of soil samples are measured below ground surface and groundwater samples were measured from below top of casing.
- ^^ = Field screening instrument was a Thermo Environmental Instruments 580B photoionization detector (PID).
- = Not applicable
 ppm = parts per million
 bgs = below ground surface

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS

			Sample ID Number [^] and Soil Sample Depth in Feet Below Ground Surface of Sample Date (See Table 1, Figure 2, and Attachment 2)		
		Cleanup Level	Soil Sa B12S2	B13S4	Trip Blank STB
Parameter Tested	Method*	(mg/kg)**	2.5-5	7.5-10	3/12/2019
PID Headspace Reading - ppm	OVM 580B	-	0.5	0.8	-
Diesel Range Organics (DRO) - mg/kg	AK 102	250	164	8.30 J	-
Volatile Organic Compounds (VOCs)					
Benzene - mg/kg	EPA 8260C	0.022	< 0.00605	< 0.00860	< 0.00625
Toluene - mg/kg	EPA 8260C	6.7	< 0.0121	< 0.0172	< 0.0124
Ethylbenzene - mg/kg	EPA 8260C	0.13	< 0.0121	< 0.0172	< 0.0124
Xylenes (total) - mg/kg	EPA 8260C	1.5	< 0.0363	< 0.0515	< 0.0374
Other VOC analytes - mg/kg	EPA 8260C	various	ND	ND	ND
Polynuclear Aromatic Hydrocarbons (PAHs)- mg/kg	EPA 8270D SIM	various	ND	ND	ND

Notes:

- * = See Attachment 4 for compounds tested, methods, and laboratory reporting limits
- ** = Soil cleanup level is the most stringent ADEC Method 2 standard listed in Table B1 or B2, 18 AAC 75 (October 2018), for the "under 40 inches (precipitation) zone"
- ^ = Sample ID number preceded by "100688-" on the chain of custody form
- PID = Photoionization detector
- ppm = Parts per million
- mg/kg = Milligrams per kilogram
- <0.0121 = Analyte not detected; laboratory limit of detection of 0.0121 mg/kg
 - 164 = Analyte detected ND = Analyte not detected
 - Not applicable or sample not tested for this analyte
 - **J** = Estimated concentration less than the limit of quantitation. See the SGS laboratory report for details.

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

			Sample ID Number^ and Water Depth in Feet bgs or Sample Date (See Table 1, Figure 2, and Attachment 2)				
		Cleanup	Tempor	ary Well	Trip Blank		
		Level	B12MW	B13MW	WTB		
Parameter Tested	Method*	(mg/L)**	9.0	9.2	3/12/2020		
Diesel Range Organics (DRO) - mg/L	AK 102	1.5	<0.667 B	<0.682 B	-		
Volatile Organic Carbons (VOCs)							
Benzene - mg/L	EPA 8760C	0.0046	0.000198 J	< 0.000200	< 0.000200		
Toluene - mg/L	EPA 8760C	1.1	< 0.000500	< 0.000500	< 0.000500		
Ethylbenzene - mg/L	EPA 8760C	0.015	< 0.000500	< 0.000500	< 0.000500		
Xylenes (total) - mg/L	EPA 8760C	0.19	< 0.00150	< 0.00150	< 0.00150		
2-Butanone (MEK) - mg/L	EPA 8760C	5.6	0.00785 J	< 0.00500	< 0.00500		
Chloromethane - mg/L	EPA 8760C	0.19	0.000522 J	0.000544 J	< 0.000500		
Other VOCs - mg/L	EPA 8760C	Various	ND	ND	ND		
Polynuclear Aromatic Hydrocarbons (PAHs)							
1-Methylnaphthalene - mg/L	EPA 8270D SIM	0.011	0.000148	0.0000364 J-	-		
2-Methylnaphthalene - mg/L	EPA 8270D SIM	0.036	0.0000884	0.0000457 J-	-		
Anthracene - mg/L	EPA 8270D SIM	0.043	0.0000545	<0.0000255 J-	-		
Naphthalene - mg/L	EPA 8270D SIM	0.0017	0.000208	0.0000507 J-	-		
Phenanthrene - mg/L	EPA 8270D SIM	0.17	0.0000809	0.0000355 J-	-		
Other PAH Analytes - mg/L	EPA 8270D SIM	Various	ND	ND			

Notes:

- * = See Attachment 4 for compounds tested, methods, and laboratory reporting limits
- ** = Groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (October 2018)
- ^ = Sample ID number preceded by "100688-" on the chain of custody form
- Not applicable or sample not tested for this analyte

<0.000500 = Analyte not detected; laboratory limit of detection of 0.000500 mg/L

0.000148 = Analyte detected

- **J** = Estimated concentration less than the limit of quantitation. See the SGS laboratory report for details.
- **J-** = Concentration may be biased low due to surrogate recovery failure
- B = Compound detected in method blank at an estimated concentration. The associated sample is assigned a

non-detect value at the limit of quantitation (LOQ). See the LDRC in Attachment 3 for more details.

ND = Analyte not detected mg/L = Milligrams per liter bgs = Below ground surface

B4MW Approximate Location of Monitoring Well B4MW Approximate Location of Test Pit TP-A B1/B1MW

SP01

HD29

Approximate Location of Boring B1 and Temporary Monitoring Well B1MW

Approximate Location of Former Fuel Line No. 1

Approximate Location of Former Fuel Line No. 2

Approximate Location of Former Fuel Line No. 3

Approximate location of Boring SP01 advanced by E&E in 2019

Approximate location of August 2018 analytical Sample HD29 collected by Shannon & Wilson

South Park Estates Mobile Home Park Anchorage, Alaska

SITE PLAN

May 2020

100688-002

FIG. 2

SHANNON & WILSON, INC.

ATTACHMENT 1 SITE PHOTOGRAPHS

Photo 1: Looking north at the advancement of Boring B12. (March 12, 2020)

Photo 2: Looking south at the advancement of Boring B13. (March 12, 2020)

South Park Estates Mobile Home Park Anchorage, Alaska

PHOTOS 1 AND 2

May 2020

100668-002

SHANNON & WILSON, INC.

ATTACHMENT 2

BORING LOGS

SHANNON & WILSON, INC.

ATTACHMENT 3

FIELD NOTES

SHANNON & WILSON, INC. GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

3/24/2006-probelog.xls

FIELD LOG OF GEOPROBE

PRO	BING CO	 DMPANY/DF	RILLER:	D	scovery/Two + David.	JOB NO: 100	688-00	Z PROE	BE NO: B-	12:
PRO	BE RIG I	EQUIPMEN ⁻	T: <u>Q</u>	lop	robe 6712 DT	JOB NAME:	South Par	k Traile Co	art	
PROF	BING ME	ETHOD:	dire	ct	push .	LOGGED BY:	SXP/F	ED		
PROE	BE DIAM	1.:			YP. RUN LENGTH.: 5	LOCATION:			ELEV.:	
WEA	THER D	URING DRII	LING:	mos.	thy sunny 0°	START DATE:	3/12/202	Ø END DA	TE: 3/12/2	020
	Г	· -	T		PROBE RUN AND S					
- DATE	RUN NO.	TO TO	LENGTH RECOV- ERED	[den	FIELD CLASSIFICATION AND sity/consistency; color; slightly, minor, MAJC moisture; structure; other; USCS classi	OR, then trace constituents:	PID READING	SAMPLE NO.	SAMPLE DEPTH OLD LO	SAMPLE PURPOSE C COMMENT
10:30	1	.0	.0 (<u></u>	greybin to bin, PG sol	w/silt + gr.		<i>~</i> 1	0	10:50
3/12/2	0.	2.5	2.6		- twoit-	7	0.8	SI	25	Santy.
10:54	:2	2.5 5	3		brn, PG sol w/ silt a	tgr, moist	0.5	52	2.5	11:05 Sample
10:11	5	TO A COLUMN TO THE PROPERTY OF THE PARTY OF		1				5	sample time	
11. 1	3	5	4.5		Trosento 7 AA		0.1	53	5	03:1/
					orgin and Do	-1.151			7.5	
		10			210 22	noist sit	0.1	54	7.5	11:50
			and the second s				".	31	10	
11:26	4	10			arey DO sol what	maist to wet		6.5	10	11:35
	\		4		Wet ~ 10.5/11	Maist 10 met	1.0	55	12	
			\		Wet 10.3/11					
	1	15						}		
		17								
		ĺ			distect to 15 bas to	install		1		
					temp monitorin					
1					installed 10 of 1" 510	Hed PVC				
			·.		with solid PUC is	er	1			-
	-				DTW: 9.01 bas at	1.112				
.					J	,		-		
	· .]				sample time: 1:45pm	^	,	. 0		
· . ·		.					0			
		CUU	MADYETE	<u> </u>						
DEPTH		uscs			OG OF GEOPROBE	COMMEN	TS (i.e. ma	iterials used, vis	itors, problems	s, etc.):
ROM	TÒ CI	ASSIF.	GENERA	LIZED	SOIL DESCRIPTION FOR DRAFTED GINT LOG				7	
.					,					
					,				•	
		· ·					SUM	MARY OF TIME		
						PROBE/SAM		hrs. STAN		· hrs.
	\dashv					1				hrs.
						OTHER:				
		-			A MANUAL PROPERTY OF THE PROPE	, DBODE NO	R-17	7 SHEET) 05	
						I NOBE NO	· _ U 1 L	- OUEEI	OF.	

SHANNON & WILSON, INC. GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

FIELD LOG OF GEOPROBE

PROE	BING CO	 DMPANY/D	RILLER:	D	scover /Two David	JOB NO: DO	0688-0	902 PRO	BENO: B	13:
PROE	BE RIG I	EQUIPMEN	NT: <u>G</u> e	20	Nobe 6712 DT			ark trails		
PROE	BING ME	ETHOD:	direc	+'	push .	LOGGED BY:	SKD/			
PROE	BE DIAM	1.:			YP. RUN LENGTH.: 5	LOCATION:			ELEV.:	
WEAT	THER D	URING DR	ILLING:	Su	my 10°	START DATE: 3	112/20:	ZO END DA	TE:	
	-			The day of the last	PROBE RUN AND					
TIME		Z E FRO			FIELD CLASSIFICATION AND	SKETCH	T		≝∓ FROM	1 SAMPLE
DATE	RUN NO.	то на	RECOV- ERED	[den	sity/consistency; color; slightly, minor, MAJC moisture; structure; other; USCS classi	OR, then trace constituents; ification (geology)]	PID READING	SAMPLE NO.	SAMPLE DEPTH TO	PURPOSE (COMMEN
3/12/20		2.5	2.3		from Pasdw/s	iltogravel	1.8	51	2.5	12:57 - sample collected
1258	.2	2.5	1		form to 5					1:05
		5	4		dk brann, sitty sol w/	stavel,	8.8	52	2.5 5	1402
1105		5		,		isdw silt	0.5	53	5	[:13
	3		151		@~8 and arder! me	6 sd mass	0,0		7.5	
		01		4	wet @ ~9' bys	moist to met	0.8	34	7.5	1:13
(:11:	THE REAL PROPERTY.	AND THE PERSON NAMED IN COLUMN TWO				1			10	
611	4	lo	4,5		gray ben to gray, P	b to WG sol		÷		
	`	15	1 5/4)		·					
		All the state of t			9)	•				
					drilled to 15' bas to	unstall				
						Stoffed PVC				
					with solid PVC i	Ser				
	1				Davi 1.0 base	1:43 200				
-		ä)	.		Sand Day 1:	45		.		
		· .	~.		DTW: 9.2 has a	+ 2:07pm				
	. [:					t t		·		ŀ
		SUI	MARY FIE	LD L	Samoletime: 2:10 DG OF GEOPROBE		TS (i.e. ma	aterials used, vis	sitors, probler	ns. etc.):
ROM		USCS LASSIF.	GENERA	LIZED	SOIL DESCRIPTION FOR DRAFTED GINT LOG					
										·
	<u> </u>									
					3					
								MMARY OF TIM	E	
						PROBE/SAM		hrs. STAN		hrs.
						SETUP/CLE/	ANUP:	hrs, DE	ECON:	hrs.
		-				OTHER.				
					The second section of the second section secti	PROBE NO	:	SHEET	OF.	
3/24/2	006-prob	elon xls								

3 x 5' direct push/boring in I steel framstalt outside anxion trali-Med 12 solid III 12 solid III 2? water sets 1 temp black Cooler 1 water trip black Cooler 1 water trip black Swing tie boring locations 三三 dut stom 070 KKD mines 701 179 15.9'W 313 FPN 683 17.0° 55 V B C B12 FPS to B12 345 37'N * fence

ATTACHMENT 4

RESULTS OF ANALYTICAL TESTING BY SGS NORTH AMERICA INC.

AND

ADEC LABORATORY DATA REVIEW CHECKLIST

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks St. Suite 3 Anchorage, AK 99518 (907)561-2120

Report Number: 1201004

Client Project: 100688 South Park Mobile Home

Dear Jacob Tracy,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson
Project Manager
Justin.Nelson@sgs.com

Date

Print Date: 03/25/2020 3:13:02PM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson, Inc.** SGS Project: **1201004**

Project Name/Site: 100688 South Park Mobile Home

Project Contact: Jacob Tracy

Refer to sample receipt form for information on sample condition.

100688-B1252 (1201004001) PS

8270D SIM - The PAH LOQs are elevated due to sample dilution. The sample was diluted due to the dark color of the extract.

100688-B12MW (1201004003) PS

8270D SIM - PAH surrogate recovery for Fluoranthene-d10 does not meet QC criteria. The sample was re-extracted past hold time. Surrogate recovery was not within QC criteria and results are comparable. The in-hold data is reported. AK102 - LCS & LCSD recoveries for DRO do not meet QC criteria. The sample could not be re-extracted due to laboratory error.

100688-B13MW (1201004004) PS

8270D SIM - PAH surrogate recovery for 2-Methylnaphthalene d10 and Fluoranthene-d10 do not meet QC criteria. The sample was re-extracted past hold time. Surrogate recovery was not within QC criteria and results are comparable. The in-hold data is reported.

AK102 - LCS & LCSD recoveries for DRO do not meet QC criteria. The sample could not be re-extracted due to laboratory error.

LCS for HBN 1805105 [VXX/35480 (1553649) LCS

8260C- LCS recoveries for 2,2-dichloropropane and 1,2-dibromoethane do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

LCS for HBN 1805111 [XXX/42873 (1553661) LCS

AK102 - LCS recovery for DRO does not meet QC criteria.

LCSD for HBN 1805111 [XXX/4287 (1553662) LCSD

AK102 - LCSD recovery for DRO does not meet QC criteria.

MB for HBN 1805111 [XXX/42873] (1553660) MB

AK103 - Surrogate recovery for and n-triacontane do not meet QC criteria. Surrogate recoveries are within QC criteria in the associated samples.

AK103 - RRO is detect in the MB greater than one half the LOQ, but less than the LOQ.

1209094001MS (1553650) MS

8260C- MS recoveries for 2,2-dichloropropane and hexachlorobutadiene do not meet QC criteria. These analytes were not detected above the LOQ in the parent sample.

1209094001MSD (1553651) MSD

8260C- MSD recoveries for multiple analytes do not meet QC criteria. These analytes were not detected above the LOQ in the parent sample.

8260C- MS/MSD RPD for naphthalene and 1,2,3-trichlorobenzene do not meet QC criteria. These analytes were not detected above the LOQ in the parent sample.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 03/25/2020 3:13:03PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification

J The quantitation is an estimation.

LCS(D) Laboratory Control Spike (Duplicate)

LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 03/25/2020 3:13:05PM

|200 West Potter Drive, Anchorage, AK 99518 | t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
100688-B1252	1201004001	03/12/2020	03/12/2020	Soil/Solid (dry weight)
100688-B1354	1201004002	03/12/2020	03/12/2020	Soil/Solid (dry weight)
100688-B12MW	1201004003	03/12/2020	03/12/2020	Water (Surface, Eff., Ground)
100688-B13MW	1201004004	03/12/2020	03/12/2020	Water (Surface, Eff., Ground)
100688-STB	1201004005	03/12/2020	03/12/2020	Soil/Solid (dry weight)
100688-WTB	1201004006	03/12/2020	03/12/2020	Water (Surface, Eff., Ground)

Method Description

8270D SIM LV (PAH) 8270 PAH SIM GC/MS Liq/Liq ext. LV 8270D SIM (PAH) 8270 PAH SIM Semi-Volatiles GC/MS

AK102 Diesel Range Organics (S)
AK102 DRO/RRO Low Volume Water
SM21 2540G Percent Solids SM2540G
SW8260C VOC 8260 (S) Field Extracted

SW8260C Volatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: 100688-B1252 Lab Sample ID: 1201004001 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	Result 164	<u>Units</u> mg/Kg
Client Sample ID: 100688-B1354 Lab Sample ID: 1201004002 Semivolatile Organic Fuels	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
	Diesel Range Organics	8.30J	mg/Kg
Client Sample ID: 100688-B12MW Lab Sample ID: 1201004003 Polynuclear Aromatics GC/MS	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
	1-Methylnaphthalene	0.148	ug/L
Polynuclear Aromatics Ge/Mo	2-Methylnaphthalene	0.0884	ug/L
	Acenaphthene	0.0545	ug/L
	Naphthalene	0.208	ug/L
Semivolatile Organic Fuels Volatile GC/MS	Phenanthrene Diesel Range Organics 2-Butanone (MEK) Benzene Chloromethane	0.0809 0.435J 7.85J 0.198J 0.522J	ug/L mg/L ug/L ug/L ug/L
Client Sample ID: 100688-B13MW Lab Sample ID: 1201004004 Polynuclear Aromatics GC/MS	Parameter 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	Result 0.0364J 0.0457J 0.0507J 0.0355J	Units ug/L ug/L ug/L ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.315J	mg/L
Volatile GC/MS	Chloromethane	0.544J	ug/L

Print Date: 03/25/2020 3:13:09PM

Client Sample ID: 100688-B1252

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004001 Lab Project ID: 1201004 Collection Date: 03/12/20 11:05 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):93.7 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
2-Methylnaphthalene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Acenaphthene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Acenaphthylene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Anthracene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Benzo(a)Anthracene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Benzo[a]pyrene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Benzo[b]Fluoranthene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Benzo[g,h,i]perylene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Benzo[k]fluoranthene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Chrysene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Dibenzo[a,h]anthracene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Fluoranthene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Fluorene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Indeno[1,2,3-c,d] pyrene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Naphthalene	52.5 U	105	26.1	ug/Kg	5		03/23/20 23:09
Phenanthrene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Pyrene	65.5 U	131	32.7	ug/Kg	5		03/23/20 23:09
Surrogates							
2-Methylnaphthalene-d10 (surr)	77.9	58-103		%	5		03/23/20 23:09
Fluoranthene-d10 (surr)	84.9	54-113		%	5		03/23/20 23:09

Batch Information

Analytical Batch: XMS11967 Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 03/23/20 23:09 Container ID: 1201004001-A Prep Batch: XXX42883 Prep Method: SW3550C

Prep Date/Time: 03/20/20 09:39 Prep Initial Wt./Vol.: 22.966 g Prep Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:10PM J flagging is activated

Client Sample ID: 100688-B1252

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004001 Lab Project ID: 1201004 Collection Date: 03/12/20 11:05 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):93.7 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	164	107	33.0	mg/Kg	5	Limits	03/18/20 12:51
Surrogates 5a Androstane (surr)	108	50-150		%	5		03/18/20 12:51

Batch Information

Analytical Batch: XFC15557 Analytical Method: AK102

Analyst: DSD

Analytical Date/Time: 03/18/20 12:51 Container ID: 1201004001-A

Prep Batch: XXX42863 Prep Method: SW3550C Prep Date/Time: 03/16/20 10:03 Prep Initial Wt./Vol.: 30.059 g Prep Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:10PM J flagging is activated

Client Sample ID: 100688-B1252

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004001 Lab Project ID: 1201004 Collection Date: 03/12/20 11:05 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):93.7 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	9.70 U	19.4	6.00	ug/Kg	1	Limito	03/13/20 13:52
1,1,1-Trichloroethane	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,1,2,2-Tetrachloroethane	0.970 U	1.94	0.600	ug/Kg	1		03/13/20 13:52
1,1,2-Trichloroethane	0.387 U	0.774	0.242	ug/Kg	1		03/13/20 13:52
1,1-Dichloroethane	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,1-Dichloroethene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,1-Dichloropropene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,2,3-Trichlorobenzene	24.2 U	48.4	14.5	ug/Kg	1		03/13/20 13:52
1,2,3-Trichloropropane	0.970 U	1.94	0.600	ug/Kg	1		03/13/20 13:52
1,2,4-Trichlorobenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,2,4-Trimethylbenzene	24.2 U	48.4	14.5	ug/Kg	1		03/13/20 13:52
1,2-Dibromo-3-chloropropane	48.4 U	96.8	30.0	ug/Kg	1		03/13/20 13:52
1,2-Dibromoethane	0.484 U	0.968	0.300	ug/Kg	1		03/13/20 13:52
1,2-Dichlorobenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,2-Dichloroethane	0.970 U	1.94	0.600	ug/Kg	1		03/13/20 13:52
1,2-Dichloropropane	4.84 U	9.68	3.00	ug/Kg	1		03/13/20 13:52
1,3,5-Trimethylbenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,3-Dichlorobenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
1,3-Dichloropropane	4.84 U	9.68	3.00	ug/Kg	1		03/13/20 13:52
1,4-Dichlorobenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
2,2-Dichloropropane	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
2-Butanone (MEK)	121 U	242	75.5	ug/Kg	1		03/13/20 13:52
2-Chlorotoluene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
2-Hexanone	48.4 U	96.8	30.0	ug/Kg	1		03/13/20 13:52
4-Chlorotoluene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
4-Isopropyltoluene	48.4 U	96.8	24.2	ug/Kg	1		03/13/20 13:52
4-Methyl-2-pentanone (MIBK)	121 U	242	75.5	ug/Kg	1		03/13/20 13:52
Acetone	121 U	242	75.5	ug/Kg	1		03/13/20 13:52
Benzene	6.05 U	12.1	3.77	ug/Kg	1		03/13/20 13:52
Bromobenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Bromochloromethane	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Bromodichloromethane	0.970 U	1.94	0.600	ug/Kg	1		03/13/20 13:52
Bromoform	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Bromomethane	9.70 U	19.4	6.00	ug/Kg	1		03/13/20 13:52
Carbon disulfide	48.4 U	96.8	30.0	ug/Kg	1		03/13/20 13:52
Carbon tetrachloride	6.05 U	12.1	3.77	ug/Kg	1		03/13/20 13:52
Chlorobenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52

Print Date: 03/25/2020 3:13:10PM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 100688-B1252

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004001 Lab Project ID: 1201004 Collection Date: 03/12/20 11:05 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):93.7 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroethane	97.0 U	194	60.0	ug/Kg	1		03/13/20 13:52
Chloroform	1.94 U	3.87	0.600	ug/Kg	1		03/13/20 13:52
Chloromethane	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
cis-1,2-Dichloroethene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
cis-1,3-Dichloropropene	6.05 U	12.1	3.77	ug/Kg	1		03/13/20 13:52
Dibromochloromethane	2.42 U	4.84	0.600	ug/Kg	1		03/13/20 13:52
Dibromomethane	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Dichlorodifluoromethane	24.2 U	48.4	14.5	ug/Kg	1		03/13/20 13:52
Ethylbenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Freon-113	48.4 U	96.8	30.0	ug/Kg	1		03/13/20 13:52
Hexachlorobutadiene	9.70 U	19.4	6.00	ug/Kg	1		03/13/20 13:52
Isopropylbenzene (Cumene)	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Methylene chloride	48.4 U	96.8	30.0	ug/Kg	1		03/13/20 13:52
Methyl-t-butyl ether	48.4 U	96.8	30.0	ug/Kg	1		03/13/20 13:52
Naphthalene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
n-Butylbenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
n-Propylbenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
o-Xylene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
P & M -Xylene	24.2 U	48.4	14.5	ug/Kg	1		03/13/20 13:52
sec-Butylbenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Styrene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
tert-Butylbenzene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
Tetrachloroethene	6.05 U	12.1	3.77	ug/Kg	1		03/13/20 13:52
Toluene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
trans-1,2-Dichloroethene	12.1 U	24.2	7.55	ug/Kg	1		03/13/20 13:52
trans-1,3-Dichloropropene	6.05 U	12.1	3.77	ug/Kg	1		03/13/20 13:52
Trichloroethene	2.42 U	4.84	1.45	ug/Kg	1		03/13/20 13:52
Trichlorofluoromethane	24.2 U	48.4	14.5	ug/Kg	1		03/13/20 13:52
Vinyl acetate	48.4 U	96.8	30.0	ug/Kg	1		03/13/20 13:52
Vinyl chloride	0.387 U	0.774	0.242	ug/Kg	1		03/13/20 13:52
Xylenes (total)	36.3 U	72.6	22.1	ug/Kg	1		03/13/20 13:52
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	71-136		%	1		03/13/20 13:52
4-Bromofluorobenzene (surr)	121	55-151		%	1		03/13/20 13:52
Toluene-d8 (surr)	100	85-116		%	1		03/13/20 13:52

Print Date: 03/25/2020 3:13:10PM

J flagging is activated

Client Sample ID: 100688-B1252

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004001 Lab Project ID: 1201004 Collection Date: 03/12/20 11:05 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):93.7 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19836 Analytical Method: SW8260C

Analyst: KAJ

Analytical Date/Time: 03/13/20 13:52 Container ID: 1201004001-B Prep Batch: VXX35480 Prep Method: SW5035A Prep Date/Time: 03/12/20 11:05 Prep Initial Wt./Vol.: 64.117 g Prep Extract Vol: 29.0566 mL

Print Date: 03/25/2020 3:13:10PM J flagging is activated

Client Sample ID: 100688-B1354

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004002 Lab Project ID: 1201004

Collection Date: 03/12/20 13:13 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Polynuclear Aromatics GC/MS

Doromotor	Pagult Qual	1.00/01	DI	Llaita	DE	Allowable
Parameter A Matheda and the classes	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
2-Methylnaphthalene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Acenaphthene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Acenaphthylene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Anthracene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Benzo(a)Anthracene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Benzo[a]pyrene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Benzo[b]Fluoranthene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Benzo[g,h,i]perylene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Benzo[k]fluoranthene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Chrysene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Dibenzo[a,h]anthracene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Fluoranthene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Fluorene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Indeno[1,2,3-c,d] pyrene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Naphthalene	11.4 U	22.8	5.69	ug/Kg	1	03/18/20 20:40
Phenanthrene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Pyrene	14.2 U	28.4	7.11	ug/Kg	1	03/18/20 20:40
Surrogates						
2-Methylnaphthalene-d10 (surr)	77	58-103		%	1	03/18/20 20:40
Fluoranthene-d10 (surr)	80.8	54-113		%	1	03/18/20 20:40

Batch Information

Analytical Batch: XMS11960 Analytical Method: 8270D SIM (PAH)

Analyst: DSD

Analytical Date/Time: 03/18/20 20:40 Container ID: 1201004002-A

Prep Batch: XXX42868 Prep Method: SW3550C Prep Date/Time: 03/17/20 09:40

Prep Initial Wt./Vol.: 22.784 g Prep Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:10PM J flagging is activated

Client Sample ID: 100688-B1354

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004002 Lab Project ID: 1201004 Collection Date: 03/12/20 13:13 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	8.30 J	22.7	7.04	mg/Kg	1	Limits	03/18/20 11:20
Surrogates 5a Androstane (surr)	94.3	50-150		%	1		03/18/20 11:20

Batch Information

Analytical Batch: XFC15557 Analytical Method: AK102

Analyst: DSD

Analytical Date/Time: 03/18/20 11:20 Container ID: 1201004002-A

Prep Batch: XXX42863 Prep Method: SW3550C Prep Date/Time: 03/16/20 10:03 Prep Initial Wt./Vol.: 30.457 g Prep Extract Vol: 5 mL

Client Sample ID: 100688-B1354

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004002 Lab Project ID: 1201004 Collection Date: 03/12/20 13:13 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	13.8 U	27.5	<u>8.52</u>	ug/Kg	1	Limito	03/13/20 14:23
1,1,1-Trichloroethane	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,1,2,2-Tetrachloroethane	1.38 U	2.75	0.852	ug/Kg	1		03/13/20 14:23
1,1,2-Trichloroethane	0.550 U	1.10	0.344	ug/Kg	1		03/13/20 14:23
1,1-Dichloroethane	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,1-Dichloroethene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,1-Dichloropropene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,2,3-Trichlorobenzene	34.4 U	68.7	20.6	ug/Kg	1		03/13/20 14:23
1,2,3-Trichloropropane	1.38 U	2.75	0.852	ug/Kg	1		03/13/20 14:23
1,2,4-Trichlorobenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,2,4-Trimethylbenzene	34.4 U	68.7	20.6	ug/Kg	1		03/13/20 14:23
1,2-Dibromo-3-chloropropane	68.5 U	137	42.6	ug/Kg	1		03/13/20 14:23
1,2-Dibromoethane	0.685 U	1.37	0.426	ug/Kg	1		03/13/20 14:23
1,2-Dichlorobenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,2-Dichloroethane	1.38 U	2.75	0.852	ug/Kg	1		03/13/20 14:23
1,2-Dichloropropane	6.85 U	13.7	4.26	ug/Kg	1		03/13/20 14:23
1,3,5-Trimethylbenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,3-Dichlorobenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
1,3-Dichloropropane	6.85 U	13.7	4.26	ug/Kg	1		03/13/20 14:23
1,4-Dichlorobenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
2,2-Dichloropropane	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
2-Butanone (MEK)	172 U	344	107	ug/Kg	1		03/13/20 14:23
2-Chlorotoluene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
2-Hexanone	68.5 U	137	42.6	ug/Kg	1		03/13/20 14:23
4-Chlorotoluene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
4-Isopropyltoluene	68.5 U	137	34.4	ug/Kg	1		03/13/20 14:23
4-Methyl-2-pentanone (MIBK)	172 U	344	107	ug/Kg	1		03/13/20 14:23
Acetone	172 U	344	107	ug/Kg	1		03/13/20 14:23
Benzene	8.60 U	17.2	5.36	ug/Kg	1		03/13/20 14:23
Bromobenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Bromochloromethane	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Bromodichloromethane	1.38 U	2.75	0.852	ug/Kg	1		03/13/20 14:23
Bromoform	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Bromomethane	13.8 U	27.5	8.52	ug/Kg	1		03/13/20 14:23
Carbon disulfide	68.5 U	137	42.6	ug/Kg	1		03/13/20 14:23
Carbon tetrachloride	8.60 U	17.2	5.36	ug/Kg	1		03/13/20 14:23
Chlorobenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23

Client Sample ID: 100688-B1354

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004002 Lab Project ID: 1201004 Collection Date: 03/12/20 13:13 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroethane	138 U	275	85.2	ug/Kg	1		03/13/20 14:23
Chloroform	2.75 U	5.50	0.852	ug/Kg	1		03/13/20 14:23
Chloromethane	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
cis-1,2-Dichloroethene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
cis-1,3-Dichloropropene	8.60 U	17.2	5.36	ug/Kg	1		03/13/20 14:23
Dibromochloromethane	3.44 U	6.87	0.852	ug/Kg	1		03/13/20 14:23
Dibromomethane	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Dichlorodifluoromethane	34.4 U	68.7	20.6	ug/Kg	1		03/13/20 14:23
Ethylbenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Freon-113	68.5 U	137	42.6	ug/Kg	1		03/13/20 14:23
Hexachlorobutadiene	13.8 U	27.5	8.52	ug/Kg	1		03/13/20 14:23
Isopropylbenzene (Cumene)	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Methylene chloride	68.5 U	137	42.6	ug/Kg	1		03/13/20 14:23
Methyl-t-butyl ether	68.5 U	137	42.6	ug/Kg	1		03/13/20 14:23
Naphthalene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
n-Butylbenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
n-Propylbenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
o-Xylene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
P & M -Xylene	34.4 U	68.7	20.6	ug/Kg	1		03/13/20 14:23
sec-Butylbenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Styrene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
tert-Butylbenzene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
Tetrachloroethene	8.60 U	17.2	5.36	ug/Kg	1		03/13/20 14:23
Toluene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
trans-1,2-Dichloroethene	17.2 U	34.4	10.7	ug/Kg	1		03/13/20 14:23
trans-1,3-Dichloropropene	8.60 U	17.2	5.36	ug/Kg	1		03/13/20 14:23
Trichloroethene	3.44 U	6.87	2.06	ug/Kg	1		03/13/20 14:23
Trichlorofluoromethane	34.4 U	68.7	20.6	ug/Kg	1		03/13/20 14:23
Vinyl acetate	68.5 U	137	42.6	ug/Kg	1		03/13/20 14:23
Vinyl chloride	0.550 U	1.10	0.344	ug/Kg	1		03/13/20 14:23
Xylenes (total)	51.5 U	103	31.3	ug/Kg	1		03/13/20 14:23
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	71-136		%	1		03/13/20 14:23
4-Bromofluorobenzene (surr)	133	55-151		%	1		03/13/20 14:23
Toluene-d8 (surr)	99.3	85-116		%	1		03/13/20 14:23

Print Date: 03/25/2020 3:13:10PM

J flagging is activated

Client Sample ID: 100688-B1354

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004002 Lab Project ID: 1201004 Collection Date: 03/12/20 13:13 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19836 Analytical Method: SW8260C

Analyst: KAJ

Analytical Date/Time: 03/13/20 14:23 Container ID: 1201004002-B Prep Batch: VXX35480 Prep Method: SW5035A Prep Date/Time: 03/12/20 13:13 Prep Initial Wt./Vol.: 53.809 g Prep Extract Vol: 32.1 mL

Client Sample ID: 100688-B12MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004003 Lab Project ID: 1201004 Collection Date: 03/12/20 13:45 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.148	0.0521	0.0156	ug/L	1		03/18/20 18:37
2-Methylnaphthalene	0.0884	0.0521	0.0156	ug/L	1		03/18/20 18:37
Acenaphthene	0.0545	0.0521	0.0156	ug/L	1		03/18/20 18:37
Acenaphthylene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Anthracene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Benzo(a)Anthracene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Benzo[a]pyrene	0.0104 U	0.0208	0.00646	ug/L	1		03/18/20 18:37
Benzo[b]Fluoranthene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Benzo[g,h,i]perylene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Benzo[k]fluoranthene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Chrysene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Dibenzo[a,h]anthracene	0.0104 U	0.0208	0.00646	ug/L	1		03/18/20 18:37
Fluoranthene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Fluorene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Indeno[1,2,3-c,d] pyrene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Naphthalene	0.208	0.104	0.0323	ug/L	1		03/18/20 18:37
Phenanthrene	0.0809	0.0521	0.0156	ug/L	1		03/18/20 18:37
Pyrene	0.0261 U	0.0521	0.0156	ug/L	1		03/18/20 18:37
Surrogates							
2-Methylnaphthalene-d10 (surr)	54.4	47-106		%	1		03/18/20 18:37
Fluoranthene-d10 (surr)	16 *	24-116		%	1		03/18/20 18:37

Batch Information

Analytical Batch: XMS11960

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 03/18/20 18:37 Container ID: 1201004003-A Prep Batch: XXX42865 Prep Method: SW3520C Prep Date/Time: 03/16/20 10:27 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

Client Sample ID: 100688-B12MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004003 Lab Project ID: 1201004 Collection Date: 03/12/20 13:45 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.435 J	0.667	0.200	mg/L	1	Limits	03/19/20 13:18
Surrogates 5a Androstane (surr)	52.9	50-150		%	1		03/19/20 13:18

Batch Information

Analytical Batch: XFC15558 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 03/19/20 13:18 Container ID: 1201004003-C Prep Batch: XXX42873
Prep Method: SW3535A
Prep Date/Time: 03/17/20 14:50
Prep Initial Wt./Vol.: 225 mL
Prep Extract Vol: 1 mL

Client Sample ID: 100688-B12MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004003 Lab Project ID: 1201004 Collection Date: 03/12/20 13:45 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:19
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:19
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		03/13/20 20:19
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:19
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		03/13/20 20:19
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:19
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:19
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:19
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
2-Butanone (MEK)	7.85 J	10.0	3.10	ug/L	1		03/13/20 20:19
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:19
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:19
Benzene	0.198 J	0.400	0.120	ug/L	1		03/13/20 20:19
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:19
Bromoform	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
Bromomethane	2.50 U	5.00	2.00	ug/L	1		03/13/20 20:19
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:19
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:19
Chloroethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:19

Print Date: 03/25/2020 3:13:10PM J flagging is activated

Client Sample ID: 100688-B12MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004003 Lab Project ID: 1201004 Collection Date: 03/12/20 13:45 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Chloroform	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Chloromethane	0.522 J	1.00	0.310	ug/L	1	03/13/20 20:19
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:19
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:19
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Freon-113	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:19
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:19
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:19
Naphthalene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
o-Xylene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	03/13/20 20:19
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Styrene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Toluene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:19
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:19
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	03/13/20 20:19
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	03/13/20 20:19
Surrogates						
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1	03/13/20 20:19
4-Bromofluorobenzene (surr)	100	85-114		%	1	03/13/20 20:19
Toluene-d8 (surr)	99	89-112		%	1	03/13/20 20:19

Print Date: 03/25/2020 3:13:10PM

J flagging is activated

Client Sample ID: 100688-B12MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004003 Lab Project ID: 1201004 Collection Date: 03/12/20 13:45 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19835 Analytical Method: SW8260C

Analyst: NRB

Analytical Date/Time: 03/13/20 20:19 Container ID: 1201004003-E Prep Batch: VXX35479
Prep Method: SW5030B
Prep Date/Time: 03/13/20 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 100688-B13MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004004 Lab Project ID: 1201004 Collection Date: 03/12/20 14:07 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Darameter	Decult Ougl	1.00/01	DI	Lloito	חר	Allowable	Data Analyzad
Parameter 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0364 J	0.0510	0.0153	ug/L	1		03/18/20 18:58
2-Methylnaphthalene	0.0457 J	0.0510	0.0153	ug/L	1		03/18/20 18:58
Acenaphthene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Acenaphthylene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Anthracene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Benzo(a)Anthracene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Benzo[a]pyrene	0.0102 U	0.0204	0.00633	ug/L	1		03/18/20 18:58
Benzo[b]Fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Benzo[g,h,i]perylene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Benzo[k]fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Chrysene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Dibenzo[a,h]anthracene	0.0102 U	0.0204	0.00633	ug/L	1		03/18/20 18:58
Fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Fluorene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Indeno[1,2,3-c,d] pyrene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Naphthalene	0.0507 J	0.102	0.0316	ug/L	1		03/18/20 18:58
Phenanthrene	0.0355 J	0.0510	0.0153	ug/L	1		03/18/20 18:58
Pyrene	0.0255 U	0.0510	0.0153	ug/L	1		03/18/20 18:58
Surrogates							
2-Methylnaphthalene-d10 (surr)	24.7 *	47-106		%	1		03/18/20 18:58
Fluoranthene-d10 (surr)	4.2 *	24-116		%	1		03/18/20 18:58

Batch Information

Analytical Batch: XMS11960

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 03/18/20 18:58 Container ID: 1201004004-A Prep Batch: XXX42865 Prep Method: SW3520C Prep Date/Time: 03/16/20 10:27 Prep Initial Wt./Vol.: 245 mL Prep Extract Vol: 1 mL

Client Sample ID: 100688-B13MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004004 Lab Project ID: 1201004 Collection Date: 03/12/20 14:07 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.315 J	0.682	0.205	mg/L	1	Limits	03/19/20 13:27
Surrogates 5a Androstane (surr)	55.3	50-150		%	1		03/19/20 13:27

Batch Information

Analytical Batch: XFC15558 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 03/19/20 13:27 Container ID: 1201004004-C Prep Batch: XXX42873
Prep Method: SW3535A
Prep Date/Time: 03/17/20 14:50
Prep Initial Wt./Vol.: 220 mL
Prep Extract Vol: 1 mL

Client Sample ID: 100688-B13MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004004 Lab Project ID: 1201004

Collection Date: 03/12/20 14:07 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	Result Qual 0.250 U 0.500 U 0.250 U 0.200 U 0.500 U 0.500 U 0.500 U 0.500 U	1.00 (DL 0.150 0.310 0.150 0.120 0.310	ug/L ug/L ug/L ug/L	<u>DF</u> 1 1	<u>Limits</u>	03/13/20 20:34 03/13/20 20:34
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	0.250 U 0.200 U 0.500 U 0.500 U 0.500 U	0.500 0.400 1.00 1.00	0.150 0.120	ug/L	1		
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	0.200 U 0.500 U 0.500 U 0.500 U	0.400 1.00 1.00	0.120	-			00110105 :
1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	0.500 U 0.500 U 0.500 U	1.00 1.00		ug/L	4		03/13/20 20:34
1,1-Dichloroethene 1,1-Dichloropropene	0.500 U 0.500 U	1.00	0.310		1		03/13/20 20:34
1,1-Dichloropropene	0.500 U			ug/L	1		03/13/20 20:34
• •		1.00	0.310	ug/L	1		03/13/20 20:34
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
	0.000	1.00	0.310	ug/L	1		03/13/20 20:34
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		03/13/20 20:34
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:34
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:34
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:34
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
Benzene	0.200 U	0.400	0.120	ug/L	1		03/13/20 20:34
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:34
Bromoform	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Bromomethane	2.50 U	5.00	2.00	ug/L	1		03/13/20 20:34
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:34
Chloroethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34

Print Date: 03/25/2020 3:13:10PM J flagging is activated

Client Sample ID: 100688-B13MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004004 Lab Project ID: 1201004 Collection Date: 03/12/20 14:07 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
<u>Farameter</u> Chloroform	0.500 U	1.00	0.310	ug/L	<u>БГ</u> 1	LIMILS	03/13/20 20:34
Chloromethane	0.544 J	1.00	0.310	ug/L ug/L	1		03/13/20 20:34
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L ug/L	1		03/13/20 20:34
cis-1,3-Dichloropropene	0.300 U	0.500	0.310	ug/L ug/L	1		03/13/20 20:34
Dibromochloromethane	0.250 U	0.500	0.150	ug/L ug/L	1		03/13/20 20:34
Dibromomethane	0.500 U	1.00	0.130	ug/L ug/L	1		03/13/20 20:34
Dichlorodifluoromethane	0.500 U	1.00	0.310	-	1		03/13/20 20:34
			0.310	ug/L			
Ethylbenzene	0.500 U	1.00		ug/L	1		03/13/20 20:34
Freon-113	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
Naphthalene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
o-Xylene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		03/13/20 20:34
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Styrene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Toluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:34
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:34
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		03/13/20 20:34
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		03/13/20 20:34
urrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		03/13/20 20:34
4-Bromofluorobenzene (surr)	101	85-114		%	1		03/13/20 20:34
Toluene-d8 (surr)	98.4	89-112		%	1		03/13/20 20:34

Print Date: 03/25/2020 3:13:10PM

J flagging is activated

Client Sample ID: 100688-B13MW

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004004 Lab Project ID: 1201004 Collection Date: 03/12/20 14:07 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19835 Analytical Method: SW8260C

Analyst: NRB

Analytical Date/Time: 03/13/20 20:34 Container ID: 1201004004-E Prep Batch: VXX35479
Prep Method: SW5030B
Prep Date/Time: 03/13/20 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 100688-STB

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004005 Lab Project ID: 1201004 Collection Date: 03/12/20 16:00 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	9.95 U	19.9	6.18	ug/Kg	1	03/13/20 13:37
1,1,1-Trichloroethane	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,1,2,2-Tetrachloroethane	0.995 U	1.99	0.618	ug/Kg	1	03/13/20 13:37
1,1,2-Trichloroethane	0.399 U	0.797	0.249	ug/Kg	1	03/13/20 13:37
1,1-Dichloroethane	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,1-Dichloroethene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,1-Dichloropropene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,2,3-Trichlorobenzene	24.9 U	49.8	15.0	ug/Kg	1	03/13/20 13:37
1,2,3-Trichloropropane	0.995 U	1.99	0.618	ug/Kg	1	03/13/20 13:37
1,2,4-Trichlorobenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,2,4-Trimethylbenzene	24.9 U	49.8	15.0	ug/Kg	1	03/13/20 13:37
1,2-Dibromo-3-chloropropane	49.9 U	99.7	30.9	ug/Kg	1	03/13/20 13:37
1,2-Dibromoethane	0.499 U	0.997	0.399	ug/Kg	1	03/13/20 13:37
1,2-Dichlorobenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,2-Dichloroethane	0.995 U	1.99	0.698	ug/Kg	1	03/13/20 13:37
1,2-Dichloropropane	4.99 U	9.97	3.09	ug/Kg	1	03/13/20 13:37
1,3,5-Trimethylbenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,3-Dichlorobenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
1,3-Dichloropropane	4.99 U	9.97	3.09	ug/Kg	1	03/13/20 13:37
1,4-Dichlorobenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
2,2-Dichloropropane	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
2-Butanone (MEK)	125 U	249	77.7	ug/Kg	1	03/13/20 13:37
2-Chlorotoluene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
2-Hexanone	49.9 U	99.7	30.9	ug/Kg	1	03/13/20 13:37
4-Chlorotoluene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
4-Isopropyltoluene	49.9 U	99.7	24.9	ug/Kg	1	03/13/20 13:37
4-Methyl-2-pentanone (MIBK)	125 U	249	77.7	ug/Kg	1	03/13/20 13:37
Acetone	125 U	249	77.7	ug/Kg	1	03/13/20 13:37
Benzene	6.25 U	12.5	3.89	ug/Kg	1	03/13/20 13:37
Bromobenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
Bromochloromethane	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
Bromodichloromethane	0.995 U	1.99	0.618	ug/Kg	1	03/13/20 13:37
Bromoform	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37
Bromomethane	9.95 U	19.9	6.18	ug/Kg	1	03/13/20 13:37
Carbon disulfide	49.9 U	99.7	30.9	ug/Kg	1	03/13/20 13:37
Carbon tetrachloride	6.25 U	12.5	3.89	ug/Kg	1	03/13/20 13:37
Chlorobenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:37

Print Date: 03/25/2020 3:13:10PM

J flagging is activated

Client Sample ID: 100688-STB

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004005 Lab Project ID: 1201004 Collection Date: 03/12/20 16:00 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> Date Analyze
Chloroethane	99.5 U	199	61.8	ug/Kg	1	03/13/20 13:
Chloroform	2.00 U	3.99	0.997	ug/Kg	1	03/13/20 13:
Chloromethane	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
cis-1,2-Dichloroethene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
cis-1,3-Dichloropropene	6.25 U	12.5	3.89	ug/Kg	1	03/13/20 13:
Dibromochloromethane	2.49 U	4.98	1.50	ug/Kg	1	03/13/20 13:
Dibromomethane	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
Dichlorodifluoromethane	24.9 U	49.8	15.0	ug/Kg	1	03/13/20 13:
Ethylbenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
Freon-113	49.9 U	99.7	30.9	ug/Kg	1	03/13/20 13:
Hexachlorobutadiene	9.95 U	19.9	6.18	ug/Kg	1	03/13/20 13:
Isopropylbenzene (Cumene)	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
Methylene chloride	49.9 U	99.7	30.9	ug/Kg	1	03/13/20 13:
Methyl-t-butyl ether	49.9 U	99.7	30.9	ug/Kg	1	03/13/20 13:
Naphthalene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
n-Butylbenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
n-Propylbenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
o-Xylene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
P & M -Xylene	24.9 U	49.8	15.0	ug/Kg	1	03/13/20 13:
sec-Butylbenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
Styrene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
tert-Butylbenzene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
Tetrachloroethene	6.25 U	12.5	3.89	ug/Kg	1	03/13/20 13:
Toluene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
trans-1,2-Dichloroethene	12.4 U	24.9	7.77	ug/Kg	1	03/13/20 13:
trans-1,3-Dichloropropene	6.25 U	12.5	3.89	ug/Kg	1	03/13/20 13:
Trichloroethene	2.49 U	4.98	1.50	ug/Kg	1	03/13/20 13:
Trichlorofluoromethane	24.9 U	49.8	15.0	ug/Kg	1	03/13/20 13:
Vinyl acetate	49.9 U	99.7	30.9	ug/Kg	1	03/13/20 13:
Vinyl chloride	0.399 U	0.797	0.249	ug/Kg	1	03/13/20 13:
Xylenes (total)	37.4 U	74.8	22.7	ug/Kg	1	03/13/20 13:
Surrogates						
1,2-Dichloroethane-D4 (surr)	104	71-136		%	1	03/13/20 13:
4-Bromofluorobenzene (surr)	111	55-151		%	1	03/13/20 13:
Toluene-d8 (surr)	98.7	85-116		%	1	03/13/20 13:

Print Date: 03/25/2020 3:13:10PM

J flagging is activated

Client Sample ID: 100688-STB

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004005 Lab Project ID: 1201004 Collection Date: 03/12/20 16:00 Received Date: 03/12/20 16:57 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19836 Analytical Method: SW8260C

Analyst: KAJ

Analytical Date/Time: 03/13/20 13:37 Container ID: 1201004005-A Prep Batch: VXX35480 Prep Method: SW5035A Prep Date/Time: 03/12/20 16:00 Prep Initial Wt./Vol.: 50.162 g Prep Extract Vol: 25 mL

Client Sample ID: 100688-WTB

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004006 Lab Project ID: 1201004 Collection Date: 03/12/20 16:00 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:04
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:04
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	03/13/20 20:04
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:04
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	03/13/20 20:04
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:04
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:04
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:04
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:04
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:04
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:04
Benzene	0.200 U	0.400	0.120	ug/L	1	03/13/20 20:04
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:04
Bromoform	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
Bromomethane	2.50 U	5.00	2.00	ug/L	1	03/13/20 20:04
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	03/13/20 20:04
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	03/13/20 20:04
Chloroethane	0.500 U	1.00	0.310	ug/L	1	03/13/20 20:04

Print Date: 03/25/2020 3:13:10PM J flagging is activated

Client Sample ID: 100688-WTB

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004006 Lab Project ID: 1201004 Collection Date: 03/12/20 16:00 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter Parame	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Chloromethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:04
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		03/13/20 20:04
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Freon-113	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:04
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:04
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:04
Naphthalene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
o-Xylene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		03/13/20 20:04
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Styrene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Toluene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		03/13/20 20:04
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		03/13/20 20:04
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		03/13/20 20:04
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		03/13/20 20:04
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		03/13/20 20:04
4-Bromofluorobenzene (surr)	99.4	85-114		%	1		03/13/20 20:04
Toluene-d8 (surr)	97.4	89-112		%	1		03/13/20 20:04

Print Date: 03/25/2020 3:13:10PM

J flagging is activated

Client Sample ID: 100688-WTB

Client Project ID: 100688 South Park Mobile Home

Lab Sample ID: 1201004006 Lab Project ID: 1201004 Collection Date: 03/12/20 16:00 Received Date: 03/12/20 16:57 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS19835 Analytical Method: SW8260C

Analyst: NRB

Analytical Date/Time: 03/13/20 20:04 Container ID: 1201004006-A Prep Batch: VXX35479
Prep Method: SW5030B
Prep Date/Time: 03/13/20 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Blank ID: MB for HBN 1805062 [SPT/10989]

Blank Lab ID: 1553468

QC for Samples:

1201004001, 1201004002

Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Batch Information

Analytical Batch: SPT10989 Analytical Method: SM21 2540G

Instrument: Analyst: E.L

Analytical Date/Time: 3/13/2020 5:01:00PM

Print Date: 03/25/2020 3:13:13PM

Duplicate Sample Summary

Original Sample ID: 1201004002 Duplicate Sample ID: 1553469

QC for Samples:

1201004001, 1201004002

Analysis Date: 03/13/2020 17:01 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	86.8	86.8	%	0.06	(< 15)

Batch Information

Analytical Batch: SPT10989 Analytical Method: SM21 2540G

Instrument: Analyst: E.L

Print Date: 03/25/2020 3:13:14PM

Blank ID: MB for HBN 1805103 [VXX/35479]

Blank Lab ID: 1553641

QC for Samples:

1201004003, 1201004004, 1201004006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 03/25/2020 3:13:18PM

Blank ID: MB for HBN 1805103 [VXX/35479]

Blank Lab ID: 1553641

QC for Samples:

1201004003, 1201004004, 1201004006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	103	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	98.1	89-112		%

Print Date: 03/25/2020 3:13:18PM

Blank ID: MB for HBN 1805103 [VXX/35479]

Blank Lab ID: 1553641

QC for Samples:

1201004003, 1201004004, 1201004006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260C

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS19835 Analytical Method: SW8260C Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 3/13/2020 1:59:00PM

Prep Batch: VXX35479

Prep Method: SW5030B

Prep Date/Time: 3/13/2020 6:00:00AM Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:18PM

Blank Spike ID: LCS for HBN 1201004 [VXX35479]

Blank Spike Lab ID: 1553642 Date Analyzed: 03/13/2020 14:14 Spike Duplicate ID: LCSD for HBN 1201004

[VXX35479]

Spike Duplicate Lab ID: 1553643 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1201004003, 1201004004, 1201004006

Results by SW8260C

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	29.5	98	30	29.3	98	(78-124)	0.57	(< 20)
1,1,1-Trichloroethane	30	29.2	97	30	28.6	95	(74-131)	2.20	(< 20)
1,1,2,2-Tetrachloroethane	30	28.5	95	30	28.9	96	(71-121)	1.10	(< 20)
1,1,2-Trichloroethane	30	29.3	98	30	29.3	98	(80-119)	0.16	(< 20)
1,1-Dichloroethane	30	28.7	96	30	28.4	95	(77-125)	1.10	(< 20)
1,1-Dichloroethene	30	28.9	96	30	28.5	95	(71-131)	1.40	(< 20)
1,1-Dichloropropene	30	29.5	98	30	29.2	97	(79-125)	1.10	(< 20)
1,2,3-Trichlorobenzene	30	28.6	95	30	30.0	100	(69-129)	4.80	(< 20)
1,2,3-Trichloropropane	30	28.4	95	30	28.6	95	(73-122)	0.71	(< 20)
1,2,4-Trichlorobenzene	30	29.1	97	30	29.8	100	(69-130)	2.50	(< 20)
1,2,4-Trimethylbenzene	30	30.0	100	30	30.3	101	(79-124)	0.95	(< 20)
1,2-Dibromo-3-chloropropane	30	27.1	90	30	27.7	92	(62-128)	2.00	(< 20)
1,2-Dibromoethane	30	29.1	97	30	29.3	98	(77-121)	0.60	(< 20)
1,2-Dichlorobenzene	30	29.1	97	30	28.8	96	(80-119)	1.10	(< 20)
1,2-Dichloroethane	30	27.4	91	30	27.3	91	(73-128)	0.56	(< 20)
1,2-Dichloropropane	30	29.6	99	30	29.4	98	(78-122)	0.77	(< 20)
1,3,5-Trimethylbenzene	30	30.3	101	30	30.3	101	(75-124)	0.21	(< 20)
1,3-Dichlorobenzene	30	29.2	98	30	29.3	98	(80-119)	0.23	(< 20)
1,3-Dichloropropane	30	28.6	95	30	28.9	96	(80-119)	0.91	(< 20)
1,4-Dichlorobenzene	30	29.5	98	30	29.3	98	(79-118)	0.45	(< 20)
2,2-Dichloropropane	30	28.9	96	30	28.8	96	(60-139)	0.49	(< 20)
2-Butanone (MEK)	90	81.2	90	90	81.0	90	(56-143)	0.25	(< 20)
2-Chlorotoluene	30	30.9	103	30	30.8	103	(79-122)	0.37	(< 20)
2-Hexanone	90	82.9	92	90	83.1	92	(57-139)	0.25	(< 20)
4-Chlorotoluene	30	29.4	98	30	29.3	98	(78-122)	0.31	(< 20)
4-Isopropyltoluene	30	30.7	102	30	30.5	102	(77-127)	0.83	(< 20)
4-Methyl-2-pentanone (MIBK)	90	87.5	97	90	86.8	96	(67-130)	0.85	(< 20)
Benzene	30	29.1	97	30	28.8	96	(79-120)	1.10	(< 20)
Bromobenzene	30	29.0	97	30	29.3	98	(80-120)	0.79	(< 20)
Bromochloromethane	30	28.6	95	30	28.5	95	(78-123)	0.30	(< 20)
Bromodichloromethane	30	29.2	97	30	29.1	97	(79-125)	0.31	(< 20)
Bromoform	30	28.9	96	30	28.9	96	(66-130)	0.00	(< 20)
Bromomethane	30	32.9	110	30	33.2	111	(53-141)	0.97	(< 20)
Carbon disulfide	45	42.0	93	45	40.8	91	(64-133)	2.90	(< 20)

Print Date: 03/25/2020 3:13:20PM

Blank Spike ID: LCS for HBN 1201004 [VXX35479]

Blank Spike Lab ID: 1553642 Date Analyzed: 03/13/2020 14:14 Spike Duplicate ID: LCSD for HBN 1201004

[VXX35479]

Spike Duplicate Lab ID: 1553643 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1201004003, 1201004004, 1201004006

Results by SW8260C

results by STIGEOG		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	29.3	98	30	28.8	96	(72-136)	1.70	(< 20)
Chlorobenzene	30	28.1	94	30	27.7	93	(82-118)	1.50	(< 20)
Chloroethane	30	38.2	127	30	33.5	112	(60-138)	13.10	(< 20)
Chloroform	30	28.6	95	30	28.3	94	(79-124)	0.87	(< 20)
Chloromethane	30	29.1	97	30	28.5	95	(50-139)	2.10	(< 20)
cis-1,2-Dichloroethene	30	28.9	96	30	28.4	95	(78-123)	1.70	(< 20)
cis-1,3-Dichloropropene	30	29.7	99	30	29.4	98	(75-124)	0.93	(< 20)
Dibromochloromethane	30	29.2	97	30	29.4	98	(74-126)	0.87	(< 20)
Dibromomethane	30	29.0	97	30	28.7	96	(79-123)	0.86	(< 20)
Dichlorodifluoromethane	30	28.4	95	30	27.5	92	(32-152)	3.00	(< 20)
Ethylbenzene	30	29.9	100	30	29.4	98	(79-121)	1.60	(< 20)
Freon-113	45	43.8	97	45	42.6	95	(70-136)	2.70	(< 20)
Hexachlorobutadiene	30	30.6	102	30	31.1	104	(66-134)	1.40	(< 20)
Isopropylbenzene (Cumene)	30	30.0	100	30	29.5	98	(72-131)	1.80	(< 20)
Methylene chloride	30	29.0	97	30	28.2	94	(74-124)	2.70	(< 20)
Methyl-t-butyl ether	45	43.8	97	45	43.7	97	(71-124)	0.30	(< 20)
Naphthalene	30	26.9	90	30	29.0	97	(61-128)	7.40	(< 20)
n-Butylbenzene	30	30.7	102	30	29.9	100	(75-128)	2.60	(< 20)
n-Propylbenzene	30	29.6	99	30	30.0	100	(76-126)	1.40	(< 20)
o-Xylene	30	29.3	98	30	29.1	97	(78-122)	0.58	(< 20)
P & M -Xylene	60	59.2	99	60	59.3	99	(80-121)	0.11	(< 20)
sec-Butylbenzene	30	30.1	100	30	29.9	100	(77-126)	0.65	(< 20)
Styrene	30	30.3	101	30	29.7	99	(78-123)	1.80	(< 20)
tert-Butylbenzene	30	30.0	100	30	29.5	98	(78-124)	1.80	(< 20)
Tetrachloroethene	30	29.8	99	30	29.1	97	(74-129)	2.10	(< 20)
Toluene	30	28.6	95	30	27.7	92	(80-121)	3.00	(< 20)
trans-1,2-Dichloroethene	30	29.0	97	30	28.4	95	(75-124)	2.30	(< 20)
trans-1,3-Dichloropropene	30	29.9	100	30	29.8	99	(73-127)	0.30	(< 20)
Trichloroethene	30	29.2	97	30	28.6	95	(79-123)	2.20	(< 20)
Trichlorofluoromethane	30	32.2	107	30	31.2	104	(65-141)	3.20	(< 20)
Vinyl acetate	30	31.1	104	30	30.7	102	(54-146)	1.60	(< 20)
Vinyl chloride	30	30.2	101	30	29.6	99	(58-137)	2.00	(< 20)
Xylenes (total)	90	88.5	98	90	88.4	98	(79-121)	0.12	(< 20)

Print Date: 03/25/2020 3:13:20PM

Blank Spike ID: LCS for HBN 1201004 [VXX35479]

Blank Spike Lab ID: 1553642 Date Analyzed: 03/13/2020 14:14 Spike Duplicate ID: LCSD for HBN 1201004

[VXX35479]

Spike Duplicate Lab ID: 1553643 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1201004003, 1201004004, 1201004006

Results by SW8260C

		Blank Spik	(e (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	96.5	97	30	96.4	96	(81-118)	0.12	
4-Bromofluorobenzene (surr)	30	99.4	99	30	101	101	(85-114)	1.20	
Toluene-d8 (surr)	30	99.9	100	30	100	100	(89-112)	0.02	

Batch Information

Analytical Batch: VMS19835 Analytical Method: SW8260C

Analyst: NRB

Instrument: Agilent 7890-75MS

Prep Batch: VXX35479
Prep Method: SW5030B

Prep Date/Time: 03/13/2020 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:20PM

Blank ID: MB for HBN 1805105 [VXX/35480]

Blank Lab ID: 1553648

QC for Samples:

1201004001, 1201004002, 1201004005

Matrix: Soil/Solid (dry weight)

Results by SW8260C

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	10.0U	20.0	6.20	ug/Kg
1,1,1-Trichloroethane	12.5U	25.0	7.80	ug/Kg
1,1,2,2-Tetrachloroethane	1.00U	2.00	0.620	ug/Kg
1,1,2-Trichloroethane	0.400U	0.800	0.250	ug/Kg
1,1-Dichloroethane	12.5U	25.0	7.80	ug/Kg
1,1-Dichloroethene	12.5U	25.0	7.80	ug/Kg
1,1-Dichloropropene	12.5U	25.0	7.80	ug/Kg
1,2,3-Trichlorobenzene	25.0U	50.0	15.0	ug/Kg
1,2,3-Trichloropropane	1.00U	2.00	0.620	ug/Kg
1,2,4-Trichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,2,4-Trimethylbenzene	25.0U	50.0	15.0	ug/Kg
1,2-Dibromo-3-chloropropane	50.0U	100	31.0	ug/Kg
1,2-Dibromoethane	0.500U	1.00	0.310	ug/Kg
1,2-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,2-Dichloroethane	1.00U	2.00	0.620	ug/Kg
1,2-Dichloropropane	5.00U	10.0	3.10	ug/Kg
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	ug/Kg
1,3-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,3-Dichloropropane	5.00U	10.0	3.10	ug/Kg
1,4-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
2,2-Dichloropropane	12.5U	25.0	7.80	ug/Kg
2-Butanone (MEK)	125U	250	78.0	ug/Kg
2-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
2-Hexanone	50.0U	100	31.0	ug/Kg
4-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
4-Isopropyltoluene	50.0U	100	25.0	ug/Kg
4-Methyl-2-pentanone (MIBK)	125U	250	78.0	ug/Kg
Acetone	125U	250	78.0	ug/Kg
Benzene	6.25U	12.5	3.90	ug/Kg
Bromobenzene	12.5U	25.0	7.80	ug/Kg
Bromochloromethane	12.5U	25.0	7.80	ug/Kg
Bromodichloromethane	1.00U	2.00	0.620	ug/Kg
Bromoform	12.5U	25.0	7.80	ug/Kg
Bromomethane	10.0U	20.0	6.20	ug/Kg
Carbon disulfide	50.0U	100	31.0	ug/Kg
Carbon tetrachloride	6.25U	12.5	3.90	ug/Kg
Chlorobenzene	12.5U	25.0	7.80	ug/Kg
Chloroethane	100U	200	62.0	ug/Kg

Print Date: 03/25/2020 3:13:22PM

Blank ID: MB for HBN 1805105 [VXX/35480]

Blank Lab ID: 1553648

QC for Samples:

1201004001, 1201004002, 1201004005

Matrix: Soil/Solid (dry weight)

Results by SW8260C

_				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloroform	2.00U	4.00	0.620	ug/Kg
Chloromethane	12.5U	25.0	7.80	ug/Kg
cis-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
cis-1,3-Dichloropropene	6.25U	12.5	3.90	ug/Kg
Dibromochloromethane	2.50U	5.00	0.620	ug/Kg
Dibromomethane	12.5U	25.0	7.80	ug/Kg
Dichlorodifluoromethane	25.0U	50.0	15.0	ug/Kg
Ethylbenzene	12.5U	25.0	7.80	ug/Kg
Freon-113	50.0U	100	31.0	ug/Kg
Hexachlorobutadiene	10.0U	20.0	6.20	ug/Kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/Kg
Methylene chloride	50.0U	100	31.0	ug/Kg
Methyl-t-butyl ether	50.0U	100	31.0	ug/Kg
Naphthalene	12.5U	25.0	7.80	ug/Kg
n-Butylbenzene	12.5U	25.0	7.80	ug/Kg
n-Propylbenzene	12.5U	25.0	7.80	ug/Kg
o-Xylene	12.5U	25.0	7.80	ug/Kg
P & M -Xylene	25.0U	50.0	15.0	ug/Kg
sec-Butylbenzene	12.5U	25.0	7.80	ug/Kg
Styrene	12.5U	25.0	7.80	ug/Kg
tert-Butylbenzene	12.5U	25.0	7.80	ug/Kg
Tetrachloroethene	6.25U	12.5	3.90	ug/Kg
Toluene	12.5U	25.0	7.80	ug/Kg
trans-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
trans-1,3-Dichloropropene	6.25U	12.5	3.90	ug/Kg
Trichloroethene	2.50U	5.00	1.50	ug/Kg
Trichlorofluoromethane	25.0U	50.0	15.0	ug/Kg
Vinyl acetate	50.0U	100	31.0	ug/Kg
Vinyl chloride	0.400U	0.800	0.250	ug/Kg
Xylenes (total)	37.5U	75.0	22.8	ug/Kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	99.9	71-136		%
4-Bromofluorobenzene (surr)	113	55-151		%
Toluene-d8 (surr)	99.7	85-116		%
i siasiis do (saii)	00.1	00 110		70

Print Date: 03/25/2020 3:13:22PM

Blank ID: MB for HBN 1805105 [VXX/35480]

Blank Lab ID: 1553648

QC for Samples:

1201004001, 1201004002, 1201004005

Matrix: Soil/Solid (dry weight)

Results by SW8260C

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: VMS19836 Analytical Method: SW8260C

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: KAJ

Analytical Date/Time: 3/13/2020 11:13:00AM

Prep Batch: VXX35480 Prep Method: SW5035A

Prep Date/Time: 3/13/2020 6:00:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 03/25/2020 3:13:22PM

Blank Spike ID: LCS for HBN 1201004 [VXX35480]

Blank Spike Lab ID: 1553649 Date Analyzed: 03/13/2020 11:29

Matrix: Soil/Solid (dry weight)

QC for Samples: 1201004001, 1201004002, 1201004005

Results by SW8260C

Blank Spike (ug/Kg)							
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>			
1,1,1,2-Tetrachloroethane	750	821	109	(78-125)			
1,1,1-Trichloroethane	750	865	115	(73-130)			
1,1,2,2-Tetrachloroethane	750	845	113	(70-124)			
1,1,2-Trichloroethane	750	885	118	(78-121)			
1,1-Dichloroethane	750	899	120	(76-125)			
1,1-Dichloroethene	750	870	116	(70-131)			
1,1-Dichloropropene	750	877	117	(76-125)			
1,2,3-Trichlorobenzene	750	804	107	(66-130)			
1,2,3-Trichloropropane	750	867	116	(73-125)			
1,2,4-Trichlorobenzene	750	851	114	(67-129)			
1,2,4-Trimethylbenzene	750	859	115	(75-123)			
1,2-Dibromo-3-chloropropane	750	859	115	(61-132)			
1,2-Dibromoethane	750	929	124 *	(78-122)			
1,2-Dichlorobenzene	750	887	118	(78-121)			
1,2-Dichloroethane	750	858	114	(73-128)			
1,2-Dichloropropane	750	912	122	(76-123)			
1,3,5-Trimethylbenzene	750	815	109	(73-124)			
1,3-Dichlorobenzene	750	841	112	(77-121)			
1,3-Dichloropropane	750	870	116	(77-121)			
1,4-Dichlorobenzene	750	883	118	(75-120)			
2,2-Dichloropropane	750	1050	140 *	(67-133)			
2-Butanone (MEK)	2250	2610	116	(51-148)			
2-Chlorotoluene	750	795	106	(75-122)			
2-Hexanone	2250	2600	115	(53-145)			
4-Chlorotoluene	750	816	109	(72-124)			
4-Isopropyltoluene	750	812	108	(73-127)			
4-Methyl-2-pentanone (MIBK)	2250	2590	115	(65-135)			
Acetone	2250	2340	104	(36-164)			
Benzene	750	903	120	(77-121)			
Bromobenzene	750	840	112	(78-121)			
Bromochloromethane	750	892	119	(78-125)			
Bromodichloromethane	750	856	114	(75-127)			
Bromoform	750	852	114	(67-132)			
Bromomethane	750	883	118	(53-143)			

Print Date: 03/25/2020 3:13:24PM

Blank Spike ID: LCS for HBN 1201004 [VXX35480]

Blank Spike Lab ID: 1553649 Date Analyzed: 03/13/2020 11:29

Matrix: Soil/Solid (dry weight)

QC for Samples: 1201004001, 1201004002, 1201004005

Results by SW8260C

Blank Spike (ug/Kg)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>					
Carbon disulfide	1130	1330	118	(63-132)					
Carbon tetrachloride	750	876	117	(70-135)					
Chlorobenzene	750	888	118	(79-120)					
Chloroethane	750	882	118	(59-139)					
Chloroform	750	892	119	(78-123)					
Chloromethane	750	849	113	(50-136)					
cis-1,2-Dichloroethene	750	900	120	(77-123)					
cis-1,3-Dichloropropene	750	899	120	(74-126)					
Dibromochloromethane	750	839	112	(74-126)					
Dibromomethane	750	919	123	(78-125)					
Dichlorodifluoromethane	750	761	101	(29-149)					
Ethylbenzene	750	898	120	(76-122)					
Freon-113	1130	1400	125	(66-136)					
Hexachlorobutadiene	750	928	124	(61-135)					
Isopropylbenzene (Cumene)	750	821	109	(68-134)					
Methylene chloride	750	798	106	(70-128)					
Methyl-t-butyl ether	1130	1280	114	(73-125)					
Naphthalene	750	834	111	(62-129)					
n-Butylbenzene	750	900	120	(70-128)					
n-Propylbenzene	750	817	109	(73-125)					
o-Xylene	750	864	115	(77-123)					
P & M -Xylene	1500	1750	117	(77-124)					
sec-Butylbenzene	750	809	108	(73-126)					
Styrene	750	887	118	(76-124)					
tert-Butylbenzene	750	813	108	(73-125)					
Tetrachloroethene	750	873	116	(73-128)					
Toluene	750	841	112	(77-121)					
trans-1,2-Dichloroethene	750	850	113	(74-125)					
trans-1,3-Dichloropropene	750	870	116	(71-130)					
Trichloroethene	750	869	116	(77-123)					
Trichlorofluoromethane	750	952	127	(62-140)					
Vinyl acetate	750	1030	138	(50-151)					
Vinyl chloride	750	869	116	(56-135)					
Xylenes (total)	2250	2620	116	(78-124)					

Print Date: 03/25/2020 3:13:24PM

Blank Spike ID: LCS for HBN 1201004 [VXX35480]

Blank Spike Lab ID: 1553649 Date Analyzed: 03/13/2020 11:29

Matrix: Soil/Solid (dry weight)

QC for Samples: 1201004001, 1201004002, 1201004005

Results by SW8260C

	E	Blank Spike	(ug/Kg)	
<u>Parameter</u>	Spike	Result	Rec (%)	
Surrogates				
1,2-Dichloroethane-D4 (surr)	750	102	102	
4-Bromofluorobenzene (surr)	750	103	103	
Toluene-d8 (surr)	750	98.1	98	(

Batch Information

Analytical Batch: VMS19836
Analytical Method: SW8260C

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: KAJ

Prep Batch: VXX35480
Prep Method: SW5035A

Prep Date/Time: 03/13/2020 06:00

Spike Init Wt./Vol.: 750 ug/Kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/25/2020 3:13:24PM

Matrix Spike Summary

Original Sample ID: 1209094001 MS Sample ID: 1553650 MS MSD Sample ID: 1553651 MSD

1201004001, 1201004002, 1201004005

Analysis Date: 03/13/2020 17:56 Analysis Date: 03/13/2020 16:23 Analysis Date: 03/13/2020 16:39 Matrix: Soil/Solid (dry weight)

Results by SW8260C

QC for Samples:

		Mat	Matrix Spike (ug/Kg)		Spike Duplicate (ug/Kg)					
<u>Parameter</u>	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD C
1,1,1,2-Tetrachloroethane	34.1U	1811	1991	109	1811	2006	110	78-125	1.00	(< 20)
1,1,1-Trichloroethane	42.7U	1811	2051	113	1811	2021	111	73-130	2.00	(< 20)
1,1,2,2-Tetrachloroethane	3.42U	1811	2021	112	1811	2066	114	70-124	2.20	(< 20)
1,1,2-Trichloroethane	1.37U	1811	2096	115	1811	2201	121	78-121	5.20	(< 20)
1,1-Dichloroethane	42.7U	1811	2141	118	1811	2141	118	76-125	0.33	(< 20)
1,1-Dichloroethene	42.7U	1811	2126	117	1811	2051	113	70-131	3.90	(< 20)
1,1-Dichloropropene	42.7U	1811	2096	115	1811	2036	112	76-125	2.90	(< 20)
1,2,3-Trichlorobenzene	85.5U	1811	1722	95	1811	2320	128	66-130	30.00	(< 20)
1,2,3-Trichloropropane	3.42U	1811	2111	117	1811	2156	119	73-125	1.90	(< 20)
1,2,4-Trichlorobenzene	42.7U	1811	1886	104	1811	2260	125	67-129	17.90	(< 20)
1,2,4-Trimethylbenzene	85.5U	1811	2126	117	1811	2081	115	75-123	2.30	(< 20)
1,2-Dibromo-3-chloropropane	171U	1811	1991	109	1811	2231	123	61-132	11.80	(< 20)
1,2-Dibromoethane	1.71U	1811	2216	122	1811	2320	128 *	78-122	4.50	(< 20)
1,2-Dichlorobenzene	42.7U	1811	2141	118	1811	2156	118	78-121	0.62	(< 20)
1,2-Dichloroethane	3.42U	1811	2021	111	1811	2066	114	73-128	2.00	(< 20)
1,2-Dichloropropane	17.1U	1811	2141	118	1811	2171	119	76-123	1.50	(< 20)
1,3,5-Trimethylbenzene	42.7U	1811	1991	110	1811	1976	109	73-124	0.90	(< 20)
1,3-Dichlorobenzene	42.7U	1811	2021	111	1811	2006	111	77-121	0.44	(< 20)
1,3-Dichloropropane	17.1U	1811	2081	114	1811	2156	119	77-121	4.10	(< 20)
1,4-Dichlorobenzene	42.7U	1811	2141	118	1811	2156	119	75-120	0.48	(< 20)
2,2-Dichloropropane	42.7U	1811	2530	139 *	1811	2485	137 *	67-133	2.10	(< 20)
2-Butanone (MEK)	427U	5449	5973	110	5449	6602	121	51-148	9.80	(< 20)
2-Chlorotoluene	42.7U	1811	1961	108	1811	1946	107	75-122	0.77	(< 20)
2-Hexanone	171U	5449	6153	113	5449	6751	124	53-145	9.30	(< 20)
4-Chlorotoluene	42.7U	1811	2036	112	1811	1946	107	72-124	4.50	(< 20)
4-Isopropyltoluene	171U	1811	1976	109	1811	2006	110	73-127	1.40	(< 20)
4-Methyl-2-pentanone (MIBK)	427U	5449	5958	109	5449	6407	118	65-135	7.30	(< 20)
Acetone	427U	5449	5599	103	5449	6198	114	36-164	10.10	(< 20)
Benzene	21.4U	1811	2141	118	1811	2156	119	77-121	0.53	(< 20)
Bromobenzene	42.7U	1811	2051	113	1811	2021	111	78-121	1.80	(< 20)
Bromochloromethane	42.7U	1811	2111	116	1811	2126	117	78-125	1.10	(< 20)
Bromodichloromethane	3.42U	1811	2021	111	1811	2036	112	75-127	0.69	(< 20)
Bromoform	42.7U	1811	2006	111	1811	2126	117	67-132	5.80	(< 20)
Bromomethane	34.1U	1811	2216	122	1811	1916	105	53-143	14.80	(< 20)
Carbon disulfide	171U	2725	3383	124	2725	3144	116	63-132	7.40	(< 20)
Carbon tetrachloride	21.4U	1811	2066	114	1811	2051	113	70-135	0.82	(< 20)
Chlorobenzene	42.7U	1811	2141	118	1811	2141	118	79-120	0.17	(< 20)

Print Date: 03/25/2020 3:13:26PM

Matrix Spike Summary

Original Sample ID: 1209094001 MS Sample ID: 1553650 MS MSD Sample ID: 1553651 MSD Analysis Date: 03/13/2020 17:56 Analysis Date: 03/13/2020 16:23 Analysis Date: 03/13/2020 16:39 Matrix: Soil/Solid (dry weight)

QC for Samples: 1201004001, 1201004002, 1201004005

Results by SW8260C

	Matrix Spike (ug/Kg)			Spike Duplicate (ug/Kg)						
<u>Parameter</u>	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CI
Chloroethane	342U	1811	2201	121	1811	2006	111	59-139	9.00	(< 20)
Chloroform	5.36J	1811	2111	116	1811	2096	115	78-123	0.66	(< 20)
Chloromethane	42.7U	1811	2066	114	1811	2066	114	50-136	0.07	(< 20)
cis-1,2-Dichloroethene	42.7U	1811	2111	116	1811	2126	117	77-123	0.95	(< 20)
cis-1,3-Dichloropropene	21.4U	1811	2111	117	1811	2141	118	74-126	1.50	(< 20)
Dibromochloromethane	8.55U	1811	2006	111	1811	2066	114	74-126	2.80	(< 20)
Dibromomethane	42.7U	1811	2156	119	1811	2201	121	78-125	1.90	(< 20)
Dichlorodifluoromethane	85.5U	1811	1901	104	1811	1766	97	29-149	7.00	(< 20)
Ethylbenzene	42.7U	1811	2186	120	1811	2216	122	76-122	1.60	(< 20)
Freon-113	171U	2725	3398	125	2725	3308	121	66-136	2.80	(< 20)
Hexachlorobutadiene	34.1U	1811	3219	177 *	1811	3024	167 *	61-135	6.30	(< 20)
sopropylbenzene (Cumene)	42.7U	1811	1976	109	1811	2036	112	68-134	3.10	(< 20)
Methylene chloride	171U	1811	1841	102	1811	1871	103	70-128	1.00	(< 20)
Methyl-t-butyl ether	171U	2725	2964	109	2725	3144	116	73-125	5.90	(< 20)
laphthalene	42.7U	1811	1766	97	1811	2290	126	62-129	26.20	* (< 20)
n-Butylbenzene	42.7U	1811	2201	121	1811	2201	121	70-128	0.25	(< 20)
n-Propylbenzene	42.7U	1811	2006	111	1811	1991	110	73-125	1.10	(< 20)
-Xylene	42.7U	1811	2111	116	1811	2141	118	77-123	1.80	(< 20)
P & M -Xylene	85.5U	3638	4237	117	3638	4311	119	77-124	1.80	(< 20)
ec-Butylbenzene	42.7U	1811	1976	109	1811	1961	108	73-126	0.57	(< 20)
Styrene	42.7U	1811	2171	120	1811	2186	120	76-124	0.55	(< 20)
ert-Butylbenzene	42.7U	1811	1976	109	1811	1961	108	73-125	1.00	(< 20)
Tetrachloroethene	21.4U	1811	2111	116	1811	2096	116	73-128	0.53	(< 20)
Γoluene	42.7U	1811	2051	113	1811	2066	114	77-121	1.10	(< 20)
rans-1,2-Dichloroethene	42.7U	1811	2081	115	1811	2021	111	74-125	2.80	(< 20)
rans-1,3-Dichloropropene	21.4U	1811	2096	115	1811	2126	117	71-130	1.60	(< 20)
Trichloroethene	8.55U	1811	2066	113	1811	2036	112	77-123	1.40	(< 20)
Trichlorofluoromethane	85.5U	1811	2500	138	1811	2231	123	62-140	11.30	(< 20)
/inyl acetate	171U	1811	2410	133	1811	2590	142	50-151	7.10	(< 20)
/inyl chloride	1.37U	1811	1991	110	1811	1916	105	56-135	4.30	(< 20)
Kylenes (total)	128U	5449	6347	116	5449	6452	119	78-124	1.80	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		1811	1796	99	1811	1841	102	71-136	2.50	
4-Bromofluorobenzene (surr)		3024	2186	72	3024	2111	70	55-151	3.60	
Toluene-d8 (surr)		1811	1811	100	1811	1826	101	85-116	0.87	

Print Date: 03/25/2020 3:13:26PM

Matrix Spike Summary

Original Sample ID: 1209094001 MS Sample ID: 1553650 MS MSD Sample ID: 1553651 MSD

QC for Samples: 1201004001, 1201004002, 1201004005

Analysis Date:

Analysis Date: 03/13/2020 16:23 Analysis Date: 03/13/2020 16:39 Matrix: Soil/Solid (dry weight)

Results by SW8260C

Matrix Spike (%)

Spike Duplicate (%)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Batch Information

Analytical Batch: VMS19836 Analytical Method: SW8260C

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: KAJ

Analytical Date/Time: 3/13/2020 4:23:00PM

Prep Batch: VXX35480

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 3/13/2020 6:00:00AM

Prep Initial Wt./Vol.: 30.92g Prep Extract Vol: 25.00mL

Print Date: 03/25/2020 3:13:26PM

Method Blank

Blank ID: MB for HBN 1805064 [XXX/42863]

Blank Lab ID: 1553474

QC for Samples:

1201004001, 1201004002

Matrix: Soil/Solid (dry weight)

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/Kg

Surrogates

5a Androstane (surr) 96.8 60-120 %

Batch Information

Analytical Batch: XFC15557 Prep Batch: XXX42863
Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 3/16/2020 10:03:38AM

Analyst: DSD Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 3/18/2020 10:50:00AM Prep Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:28PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1201004 [XXX42863]

Blank Spike Lab ID: 1553475 Date Analyzed: 03/18/2020 11:00

QC for Samples: 1201004001, 1201004002

Spike Duplicate ID: LCSD for HBN 1201004

[XXX42863]

Spike Duplicate Lab ID: 1553476 Matrix: Soil/Solid (dry weight)

Results by AK102

	В	lank Spike ((mg/Kg)	Sp	oike Duplica	ate (mg/Kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	667	647	97	667	642	96	(75-125)	0.84	(< 20)
Surrogates									
5a Androstane (surr)	16.7	109	109	16.7	107	107	(60-120)	1.40	

Batch Information

Analytical Batch: XFC15557 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: DSD

Prep Batch: XXX42863
Prep Method: SW3550C

Prep Date/Time: 03/16/2020 10:03

Spike Init Wt./Vol.: 667 mg/Kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 667 mg/Kg Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:30PM

Method Blank

Blank ID: MB for HBN 1805070 [XXX/42865]

Blank Lab ID: 1553512

QC for Samples:

1201004003, 1201004004

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	69.5	47-106		%
Fluoranthene-d10 (surr)	70.3	24-116		%

Batch Information

Analytical Batch: XMS11960

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 3/18/2020 5:16:00PM

Prep Batch: XXX42865 Prep Method: SW3520C

Prep Date/Time: 3/16/2020 10:27:18AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 03/25/2020 3:13:33PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1201004 [XXX42865]

Blank Spike Lab ID: 1553513 Date Analyzed: 03/18/2020 17:36

QC for Samples: 1201004003, 1201004004

Spike Duplicate ID: LCSD for HBN 1201004

[XXX42865]

Spike Duplicate Lab ID: 1553514 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

,									
		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.47	73	2	1.50	75	(41-115)	1.90	(< 20)
2-Methylnaphthalene	2	1.44	72	2	1.48	74	(39-114)	2.70	(< 20)
Acenaphthene	2	1.44	72	2	1.49	75	(48-114)	3.50	(< 20)
Acenaphthylene	2	1.45	73	2	1.52	76	(35-121)	4.60	(< 20)
Anthracene	2	1.53	76	2	1.55	78	(53-119)	1.70	(< 20)
Benzo(a)Anthracene	2	1.55	78	2	1.51	76	(59-120)	2.40	(< 20)
Benzo[a]pyrene	2	1.56	78	2	1.51	75	(53-120)	3.50	(< 20)
Benzo[b]Fluoranthene	2	1.70	85	2	1.60	80	(53-126)	6.30	(< 20)
Benzo[g,h,i]perylene	2	1.51	75	2	1.48	74	(44-128)	1.90	(< 20)
Benzo[k]fluoranthene	2	1.69	84	2	1.70	85	(54-125)	0.68	(< 20)
Chrysene	2	1.65	82	2	1.63	81	(57-120)	1.40	(< 20)
Dibenzo[a,h]anthracene	2	1.41	70	2	1.40	70	(44-131)	0.59	(< 20)
Fluoranthene	2	1.55	78	2	1.53	77	(58-120)	1.50	(< 20)
Fluorene	2	1.53	77	2	1.57	78	(50-118)	2.20	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.66	83	2	1.62	81	(48-130)	2.90	(< 20)
Naphthalene	2	1.50	75	2	1.51	76	(43-114)	0.79	(< 20)
Phenanthrene	2	1.46	73	2	1.49	75	(53-115)	2.10	(< 20)
Pyrene	2	1.59	80	2	1.57	78	(53-121)	1.60	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	69.2	69	2	71.2	71	(47-106)	2.90	
Fluoranthene-d10 (surr)	2	67.9	68	2	68.9	69	(24-116)	1.50	

Batch Information

Analytical Batch: XMS11960

Analytical Method: 8270D SIM LV (PAH)
Instrument: SVA Agilent 780/5975 GC/MS

Analyst: **DSD**

Prep Batch: XXX42865
Prep Method: SW3520C

Prep Date/Time: 03/16/2020 10:27

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 03/25/2020 3:13:35PM

Method Blank

Blank ID: MB for HBN 1805087 [XXX/42868]

Blank Lab ID: 1553595

QC for Samples: 1201004002

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	12.5U	25.0	6.25	ug/Kg
2-Methylnaphthalene	12.5U	25.0	6.25	ug/Kg
Acenaphthene	12.5U	25.0	6.25	ug/Kg
Acenaphthylene	12.5U	25.0	6.25	ug/Kg
Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo(a)Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo[a]pyrene	12.5U	25.0	6.25	ug/Kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	ug/Kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	ug/Kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	ug/Kg
Chrysene	12.5U	25.0	6.25	ug/Kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	ug/Kg
Fluoranthene	12.5U	25.0	6.25	ug/Kg
Fluorene	12.5U	25.0	6.25	ug/Kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	ug/Kg
Naphthalene	10.0U	20.0	5.00	ug/Kg
Phenanthrene	12.5U	25.0	6.25	ug/Kg
Pyrene	12.5U	25.0	6.25	ug/Kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	73	58-103		%
Fluoranthene-d10 (surr)	81.3	54-113		%

Batch Information

Analytical Batch: XMS11960 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 3/18/2020 7:39:00PM

Prep Batch: XXX42868 Prep Method: SW3550C

Prep Date/Time: 3/17/2020 9:40:14AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:37PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1201004 [XXX42868]

Blank Spike Lab ID: 1553596 Date Analyzed: 03/18/2020 19:59

Matrix: Soil/Solid (dry weight)

QC for Samples: 1201004002

Results by 8270D SIM (PAH)

	E	Blank Spike	(ug/Kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	111	91.0	82	(43-111)
2-Methylnaphthalene	111	89.0	80	(39-114)
Acenaphthene	111	91.6	83	(44-111)
Acenaphthylene	111	92.4	83	(39-116)
Anthracene	111	98.0	88	(50-114)
Benzo(a)Anthracene	111	94.6	85	(54-122)
Benzo[a]pyrene	111	98.8	89	(50-125)
Benzo[b]Fluoranthene	111	103	93	(53-128)
Benzo[g,h,i]perylene	111	101	91	(49-127)
Benzo[k]fluoranthene	111	101	91	(56-123)
Chrysene	111	99.0	89	(57-118)
Dibenzo[a,h]anthracene	111	105	94	(50-129)
Fluoranthene	111	97.7	88	(55-119)
Fluorene	111	97.2	88	(47-114)
Indeno[1,2,3-c,d] pyrene	111	110	99	(49-130)
Naphthalene	111	89.2	80	(38-111)
Phenanthrene	111	93.9	85	(49-113)
Pyrene	111	99.5	90	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	111	80	80	(58-103)
Fluoranthene-d10 (surr)	111	81.4	81	(54-113)

Batch Information

Analytical Batch: XMS11960
Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: **DSD**

Prep Batch: XXX42868
Prep Method: SW3550C

Prep Date/Time: 03/17/2020 09:40

Spike Init Wt./Vol.: 111 ug/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/25/2020 3:13:39PM

Matrix Spike Summary

Original Sample ID: 1201004002 MS Sample ID: 1553597 MS MSD Sample ID: 1553598 MSD

QC for Samples: 1201004002

Analysis Date: 03/18/2020 20:40 Analysis Date: 03/18/2020 21:01 Analysis Date: 03/18/2020 21:21 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Mat	rix Spike (ι	ıg/Kg)	Spike	Duplicate	(ug/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	14.2U	127	106	84	127	103	82	43-111	2.30	(< 20)
2-Methylnaphthalene	14.2U	127	104	83	127	102	81	39-114	2.30	(< 20)
Acenaphthene	14.2U	127	107	85	127	105	83	44-111	2.60	(< 20)
Acenaphthylene	14.2U	127	111	87	127	108	85	39-116	2.60	(< 20)
Anthracene	14.2U	127	112	89	127	110	87	50-114	2.10	(< 20)
Benzo(a)Anthracene	14.2U	127	106	83	127	104	83	54-122	1.10	(< 20)
Benzo[a]pyrene	14.2U	127	112	88	127	109	86	50-125	2.70	(< 20)
Benzo[b]Fluoranthene	14.2U	127	113	89	127	109	87	53-128	3.40	(< 20)
Benzo[g,h,i]perylene	14.2U	127	106	84	127	102	81	49-127	3.90	(< 20)
Benzo[k]fluoranthene	14.2U	127	111	88	127	109	87	56-123	2.00	(< 20)
Chrysene	14.2U	127	109	86	127	107	85	57-118	1.40	(< 20)
Dibenzo[a,h]anthracene	14.2U	127	113	89	127	108	86	50-129	4.30	(< 20)
Fluoranthene	14.2U	127	110	87	127	109	87	55-119	0.84	(< 20)
Fluorene	14.2U	127	113	89	127	111	88	47-114	1.50	(< 20)
Indeno[1,2,3-c,d] pyrene	14.2U	127	115	91	127	111	88	49-130	4.20	(< 20)
Naphthalene	11.4U	127	104	82	127	102	81	38-111	2.00	(< 20)
Phenanthrene	14.2U	127	108	85	127	106	84	49-113	1.60	(< 20)
Pyrene	14.2U	127	114	90	127	113	90	55-117	0.70	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		127	102	81	127	101	80	58-103	0.96	
Fluoranthene-d10 (surr)		127	104	82	127	103	82	54-113	0.54	

Batch Information

Analytical Batch: XMS11960

Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 3/18/2020 9:01:00PM

Prep Batch: XXX42868

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 3/17/2020 9:40:14AM

Prep Initial Wt./Vol.: 22.76g Prep Extract Vol: 5.00mL

Print Date: 03/25/2020 3:13:40PM

Method Blank

Blank ID: MB for HBN 1805111 [XXX/42873]

Blank Lab ID: 1553660

QC for Samples:

1201004003, 1201004004

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.259J
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 58* 60-120 %

Batch Information

Analytical Batch: XFC15558 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Analytical Date/Time: 3/19/2020 12:48:00PM

Prep Batch: XXX42873 Prep Method: SW3535A

Prep Date/Time: 3/17/2020 2:50:16PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 03/25/2020 3:13:41PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1201004 [XXX42873]

Blank Spike Lab ID: 1553661 Date Analyzed: 03/19/2020 12:58

QC for Samples: 1201004003, 1201004004

Spike Duplicate ID: LCSD for HBN 1201004

[XXX42873]

Spike Duplicate Lab ID: 1553662 Matrix: Water (Surface, Eff., Ground)

Results by AK102

		Blank Spike	(mg/L)	:	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	13.2	66	* 20	14.1	71	* (75-125)	6.70	(< 20)
Surrogates									
5a Androstane (surr)	0.4	75.4	75	0.4	83	83	(60-120)	9.70	

Batch Information

Analytical Batch: XFC15558 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX42873
Prep Method: SW3535A

Prep Date/Time: 03/17/2020 14:50

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 03/25/2020 3:13:44PM

Method Blank

Blank ID: MB for HBN 1805200 [XXX/42883]

Blank Lab ID: 1553976

QC for Samples: 1201004001

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	12.5U	25.0	6.25	ug/Kg
2-Methylnaphthalene	12.5U	25.0	6.25	ug/Kg
Acenaphthene	12.5U	25.0	6.25	ug/Kg
Acenaphthylene	12.5U	25.0	6.25	ug/Kg
Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo(a)Anthracene	12.5U	25.0	6.25	ug/Kg
Benzo[a]pyrene	12.5U	25.0	6.25	ug/Kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	ug/Kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	ug/Kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	ug/Kg
Chrysene	12.5U	25.0	6.25	ug/Kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	ug/Kg
Fluoranthene	12.5U	25.0	6.25	ug/Kg
Fluorene	12.5U	25.0	6.25	ug/Kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	ug/Kg
Naphthalene	10.0U	20.0	5.00	ug/Kg
Phenanthrene	12.5U	25.0	6.25	ug/Kg
Pyrene	12.5U	25.0	6.25	ug/Kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	75.2	58-103		%
Fluoranthene-d10 (surr)	89.6	54-113		%

Batch Information

Analytical Batch: XMS11967 Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 3/23/2020 4:20:00PM

Prep Batch: XXX42883 Prep Method: SW3550C

Prep Date/Time: 3/20/2020 9:39:52AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 03/25/2020 3:13:46PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1201004 [XXX42883]

Blank Spike Lab ID: 1553977 Date Analyzed: 03/23/2020 16:40

Matrix: Soil/Solid (dry weight)

QC for Samples: 1201004001

Results by 8270D SIM (PAH)

	E	Blank Spike	(ug/Kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	111	87.4	79	(43-111)
2-Methylnaphthalene	111	88.5	80	(39-114)
Acenaphthene	111	91.9	83	(44-111)
Acenaphthylene	111	91.0	82	(39-116)
Anthracene	111	93.2	84	(50-114)
Benzo(a)Anthracene	111	91.2	82	(54-122)
Benzo[a]pyrene	111	93.9	85	(50-125)
Benzo[b]Fluoranthene	111	92.9	84	(53-128)
Benzo[g,h,i]perylene	111	94.5	85	(49-127)
Benzo[k]fluoranthene	111	106	95	(56-123)
Chrysene	111	102	92	(57-118)
Dibenzo[a,h]anthracene	111	93.9	85	(50-129)
Fluoranthene	111	104	94	(55-119)
Fluorene	111	93.2	84	(47-114)
Indeno[1,2,3-c,d] pyrene	111	100	90	(49-130)
Naphthalene	111	90.5	82	(38-111)
Phenanthrene	111	89.2	80	(49-113)
Pyrene	111	106	95	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	111	79.1	79	(58-103)
Fluoranthene-d10 (surr)	111	86.1	86	(54-113)

Batch Information

Analytical Batch: XMS11967
Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: **DSD**

Prep Batch: XXX42883
Prep Method: SW3550C

Prep Date/Time: 03/20/2020 09:39

Spike Init Wt./Vol.: 111 ug/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/25/2020 3:13:48PM

Matrix Spike Summary

Original Sample ID: 1209096004 MS Sample ID: 1553978 MS MSD Sample ID: 1553979 MSD

QC for Samples: 1201004001

Analysis Date: 03/23/2020 18:02 Analysis Date: 03/23/2020 18:23 Analysis Date: 03/23/2020 18:43 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Mat	rix Spike (ι	ıg/Kg)	Spike	Duplicate	(ug/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	16.4U	143	123	86	144	123	86	43-111	0.43	(< 20)
2-Methylnaphthalene	16.4U	143	122	85	144	122	85	39-114	0.15	(< 20)
Acenaphthene	16.4U	143	125	88	144	125	87	44-111	0.23	(< 20)
Acenaphthylene	16.4U	143	130	91	144	131	91	39-116	0.86	(< 20)
Anthracene	16.4U	143	132	93	144	132	92	50-114	0.13	(< 20)
Benzo(a)Anthracene	16.4U	143	125	88	144	126	87	54-122	0.57	(< 20)
Benzo[a]pyrene	16.4U	143	136	95	144	135	94	50-125	0.74	(< 20)
Benzo[b]Fluoranthene	16.4U	143	129	90	144	129	89	53-128	0.04	(< 20)
Benzo[g,h,i]perylene	16.4U	143	129	90	144	126	88	49-127	1.80	(< 20)
Benzo[k]fluoranthene	16.4U	143	138	96	144	135	94	56-123	1.50	(< 20)
Chrysene	16.4U	143	130	91	144	130	90	57-118	0.01	(< 20)
Dibenzo[a,h]anthracene	16.4U	143	132	93	144	131	91	50-129	1.30	(< 20)
Fluoranthene	16.4U	143	130	91	144	134	92	55-119	2.40	(< 20)
Fluorene	16.4U	143	132	93	144	132	92	47-114	0.33	(< 20)
Indeno[1,2,3-c,d] pyrene	16.4U	143	138	96	144	136	94	49-130	1.40	(< 20)
Naphthalene	13.1U	143	123	86	144	124	86	38-111	0.91	(< 20)
Phenanthrene	16.4U	143	128	89	144	127	88	49-113	0.69	(< 20)
Pyrene	16.4U	143	136	95	144	138	96	55-117	1.40	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		143	119	83	144	122	85	58-103	2.80	
Fluoranthene-d10 (surr)		143	123	86	144	127	88	54-113	3.20	

Batch Information

Analytical Batch: XMS11967

Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: DSD

Analytical Date/Time: 3/23/2020 6:23:00PM

Prep Batch: XXX42883

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 3/20/2020 9:39:52AM

Prep Initial Wt./Vol.: 22.92g Prep Extract Vol: 5.00mL

Print Date: 03/25/2020 3:13:50PM

1201004

SHANNON & Geotechnical and Env	WILSON, INC. vironmental Consultants	CF	AIN-	OF-	-cus	TODY	REC	ORE)	Laborator	y SGS Pa USTIN	geof
(206) 632-8020 (314	_ouis, MO 63146-3564 1) 699-9660	Pasco, WA 9 (509) 946-63		o, Suite A			Analysis	(include	rs/Sample Co	ntainer Desc		
Fairbanks, AK 99709 (907) 479-0600 3990 Collins Way, Suite 100 Lake Oswego, OR 97035 Anc (907) Anc (907) Den	0 Fairbanks Street, Suite S- horage, AK 99518 2) 561-2120 1 Bannock Street, Suite 200 ver, CO 80204 8) 825-3800 Lab No.	\geq	Date Sampled		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ON MAIN	05 M		S. S	//	Kurite de Personal	rks/Matrix
100688-B1252	(AB)	11:05	3/12/202		X		X		f - f	2		
100688-B1354	(ZAB)	13:13	3/12/2020	0			1			2	(1)	mple
100688-BIZMW	(349)	13:45	3/12/2021		\ \ \ \ \		X			7	water so	npu
100688-BI3MW	(446)	14:07	3/12/202	<u></u>	X		×			7	water so	,
100688-STB	(SA)	16.00	3/12/2020	,		X				i	lab trip	
100698-WTB	(bAC)	16:00	3/12/202	٥		\forall				3	water tri	
Project Information	on Samı	ole Receip	ot			ned By:			uished By			ed By: 3.
Project Number: 100688	Total Number			Signatur	e://	Time: (6 •	57 Sig	nature:	Time:	S	ignature:	Time:
Project Name: South Park Mo. Contact: SKD				Printed I		Date: 3/12	2020 Prin	ntex Name:	Date: _	P	rinted Name.	Date:
Contact: SKD Ongoing Project? Yes XI	Received Goo		-	Step	hanie D	W						
Sampler: SKD	(attach shipping			Sha	mort Mi	5.0	Cor	mpany:			company:	
	Instructions			Re	ceived	By:	1	Receiv	ed By:	2.	Received E	3v: 3.
Requested Turnaround Time	: 5-Day R	USH		Signatur	e:	Time:	Sig	nature:	Time:		ignature:	Time: /657
Special Instructions:	('			Printed I	Vame:	Date:	Prir	nted Name:	Date:	P	Mulbe Ole rinted Name:	Date: 3/12/20
		-									Michelle Albas	rah
Yellow - w/shipment	- returned to Shannon & W - for consignee files	/ilson w/ labora	tory report	Compar	ıy:		Cor	mpany:	*	'	Company:	2.7 075
Pink - Shannon & W	ilson - Job File									-	<u> </u>	HD/Absent

e-Sample Receipt Form

SGS Workorder #:

1201004

D : 0 :: 1	I				<u> </u>		0 0	
Review Criteria	Condition (Yes,	No, N/A				oted bel		
Chain of Custody / Temperature Require			Yes	Exemption perm	itted if sar	mpler hand	carries/deli	vers.
Were Custody Seals intact? Note # & lo	cation N/A	Absent						
COC accompanied sam	nples? Yes							
DOD: Were samples received in COC corresponding co								
, , ,				, ,				
N/A **Exemption permitted if ch								_
Temperature blank compliant* (i.e., 0-6 °C after	CF)? Yes	Cooler II	D:	1	@	2.9 °(Therm. ID:	D45
		Cooler II	D:		@	°C	Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will be		Cooler II	D:		@	°C	Therm. ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chille be noted if neither is available.	ed" will	Cooler II)·		@	۰۵	Therm. ID:	
be noted if neither is available.		Cooler II	_		@		Therm. ID:	
*If: COC ware some as allocated to be were	200	Coolei II	J		w		1 memil. ID.	
*If >6°C, were samples collected <8 hours a	ago? N/A							
If <0°C, were sample containers ice f	ree? N/A							
	<u> </u>							
Note: Identify containers received at non-compliant tempera	ture.							
Use form FS-0029 if more space is nee								
Holding Time / Documentation / Sample Condition Reg		Note: Refe	r to fo	orm F-083 "Sample (Guide" for s	pecific holdin	ng times.	
Were samples received within holding t	time? Yes							
Do samples match COC** (i.e.,sample IDs,dates/times collec	ted)? Yes							
**Note: If times differ <1hr, record details & login per CO	C.							
***Note: If sample information on containers differs from COC, SGS will default to CC								
Were analytical requests clear? (i.e., method is specified for ana	lyeoc Yes							
with multiple option for analysis (Ex: BTEX, Me	etals)							
	J. J							
			N1/A		20. 16	/	000 0/000	20.4.
			N/A	***Exemption pe	rrnitted to	r metals (e.	.g,200.8/602	<u>2UA).</u>
Were proper containers (type/mass/volume/preservative***)u	ised? Yes							
Volatile / LL-Hg Requ	<u>irements</u>							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sam	ples? Yes	-		3G have heads	pace grea	ater than 6	mm.Procee	eding
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6r	mm)? No	with rem	ainir	ng voa vial.				
Were all soil VOAs field extracted with MeOH+E								
Note to Client: Any "No", answer above indicates non-		with stance	lard r	procedures and m	av impac	t data guali	itv	
Note to offent. Any two, answer above indicates non-	онтриансе	willi Stail	iaiu þ	Diocedules and II	iay iiripac	ı dala yudlı	ity.	
Additional	notes (if a	pplicabl	e):					

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1201004001-A	No Preservative Required	ОК			
1201004001-B	Methanol field pres. 4 C	OK			
1201004002-A	No Preservative Required	OK			
1201004002-B	Methanol field pres. 4 C	OK			
1201004003-A	No Preservative Required	OK			
1201004003-B	No Preservative Required	OK			
1201004003-C	HCL to pH < 2	OK			
1201004003-D	HCL to pH < 2	OK			
1201004003-E	HCL to pH < 2	ОК			
1201004003-F	HCL to pH < 2	BU			
1201004003-G	HCL to pH < 2	BU			
1201004004-A	No Preservative Required	ОК			
1201004004-B	No Preservative Required	ОК			
1201004004-C	HCL to $pH < 2$	OK			
1201004004-D	HCL to pH < 2	ОК			
1201004004-E	HCL to pH < 2	ОК			
1201004004-F	HCL to pH < 2	OK			
1201004004-G	HCL to $pH < 2$	OK			
1201004005-A	No Preservative Required	OK			
1201004006-A	HCL to $pH < 2$	OK			
1201004006-B	HCL to pH < 2	ОК			
1201004006-C	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

LABORATORY DATA REVIEW CHECKLIST

Completed by: Schylar Healy Title: Environmental Scientist

Date: May 2020

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America Inc. **Laboratory Report Number:** 1201004 **Laboratory Report Date:** March 25, 2020

Contaminated Site Name: South Park Mobile Home Park

ADEC File Number: 2100.38.454 **Hazard Identification Number:** 4116

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes/ No / NA
 Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? **Yes / No (NA)**

Comments: The samples were not transferred to another "network" laboratory or subcontracted to an alternate laboratory.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?Yes/ No / NAComments:

b. Correct analyses requested? Yes / No / NA Comments: The laboratory recorded project Samples B12S2 and B13S4 as B1252 and B1354, respectively. The samples are identified as Samples B12S2 and B13S4 in the attached report.

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? Yes/ No / NA

Comments: *The cooler temperature blank was* 2.9° *Celsius.*

- b. Sample preservation acceptable acidified waters, Methanol preserved VOC soil (GRO, BTEX, VOCs, etc.)? Yes/ No / NA Comments:
- Sample condition documented broken, leaking (MeOH), zero headspace (VOC vials)?
 Yes/ No / NA
 Comments:
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes / No / NA
 Comments: According to the laboratory report, two groundwater voa vials submitted for Sample B12MW contained headspace greater the 6mm. However, the laboratory was able to proceed with the with the remaining voa vial submitted for Sample B12MW.
- **e.** Data quality or usability affected? Comments: *See above*.

4. Case Narrative

- a. Present and understandable? Yes/ No / NA Comments:
- **b.** Discrepancies, errors or QC failures noted by the lab? Yes / No / NA Comments: *The laboratory noted the following:*
 - Sample B12S2: 8270D SIM The PAH LOQs are elevated due to sample dilution. The sample was diluted due to the dark color of the extract.
 - Sample B12MW: 8270D SIM PAH surrogate recovery for Fluoranthene-d10 does not meet QC criteria. The sample was re-extracted past hold time. Surrogate recovery was not within QC criteria and results are comparable. The in-hold data is reported.
 - Sample B13MW: 8270D SIM PAH surrogate recovery for 2-Methylnaphthalene d10 and Fluoranthene-d10 do not meet QC criteria. The sample was re-extracted past hold time. Surrogate recovery was not within QC criteria and results are comparable. The in-hold data is reported.
 - LCS/LCSD: AK102 LCS and LCSD recoveries for DRO does not meet QC criteria. The samples could not be re-extracted due to laboratory error.
 - MB: AK103 Surrogate recovery for and n-triacontane do not meet QC criteria. Surrogate recoveries are within QC criteria in the associated samples. RRO is detect in the MB greater than one half the LOQ, but less than the LOQ
 - MS: 8260C- MS recoveries for 2,2-dichloropropane and hexachlorobutadiene do not meet QC criteria. These analytes were not detected above the LOQ in the parent sample.
 - MSD: 8260C MSD recoveries for multiple analytes do not meet QC criteria. These analytes were not detected above the LOQ in the parent sample.
 - MSD: 8760C MS/MSD RPD for naphthalene and 1,2,3-trichlorobenzene do not

meet QC criteria. These analytes were not detected above the LOQ in the parent sample.

c. Were all corrective actions documented? **Yes**/**No**/**NA** Comments: *See above*.

d. What is the effect on data quality/usability, according to the case narrative? Comments: *See above*.

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Ves/No/NA Comments:
- **b.** All applicable holding times met? **Yes**/**No**/**NA** Comments:
- c. All soils reported on a dry weight basis? (Yes) No / NA Comments:
- **d.** Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? **Yes** No NA Comments: *The LOQs for 1,2,3-trichloropropane and 1,2-dibromoethane are greater than the ADEC soil cleanup levels. The LOQ for 1,2,3-trichloropropane is greater than the ADEC groundwater cleanup level.*
- **e.** Data quality or usability affected? Comments: *There is a potential that these VOCs are present at concentrations greater than the ADEC cleanup levels but less than the LOQs.*

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis, and 20 samples?Yes/ No / NAComments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes No / NA

Comments: The groundwater method blank for Samples B12MW and B13MW contained an estimated concentration of DRO (0.259 J mg/L) less than the LOQ.

iii. If above LOQ or project specified objectives, what samples are affected? Comments: *Samples M12MW and B13MW*.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes/ No / NA

Comments: Although less than the LOQ, samples are flagged "B" in Table 3 when the reported sample concentration is within 10x the reported method blank concentration. Concentrations of DRO detected in Samples B12MW, B13MW, and the method blank are reported at levels less than the LOQ; therefore, the sample concentrations are reported as non-detect at the LOQ.

v. Data quality or usability affected? Comments: *See above*.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/ No / NA Comments:
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No NA Comments:
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes No NA Comments: 8260C-LCS recoveries for 2,2-dichloropropane and 1,2-dibromoethane do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples. LCS and LCSD recoveries for DRO in the groundwater project samples did not meet QC criteria.
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from LCS/LCSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No / NA Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Project samples are considered unaffected by the 2-dichloropropane and 1,2-dibromoethane recovery failures because these analytes were not detected in the project samples. LCS and LCSD recoveries for DRO in the groundwater project samples did not meet QC criteria. DRO concentrations detected in the groundwater samples have already been flagged due to a method blank detection; therefore, additional flagging will not be applied.

vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes / No / NA

Comments: See above.

vii. Data quality or usability affected?

Comments: No, see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis, and 20 samples?
Yes/ No / NA

Comments:

ii. Metals/Inorganics - One MS and one MSD reported per matrix, analysis and 20 samples? Yes / No / NA Comments:

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes No NA Comments: MS/MSD recoveries for multiple analytes do not meet QC criteria. These analytes were not detected above the LOO in the parent sample.
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from MS/MSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No NA
 Comments: MS/MSD RPD for naphthalene and 1,2,3-trichlorobenzene do not meet QC criteria. These analytes were not detected above the LOQ in the parent sample.
- **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments: *Analytes with RPD failures were not detected above the LOQ in the parent sample; therefore, project samples are unaffected.*
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes No/NA

Comments: Project were unaffected because the analytes with %R and RPD failures were not detected above the LOQ in the associated samples.

vii. Data quality or usability affected?

Comments: No. see above.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

- i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples? Yes No / NA
 Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No/NA Comments: PAH surrogate recoveries for Fluoranthene-d10 in Samples B12MW and B13MW are outside QC criteria. PAH surrogate recovery for 2-Methylnaphthalene d10 for Sample B13MW is also outside QC criteria.
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes / No / NA

 Comments: Shannon & Wilson-applied data flags ("J-") are presented on Table 3 to indicate the analytical results are potentially biased low due to surrogate failure.
- **iv.** Data quality or usability affected? Comments: See above.
- e. Trip Blank Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? Yes/No/NA
 Comments: One soil trip blank (STB) and one water trip blank (WTB) were submitted to the laboratory with the project samples.
 - ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? Yes No NA

 Comments: Only one cooler was used to transport the samples.
 - iii. All results less than LOQ and project specified objectives? Yes / No / NA Comments:
 - **iv.** If above LOQ or project specified DQOs, what samples are affected? Comments:
 - **v.** Data quality or usability affected? Comments: *See above*.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?
 Yes (No) NA
 Comments: A duplicate sample was not included in our ADEC approved work plan.

- ii. Were the field duplicates submitted blind to the lab? Yes / No / NA Comments:
- iii. Precision All relative percent differences (RPDs) less than specified project objectives? (Recommended: 30% for water, 50% for soil) Yes / No / NA Comments:
- **iv.** Data quality or usability affected? Comments: *See above*.
- **g. Decontamination or Equipment Blank** (if not applicable, a comment stating why must be entered below).

Yes /No NA

Comments: An equipment blank sample was not included in our ADEC approved work plan.

- All results less than LOQ and project specified objectives?
 Yes / No NA
 Comments:
- **ii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- **iii.** Data quality or usability affected? Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate? Yes / No / NA Comments: A key is provided on Page 3 of the SGS Laboratory Report.

ATTACHMENT 5 IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 100688-002

Date: May 2020

To: Debenham Properties, LLC

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 8/2018

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 8/2018