

global environmental solutions

2015 Groundwater Monitoring Report Ralph Wein Memorial Airport, Kotzebue, Alaska Alaska Airlines ADEC File Number 410.26.005 SLR Ref: 105.00104.14001

December 2015

2015 Groundwater Monitoring Report Ralph Wein Memorial Airport, Kotzebue, Alaska

Prepared for:

Alaska Airlines, Inc PO Box 68900-SEAZE Seattle, WA 98168-0900

This document has been prepared by SLR International Corporation. The material and data in this report were prepared under the supervision and direction of the undersigned.

Ben Siwiec Associate Scientist

Stan Flagel 🖌 0

Principal Scientist

ACR	ONYN	S	iii
SUM	MARY	,	4
1.	INTR	DDUCTION	5
	1.1	Site Description and Background	5
	1.2	Project Objectives and Scope of Work	6
2.	Regu	latory Criteria	7
	2.1	Groundwater Regulatory Criteria	7
3.	Field	Activities	8
	3.1	Site Conditions	8
	3.2	Abandon Monitoring Well MW-3	8
	3.3	Drilling and Well Installation	9
	3.4	Waste Characterization Soil Sampling	10
	3.5	MW-2 Surface Repair	
	3.6	Groundwater Sampling	
	3.7	Sample Handling	
	3.8	Groundwater Flow Direction	
	3.9	ADEC Building Survey and Indoor Air Sampling Questionnaire	
	3.10	Decontamination and Waste Management	
	3.11	Calibration Procedures	
	3.12	Health and Safety	12
4.	Resu	lts	13
	4.1	Groundwater Sampling	13
	4.2	Waste Characterization Soil Sampling	13
	4.3	Groundwater Flow Direction	14
	4.4	ADEC Building Survey and Indoor Air Sampling Questionnaire	
	4.5	Quality Assurance and Quality Control	14
5.	Discu	ssion and Conclusions	16
6.	REFE	RENCES	17

CONTENTS

FIGURES

Figure 1	Site Location Map
Figure 2	Site Layout Map

TABLES

Table 1	2015 Groundwater Analytical Results
Table 2	2015 Soil Analytical Results
Table 3	Historical Groundwater Analytical Results

APPENDICES

Appendix A Photograph Log Appendix B Field Forms and Field Notes

Appendix C ADEC Building Survey and Indoor Air Sampling Questionnaire

Appendix D SGS Laboratory Data Reports

Appendix E Data Quality Assurance Review and ADEC Laboratory Checklist

ACRONYMS

Alaska Administrative Code
Alaska Department of Environmental Conservation
Alaska Airlines
below ground surface
benzene, toluene, ethylbenzene, and xylenes
degrees Celsius
chain of custody
diesel range organics
Data Quality Assessment
gasoline range organics
Laboratory control sample
Laboratory control sample duplicate
milligrams per liter
polycyclic aromatic hydrocarbon
photoionization detector
polyvinylchloride
quality assurance
quality control
Relative percent difference
selective ion monitoring
SLR International Corporation
U.S. Environmental Protection Agency
volatile organic compound

SLR International Corporation (SLR) completed groundwater monitoring and well replacement activities at the Alaska Airlines, Inc. (AS) lease property, Block 1 Lots E, F, and G, located at the Ralph Wein Memorial Airport (Site) between September 30 to October 2, 2015. This property is also identified by Alaska Department of Environmental Conservation (ADEC) File Number 410.26.005 and Hazard ID Number 24439.

Monitoring well MW-1 was unable to be located and was replaced by new well MW-1R. Monitoring well MW-3 was damaged beyond repair and was replaced by MW-3R. A new surface completion was installed at MW-2.

Groundwater samples were collected from all three wells and analyzed for gasoline range organics (GRO), diesel range organics (DRO) and volatile organic compounds (VOCs). Samples from MW-1R and MW-3R were also analyzed for polycyclic aromatic hydrocarbons (PAHs).

VOCs were detected in groundwater samples from wells MW-1R, MW-2, and MW-3R; however, with the exception of benzene, all VOC concentrations were below ADEC groundwater cleanup levels. Concentrations above the method limits of detection were reported for a few PAHs, however, none exceeded an ADEC groundwater cleanup level.

At MW-1R, GRO, DRO, and benzene concentrations have decreased since 2000 relative to the historical results from the lost monitoring well MW-1. At MW-3R, GRO and benzene concentrations have decreased since 2000 relative to the historical results from abandoned well MW-3; however, DRO concentrations appear to have increased. A similar trend occurs at MW-2.

In September 2015, the groundwater flow direction beneath the Site was inferred to be to the northwest. However, given the very low gradient calculated for during the 2015 event (0.0015 to the northwest), the transient nature of suprapermafrost groundwater, and the small number of historical data points, a "normal" flow direction is difficult to estimate.

Soil waste characterization analyses for DRO, GRO, VOCs, and PAHs showed that concentrations for all tested analytes were below the ADEC Method Two soil cleanup level for migration to groundwater. These results indicate that the source of the groundwater contamination is not in the immediate vicinity of the wells tested and may be located offsite.

Finally, SLR field staff completed an *ADEC Building Survey and Indoor Air Sampling Questionnaire*. Potential sources were detected in the large garage area which is well ventilated. A photoionization detector (PID) was used to screen for the presence or absence of total volatile hydrocarbon in the building. All PID readings were non-detect. The slab on grade concrete foundation was found to be in good condition with no significant cracks

SLR International Corporation (SLR) is pleased to submit this Groundwater Monitoring Report for the Alaska Airlines, Inc. (AS) lease property, Block 1 Lots E, F, and G, located at the Ralph Wein Memorial Airport (Site) (Figure 1). This property is also identified by Alaska Department of Environmental Conservation (ADEC) File Number 410.26.005 and Hazard ID Number 24439. This report describes the field activities performed on September 30 to October 2, 2015 at the Site and presents the associated laboratory results.

1.1 SITE DESCRIPTION AND BACKGROUND

The AS facility is located at Wein Memorial Airport on Alaska Department of Transportation and Public Facilities lease Lots E, F, and G, Block 1. It includes a two-story terminal building, fueling area, and cargo storage area to the west of the terminal building (Figure 2).

The Kotzebue area is underlain by continuous permafrost with a near-surface soil layer that freezes and thaws annually (i.e., an "active layer"). Beneath undeveloped areas, the active layer is typically less than 2 feet thick. In developed areas, such as beneath the AS terminal facility, seasonal thaw depths of up to 10 feet may be present (URS, 2001). Suprapermafrost groundwater (i.e., water above the permafrost layer) exists beneath the airport area and has been observed at between 2 to 5 feet below ground surface (bgs). Based on suprapermafrost groundwater elevations measured in 2000, the water flow beneath the AS terminal facility was estimated to be to the east, toward Kotzebue Lagoon. However, because of the transient nature of the suprapermafrost groundwater, specific flow gradients are difficult to determine.

The airport is bordered by surface water with Kotzebue Sound located to the west and Kotzebue Lagoon to the east (Figure 1). Due to permafrost conditions, which limit the quantity of available water and the brackish quality of the saturated zone, suprapermafrost water in the Kotzebue area is not used as a drinking water source (Maul Foster & Alongi, Inc. and SLR Alaska, 2003). Water for domestic use is piped to Kotzebue from Vortac and Devil's Lakes located more than one mile east and upgradient of the airport (U.S. Geological Survey, 1995).

Based on the operational history of the site, four areas of concern were identified and investigated in 2000. The AOCs included: the area around a former 550-gallon gasoline underground storage tank (UST) which was removed in 1994; the area around the 10,000-gallon Jet A UST used to supply fuel to an aircraft refueling hydrant system and the terminal building heating system; the area southwest of the AS terminal; and the area near a former heating oil aboveground storage tank and fuel line that was used during construction of the AS terminal building in the mid-1980s.

The Site was last sampled 2010, but only monitoring well MW-2 was sampled. Monitoring well MW-1 was not found and monitoring well MW-3 was found to be broken. Analytical results from the October 2010 sampling event included decreased gasoline range organics (GRO) and benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations, and increased diesel residual organics (DRO) concentrations since 2002. Decommissioning and replacement of

monitoring wells MW-1 and MW-3 were recommended along with additional groundwater sampling at the site.

1.2 PROJECT OBJECTIVES AND SCOPE OF WORK

Based on recommendations from the 2010 Ground Water Monitoring Report (SLR, 2010), the objectives and scope of work for this sampling event were as follows:

- Replace flush mount lid at monitoring well MW-2;
- Abandon monitoring well MW-3;
- Replace monitoring wells MW-1 and MW-3,
- Collect groundwater samples from monitoring well MW-2 and from replacement monitoring wells MW-1R and MW-3R, and analyze samples for GRO, DRO, and volatile organic compounds (VOCs) including BTEX, and polycyclic aromatic hydrocarbons (PAHs) at MW-1R and MW-2R only; and
- Complete a vapor intrusion building survey in accordance with ADEC Vapor Intrusion Guidance, Appendix I (ADEC, 2012)

The scope of work was completed consistent with the 2015 Groundwater Monitoring Work Plan, Alaska Airlines Kotzebue Facility (Work Plan) (SLR, 2015), ADEC correspondence dated March 4, 2015, and telephone conversations between ADEC, SLR, and Alaska Air..

ADEC regulations applicable to this project are contained in Title 18 of Alaska Administrative Code (AAC), Chapter 75 Oil and Other Hazardous Substances Pollution Control (18 AAC 75), as updated on June 17, 2015 (ADEC, 2015). This section describes the cleanup criteria that currently apply to groundwater at the property.

2.1 GROUNDWATER REGULATORY CRITERIA

Groundwater cleanup levels are presented in 18 AAC 75.345, Table C, and are summarized below for the relevant analytes.

- Benzene, 0.005 milligrams per liter (mg/L);
- Toluene, 1.0 mg/L;
- Ethylbenzene, 0.7 mg/L;
- Total xylenes, 10.0 mg/L;
- GRO, 2.2 mg/L; and
- DRO, 1.5 mg/L.

Groundwater cleanup levels for the complete list of VOCs and PAHs analyzed are provided with the results in Table 1.

To accomplish the proposed 2015 scope of work at the Site the following field activities were completed:

- Abandoned monitoring well MW-3;
- Replaced monitoring wells MW-1 and MW-3 with new wells MW-1R and MW-3R;
- Replaced flush mount surface completion at MW-2;
- Collected soil samples from wellbores MW-1R and MW-3R, and from containerized soil cuttings, for disposal characterization;
- Collected groundwater samples from monitoring wells MW-1R, MW-2, and MW-3R;
- Surveyed three wells and calculate groundwater flow direction; and
- Complete ADEC Building Survey and Indoor Air Sampling Questionnaire for the AS terminal property.

Drilling oversight and sampling was conducted by SLR. The SLR field staff met the criteria for "qualified environmental professional" under 18 AAC 75.333(c). All field activities were completed consistent with the Work Plan.

3.1 SITE CONDITIONS

Upon arrival at the Site, the weather was slightly above freezing with occasional snow showers. The project area had a light cover of snow and slush in places, but was mostly bare and wet. Alaska Airlines operations equipment was staged around monitoring well MW-2. The area near MW-3 was mostly clear. As previously reported, no evidence of well MW-1 was found.

Monitoring well MW-2 was located but was missing its monument cover. The remaining parts of the flush-mount vault were damaged, but the polyvinylchloride (PVC) well casing was intact and was sealed with a standard compression well cap. The well was determined to be operational and able to be sampled.

Monitoring well MW-3 was located and found to be damaged and not repairable, as previously reported (Photograph 1 of Appendix A). The upper-most piece of casing was broken at the surface and the upper 3-feet of casing came loose when pulled. The section below the upper 3-feet of casing was obstructed and could not be cleared.

Well locations are shown on Figure 2.

3.2 ABANDON MONITORING WELL MW-3

Monitoring well MW-3 was abandoned on September 30, 2015. The flush mount vault was removed and approximately 3-feet of casing were pulled from the wellbore. The end of the pulled casing was plugged with bentonite. It was not possible to remove the deeper sections of casing and screen without over drilling. As a result, the casing and screen material below 3-feet bgs were left in place.

The casing remaining in the ground was filled with bentonite chips. The bentonite was applied in 1-foot lifts, and each lift was hydrated with potable water. Clean fill material was used to backfill the hole from 3-feet bgs to the surface (Photograph 2 of Appendix A).

3.3 DRILLING AND WELL INSTALLATION

Replacement wells for MW-1 and MW-3 were installed on September 30, 2015 consistent with *ADEC Monitoring Well Guidance* (ADEC, 2013). Prior to drilling, SLR marked the replacement well locations, MW-1R and MW-3R (Figure 2) and contacted the Alaska Dig Line. No public utilities were found beneath the drilling locations; however, based on observations in the area, buried private electrical lines were identified. Borings were located to avoid the electrical lines based on surface disturbances (i.e., old cuts in the asphalt) and aboveground expressions (e.g., junction boxes and cables enter the ground) identified on adjacent building and light post.

Drake Construction (Drake) of Kotzebue, Alaska was contracted to drill the two new well borings. MW-1R was drilled in the area near former monitoring well MW-1, and MW-3R was drilled approximately 2 feet north of abandoned monitoring well MW-3.

For monitoring well MW-3R, Drake initially used a 6-foot long, 8-inch wide auger mounted on a front loader and drilled to approximately 6-feet bgs MW-3R (Photograph 3 of Appendix A); however, because the saturated zone was not observed additional drilling was required. To drill beyond 6-feet bgs, Drake used a truck-mounted rig with an extendable 12-inch wide auger (Photograph 4 of Appendix A). The saturated zone at MW-3R was encountered at just below 6-feet bgs and water quickly filled the boring to approximately 3-feet bgs. The drill rig met refusal, in what was assumed to be frozen soil, at between 6- and 7-feet bgs.

Monitoring well MW-3R was constructed with 4.5-foot pre-packed well screen (slot size 010) installed between 6-feet and 1.5-feet bgs. A section of PVC blank casing was treaded into the top of the screen, initially extending it above the ground surface, and a PVC end capped was screwed onto the bottom of the screen (Photograph 5 of Appendix A). Silica sand (10/20 sieve size) was poured into the boring around the screen to a depth of 1.5-feet bgs and bentonite chips were installed and hydrated on top the sand pack to a depth of 0.5 feet. Clean sand and gravel was used to backfill from 0.5-feet bgs to the surface. A new flush mount vault was installed at the surface and the PVC riser was cut fit within the vault.

Monitoring Well MW-1R was drilled using the truck-mounted rig with the extendable 12-inch wide auger. At MW-1R the saturated zone was encountered at approximately 6-feet bgs. Once the saturated zone was penetrated, water quickly filled in the boring to approximately 3-feet bgs. Similar to well boring MW-3R, the drill rig met refusal just below 6-feet bgs, due to what was assumed to be frozen soil.

Monitoring well MW-1R was constructed with 4.2-foot pre-packed well screen (slot size 010) installed between 5.7-feet and 1.5-feet bgs. A section of PVC blank casing was treaded into the top of the screen, initially extending it above the ground surface, and a PVC end capped was screwed onto the bottom of the screen. Silica sand (10/20 sieve size) was poured into the boring around the screen to a depth of 1.5-feet bgs and bentonite chips were installed and hydrated on top the sand pack to a depth of 0.5 feet. Clean sand and gravel was used to backfill

from 0.5-feet bgs to the surface. A new flush mount vault was installed at the surface and the PVC riser was cut to fit within the vault (Photograph 7 of Appendix A).

The new monitoring wells were developed the following day using a Waterra pump and surge block system. Simultaneous pumping and surging was conducted producing approximately 2 gallons of water. Following development the water appeared brown and cloudy.

Well development forms and well construction diagrams for MW-1R and MW-3R are provided in Appendix B.

3.4 WASTE CHARACTERIZATION SOIL SAMPLING

Less than 1 cubic yard of drill cuttings were generated during the installation of MW-1R and MW-3R. Cuttings from each boring were containerized in a single super sack.

Waste characterization samples were collected from the auger flights using disposable stainless steel spoons at each boring from the interval between 1- to 6-feet bgs. One composite sample was also collected from the super sack. All samples were analyzed for GRO by Alaska Method 101 (AK101), DRO by AK 102, and VOCs by United States Environmental Protection (USEPA) Agency Method 8260B.

Soil descriptions and sampling depths were recorded on Soil Sampling Forms provide in Appendix B.

3.5 MW-2 SURFACE REPAIR

Monitoring well MW-2 had unrepairable damage to its flush mount vault but the well itself was still usable. Therefore, the old vault was pulled out of the ground and a new vault was installed around the PVC riser (Photographs 8 and 9 of Appendix A). The PVC riser was cut approximately 0.25-feet below the rim of the vault to avoid pushing on the lid in the future. A new compression plug was also installed.

3.6 GROUNDWATER SAMPLING

Groundwater samples were collected from each monitoring well consistent with low-flow purging and sampling methodology, as outlined in *Standard Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection* (USEPA, 2010). Well purging was conducted using a peristaltic pump with an adjustable flow rate, new disposable Teflon[®]-lined sample tubing, a flow-through cell, and a YSI 556 multi-parameter water quality meter.

Water quality parameters were measured at regular intervals during purging and were recorded on Groundwater Sample Logs (Appendix B). Purging was considered complete once water quality parameters (i.e., temperature, pH, and specific conductance) had stabilized. The readings were considered stable when three successive, discrete measurements were within the following criteria:

- Temperature, ± 1°C;
- pH, \pm 0.1 pH unit, and
- Specific conductance, \pm 5 percent.

Groundwater samples were collected into laboratory-supplied sample containers with preservative as appropriate. All samples were labeled with a unique identification code, placed in a hard-sided cooler with gel ice, and maintained at approximately 4 degrees Celsius.

Groundwater samples collected from MW-1R, MW-2, and MW-3R were analyzed for GRO and DRO, AK101 and AK102, respectively, and VOCs by USEPA Method 8260B. The samples from MW-1R (and its duplicate) and MW-3R were also analyzed for PAH SIMs by USEPA method 8270D. Samples were analyzed by SGS laboratory in Anchorage

3.7 SAMPLE HANDLING

Procedures used to maintain the integrity of soil and groundwater samples collected for laboratory analysis began at the time of collection and continued until analysis.

A bound field logbook, sample collection forms, and field logs were maintained to document the 2015 soil removal and sampling activities. Samples were assigned a unique identifier using project specific nomenclature. Field notes written in ink provided a record of information such as field staff, sample locations, field screening results, site observations, and work directives.

At the time of collection, sample containers appropriate for the specified analysis were filled and sealed. A blind sample designation was assigned to replicate samples and the collection time for these samples corresponded with the collection time of the primary sample. A trip blank was included in each cooler that contained samples to be analyzed for volatiles (i.e. GRO and BTEX). Labels indicating sample identification, date, time and the sampler's initials were affixed to the sample containers.

Chain of custody (COC) forms were completed as the samples were packaged into coolers for transport to the laboratory. Trip blanks, temperature blanks, and frozen gel ice packs were added to each cooler as required. The samples were maintained at a temperature of approximately 4 degrees Celsius (°C) from the time of collection until arrival at the laboratory. Samples delivered by SLR personnel directly to SGS with sufficient time to allow for sample extraction within the holding time requirements of the test methods.

3.8 GROUNDWATER FLOW DIRECTION

All three wells were surveyed by Drake using an RTK global positioning system. Horizontal and vertical survey data was used in conjunction with water level depth data collected as part of groundwater sampling to calculate the groundwater elevation at each well. With these data the groundwater flow direction was calculated.

3.9 ADEC BUILDING SURVEY AND INDOOR AIR SAMPLING QUESTIONNAIRE

The SLR field staff completed an *ADEC Building Survey and Indoor Air Sampling Questionnaire* using visual observations and by interviewing AS staff at the site. A photoionization detector was used to collect indoor and outdoor measurements of total volatile hydrocarbons. *ADEC Building Survey and Indoor Air Sampling Questionnaire* is provided in Appendix C.

3.10 DECONTAMINATION AND WASTE MANAGEMENT

All samples were collected with either new or decontaminated sampling equipment. Approximately 10 gallons of development and purge water was generated. All water was contained in a drum and stored on site near the soil staging area. Soil cuttings generated during drilling were containerized in a super sack and staged near the soils from a prior project. The super sack with drilling cutting was uniquely labeled as SS1 Generated 10/1/15, to distinguish it from the other super sacks in the soil staging area (Photograph 10 of Appendix A). All disposable sampling material was disposed of as non-oily waste on site. No hazardous waste was generated during this project.

3.11 CALIBRATION PROCEDURES

Field instruments were calibrated according to manufacturer specifications prior to use and periodically during sampling if instrument drift is suspected. At a minimum, field instruments were calibrated daily during the field event. Documentation of calibration in provided in Appendix B.

3.12 HEALTH AND SAFETY

This work was performed in accordance with Alaska Airlines Health and Safety procedures and the SLR Corporate Health and Safety Plan. Alaska Airlines provided an escort for the SLR scientist and drilling crew to comply with Kotzebue Airport badging requirements.

This section provides a summary of field and analytical results.

4.1 GROUNDWATER SAMPLING

VOCs were detected in groundwater samples from wells MW-1R, MW-2, and MW-3R; however, with the exception of benzene, all VOC concentrations were below ADEC groundwater cleanup levels. Benzene concentrations of 0.0245 mg/L, 0.013 mg/L, and 0.0553 mg/L were reported at MW-1R, MW-2, and MW-3R, respectively, and exceeded the ADEC groundwater cleanup level of 0.005 mg/L.

GRO was detected in groundwater from all three borings, but only exceeded the ADEC groundwater cleanup level of 2.2 mg/L in MW-3R with a concentration of 3.1 mg/L.

DRO was detected in groundwater in all three wells sampled and exceeded the ADEC groundwater cleanup level of 1.5 mg/L at all locations with concentrations of 3.22 mg/L and 2.29 mg/L, and 11.1 mg/L in MW-1R, MW-2, and MW-3R, respectively. In monitoring well MW-2, the DRO concentration in the primary sample was below the cleanup level at 1.47 mg/L; however, the DRO concentration reported in the duplicate sample was 2.29 mg/L.

Groundwater samples for PAH analyses were collected from monitoring wells MW-1R and MW-3R. Although PAH concentrations were reported above the method limits of detection for a few PAHs, none exceeded the ADEC groundwater cleanup levels.

The 2015 groundwater analytical results and ADEC groundwater cleanup levels are provided in Table 1 and shown on Figure 2. Historical groundwater results for GRO, DRO, BTEX, and PAHs are provided in Table 2. The 2015 SGS analytical laboratory reports are provided in Appendix D.

4.2 WASTE CHARACTERIZATION SOIL SAMPLING

GRO and DRO concentration were detected above the method limit of detection in all three soil samples; however all concentrations were below the ADEC Method Two soil cleanup levels for the Arctic Zone and the migration to groundwater for the Under 40 inch Precipitation Zone.

Eight VOCs were reported at concentrations above the method limit of detection; however, no VOC concentration exceeded an ADEC Method Two soil cleanup level. Four VOCs, although "non-detect" had laboratory method limits of detection that exceeded the ADEC Method Two soil cleanup level for migration to groundwater in the Under 40 inch Precipitation Zone. All soil analytical results and ADEC Method Two soil cleanup levels are provided in Table 2 and laboratory reports are provided in Appendix D.

4.3 GROUNDWATER FLOW DIRECTION

Based on the most recent surveyed top of casing elevation, and the 2015 measured depth to groundwater, water table elevations were calculated at each well. Using the three groundwater elevation points, the groundwater flow direction beneath the AS facility was inferred to be to the northwest with gradient of 0.0015 feet/feet. Groundwater elevations and the inferred flow direction are shown on Figure 2.

4.4 ADEC BUILDING SURVEY AND INDOOR AIR SAMPLING QUESTIONNAIRE

An ADEC Building Survey and Indoor Air Sampling Questionnaire were completed and no indoor air contamination was detected. Potential sources were found in the garage area and included heavy equipment exhaust, drums containing used oil and glycol (drums were in good condition and sealed), and a fuel oil powered boiler; no sources were found in the terminal or office areas.

The garage area has good airflow with an operating ventilation system. Airflow through the garage area is also facilitated through the frequent opening and closing of large bay doors. A photoionization detector (PID) was used to determine the presence or absence of total volatile organic hydrocarbons in the terminal and office areas, and the garage. All PID readings were non-detect.

The building's foundation is a concrete slab on grade; there is no basement or crawl space. No significant cracks or breaks were observed in the building's foundation at the time of the survey. In addition, a new concrete floor, with underlying insulation, was installed in the garage area in September 2015.

The completed survey and questionnaire is provided in Appendix C.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL

The analytical data were reviewed for consistency with the requirement of the Work Plan (SLR, 2015) and with *ADEC Technical Memorandum, Environmental Laboratory Data and Quality Assurance* (ADEC, 2009). The review was documented in the Data Quality Assessment (DQA) Review, which is provided in Appendix E. The DQA includes a list of all work order numbers for the project, a brief description of the type of samples analyzed, a Quality Assurance (QA) summary for the entire data set (except for waste characterization) and an ADEC Laboratory Data Review Checklist for each work order reviewed in the QA summary. The following data quality indicators were included in the review in order to evaluate the data against precision, accuracy, representativeness, completeness, and sensitivity requirements established for the project.

- COC paperwork and custody seals;
- Preservation (thermal 4 ± 2 °C and chemical);
- Analytical method hold times;

- Blanks (trip blanks and method blanks);
- Continuous calibration verifications;
- Internal standards;
- Surrogate recoveries;
- Laboratory control sample and laboratory control sample duplicate (LCS/LCSD) recoveries as percent recovery and precision as relative percent difference (RPD);
- Matrix spike and matrix spike duplicate recoveries as percent recovery, and precision as RPD;
- Field replicates as RPD; and
- Laboratory method detection and reporting limits.

Anomalies identified are discussed in the DQA. Where applicable, the associated data was qualified by applying flags. The rationale for applying qualifiers to specific data sets is detailed in DQA Review. The data flags used are presented below:

Q - One or more laboratory quality control (QC) criteria (for example, LCS recovery or surrogate spike recovery) failed. Where applicable, an "H", "L", or "N" was appended to indicate positive, negative, or unknown bias, respectively.

J - Estimated: The analyte was positively identified but the result was outside the calibration range, between the limit of quantitation and the detection limit; the quantitation was an estimate.

M - The concentration was an estimate due to a sample matrix QC failure. Where applicable, an "H", "L", or "N" will be appended to indicate positive, negative, or unknown bias, respectively.

B - Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone).

P - Sample preservation requirements were not satisfied.

The review indicated that the reported laboratory data met the data quality objectives. No data were rejected. A complete summary of the data review is provided in the DQA. Data qualifiers were added to the data tables and figures, where applicable.

Two replacement monitoring wells MW-1R and MW-3R were installed by SLR field staff on September 30, 2015 and developed on October 1 2015. The two new wells and existing monitoring well MW-2 were sampled on October 1, 2015.

At MW-1R, the GRO, DRO, and benzene concentrations have decreased since 2000 relative to the historical results from lost monitoring well MW-1. At MW-3R, GRO and benzene concentrations have decreased since 2000 relative to the historical results from abandoned well MW-3; however, DRO concentrations appear to have increased. A similar trend was observed at MW-2.

GRO, DRO, and benzene concentrations reported between 2000 and 2015 at MW-1, MW-1R, MW-2, MW-3, and MW3R are summarized in the table below. All historical results (i.e., GRO, DRO, BTEX, and PAHs) are provided in Table 3.

mg/L	CLEANUP LEVEL	MW-1 (2000)	MW-1R (2015)	MW-2 (2000)	MW-2 (2002)	MW-2 (2010)	MW-2 (2015)	MW-3 (2000)	MW-3R (2015)
GRO	2.2	59	1.9	0.830	0.559	0.100	0.0923	6.2	3.1
DRO	1.5	6.6	3.22	0.240	1.01	6.70	2.29	3.3	11.1
Benzene	0.005	0.785	0.0245	0.036	0.0300	0.0234	0.013	0.180	0.0553

Groundwater flow directions were inferred to be northwest, west, and southwest in previous reports (Shannon and Wilson, 2014). In September 2015, the groundwater flow direction beneath the AS Terminal was inferred to be to the northwest. However, given the very low gradient calculated for during the 2015 event (0.0015 to the northwest), the transient nature of suprapermafrost groundwater, and the small number of historical data points, a "normal" flow direction is difficult to estimate.

Soil waste characterization analyses for DRO, GRO, VOCs, and PAHs showed that concentrations for all tested analytes were below the ADEC Method Two soil cleanup level for migration to groundwater. These results indicate that the source of the groundwater contamination is not in the immediate area of the wells tested and may be located offsite.

SLR field staff also completed an *ADEC Building Survey and Indoor Air Sampling Questionnaire.* Potential sources were detected, but they were only located in the garage area which is well ventilated. In addition, a PID was used to screen for the presence or absence of total volatile hydrocarbon in the building. All PID readings were non-detect.

An additional monitoring event is recommended for fall 2016 to better estimate concentration trends for GRO, DRO, and benzene, and the groundwater flow direction and gradients beneath the Site. Once additional data are collected, and concentration trends and groundwater flow directions are better understood, the scope of additional investigation needed to determine nature and extent of impacts can be accessed. The building's foundation is a concrete slab on grade. No significant cracks or breaks were observed in the building's foundation at the time of the survey.

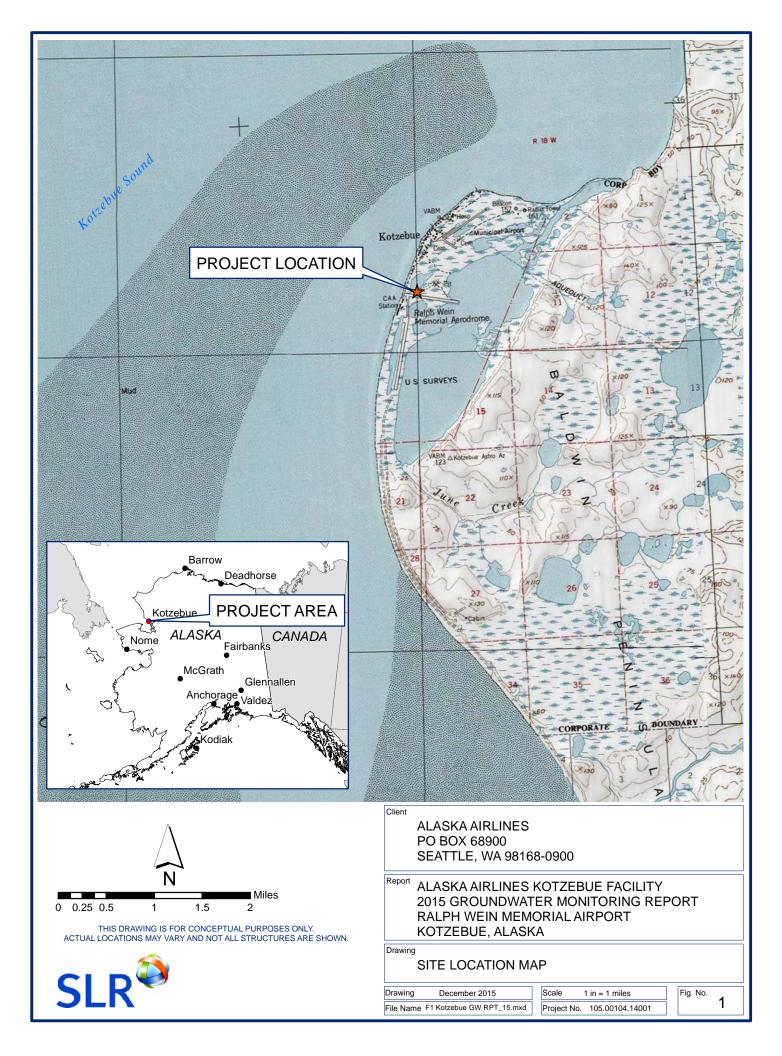
- Alaska Department of Environmental Conservation (ADEC). 2009. Environmental Laboratory Data and Quality Assurance Requirements. ADEC, Division of Spill Prevention and Response, Contaminated Sites Program Technical Memorandum 06-002. March 2009.
- ADEC, 2012. Vapor Intrusion Guidance for Contaminated Site. Division of Spill Prevention and Response, Contaminated Sites Program. October
- ADEC, 2013. ADEC Monitoring Well Guidance. Division of Spill Prevention and Response, Contaminated Site Program. September.
- ADEC, 2015. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control, as amended through June 17.
- Maul Foster & Alongi, Inc. and SLR Alaska, 2003. Release Investigation and Exposure Pathway Assessment Report, Alaska Airlines Terminal, Ralph Wein Memorial Airport, Kotzebue, Alaska. January.
- Shannon and Wilson, 2014. Groundwater Monitoring Report, Ralph Wien Memorial Airport, Kotzebue, Alaska. June.
- SLR International Corporation (SLR), 2010. Alaska Airlines Kotzebue Facility 2010 Ground Water Monitoring Report, Kotzebue, Alaska. September.
- SLR, 2015. Alaska Airlines Kotzebue Facility 2015 Ground Water Monitoring Report, Kotzebue, Alaska. January.
- U.S. Environmental Protection Agency (EPA), 2010. Standard Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection. EPA Region 9, Quality Assurance Office, Field Sampling Procedures Web Reference: http://www.epa.gov/region9/ga/pdfs/finalsopls1217.pdf
- U.S. Geological Survey, 1995. Overview of Environmental and Hydrogeological Conditions at Kotzebue, Alaska. USGS Open-File Report 95-349.
- URS. 2001. Final Kotzebue Airport Terminal Release Investigation and UST Removal. July.

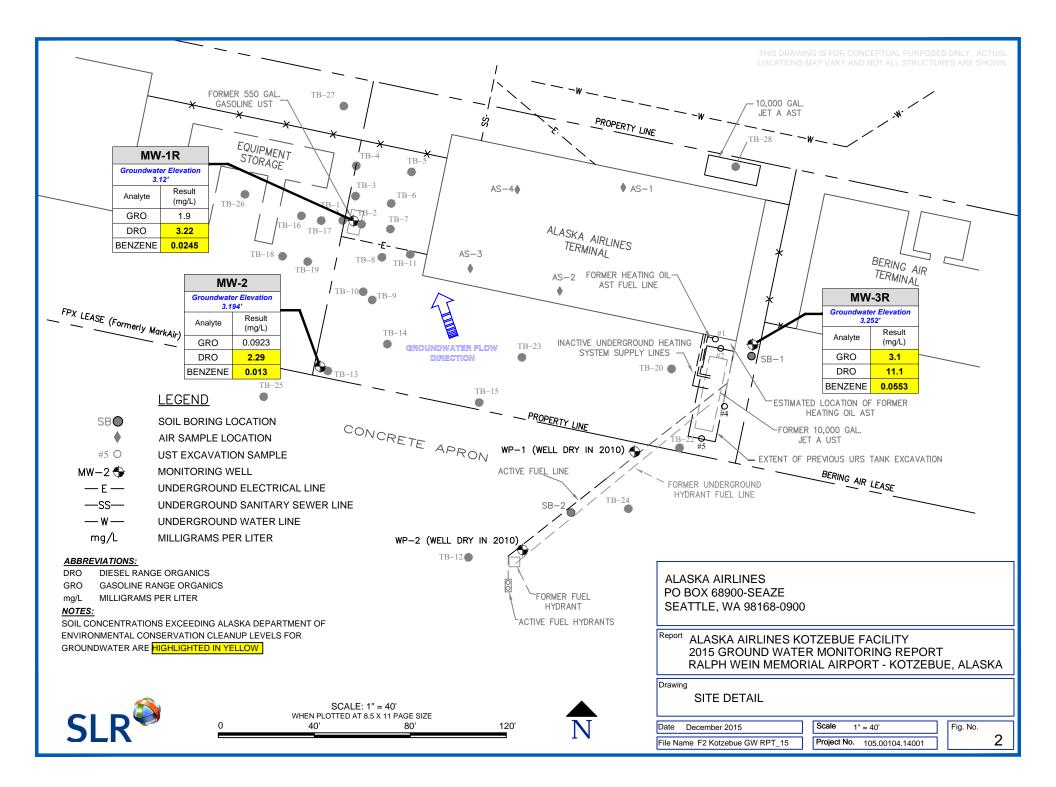
The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.


Environmental conditions that are not apparent may exist at the site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall site environmental conditions.


The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.

This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout Map

TABLES

- Table 12015 Groundwater Analytical Results
- Table 22015 Soil Analytical Results
- Table 3
 Historical Groundwater Analytical Results

Table 1 - 2015 Groundwater Monitoring Wein Memorial Airport, Kotzebue, Alaska

Compound in milligrams per	Screening Criteria					Sample Loca	tions ²						Trip I	Blanks	
liter (mg/L)	18 AAC 75, Table C Groundwater Cleanup Levels ¹	Primary: MW-1R 01-Oct-15 1155836001		Duplicate: MW-1R 01-Oct-15 1155836005		Prima MW- 01-Oct 115583	2 -15	Duplic MW 01-Oc 115583	-2 t-15	MW-31 01-Oct- 1155836	15	GWTE 01-Oct 1155836	-15	GWTB 01-Oct- 1155836	-15
Fuels (AK101 and AK102)															
Gasoline Range Organics	2.2	1.9	=, M+			0.074	J	0.0923	J	3.1	=	[0.05]	ND		
Diesel Range Organics	1.5	3.22	=			1.47	=, QN	2.29	=, QN	11.1	=				
PAH SIMs (8270D, LV)	1		-								-	1			
1-Methylnaphthalene	0.15	0.00524	=	0.00468	=					0.000266	= ND				
2-Methylnaphthalene Acenaphthene	2.2	[0.000024]	= ND, QN	0.000556	= =, QN					0.00024	ND =				
Acenaphthylene	2.2	[0.000024]	ND, QN	[0.000024]	=, QN ND					[0.000203	= ND				
Anthracene	11	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Benzo(a)Anthracene	0.0012	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Benzo[a]pyrene	0.0002	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Benzo[b]Fluoranthene	0.0012	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Benzo[g,h,i]perylene	1.1	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Benzo[k]fluoranthene	0.012	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Chrysene	0.12	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Dibenzo[a,h]anthracene Fluoranthene	0.00012	[0.000024]	ND ND	[0.000024]	ND ND					[0.000024]	ND ND				
Fluorene	1.5	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Indeno[1,2,3-c,d] pyrene	0.0012	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Naphthalene	0.73	0.0315	=	0.0319	=					0.0017	=				
Phenanthrene	11	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Pyrene	1.1	[0.000024]	ND	[0.000024]	ND					[0.000024]	ND				
Volatile Organic Compounds (S	W8260B)														
1,1,1,2-Tetrachloroethane		[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND
1,1,1-Trichloroethane	0.2	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,1,2,2-Tetrachloroethane	0.0043	[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND
1,1,2-Trichloroethane	0.005	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,1-Dichloroethane 1,1-Dichloroethene	7.3 0.007	[0.005]	ND ND			[0.0005]	ND ND	[0.0005]	ND ND	[0.005]	ND ND			[0.0005]	ND ND
1,1-Dichloropropene	0.007	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,2,3-Trichlorobenzene		[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,2,3-Trichloropropane	0.00012	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,2,4-Trichlorobenzene	0.07	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,2,4-Trimethylbenzene	1.8	0.182	=			0.00061	J	0.00066	J	0.0347	=			[0.0005]	ND
1,2-Dibromo-3-chloropropane		[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND
1,2-Dibromoethane	0.00005	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,2-Dichlorobenzene	0.6	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
1,2-Dichloroethane	0.005	[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND ND			[0.00025]	ND
1,2-Dichloropropane 1,3,5-Trimethylbenzene	0.005	[0.005]	ND =			[0.0005]	ND ND	[0.0005] 0.00036	ND	[0.005]	ND =			[0.0005]	ND ND
1,3-Dichlorobenzene	3.3	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	 ND			[0.0005]	ND
1,3-Dichloropropane		[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND
1,4-Dichlorobenzene	0.075	[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND
2,2-Dichloropropane		[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
2-Butanone (MEK)	22	[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND
2-Chlorotoluene		[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
2-Hexanone		[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND
4-Chlorotoluene		[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK)	2.9	0.0103 [0.05]	= ND			[0.0005]	ND ND	[0.0005]	ND ND	[0.005]	ND ND			[0.0005]	ND ND
	0.005	0.05j				[0.005] 0.013		[0.005] 0.0129		[0.05] 0.0553				[0.005]	ND
Benzene Bromobenzene	0.005	[0.0245	= ND			[0.0005]	= ND	[0.0005]	= ND	[0.005]	= ND			[0.0002]	ND ND
Bromochloromethane		[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
Bromodichloromethane	0.014	[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND
Bromoform	0.11	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
Bromomethane	0.051	[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND
Carbon disulfide	3.7	[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND
Carbon tetrachloride	0.005	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND
Chlorobenzene	0.1	[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND
Chloroethane	0.29	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND

Table 1 - 2015 Groundwater Monitoring Wein Memorial Airport, Kotzebue, Alaska

Compound in milligrams per	Screening Criteria Sample Locations ²											Trip Blanks				
liter (mg/L)	18 AAC 75, Table C Groundwater Cleanup Levels ¹	MW-1R 01-Oct-15 1155836001		Duplicate: MW-1R 01-Oct-15 1155836005		Primary: MW-2 01-Oct-15 1155836002		Duplicate: MW-2 01-Oct-15 1155836004		MW-3R 01-Oct-15 1155836003		GWTB 01-Oct- 1155836	15	GWTB-2 01-Oct-15 1155836007		
Chloroform	0.14	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Chloromethane	0.066	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
cis-1,2-Dichloroethene	0.07	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
cis-1,3-Dichloropropene	0.0085	[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND	
Dibromochloromethane	0.01	[0.0025]	ND			[0.00025]	ND	[0.00025]	ND	[0.0025]	ND			[0.00025]	ND	
Dibromomethane	0.37	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Dichlorodifluoromethane	7.3	0.0084	J			0.021	=	0.0185	=	[0.005]	ND			[0.0005]	ND	
Ethylbenzene	0.7	0.0688	=			0.00081	J	0.00078	J	0.245	=			[0.0005]	ND	
Freon-113	1100	[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND	
Hexachlorobutadiene	0.0073	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Isopropylbenzene (Cumene)	3.7	0.0164	=			[0.0005]	ND	[0.0005]	ND	0.0078	J			[0.0005]	ND	
Methylene chloride	0.005	[0.025]	ND			[0.0025]	ND	[0.0025]	ND	[0.025]	ND			[0.0025]	ND	
Methyl-t-butyl ether (MTBE)	0.47	[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND	
Naphthalene	0.73	0.0468	J			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND	
n-Butylbenzene	0.37	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
n-Propylbenzene	0.37	0.0275	=			[0.0005]	ND	[0.0005]	ND	0.0059	J			[0.0005]	ND	
o-Xylene		0.0516	=			[0.0005]	ND	[0.0005]	ND	0.135	=			[0.0005]	ND	
P & M -Xylene		0.311	=			0.00096	J	0.00096	J	0.674	=			[0.001]	ND	
sec-Butylbenzene	0.37	0.0055	J	-		[0.0005]	ND	[0.0005]	ND	[0.005]	ND	-		[0.0005]	ND	
Styrene	0.1	[0.005]	ND	-		[0.0005]	ND	[0.0005]	ND	[0.005]	ND	-		[0.0005]	ND	
tert-Butylbenzene	0.37	[0.005]	ND	-		[0.0005]	ND	[0.0005]	ND	[0.005]	ND	-		[0.0005]	ND	
Tetrachloroethene (PCE)	0.005	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Toluene	1.0	0.0032	J			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
trans-1,2-Dichloroethene	0.1	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
trans-1,3-Dichloropropene	0.0085	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Trichloroethene (TCE)	0.005	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Trichlorofluoromethane	11	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Vinyl acetate	37	[0.05]	ND			[0.005]	ND	[0.005]	ND	[0.05]	ND			[0.005]	ND	
Vinyl chloride	0.002	[0.005]	ND			[0.0005]	ND	[0.0005]	ND	[0.005]	ND			[0.0005]	ND	
Xylenes (total) ³	10	0.363	=			0.00096	J	0.00096	J	0.809	=			[0.0015]	ND	

Notes:

1 - This is the primary cleanup level for groundwater and corresponds to values listed in 18 AAC 75.345 Table C (ADEC, June 17, 2015).

2 - The field sample identification number, date collected and laboratory sample identification number are provided.

3 - Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.

Data Flags

- ND nondetect, LOD is presented in brackets to the left
- J reported value was between the laboratory DL and LOQ
- Q The quantitation was an estimate due to quality control failure. Where applicable, a "H", "L", or "N" was used to indicate possible high, low, or unknown bias.
- M The quantitation was an estimate due to matrix interference. Where applicable, a "+" or "-" was used to indicate possible high or low bias.
- = A detected compound [concentration listed in column to the left]

Abbreviations

und I
r
I
,

Bold and shaded - The value exceeds the primary screening criteria, 18 AAC 75 Table C. Laboratory DL did not meet primary screening criteria limits, 18 AAC 75, Table C.

- LOQ Limit of Quantitation
- LV low volume
- mg/L milligrams per liter
- PAH Polynuclear Aromatic Hydrocarbons
- SIM Selective Ion Monitoring

Table 2 - 2015 Soil Waste Characterization Sampling ResultsWein Memorial Airport, Kotzebue, Alaska

Compound in milligrams per kilogram (mg/Kg) Fuels (AK101 and AK102) Gasoline Range Organics Diesel Range Organics Volatile Organic Compounds (SW 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,3-Trichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane <td< th=""><th>1,400 12,500</th><th>18 AAC 75 Migration to Groundwater² 300 250 0.82 0.017 0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 0.00016 5.1 25 0.018 23 25 0.018 23 25 0.018 23 25 0.018 23 25 0.018 23 25 0.018 23 28 0.64 59 59</th><th>093015M 30-Sep 1155836 5.39 178 [0.0133] [0.0133] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133]</th><th>-15</th><th>093015M 30-Sep 1155836 1155836 [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0915] [0.0915] [0.00915] [0.00915] [0.00915] [0.0229] [0.00915] [0.00915] [0.0229] [0.00915]</th><th>-15</th><th>100115 01-Oct 1155836 41.4 139 [0.0186] [0.0186] [0.00925] [0.0074] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]</th><th>-15</th><th>STB² 30-Sep 1155836 [1.23] [0.0123] [0.0123] [0.00492] [0.0123] [0.0123] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0246] [0.0246] [0.0246] [0.0246] [0.0246] [0.0246] [0.00492] [0.00492] [0.00492] [0.00492] [0.00492] [0.0123]</th><th>-15</th></td<>	1,400 12,500	18 AAC 75 Migration to Groundwater ² 300 250 0.82 0.017 0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 0.00016 5.1 25 0.018 23 25 0.018 23 25 0.018 23 25 0.018 23 25 0.018 23 25 0.018 23 28 0.64 59 59	093015M 30-Sep 1155836 5.39 178 [0.0133] [0.0133] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133]	-15	093015M 30-Sep 1155836 1155836 [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0915] [0.0915] [0.00915] [0.00915] [0.00915] [0.0229] [0.00915] [0.00915] [0.0229] [0.00915]	-15	100115 01-Oct 1155836 41.4 139 [0.0186] [0.0186] [0.00925] [0.0074] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	-15	STB ² 30-Sep 1155836 [1.23] [0.0123] [0.0123] [0.00492] [0.0123] [0.0123] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0246] [0.0246] [0.0246] [0.0246] [0.0246] [0.0246] [0.00492] [0.00492] [0.00492] [0.00492] [0.00492] [0.0123]	-15
Gasoline Range OrganicsDiesel Range OrganicsVolatile Organic Compounds (SW1,1,1,2-Tetrachloroethane1,1,1,2-Tetrachloroethane1,1,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichloropropene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trichlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,3-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane2-Butanone (MEK)2-Chlorotoluene2-Hexanone	12,500 /8260B) 360 8.1 17 900 1.3 0.26 41 49 0.89 45 7.1 7.9 42 69 42 69 42 69 44 23,300 	250 0.82 0.017 0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 25 0.018 23 28 0.64 59	178 [0.0133] [0.00665] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133]	= ND ND ND ND ND ND ND ND ND ND ND ND ND	109 [0.0229] [0.0229] [0.0114] [0.00915] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229]	= ND ND ND ND ND ND ND ND ND ND ND ND ND	139 [0.0186] [0.00925] [0.0074] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	= ND ND ND ND ND ND ND ND ND ND ND ND ND	[0.0123] [0.0123] [0.00615] [0.00492] [0.0123] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0246] [0.0246] [0.0246] [0.0246] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Diesel Range Organics Volatile Organic Compounds (SW 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone	12,500 /8260B) 360 8.1 17 900 1.3 0.26 41 49 0.26 41 49 0.89 45 7.1 7.9 42 69 42 69 42 69 44 23,300 	250 0.82 0.017 0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 25 0.018 23 28 0.64 59	178 [0.0133] [0.00665] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0133] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133]	= ND ND ND ND ND ND ND ND ND ND ND ND ND	109 [0.0229] [0.0229] [0.0114] [0.00915] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0229] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229]	= ND ND ND ND ND ND ND ND ND ND ND ND ND	139 [0.0186] [0.00925] [0.0074] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.0186] [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	= ND ND ND ND ND ND ND ND ND ND ND ND ND	[0.0123] [0.0123] [0.00615] [0.00492] [0.0123] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0246] [0.0246] [0.0246] [0.0246] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Volatile Organic Compounds (SW1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethene1,2,3-Trichlorobenzene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trichlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,3-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichlorobenzene2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropro	/8260B) 360 8.1 17 900 1.3 0.26 41 49 0.89 45 7.1 7.9 42 69 23,300	 0.82 0.017 0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 25 0.018 23 28 0.64 59	[0.0133] [0.0133] [0.00665] [0.0053] [0.0133] [0.0133] [0.0133] [0.0266] [0.0133] [0.0266] [0.0133] [0.0133] [0.053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0229] [0.0229] [0.0114] [0.00915] [0.0229] [0.0229] [0.0229] [0.0458] [0.0229] [0.0458] [0.0229] [0.0229] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229]	ND ND	[0.0186] [0.0186] [0.00925] [0.0074] [0.0186] [0.0186] [0.0186] [0.037] [0.0186] [0.0186] [0.0186] [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	ND ND	[0.0123] [0.00615] [0.00492] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0123] [0.0246] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND ND ND ND N
1,1,1,2-Tetrachloroethane1,1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichlorobenzene2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane	 360 8.1 17 900 1.3 0.26 41 49 0.89 45 7.1 7.9 42 69 44 23,300 	0.82 0.017 0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 28 0.018 23 28 0.64 59	[0.0133] [0.00665] [0.0053] [0.0133] [0.0133] [0.0133] [0.0266] [0.0133] [0.0133] [0.0133] [0.053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0229] [0.0114] [0.00915] [0.0229] [0.0229] [0.0229] [0.0458] [0.0229] [0.0229] [0.0229] [0.0229] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0186] [0.00925] [0.0074] [0.0186] [0.0186] [0.0186] [0.037] [0.0186] [0.0186] [0.074] [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0123] [0.00615] [0.00492] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0123] [0.0246] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND ND ND ND N
1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichlorobenzene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,3,5-Trimethylbenzene1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2-Butanone (MEK)2-Chlorotoluene2-Hexanone	8.1 17 900 1.3 0.26 41 49 0.89 45 7.1 7.9 42 69 44 23,300 	0.017 0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 28 0.64 59	[0.0133] [0.00665] [0.0053] [0.0133] [0.0133] [0.0133] [0.0266] [0.0133] [0.0133] [0.0133] [0.053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0229] [0.0114] [0.00915] [0.0229] [0.0229] [0.0229] [0.0458] [0.0229] [0.0229] [0.0229] [0.0229] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0186] [0.00925] [0.0074] [0.0186] [0.0186] [0.0186] [0.037] [0.0186] [0.0186] [0.074] [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0123] [0.00615] [0.00492] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0123] [0.0246] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND ND ND ND N
1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethene1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,3-Trichloropropane1,2,4-Trichlorobenzene1,2,4-Trichlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene1,3-5-Trimethylbenzene1,3-5-Trimethylbenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,4-Dichlorobenzene2-Butanone (MEK)2-Hexanone	17 900 1.3 0.26 41 49 0.89 45 7.1 7.9 42 69 42 69 44 23,300 	0.018 25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 23 28 0.64 59	[0.0053] [0.0133] [0.0133] [0.0133] [0.0266] [0.0266] [0.0133] [0.0133] [0.0133] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.00915] [0.0229] [0.0229] [0.0229] [0.0458] [0.0229] [0.0229] [0.0229] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229] [0.0229]	ND ND ND ND ND ND ND ND ND ND ND ND ND	[0.0074] [0.0186] [0.0186] [0.0186] [0.037] [0.0186] [0.0186] [0.0186] [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	ND ND ND ND ND ND ND ND ND ND ND	[0.00492] [0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0123] [0.0246] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND ND ND
1,1-Dichloroethane1,1-Dichloroethene1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,3-Trichlorobenzene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,3-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane3,3-Dichlo	900 1.3 0.26 41 49 0.89 45 7.1 7.9 42 69 44 23,300 	25 0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 28 28 0.64 59	[0.0133] [0.0133] [0.0133] [0.0266] [0.0133] [0.0133] [0.0133] [0.053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133]	ND ND ND ND ND = ND ND ND ND ND ND ND ND ND	[0.0229] [0.0229] [0.0229] [0.0458] [0.0229] [0.0229] [0.0229] [0.0915] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229]	ND ND ND ND ND ND ND ND ND ND ND ND	[0.0186] [0.0186] [0.0186] [0.037] [0.0186] [0.0186] [0.0186] [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	ND ND ND ND ND ND ND ND ND ND	[0.0123] [0.0123] [0.0123] [0.0246] [0.0123] [0.0123] [0.0246] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND ND ND
1,1-Dichloroethene1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,3-Trichloropropane1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane3,3-D	1.3 0.26 41 49 0.89 45 7.1 7.9 42 69 42 69 44 23,300 	0.03 0.00053 0.85 23 0.00016 5.1 25 0.018 23 28 0.64 59	[0.0133] [0.0133] [0.0266] [0.0133] [0.0133] [0.053] [0.053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133]	ND ND ND ND ND ND ND ND ND ND ND ND ND N	[0.0229] [0.0229] [0.0458] [0.0229] [0.0229] [0.0229] [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] [0.00915] [0.0229]	ND ND ND ND = ND ND ND ND ND ND ND	[0.0186] [0.0186] [0.037] [0.0186] [0.0186] 0.433 [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074]	ND ND ND ND ND ND ND ND ND ND	[0.0123] [0.0123] [0.0246] [0.0123] [0.0123] [0.0246] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND
1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,3-Trichloropropane1,2,4-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2-Butanone (MEK)2-Hexanone	 0.26 41 49 0.89 45 7.1 7.9 42 69 44 23,300 	 0.00053 0.85 23 0.00016 5.1 25 0.018 23 28 0.64 59	[0.0133] [0.0266] [0.0133] [0.0133] [0.053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133]	ND ND ND ND ND ND ND ND ND ND ND ND ND	[0.0229] [0.0458] [0.0229] [0.0229] 1.05 [0.0915] [0.00915] [0.0229] [0.00915] [0.00915] [0.00915] 0.628 [0.0229]	ND ND ND ND ND ND ND ND ND ND	[0.0186] [0.037] [0.0186] [0.0186] 0.433 [0.074] [0.0074] [0.0074] [0.0074] [0.0074] [0.0074] 0.208	ND ND ND ND ND ND ND ND ND	[0.0123] [0.0246] [0.0123] [0.0123] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND ND ND
1,2,3-Trichlorobenzene1,2,3-Trichloropropane1,2,3-Trichloropropane1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropropane1,3-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2-Butanone (MEK)2-Hexanone	 0.26 41 49 0.89 45 7.1 7.9 42 69 44 23,300 	 0.00053 0.85 23 0.00016 5.1 25 0.018 23 28 0.64 59	[0.0266] [0.0133] [0.0133] 0.232 [0.053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133]	ND ND = ND ND ND ND ND ND ND ND ND ND	[0.0458] [0.0229] [0.0229] 1.05 [0.0915] [0.00915] [0.00915] [0.00915] [0.00915] 0.628 [0.0229]	ND ND = ND ND ND ND ND ND =	[0.037] [0.0186] [0.0186] 0.433 [0.074] [0.0074] [0.0186] [0.0074] [0.0074] [0.0074] 0.208	ND ND = ND ND ND ND ND	[0.0246] [0.0123] [0.0123] [0.0246] [0.0493] [0.00492] [0.00492] [0.00492] [0.00492]	ND ND ND ND ND ND ND ND
1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2-Butanone (MEK)2-Hexanone	41 49 0.89 45 7.1 7.9 42 69 44 23,300 	0.85 23 0.00016 5.1 25 0.018 23 28 0.64 59	[0.0133] 0.232 [0.053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133] [0.0133]	ND = ND ND ND ND = ND ND	[0.0229] 1.05 [0.0915] [0.00915] [0.0229] [0.00915] [0.00915] 0.628 [0.0229]	ND = ND ND ND ND ND =	[0.0186] 0.433 [0.074] [0.0074] [0.0186] [0.0074] [0.0074] 0.208	ND = ND ND ND ND ND	[0.0123] [0.0246] [0.0493] [0.00492] [0.0123] [0.00492] [0.00492]	ND ND ND ND ND ND
1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropropane1,3-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2-Butanone (MEK)2-Hexanone	49 0.89 45 7.1 7.9 42 69 44 23,300 	23 0.00016 5.1 25 0.018 23 28 0.64 59	0.232 [0.053] [0.0053] [0.0053] [0.0053] [0.0053] [0.0133] [0.0133] [0.0133]	= ND ND ND ND = ND ND	1.05 [0.0915] [0.0229] [0.00915] [0.00915] [0.00915] [0.0228] [0.0229]	= ND ND ND ND ND =	0.433 [0.074] [0.0074] [0.0186] [0.0074] [0.0074] 0.208	= ND ND ND ND ND	[0.0246] [0.0493] [0.00492] [0.0123] [0.00492] [0.00492]	ND ND ND ND ND ND
1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropethane1,2-Dichloropropane1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane </td <td> 0.89 45 7.1 7.9 42 69 44 23,300 </td> <td> 0.00016 5.1 25 0.018 23 28 0.64 59</td> <td>[0.053] [0.0053] [0.0053] [0.0053] 0.0865 [0.0133] [0.0053] [0.0133] [0.0133]</td> <td>ND ND ND ND ND = ND ND</td> <td>[0.0915] [0.00915] [0.0229] [0.00915] [0.00915] 0.628 [0.0229]</td> <td>ND ND ND ND ND</td> <td>[0.074] [0.0074] [0.0186] [0.0074] [0.0074] 0.208</td> <td>ND ND ND ND</td> <td>[0.0493] [0.00492] [0.0123] [0.00492] [0.00492]</td> <td>ND ND ND ND ND</td>	 0.89 45 7.1 7.9 42 69 44 23,300 	 0.00016 5.1 25 0.018 23 28 0.64 59	[0.053] [0.0053] [0.0053] [0.0053] 0.0865 [0.0133] [0.0053] [0.0133] [0.0133]	ND ND ND ND ND = ND ND	[0.0915] [0.00915] [0.0229] [0.00915] [0.00915] 0.628 [0.0229]	ND ND ND ND ND	[0.074] [0.0074] [0.0186] [0.0074] [0.0074] 0.208	ND ND ND ND	[0.0493] [0.00492] [0.0123] [0.00492] [0.00492]	ND ND ND ND ND
1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloroethane1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2-Butanone (MEK)2-Hexanone	0.89 45 7.1 7.9 42 69 44 23,300 	5.1 25 0.018 23 28 0.64 59	[0.0053] [0.0133] [0.0053] [0.0053] [0.0865 [0.0133] [0.0053] [0.0133] [0.0133]	ND ND ND = ND ND	[0.00915] [0.0229] [0.00915] [0.00915] 0.628 [0.0229]	ND ND ND ND	0.0074] [0.0186] [0.0074] [0.0074] 0.208	ND ND ND ND	[0.00492] [0.0123] [0.00492] [0.00492]	ND ND ND ND
1,2-Dichlorobenzene1,2-Dichloroethane1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2-Butanone (MEK)2-Hexanone	45 7.1 7.9 42 69 44 23,300 	5.1 25 0.018 23 28 0.64 59	[0.0133] [0.0053] [0.0053] 0.0865 [0.0133] [0.0053] [0.0133] [0.0133]	ND ND = ND ND	[0.0229] [0.00915] [0.00915] 0.628 [0.0229]	ND ND ND =	[0.0186] [0.0074] [0.0074] 0.208	ND ND ND	[0.0123] [0.00492] [0.00492]	ND ND ND
1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2-Butanone (MEK)2-Chlorotoluene2-Hexanone	7.9 42 69 44 23,300 	0.018 23 28 0.64 59	[0.0053] 0.0865 [0.0133] [0.0053] [0.0133] [0.0133]	ND = ND ND	[0.00915] 0.628 [0.0229]	ND =	[0.0074] 0.208	ND	[0.00492]	ND
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone	42 69 44 23,300 	23 28 0.64 59	0.0865 [0.0133] [0.0053] [0.0133] [0.0133]	= ND ND	0.628 [0.0229]	=	0.208			
1,3-Dichlorobenzene1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2-Butanone (MEK)2-Chlorotoluene2-Hexanone	69 44 23,300 	28 0.64 59	[0.0133] [0.0053] [0.0133] [0.0133]	ND ND	[0.0229]			=	[[0.0123]	
1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone	 44 23,300 	 0.64 59	[0.0053] [0.0133] [0.0133]	ND		שאו		ND	[0.0123]	ND
1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone	44 23,300 	0.64 59	[0.0133] [0.0133]			ND	[0.0074]	ND ND	[0.0123]	ND ND
2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone	 23,300 	 59	[0.0133]		[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
2-Chlorotoluene 2-Hexanone			[0.400]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
2-Hexanone			[0.133]	ND	[0.229]	ND	[0.186]	ND	[0.123]	ND
			[0.0133]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
			[0.133] [0.0133]	ND ND	[0.229] [0.0229]	ND ND	[0.186] [0.0186]	ND ND	[0.123] [0.0123]	ND ND
4-Isopropyltoluene			0.0146	J	0.182	=	0.0311	J	[0.0123]	ND
4-Methyl-2-pentanone (MIBK)	2,100	8.1	[0.133]	ND	[0.229]	ND	[0.186]	ND	[0.123]	ND
Benzene	17	0.025	0.0239	=	0.0146	J	0.0115	J	[0.00615]	ND
Bromobenzene			[0.0133]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
Bromochloromethane Bromodichloromethane	 15	0.044	[0.0133] [0.0133]	ND ND	[0.0229] [0.0229]	ND ND	[0.0186] [0.0186]	ND ND	[0.0123] [0.0123]	ND ND
Bromoform	430	0.34	[0.0133]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
Bromomethane	21	0.16	[0.107]	ND	[0.183]	ND	[0.148]	ND	[0.0985]	ND
Carbon disulfide	250	12	[0.053]	ND	[0.0915]	ND	[0.074]	ND	[0.0493]	ND
Carbon tetrachloride	4.5	0.023	[0.00665]	ND	[0.0114]	ND	[0.00925]	ND	[0.00615]	ND
Chlorobenzene Chloroethane	200 34	0.63 580	[0.0133] [0.107]	ND ND	[0.0229] [0.183]	ND ND	[0.0186] [0.148]	ND ND	[0.0123] [0.0985]	ND ND
Chloroform	34 4.7	0.46	[0.0133]	ND	[0.183]	ND	[0.146]	ND	[0.0985]	ND
Chloromethane	37	0.10	[0.0133]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
cis-1,2-Dichloroethene	190	0.24	[0.0133]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
cis-1,3-Dichloropropene	40	0.033	[0.0133]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
Dibromochloromethane	21	0.032	[0.0133]	ND	[0.0229]		[0.0186]	ND	[0.0123]	ND
Dibromomethane Dichlorodifluoromethane	560 570	 140	[0.0133] [0.0266]	ND ND	[0.0229] [0.0458]	ND ND	[0.0186] [0.037]	ND ND	[0.0123] [0.0246]	ND ND
Ethylbenzene	110	6.9	0.0726	=	2.1	=	0.53	=	[0.0240]	ND
Freon-113	750	750	[0.053]	ND	[0.0915]	ND	[0.074]	ND	[0.0493]	ND
Hexachlorobutadiene	3.8	0.12	[0.0266]	ND	[0.0458]	ND	[0.037]	ND	[0.0246]	ND
Isopropylbenzene (Cumene)	62	51	0.0157	J	0.0649	=	0.0326		[0.0123]	ND
Methylene chloride Methyl-t-butyl ether (MTBE)	240 440	0.016 1.3	[0.053] [0.053]	ND ND	[0.0915] [0.0915]	ND ND	[0.074] [0.074]	ND ND	[0.0493] [0.0493]	ND ND
Naphthalene	440 42	20	0.191	ND =	0.213	ND =	0.161	ND =	[0.0493]	ND
n-Butylbenzene	42	15	[0.0133]	- ND	[0.0229]	ND	[0.0186]	ND	[0.0240]	ND
n-Propylbenzene	42	15	0.0426	=	0.128	=	0.0663	=	[0.0123]	ND
o-Xylene			0.0577	=	1.25	=	0.305	=	[0.0123]	ND
P & M -Xylene		 12	0.28	=	7.7	=	1.64 0.02	=	[0.0246]	ND
sec-Butylbenzene Styrene	41 200	0.96	0.013 [0.0133]	J ND	0.0302 [0.0229]	J ND	0.02	J ND	[0.0123] [0.0123]	ND ND
tert-Butylbenzene	70	12	[0.0133]	ND	0.0723	=	0.0252	J	[0.0123]	ND
Tetrachloroethene (PCE)	15	0.024	[0.00665]	ND	[0.0114]	ND	[0.00925]	ND	[0.00615]	ND
Toluene	220	6.5	0.0513	=	0.038	J	0.0141	J	[0.0123]	ND
trans-1,2-Dichloroethene	240	0.37	[0.0133]	ND	[0.0229]	ND	[0.0186]	ND	[0.0123]	ND
trans-1,3-Dichloropropene Trichloroethene (TCE)	40 0.85	0.033	[0.0133]	ND ND	[0.0229]		[0.0186] [0.00925]	ND ND	[0.0123]	ND ND
Trichlorofluoromethane	0.85 990	0.02 86	[0.00665] [0.0266]	ND	[0.0114] [0.0458]	ND ND	[0.00925]	ND ND	[0.00615]	ND
Vinyl acetate	2,200	100	[0.053]	ND	[0.0438]	ND	[0.074]	ND	[0.0240]	ND
Vinyl chloride	6.4	0.0085	[0.0053]	ND	[0.00915]	ND	[0.0074]	ND	[0.00492]	ND
Xylenes (total)	63	63	0.338	=	8.95	=	1.94	=	[0.0246]	ND
Percent Solids (SM21 2540G) Total Solids			89.4	_	89.2		86.8			

Table 2 - 2015 Soil Waste Characterization Sampling ResultsWein Memorial Airport, Kotzebue, Alaska

	Screen	ing Criteria	v,	Trip Blank		
Compound in milligrams per	18 AAC 75	18 AAC 75	093015MW1S	093015MW3S	100115SS1	STB1
kilogram	Arctic	Migration to	30-Sep-15	30-Sep-15	01-Oct-15	30-Sep-15
(mg/Kg)	Zone ¹	Groundwater ²	1155836008	1155836009	1155836010	1155836011

Notes:

1 - The cleanup level corresponds to the most stringent of direct contact or inhalation of soil as listed in 18 AAC 75.341, Tables B1 and B2, Method Two cleanup levels for the Arctic Zone (ADEC, June 17, 2015).

2 - The cleanup level corresponds to Migration to Groundwater as listed in 18 AAC 75.341, Tables B1 and B2,

Method Two cleanup levels for Under 40 Inch Zone (ADEC, June 17, 2015).

3 - The field sample identification number, date collected, and laboratory sample identification number are provided.

4 - Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.

Data Flags

Data Liags			
ND	Nondetect, LOD is presented in brackets to the left		
J	The analyte was positively identified, but the result was between		
	the LOQ and DL; the quantitation was an estimate.		
=	A detected compound [concentration listed in column to the left]		
Abbreviations			
	Not applicable or screening criteria does not exixt for this compou	LOD	Limit of Detection
AAC	Alaska Administrative Code	LOQ	Limit of Quantitation
ADEC	Alaska Department of Environmental Conservation	mg/Kg	milligrams per kilogram
	Detection Limit		

Table 3 - Historical Groundwater Results Wein Memorial Airport, Kotzebue, Alaska

		AK101	AK102		BTEX USEPA	Method 8021	В	PAHs USEPA Method 8270D ^B							
Sample Location	Sample Date	Gasoline Range Organics	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Xylenes	Phenanthrene	Pyrene	Chrysene	Naphthalene	1-Methy Inaphthlene	2-Methylnaphthlene		
ADEC Ground Water Cleanup Leve		2.2	1.5	0.005	1.0	0.7	10	11	1.1	0.12	0.73	0.15	0.15		
MW-1*	7/22/2000	59	6.6	0.785	3	1.55	14.5								
MW-2	7/22/2000	0.830	0.240	0.036	0.0014	0.017	0.01								
MW-3	7/22/2000	6.2	3.3	0.180	0.032	0.2	1.2								
MW-2	9/13/2002	0.559	1.01	0.0300	0.00136	0.00814	0.00815								
Duplicate of MW-2	9/13/2002	0.605	0.381	0.0331	0.00160	0.00901	0.00895								
WP-1	9/13/2002	0.228	0.223	0.0115	<0.0005	<0.0005	0.00163								
WP-2	9/13/2002	0.0526	1,990	0.0017	<0.0005	0.00067	0.00513								
MW-2	10/7/2010	0.100	6.70 H	0.0234	0.000810 J	0.00137 J	0.00162 J	0.0000896	0.000205	0.000182	0.000115	0.0000742	0.0000693		
Duplicate of MW-2	10/7/2010	0.0910 J	11.8 H	0.0215	ND	0.00115 J	0.00113 J	0.0000630 J	0.000155	0.000149	0.0000954 J	0.0000534	0.0000504 J		
MW-1R	10/1/2015	1.9	3.22	0.0245	0.0032 J	0.0688	0.363	ND	ND	ND	0.315	0.00524	0.00628		
MW-2	10/1/2015	0.074	1.47	0.013	ND	0.00081 J	0.00096 J								
Duplicate of MW-2	10/1/2015	0.0923	2.29	0.0129	ND	0.00078 J	0.00096 J								
MW-3R	10/1/2015	3.1	11.1	0.0553	ND	0.245	0.809	ND	ND	ND	0.0017	0.000266	ND		

Notes:

^A ADEC Cleanup Levels (18 AAC 70) as revised on June 7, 2015.

^B PAHs not presented in this table were not detected in ground water samples

* Duplicate samples were averaged

All units in mg/L

Abbreviations:

-- - not analyzed

< - less than

BTEX - benzene, toluene, ethylbenzene, and xylenes

H - Result is biased high due to heavier hydrocarbons contributing to middle distillate range.

J - estimated value

mg/L - milligrams per liter

N/A - not applicable

ND - not detected at or above [Limit of Quantitation]

PAH - polynuclear aromatic hydrocarbons

USEPA - Environmental Protection Agency

APPENDIX A

PHOTOGRAPH LOG

ALASKA AIRLINES

Alaska Airlines, Inc PO Box 68900-SEAZE Seattle, WA 98168-0900

December 2015

Photograph 1:

Damaged and unrepairable well MW-3, about the be decommissioned. Mangled surface vault has been removed and is visible at photo center. (Sep 30, 2015).

Photograph 2: Decommissioned well MW-3. Bentonite is visible in photo. Clean gravel was filled over bentonite to match surface grade. (Sep 30, 2015).

Photograph 3:

Photo shows auger mounted on loader drilling MW-3R. Southeast corner of Alaska Airlines terminal building is visible on the left. (Sep 30, 2015).

Photograph 4: Larger truck-mounted auger drill rig at MW-3R. (Sep 30, 2015).

Photograph 5:

Installing monitoring well in boring MW-3R. Bentonite well seal is visible. (Sep 30, 2015).

Photograph 6: Large truck-mounted auger drill rig drilling MW-1R. Photo faces southwest, away from Alaska Airlines terminal building. (Sep 30, 2015).



Photograph 7:

Completed monitoring well MW-1R with flush mounted vault. Photo faces north. (Oct 1, 2015).

Photograph 8: Repairing the surface vault at MW-2. (Oct 1, 2015).

Photograph 9:

Measuring groundwater level at MW-2 prior to collecting analytical sample. (Oct 1, 2015).

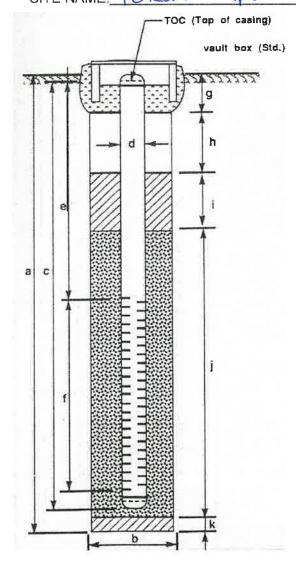
Photograph 10: All cuttings generated during drilling were containerized in a super sack and staged as pictured here. (Oct 1, 2015).

APPENDIX B

FIELD FORMS AND FIELD NOTES

ALASKA AIRLINES

Alaska Airlines, Inc PO Box 68900-SEAZE Seattle, WA 98168-0900


December 2015

	093015 AU			roject #: <u>165. (</u>			
Sample ID: (791315AW	135-88	Lo	ocation/Area: 🏄	IW-3R be	orchole.	100
Sampled By:		will				ple Date: 9/30	0/15
Approx Air Ten	the second s	Gouda, Snice		uplicate ID:	Ne. Tris Dis els	Required: XYes	
Weather Condit	ions: Fartly	Cloves, me		S/MSD Yes Note: Yes Yes Yes Yes Yes Yes Yes Yes		Required: A Yes	
		Pit (floor / sidewall)	Excavation	Sample	Depth (ft bgs):	3-6 ft	
Water level Der	oth (ft bgs) 📐 4-	5 ft Frozen	Soil Depth (ft bgs)	6-7 +4			
Note- II not kno	wit at sample loca	ition, list as not det	the second se	escription		(1 <u>11</u> 1) - 11	W
GRAVEL	3 – 0.08 IN)	and the second sec	3 – 0.003 IN)	SILT (<	0.003 IN)	CLAY (NO GR	
	GM GC	SW SP	SM SC	1.72	ML	CL OL N	٨
Color_ Brou	A	oarse 90	%Fines			oil Likely Present (
SAT/	one): Dry. Moist.)M				e and intensity)	In IRAE =	3000
PID 1016	ppm 🛛 Head	ispace 🔲 in-Samı	oler 📋 In-Situ	PID/FID Model	/SN: (IF USED) 🥂	11111-716 0	/ua
Analyses	Check Applicable	Analyses	Check Applicable	Analyses	Check Applicable	Analyses	C
VOCs	Applicable	DRO/RRO	Applicable	RCRA Metal	Applicable		~PF
BTEX		PAHs		Lead (only)			
GRO	X	PCBs				4C	
	ts (indicate genera	Nocation, and possi		conditions not lister れる CUtti	2		
Colle	ts (indicate gehera	l location, and possi	flight a	and Cutti	ng S.	Rehale	
Notes/Commen	ts (indicate gehera Cted Grow 93015 MW :	l location, and possi	flight a	and With	ngs. W-1R be	nehale ple Date: 9/30	/(5
Sample ID: Sampled By: Approx. Air Ter	130(15 MW Ben S(W) nperature (°F): 3	l location, and possi へ のしらせん 1ら セム サ	flight a	ocation/Area: M ample Time: [5	w-1R be	ple Date: 9/30)	
Sample ID: Sampled By:	130(15 MW Ben S(W) nperature (°F): 3	l location, and possi 1 0 y g es 1 5 ec 4	flight a La Shouers M	ample Time:	w-1R be		
Sample ID: Sampled By: Approx. Air Ter Weather Condi	43015 MW Ben Simperature (°F): 3 tions: Pfly Clo	1 Ocation, and possi 1 Ouger 1 S 2 4 5 1 S 1 S 2 4 5 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S	flight a La Shevers M Location I	ample Time: 5 uplicate ID: S/MSD Yes 2	w-1R be 30 Sam	ple Date: 9/30)	
Sample ID: Sample ID: Sampled By: Approx. Air Ter Weather Condi	430(5 MW Ben S(W) nperature (°F): 3 tions: P-fl y Clo Boring Test F th (ft bgs) 3-4	l location, and possi ا م ی ع ا م ی ع ا م ا م ا م ا ا ا ا ا ا ا ا ا ا ا ا ا	Sherrers M Location I Soli Depth (ft bgs	ample Time: 5 uplicate ID: S/MSD Yes Information	w-1R be	ple Date: 9/30)	
Sample ID: Sample ID: Sampled By: Approx. Air Ter Weather Condi	430(5 MW Ben S(W) nperature (°F): 3 tions: P-fl y Clo Boring Test F th (ft bgs) 3-4	l location, and possi ا م ی ع ا م ی ع ا م ا م ا م ا م ا ا ا ا ا ا ا ا ا ا ا ا ا	Shares M Location I Excavation Soil Depth (ft bgs; ermined "ND"	ample Time: 5 uplicate ID: S/MSD Yes Information	w-1R be 30 Sam	ple Date: 9/30)	
Notes/Commen	43015 MW Ben S (winnerature (°F): 3 bons: P-fl y Clo Boring Test F oth (ft bgs) 3-4 win at sample loca (3 – 0.08 IN)	l location, and possi ا م ی ع ا م ی ع ا م ا م ا م ا م ا م ا ا ا ا ا ا ا ا ا ا ا ا ا	Light 6 Si D ShouerS M Location I □ Excavation Soil Depth (ft bgs; termined "ND" Sample E 3 - 0.003 IN)	Cuttin Cocation/Area: Mample Time: 5 uplicate ID: S/MSD Yes Mample Sample	No Trip Blank	ple Date: 9/30 Required: 7 Yes 1-5 CLAY (NO GF	
Notes/Commen	A Sen Swarp A Sen Son Swarp A Sen Swarp A	l location, and possi l 0 9 0 l 0 9 0 l 5 l 5 l 5 l 6 l 5 l 7 l 5 l 7 l 7 l 7 l 7 l 8 l 8 l 8 l 8 l 8 l 8 l 8 l 8	Showers M Location I □ Excavation Soil Depth (ft bgs: cermined "ND" Sample E 3 - 0.003 IN) SM SC	Cuttion/Area: A ample Time: (5 uplicate ID: S/MSD Yes S Information Sample) ~ 5 ~ 6 Description	No Trip Blank	Ple Date: 9/30 Required: 9/90 -5 CLAY (NO GF CL OL N	
Notes/Commen	ACC Service Se	l location, and possi l 0 2 2 2 l 3 2 2 l 5 l 5 l 6 l 5 l 6 l 7 l 7 l 7 l 7 l 7 l 7 l 7 l 7	Carlinght A Carlinght A Carlingham A Car	Contion/Area: A ample Time: 5 uplicate ID: S/MSD Yes S Information Sample Sescription SILT (<	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S	Ple Date: 9/30 Required: 9/90 -5 CLAY (NO GF CL OL M pil Likely Present (
Notes/Commen	A Cone): Dry. Mois, W	l location, and possi	Location I Content of the second se	Coation/Area: Mample Time: 5 uplicate ID: S/MSD Yes S Information Sample Sescription SILT (<	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity)	Ple Date: 9/30 Required: Yes I-5 CLAY (NO GF CL OL N Dil Likely Present (RAINS V MH CH
Notes/Commen	A Cone): Dry. Mois, W	l location, and possi l 0 2 2 2 l 3 2 2 l 5 l 5 l 6 l 5 l 6 l 7 l 7 l 7 l 7 l 7 l 7 l 7 l 7	Location I Content of the second se	Coation/Area: Mample Time: 5 uplicate ID: S/MSD Yes S Information Sample Sescription SILT (<	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity)	Ple Date: 9/30 Required: Yes I-5 CLAY (NO GF CL OL N Dil Likely Present (
Notes/Commen	A Check	l location, and possi	Check	Coation/Area: Mample Time: 5 uplicate ID: S/MSD Yes S Information Sample Sescription SILT (<	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity) /SN: (IF USED)	Ple Date: 9/30 Required: Yes I-5 CLAY (NO GF CL OL N Dil Likely Present (
Notes/Commen	A Cone): Dry. Moist, W ppm A Head	I location, and possi A U G U A U	Location I Shewers M Location I Excavation Soil Depth (ft bgs; ermined "ND" Sample D 3 - 0.003 IN) SM SC %Fines ined: Yor® Or pler □ In-Situ Check Applicable	Contion/Area: A ample Time: yuplicate ID: S/MSD Yes S Information Sample Sescription SILT (< Continue Sill (Sill	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity) /SN: (IF USED)	Required: 2733 Required: 274es I-5 CLAY (NO GF CL OL M oil Likely Present (Vone 1 mi RAC 3	
Notes/Commen	A Check	I location, and possi A U G U A U G U	Check	Contion/Area: Mample Time: 5 uplicate ID: S/MSD Yes 2 Information Sample Sescription SILT (< 10 dor (describe natur PID/FID Model Analyses	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity) /SN: (IF USED)	Required: 2733 Required: 274es I-5 CLAY (NO GF CL OL M oil Likely Present (Vone 1 mi RAC 3	
Notes/Commen	A Sen S (windicate gehera A Check Applicable	I location, and possi A & g & g & g & g & g & g & g & g & g &	Location I Shewers M Location I Excavation Soil Depth (ft bgs; ermined "ND" Sample D 3 - 0.003 IN) SM SC %Fines ined: Yor® Or pler □ In-Situ Check Applicable	And Outri Cocation/Area: Mample Time: 5 uplicate ID: 5 S/MSD Yes 5 Information Sample Sample Sample Sample SillT (< 10 Cor (describe nature PID/FID Model Analyses RCRA Metal	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity) /SN: (IF USED)	Required: 2733 Required: 274es I-5 CLAY (NO GF CL OL M oil Likely Present (Vone 1 mi RAC 3	
Notes/Commen	Action of the second se	I location, and possi A U G U A U	Location I Shewers M Location I Excavation Soil Depth (ft bgs; ermined "ND" Sample D 3 - 0.003 IN) SM SC %Fines ined: Yor® Or pler □ In-Situ Check Applicable	And Outri Cocation/Area: Mample Time: 5 uplicate ID: 5 S/MSD Yes 5 Information Sample Sample Sample Sample SillT (< 10 Cor (describe nature PID/FID Model Analyses RCRA Metal	W-1R be 30 Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity) /SN: (IF USED)	Required: 2733 Required: 274es I-5 CLAY (NO GF CL OL M oil Likely Present (Vone 1 mi RAC 3	
Notes/Commen	A Check Applicable Check Applicable Applicable Applicable Applicable Applicable Applicable	I location, and possi A & g & g & g & g & g & g & g & g & g &	Showers M Location I □ Excavation Soil Depth (ft bgs: cermined "ND" Sample E 3 - 0.003 IN) SM SC %Fines ined: Y or M Oc pler □ In-Situ Check Applicable X	Cocation/Area: A ample Time: uplicate ID: S/MSD Yes S S/MSD Yes S Source of the second	W-1R be 3 () Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity) /SN: (IF USED) Check Applicable	Required: 2733 Required: 274es I-5 CLAY (NO GF CL OL M oil Likely Present (Vone 1 mi RAC 3	
Notes/Commen	A Check Applicable Check Applicable Applicable Applicable Applicable Applicable Applicable	I location, and possi August August August August Pit (floor / sidewall) Frozen ation, list as not det SAND (0.08 SW SP coarse Analyses Analyses PCBs CON	Showers M Location I Showers M Location I Excavation Soil Depth (ft bgs; termined "ND" Sample E 3 - 0.003 IN) SM SC %Fines ined: Yor (N) Oc pler □ In-Situ Check Applicable X ible other relevant	Cocation/Area: A ample Time: uplicate ID: S/MSD Yes S S/MSD Yes S Source of the second	W-1R be 3 () Sam No Trip Blank Depth (ft bgs): 0.003 IN) ML Peat/Organic S e and intensity) /SN: (IF USED) Check Applicable	Required: 2733 Required: 274es I-5 CLAY (NO GF CL OL M oil Likely Present (Vone 1 mi RAC 3	

FLUSH MOUNTED WELL DETAILS

PROJECT NUMBER <u>[65.00104,1400]</u> PROJECT NAME <u>[Totzebue Airport</u> BORING/WELL# <u>MW 1R</u> INSTALLATION DATE <u>9/30/15</u> WELL OWNER (1) <u>Alaskic Airlines</u> WELL COMPLETION METHOD (2) SITE NAME: <u>Kotzebue airport</u>

TOP OF CASING ELEV:
GROUND SURFACE ELEV:
NORTH COORD (3)
EAST COORD (3)
GEOHYDROLOGIC ZONE (4)
WELL TYPE ⁽⁵⁾
SOLE SOURCE AQUIFER (6)

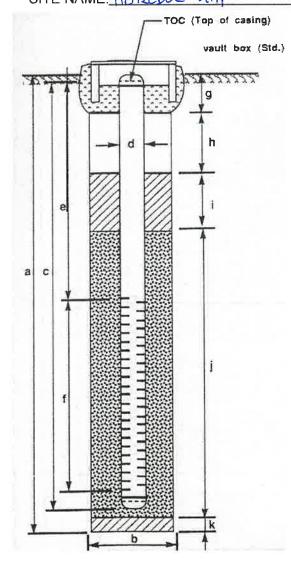
EXPLORATORY BORING

- a. Borehole depth 507ft.
- b. Borehole diameter 12 in. Drilling method Auger Crill rig

WELL CONSTRUCTION

- c. Screen and casing riser length 5.7 ft. Material
- d. Inside diameter ______ in.
 e. Depth to top of screen ______ ft. BtoC
- f. Screen length <u>5</u> ft. Perforated interval from 0.2 to <u>5-2</u> ft. StoC Perforation type <u>5/015</u> Perforation size <u>0-010</u> in. Percent open area <u>%</u>
- g. Surface seal _____ ft. bgs Seal material _____
- h. Backfill 0.5 ft. Backfill material <u>Gravel Fill</u>
- i. Seal _____ft. Seal material _____ft. chips
- j. Filter pack (length) 4.7 ft. Pack material 10/20 Silica sand

k. Bottom seal _____ft. Seal material _____


Form prepared by Ban Siwiec Date 4

Remarks: Z	bags	(1001bs) 10%	20 Silica	sand
TOCIS	bag ft	below top of	ps (50 11 monument	and 0.5 ft

FLUSH MOUNTED WELL DETAILS

PROJECT NUMBER 105,00104, 4001 PROJECT NAME Kotzebue Airport BORING/WELL# MW 3R INSTALLATION DATE 9/30/15 WELL OWNER (1) Alaska Airlines WELL COMPLETION METHOD (2) SITE NAME: Hotzebue airport

TOP OF CASING ELEV:
GROUND SURFACE ELEV:
NORTH COORD ⁽³⁾
EAST COORD ⁽³⁾
GEOHYDROLOGIC ZONE (4)
WELL TYPE ⁽⁵⁾
SOLE SOURCE AQUIFER ⁽⁶⁾
EXPLORATORY BORING
a. Borehole depth 55 ft. 6 ft
b. Borehole diameter 12 in Drilling method Auger drill rig
Drilling method Auger and rig
WELL CONSTRUCTION
c. Screen and casing riser length <u>5.5</u> ft.
Material <u>PVC</u> d. Inside diameter <u>2</u> in. e. Depth to top of screen <u>0, 4</u> ft. BtoC
d. Inside diameter 2 in et of
e. Depth to top of screen ft. BIDC
f Screen length 5 ft
Perforated interval from 0.4 to 5.4 ft. B+0C
Perforation type work
Perforation size 0.010 in

- Percent open area 💳 % g. Surface seal ft. bgs
- Seal material h. Backfill 05 ft.
- Backfill material Grave fill Seal _ i.
- Seal material bentionite chips
- j. Filter pack (length) 4.5 ft. Pack material 10/20 51100 5400 k. Bottom seal <u>ft.</u>

Seal material

Form prepared by Ben Siwiec

bags (100 lbs) 10/20 Silica sand 5 bags bentonite chips (35-40 lbs) Remarks: 2

ŧ

Well Development Form

		115 7 11	A	I	11.11	0			
Site / Client N			ul Airpori	Well ID: MW2R					
Project #:	105.00104	1, 14 001	14	Developed By: Ben Siwiel					
Date (mm/dd/	yy): 0/1/	5				11			
			We	ell Informatio	n	30th			
Well Installation	on Date (mm/dd/yy): 9/38/15		Filter Pack	C Poured	Sand; 🔀 Pre-I	Packed; 🗌 Na	itural	
Date Last Dev	eloped (mm/dd/yy): ///		Filter Pack	(top to botto	m)(f bgs)	.5 to 5.	7	
Wellbore Dian	neter (in):	2		Well Sour	iding Depth:	5.09	BTOO	2	
Well Diameter	(in): 🤇			Measured	Depth to Wa	ter (ft. 603):	2-89 P	STOC	
Well Depth Up	oon Completion (ft.	(B): 5.09 C	STOC	Water Col	umn Thickne	ss in Well (ft):	2.2	1	
Screen (top to	bottom)(ft bas);	0.7 to 5.	2' BTOC	Time of G	auging:	220			
Calles Statistics		2 0 2		t Method and					
				Drill Rig U	sed (y/n): 📐	Rig f	type:		
🔲 Mechanica	(*);	Over-Pumping		Pump Typ	e/Capacity (g	pm):			
Surging/Pu	Imping	High Pressure	Jetting	Depth of F	ump or Airlift	Line (ft bgs):	5		
🗌 Other (des	cribe): 15ma	Waterra Val	re and black	Surge Blo	ck Length/Typ	be: ilater	ra 2"		
		VO. 4	Purge Volume			WHIC		and the states of	
(a) Volume o	f Water in Filter Pa	ack = Saturate			and the second se	ue (gal):			
· · /	f Water in Well Ca								
	Purge Volume] x Number of I						
(c) Minimum	Fulge volume	= [(a) + (b)		ging Information		(gai).		10. <u>5. 110 - 14 17</u>	
	Surge Interval (ft bgs	1		irge Start Time		and the second	Surge Finish	Time	
122	5 to 4 f	55	ent	230		Mayor	Print,	Well dig.	
							1 1		
to									
	to		Dumin and I	Mates Quality	Descentere				
	to	Specific	Purging and \	Water Quality		Massured	Total		
Time	to Purge Volume	Specific Conductance	DO O	RP pH	Parameters Turbidity (NTU)	Measured Depth to	Total Drawdown	Sediment in	
Time	to Purge Temp		DO O	RP	Turbidity (NTU) and/or	Depth to Water	Contract Martin Martin Contract	Discharge Water	
	to Purge Volume (gal) (°C)	Conductance (µS/cm ^c)	DO O (mg/L) (m	RP pH	Turbidity (NTU) and/or Color	Depth to Water (ft BTOC)	Drawdown (ft)		
Time	to Purge Volume (gal) Ged For	Conductance	DO O (mg/L) (m	and Uni	Turbidity (NTU) and/or Color	Depth to Water (ft BTOC)	Drawdown (ft)	Discharge Water	
	to Purge Volume (gal) (°C)	Conductance (μS/cm ⁶) 5 ΜΊΝυτο	DO (mg/L) (n S by h	and Uni	Turbidity (NTU) and/or Color	Depth to Water (ft BTOC)	Drawdown (ft)	Discharge Water	
	to Purge Volume (gal) Ged For	Conductance (µS/cm ⁵) 5 Minute to red	DO (mg/L) (m S by hi harge c	and uni	Turbidity (NTU) and/or Color	Depth to Water (ft BTOC)	Drawdown (ft)	Discharge Water (y/n)	
	to Purge Volume (gal) ged for Allowed tota of	Conductance $(\mu S/cm^{\circ})$ 5 minute 10 rec 1.75	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft)	Discharge Water (y/n)	
	to Purge (gal) ged for allowed	Conductance (µS/cm ⁵) 5 Minute to red	DO (mg/L) (n S by hi harge a gallons	and uni	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
	to Purge Volume (gal) ged for Allowed tota of	Conductance (µS/cm ⁵) 5 minute to rec 1.75 c brown,	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
	to Purge Volume (gal) ged for Allowed tota of	Conductance $(\mu S/cm^{\circ})$ 5 minute 10 rec 1.75	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
	to Purge Volume (gal) ged for Allowed tota of	Conductance (µS/cm ⁵) 5 minute to rec 1.75 c brown,	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
	to Purge Volume (gal) ged for Allowed tota of	Conductance (µS/cm ⁵) 5 minute to rec 1.75 c brown,	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
	to Purge Volume (gal) ged for Allowed tota of	Conductance (µS/cm ⁵) 5 minute to rec 1.75 c brown,	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
	to Purge Volume (gal) ged for Allowed tota of	Conductance (µS/cm ⁵) 5 minute to rec 1.75 c brown,	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
Sur Ve I	to Purge (gal) Temp (°C) ged for Allowed fota of Jater Was	Conductance (µS/cm ⁵) 5 minute to rec 1.75 c brown,	DO (mg/L) (n S by hi harge a gallons	RP nv) pH and int and re Was	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
Fluids added du	to Purge (gai) Ged for CC) Ged for CC) Ged for CC) Ged for CC) Ged for CC) Ged for CC) Ged for CC) Ged for CC) Ged for CC) Ged for CC) CC) Ged for CC) CC) Ged for CC) CC) CC) CC) CC) CC) CC) CC	Conductance (µS/cm ⁵) 5 minute to red 1.75 d brown,	DO (mg/L) (m S by hi narge a gallons n'ighly t	RP and int and re was urbid	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
Fluids added du	to Purge (gal) Temp (°C) ged for Allowed fota of Jater Was	Conductance (µS/cm ⁵) 5 minute to red 1.75 d brown,	DO (mg/L) (m S by hi narge a gallons n'ighly t	RP and int and re was urbid	Turbidity (NTU) and/or Color (Well - po-g-e	Depth to Water (ft BTOC) PUTGE	Drawdown (ft) Dry (pie fim	Discharge Water (y/n)	
Fluids added du	to Purge (gal) Temp (°C) ged for Allowed foral of Jater Was ring development (yr ent (container type ar	Conductance (µS/cm ⁵) 5 minute to red 1.75 d brown, ho (type/volume): nd date sealed, treat	DO (mg/L) (m S by h narge a 3 allons n'aphly t atment, disposal)	RP and int and int and re was orbid (Turbidity (NTU) and/or Color 11 Well 2-purged Silty);	Depth to Water (ft BTOC) PUrge Mult	Drawdown (ft)	Discharge Water (y/n)	
Fluids added du	to Purge (gal) Temp (°C) ged for Allowed foral of Jater Was ring development (yr ent (container type ar	Conductance (µS/cm ⁵) 5 minute to red 1.75 d brown, ho (type/volume): nd date sealed, treat	DO (mg/L) (m S by h narge a 3 allons n'aphly t atment, disposal)	RP and int and int and re was orbid (Turbidity (NTU) and/or Color 11 Well 2-purged Silty);	Depth to Water (ft BTOC) PUrge Mult	Drawdown (ft)	Discharge Water (y/n)	
Fluids added du	to Purge (gal) Temp (°C) ged for Allowed foral of Jater Was ring development (yr ent (container type ar	Conductance (µS/cm ⁵) 5 minute to red 1.75 d brown, ho (type/volume): nd date sealed, treat	DO (mg/L) (m S by h narge a 3 allons n'aphly t atment, disposal)	RP and int and int and re was orbid (Turbidity (NTU) and/or Color 11 Well 2-purged Silty);	Depth to Water (ft BTOC) PUrge Mult	Drawdown (ft)	Discharge Water (y/n)	

Table 1 – Vo	olume of V	ater in Fil assur	, her	er Foot (30	
Well Diameter		Bore	hole Diame	eter (in)	
(in)	2	4	6	8	10
1	0.037	0.184	0.428	0.771	1.212
2		0.147	0.392	0.734	1.175
4	-	-	0.245	0.587	1.028

Table 2 – Volume of Water in Well per Foot								
Well Diameter (in)	Volume of Water per Foot (gal)							
1	0.41							
2	0.163							
4	0.653							

Well Development Form

							11			
Site / Client N	1.5Ku	ir Kotzebu	re Airport		Well ID: MW3R					
Project #: 105,00104, 14001						Developed By: Ben Siwilc				
Date (mm/dd/	'yy): 10	11/15	5							
		1211			Well Info			Both	2429 5 24	-learning and starting
Well Installation	Well Installation Date (mm/dd/yy): 09/30/15							and the second s	Packed; 🔲 Natu	ıral
Date Last Developed (mm/dd/yy):						_	k (top to botto		.5 to 6	
Wellbore Diameter (in):							iding Depth:	5.4	7 9 6 6 5 1	0
Well Diameter		2							3-36 Bto	
Well Depth U	pon Compl	etion (ft.		stoc			umn Thickne	ss in Well (ft):	2.04	
Screen (top to	o bottom)(ft	isgs):	0.4 to 5	.4 BTOC			auging:	110		
The second second second	6 (15 <u>16 1</u> . <u>1</u> 4			Developm	the second design of the local division of t	_	Equipment	10		
Mechanica	al Suraina		Over-Pumping				N/ 1		type:	
			Lich Dropouro	latting			e/Capacity (g			
Surging/Pt		ting to	aterra valve an	1 Surach	lich Dep		Pump or Airlift		5-2	
Other (des	scribe): V	511.51	by				ck Length/Typ	be: Wate	rra 2"	
	_						(if required)	1		
1 /	of Water in						x Table 1 Val	the second se		
(b) Volume d	of Water in	Well Ca	sing = Height o	f Water Col	umn x	Table 2	2 Value (gal)			
	n Purge Vol						ing Volumes (
			1.20	S	urging In					
	Surge Inter		TOC	tutor	Surge St	rge Start Time Surge Finish Time				
	o to		1	144	5			(1)	0	
	to									
	din in un			Purging ar	nd Water	Quality	Parameters		N	
	Purge	Temp	Specific	DO	ORP		Turbidity	Measured	Total	Sediment in
Time	Volume	(°C)	Conductance (µS/cm ^c)	(mg/L)	(mV)	pН	(NTU) and/or	Depth to Water	Drawdown (ft)	Discharge Water
	(gal)	0	(µS/GIT)				Color	(ft BTOC)	1.2	(y/n)
5	urged	for	5 minu	es by	han	8 0	until we	11 purg	ed dry.	
	Well	allow		charge	end	R	punged	twice	J	
	A	ial	£ 11	aallons	Was		burged		evelopment.	
	TT Te	2791	01 1.1					9-13	Cocioparcia	
	Wat	er u	rus brown	- hig	nig	fur	019 1 21120	1:		
	1									
			(n) (type/volume):							
			/n) (type/volume): nd date sealed, tre		osal):					
IDW Managem			the second se		osal):					
			the second se		osal):					
IDW Managem			the second se		osal):					

Table 1 – Volume of Water in Filter Pack per Foot (30% porosity assumed)									
Well Borehole Diameter (in)									
(in)	2	4	6	8	10				
1	0.037	0.184	0.428	0.771	1.212				
2	-	0.147	0.392	0.734	1.175				
4	-		0.245	0.587	1.028				

Table 2 – Volume of Water in Well per Foot							
Well Diameter (in)	Volume of Water per Foot (gal)						
1	0.41						
2	0.163						
4	0.653						

Groundwater Sampling Form

Site/Client Name:	Al a dec	1.	1/1 - t	TixOF	Well ID	: Mist	10				
1 - FRA AL ADIRECT											
Project # :		4001			Sample ID: 10115 AW1/P Sample Time 44221628 Sample Date: 10/1/15						
Sampled By: K		wite							Date: <u>(0</u> /	1/15	
Weather Conditions	: Clad	y Wir	ndy 3	35	Duplica	ite ID: [🕖	01151				
Sampling Method: 🛛 Low Flow 🗍 Other						D 🗌 Yes [No	Trip Blank Re	equired: 🔀	Yes 🗌 No	
	1.00.80.2	o chi, itau			formation	A Trans				2	
Well Type: 🛛 Perm				Well Diameter 🗾	<u> </u>	Screen Inte			6 to 5-6		
Well Condition:	Good 🗌 Fa	ir 🗌 Poor (if fair or poor				Yes No	o; If yes, <u>~ Ö</u>	ft abov	ve ground	
Denth to Minter (B.D	TOOL	.89		Gauging/Purg		tion Pump Depth	A PTOC	4.5	101		
Depth to Water (ft E Total Depth (ft BTC		.09						34 1534			
Depth to Product (ft		NA				nd Time (24		21			
Product Thickness		NA			and the second se	irge Time (m		4			
				Screen Depth)	X 0.25 =	(ft); if	screen inter	rval is not known	n or water tab	le is below top of	
Min. purge volume if	een, then use			f water/#	ft) X Water col	ump thickness	(#)	X # of casing vo	lumes	= gal	
Well Diameter -			041 gal/ft		163 gal/ft		l' – 0.653 g			469 gal/ft	
	No legita			Water Quali	ty Paramete				1000	19 M 1 M 1	
(Achieve stable	e parameter fo	or 3 consecutiv	ve reading [each read	ling taken after	pumping a m	inimum of 1	flow through cel	ll volume])		
Time	Flow	Purge	Temp	Specific	DO (ma(l.)	ORP	pН			Drawdown	
(24-hr)	Rate (gal/	Volume (gal)	(°C)	Conductance (µS/cm°)	(mg/L)	(mV)		(NTU)	(ft BTOC)	(ft)	
16	minute)		(1.0.0())	(1.20())	(± 10%)	(± 10mV)	(± 0, 1)	(± 10%)		(Max ft)	
346	O.4		(± 3 %) Z-09	(± 3%) - 734	J. 61	4.3			3.05	0.16	
IEV251			2-13	1.238	13 -	4.7	8.87	the second s			
104001	0.4	<u>li</u>	No. of Concession, Name		A	171			3.06	0.17	
151356	0.4		2-14	1.236	O.led	-17.1				-	
B8-14-071601	0.4		214	1.233	0.60	- 30-1	7.38		3.08	0.19	
Re 14061606	0.4	2-8	2.13	1. 231	8.58	-37.2	9.31		3.08	0.19	
88 14 1011	6.4	-	2-12	1.228	0.45	-32.0	9.23		3.08	0.19	
8 14 6 1616	8.4	3.7	2.12	1.225	0.45	-26.6	9.16	C .	3.08	0.19	
38 427 621	0.4	4.2	2-11	1.223	0.46	-34.4	9.25		3.08	0.19	
					10						
Sample Color:	lear		,	Sample Odor:	Carblat	+21	Shee	n: yes		-	
- Cumpie Colori		-100310-114			al Sampling	1-011					
				Preservative	/				Pr	eservative/	
Analyses	Nur	nber/Type	of Bottle	Comments	A	nalyses	Number	r/Type of Bott		omments	
GRO/BTEX AK 101	72)	(790"		HCI	Total	Metals					
0R9 AK 163	\$31			HCI	Diss	olved Metals					
RRO											
OC3 8768 B	3	x 40 m	1	HCI							
SVOCs											
PAH3 \$776		x 250		None					RRIC	50	
Notes: Dupli	lae : 5 GRO, VIC	fa	PAtts eil	14.	も	rhidimete	w mal	functioned	at H	T, will	
DRO 6	en UN	e Art	1. pluste	I here	re	luire re	pair.				
1	only vic	7 1101	aup richic								
Equipment: Pump	Part	-Lallin			1	equa-lin	rel	Delle T			
Equipment: Pump Water Level Meter_	IND-S	F		Lubing (Ty Multi-Parame	/pe/Length)	ako/CNH	YSI F	Bailer Type			
VVater Level Meter_ Turbidity Meter (Ma	K0/SN#)	a Miot	K OD	De	eter ivieter (IV	ake/SN#)		56 Iter Lot #	_		
	NG/GIV#)						[_]		1		
IDW Disposal: 🗌 I	Discharged t	o surface [] Treated (h	iow?)		X o	ther: Col	ected in	drum		
						ALC: NO					

SLR

5

Groundwater Sampling Form

Site/Client Name:	A 4 2K	a fir	1000G	Kotzelove A	Weff	D: MIJ	2				
Project #: 105.00104.14001						Sample ID: 1001/5 MV 25 Sample Time: 1400 Sample Date: 1/1/13					
Sampled By: Sen Siwite						le Time: 14			e Date: / C/	1/15	
Weather Conditions: Couces						ate ID: 10					
Sampling Method:	Low Flow	w 🗌 Other_			MS/M	SD 🗌 Yes [No	Trip Blank	Required: 🔀	Yes 🗌 No	
		$M=D_{1}$	25, 5000	Well Int	formation						
Well Type: 🔀 Perm	nanent 🔲 T	emporary		Well Diameter	in,	Screen Inte			GS to	ft BGS	
Well Condition:	Good 🗌 Fa	air 🗌 Poor (if	fair or poor				Yes 🕅 N	io; If yes, 🔼).35 ft abov	e ground	
		Gauging/Purg						13 0 1 28 1			
Depth to Water (ft I		X. 16				/Pump Depth		314			
Total Depth (ft BT) Depth to Product (f		DZA				Start Time (24 End Time (24		359			
Product Thickness		Th				Purge Time (m		5			
		n = (Tubing D	epth - Top of	f Screen Depth)			_	erval is not kno	wn or water tabl	e is below top of	
SCI	reen, then use	default value of	of 0 3 ft	×							
Min. purge volume if					ft) X Water o 163 gal/ft	olumn thicknes	s(ft 4' – 0.653) X # of casing		_=gal 469 gal/ft	
Well Diameter -	- gai/π	1 - 0,0	041 gal/ft	1 10.011-01/			4 - 0.000	gant	0 = 1	too gaint	
	(Achieve stabl	e parameter fo	r 3 consecutiv	Water Quali ve reading [each read	ing taken af	erpumping a n	ninimum of	1 flow through	celi voiume])		
Time	Flow	Purge	Temp	Specific	DO	ORP	pН	Turbidity	DTW	Drawdown	
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	(mV)		(NTU)	(ft BTOC)	(ft) –	
	(gal/ minute)	(gal)		(µS/cm°)							
	1		(± 3 %)	(± 3%)	(± 10%)	(± 10mV)	(± 0_1)	(± 10%)	~ **	(Maxft)	
1317	0.35							Hi-gray	3.08	0-32	
1322	0-35	>		T				Hgray	3.07	0.31	
1325	0.35							17.4			
1339	0.35		1.17	1.063	2.30	65.4	8.01	326	3.09	0.33	
	0.35	2003	21 10	1,144	1.05	58.9	8.10	25.4	3.09	0.33	
1344	0.35	of Op	1.15	1.219	1.00	EL C	8-19	289	3.09	0.33	
		27	1.13			- Andrew Company			3.09	0.33	
1354	0.35	3.2	1.12	1.276	0.91	47.7	8.24		309	0.33	
1359	0.35	7 1	1.13	1.322	0-1	510	8.76	30-7	2.01	0-05	
	+0+0	1 3.8									
					1					1	
Sample Color: 🔰	ellow-C	1ew		Sample Odor:	Can+	rell	She	en: 77	5		
		Succession 1		and a start of the	al Samplin	and the second se					
Analyses	Niu	mber/Type	of Bottle	Preservative	1	Analyses	Numbe	er/Type of B	ottle	eservative/	
Analyses				Comments					C	omments	
GROBTEX AKI	0 3	× 40ml × 250	1.1	ACI	To	tal Metals	-1				
RO ALION 894	13 2	× 250	ml	HCI	Dis	solved Metals	1				
RRO	_				-						
09 8260	BB 3	x40ml		ACI							
SVOCs											
PAHs		. · · · · · ·		1 5 1 1						(
Notes: MW2	Monu	ment	o 2014C	eb. 10C	Ewe	rec. 1	Q '	5 0.50	74 44	Ellow	
Notes: MWZ Top of	mon	ument	and	about 0	.35 +	t below	l grz	ion b			
							× .				
	-	Perista	fic	Tuble - (T	me/Length	Teflon-lin	ed	Bailer Typ	~		
Equipment: Pum Water Level Meter				Lubing (1)	ator Motor	Make/SN#)	151 55				
Turbidity Meter (M	ake/SN#)	amoth	2020	2 wuteratam		Manaron m		ilter Lot #	-		
r arbidity weter (w		1000						0.000			
IDW Disposal: 🗍	Discharged	to surface] Treated (how?)		× d	Other:	lected in	drum		
				nangel (d. 19				The reaction	Contraction of the second s		

Groundwater Sampling Form

A.							
Site/Client Name: 4	usha Air Ectel	We Airport	Well ID: MW 3R				
	5.00/04.14001		Sample ID: 10015 MW3R				
Sampled By: Boy	Siniec		Sample Time: 1755 Sa	mple Date: (0/(/ 15			
Weather Conditions: C	lady, winly	320	Duplicate ID:				
Sampling Method: 🔂 Lo			MS/MSD 🗌 Yes 🔀 No 🛛 Trip Bl	ank Required: 🗹 Yes 🗌 No			
	And the second se	Well Inform		A			
Well Type: 🔼 Permaner	t Temporary	Well Diameter	in. Screen Interval: 0-4	ft BGS to 5.9 ft BGS			
and the second se	E Fair Poor (if fair or poo		Stickup 🗌 Yes 🕱 No; If yes				
		Gauging/Purging	the second s				
Depth to Water (ft BTOC	336	Cadging/r arging	Tubing/Pump Depth (ft. BTOC): 5,	2			
Total Depth (ft BTOC):	5.40		Purge Start Time (24-hr) 173				
Depth to Product (ft. BT	OC) NA		Purge End Time (24-hr) 1750				
Product Thickness (ft)	NA		Total Purge Time (min)				
	w Down = (Tubing Depth – Top en use default value of 0.3 ft.,	of Screen Depth)	X 0.25 =(ft); if screen interval is no	t known or water table is below top of			
	red: purge volume (gal) = volume			asing volumesgal			
Well Diameter – gal/ft	1" – 0.041 gal/ft	2° – 0.163		6' – 1.469 gal/ft			
(A shin)	us stable assessments for 2 services	Water Quality I	arameters aken after pumping a minimum of 1 flow thr				
	Lange and the second			-			
(24-hr) F	Flow Purge Temp Rate Volume (°C) gal/ (gal)	Specific Conductance (µS/cm [°])	DO ORP pH Turbio mg/L) (mV) (NTU				
	nute)			n() (bits., fi)			
Querter all all	5 collected follow		$\pm 10\%$ ($\pm 10mV$) (± 0.1) (± 10				
			iction (not using flow th	rough (cl).			
1755 M	1A NA 2.15	1.039	-24.4 9.64 Hig	h WA			
			· · · · · · · · · · · · · · · · · · ·				
Water re	churaph Shuer +	has the slow	st owno setting t	herefore the			
troil up	e lucest due	al the	and a little a lease	Ren the			
	s purged ary	and the	pumple was contected	from the			
water +	har pechargec.	An a courtion	al quor was coll	arter after			
Sampling	g tor a single	reading of	st pump setting t Sample was collected al aliquot was coll field water quality	parameters			
				-			
Sample Color: Stud	the desta	Sample Odor: 💪	whit will Sheen: Y	es			
	Ing Clovey			25			
	P	Analytical S Preservative/	mpling	Preservative/			
Analyses	Number/Type of Bottle	Comments	Analyses Number/Type	of Bottle Comments			
GROBTEX AL 10	3×40ml	HCI.	Total Metals				
GRO AKIDA	2×250m1	HCI	Dissolved Metals				
RRO							
1003 8260B	3× 40 ml	1701					
SVOCs							
PAHS 82700	2 x 250m1	Vone					
Notes:							
				14			
Equipment: Pump Type Peristalfic Tubing (Type/Length) tefton-fined Bailer Type							
Water Level Meter	H-01	Multi Decemptor	Meter (Make/SN#) YSI 556	iype			
Turbidity Meter (Make/SI		20e Multi-Parameter		#			
r urbidity weter (wake/SI			Filter Lot				
IDW Disposal: Discharged to surface Treated (how?) Other: Calected in Jrum.							

96 Location Motzebue Airport Date 9/30/15 Location hotzebue timport Date 9/38/15 97 Project / Client Aleska Antimes Project / Cilent Aligka Airlines Ban Similer - SLR BON SINCE SLR mar Jepth for this equip. 0830 Arrive in Kotzebue Drake is bringing Fig for grater depth. Weather 33° Closely, windy Show showers 0900 Get Rental vehicle from Drake Groundwater not detected at 0930 Talk to Alaska Airlines staff, 4ft. Soil moist at Gft - Jossibly Walk around site. Note that in groundwater. MW3 has no cover. Also 1220 Waste char Soil sample 093015 MW35 collected from Super Salks from 36.1 dig 1125 Drake Construction arrives RID from same interval 1076. 1200 MW3 Lecommission complete. (headspace). MW3 Was in very poor Note - PID was not callboarted 350 Drake returns with large condition - monument imangled PUC smashed and bent. Top 3 FT of PVC brake off. Cald crill rig. Well completed to 5.5 ft Not feel PUC below break. Inserted bar, and not pontrate 1500 Vell installed and monument 3A. Bai ame up with old Get. Move over to MWI Boring drilled to about 6 St bentonite. Poused new bentonite 1505 to 14 depth. Clean sand/gravel 1530 to surfaci. Well in st alled. Water is 1210 Begin augering New MW-3. 1230 Drilled is GST mole stays open to y ST. GST is at surface in boring- expecting it to fall back.

Location Kotzebe A: rport Date 9/30/15 Project/Client Alaska Airlines Ben Siwiec - SLR 1530 Collect Waste Characterization Soil Sample from auger Cuttings at MWI Sample interval a composite over most of boring. PID: 15.0 1030 Off Airport BS 9/31/15

Location Kozebue Airport Date 10/1/15 99 Project / Client Alaska Airines Ben Giwill- SLR 1000 - 60 to Droke Construction and HAIK to John and Mille. Mike amails us insurance info. 1030 Talk to Alaska Aurlines, receive 1100 Get gear out on termar Deale arrives, transfors Soil from their tote to Super sack (just one). Lubered 551 Converted 10/1/15. 1150 Sample 100115551 Collected from sack 551 (soil) MWI monument Completed, 1200 ready to dev. and simple Drake working on replacing MW-2 monument. Drake finished, offsire. 1215 1745 Purged approx 0.5 gal MWIR Very Slow to recharge. Will let it 3H While Ismple MW2. 1400 Calect Sample 100115MW2 from MWZ.

1115	
Location Kotzebre Airport Date 10/1/15	Location Kotzebue Airport Date 18/1/15 101
Project / Client Alaska Airlines	Project / Client Alaska Airdines
Ben Sinder-SLR	Ben Swirec-SLR
MWZ produced water well.	173 Begin purge
Sample had sediment - well water	1750 Well does not recharge at
was clear but with visible	The slowest possible pumping rate. Therefore sample will
sesiment.	rate. Therefore a mole will
1330 Drake completed RTK survey	be collected after well purged
So prave complete Arresolves	de concrea anos local porgeo
of all 3 wells.	totally dry and recharged.
1445 Beginning davelop ment at 4W353	Total porsed 0.5 gent
INFILIA DTW: 3.23 BTOC	prior to sampling.
TD : 5.40 BTOC	AS part of development.
Surged and purgels for 5 mill.	1.1 gul was proged.
Proluced less than I quart.	1755 Sample collected of MUBR
will wark on MWIR white	Note evening flight has
this certain a	canceled so Ben Sivirec will
this recharges.	Cancefee so ben similer with
1614 Turbidimeter breaks will need	1910 Gear packed up and stored
Bolder for repair. No more	1910 Gear packed up and stored
turb mersuraments.	for the night. Gottas
1422 Collect sample 100/15MWIR and	Off girport.
Ludicate for PAH only : 10011 514W5	- · · ·
high a bal i line will built	
Well produced water will, low	
tuibidity.	B&
Note approx 1.12 gal produced tran	
MWIK sales pmont.	10/1/15
turbidity. Note approx 1.75 gal produced from MWIR Lavels priorit. 1710 Begin work on MW3R sample DTW: 3.36	
DW: 3.36	

102 Location Kotelbur Airport Date 10/2/15 Project/Client Alaska Airlines Bon Siwire 103 Location _____ Date ____ Project / Client 1100 At airport, repaik samples prepare equipment for shipment, ship on air cargo, Label woste water drum 1600 Leave Kotzebue on Alaska Airlines 2230 Arrive in Anchorage. BZ 10/2/15

APPENDIX C

ADEC BUILDING SURVEY AND INDOOR AIR SAMPLING QUESTIONNAIRE

ALASKA AIRLINES

Alaska Airlines, Inc PO Box 68900-SEAZE Seattle, WA 98168-0900

December 2015

APPENDIX I

DEC Building Survey and Indoor Air Sampling Questionnaire This page was intentionally left blank.

ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE

This form should be prepared by a person familiar with indoor air assessments with assistance from a person knowledgeable about the building. Complete this form for each building where interior samples (e.g., indoor air, crawl space, or subslab soil gas samples) will be collected. Section I of this form should be used to assist in choosing an investigative strategy during workplan development. Section II should be used to assist in identification of complicating factors during a presampling building walk-through.

Preparer's Name Ben Siwec	Date/Time Prepared 200, 10/2/15
Preparer's Affiliation SLR International Perp	Phone No. 167- 222-111 2
Purpose of Investigation Groundwater sampling at	Wein Memorial Airport, Kotzebue

SECTION I: BUILDING INVENTORY

1. OCCUPANT OR BUILDING PERSONNEL:

Interviewed (Y)/N
Last Name Dawa K Carl First Name Kart Dawn
Address Air Alaska Air Terminal
City Kotzebue
Phone No. 714 - 872 - 3745
Number of Occupants/people at this location Varies Age of Occupants varies
OWNER or LANDLORD: (Check if same as occupant \times .)
Interviewed: Y / N
Last NameFirst Name
Address
City
Phone No.
BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response.)

Residential
Industrial

2.

3.

School Church

-	
C	ommercial Multi-use
	than

If the property is residential, what type? (Circle appropriate response.)

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouse/Condo Other			
If multiple units, how man					
If the property is commer					
Business types(s)	fir terminal				
Does it include residen	ces (i.e., multi-use)? Y 🕅	If yes, how many?			
Other characteristics:	_				
Number of floors	2	Building age Not Known			
Is the building insulate	и?🚱 N	How airtight? Tight / Average / Not Tight			
Have occupants noticed cl	nemical odors in the buildin	g? 🕜 N			
If yes, please describe:	Equipment exh	aust (part of building is			
If yes, please describe: Equipment exhaust (part of building is a gazage) - only in gazage area					

4. AIRFLOW

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow between floors can flow through / between eziling air ses-

Airflow in building near suspected source

-to due garage nth ows large deors spen in AND air real Outdoor air infiltration (man doors and doors garage Only at Infiltration into air ducts of non- garan Side stored m not N0nemical 5 building

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply.)

a. Above-grade construction:	wood frame	log	concrete brick Metal building constructed on pilings On concrete slab
	constructed on with enclosed		with open air space
b. Basement type:	full	crawlspace	Stabongrade other No busement
c. Basement floor:	concrete	dirt	stone other NA
d. Basement floor:	unsealed	sealed	sealed with Insulation under replaced floor
e. Foundation walls:	poured	block	stone other None
f. Foundation walls:	unsealed	sealed	stone other None sealed with None
g. The basement is:	wet	damp	dry NA
h. The basement is:	finished	unfinished	
i. Sump present?			ected pficol drains in garage
j. Water in sump?	N / not app	olicable G	orage floor drains
Basement or lowest level depth be	low grade a	nprex 3	Fingfeet, Sump vaults.
Identify potential soil vapor entry	points and app	roximate size arage f	(e.g., cracks, utility ports, and drains). Four visible. Unknown if
6. HEATING, VENTING, and A	AIR CONDITIO	ONING (Circle	e all that apply.)
Type of heating system(s) used	d in this buildin	g: (Circle all t	hat apply – not just primary.)
Space heaters	Heat pump Stream radiation Wood stove	n Rad	t water baseboard diant floor tdoor wood boiler Other Blovers in garage ed glycol to blowers
5	Fuel oil	Kei Sol	rosene
	Propane Coal		an a
Domestic hot water tank is fu	eled by: fue	21 OIL	
Boiler/furnace is located in:	Base	ment (Dutdoors Main floor Other Upstairs

Do any of the heating appliances have cold-air intakes? W/N Type of air conditioning or ventilation used in this building:

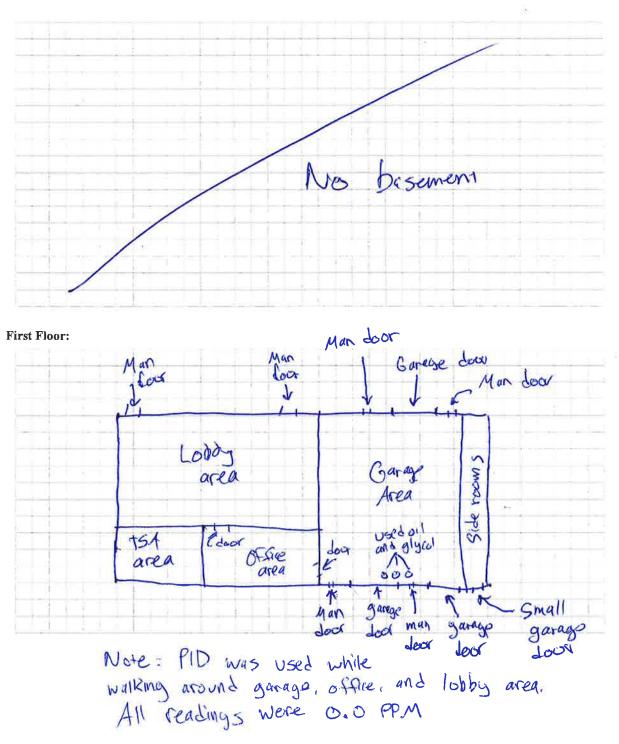
Ner Central air Window units Open windows None Commercial HVAC Passive air system Heat-recovery system Y / N

Are there air distribution ducts present?

I-3

Describe the ventilation system in the building, its condition where visible, and the tightness of duct joints. Indicate the location of air supply and exhaust points on the floor plan.

Looks intact where exposed. Some ducts
one inside reiling.
Is there a radon mitigation system for the building/structure? Y Repate of Installation
Is the system active or passive? Active/Passive
is the system active of passive. A following assive
occupancy daufine working hours only
OCCUPANCY Is basement/lowest level occupied? (Full-time) Occasionally Seldom Almost never
Level General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, or storage).
Basement
1st Floor Air passenges terminal and garage, restrooms
2 nd Floor Office Kitchen area
3 rd Floor
WATER AND SEWAGE
Water supply: Public water Drilled well Driven well Dug well Other
Sewage disposal: Public sewer Septic tank Leach field Dry well Other


7.

8.

9. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

Basement:

10. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

See attached Figure

SECTION II: INDOOR AIR SAMPLING QUESTIONNAIRE

This section should be completed during a presampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AI	IR QUALITY
Is there an attached garage?	(Y)N
Does the garage have a separate heating unit?	(V) N/NA
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, or car)	N/NA Please specify Fork Lifts
Has the building ever had a fire?	Y (N) When?
Is a kerosene or unvented gas space heater present?	Y 🕅 Where?
Is there a workshop or hobby/craft area?	Where and type
Is there smoking in the building?	Y / How frequently?
Has painting/staining been done in the last six months?	Y Where and when?
Is there new carpet, drapes or other textiles?	Y Where and when?
Is there a kitchen exhaust fan?	If yes, where is it vented?
Is there a bathroom exhaust fan?	N If yes, where is it vented?
Is there a clothes dryer?	Y / N If yes, is it vented outside? Y / N
T	used that could interfere with indoor air sampling? () N ning products
Do any of the building occupants use solvents at work? (For example, is the building used for chemical manufactur shop, fuel oil delivery area, or do any of the occupants work If yes, what types of solvents are used?	N ing or a laboratory, auto mechanic or auto body shop, painting as a boiler mechanic, pesticide applicator, or cosmetologist?)
If yes, are his/her/their clothes washed at work?	x / (R)

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Ves	1150	dry	cleaning	regularly	(weekly)
103,	use	uiy	creating	regularly	(WCCKIY)

Yes, use dry cleaning infrequently (monthly or less) \mathcal{NO}

Unknown

No

÷

Yes, work at a dry cleaning services \mathcal{NO}

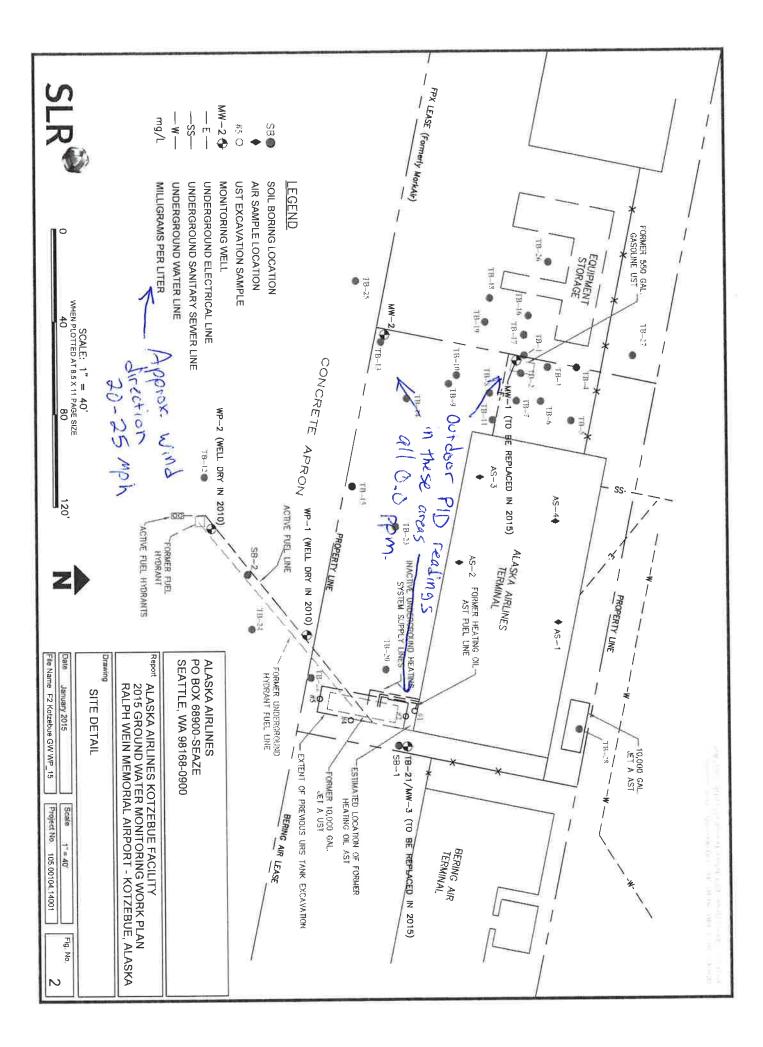
2. **PRODUCT INVENTORY FORM** (For use during building walk-through.)

Make and model of field instrument used:____

List specific products found in the residence that have the potential to affect indoor air quality:

		Site			Field Instrument Reading	Photo ²
Location	Product Description	(units)	Condition ¹	Chemical Ingredients	(units)	<u>Y / N</u>
CAUSOME	dil brum	3	good			N
- ,-			0	U	lycol o.o PPM	
						it

¹ Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**.


Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

This form was modified from:

ITRC (Interstate Technology and Regulatory Council). 2007. Vapor Intrusion Pathway: A Practical Guideline. VI-1. Washington, D.C.: Interstate Technology and Regulatory Council, Vapor Intrusion Team. Available at: <u>www.itrcweb.org.</u>

The Alaska Department of Environmental Conservation's Contaminated Sites Program protects human health and the environment by managing the cleanup of contaminated soil and groundwater in Alaska.For more information, please contact our staff at the Contaminated Sites Program closest to you: Juneau: 907-465-5390 / Anchorage: 907-269-7503

Fairbanks: 907-451-2153 / Kenai: 907-262-5210

APPENDIX D

SGS LABORATORY DATA REPORTS

ALASKA AIRLINES

Alaska Airlines, Inc PO Box 68900-SEAZE Seattle, WA 98168-0900

December 2015

Laboratory Report of Analysis To: SLR Alaska-Anchorage 2700 Gambell St Suite 200 Anchorage, AK 99503 (907)222-1112 Report Number: 1155836 Client Project: 105.00104.14001 AK Air Kotz GW Dear Jason Gray, Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote. If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have. Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs. Sincerely, SGS North America Inc. Justin Nelson Date Project Manager Justin.Nelson@sgs.com

Print Date: 10/30/2015 11:39:13AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS North America Inc.

Case Narrative

Customer: SLRANCH Project: 1155836 NPDL WO: SLR Alaska-Anchorage 105.00104.14001 AK Air Kotz GW

Refer to the sample receipt form for information on sample condition.

1155836001 PS 100115MW1R

AK101 - Surrogate recovery for 4-bromofluorobenzene (173%) does not meet QC criteria due to matrix interference.

1155836009 PS 093015MW35

AK101 - GRO result is above calibration range (4000 parts per billion); the sample could not be reanalyzed within hold time and the original results were approved, per QA.

AK101 - Surrogate recovery for 4-bromofluorobenzene (458%) does not meet QC criteria due to matrix interference.

1295863 LCSD XXX/3434

8270D SIM - LCS/LCSD RPD for fluorene (21.1%) and phenanthrene (22.5%) does not meet QC criteria. These analytes were not detected above the LOQ in the associated samples. RPD for fluoranthene is within criteria after application of rounding rules.

1297312 LCS VXX/28064

8260B – LCS recoveries for several analytes do not meet QC criteria (biased high). These analytes were not detected above the LOQ in the associated samples.

1297313 MS 1158702018MS

8260B ---MS recovery for Hexachlorobutadiene does not meet QC criteria. Refer to LCS for accuracy.

1297314 MSD 1158702018MSD

8260B — MS/MSD recoveries for several analytes do not meet QC criteria. Refer to LCS for accuracy. 8260B — MS/MSD RPD for several analytes do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

1297576 MSD 1297574MSD

8260B ---MS/MSD RPD for 1,2,3-Trichlorobenzene and Naphthalene do not meet QC criteria. These analytes were not detected above the LOQ in the associated samples.

Report of Manual Integrations							
Laboratory ID	Client Sample ID	Analytical Batch	Analyte	Reason			
SW8260B							
1155836008	093015MW15	VMS15331	4-Isopropyltoluene	SP			
1155836010	100115SS1	VMS15331	4-Isopropyltoluene	SP			

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 10/30/2015 11:39:16AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	include a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 10/30/2015 11:39:17AM

Note:

SW8260B

SW8260B

	Sample Summary							
Client Sample ID	Lab Sample ID	Collected	Received	Matrix				
100115MW1R	1155836001	10/01/2015	10/05/2015	Water (Surface, Eff., Ground)				
100115MW2	1155836002	10/01/2015	10/05/2015	Water (Surface, Eff., Ground)				
100115MW3R	1155836003	10/01/2015	10/05/2015	Water (Surface, Eff., Ground)				
100115MW4	1155836004	10/01/2015	10/05/2015	Water (Surface, Eff., Ground)				
100115MW5	1155836005	10/01/2015	10/05/2015	Water (Surface, Eff., Ground)				
GWTB1	1155836006	10/01/2015	10/05/2015	Water (Surface, Eff., Ground)				
GWTB2	1155836007	10/01/2015	10/05/2015	Water (Surface, Eff., Ground)				
093015MW15	1155836008	09/30/2015	10/05/2015	Soil/Solid (dry weight)				
093015MW35	1155836009	09/30/2015	10/05/2015	Soil/Solid (dry weight)				
100115SS1	1155836010	10/01/2015	10/05/2015	Soil/Solid (dry weight)				
STB1	1155836011	09/30/2015	10/05/2015	Soil/Solid (dry weight)				
Method	Method Des	scription						
8270D SIMS LV (PAH)	8270 PAH S	SIM GC/MS Liq/Lic	a ext. LV					
AK102	Diesel Rang	ge Organics (S)						
AK102	DRO Low V	/olume (W)						
AK101	Gasoline Ra	ange Organics (S)						
AK101	Gasoline Ra	ange Organics (W))					
SM21 2540G	Percent Solids SM2540G							

VOC 8260 (S) Field Extracted

Volatile Organic Compounds (W) FULL

Print Date: 10/30/2015 11:39:18AM

Detectable Results Summary

Client Sample ID: 100115MW1R			
Lab Sample ID: 1155836001	Parameter_	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	5.24	ug/L
	2-Methylnaphthalene	6.28	ug/L
	Naphthalene	31.5	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	3.22	mg/L
Volatile Fuels	Gasoline Range Organics	1.90	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	182	ug/L
	1,3,5-Trimethylbenzene	59.2	ug/L
	4-Isopropyltoluene	10.3	ug/L
	Benzene	24.5	ug/L
	Dichlorodifluoromethane	8.40J	ug/L
	Ethylbenzene	68.8	ug/L
	Isopropylbenzene (Cumene)	16.4	ug/L
	Naphthalene	46.8J	ug/L
	n-Propylbenzene	27.5	ug/L
	o-Xylene	51.6	ug/L
	P & M -Xylene	311	ug/L
	sec-Butylbenzene	5.50J	ug/L
	Toluene	3.20J	ug/L
	Xylenes (total)	363	ug/L
Client Sample ID: 100115MW2			
Lab Sample ID: 1155836002	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	1.47	mg/L
Volatile Fuels	Gasoline Range Organics	0.0740J	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	0.610J	ug/L
	Benzene	13.0	ug/L
	Dichlorodifluoromethane	21.0	ug/L
	Ethylbenzene	0.810J	ug/L
	P & M -Xylene	0.960J	ug/L
	-		-

Print Date: 10/30/2015 11:39:19AM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: 100115MW3R			
Lab Sample ID: 1155836003	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.266	ug/L
	Acenaphthene	0.263	ug/L
	Naphthalene	1.70	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	11.1	mg/L
Volatile Fuels	Gasoline Range Organics	3.10	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	34.7	ug/L
	1,3,5-Trimethylbenzene	22.5	ug/L
	Benzene	55.3	ug/L
	Ethylbenzene	245	ug/L
	Isopropylbenzene (Cumene)	7.80J	ug/L
	n-Propylbenzene	5.90J	ug/L
	o-Xylene	135	ug/L
	P & M -Xylene	674	ug/L
	Xylenes (total)	809	ug/L
Client Sample ID: 100115MW4			
Lab Sample ID: 1155836004	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	2.29	mg/L
Volatile Fuels	Gasoline Range Organics	0.0923J	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	0.660J	ug/L
	1,3,5-Trimethylbenzene	0.360J	ug/L
	Benzene	12.9	ug/L
	Dichlorodifluoromethane	18.5	ug/L
	Ethylbenzene	0.780J	ug/L
	P & M -Xylene	0.960J	ug/L
Client Sample ID: 100115MW5			
Lab Sample ID: 1155836005	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	4.68	ug/L
	2-Methylnaphthalene	5.56	ug/L
	Acenaphthene	0.167	ug/L
	Naphthalene	31.9	ug/L
			0

Print Date: 10/30/2015 11:39:19AM

SGS North America Inc.

Detectable Results	Summary
---------------------------	---------

Client Sample ID: 093015MW15			
Lab Sample ID: 1155836008	Parameter	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	178	mg/Kg
Volatile Fuels	Gasoline Range Organics	5.39	mg/Kg
Volatile GC/MS	1,2,4-Trimethylbenzene	232	ug/Kg
	1,3,5-Trimethylbenzene	86.5	ug/Kg
	4-Isopropyltoluene	14.6J	ug/Kg
	Benzene	23.9	ug/Kg
	Ethylbenzene	72.6	ug/Kg
	Isopropylbenzene (Cumene)	15.7J	ug/Kg
	Naphthalene	191	ug/Kg
	n-Propylbenzene	42.6	ug/Kg
	o-Xylene	57.7	ug/Kg
	P & M -Xylene	280	ug/Kg
	sec-Butylbenzene	13.0J	ug/Kg
	Toluene	51.3	ug/Kg
	Xylenes (total)	337	ug/Kg
Client Sample ID: 093015MW35			
Lab Sample ID: 1155836009	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	109	mg/Kg
Volatile Fuels	Gasoline Range Organics	189	mg/Kg
Volatile CC/MS	1,2,4-Trimethylbenzene	1050	ug/Kg
	1,3,5-Trimethylbenzene	628	ug/Kg
	4-Isopropyltoluene	182	ug/Kg
	Benzene	182 14.6J	ug/Kg ug/Kg
		2100	
	Ethylbenzene	2100 64.9	ug/Kg
	Isopropylbenzene (Cumene)		ug/Kg
	Naphthalene	213	ug/Kg
	n-Propylbenzene	128	ug/Kg
	o-Xylene	1250	ug/Kg
	P & M -Xylene	7700	ug/Kg
	sec-Butylbenzene	30.2J	ug/Kg
	tert-Butylbenzene	72.3	ug/Kg
	Toluene	38.0J	ug/Kg
	Xylenes (total)	8950	ug/Kg

Print Date: 10/30/2015 11:39:19AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 100115SS1 Lab Sample ID: 1155836010 Semivolatile Organic Fuels Volatile Fuels Volatile GC/MS

Detectable Results Summary

Parameter	Result	Units
Diesel Range Organics	139	mg/Kg
Gasoline Range Organics	41.4	mg/Kg
1,2,4-Trimethylbenzene	433	ug/Kg
1,3,5-Trimethylbenzene	208	ug/Kg
4-Isopropyltoluene	31.1J	ug/Kg
Benzene	11.5J	ug/Kg
Ethylbenzene	530	ug/Kg
Isopropylbenzene (Cumene)	32.6J	ug/Kg
Naphthalene	161	ug/Kg
n-Propylbenzene	66.3	ug/Kg
o-Xylene	305	ug/Kg
P & M -Xylene	1640	ug/Kg
sec-Butylbenzene	20.0J	ug/Kg
tert-Butylbenzene	25.2J	ug/Kg
Toluene	14.1J	ug/Kg
Xylenes (total)	1940	ug/Kg

Print Date: 10/30/2015 11:39:19AM

SGS North America Inc.

SGS

Results of 100115MW1R

Client Sample ID: **100115MW1R** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836001 Lab Project ID: 1155836 Collection Date: 10/01/15 16:22 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
1-Methylnaphthalene	5.24	0.0481	0.0144	ug/L	1	10/22/15 00:59
2-Methylnaphthalene	6.28	0.0481	0.0144	ug/L	1	10/22/15 00:59
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Benzo[a]pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Dibenzo[a,h]anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Naphthalene	31.5	0.962	0.298	ug/L	10	10/22/15 18:55
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 00:59
Surrogates						
2-Fluorobiphenyl (surr)	73.9	53-106		%	1	10/22/15 00:59
Terphenyl-d14 (surr)	104	58-132		%	1	10/22/15 00:59

Batch Information

Analytical Batch: XMS9000 Analytical Method: 8270D SIMS LV (PAH) Analyst: NRB Analytical Date/Time: 10/22/15 00:59 Container ID: 1155836001-I

Analytical Batch: XMS9004 Analytical Method: 8270D SIMS LV (PAH) Analyst: NRB Analytical Date/Time: 10/22/15 18:55 Container ID: 1155836001-I Prep Batch: XXX34344 Prep Method: SW3520C Prep Date/Time: 10/07/15 10:30 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX34344 Prep Method: SW3520C Prep Date/Time: 10/07/15 10:30 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100115MW1R Client Sample ID: 100115MW1R Client Project ID: 105.00104.14001 Al Lab Sample ID: 1155836001 Lab Project ID: 1155836	K Air Kotz GW	R M S	eceived Da	ate: 10/01/ ate: 10/05/ [,] er (Surface)	15 08:44	-	
Results by Semivolatile Organic Fuel	s						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 3.22	<u>LOQ/CL</u> 0.581	<u>DL</u> 0.174	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/15/15 06:19
Surrogates 5a Androstane (surr)	87.1	50-150		%	1		10/15/15 06:19
Batch Information Analytical Batch: XFC12158 Analytical Method: AK102 Analyst: KJO Analytical Date/Time: 10/15/15 06:19 Container ID: 1155836001-G		F	Prep Date/Ti	I: SW3520C me: 10/14/1 Vt./Vol.: 258	5 10:08		

J flagging is activated

Member of SGS Group

SGS	

Client Sample ID: 100115MW1R Client Project ID: 105.00104.14001 Ak Lab Sample ID: 1155836001 Lab Project ID: 1155836	(Air Kotz	GW	R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 10/05/	15 08:44	-	
Results by Volatile Fuels				_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Q</u> 1.90	ual	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/14/15 01:09
urrogates								
4-Bromofluorobenzene (surr)	173	*	50-150		%	1		10/14/15 01:09
Batch Information								
Analytical Batch: VFC12746 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 10/14/15 01:09 Container ID: 1155836001-B			F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 10/13/1 't./Vol.: 5 m	5 08:00		

J flagging is activated

SG

Client Sample ID: **100115MW1R** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836001 Lab Project ID: 1155836 Collection Date: 10/01/15 16:22 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	2.50 U	5.00	<u>DL</u> 1.50	ug/L	<u>10</u>	LIIIIII	10/09/15 13:30
1,1,1-Trichloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,1,2,2-Tetrachloroethane	2.50 U	5.00	1.50	ug/L	10		10/09/15 13:30
1,1,2-Trichloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,1-Dichloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,1-Dichloroethene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,1-Dichloropropene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,2,3-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,2,3-Trichloropropane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,2,4-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,2,4-Trimethylbenzene	182	10.0	3.10	ug/L	10		10/09/15 13:30
1,2-Dibromo-3-chloropropane	50.0 U	100	31.0	ug/L	10		10/09/15 13:30
1,2-Dibromoethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,2-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,2-Dichloroethane	2.50 U	5.00	1.50	ug/L	10		10/09/15 13:30
1,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,3,5-Trimethylbenzene	59.2	10.0	3.10	ug/L	10		10/09/15 13:30
1,3-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
1,3-Dichloropropane	2.50 U	5.00	1.50	ug/L	10		10/09/15 13:30
1,4-Dichlorobenzene	2.50 U	5.00	1.50	ug/L	10		10/09/15 13:30
2,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
2-Butanone (MEK)	50.0 U	100	31.0	ug/L	10		10/09/15 13:30
2-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
2-Hexanone	50.0 U	100	31.0	ug/L	10		10/09/15 13:30
4-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
4-Isopropyltoluene	10.3	10.0	3.10	ug/L	10		10/09/15 13:30
4-Methyl-2-pentanone (MIBK)	50.0 U	100	31.0	ug/L	10		10/09/15 13:30
Benzene	24.5	4.00	1.20	ug/L	10		10/09/15 13:30
Bromobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
Bromochloromethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
Bromodichloromethane	2.50 U	5.00	1.50	ug/L	10		10/09/15 13:30
Bromoform	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
Bromomethane	50.0 U	100	31.0	ug/L	10		10/09/15 13:30
Carbon disulfide	50.0 U	100	31.0	ug/L	10		10/09/15 13:30
Carbon tetrachloride	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30
Chlorobenzene	2.50 U	5.00	1.50	ug/L	10		10/09/15 13:30
Chloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 13:30

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **100115MW1R** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836001 Lab Project ID: 1155836 Collection Date: 10/01/15 16:22 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	5.00 U	10.0	3.00	ug/L	10	10/09/15 13:30
Chloromethane	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
cis-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
cis-1,3-Dichloropropene	2.50 U	5.00	1.50	ug/L	10	10/09/15 13:30
Dibromochloromethane	2.50 U	5.00	1.50	ug/L	10	10/09/15 13:30
Dibromomethane	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Dichlorodifluoromethane	8.40 J	10.0	3.10	ug/L	10	10/09/15 13:30
Ethylbenzene	68.8	10.0	3.10	ug/L	10	10/09/15 13:30
Freon-113	50.0 U	100	31.0	ug/L	10	10/09/15 13:30
Hexachlorobutadiene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Isopropylbenzene (Cumene)	16.4	10.0	3.10	ug/L	10	10/09/15 13:30
Methylene chloride	25.0 U	50.0	10.0	ug/L	10	10/09/15 13:30
Methyl-t-butyl ether	50.0 U	100	31.0	ug/L	10	10/09/15 13:30
Naphthalene	46.8 J	100	31.0	ug/L	10	10/09/15 13:30
n-Butylbenzene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
n-Propylbenzene	27.5	10.0	3.10	ug/L	10	10/09/15 13:30
o-Xylene	51.6	10.0	3.10	ug/L	10	10/09/15 13:30
P & M -Xylene	311	20.0	6.20	ug/L	10	10/09/15 13:30
sec-Butylbenzene	5.50 J	10.0	3.10	ug/L	10	10/09/15 13:30
Styrene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
tert-Butylbenzene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Tetrachloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Toluene	3.20 J	10.0	3.10	ug/L	10	10/09/15 13:30
trans-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
trans-1,3-Dichloropropene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Trichloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Trichlorofluoromethane	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Vinyl acetate	50.0 U	100	31.0	ug/L	10	10/09/15 13:30
Vinyl chloride	5.00 U	10.0	3.10	ug/L	10	10/09/15 13:30
Xylenes (total)	363	30.0	10.0	ug/L	10	10/09/15 13:30
Surrogates						
1,2-Dichloroethane-D4 (surr)	105	81-118		%	10	10/09/15 13:30
4-Bromofluorobenzene (surr)	96.2	85-114		%	10	10/09/15 13:30
Toluene-d8 (surr)	99.6	89-112		%	10	10/09/15 13:30

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 100115MW1R Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836001 Lab Project ID: 1155836 Collection Date: 10/01/15 16:22 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15328 Analytical Method: SW8260B Analyst: SCL Analytical Date/Time: 10/09/15 13:30 Container ID: 1155836001-D Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/09/15 08:59 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100115MW2 Client Sample ID: 100115MW2 Client Project ID: 105.00104.14001 Ak Lab Sample ID: 1155836002 Lab Project ID: 1155836		R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 10/05/1	5 08:44		
Results by Semivolatile Organic Fuels	i						
Parameter Diesel Range Organics	<u>Result Qual</u> 1.47	<u>LOQ/CL</u> 0.581	<u>DL</u> 0.174	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 10/15/15 06:40
urrogates							
5a Androstane (surr)	89.1	50-150		%	1		10/15/15 06:40
Batch Information							
Analytical Batch: XFC12158 Analytical Method: AK102 Analyst: KJO Analytical Date/Time: 10/15/15 06:40 Container ID: 1155836002-G		F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 10/14/1 /t./Vol.: 258	5 10:08		

J flagging is activated

Results of 100115MW2								
Client Sample ID: 100115MW2 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836002 Lab Project ID: 1155836		R M S	eceived Dat	te: 10/01/15 14:00 e: 10/05/15 08:44 r (Surface, Eff., Ground)				
Parameter	Result Qual	LOQ/CL	DL	Unite	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed	
Gasoline Range Organics	0.0740 J	0.100	0.0310	<u>Units</u> mg/L	1	Linits	10/14/15 01:28	
Surrogates								
4-Bromofluorobenzene (surr)	91.9	50-150		%	1		10/14/15 01:28	
Batch Information								
Analytical Batch: VFC12746			Prep Batch:					
Analytical Method: AK101 Analyst: CRD			Prep Method: Prep Date/Tir					
Analytical Date/Time: 10/14/15 01:28			Prep Initial W					

Prep Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:21AM

Container ID: 1155836002-B

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **100115MW2** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836002 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:26
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:26
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,2,4-Trimethylbenzene	0.610 J	1.00	0.310	ug/L	1		10/09/15 17:26
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:26
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:26
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:26
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:26
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:26
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:26
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:26
Benzene	13.0	0.400	0.120	ug/L	1		10/09/15 17:26
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:26
Bromoform	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
Bromomethane	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:26
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:26
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:26
Chloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:26

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **100115MW2** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836002 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1	10/09/15 17:26
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/09/15 17:26
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/09/15 17:26
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Dichlorodifluoromethane	21.0	1.00	0.310	ug/L	1	10/09/15 17:26
Ethylbenzene	0.810 J	1.00	0.310	ug/L	1	10/09/15 17:26
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:26
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	10/09/15 17:26
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:26
Naphthalene	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:26
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
o-Xylene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
P & M -Xylene	0.960 J	2.00	0.620	ug/L	1	10/09/15 17:26
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Styrene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Toluene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:26
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:26
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	10/09/15 17:26
Surrogates						
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1	10/09/15 17:26
4-Bromofluorobenzene (surr)	97.8	85-114		%	1	10/09/15 17:26
Toluene-d8 (surr)	93.8	89-112		%	1	10/09/15 17:26

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **100115MW2** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836002 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15328 Analytical Method: SW8260B Analyst: SCL Analytical Date/Time: 10/09/15 17:26 Container ID: 1155836002-D Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/09/15 08:59 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS

Results of 100115MW3R

Client Sample ID: **100115MW3R** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836003 Lab Project ID: 1155836 Collection Date: 10/01/15 17:55 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
1-Methylnaphthalene	0.266	0.0481	0.0144	ug/L	1	10/22/15 18:39
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Acenaphthene	0.263	0.0481	0.0144	ug/L	1	10/22/15 18:39
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Benzo[a]pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Dibenzo[a,h]anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Naphthalene	1.70	0.0962	0.0298	ug/L	1	10/22/15 18:39
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 18:39
Surrogates						
2-Fluorobiphenyl (surr)	61.3	53-106		%	1	10/22/15 18:39
Terphenyl-d14 (surr)	104	58-132		%	1	10/22/15 18:39

Batch Information

Analytical Batch: XMS9004 Analytical Method: 8270D SIMS LV (PAH) Analyst: NRB Analytical Date/Time: 10/22/15 18:39 Container ID: 1155836003-I Prep Batch: XXX34344 Prep Method: SW3520C Prep Date/Time: 10/07/15 10:30 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 100115MW3R Client Sample ID: 100115MW3R Client Project ID: 105.00104.14001 AP Lab Sample ID: 1155836003 Lab Project ID: 1155836		R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 10/05/	15 08:44		
Results by Semivolatile Organic Fuel	S		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 11.1	<u>LOQ/CL</u> 0.584	<u>DL</u> 0.175	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/15/15 07:00
Surrogates							
5a Androstane (surr)	90.8	50-150		%	1		10/15/15 07:00
Batch Information							
Analytical Batch: XFC12158 Analytical Method: AK102 Analyst: KJO Analytical Date/Time: 10/15/15 07:00 Container ID: 1155836003-G		F F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 10/14/1 /t./Vol.: 257	5 10:08		

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100115MW3R Client Sample ID: 100115MW3R Client Project ID: 105.00104.14001 A Lab Sample ID: 1155836003 Lab Project ID: 1155836	K Air Kotz GW	R M S	ollection Da eceived Dat atrix: Wate olids (%): ocation:	te: 10/05/	15 08:44		
Results by Volatile Fuels			_				
Parameter Gasoline Range Organics	<u>Result Qual</u> 3.10	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/14/15 02:25
Surrogates 4-Bromofluorobenzene (surr)	116	50-150		%	1		10/14/15 02:25
Batch Information							
Analytical Batch: VFC12746 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 10/14/15 02:25 Container ID: 1155836003-B		F	Prep Batch: V Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	SW5030B ne: 10/13/1 t./Vol.: 5 m	5 08:00		

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **100115MW3R** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836003 Lab Project ID: 1155836 Collection Date: 10/01/15 17:55 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	2.50 U	5.00	1.50	ug/L	10		10/09/15 14:03
1,1,1-Trichloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,1,2,2-Tetrachloroethane	2.50 U	5.00	1.50	ug/L	10		10/09/15 14:03
1,1,2-Trichloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,1-Dichloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,1-Dichloroethene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,1-Dichloropropene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,2,3-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,2,3-Trichloropropane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,2,4-Trichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,2,4-Trimethylbenzene	34.7	10.0	3.10	ug/L	10		10/09/15 14:03
1,2-Dibromo-3-chloropropane	50.0 U	100	31.0	ug/L	10		10/09/15 14:03
1,2-Dibromoethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,2-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,2-Dichloroethane	2.50 U	5.00	1.50	ug/L	10		10/09/15 14:03
1,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,3,5-Trimethylbenzene	22.5	10.0	3.10	ug/L	10		10/09/15 14:03
1,3-Dichlorobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
1,3-Dichloropropane	2.50 U	5.00	1.50	ug/L	10		10/09/15 14:03
1,4-Dichlorobenzene	2.50 U	5.00	1.50	ug/L	10		10/09/15 14:03
2,2-Dichloropropane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
2-Butanone (MEK)	50.0 U	100	31.0	ug/L	10		10/09/15 14:03
2-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
2-Hexanone	50.0 U	100	31.0	ug/L	10		10/09/15 14:03
4-Chlorotoluene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
4-Isopropyltoluene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
4-Methyl-2-pentanone (MIBK)	50.0 U	100	31.0	ug/L	10		10/09/15 14:03
Benzene	55.3	4.00	1.20	ug/L	10		10/09/15 14:03
Bromobenzene	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
Bromochloromethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
Bromodichloromethane	2.50 U	5.00	1.50	ug/L	10		10/09/15 14:03
Bromoform	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
Bromomethane	50.0 U	100	31.0	ug/L	10		10/09/15 14:03
Carbon disulfide	50.0 U	100	31.0	ug/L	10		10/09/15 14:03
Carbon tetrachloride	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03
Chlorobenzene	2.50 U	5.00	1.50	ug/L	10		10/09/15 14:03
Chloroethane	5.00 U	10.0	3.10	ug/L	10		10/09/15 14:03

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **100115MW3R** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836003 Lab Project ID: 1155836 Collection Date: 10/01/15 17:55 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	5.00 U	10.0	3.00	ug/L	10	10/09/15 14:03
Chloromethane	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
cis-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
cis-1,3-Dichloropropene	2.50 U	5.00	1.50	ug/L	10	10/09/15 14:03
Dibromochloromethane	2.50 U	5.00	1.50	ug/L	10	10/09/15 14:03
Dibromomethane	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Dichlorodifluoromethane	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Ethylbenzene	245	10.0	3.10	ug/L	10	10/09/15 14:03
Freon-113	50.0 U	100	31.0	ug/L	10	10/09/15 14:03
Hexachlorobutadiene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Isopropylbenzene (Cumene)	7.80 J	10.0	3.10	ug/L	10	10/09/15 14:03
Methylene chloride	25.0 U	50.0	10.0	ug/L	10	10/09/15 14:03
Methyl-t-butyl ether	50.0 U	100	31.0	ug/L	10	10/09/15 14:03
Naphthalene	50.0 U	100	31.0	ug/L	10	10/09/15 14:03
n-Butylbenzene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
n-Propylbenzene	5.90 J	10.0	3.10	ug/L	10	10/09/15 14:03
o-Xylene	135	10.0	3.10	ug/L	10	10/09/15 14:03
P & M -Xylene	674	20.0	6.20	ug/L	10	10/09/15 14:03
sec-Butylbenzene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Styrene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
tert-Butylbenzene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Tetrachloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Toluene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
trans-1,2-Dichloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
trans-1,3-Dichloropropene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Trichloroethene	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Trichlorofluoromethane	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Vinyl acetate	50.0 U	100	31.0	ug/L	10	10/09/15 14:03
Vinyl chloride	5.00 U	10.0	3.10	ug/L	10	10/09/15 14:03
Xylenes (total)	809	30.0	10.0	ug/L	10	10/09/15 14:03
Surrogates						
1,2-Dichloroethane-D4 (surr)	105	81-118		%	10	10/09/15 14:03
4-Bromofluorobenzene (surr)	97.1	85-114		%	10	10/09/15 14:03
Toluene-d8 (surr)	96.9	89-112		%	10	10/09/15 14:03

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 100115MW3R Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836003 Lab Project ID: 1155836 Collection Date: 10/01/15 17:55 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15328 Analytical Method: SW8260B Analyst: SCL Analytical Date/Time: 10/09/15 14:03 Container ID: 1155836003-D Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/09/15 08:59 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: 100115MW4 Client Project ID: 105.00104.14001 Ak Lab Sample ID: 1155836004 Lab Project ID: 1155836	Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Semivolatile Organic Fuel	S							
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 2.29	<u>LOQ/CL</u> 0.581	<u>DL</u> 0.174	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/15/15 07:21	
urrogates								
5a Androstane (surr)	98.5	50-150		%	1		10/15/15 07:21	
Batch Information								
Analytical Batch: XFC12158			Prep Batch:					
Analytical Method: AK102			Prep Method: SW3520C					
Analyst: KJO Analytical Date/Time: 10/15/15 07:21	Prep Date/Time: 10/14/15 10:08 Prep Initial Wt./Vol.: 258 mL							
Container ID: 1155836004-G			Prep Extract					

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100115MW4									
Client Sample ID: 100115MW4 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836004 Lab Project ID: 1155836		Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
						Allowable			
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0923 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 10/14/15 02:44		
Surrogates									
4-Bromofluorobenzene (surr)	92.5	50-150		%	1		10/14/15 02:44		
Batch Information									
Analytical Batch: VFC12746 Analytical Method: AK101 Analyst: CRD		l	Prep Batch: N Prep Method: Prep Date/Tir	SW5030E					

Prep Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:21AM

Container ID: 1155836004-B

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **100115MW4** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836004 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:43
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:43
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,2,4-Trimethylbenzene	0.660 J	1.00	0.310	ug/L	1		10/09/15 17:43
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:43
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:43
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,3,5-Trimethylbenzene	0.360 J	1.00	0.310	ug/L	1		10/09/15 17:43
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:43
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:43
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:43
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:43
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:43
Benzene	12.9	0.400	0.120	ug/L	1		10/09/15 17:43
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:43
Bromoform	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
Bromomethane	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:43
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		10/09/15 17:43
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		10/09/15 17:43
Chloroethane	0.500 U	1.00	0.310	ug/L	1		10/09/15 17:43

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **100115MW4** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836004 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1	10/09/15 17:43
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/09/15 17:43
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/09/15 17:43
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Dichlorodifluoromethane	18.5	1.00	0.310	ug/L	1	10/09/15 17:43
Ethylbenzene	0.780 J	1.00	0.310	ug/L	1	10/09/15 17:43
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:43
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	10/09/15 17:43
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:43
Naphthalene	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:43
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
o-Xylene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
P & M -Xylene	0.960 J	2.00	0.620	ug/L	1	10/09/15 17:43
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Styrene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Toluene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/09/15 17:43
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1	10/09/15 17:43
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	10/09/15 17:43
Surrogates						
1,2-Dichloroethane-D4 (surr)	111	81-118		%	1	10/09/15 17:43
4-Bromofluorobenzene (surr)	96.6	85-114		%	1	10/09/15 17:43
Toluene-d8 (surr)	99.8	89-112		%	1	10/09/15 17:43

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **100115MW4** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836004 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15328 Analytical Method: SW8260B Analyst: SCL Analytical Date/Time: 10/09/15 17:43 Container ID: 1155836004-D Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/09/15 08:59 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **100115MW5** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836005 Lab Project ID: 1155836 Collection Date: 10/01/15 16:22 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits Date Analyzed
1-Methylnaphthalene	4.68	0.0481	0.0144	ug/L	1	10/22/15 01:15
2-Methylnaphthalene	5.56	0.0481	0.0144	ug/L	1	10/22/15 01:15
Acenaphthene	0.167	0.0481	0.0144	ug/L	1	10/22/15 01:15
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Benzo[a]pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Dibenzo[a,h]anthracene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Naphthalene	31.9	0.962	0.298	ug/L	10	10/22/15 19:11
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1	10/22/15 01:15
Surrogates						
2-Fluorobiphenyl (surr)	66.5	53-106		%	1	10/22/15 01:15
Terphenyl-d14 (surr)	110	58-132		%	1	10/22/15 01:15

Batch Information

Analytical Batch: XMS9000 Analytical Method: 8270D SIMS LV (PAH) Analyst: NRB Analytical Date/Time: 10/22/15 01:15 Container ID: 1155836005-A

Analytical Batch: XMS9004 Analytical Method: 8270D SIMS LV (PAH) Analyst: NRB Analytical Date/Time: 10/22/15 19:11 Container ID: 1155836005-A Prep Batch: XXX34344 Prep Method: SW3520C Prep Date/Time: 10/07/15 10:30 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Prep Batch: XXX34344 Prep Method: SW3520C Prep Date/Time: 10/07/15 10:30 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of GWTB1								
Client Sample ID: GWTB1 Client Project ID: 105.00104.14001 AF Lab Sample ID: 1155836006 Lab Project ID: 1155836	Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:							
Results by Volatile Fuels Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 10/10/15 03:39	
Surrogates 4-Bromofluorobenzene (surr)	96.8	50-150		%	1		10/10/15 03:39	
Batch Information Analytical Batch: VFC12734 Analytical Method: AK101 Analyst: KAS Analytical Date/Time: 10/10/15 03:39 Container ID: 1155836006-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 10/09/ [,] /t./Vol.: 5 m	15 08:00			

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of GWTB2

SG

Client Sample ID: **GWTB2** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836007 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed	4
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13	
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13	
1,1,2-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13	3
1,2-Dibromoethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13	3
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13	3
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13	3
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13	3
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13	3
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13	3
Benzene	0.200 U	0.400	0.120	ug/L	1	10/09/15 13:13	3
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13	3
Bromoform	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
Bromomethane	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13	3
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13	3
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13	3
Chloroethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13	3

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of GWTB2

SG

Client Sample ID: **GWTB2** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836007 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.300	ug/L	1	10/09/15 13:13
Chloromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	10/09/15 13:13
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Freon-113	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	10/09/15 13:13
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13
Naphthalene	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
o-Xylene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	10/09/15 13:13
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Styrene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Toluene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	10/09/15 13:13
Vinyl chloride	0.500 U	1.00	0.310	ug/L	1	10/09/15 13:13
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	10/09/15 13:13
Surrogates						
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1	10/09/15 13:13
4-Bromofluorobenzene (surr)	104	85-114		%	1	10/09/15 13:13
Toluene-d8 (surr)	104	89-112		%	1	10/09/15 13:13

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of GWTB2

Client Sample ID: **GWTB2** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836007 Lab Project ID: 1155836 Collection Date: 10/01/15 14:00 Received Date: 10/05/15 08:44 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15328 Analytical Method: SW8260B Analyst: SCL Analytical Date/Time: 10/09/15 13:13 Container ID: 1155836007-A Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/09/15 08:59 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

- Results of 093015MW15 Client Sample ID: 093015MW15 Client Project ID: 105.00104.14001 Ak Lab Sample ID: 1155836008 Lab Project ID: 1155836		R M S	eceived Da	ate: 09/30/ [/] ate: 10/05/1 Solid (dry w 9.4	5 08:44		
Results by Semivolatile Organic Fuel	5						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 178	<u>LOQ/CL</u> 89.2	<u>DL</u> 27.7	<u>Units</u> mg/Kg	<u>DF</u> 4	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/12/15 05:31
Surrogates							
5a Androstane (surr)	90.6	50-150		%	4		10/12/15 05:31
Batch Information							
Analytical Batch: XFC12151 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 10/12/15 05:31 Container ID: 1155836008-A			Prep Methoo Prep Date/T	XXX34370 d: SW3550C ime: 10/09/1 Vt./Vol.: 30.0 Vol: 1 mL	5 12:22		

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 093015MW15							
Client Sample ID: 093015MW15 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836008 Lab Project ID: 1155836		R M S	ollection Da eceived Da latrix: Soil/ olids (%):89 ocation:				
Parameter Gasoline Range Organics	<u>Result</u> Qual 5.39	<u>LOQ/CL</u> 2.66	<u>DL</u> 0.798	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/28/15 19:10
Surrogates 4-Bromofluorobenzene (surr)	109	50-150		%	1		10/28/15 19:10
Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 10/28/15 19:10 Container ID: 1155836008-B			Prep Date/Ti Prep Initial W	VXX28170 : SW5035A me: 09/30/1 /t./Vol.: 67.5 Vol: 32.135	5 15:30 532 g		

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Results of 093015MW15

Client Sample ID: 093015MW15 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836008 Lab Project ID: 1155836 Collection Date: 09/30/15 15:30 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):89.4 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	13.3 U	<u>26.6</u>	<u></u> 8.30	ug/Kg	<u></u> 1		10/12/15 19:12
1,1,1-Trichloroethane	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,1,2,2-Tetrachloroethane	6.65 U	13.3	4.15	ug/Kg	1		10/12/15 19:12
1,1,2-Trichloroethane	5.30 U	10.6	3.30	ug/Kg	1		10/12/15 19:12
1,1-Dichloroethane	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,1-Dichloroethene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,1-Dichloropropene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,2,3-Trichlorobenzene	26.6 U	53.2	16.0	ug/Kg	1		10/12/15 19:12
1,2,3-Trichloropropane	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,2,4-Trichlorobenzene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,2,4-Trimethylbenzene	232	53.2	16.0	ug/Kg	1		10/12/15 19:12
1,2-Dibromo-3-chloropropane	53.0 U	106	33.0	ug/Kg	1		10/12/15 19:12
1,2-Dibromoethane	5.30 U	10.6	3.30	ug/Kg	1		10/12/15 19:12
1,2-Dichlorobenzene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,2-Dichloroethane	5.30 U	10.6	3.30	ug/Kg	1		10/12/15 19:12
1,2-Dichloropropane	5.30 U	10.6	3.30	ug/Kg	1		10/12/15 19:12
1,3,5-Trimethylbenzene	86.5	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,3-Dichlorobenzene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
1,3-Dichloropropane	5.30 U	10.6	3.30	ug/Kg	1		10/12/15 19:12
1,4-Dichlorobenzene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
2,2-Dichloropropane	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
2-Butanone (MEK)	133 U	266	83.0	ug/Kg	1		10/12/15 19:12
2-Chlorotoluene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
2-Hexanone	133 U	266	83.0	ug/Kg	1		10/12/15 19:12
4-Chlorotoluene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
4-Isopropyltoluene	14.6 J	26.6	8.30	ug/Kg	1		10/12/15 19:12
4-Methyl-2-pentanone (MIBK)	133 U	266	83.0	ug/Kg	1		10/12/15 19:12
Benzene	23.9	13.3	4.15	ug/Kg	1		10/12/15 19:12
Bromobenzene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
Bromochloromethane	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
Bromodichloromethane	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
Bromoform	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
Bromomethane	107 U	213	66.0	ug/Kg	1		10/12/15 19:12
Carbon disulfide	53.0 U	106	33.0	ug/Kg	1		10/12/15 19:12
Carbon tetrachloride	6.65 U	13.3	4.15	ug/Kg	1		10/12/15 19:12
Chlorobenzene	13.3 U	26.6	8.30	ug/Kg	1		10/12/15 19:12
Chloroethane	107 U	213	66.0	ug/Kg	1		10/12/15 19:12

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 093015MW15

SG

Client Sample ID: 093015MW15 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836008 Lab Project ID: 1155836 Collection Date: 09/30/15 15:30 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):89.4 Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits Date Analyzed
Chloroform	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
Chloromethane	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
cis-1,2-Dichloroethene	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
cis-1,3-Dichloropropene	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
Dibromochloromethane	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
Dibromomethane	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
Dichlorodifluoromethane	26.6 U	53.2	16.0	ug/Kg	1	10/12/15 19:12
Ethylbenzene	72.6	26.6	8.30	ug/Kg	1	10/12/15 19:12
Freon-113	53.0 U	106	33.0	ug/Kg	1	10/12/15 19:12
Hexachlorobutadiene	26.6 U	53.2	16.0	ug/Kg	1	10/12/15 19:12
Isopropylbenzene (Cumene)	15.7 J	26.6	8.30	ug/Kg	1	10/12/15 19:12
Methylene chloride	53.0 U	106	33.0	ug/Kg	1	10/12/15 19:12
Methyl-t-butyl ether	53.0 U	106	33.0	ug/Kg	1	10/12/15 19:12
Naphthalene	191	53.2	16.0	ug/Kg	1	10/12/15 19:12
n-Butylbenzene	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
n-Propylbenzene	42.6	26.6	8.30	ug/Kg	1	10/12/15 19:12
o-Xylene	57.7	26.6	8.30	ug/Kg	1	10/12/15 19:12
P & M -Xylene	280	53.2	16.0	ug/Kg	1	10/12/15 19:12
sec-Butylbenzene	13.0 J	26.6	8.30	ug/Kg	1	10/12/15 19:12
Styrene	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
tert-Butylbenzene	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
Tetrachloroethene	6.65 U	13.3	4.15	ug/Kg	1	10/12/15 19:12
Toluene	51.3	26.6	8.30	ug/Kg	1	10/12/15 19:12
trans-1,2-Dichloroethene	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
trans-1,3-Dichloropropene	13.3 U	26.6	8.30	ug/Kg	1	10/12/15 19:12
Trichloroethene	6.65 U	13.3	4.15	ug/Kg	1	10/12/15 19:12
Trichlorofluoromethane	26.6 U	53.2	16.0	ug/Kg	1	10/12/15 19:12
Vinyl acetate	53.0 U	106	33.0	ug/Kg	1	10/12/15 19:12
Vinyl chloride	5.30 U	10.6	3.30	ug/Kg	1	10/12/15 19:12
Xylenes (total)	337	79.8	24.3	ug/Kg	1	10/12/15 19:12
Surrogates						
1,2-Dichloroethane-D4 (surr)	95.6	71-136		%	1	10/12/15 19:12
4-Bromofluorobenzene (surr)	94.5	55-151		%	1	10/12/15 19:12
Toluene-d8 (surr)	105	85-116		%	1	10/12/15 19:12

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 093015MW15

Client Sample ID: 093015MW15 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836008 Lab Project ID: 1155836 Collection Date: 09/30/15 15:30 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):89.4 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15331 Analytical Method: SW8260B Analyst: ST Analytical Date/Time: 10/12/15 19:12 Container ID: 1155836008-B Prep Batch: VXX28064 Prep Method: SW5035A Prep Date/Time: 09/30/15 15:30 Prep Initial Wt./Vol.: 67.532 g Prep Extract Vol: 32.1353 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 093015MW35 Client Sample ID: 093015MW35 Client Project ID: 105.00104.14001 AF Lab Sample ID: 1155836009 Lab Project ID: 1155836		R M S	eceived Da	ate: 09/30/ [,] ate: 10/05/1 /Solid (dry w 9.2	5 08:44		
Results by Semivolatile Organic Fuel	S						
<u>Parameter</u> Diesel Range Organics	<u>Result</u> Qual 109	<u>LOQ/CL</u> 88.4	<u>DL</u> 27.4	<u>Units</u> mg/Kg	<u>DF</u> 4	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/12/15 05:41
Surrogates							
5a Androstane (surr)	96.8	50-150		%	4		10/12/15 05:41
Batch Information				200000000000000000000000000000000000000			
Analytical Batch: XFC12151 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 10/12/15 05:41 Container ID: 1155836009-A		1	Prep Methoo Prep Date/T	XXX34370 d: SW3550C ime: 10/09/1 Vt./Vol.: 30.4 t Vol: 1 mL	5 12:22		

J flagging is activated

Results of 093015MW35								
Client Sample ID: 093015MW35 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836009 Lab Project ID: 1155836		Ri M So	eceived D	0ate: 09/30/ ate: 10/05/1 //Solid (dry w 39.2				
Results by Volatile Fuels							Allowable	
Parameter	<u>Result</u> Q	ual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Gasoline Range Organics	189		4.57	1.37	mg/Kg	1		10/27/15 18:03
Surrogates								
4-Bromofluorobenzene (surr)	458	*	50-150		%	1		10/27/15 18:03
Batch Information Analytical Batch: VFC12779 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 10/27/15 18:03 Container ID: 1155836009-B			F F	Prep Metho Prep Date/1 Prep Initial V	VXX28165 d: SW5035A Fime: 09/30/1 Wt./Vol.: 35.3 t Vol: 28.817	5 12:20 827 g		

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Results of 093015MW35

Client Sample ID: 093015MW35 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836009 Lab Project ID: 1155836 Collection Date: 09/30/15 12:20 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):89.2 Location:

Results by Volatile GC/MS

Parameter	Reput Qual	1.00/01	וח	Lipito	DE	Allowable	Data Analyzad
1,1,1,2-Tetrachloroethane	<u>Result Qual</u> 22.9 U	<u>LOQ/CL</u> 45.7	<u>DL</u> 14.3	<u>Units</u> ug/Kg	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 10/12/15 19:28
1,1,1-Trichloroethane	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,1,2,2-Tetrachloroethane	11.4 U	22.9	7.13	ug/Kg	1		10/12/15 19:28
1,1,2-Trichloroethane	9.15 U	18.3	5.67	ug/Kg	1		10/12/15 19:28
1,1-Dichloroethane	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,1-Dichloroethene	22.0 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,1-Dichloropropene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,2,3-Trichlorobenzene	45.8 U	91.5	27.4	ug/Kg	1		10/12/15 19:28
1,2,3-Trichloropropane	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,2,4-Trichlorobenzene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,2,4-Trimethylbenzene	1050	91.5	27.4	ug/Kg	1		10/12/15 19:28
1,2-Dibromo-3-chloropropane	91.5 U	183	56.7	ug/Kg	1		10/12/15 19:28
1,2-Dibromoethane	9.15 U	18.3	5.67	ug/Kg	1		10/12/15 19:28
1.2-Dichlorobenzene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,2-Dichloroethane	9.15 U	18.3	5.67	ug/Kg	1		10/12/15 19:28
1,2-Dichloropropane	9.15 U	18.3	5.67	ug/Kg	1		10/12/15 19:28
1,3,5-Trimethylbenzene	628	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,3-Dichlorobenzene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
1,3-Dichloropropane	9.15 U	18.3	5.67	ug/Kg	1		10/12/15 19:28
1,4-Dichlorobenzene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
2,2-Dichloropropane	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
2-Butanone (MEK)	229 U	457	143	ug/Kg	1		10/12/15 19:28
2-Chlorotoluene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
2-Hexanone	229 U	457	143	ug/Kg	1		10/12/15 19:28
4-Chlorotoluene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
4-Isopropyltoluene	182	45.7	14.3	ug/Kg	1		10/12/15 19:28
4-Methyl-2-pentanone (MIBK)	229 U	457	143	ug/Kg	1		10/12/15 19:28
Benzene	14.6 J	22.9	7.13	ug/Kg	1		10/12/15 19:28
Bromobenzene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
Bromochloromethane	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
Bromodichloromethane	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
Bromoform	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
Bromomethane	183 U	366	113	ug/Kg	1		10/12/15 19:28
Carbon disulfide	91.5 U	183	56.7	ug/Kg	1		10/12/15 19:28
Carbon tetrachloride	11.4 U	22.9	7.13	ug/Kg	1		10/12/15 19:28
Chlorobenzene	22.9 U	45.7	14.3	ug/Kg	1		10/12/15 19:28
Chloroethane	183 U	366	113	ug/Kg	1		10/12/15 19:28

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 093015MW35

SG

Client Sample ID: 093015MW35 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836009 Lab Project ID: 1155836 Collection Date: 09/30/15 12:20 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):89.2 Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
Chloromethane	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
cis-1,2-Dichloroethene	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
cis-1,3-Dichloropropene	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
Dibromochloromethane	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
Dibromomethane	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
Dichlorodifluoromethane	45.8 U	91.5	27.4	ug/Kg	1	10/12/15 19:28
Ethylbenzene	2100	45.7	14.3	ug/Kg	1	10/12/15 19:28
Freon-113	91.5 U	183	56.7	ug/Kg	1	10/12/15 19:28
Hexachlorobutadiene	45.8 U	91.5	27.4	ug/Kg	1	10/12/15 19:28
Isopropylbenzene (Cumene)	64.9	45.7	14.3	ug/Kg	1	10/12/15 19:28
Methylene chloride	91.5 U	183	56.7	ug/Kg	1	10/12/15 19:28
Methyl-t-butyl ether	91.5 U	183	56.7	ug/Kg	1	10/12/15 19:28
Naphthalene	213	91.5	27.4	ug/Kg	1	10/12/15 19:28
n-Butylbenzene	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
n-Propylbenzene	128	45.7	14.3	ug/Kg	1	10/12/15 19:28
o-Xylene	1250	457	143	ug/Kg	10	10/13/15 21:13
P & M -Xylene	7700	915	274	ug/Kg	10	10/13/15 21:13
sec-Butylbenzene	30.2 J	45.7	14.3	ug/Kg	1	10/12/15 19:28
Styrene	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
tert-Butylbenzene	72.3	45.7	14.3	ug/Kg	1	10/12/15 19:28
Tetrachloroethene	11.4 U	22.9	7.13	ug/Kg	1	10/12/15 19:28
Toluene	38.0 J	45.7	14.3	ug/Kg	1	10/12/15 19:28
trans-1,2-Dichloroethene	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
trans-1,3-Dichloropropene	22.9 U	45.7	14.3	ug/Kg	1	10/12/15 19:28
Trichloroethene	11.4 U	22.9	7.13	ug/Kg	1	10/12/15 19:28
Trichlorofluoromethane	45.8 U	91.5	27.4	ug/Kg	1	10/12/15 19:28
Vinyl acetate	91.5 U	183	56.7	ug/Kg	1	10/12/15 19:28
Vinyl chloride	9.15 U	18.3	5.67	ug/Kg	1	10/12/15 19:28
Xylenes (total)	8950	1370	417	ug/Kg	10	10/13/15 21:13
Surrogates						
1,2-Dichloroethane-D4 (surr)	87.2	71-136		%	1	10/12/15 19:28
4-Bromofluorobenzene (surr)	121	55-151		%	1	10/12/15 19:28
Toluene-d8 (surr)	101	85-116		%	1	10/12/15 19:28

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 093015MW35

Client Sample ID: 093015MW35 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836009 Lab Project ID: 1155836

Collection Date: 09/30/15 12:20 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):89.2 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15331 Analytical Method: SW8260B Analyst: ST Analytical Date/Time: 10/12/15 19:28 Container ID: 1155836009-B

Analytical Batch: VMS15333 Analytical Method: SW8260B Analyst: ST Analytical Date/Time: 10/13/15 21:13 Container ID: 1155836009-B Prep Batch: VXX28064 Prep Method: SW5035A Prep Date/Time: 09/30/15 12:20 Prep Initial Wt./Vol.: 35.327 g Prep Extract Vol: 28.8174 mL

Prep Batch: VXX28068 Prep Method: SW5035A Prep Date/Time: 09/30/15 12:20 Prep Initial Wt./Vol.: 35.327 g Prep Extract Vol: 28.8174 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 100115SS1 Client Sample ID: 100115SS1 Client Project ID: 105.00104.14001 A Lab Sample ID: 1155836010 Lab Project ID: 1155836	K Air Kotz GW	R M S	eceived Da	ate: 10/01/ [,] ate: 10/05/1 /Solid (dry w 6.8	5 08:44		
Results by Semivolatile Organic Fue	s						
Parameter Diesel Range Organics	<u>Result Qual</u> 139	<u>LOQ/CL</u> 91.9	<u>DL</u> 28.5	<u>Units</u> mg/Kg	<u>DF</u> 4	Allowable Limits	Date Analyzed 10/12/15 05:51
Surrogates 5a Androstane (surr)	106	50-150		%	4		10/12/15 05:51
Batch Information							
Analytical Batch: XFC12151 Analytical Method: AK102 Analyst: NLL Analytical Date/Time: 10/12/15 05:51 Container ID: 1155836010-A			Prep Methoo Prep Date/T	XXX34370 d: SW3550C ime: 10/09/1 Vt./Vol.: 30.0 t Vol: 1 mL	5 12:22		

J flagging is activated

Results of 100115SS1							
Client Sample ID: 100115SS1 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836010 Lab Project ID: 1155836		R M S	ollection D ecceived Da latrix: Soil/ olids (%):8 ocation:				
Results by Volatile Fuels]				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 41.4	<u>LOQ/CL</u> 3.71	<u>DL</u> 1.11	<u>Units</u> mg/Kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/28/15 23:55
Surrogates							
4-Bromofluorobenzene (surr)	126	50-150		%	1		10/28/15 23:55
Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 10/28/15 23:55 Container ID: 1155836010-B			Prep Date/T Prep Initial V	VXX28171 d: SW5035A ime: 10/01/1 Vt./Vol.: 48.8 : Vol: 31.433	44 g		

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 100115SS1

Client Sample ID: **100115SS1** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836010 Lab Project ID: 1155836 Collection Date: 10/01/15 11:50 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):86.8 Location:

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits Date Analyzed
1,1,1,2-Tetrachloroethane	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,1,1-Trichloroethane	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,1,2,2-Tetrachloroethane	9.25 U	18.5	5.78	ug/Kg	1	10/12/15 19:44
1,1,2-Trichloroethane	7.40 U	14.8	4.60	ug/Kg	1	10/12/15 19:44
1,1-Dichloroethane	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,1-Dichloroethene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,1-Dichloropropene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,2,3-Trichlorobenzene	37.0 U	74.1	22.2	ug/Kg	1	10/12/15 19:44
1,2,3-Trichloropropane	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,2,4-Trichlorobenzene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,2,4-Trimethylbenzene	433	74.1	22.2	ug/Kg	1	10/12/15 19:44
1,2-Dibromo-3-chloropropane	74.0 U	148	46.0	ug/Kg	1	10/12/15 19:44
1,2-Dibromoethane	7.40 U	14.8	4.60	ug/Kg	1	10/12/15 19:44
1,2-Dichlorobenzene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,2-Dichloroethane	7.40 U	14.8	4.60	ug/Kg	1	10/12/15 19:44
1,2-Dichloropropane	7.40 U	14.8	4.60	ug/Kg	1	10/12/15 19:44
1,3,5-Trimethylbenzene	208	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,3-Dichlorobenzene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
1,3-Dichloropropane	7.40 U	14.8	4.60	ug/Kg	1	10/12/15 19:44
1,4-Dichlorobenzene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
2,2-Dichloropropane	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
2-Butanone (MEK)	186 U	371	116	ug/Kg	1	10/12/15 19:44
2-Chlorotoluene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
2-Hexanone	186 U	371	116	ug/Kg	1	10/12/15 19:44
4-Chlorotoluene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
4-Isopropyltoluene	31.1 J	37.1	11.6	ug/Kg	1	10/12/15 19:44
4-Methyl-2-pentanone (MIBK)	186 U	371	116	ug/Kg	1	10/12/15 19:44
Benzene	11.5 J	18.5	5.78	ug/Kg	1	10/12/15 19:44
Bromobenzene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
Bromochloromethane	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
Bromodichloromethane	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
Bromoform	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
Bromomethane	148 U	296	91.9	ug/Kg	1	10/12/15 19:44
Carbon disulfide	74.0 U	148	46.0	ug/Kg	1	10/12/15 19:44
Carbon tetrachloride	9.25 U	18.5	5.78	ug/Kg	1	10/12/15 19:44
Chlorobenzene	18.6 U	37.1	11.6	ug/Kg	1	10/12/15 19:44
Chloroethane	148 U	296	91.9	ug/Kg	1	10/12/15 19:44

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 100115SS1

Client Sample ID: **100115SS1** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836010 Lab Project ID: 1155836 Collection Date: 10/01/15 11:50 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):86.8 Location:

Results by Volatile GC/MS

Parameter Result Qual LOQ/CL Discover Discover Limits Date Analyzer Chlorooform 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: 01/12/15 19: 01/12							Allowable	
Chloromethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19. cis-1,3-Dichloroptopene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19. Dibromochloromethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19. Dibromochloromethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19. Dibromochloromethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19. Dibromochloromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19. Ethylbenzene 530 37.1 11.6 ug/Kg 1 10/12/15 19. Isopropylbenzene (Curnene) 32.6 J 37.1 11.8 ug/Kg 1 10/12/15 19. Nethyl-he chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19. Nethyl-he chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19. Nethyl-he chloride 74.0 U 148	Parameter		LOQ/CL	DL		DF	Limits Date	Analyzed
dis-1,2-Dichloroethene 18.6 U 37.1 11.6 Ug/Kg 1 10/12/15 19. dis-1,3-Dichloropropene 18.6 U 37.1 11.6 Ug/Kg 1 10/12/15 19. Dibromochloromethane 18.6 U 37.1 11.6 Ug/Kg 1 10/12/15 19. Dibromochloromethane 18.6 U 37.1 11.6 Ug/Kg 1 10/12/15 19. Dibromothare 37.0 U 74.1 22.2 Ug/Kg 1 10/12/15 19. Ethylbenzene 530 37.1 11.6 Ug/Kg 1 10/12/15 19. Isoprop/benzene (Cumene) 32.6 J 37.1 11.6 Ug/Kg 1 10/12/15 19. Methylene chloride 74.0 U 148 46.0 Ug/Kg 1 10/12/15 19. Naphthalene 161 74.1 22.2 Ug/Kg 1 10/12/15 19. Naphthalene 66.3 37.1 11.6 Ug/Kg 1 10/12/15 19. Naphthalene 164.0 74.1 22.2	Chloroform	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
cis-1,3-Dichloropropene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Dibromochloromethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Dibromomethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Dichlorodifluoromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19: Ethylbenzene 530 37.1 11.6 ug/Kg 1 10/12/15 19: Isopropylbenzene (Cumene) 32.6 J 37.1 11.6 ug/Kg 1 10/12/15 19: Methylene chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: Naphthalene 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: Naphthalene 166.0 37.1 11.6	Chloromethane	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Dibromochloromethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Dibromomethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Dichlorod/fluoromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19: Ethylbenzene 530 37.1 11.6 ug/Kg 1 10/12/15 19: Freon-113 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Isopropylbenzene (Cumene) 32.6 J 37.1 11.6 ug/Kg 1 10/12/15 19: Methylene chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: Naphthalene 164 74.1 22.2 ug/Kg 1 10/12/15 19: Naphthalene 164 74.1 22.2 ug/Kg 1 10/12/15 19: n-Bropylbenzene 66.3 37.1 11.6 ug/Kg	cis-1,2-Dichloroethene	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Dibromomethane 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19 Dichlorodifluoromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19 Ethylbenzene 530 37.1 11.6 ug/Kg 1 10/12/15 19 Freon-113 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Isopropylbenzene (Cumene) 32.6 J 37.1 11.6 ug/Kg 1 10/12/15 19 Methyl-butyl ether 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Naphthalene 161 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19 n-Propylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19 n-Propylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19 sec-Butylbenzene 25.2 J 37.1 11.6	cis-1,3-Dichloropropene	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Dichlorodifluoromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19 Ethylbenzene 530 37.1 11.6 ug/Kg 1 10/12/15 19 Freon-113 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Hexachlorobutadiene 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19 Isopropylbenzene (Cumene) 32.6 J 37.1 11.6 ug/Kg 1 10/12/15 19 Methylene chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19 Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19 Naphthalene 164 74.1 22.2 ug/Kg 1 10/12/15 19 N-Butylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19 sc-Butylbenzene 26.2 J 37.1 11.6 ug/Kg	Dibromochloromethane	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Ethylbenzene 530 37.1 11.6 ug/kg 1 10/12/15 19: 10/12/15 19: 1	Dibromomethane	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Freon-113 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Hexachlorobutadiene 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19: Isopropylbenzene (Cumene) 32.6 J 37.1 11.6 ug/Kg 1 10/12/15 19: Methyl-t-butyl ether 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: Naphthalene 1661 74.1 22.2 ug/Kg 1 10/12/15 19: n-Brtylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: sc-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78	Dichlorodifluoromethane	37.0 U	74.1	22.2	ug/Kg	1	10/12	/15 19:44
Hexachlorobutadiene 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19 Isopropylbenzene (Cumene) 32.6 J 37.1 11.6 ug/Kg 1 10/12/15 19 Methylene chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Methyl-butyl ether 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19 n-Butylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19 o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19 sec-Butylbenzene 18640 74.1 22.2 ug/Kg 1 10/12/15 19 sec-Butylbenzene 305 37.1 11.6 ug/Kg 1 10/12/15 19 sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19 styrene 18.6 U 37.1 11.6 ug/Kg <t< td=""><td>Ethylbenzene</td><td>530</td><td>37.1</td><td>11.6</td><td>ug/Kg</td><td>1</td><td>10/12</td><td>/15 19:44</td></t<>	Ethylbenzene	530	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Isopropylbenzene (Cumene) 32.6 J 37.1 11.6 ug/Kg 1 10/12/15 19: Methylene chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Methylene chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: n-Butylbenzene 168.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: n-Propylbenzene 66.3 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: sec-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg	Freon-113	74.0 U	148	46.0	ug/Kg	1	10/12	/15 19:44
Methylene chloride 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Methyl-t-butyl ether 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: n-Butylbenzene 166.3 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: sec-Butylbenzene 1640 74.1 22.2 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 18.6 U 37.1 11.6 ug/Kg 10/12/	Hexachlorobutadiene	37.0 U	74.1	22.2	ug/Kg	1	10/12	/15 19:44
Methyl-t-butyl ether 74.0 148 46.0 ug/Kg 1 10/12/15 19: Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: n-Butylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: n-Propylbenzene 66.3 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 1640 74.1 22.2 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Trans-1,2-Dichloroethene 18.6 U 37.1 11.6 ug/Kg 1	Isopropylbenzene (Cumene)	32.6 J	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Naphthalene 161 74.1 22.2 ug/Kg 1 10/12/15 19: n-Butylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: n-Propylbenzene 66.3 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: p & M -Xylene 1640 74.1 22.2 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Toluene 14.1 J 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,3-Dichloropropene 18.6 U 37.1 11.6 ug/Kg 1 <td>Methylene chloride</td> <td>74.0 U</td> <td>148</td> <td>46.0</td> <td>ug/Kg</td> <td>1</td> <td>10/12</td> <td>/15 19:44</td>	Methylene chloride	74.0 U	148	46.0	ug/Kg	1	10/12	/15 19:44
n-Butylbenzene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: n-Propylbenzene 66.3 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: P & M -Xylene 1640 74.1 22.2 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Toluene 14.1 J 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,3-Dichloroptopene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Trichlorofluoromethane 9.25 U 18.5	Methyl-t-butyl ether	74.0 U	148	46.0	ug/Kg	1	10/12	/15 19:44
n-Propylbenzene 66.3 37.1 11.6 ug/Kg 1 10/12/15 19: o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: P & M -Xylene 1640 74.1 22.2 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: Styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Toluene 14.1 J 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,2-Dichloroethene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,3-Dichloropropene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Trichlorofluoromethane 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Vinyl acetate 74.0 U 14.8 <td>Naphthalene</td> <td>161</td> <td>74.1</td> <td>22.2</td> <td>ug/Kg</td> <td>1</td> <td>10/12</td> <td>/15 19:44</td>	Naphthalene	161	74.1	22.2	ug/Kg	1	10/12	/15 19:44
o-Xylene 305 37.1 11.6 ug/Kg 1 10/12/15 19: P & M -Xylene 1640 74.1 22.2 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: Styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Toluene 14.1 J 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,2-Dichloroethene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,3-Dichloropropene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Trichloroftuoromethane 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Vinyl acetate 74.0 U 14.8 46.0 ug/	n-Butylbenzene	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
P & M - Xylene 1640 74.1 22.2 ug/Kg 1 10/12/15 19: sec-Butylbenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: Styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Toluene 14.1 J 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,2-Dichloroethene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,3-Dichloroptopene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Trichloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Trichloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Vinyl acetate 74.0 U 14.8 46.0 ug/Kg 1 10/12/15 19: Vinyl chloride 7.40 U 14	n-Propylbenzene	66.3	37.1	11.6	ug/Kg	1	10/12	/15 19:44
sec-Butylenzene 20.0 J 37.1 11.6 ug/Kg 1 10/12/15 19: Styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Toluene 14.1 J 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,2-Dichloroethene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,3-Dichloroptopene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Trichloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: 10/12/15 19: Trichlorofluoromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19: Vinyl acetate 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Vinyl chloride 7.40 U 14.8 </td <td>o-Xylene</td> <td>305</td> <td>37.1</td> <td>11.6</td> <td>ug/Kg</td> <td>1</td> <td>10/12</td> <td>/15 19:44</td>	o-Xylene	305	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Styrene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: tert-Butylbenzene 25.2 J 37.1 11.6 ug/Kg 1 10/12/15 19: Tetrachloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Toluene 14.1 J 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,2-Dichloroethene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: trans-1,3-Dichloropropene 18.6 U 37.1 11.6 ug/Kg 1 10/12/15 19: Trichloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Trichlorofluoromethane 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19: Vinyl acetate 74.0 U 18.5 5.78 ug/Kg 1 10/12/15 19: Vinyl chloride 7.40 U 14.8 46.0 ug/Kg 1 10/12/15 19: Xylenes (total) 1940 111 33.8 ug/Kg 1 10/12/15 19: 4-Bromofluorobenzene (surr) 101 <td>P & M -Xylene</td> <td>1640</td> <td>74.1</td> <td>22.2</td> <td>ug/Kg</td> <td>1</td> <td>10/12</td> <td>/15 19:44</td>	P & M -Xylene	1640	74.1	22.2	ug/Kg	1	10/12	/15 19:44
tert-Butylbenzene25.2 J37.111.6ug/Kg110/12/15 19:Tetrachloroethene9.25 U18.55.78ug/Kg110/12/15 19:Toluene14.1 J37.111.6ug/Kg110/12/15 19:trans-1,2-Dichloroethene18.6 U37.111.6ug/Kg110/12/15 19:trans-1,3-Dichloropropene18.6 U37.111.6ug/Kg110/12/15 19:Trichloroethene9.25 U18.55.78ug/Kg110/12/15 19:Trichloroethene9.25 U18.55.78ug/Kg110/12/15 19:Trichlorofluoromethane37.0 U74.122.2ug/Kg110/12/15 19:Vinyl acetate74.0 U14846.0ug/Kg110/12/15 19:Vinyl chloride7.40 U14.84.60ug/Kg110/12/15 19:Xylenes (total)194011133.8ug/Kg110/12/15 19:Surrogates1,2-Dichloroethane-D4 (surr)10171-136%110/12/15 19:4-Bromofluorobenzene (surr)10155-151%110/12/15 19:	sec-Butylbenzene	20.0 J	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Tetrachloroethene9.25 U18.55.78ug/Kg110/12/15 19:Toluene14.1 J37.111.6ug/Kg110/12/15 19:trans-1,2-Dichloroethene18.6 U37.111.6ug/Kg110/12/15 19:trans-1,3-Dichloropropene18.6 U37.111.6ug/Kg110/12/15 19:Trichloroethene9.25 U18.55.78ug/Kg110/12/15 19:Trichlorofluoromethane9.25 U18.55.78ug/Kg110/12/15 19:Vinyl acetate74.0 U74.122.2ug/Kg110/12/15 19:Vinyl chloride7.40 U14.84.60ug/Kg110/12/15 19:Xylenes (total)194011133.8ug/Kg110/12/15 19:Surrogates1.2-Dichloroethane-D4 (surr)10171-136%110/12/15 19:4-Bromofluorobenzene (surr)10155-151%110/12/15 19:	Styrene	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Toluene14.1 J37.111.6ug/Kg110/12/15 19:trans-1,2-Dichloroethene18.6 U37.111.6ug/Kg110/12/15 19:trans-1,3-Dichloropropene18.6 U37.111.6ug/Kg110/12/15 19:Trichloroethene9.25 U18.55.78ug/Kg110/12/15 19:Trichlorofluoromethane37.0 U74.122.2ug/Kg110/12/15 19:Vinyl acetate74.0 U14846.0ug/Kg110/12/15 19:Vinyl chloride7.40 U14.84.60ug/Kg110/12/15 19:Xylenes (total)194011133.8ug/Kg110/12/15 19:4-Bromofluorobenzene (surr)10171-136%110/12/15 19:%110/12/15 19:%110/12/15 19:	tert-Butylbenzene	25.2 J	37.1	11.6	ug/Kg	1	10/12	/15 19:44
trans-1,2-Dichloroethene18.6 U37.111.6ug/Kg110/12/15 19:trans-1,3-Dichloropropene18.6 U37.111.6ug/Kg110/12/15 19:Trichloroethene9.25 U18.55.78ug/Kg110/12/15 19:Trichlorofluoromethane37.0 U74.122.2ug/Kg110/12/15 19:Vinyl acetate74.0 U14846.0ug/Kg110/12/15 19:Vinyl chloride7.40 U14.84.60ug/Kg110/12/15 19:Xylenes (total)194011133.8ug/Kg110/12/15 19:4-Bromofluorobenzene (surr)10171-136%110/12/15 19:4-Bromofluorobenzene (surr)10155-151%110/12/15 19:	Tetrachloroethene	9.25 U	18.5	5.78	ug/Kg	1	10/12	/15 19:44
trans-1,3-Dichloropropene18.6 U37.111.6ug/Kg110/12/15 19:Trichloroethene9.25 U18.55.78ug/Kg110/12/15 19:Trichlorofluoromethane37.0 U74.122.2ug/Kg110/12/15 19:Vinyl acetate74.0 U14846.0ug/Kg110/12/15 19:Vinyl chloride7.40 U14.84.60ug/Kg110/12/15 19:Xylenes (total)194011133.8ug/Kg110/12/15 19:Surrogates1,2-Dichloroethane-D4 (surr)10171-136%110/12/15 19:4-Bromofluorobenzene (surr)10155-151%110/12/15 19:	Toluene	14.1 J	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Trichloroethene 9.25 U 18.5 5.78 ug/Kg 1 10/12/15 19 Trichlorofluoromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19 Vinyl acetate 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Vinyl acetate 74.0 U 148 46.0 ug/Kg 1 10/12/15 19 Vinyl chloride 7.40 U 14.8 4.60 ug/Kg 1 10/12/15 19 Xylenes (total) 1940 111 33.8 ug/Kg 1 10/12/15 19 Surrogates 1,2-Dichloroethane-D4 (surr) 101 71-136 % 1 10/12/15 19 4-Bromofluorobenzene (surr) 101 55-151 % 1 10/12/15 19	trans-1,2-Dichloroethene	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Trichlorofluoromethane 37.0 U 74.1 22.2 ug/Kg 1 10/12/15 19: Vinyl acetate 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Vinyl acetate 7.40 U 148 46.0 ug/Kg 1 10/12/15 19: Vinyl chloride 7.40 U 14.8 4.60 ug/Kg 1 10/12/15 19: Xylenes (total) 1940 111 33.8 ug/Kg 1 10/12/15 19: Surrogates 1,2-Dichloroethane-D4 (surr) 101 71-136 % 1 10/12/15 19: 4-Bromofluorobenzene (surr) 101 55-151 % 1 10/12/15 19:	trans-1,3-Dichloropropene	18.6 U	37.1	11.6	ug/Kg	1	10/12	/15 19:44
Vinyl acetate 74.0 U 148 46.0 ug/Kg 1 10/12/15 19: Vinyl chloride 7.40 U 14.8 4.60 ug/Kg 1 10/12/15 19: Xylenes (total) 1940 111 33.8 ug/Kg 1 10/12/15 19: Surrogates 1 10/12/15 19: 101 71-136 % 1 10/12/15 19: 4-Bromofluorobenzene (surr) 101 55-151 % 1 10/12/15 19:	Trichloroethene	9.25 U	18.5	5.78	ug/Kg	1	10/12	/15 19:44
Vinyl chloride 7.40 U 14.8 4.60 ug/Kg 1 10/12/15 19: Xylenes (total) 1940 111 33.8 ug/Kg 1 10/12/15 19: Surrogates 1 71-136 % 1 10/12/15 19: 4-Bromofluorobenzene (surr) 101 71-136 % 1 10/12/15 19:	Trichlorofluoromethane	37.0 U	74.1	22.2	ug/Kg	1	10/12	/15 19:44
Xylenes (total) 1940 111 33.8 ug/Kg 1 10/12/15 19: Surrogates 1,2-Dichloroethane-D4 (surr) 101 71-136 % 1 10/12/15 19: 4-Bromofluorobenzene (surr) 101 55-151 % 1 10/12/15 19:	Vinyl acetate	74.0 U	148	46.0	ug/Kg	1	10/12	/15 19:44
Surrogates 1,2-Dichloroethane-D4 (surr) 101 71-136 % 1 10/12/15 19: 4-Bromofluorobenzene (surr) 101 55-151 % 1 10/12/15 19:	Vinyl chloride	7.40 U	14.8	4.60	ug/Kg	1	10/12	/15 19:44
1,2-Dichloroethane-D4 (surr)10171-136%110/12/15 19:4-Bromofluorobenzene (surr)10155-151%110/12/15 19:	Xylenes (total)	1940	111	33.8	ug/Kg	1	10/12	/15 19:44
4-Bromofluorobenzene (surr) 101 55-151 % 1 10/12/15 19:	Surrogates							
	1,2-Dichloroethane-D4 (surr)	101	71-136		%	1	10/12	/15 19:44
Toluene-d8 (surr) 103 85-116 % 1 10/12/15 19:	4-Bromofluorobenzene (surr)	101	55-151		%	1	10/12	/15 19:44
	Toluene-d8 (surr)	103	85-116		%	1	10/12	/15 19:44

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 100115SS1

Client Sample ID: 100115SS1 Client Project ID: 105.00104.14001 AK Air Kotz GW Lab Sample ID: 1155836010 Lab Project ID: 1155836 Collection Date: 10/01/15 11:50 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%):86.8 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15331 Analytical Method: SW8260B Analyst: ST Analytical Date/Time: 10/12/15 19:44 Container ID: 1155836010-B Prep Batch: VXX28064 Prep Method: SW5035A Prep Date/Time: 10/01/15 11:50 Prep Initial Wt./Vol.: 48.844 g Prep Extract Vol: 31.4339 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

SGS							
Results of STB1							
Client Sample ID: STB1 Client Project ID: 105.00104.14001 AP Lab Sample ID: 1155836011 Lab Project ID: 1155836	(Air Kotz GW	R M S	Collection Da Received Da Matrix: Soil/ Solids (%): ocation:	te: 10/05/1	5 08:44		
Results by Volatile Fuels			_			Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Gasoline Range Organics	1.23 U	2.46	0.739	mg/Kg	1		10/28/15 19:48
Surrogates							
4-Bromofluorobenzene (surr)	101	50-150		%	1		10/28/15 19:48
Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Analyst: CRD Analytical Date/Time: 10/28/15 19:48 Container ID: 1155836011-A			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW5035A me: 09/30/1 /t./Vol.: 50.7			

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of STB1

SG

Client Sample ID: **STB1** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836011 Lab Project ID: 1155836 Collection Date: 09/30/15 12:20 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	12.3 U	<u>24.6</u>	7.69	ug/Kg	1	Linits	10/13/15 20:09
1,1,1-Trichloroethane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,1,2,2-Tetrachloroethane	6.15 U	12.3	3.84	ug/Kg	1		10/13/15 20:09
1,1,2-Trichloroethane	4.92 U	9.85	3.05	ug/Kg	1		10/13/15 20:09
1,1-Dichloroethane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,1-Dichloroethene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,1-Dichloropropene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,2,3-Trichlorobenzene	24.6 U	49.3	14.8	ug/Kg	1		10/13/15 20:09
1,2,3-Trichloropropane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,2,4-Trichlorobenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,2,4-Trimethylbenzene	24.6 U	49.3	14.8	ug/Kg	1		10/13/15 20:09
1,2-Dibromo-3-chloropropane	49.3 U	98.5	30.5	ug/Kg	1		10/13/15 20:09
1,2-Dibromoethane	4.92 U	9.85	3.05	ug/Kg	1		10/13/15 20:09
1,2-Dichlorobenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,2-Dichloroethane	4.92 U	9.85	3.05	ug/Kg	1		10/13/15 20:09
1,2-Dichloropropane	4.92 U	9.85	3.05	ug/Kg	1		10/13/15 20:09
1,3,5-Trimethylbenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,3-Dichlorobenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
1,3-Dichloropropane	4.92 U	9.85	3.05	ug/Kg	1		10/13/15 20:09
1,4-Dichlorobenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
2,2-Dichloropropane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
2-Butanone (MEK)	123 U	246	76.9	ug/Kg	1		10/13/15 20:09
2-Chlorotoluene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
2-Hexanone	123 U	246	76.9	ug/Kg	1		10/13/15 20:09
4-Chlorotoluene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
4-Isopropyltoluene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
4-Methyl-2-pentanone (MIBK)	123 U	246	76.9	ug/Kg	1		10/13/15 20:09
Benzene	6.15 U	12.3	3.84	ug/Kg	1		10/13/15 20:09
Bromobenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Bromochloromethane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Bromodichloromethane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Bromoform	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Bromomethane	98.5 U	197	61.1	ug/Kg	1		10/13/15 20:09
Carbon disulfide	49.3 U	98.5	30.5	ug/Kg	1		10/13/15 20:09
Carbon tetrachloride	6.15 U	12.3	3.84	ug/Kg	1		10/13/15 20:09
Chlorobenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Chloroethane	98.5 U	197	61.1	ug/Kg	1		10/13/15 20:09

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of STB1

SG

Client Sample ID: **STB1** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836011 Lab Project ID: 1155836 Collection Date: 09/30/15 12:20 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%): Location:

Results by Volatile GC/MS

-							
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
Chloroform	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Chloromethane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
cis-1,2-Dichloroethene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
cis-1,3-Dichloropropene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Dibromochloromethane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Dibromomethane	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Dichlorodifluoromethane	24.6 U	49.3	14.8	ug/Kg	1		10/13/15 20:09
Ethylbenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Freon-113	49.3 U	98.5	30.5	ug/Kg	1		10/13/15 20:09
Hexachlorobutadiene	24.6 U	49.3	14.8	ug/Kg	1		10/13/15 20:09
Isopropylbenzene (Cumene)	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Methylene chloride	49.3 U	98.5	30.5	ug/Kg	1		10/13/15 20:09
Methyl-t-butyl ether	49.3 U	98.5	30.5	ug/Kg	1		10/13/15 20:09
Naphthalene	24.6 U	49.3	14.8	ug/Kg	1		10/13/15 20:09
n-Butylbenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
n-Propylbenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
o-Xylene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
P & M -Xylene	24.6 U	49.3	14.8	ug/Kg	1		10/13/15 20:09
sec-Butylbenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Styrene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
tert-Butylbenzene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Tetrachloroethene	6.15 U	12.3	3.84	ug/Kg	1		10/13/15 20:09
Toluene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
trans-1,2-Dichloroethene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
trans-1,3-Dichloropropene	12.3 U	24.6	7.69	ug/Kg	1		10/13/15 20:09
Trichloroethene	6.15 U	12.3	3.84	ug/Kg	1		10/13/15 20:09
Trichlorofluoromethane	24.6 U	49.3	14.8	ug/Kg	1		10/13/15 20:09
Vinyl acetate	49.3 U	98.5	30.5	ug/Kg	1		10/13/15 20:09
Vinyl chloride	4.92 U	9.85	3.05	ug/Kg	1		10/13/15 20:09
Xylenes (total)	37.0 U	73.9	22.5	ug/Kg	1		10/13/15 20:09
Surrogates							
1,2-Dichloroethane-D4 (surr)	112	71-136		%	1		10/13/15 20:09
4-Bromofluorobenzene (surr)	101	55-151		%	1		10/13/15 20:09
Toluene-d8 (surr)	113	85-116		%	1		10/13/15 20:09

Print Date: 10/30/2015 11:39:21AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of STB1

Client Sample ID: **STB1** Client Project ID: **105.00104.14001 AK Air Kotz GW** Lab Sample ID: 1155836011 Lab Project ID: 1155836 Collection Date: 09/30/15 12:20 Received Date: 10/05/15 08:44 Matrix: Soil/Solid (dry weight) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS15333 Analytical Method: SW8260B Analyst: ST Analytical Date/Time: 10/13/15 20:09 Container ID: 1155836011-A Prep Batch: VXX28068 Prep Method: SW5035A Prep Date/Time: 09/30/15 12:20 Prep Initial Wt./Vol.: 50.747 g Prep Extract Vol: 25 mL

Print Date: 10/30/2015 11:39:21AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

– Method Blank		ì						
Blank ID: MB for HBN Blank Lab ID: 129612	Blank ID: MB for HBN 1722181 [SPT/9762] Blank Lab ID: 1296126		Matrix: Soil/Solid (dry weight)					
QC for Samples: 1155836008, 11558360	009, 1155836010	_						
Results by SM21 254	0G							
<u>Parameter</u> Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %				
Batch Information								
Analytical Batch: SF Analytical Method: S Instrument: Analyst: A.R Analytical Date/Time								

Print Date: 10/30/2015 11:39:24AM

Duplicate Sample Sun	nmary				
Driginal Sample ID: 11 Duplicate Sample ID: 1			Analysis Date: Matrix: Soil/Sol	10/07/2015 17:32 id (dry weight)	
1155836008, 11558360	009, 1155836010				
Results by SM21 2540	G				
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Solids	85.2	85.2	%	0.10	(< 15)

Print Date: 10/30/2015 11:39:25AM

SGS North America Inc.

Member of SGS Group

Method Blank					
Blank ID: MB for HBN 172258 Blank Lab ID: 1297163	36 [VXX/28059]	Matrix:	Water (Surfa	ce, Eff., Ground)	
QC for Samples: 1155836006					
Results by AK101					
Parameter Capalina Danga Organica	Results	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u>	
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L	
Surrogates 4-Bromofluorobenzene (surr)	96.8	50-150		%	
Batch Information					
Analytical Batch: VFC12734			ch: VXX28059		
Analytical Method: AK101 Instrument: Agilent 7890 PID)/FID		hod: SW5030B /Time: 10/9/20	3 015 8:00:00AM	
Analyst: KAS			al Wt./Vol.: 5 m		
Analytical Date/Time: 10/10/2	2015 1:05:00AM	Prep Extr	act Vol: 5 mL		

Blank Spike ID: LCS for HBN 1155836 [VXX28059] Blank Spike Lab ID: 1297166 Date Analyzed: 10/10/2015 00:46 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28059] Spike Duplicate Lab ID: 1297167 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155836006

Results by AK101									
		Blank Spike	e (mg/L)	S	Spike Duplicate (mg/L)				
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.09	109	1.00	1.10	110	(60-120)	1.20	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	107	107	0.0500	102	102	(50-150)	4.80	
Batch Information									
Analytical Batch: VFC12734				Prep	Batch: V	XX28059			
Analytical Method: AK101					Method:				
Instrument: Agilent 7890 PID/F	/FID Prep Date/Time: 10/09/2015 08:00 Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL								
Analyst: KAS							g/L Extract V g/L Extract V		
				Dup	C IIII VVL/V	0 1.00 mg		OI. OTHE	

Print Date: 10/30/2015 11:39:33AM

Method Blank

Blank ID: MB for HBN 1722618 [VXX/28064] Blank Lab ID: 1297311 Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836009, 1155836010

Results by SW8260B

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	12.5U	25.0	7.80	ug/Kg
1,1,1-Trichloroethane	12.5U	25.0	7.80	ug/Kg
1,1,2,2-Tetrachloroethane	6.25U	12.5	3.90	ug/Kg
1,1,2-Trichloroethane	5.00U	10.0	3.10	ug/Kg
1,1-Dichloroethane	12.5U	25.0	7.80	ug/Kg
1,1-Dichloroethene	12.5U	25.0	7.80	ug/Kg
1,1-Dichloropropene	12.5U	25.0	7.80	ug/Kg
1,2,3-Trichlorobenzene	25.0U	50.0	15.0	ug/Kg
1,2,3-Trichloropropane	12.5U	25.0	7.80	ug/Kg
1,2,4-Trichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,2,4-Trimethylbenzene	25.0U	50.0	15.0	ug/Kg
1,2-Dibromo-3-chloropropane	50.0U	100	31.0	ug/Kg
1,2-Dibromoethane	5.00U	10.0	3.10	ug/Kg
1,2-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,2-Dichloroethane	5.00U	10.0	3.10	ug/Kg
1,2-Dichloropropane	5.00U	10.0	3.10	ug/Kg
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	ug/Kg
1,3-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,3-Dichloropropane	5.00U	10.0	3.10	ug/Kg
1,4-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
2,2-Dichloropropane	12.5U	25.0	7.80	ug/Kg
2-Butanone (MEK)	125U	250	78.0	ug/Kg
2-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
2-Hexanone	125U	250	78.0	ug/Kg
4-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
4-Isopropyltoluene	12.5U	25.0	7.80	ug/Kg
4-Methyl-2-pentanone (MIBK)	125U	250	78.0	ug/Kg
Benzene	6.25U	12.5	3.90	ug/Kg
Bromobenzene	12.5U	25.0	7.80	ug/Kg
Bromochloromethane	12.5U	25.0	7.80	ug/Kg
Bromodichloromethane	12.5U	25.0	7.80	ug/Kg
Bromoform	12.5U	25.0	7.80	ug/Kg
Bromomethane	100U	200	62.0	ug/Kg
Carbon disulfide	50.0U	100	31.0	ug/Kg
Carbon tetrachloride	6.25U	12.5	3.90	ug/Kg
Chlorobenzene	12.5U	25.0	7.80	ug/Kg
Chloroethane	100U	200	62.0	ug/Kg
Chloroform	12.5U	25.0	7.80	ug/Kg

Print Date: 10/30/2015 11:39:35AM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1722618 [VXX/28064] Blank Lab ID: 1297311 Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836009, 1155836010

Results by SW8260B				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	12.5U	<u>25.0</u>	7.80	ug/Kg
cis-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
cis-1,3-Dichloropropene	12.5U	25.0	7.80	ug/Kg
Dibromochloromethane	12.5U	25.0	7.80	ug/Kg
Dibromomethane	12.50	25.0	7.80	ug/Kg
Dichlorodifluoromethane	25.0U	50.0	15.0	ug/Kg
Ethylbenzene	12.5U	25.0	7.80	ug/Kg
Freon-113	50.0U	100	31.0	ug/Kg
Hexachlorobutadiene	25.0U	50.0	15.0	ug/Kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/Kg
Methylene chloride	50.0U	100	31.0	ug/Kg
Methyl-t-butyl ether	50.0U	100	31.0	ug/Kg
Naphthalene	25.0U	50.0	15.0	ug/Kg
n-Butylbenzene	12.5U	25.0	7.80	ug/Kg
n-Propylbenzene	12.5U	25.0	7.80	ug/Kg
o-Xylene	12.5U	25.0	7.80	ug/Kg
P & M -Xylene	25.0U	50.0	15.0	ug/Kg
sec-Butylbenzene	12.5U	25.0	7.80	ug/Kg
Styrene	12.5U	25.0	7.80	ug/Kg
tert-Butylbenzene	8.50J	25.0	7.80	ug/Kg
Tetrachloroethene	6.25U	12.5	3.90	ug/Kg
Toluene	12.5U	25.0	7.80	ug/Kg
trans-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
trans-1,3-Dichloropropene	12.5U	25.0	7.80	ug/Kg
Trichloroethene	6.25U	12.5	3.90	ug/Kg
Trichlorofluoromethane	25.0U	50.0	15.0	ug/Kg
Vinyl acetate	50.0U	100	31.0	ug/Kg
Vinyl chloride	5.00U	10.0	3.10	ug/Kg
Xylenes (total)	37.5U	75.0	22.8	ug/Kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	105	71-136		%
4-Bromofluorobenzene (surr)	95.4	55-151		%
Toluene-d8 (surr)	111	85-116		%
· · ·				

Print Date: 10/30/2015 11:39:35AM

SGS North America Inc.

SGS

Blank ID: MB for HBN 1722618 [VXX/28064] Blank Lab ID: 1297311

QC for Samples: 1155836009, 1155836010

Results by SW8260B				
<u>Parameter</u>	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
Batch Information				
Analytical Batch: VMS Analytical Method: SV Instrument: VQA 7890 Analyst: ST Analytical Date/Time:	/8260B	Prep Me Prep Da Prep Init	tch: VXX2806 thod: SW503 te/Time: 10/1 ial Wt./Vol.: 5 tract Vol: 25 r	5A 2/2015 8:00:00AM 0 g

Matrix: Soil/Solid (dry weight)

Print Date: 10/30/2015 11:39:35AM

Blank Spike ID: LCS for HBN 1155836 [VXX28064] Blank Spike Lab ID: 1297312 Date Analyzed: 10/12/2015 16:49

Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836008, 1155836009, 1155836010

Results by SW8260B

	E	Blank Spike	(ug/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>(</u>
1,1,2-Tetrachloroethane	750	813	108	(
1,1,1-Trichloroethane	750	905	121	(]
1,1,2,2-Tetrachloroethane	750	715	95	(7)
1,1,2-Trichloroethane	750	766	102	(78
1,1-Dichloroethane	750	772	103	(76-2
,1-Dichloroethene	750	1150	154	(70-1
,1-Dichloropropene	750	798	106	(76-12
1,2,3-Trichlorobenzene	750	1240	165	(66-13
1,2,3-Trichloropropane	750	761	101	(73-12
,2,4-Trichlorobenzene	750	999	133	(67-129
1,2,4-Trimethylbenzene	750	765	102	(75-123
1,2-Dibromo-3-chloropropane	750	874	117	(61-132
1,2-Dibromoethane	750	819	109	(78-122
1,2-Dichlorobenzene	750	752	100	(78-121
,2-Dichloroethane	750	812	108	(73-128
1,2-Dichloropropane	750	766	102	(76-123
,3,5-Trimethylbenzene	750	749	100	(73-124
3-Dichlorobenzene	750	733	98	(77-121
,3-Dichloropropane	750	780	104	(77-121
4-Dichlorobenzene	750	761	101	(75-120
,2-Dichloropropane	750	800	107	(67-133
Butanone (MEK)	2250	2170	96	(51-148
-Chlorotoluene	750	701	93	(75-122
-Hexanone	2250	2350	105	(53-145
-Chlorotoluene	750	711	95	(72-124
-Isopropyltoluene	750	764	102	(73-127
-Methyl-2-pentanone (MIBK)	2250	2200	98	(65-135
Benzene	750	742	99	(77-121
romobenzene	750	703	94	(78-121
romochloromethane	750	752	100	(78-125
Bromodichloromethane	750	833	111	(75-127
Bromoform	750	804	107	(67-132
Bromomethane	750	1060	141	(53-143
Carbon disulfide	1130	1720	153	(63-132

Print Date: 10/30/2015 11:39:37AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1155836 [VXX28064] Blank Spike Lab ID: 1297312 Date Analyzed: 10/12/2015 16:49

Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836008, 1155836009, 1155836010

Results by SW8260B

	E	Blank Spike	(ug/Kg)	
Parameter	Spike	Result	Rec (%)	<u>CL</u>
Carbon tetrachloride	750	857	114	(70-135)
Chlorobenzene	750	713	95	(79-120)
Chloroethane	750	1030	137	(59-139)
Chloroform	750	752	100	(78-123)
Chloromethane	750	812	108	(50-136)
cis-1,2-Dichloroethene	750	717	96	(77-123)
cis-1,3-Dichloropropene	750	843	112	(74-126)
Dibromochloromethane	750	851	113	(74-126)
Dibromomethane	750	792	106	(78-125)
Dichlorodifluoromethane	750	847	113	(29-149)
Ethylbenzene	750	732	98	(76-122)
Freon-113	1130	1570	140 *	(66-136)
Hexachlorobutadiene	750	1080	144 *	(61-135)
Isopropylbenzene (Cumene)	750	726	97	(68-134)
Methylene chloride	750	1030	138 *	(70-128)
Methyl-t-butyl ether	1130	1380	122	(73-125)
Naphthalene	750	871	116	(62-129)
n-Butylbenzene	750	803	107	(70-128)
n-Propylbenzene	750	644	86	(73-125)
o-Xylene	750	683	91	(77-123)
P & M -Xylene	1500	1420	95	(77-124)
sec-Butylbenzene	750	725	97	(73-126)
Styrene	750	645	86	(76-124)
tert-Butylbenzene	750	675	90	(73-125)
Tetrachloroethene	750	721	96	(73-128)
Toluene	750	701	94	(77-121)
trans-1,2-Dichloroethene	750	1040	138 *	(74-125)
trans-1,3-Dichloropropene	750	767	102	(71-130)
Trichloroethene	750	834	111	(77-123)
Trichlorofluoromethane	750	1180	158 *	(62-140)
Vinyl acetate	750	800	107	(50-151)
Vinyl chloride	750	976	130	(56-135)
Xylenes (total)	2250	2110	94	(78-124)

Print Date: 10/30/2015 11:39:37AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1155836 [VXX28064] Blank Spike Lab ID: 1297312 Date Analyzed: 10/12/2015 16:49

Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836008, 1155836009, 1155836010

Results by SW8260B

Results by SW0200B				
		Blank Spil	ke (%)	
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	
Surrogates				
1,2-Dichloroethane-D4 (surr)	750	107	107	
4-Bromofluorobenzene (surr)	750	91.7	92	
Toluene-d8 (surr)	750	101	101	

Batch Information

Analytical Batch: VMS15331 Analytical Method: SW8260B Instrument: VQA 7890/5975 GC/MS Analyst: ST Prep Batch: VXX28064 Prep Method: SW5035A Prep Date/Time: 10/12/2015 08:00 Spike Init Wt./Vol.: 750 ug/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/30/2015 11:39:37AM

Matrix Spike Summary

Original Sample ID: 1297782 MS Sample ID: 1297313 MS MSD Sample ID: 1297314 MSD

QC for Samples: 1155836008, 1155836009, 1155836010

		Mat	rix Spike (ι	ıg/Kg)	Spike Duplicate (ug/Kg)						
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%</u>	<u>%)</u>	<u>CL</u>	<u>RPD (%</u>	B) RPD (
,1,1,2-Tetrachloroethane	13.1U	783	886	113	783	894	114		78-125	0.85	(< 20
,1,1-Trichloroethane	13.1U	783	868	111	783	905	116		73-130	4.20	(< 20
1,2,2-Tetrachloroethane	6.55U	783	706	90	783	784	100		70-124	10.50	(< 20
,1,2-Trichloroethane	5.20U	783	809	103	783	840	107		78-121	3.80	(< 20
1-Dichloroethane	13.1U	783	860	110	783	777	99		76-125	10.20	(< 20
1-Dichloroethene	13.1U	783	934	119	783	1180	151	*	70-131	23.30	* (< 20
,1-Dichloropropene	13.1U	783	832	106	783	811	104		76-125	2.60	(< 20
2,3-Trichlorobenzene	26.1U	783	991	127	783	1250	159	*	66-130	22.80	* (< 20
2,3-Trichloropropane	13.1U	783	741	95	783	839	107		73-125	12.40	(< 20
2,4-Trichlorobenzene	13.1U	783	932	119	783	1180	151	*	67-129	23.60	* (< 20
2,4-Trimethylbenzene	26.1U	783	795	102	783	897	115		75-123	12.00	(< 20
2-Dibromo-3-chloropropane	52.0U	783	801	102	783	1040	132		61-132	25.60	* (< 20
2-Dibromoethane	5.20U	783	858	110	783	848	108		78-122	1.20	(< 20
,2-Dichlorobenzene	13.1U	783	766	98	783	778	99		78-121	1.60	(< 20
2-Dichloroethane	5.20U	783	760	97	783	804	103		73-128	5.60	(< 20
2-Dichloropropane	5.20U	783	636	81	783	763	97		76-123	18.10	(< 20
3,5-Trimethylbenzene	13.1U	783	803	103	783	894	114		73-124	10.70	(< 20
3-Dichlorobenzene	13.1U	783	713	91	783	824	105		77-121	14.50	(< 20
3-Dichloropropane	5.20U	783	831	106	783	841	107		77-121	1.20	(< 20
4-Dichlorobenzene	13.1U	783	729	93	783	859	110		75-120	16.40	(< 20
,2-Dichloropropane	13.1U	783	793	101	783	805	103		67-133	1.60	(< 20
-Butanone (MEK)	131U	2350	2150	92	2350	2240	95		51-148	3.80	(< 20
-Chlorotoluene	13.1U	783	752	96	783	852	109		75-122	12.40	(< 20
Hexanone	131U	2350	2230	95	2350	2350	100		53-145	5.40	(< 20
-Chlorotoluene	13.1U	783	747	95	783	1010	129	*	72-124	30.30	* (< 20
-Isopropyltoluene	13.1U	783	725	93	783	767	98		73-127	5.60	(< 20
-Methyl-2-pentanone (MIBK)	131U	2350	1600	68	2350	2280	97		65-135	35.20	* (< 20
enzene	6.55U	783	848	108	783	767	98		77-121	10.00	(< 20
romobenzene	13.1U	783	753	96	783	922	118		78-121	20.20	* (< 20
romochloromethane	13.1U	783	810	103	783	734	94		78-125	9.80	(< 20
romodichloromethane	13.1U	783	692	88	783	855	109		75-127	21.00	* (< 20
romoform	13.1U	783	889	114	783	905	116		67-132	1.80	(< 20
romomethane	105U	783	839	107	783	1060	135		53-143	23.00	* (< 20
arbon disulfide	52.0U	1170	1370	117	1170	1750	149	*	63-132	24.50	* (< 20
arbon tetrachloride	6.55U	783	815	104	783	855	109		70-135	4.80	(< 20
hlorobenzene	13.1U	783	785	100	783	791	101		79-120	0.76	(< 20
Chloroethane	105U	783	791	101	783	1020	130		59-139	25.30	* (< 20

Print Date: 10/30/2015 11:39:38AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Analysis Date: 10/12/2015 18:56 Analysis Date: 10/12/2015 17:20 Analysis Date: 10/12/2015 17:36 Matrix: Soil/Solid (dry weight)

Matrix Spike Summary

Original Sample ID: 1297782 MS Sample ID: 1297313 MS MSD Sample ID: 1297314 MSD

QC for Samples: 1155836008, 1155836009, 1155836010

Results by SW8260B										
		Mat	rix Spike (ι	ıg/Kg)	Spike	Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%</u>	RPD CL
Chloroform	13.1U	783	771	98	783	763	97	78-123	0.99	(< 20)
Chloromethane	13.1U	783	699	89	783	752	96	50-136	7.30	(< 20)
cis-1,2-Dichloroethene	13.1U	783	819	105	783	737	94	77-123	10.50	(< 20)
cis-1,3-Dichloropropene	13.1U	783	634	81	783	859	110	74-126	30.10	* (< 20)
Dibromochloromethane	13.1U	783	894	114	783	887	113	74-126	0.73	(< 20)
Dibromomethane	13.1U	783	630	80	783	790	101	78-125	22.50	* (< 20)
Dichlorodifluoromethane	26.1U	783	557	71	783	678	87	29-149	19.60	(< 20)
Ethylbenzene	13.1U	783	792	101	783	794	101	76-122	0.23	(< 20)
Freon-113	52.0U	1170	1310	112	1170	1680	143 *	66-136	24.40	* (< 20)
Hexachlorobutadiene	26.1U	783	1080	138 *	783	1150	147 *	61-135	6.50	(< 20)
Isopropylbenzene (Cumene)	13.1U	783	886	113	783	923	118	68-134	4.10	(< 20)
Methylene chloride	52.0U	783	888	113	783	1030	131 *	70-128	14.70	(< 20)
Methyl-t-butyl ether	52.0U	1170	1350	115	1170	1390	119	73-125	3.50	(< 20)
Naphthalene	26.1U	783	852	109	783	1210	154 *	62-129	34.60	* (< 20)
n-Butylbenzene	13.1U	783	823	105	783	897	115	70-128	8.60	(< 20)
n-Propylbenzene	13.1U	783	711	91	783	778	99	73-125	8.90	(< 20)
o-Xylene	13.1U	783	797	102	783	791	101	77-123	0.72	(< 20)
P & M -Xylene	26.1U	1570	1590	101	1570	1580	101	77-124	0.20	(< 20)
sec-Butylbenzene	13.1U	783	753	96	783	827	106	73-126	9.40	(< 20)
Styrene	13.1U	783	739	94	783	751	96	76-124	1.60	(< 20)
tert-Butylbenzene	13.1U	783	726	93	783	802	102	73-125	9.90	(< 20)
Tetrachloroethene	6.55U	783	798	102	783	798	102	73-128	0.03	(< 20)
Toluene	13.1U	783	793	101	783	800	102	77-121	0.89	(< 20)
trans-1,2-Dichloroethene	13.1U	783	904	115	783	1080	137 *	74-125	17.40	(< 20)
trans-1,3-Dichloropropene	13.1U	783	848	108	783	856	109	71-130	0.86	(< 20)
Trichloroethene	6.55U	783	766	98	783	836	107	77-123	8.80	(< 20)
Trichlorofluoromethane	26.1U	783	935	119	783	1010	129	62-140	7.30	(< 20)
Vinyl acetate	52.0U	783	896	114	783	826	105	50-151	8.20	(< 20)
Vinyl chloride	5.20U	783	858	110	783	898	115	56-135	4.60	(< 20)
Xylenes (total)	39.1U	2350	2380	101	2350	2380	101	78-124	0.37	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		783	774	99	783	811	104	71-136	4.60	
4-Bromofluorobenzene (surr)		2090	1660	79	2090	1730	83	55-151	4.10	
Toluene-d8 (surr)		783	838	107	783	845	108	85-116	0.84	

Analysis Date: 10/12/2015 18:56

Analysis Date: 10/12/2015 17:20

Analysis Date: 10/12/2015 17:36 Matrix: Soil/Solid (dry weight)

Print Date: 10/30/2015 11:39:38AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

SGS Matrix Spike Summar	V									
Original Sample ID: 1297782 MS Sample ID: 1297313 MS MSD Sample ID: 1297314 MSD QC for Samples: 1155836008, 1155836009, 11558360			36010		Analysis Date: Analysis Date: 10/12/2015 17:20 Analysis Date: 10/12/2015 17:36 Matrix: Soil/Solid (dry weight)					
Results by SW8260B										
		М	latrix Spike	(%)	Spi	ike Duplica	ate (%)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Batch Information	·									
Analytical Batch: VMS15331 Analytical Method: SW8260B Instrument: VQA 7890/5975 GC/MS Analyst: ST Analytical Date/Time: 10/12/2015 5:20:00PM				Prep Batch: VXX28064 Prep Method: Vol. Extraction SW8260 Field Extracted L Prep Date/Time: 10/12/2015 8:00:01AM Prep Initial Wt./Vol.: 47.88g Prep Extract Vol: 25.00mL						

Print Date: 10/30/2015 11:39:38AM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1722626 [VXX/28066] Blank Lab ID: 1297344 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1155836001, 1155836002, 1155836003, 1155836004, 1155836007

Results by SW8260B				
Parameter	Results	LOQ/CL	DL	Units
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.500U	1.00	0.310	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	5.00U	10.0	3.10	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.300	ug/L

Print Date: 10/30/2015 11:39:40AM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1722626 [VXX/28066] Blank Lab ID: 1297344 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1155836001, 1155836002, 1155836003, 1155836004, 1155836007

-	Results by SW8260B					
	<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
	Chloromethane	0.500U	1.00	0.310	ug/L	
	cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
	cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L	
	Dibromochloromethane	0.250U	0.500	0.150	ug/L	
	Dibromomethane	0.500U	1.00	0.310	ug/L	
	Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L	
	Ethylbenzene	0.500U	1.00	0.310	ug/L	
	Freon-113	5.00U	10.0	3.10	ug/L	
	Hexachlorobutadiene	0.500U	1.00	0.310	ug/L	
	Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L	
	Methylene chloride	2.50U	5.00	1.00	ug/L	
	Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L	
	Naphthalene	5.00U	10.0	3.10	ug/L	
	n-Butylbenzene	0.500U	1.00	0.310	ug/L	
	n-Propylbenzene	0.500U	1.00	0.310	ug/L	
	o-Xylene	0.500U	1.00	0.310	ug/L	
	P & M -Xylene	1.00U	2.00	0.620	ug/L	
	sec-Butylbenzene	0.500U	1.00	0.310	ug/L	
	Styrene	0.500U	1.00	0.310	ug/L	
	tert-Butylbenzene	0.500U	1.00	0.310	ug/L	
	Tetrachloroethene	0.500U	1.00	0.310	ug/L	
	Toluene	0.500U	1.00	0.310	ug/L	
	trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
	trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L	
	Trichloroethene	0.500U	1.00	0.310	ug/L	
	Trichlorofluoromethane	0.500U	1.00	0.310	ug/L	
	Vinyl acetate	5.00U	10.0	3.10	ug/L	
	Vinyl chloride	0.500U	1.00	0.310	ug/L	
	Xylenes (total)	1.50U	3.00	1.00	ug/L	
	Surrogates					
	1,2-Dichloroethane-D4 (surr)	110	81-118		%	
	4-Bromofluorobenzene (surr)	99	85-114		%	
	Toluene-d8 (surr)	98.4	89-112		%	
	· · /					

Print Date: 10/30/2015 11:39:40AM

SGS North America Inc.

Method Blank							
Blank ID: MB for HBN 17 Blank Lab ID: 1297344	/22626 [VXX/28066]	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1155836001, 1155836002,	1155836003, 1155836004, 115	5836007					
Results by SW8260B							
Parameter	Results	LOQ/CL	DL	<u>Units</u>			
Batch Information							
Analytical Batch: VMS15328 Analytical Method: SW8260B Instrument: HP 5890 Series II MS3 VNA Analyst: SCL Analytical Date/Time: 10/9/2015 11:00:00AM		Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/9/2015 8:59:41AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

Print Date: 10/30/2015 11:39:40AM

SG:

Blank ID: MB for HBN 1722626 [VXX/28066] Blank Lab ID: 1297347 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1155836001, 1155836002, 1155836003, 1155836004, 1155836007

Results by SW8260B					
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L	
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L	
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L	
1,1,2-Trichloroethane	0.500U	1.00	0.310	ug/L	
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L	
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L	
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L	
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L	
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L	
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L	
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L	
1,2-Dibromoethane	0.500U	1.00	0.310	ug/L	
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L	
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L	
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L	
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L	
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L	
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L	
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L	
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L	
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L	
2-Chlorotoluene	0.500U	1.00	0.310	ug/L	
2-Hexanone	5.00U	10.0	3.10	ug/L	
4-Chlorotoluene	0.500U	1.00	0.310	ug/L	
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L	
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L	
Benzene	0.200U	0.400	0.120	ug/L	
Bromobenzene	0.500U	1.00	0.310	ug/L	
Bromochloromethane	0.500U	1.00	0.310	ug/L	
Bromodichloromethane	0.250U	0.500	0.150	ug/L	
Bromoform	0.500U	1.00	0.310	ug/L	
Bromomethane	5.00U	10.0	3.10	ug/L	
Carbon disulfide	5.00U	10.0	3.10	ug/L	
Carbon tetrachloride	0.500U	1.00	0.310	ug/L	
Chlorobenzene	0.250U	0.500	0.150	ug/L	
Chloroethane	0.500U	1.00	0.310	ug/L	
Chloroform	0.500U	1.00	0.300	ug/L	

Print Date: 10/30/2015 11:39:40AM

SGS North America Inc.

SG:

Blank ID: MB for HBN 1722626 [VXX/28066] Blank Lab ID: 1297347 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1155836001, 1155836002, 1155836003, 1155836004, 1155836007

_	Results by SW8260B						
	Parameter	Results	I	LOQ/CL	DL	Units	
	Chloromethane	0.500U		1.00	0.310	ug/L	
	cis-1,2-Dichloroethene	0.500U		1.00	0.310	ug/L	
	cis-1,3-Dichloropropene	0.250U		0.500	0.150	ug/L	
	Dibromochloromethane	0.250U		0.500	0.150	ug/L	
	Dibromomethane	0.500U		1.00	0.310	ug/L	
	Dichlorodifluoromethane	0.500U		1.00	0.310	ug/L	
	Ethylbenzene	0.500U		1.00	0.310	ug/L	
	Freon-113	5.00U		10.0	3.10	ug/L	
	Hexachlorobutadiene	0.500U		1.00	0.310	ug/L	
	Isopropylbenzene (Cumene)	0.500U		1.00	0.310	ug/L	
	Methylene chloride	2.50U		5.00	1.00	ug/L	
	Methyl-t-butyl ether	5.00U		10.0	3.10	ug/L	
	Naphthalene	5.00U		10.0	3.10	ug/L	
	n-Butylbenzene	0.500U		1.00	0.310	ug/L	
	n-Propylbenzene	0.500U		1.00	0.310	ug/L	
		0.500U 0.500U		1.00	0.310	•	
	o-Xylene			2.00	0.310	ug/L	
	P & M -Xylene	1.00U				ug/L	
	sec-Butylbenzene	0.500U		1.00	0.310	ug/L	
	Styrene	0.500U		1.00	0.310	ug/L	
	tert-Butylbenzene	0.500U		1.00	0.310	ug/L	
	Tetrachloroethene	0.500U		1.00	0.310	ug/L	
	Toluene	0.500U		1.00	0.310	ug/L	
	trans-1,2-Dichloroethene	0.500U		1.00	0.310	ug/L	
	trans-1,3-Dichloropropene	0.500U		1.00	0.310	ug/L	
	Trichloroethene	0.500U		1.00	0.310	ug/L	
	Trichlorofluoromethane	0.500U		1.00	0.310	ug/L	
	Vinyl acetate	5.00U		10.0	3.10	ug/L	
	Vinyl chloride	0.500U		1.00	0.310	ug/L	
	Xylenes (total)	1.50U		3.00	1.00	ug/L	
	Surrogates						
	1,2-Dichloroethane-D4 (surr)	109		81-118		%	
	4-Bromofluorobenzene (surr)	107		85-114		%	
	Toluene-d8 (surr)	99.8		89-112		%	

Print Date: 10/30/2015 11:39:40AM

SGS North America Inc.

Method Blank							
Blank ID: MB for HBN 17 Blank Lab ID: 1297347	722626 [VXX/28066]	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1155836001, 1155836002,	1155836003, 1155836004, 115	5836007					
Results by SW8260B							
Parameter	Results	LOQ/CL	DL	<u>Units</u>			
Batch Information							
Analytical Batch: VMS1 Analytical Method: SW4 Instrument: HP 5890 S Analyst: SCL Analytical Date/Time: 1	3260B eries II MS3 VNA	Prep Me Prep Da Prep Ini	tch: VXX280 ethod: SW503 te/Time: 10/9 tial Wt./Vol.: 5 tract Vol: 5 m	80B 9/2015 8:59:41AM 5 mL			

Print Date: 10/30/2015 11:39:40AM

Blank Spike ID: LCS for HBN 1155836 [VXX28066] Blank Spike Lab ID: 1297345 Date Analyzed: 10/09/2015 11:33 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28066] Spike Duplicate Lab ID: 1297346 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

 $1155836001,\,1155836002,\,1155836003,\,1155836004,\,1155836007$

Results by SW8260B

Blank Spike (ug/L) Spike Duplicate (ug/L									
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	28.7	96	30	29.1	97	(78-124)	1.60	(< 20)
1,1,1-Trichloroethane	30	30.7	102	30	28.9	96	(74-131)	6.20	(< 20)
1,1,2,2-Tetrachloroethane	30	27.4	91	30	29.9	100	(71-121)	8.60	(< 20)
1,1,2-Trichloroethane	30	32.5	108	30	33.4	111	(80-119)	2.60	(< 20)
1,1-Dichloroethane	30	31.8	106	30	30.9	103	(77-125)	2.80	(< 20)
1,1-Dichloroethene	30	30.2	101	30	28.8	96	(71-131)	4.90	(< 20)
1,1-Dichloropropene	30	31.9	106	30	29.4	98	(79-125)	8.00	(< 20)
1,2,3-Trichlorobenzene	30	27.9	93	30	30.9	103	(69-129)	10.30	(< 20)
1,2,3-Trichloropropane	30	27.3	91	30	29.2	97	(73-122)	6.70	(< 20)
1,2,4-Trichlorobenzene	30	27.7	92	30	30.9	103	(69-130)	11.10	(< 20)
1,2,4-Trimethylbenzene	30	29.2	97	30	30.0	100	(79-124)	2.70	(< 20)
1,2-Dibromo-3-chloropropane	30	29.4	98	30	33.1	110	(62-128)	11.80	(< 20)
1,2-Dibromoethane	30	33.0	110	30	33.5	112	(77-121)	1.70	(< 20)
1,2-Dichlorobenzene	30	29.0	97	30	31.0	103	(80-119)	6.70	(< 20)
1,2-Dichloroethane	30	31.0	103	30	30.7	102	(73-128)	1.10	(< 20)
1,2-Dichloropropane	30	33.2	111	30	31.2	104	(78-122)	6.40	(< 20)
1,3,5-Trimethylbenzene	30	28.7	96	30	29.8	99	(75-124)	3.70	(< 20)
1,3-Dichlorobenzene	30	30.1	100	30	31.2	104	(80-119)	3.50	(< 20)
1,3-Dichloropropane	30	32.6	109	30	33.8	113	(80-119)	3.60	(< 20)
1,4-Dichlorobenzene	30	30.1	100	30	31.4	105	(79-118)	4.30	(< 20)
2,2-Dichloropropane	30	33.4	111	30	33.4	111	(60-139)	0.15	(< 20)
2-Butanone (MEK)	90	101	113	90	107	119	(56-143)	5.90	(< 20)
2-Chlorotoluene	30	31.5	105	30	33.0	110	(79-122)	4.70	(< 20)
2-Hexanone	90	93.2	104	90	97.6	108	(57-139)	4.50	(< 20)
4-Chlorotoluene	30	32.3	108	30	33.0	110	(78-122)	2.10	(< 20)
4-Isopropyltoluene	30	28.7	96	30	30.7	102	(77-127)	7.00	(< 20)
4-Methyl-2-pentanone (MIBK)	90	92.1	102	90	92.2	102	(67-130)	0.09	(< 20)
Benzene	30	35.0	117	30	34.0	113	(79-120)	2.90	(< 20)
Bromobenzene	30	29.1	97	30	30.6	102	(80-120)	5.00	(< 20)
Bromochloromethane	30	30.2	101	30	30.9	103	(78-123)	2.40	(< 20)
Bromodichloromethane	30	32.6	109	30	30.3	101	(79-125)	7.50	(< 20)
Bromoform	30	28.6	95	30	28.6	95	(66-130)	0.07	(< 20)
Bromomethane	30	26.5	88	30	28.9	96	(53-141)	8.70	(< 20)
Carbon disulfide	45	48.6	108	45	49.1	109	(64-133)	0.98	(< 20)

Print Date: 10/30/2015 11:39:42AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1155836 [VXX28066] Blank Spike Lab ID: 1297345 Date Analyzed: 10/09/2015 11:33 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28066] Spike Duplicate Lab ID: 1297346 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

 $1155836001,\,1155836002,\,1155836003,\,1155836004,\,1155836007$

Results by SW8260B

Blank Spike (ug/L) Spike Duplicate (ug/L)									
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	31.2	104	30	29.7	99	(72-136)	5.10	(< 20)
Chlorobenzene	30	32.3	108	30	31.3	104	(82-118)	3.40	(< 20)
Chloroethane	30	29.7	99	30	29.2	97	(60-138)	1.50	(< 20)
Chloroform	30	32.0	107	30	31.1	104	(79-124)	3.00	(< 20)
Chloromethane	30	27.9	93	30	30.2	101	(50-139)	8.00	(< 20)
cis-1,2-Dichloroethene	30	31.8	106	30	31.1	104	(78-123)	2.20	(< 20)
cis-1,3-Dichloropropene	30	30.4	101	30	28.9	96	(75-124)	5.20	(< 20)
Dibromochloromethane	30	29.3	98	30	29.3	98	(74-126)	0.07	(< 20)
Dibromomethane	30	31.2	104	30	31.0	103	(79-123)	0.48	(< 20)
Dichlorodifluoromethane	30	33.8	113	30	33.8	113	(32-152)	0.03	(< 20)
Ethylbenzene	30	31.1	104	30	31.1	104	(79-121)	0.13	(< 20)
Freon-113	45	51.4	114	45	51.8	115	(70-136)	0.85	(< 20)
Hexachlorobutadiene	30	28.9	97	30	31.2	104	(66-134)	7.50	(< 20)
Isopropylbenzene (Cumene)	30	32.8	109	30	31.0	103	(72-131)	5.70	(< 20)
Methylene chloride	30	31.5	105	30	30.8	103	(74-124)	2.40	(< 20)
Methyl-t-butyl ether	45	46.0	102	45	45.5	101	(71-124)	1.20	(< 20)
Naphthalene	30	27.9	93	30	31.6	105	(61-128)	12.50	(< 20)
n-Butylbenzene	30	29.2	97	30	31.4	105	(75-128)	7.40	(< 20)
n-Propylbenzene	30	32.7	109	30	33.6	112	(76-126)	2.60	(< 20)
o-Xylene	30	30.6	102	30	29.8	99	(78-122)	2.60	(< 20)
P & M -Xylene	60	63.6	106	60	61.6	103	(80-121)	3.20	(< 20)
sec-Butylbenzene	30	30.1	100	30	31.4	105	(77-126)	4.30	(< 20)
Styrene	30	31.2	104	30	30.6	102	(78-123)	2.00	(< 20)
tert-Butylbenzene	30	28.5	95	30	30.4	101	(78-124)	6.30	(< 20)
Tetrachloroethene	30	32.8	109	30	33.0	110	(74-129)	0.73	(< 20)
Toluene	30	32.2	107	30	31.3	104	(80-121)	2.80	(< 20)
trans-1,2-Dichloroethene	30	30.7	102	30	30.9	103	(75-124)	0.71	(< 20)
trans-1,3-Dichloropropene	30	30.5	102	30	31.6	105	(73-127)	3.60	(< 20)
Trichloroethene	30	30.4	101	30	30.0	100	(79-123)	1.30	(< 20)
Trichlorofluoromethane	30	33.0	110	30	34.8	116	(65-141)	5.40	(< 20)
Vinyl acetate	30	32.3	108	30	32.8	109	(54-146)	1.30	(< 20)
Vinyl chloride	30	32.8	109	30	34.4	115	(58-137)	4.80	(< 20)
Xylenes (total)	90	94.2	105	90	91.4	102	(79-121)	3.00	(< 20)

Print Date: 10/30/2015 11:39:42AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1155836 [VXX28066] Blank Spike Lab ID: 1297345 Date Analyzed: 10/09/2015 11:33 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28066] Spike Duplicate Lab ID: 1297346 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155836001, 1155836002, 1155836003, 1155836004, 1155836007

Results by SW8260B

		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	104	104	30	101	101	(81-118)	2.70	
4-Bromofluorobenzene (surr)	30	96	96	30	98.2	98	(85-114)	2.30	
Toluene-d8 (surr)	30	102	102	30	100	100	(89-112)	2.30	

Batch Information

Analytical Batch: VMS15328 Analytical Method: SW8260B Instrument: HP 5890 Series II MS3 VNA Analyst: SCL Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/09/2015 08:59 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:42AM

Blank Spike ID: LCS for HBN 1155836 [VXX28066] Blank Spike Lab ID: 1297348 Date Analyzed: 10/09/2015 19:40 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28066] Spike Duplicate Lab ID: 1297349 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1155836001, 1155836002, 1155836003, 1155836004, 1155836007

Results by SW8260B

Blank Spike (ug/L) Sp					Spike Duplicate (ug/L)				
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	29.4	98	30	27.4	91	(78-124)	7.10	(< 20)
1,1,1-Trichloroethane	30	30.4	101	30	29.7	99	(74-131)	2.30	(< 20)
1,1,2,2-Tetrachloroethane	30	29.9	100	30	30.2	101	(71-121)	0.83	(< 20)
1,1,2-Trichloroethane	30	31.8	106	30	32.1	107	(80-119)	0.78	(< 20)
1,1-Dichloroethane	30	29.3	98	30	31.2	104	(77-125)	6.30	(< 20)
1,1-Dichloroethene	30	26.1	87	30	26.8	89	(71-131)	2.60	(< 20)
1,1-Dichloropropene	30	31.1	104	30	31.1	104	(79-125)	0.23	(< 20)
1,2,3-Trichlorobenzene	30	29.4	98	30	31.7	106	(69-129)	7.60	(< 20)
1,2,3-Trichloropropane	30	28.6	95	30	28.5	95	(73-122)	0.28	(< 20)
1,2,4-Trichlorobenzene	30	28.0	93	30	29.2	97	(69-130)	4.00	(< 20)
1,2,4-Trimethylbenzene	30	28.5	95	30	28.6	95	(79-124)	0.49	(< 20)
1,2-Dibromo-3-chloropropane	30	30.2	101	30	34.2	114	(62-128)	12.40	(< 20)
1,2-Dibromoethane	30	32.9	110	30	33.4	111	(77-121)	1.50	(< 20)
1,2-Dichlorobenzene	30	30.0	100	30	29.8	99	(80-119)	0.57	(< 20)
1,2-Dichloroethane	30	31.8	106	30	31.3	104	(73-128)	1.60	(< 20)
1,2-Dichloropropane	30	32.8	109	30	32.0	107	(78-122)	2.50	(< 20)
1,3,5-Trimethylbenzene	30	28.6	96	30	28.2	94	(75-124)	1.40	(< 20)
1,3-Dichlorobenzene	30	30.0	100	30	29.7	99	(80-119)	0.80	(< 20)
1,3-Dichloropropane	30	33.1	110	30	33.3	111	(80-119)	0.57	(< 20)
1,4-Dichlorobenzene	30	29.5	98	30	31.1	104	(79-118)	5.10	(< 20)
2,2-Dichloropropane	30	28.8	96	30	30.2	101	(60-139)	4.60	(< 20)
2-Butanone (MEK)	90	109	122	90	122	136	(56-143)	11.30	(< 20)
2-Chlorotoluene	30	31.3	104	30	32.2	107	(79-122)	2.80	(< 20)
2-Hexanone	90	97.7	109	90	101	112	(57-139)	3.30	(< 20)
4-Chlorotoluene	30	31.2	104	30	31.2	104	(78-122)	0.06	(< 20)
4-Isopropyltoluene	30	28.9	97	30	28.6	95	(77-127)	1.30	(< 20)
4-Methyl-2-pentanone (MIBK)	90	94.5	105	90	99.2	110	(67-130)	4.80	(< 20)
Benzene	30	35.1	117	30	34.9	116	(79-120)	0.37	(< 20)
Bromobenzene	30	27.9	93	30	28.1	94	(80-120)	0.68	(< 20)
Bromochloromethane	30	30.7	102	30	32.3	108	(78-123)	5.20	(< 20)
Bromodichloromethane	30	33.2	111	30	32.2	107	(79-125)	2.80	(< 20)
Bromoform	30	30.3	101	30	28.4	95	(66-130)	6.20	(< 20)
Bromomethane	30	24.7	82	30	25.2	84	(53-141)	2.00	(< 20)
Carbon disulfide	45	44.1	98	45	43.2	96	(64-133)	2.10	(< 20)

Print Date: 10/30/2015 11:39:42AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1155836 [VXX28066] Blank Spike Lab ID: 1297348 Date Analyzed: 10/09/2015 19:40 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28066] Spike Duplicate Lab ID: 1297349 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

 $1155836001,\,1155836002,\,1155836003,\,1155836004,\,1155836007$

Results by SW8260B

Blank Spike (ug/L) Spike Duplicate (ug/L)									
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	32.0	107	30	30.9	103	(72-136)	3.50	(< 20)
Chlorobenzene	30	31.6	105	30	30.8	103	(82-118)	2.60	(< 20)
Chloroethane	30	28.4	95	30	26.7	89	(60-138)	6.20	(< 20)
Chloroform	30	31.6	105	30	31.6	105	(79-124)	0.10	(< 20)
Chloromethane	30	27.7	92	30	29.9	100	(50-139)	7.60	(< 20)
cis-1,2-Dichloroethene	30	32.4	108	30	31.3	104	(78-123)	3.60	(< 20)
cis-1,3-Dichloropropene	30	29.3	98	30	28.5	95	(75-124)	2.80	(< 20)
Dibromochloromethane	30	29.5	98	30	28.6	95	(74-126)	3.10	(< 20)
Dibromomethane	30	31.5	105	30	30.5	102	(79-123)	3.10	(< 20)
Dichlorodifluoromethane	30	32.4	108	30	34.4	115	(32-152)	6.10	(< 20)
Ethylbenzene	30	32.0	107	30	30.0	100	(79-121)	6.50	(< 20)
Freon-113	45	46.7	104	45	46.0	102	(70-136)	1.30	(< 20)
Hexachlorobutadiene	30	29.6	99	30	29.6	99	(66-134)	0.00	(< 20)
Isopropylbenzene (Cumene)	30	31.6	105	30	29.7	99	(72-131)	6.40	(< 20)
Methylene chloride	30	32.0	107	30	31.7	106	(74-124)	0.85	(< 20)
Methyl-t-butyl ether	45	46.0	102	45	45.6	101	(71-124)	0.98	(< 20)
Naphthalene	30	30.6	102	30	31.5	105	(61-128)	2.60	(< 20)
n-Butylbenzene	30	28.9	96	30	28.3	94	(75-128)	2.10	(< 20)
n-Propylbenzene	30	32.7	109	30	32.3	108	(76-126)	1.20	(< 20)
o-Xylene	30	30.5	102	30	29.7	99	(78-122)	2.60	(< 20)
P & M -Xylene	60	62.5	104	60	58.9	98	(80-121)	5.90	(< 20)
sec-Butylbenzene	30	29.9	100	30	29.9	100	(77-126)	0.17	(< 20)
Styrene	30	30.6	102	30	29.4	98	(78-123)	3.90	(< 20)
tert-Butylbenzene	30	28.7	96	30	28.7	96	(78-124)	0.10	(< 20)
Tetrachloroethene	30	33.0	110	30	32.5	108	(74-129)	1.30	(< 20)
Toluene	30	32.4	108	30	30.6	102	(80-121)	5.60	(< 20)
trans-1,2-Dichloroethene	30	29.1	97	30	30.8	103	(75-124)	5.50	(< 20)
trans-1,3-Dichloropropene	30	29.2	98	30	28.0	94	(73-127)	4.20	(< 20)
Trichloroethene	30	31.7	106	30	30.0	100	(79-123)	5.60	(< 20)
Trichlorofluoromethane	30	34.6	115	30	34.0	113	(65-141)	1.70	(< 20)
Vinyl acetate	30	30.9	103	30	31.4	105	(54-146)	1.80	(< 20)
Vinyl chloride	30	31.3	104	30	32.3	108	(58-137)	3.20	(< 20)
Xylenes (total)	90	93.0	103	90	88.6	99	(79-121)	4.80	(< 20)

Print Date: 10/30/2015 11:39:42AM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1155836 [VXX28066] Blank Spike Lab ID: 1297348 Date Analyzed: 10/09/2015 19:40 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28066] Spike Duplicate Lab ID: 1297349 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155836001, 1155836002, 1155836003, 1155836004, 1155836007

Results by SW8260B

		Blank Spik	ke (%)		Spike Dup	licate (%)			
Parameter	Spike	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	102	102	30	98.9	99	(81-118)	3.00	
4-Bromofluorobenzene (surr)	30	92.2	92	30	97.1	97	(85-114)	5.20	
Toluene-d8 (surr)	30	99.5	100	30	102	102	(89-112)	2.60	

Batch Information

Analytical Batch: VMS15328 Analytical Method: SW8260B Instrument: HP 5890 Series II MS3 VNA Analyst: SCL Prep Batch: VXX28066 Prep Method: SW5030B Prep Date/Time: 10/09/2015 08:59 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/30/2015 11:39:42AM

SG:

Blank ID: MB for HBN 1722671 [VXX/28068] Blank Lab ID: 1297572

QC for Samples: 1155836009, 1155836011

Results by SW8260B

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	12.5U	25.0	7.80	ug/Kg
1,1,1-Trichloroethane	12.5U	25.0	7.80	ug/Kg
1,1,2,2-Tetrachloroethane	6.25U	12.5	3.90	ug/Kg
1,1,2-Trichloroethane	5.00U	10.0	3.10	ug/Kg
1,1-Dichloroethane	12.5U	25.0	7.80	ug/Kg
1,1-Dichloroethene	12.5U	25.0	7.80	ug/Kg
1,1-Dichloropropene	12.5U	25.0	7.80	ug/Kg
1,2,3-Trichlorobenzene	25.0U	50.0	15.0	ug/Kg
1,2,3-Trichloropropane	12.5U	25.0	7.80	ug/Kg
1,2,4-Trichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,2,4-Trimethylbenzene	25.0U	50.0	15.0	ug/Kg
1,2-Dibromo-3-chloropropane	50.0U	100	31.0	ug/Kg
1,2-Dibromoethane	5.00U	10.0	3.10	ug/Kg
1,2-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,2-Dichloroethane	5.00U	10.0	3.10	ug/Kg
1,2-Dichloropropane	5.00U	10.0	3.10	ug/Kg
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	ug/Kg
1,3-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
1,3-Dichloropropane	5.00U	10.0	3.10	ug/Kg
1,4-Dichlorobenzene	12.5U	25.0	7.80	ug/Kg
2,2-Dichloropropane	12.5U	25.0	7.80	ug/Kg
2-Butanone (MEK)	125U	250	78.0	ug/Kg
2-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
2-Hexanone	125U	250	78.0	ug/Kg
4-Chlorotoluene	12.5U	25.0	7.80	ug/Kg
4-Isopropyltoluene	12.5U	25.0	7.80	ug/Kg
4-Methyl-2-pentanone (MIBK)	125U	250	78.0	ug/Kg
Benzene	6.25U	12.5	3.90	ug/Kg
Bromobenzene	12.5U	25.0	7.80	ug/Kg
Bromochloromethane	12.5U	25.0	7.80	ug/Kg
Bromodichloromethane	12.5U	25.0	7.80	ug/Kg
Bromoform	12.5U	25.0	7.80	ug/Kg
Bromomethane	100U	200	62.0	ug/Kg
Carbon disulfide	50.0U	100	31.0	ug/Kg
Carbon tetrachloride	6.25U	12.5	3.90	ug/Kg
Chlorobenzene	12.5U	25.0	7.80	ug/Kg
Chloroethane	100U	200	62.0	ug/Kg
Chloroform	12.5U	25.0	7.80	ug/Kg

Print Date: 10/30/2015 11:39:44AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Soil/Solid (dry weight)

SG:

Blank ID: MB for HBN 1722671 [VXX/28068] Blank Lab ID: 1297572 Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836009, 1155836011

Results by SW8260B

· ·				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	12.5U	25.0	7.80	ug/Kg
cis-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
cis-1,3-Dichloropropene	12.5U	25.0	7.80	ug/Kg
Dibromochloromethane	12.5U	25.0	7.80	ug/Kg
Dibromomethane	12.5U	25.0	7.80	ug/Kg
Dichlorodifluoromethane	25.0U	50.0	15.0	ug/Kg
Ethylbenzene	12.5U	25.0	7.80	ug/Kg
Freon-113	50.0U	100	31.0	ug/Kg
Hexachlorobutadiene	25.0U	50.0	15.0	ug/Kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/Kg
Methylene chloride	50.0U	100	31.0	ug/Kg
Methyl-t-butyl ether	50.0U	100	31.0	ug/Kg
Naphthalene	25.0U	50.0	15.0	ug/Kg
n-Butylbenzene	12.5U	25.0	7.80	ug/Kg
n-Propylbenzene	12.5U	25.0	7.80	ug/Kg
o-Xylene	12.5U	25.0	7.80	ug/Kg
P & M -Xylene	25.0U	50.0	15.0	ug/Kg
sec-Butylbenzene	12.5U	25.0	7.80	ug/Kg
Styrene	12.5U	25.0	7.80	ug/Kg
tert-Butylbenzene	12.5U	25.0	7.80	ug/Kg
Tetrachloroethene	6.25U	12.5	3.90	ug/Kg
Toluene	12.5U	25.0	7.80	ug/Kg
trans-1,2-Dichloroethene	12.5U	25.0	7.80	ug/Kg
trans-1,3-Dichloropropene	12.5U	25.0	7.80	ug/Kg
Trichloroethene	6.25U	12.5	3.90	ug/Kg
Trichlorofluoromethane	25.0U	50.0	15.0	ug/Kg
Vinyl acetate	50.0U	100	31.0	ug/Kg
Vinyl chloride	5.00U	10.0	3.10	ug/Kg
Xylenes (total)	37.5U	75.0	22.8	ug/Kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	106	71-136		%
4-Bromofluorobenzene (surr)	96.9	55-151		%
Toluene-d8 (surr)	105	85-116		%

Print Date: 10/30/2015 11:39:44AM

SGS North America Inc.

SGS

Blank ID: MB for HBN 1722671 [VXX/28068] Blank Lab ID: 1297572

QC for Samples: 1155836009, 1155836011

Results by SW8260B					
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Batch Information					
Analytical Batch: VMS Analytical Method: SV Instrument: Agilent 78 Analyst: ST Analytical Date/Time:	V8260B	Prep Me Prep Da Prep Init	tch: VXX2806 thod: SW503 te/Time: 10/1 ial Wt./Vol.: 5 tract Vol: 25 t	5A 3/2015 8:00:00AM i0 g	

Matrix: Soil/Solid (dry weight)

Print Date: 10/30/2015 11:39:44AM

Blank Spike ID: LCS for HBN 1155836 [VXX28068] Blank Spike Lab ID: 1297573 Date Analyzed: 10/13/2015 18:11

Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836009, 1155836011

Results by SW8260B

ParameterSolkeResultRec (%)CL1.1.1.2-Tetachloroethane750766106(78-125)1.1.2.2-Tetachloroethane750773103(70-124)1.1.2.2-Tetachloroethane750755105(78-121)1.1.2.1-Tetachloroethane750765102(76-125)1.1.2.1-Tetachloroethane750847113(70-131)1.1-Dichloroethane75087790(76-125)1.2.3-Trichloroethane750774100(78-125)1.2.3-Trichloropopopane75072296(67-129)1.2.4-Trichloropopane750871100(78-125)1.2.4-Trichlorobenzene750801107(78-123)1.2.4-Trichlorobenzene750801107(78-123)1.2.4-Trichlorobenzene750803107(78-121)1.2.4-Trichloropopane750722103(78-121)1.2.4-Dichloropopane750724103(77-121)1.2.4-Dichloropopane750752100(77-121)1.2.5-Dichloropopane750752100(77-121)1.3.5-Trimethylbenzene750764102(75-120)2.4-Dichloropopane750764102(75-120)2.5-Dichloropopane750764102(75-120)2.5-Dichloropopane750764105(74-12)1.4-Dichlorobenzene750774104(75-12)2.5-Dichloropop		E	Blank Spike	: (ug/Kg)	
1,1,1-Trichloroethane750773103(73-130)1,1,2-Trichloroethane750773103(70-124)1,1,2-Trichloroethane750765102(76-125)1,1-Dichloroethane750767103(70-131)1,1-Dichloroptopene750770103(76-125)1,2,3-Trichlorobenzene750777100(75-125)1,2,3-Trichlorobenzene75077296(67-129)1,2,4-Trichloroptopane750711107(75-123)1,2-Dichloroptopane75073999(61-132)1,2-Dichlorobenzene750731100(78-123)1,2-Dichlorobenzene750751100(78-123)1,2-Dichlorobenzene750751100(78-121)1,2-Dichlorobenzene750752103(76-123)1,2-Dichlorobenzene750752103(78-124)1,3-Dichloropopane750752100(77-121)1,3-Dichloropopane750752102(75-122)2,2-Dichloropopane750752102(75-124)1,3-Dichloropopane750783104(75-123)2,2-Dichloropopane750783104(75-124)2,2-Dichloropopane750783104(75-124)2,2-Dichloropopane750783104(75-124)2,2-Dichloropopane750783104(75-124)4-Betynov750783104<	Parameter				<u>CL</u>
1,1,2.2-Tertachloroethane750773103(70-124)1,1.2-Tichloroethane750765102(78-121)1,1-Dichloroethane750765102(76-125)1,1-Dichloroethane750847113(70-131)1,1-Dichloroptene750770103(76-125)1,2.3-Tichloroptene75077090(66-130)1,2.3-Tichloroptopane75072296(67-129)1,2.4-Tinchlorobenzene75073999(61-132)1,2-Dibromo-3-chloropropane75073098(73-128)1,2-Dibromothane750712103(76-123)1,2-Dichloroptane750712103(76-123)1,2-Dichloroptopane750712103(76-123)1,2-Dichloroptopane750722103(76-123)1,3-Dichloroptopane750752100(77-121)1,3-Dichloroptopane750764102(75-120)2-Dichloroptopane750764102(75-120)2-Dichloroptopane750783104(77-121)1,4-Dichlorobenzene750784105(75-120)2-Dichloroptopane750784104(77-121)1,4-Dichlorobenzene750783104(73-127)2-Hexanone750783104(73-127)2-Hexanone750783104(73-127)4-Methyl-2-pentanone (MIBK)210093(65-135	1,1,1,2-Tetrachloroethane	750	796	106	(78-125)
1,1,2-Trichloroethane750785105(78-121)1,1-Dichloroethane750765102(76-125)1,1-Dichloroethene750847113(70-131)1,1-Dichloropopene750770103(76-125)1,2,3-Trichlorobenzene75067790(66-130)1,2,3-Trichlorobenzene750774100(73-125)1,2,4-Trichlorobenzene75077296(67-129)1,2,4-Trichlorobenzene75073099(61-132)1,2-Dibromo-3-chloropropane750731100(78-122)1,2-Dibromo-3-chloropropane750751100(78-122)1,2-Dibromo-3-chloropropane750751100(78-121)1,2-Dibromo-3-chloropropane750752100(77-121)1,3-Dichlorobenzene750752100(77-121)1,3-Dichlorobenzene750752100(77-121)1,3-Dichlorobenzene750783104(77-121)1,3-Dichlorobenzene750784102(75-120)2,2-Dichloropropane750788105(75-122)2-Hexanore2500210098(63-145)2-Chlorotoluene750772103(77-121)1,4-Dichorobenzene750788104(73-122)2-Hexanore250210093(65-135)Benzene750772103(77-121)Homobenzene750772	1,1,1-Trichloroethane	750	840	112	(73-130)
1,1-Dichloroethane760765102(78-125)1,1-Dichloropethene750847113(70-131)1,1-Dichloropropene750770103(78-125)1,2,3-Trichlorobenzene75077790(66-130)1,2,3-Trichloropropane750747100(73-125)1,2,4-Trichloropropane75072296(67-129)1,2,4-Trichloropropane75073099(61-132)1,2-Dichoropethane750751100(78-122)1,2-Dichoropethane750731100(78-123)1,2-Dichloroperpane750772103(76-123)1,2-Dichloroperpane750772103(78-123)1,2-Dichloroperpane750772103(77-121)1,3-Dichloroperpane750783104(77-121)1,3-Dichloroperpane750784102(75-120)2,2-Dichloropropane750784102(75-120)2,2-Dichloropropane750784105(73-124)1,3-Dichloropropane750788104(72-124)2-Chorotoluene750778104(72-124)2-Chorotoluene750778104(73-127)2-Hexanone250210093(65-135)Benzene750772103(77-121)Horotoluene750783104(73-127)4-Kanye-2-pentanone (MIBK)250210093(65-135) <th>1,1,2,2-Tetrachloroethane</th> <th>750</th> <th>773</th> <th>103</th> <th>(70-124)</th>	1,1,2,2-Tetrachloroethane	750	773	103	(70-124)
1.1-Dichloroethene750847113(70-13)1.1-Dichloropropene750770103(76-125)1.2.3-Trichlorobenzene750774100(73-125)1.2.3-Trichlorobenzene75072296(67-129)1.2.4-Trichlorobenzene75073999(61-132)1.2.4-Trichlorobenzene75073999(61-132)1.2.Dibromo-3-chloropropane750731100(78-122)1.2-Dibromoethane75073398(73-128)1.2-Dichlorobenzene750752103(78-121)1.2-Dichloropropane750752103(78-123)1.2-Dichloropropane750752103(78-123)1.3-Dichloropropane750752103(77-121)1.3-Dichloropropane750752100(77-121)1.3-Dichloropropane750752101(77-121)1.3-Dichloropropane750752102(75-120)2.2-Dichlorobenzene750783104(75-120)2.2-Dichloropropane750784105(75-120)2.2-Dichloropropane750784105(75-120)2.2-Dichloropropane750788104(75-122)2-Heavnore250221098(53-145)4-Korotoluene750783104(75-121)4-Korotoluene750783104(75-121)4-Korotoluene750783104(1,1,2-Trichloroethane	750	785	105	(78-121)
1.1-Dichloropropene7507701031076-1251.2.3-Trichlorobenzene75067790(66-130)1.2.3-Trichloropopane750747100(73-125)1.2.4-Trinoltorobenzene75072296(67-129)1.2.4-Trimethylbenzene750801107(75-123)1.2-Dibromoethane75073999(61-132)1.2-Dibromoethane750731100(78-122)1.2-Dibromoethane750751100(78-123)1.2-Dibromoethane75077398(73-128)1.2-Dibromoethane750772103(76-133)1.2-Dichoropopane750752100(77-121)1.3-Dichloropopane750752100(77-121)1.3-Dichloropopane750783104(77-121)1.3-Dichloropopane750783104(75-120)2-Dichloropopane750788105(75-122)2-Dichloropopane750788105(75-122)2-Hoxanone25021098(53-145)2-Chlorotoluene750783104(72-124)4-Ketnyl-2-pentanone (MIBK)25021093(65-135)Benzene750772103(77-121)Bromochoromethane750783104(78-125)Bromochoromethane750783104(78-121)Bromochoromethane750783104(78-125) <t< th=""><th>1,1-Dichloroethane</th><th>750</th><th>765</th><th>102</th><th>(76-125)</th></t<>	1,1-Dichloroethane	750	765	102	(76-125)
1.2.3-Trichlorobenzene75067790(66-130)1.2.3-Trichloropropane750747100(73-125)1.2.4-Trinchlyrobenzene75072296(67-129)1.2.4-Trinchlyrobenzene75073099(61-132)1.2-Dibromo-3-chloropropane75073990(78-122)1.2-Dibromo-schlaropropane750751100(78-121)1.2-Dibromo-schlaropropane75073398(73-128)1.2-Dibromo-schlaropropane750772103(76-123)1.2-Dibromo-schlaropropane750752108(73-124)1.3-Dichloropopane750752108(73-124)1.3-Dichloropopane750752104(77-121)1.3-Dichloropopane750764102(75-120)2.2-Dichloropopane750783104(75-122)2.2-Dichloropopane750784105(75-122)2.4-Diorobluene750788104(72-124)4-Sutanone (MEK)225021093(65-135)4-Netryl-2-pentanone (MIBK)225021093(65-135)Benzene750783104(77-121)Bromochromethane750783104(73-127)4-Metryl-2-pentanone (MIBK)2250210093(65-135)Benzene750783104(78-121)Bromochromethane750783104(78-121)Bromochromethane750 </th <th>1,1-Dichloroethene</th> <th>750</th> <th>847</th> <th>113</th> <th>(70-131)</th>	1,1-Dichloroethene	750	847	113	(70-131)
1,2,3-Trichloropropane750747100(73-125)1,2,4-Trichlorobenzene75072296(67-129)1,2,4-Trimethylbenzene750801107(75-123)1,2-Dibromo-3-chloropropane75073999(61-132)1,2-Dibromo-3-chloropropane750751100(78-122)1,2-Dibromoethane750751100(78-123)1,2-Dichlorobenzene750751103(76-123)1,2-Dichloropropane750752103(75-123)1,3-Dichloropropane750752100(77-121)1,3-Dichloropropane750752100(77-121)1,3-Dichloropropane750764102(75-120)2,2-Dichloropropane750764102(75-120)2,2-Dichloropropane750783104(75-120)2,2-Dichloropropane750784105(75-122)2,2-Dichloropropane750788105(75-122)2,2-Dichloropropane750788104(72-124)4-Kopropylloluene750788104(72-124)4-Kopropylloluene750783104(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Bernzene750783104(77-121)Bromochloromethane750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane750 <t< th=""><th>1,1-Dichloropropene</th><th>750</th><th>770</th><th>103</th><th>(76-125)</th></t<>	1,1-Dichloropropene	750	770	103	(76-125)
1.2.4-Trichlorobenzene75072296(67-129)1.2.4-Trimethylbenzene750801107(75-123)1.2-Dibromo-3-chloropropane75073999(61-132)1.2-Dibromoethane750751100(78-122)1.2-Dichlorobenzene750751100(78-123)1.2-Dichlorobenzene750772103(76-123)1.3.5-Trimethylbenzene750752100(77-121)1.3.5-Dichloropropane750752100(77-121)1.3.5-Dichloropropane750752100(77-121)1.3.5-Dichloropropane750752100(77-121)1.4-Dichlorobenzene750764102(75-120)2.2-Dichloropropane750764102(75-120)2.2-Dichloropropane750768105(75-122)2-Hexanone2250207092(51-148)2-Chlorololuene750778104(72-124)4-Isopropyltoluene750778104(72-124)4-Isopropyltoluene750772103(77-121)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750783104(78-121)Bromochloromethane750783104(72-124)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750783104(78-121)Bromochloromethane7507831	1,2,3-Trichlorobenzene	750	677	90	(66-130)
1.2.4-Trimethylbenzene750801107(75-123)1.2-Dibromo-3-chloropropane75073999(61-132)1.2-Dibromoethane750803107(78-122)1.2-Dichlorobenzene750751100(78-121)1.2-Dichlorobenzene75073398(73-128)1.2-Dichloropopane750772103(76-123)1.3-Dichlorobenzene750752100(77-121)1.3-Dichlorobenzene750752100(77-121)1.3-Dichlorobenzene750783104(77-121)1.3-Dichlorobenzene750784102(75-120)2.2-Dichloropopane750784102(75-120)2.2-Dichloropopane750784102(75-120)2.2-Dichloropopane750784105(75-122)2-Hexanone750778104(72-124)4-Biopropytloluene750778104(72-124)4-Shorotoluene750772103(53-145)4-Chlorotoluene750772103(75-122)2-Hexanone250210098(53-145)4-Chlorotoluene750772103(75-122)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750722103(75-127)Bromochloromethane75074299(78-125)Bromochloromethane75075299(78-125)	1,2,3-Trichloropropane	750	747	100	(73-125)
1.2-Dibromo-3-chloropropane75073999(61-132)1.2-Dibromoethane750803107(78-122)1.2-Dichlorobenzene750751100(78-121)1.2-Dichloropropane75073398(73-128)1.2-Dichloropropane750772103(76-123)1.3-Dichlorobenzene750752100(77-121)1.3-Dichlorobenzene750764102(77-121)1.4-Dichlorobenzene750764102(75-120)2.2-Dichloropropane750783104(67-133)2-Ebutanone (MEK)2250207092(51-148)2-Chlorotoluene750778104(72-124)4-Achloroblenzene750783104(72-124)4-Bispropyltoluene750778104(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane750753104(78-121)Bromochloromethane750753104(78-121)Bromochloromethane750753104(78-121)Bromochloromethane750753104(1,2,4-Trichlorobenzene	750	722	96	(67-129)
1.2-Dibromoethane750803107(78-122)1.2-Dichlorobenzene750751100(78-121)1.2-Dichloropthane75073398(73-128)1.2-Dichloropthane750772103(76-123)1.3.5-Trimethylbenzene750807108(77-121)1.3-Dichloropthane750752100(77-121)1.3-Dichloropthane750783104(77-121)1.3-Dichloropthane750764102(75-120)2.2-Dichloropthane750764102(75-120)2.2-Dichloropthane750783104(77-121)1.4-Dichlorobenzene750764102(75-120)2.2-Dichloropthane750783104(75-122)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750778105(75-122)2-Hexanone2250210093(53-145)4-Chlorotoluene750772103(77-121)Homobenzene750783104(78-121)Bromoethane750783104(78-121)Bromobenzene750783104(78-121)Bromobenzene750783104(78-121)Bromobenzene750783104(78-121)Bromobenzene750783104(78-121)Bromobenzene750783104(78-121)Bromobenzene750783<	1,2,4-Trimethylbenzene	750	801	107	(75-123)
1.2-Dichlorobenzene750751100(78-121)1.2-Dichloroethane75073398(73-128)1.2-Dichloropropane750772103(76-123)1.3,5-Trimethylbenzene750807108(73-124)1,3-Dichloropropane750752100(77-121)1,3-Dichloropropane750764102(75-120)2,2-Dichloropropane750783104(77-121)1,4-Dichloropropane750764102(75-120)2,2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750778104(72-124)4-Sopropyltoluene750778104(72-124)4-Sopropyltoluene750778104(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromochloromethane75074299(78-121)Bromochloromethane75070594(67-132)Bromodichloromethane75070594(67-132)Bromomethane750886118(53-143)	1,2-Dibromo-3-chloropropane	750	739	99	(61-132)
1.2-Dichloroethane75073398(73-128)1.2-Dichloropropane750772103(76-123)1.3.5-Trimethylbenzene750807108(73-124)1.3-Dichlorobenzene750752100(77-121)1.3-Dichloropropane750783104(77-121)1.4-Dichlorobenzene750764102(75-120)2.2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750778103(77-121)Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane750783104(78-121)Bromochloromethane75074299(78-125)Bromodichloromethane75075594(67-132)Bromomethane750866118(53-143)	1,2-Dibromoethane	750	803	107	(78-122)
1.2-Dichloropropane750772103(76-123)1.3,5-Trimethylbenzene750807108(73-124)1,3-Dichlorobenzene750752100(77-121)1,3-Dichloropropane750783104(77-121)1,4-Dichlorobenzene750764102(75-120)2,2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750783104(78-121)Bromobenzene750783104(78-121)Bromobenzene750783104(78-121)Bromochloromethane750800107(75-127)Bromodichloromethane75086118(53-143)	1,2-Dichlorobenzene	750	751	100	(78-121)
1,3,5-Trimethylbenzene750807108(73-124)1,3-Dichlorobenzene750752100(77-121)1,3-Dichloropropane750783104(77-121)1,4-Dichlorobenzene750764102(75-120)2,2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750778104(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750783104(77-121)Bromochloromethane75074299(78-125)Bromodichloromethane75074299(78-125)Bromofern75070594(67-132)Bromomethane750886118(53-143)	1,2-Dichloroethane	750	733	98	(73-128)
1,3-Dichlorobenzene750752100(77-121)1,3-Dichloropropane750783104(77-121)1,4-Dichlorobenzene750764102(75-120)2,2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane750750107(75-127)Bromodichloromethane75075594(67-132)Bromomethane750866118(53-143)	1,2-Dichloropropane	750	772	103	(76-123)
1,3-Dichloropropane750783104(77-121)1,4-Dichlorobenzene750764102(75-120)2,2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromochloromethane75074299(78-125)Bromodichloromethane75070594(67-132)Bromothane750886118(53-143)	1,3,5-Trimethylbenzene	750	807	108	(73-124)
1,4-Dichlorobenzene750764102(75-120)2,2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene75074299(78-125)Bromochloromethane75070594(67-132)Bromofern750886118(53-143)	1,3-Dichlorobenzene	750	752	100	(77-121)
2,2-Dichloropropane750832111(67-133)2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromochloromethane75074299(78-125)Bromodichloromethane75070594(67-132)Bromomethane750886118(53-143)	1,3-Dichloropropane	750	783	104	(77-121)
2-Butanone (MEK)2250207092(51-148)2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene75074299(78-121)Bromochloromethane75074299(78-125)Bromoform75070594(67-132)Bromomethane750886118(53-143)	1,4-Dichlorobenzene	750	764	102	(75-120)
2-Chlorotoluene750788105(75-122)2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane75074299(78-125)Bromoform75070594(67-132)Bromomethane750886118(53-143)	2,2-Dichloropropane	750	832	111	(67-133)
2-Hexanone2250221098(53-145)4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane75074299(78-125)Bromodichloromethane750800107(75-127)Bromoform75070594(67-132)Bromomethane750886118(53-143)	2-Butanone (MEK)	2250	2070	92	(51-148)
4-Chlorotoluene750778104(72-124)4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane75074299(78-125)Bromodichloromethane750800107(75-127)Bromoform75070594(67-132)Bromomethane750886118(53-143)	2-Chlorotoluene	750	788	105	(75-122)
4-Isopropyltoluene750832111(73-127)4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane75074299(78-125)Bromodichloromethane750800107(75-127)Bromoform75070594(57-132)Bromomethane750886118(53-143)	2-Hexanone	2250	2210	98	(53-145)
4-Methyl-2-pentanone (MIBK)2250210093(65-135)Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane75074299(78-125)Bromodichloromethane750800107(75-127)Bromoform75070594(67-132)Bromomethane750886118(53-143)	4-Chlorotoluene	750	778	104	(72-124)
Benzene750772103(77-121)Bromobenzene750783104(78-121)Bromochloromethane75074299(78-125)Bromodichloromethane750800107(75-127)Bromoform75070594(67-132)Bromomethane750886118(53-143)	4-Isopropyltoluene	750	832	111	(73-127)
Bromobenzene750783104(78-121)Bromochloromethane75074299(78-125)Bromodichloromethane750800107(75-127)Bromoform75070594(67-132)Bromomethane750886118(53-143)	4-Methyl-2-pentanone (MIBK)	2250	2100	93	(65-135)
Bromochloromethane75074299(78-125)Bromodichloromethane750800107(75-127)Bromoform75070594(67-132)Bromomethane750886118(53-143)	Benzene	750	772	103	(77-121)
Bromodichloromethane 750 800 107 (75-127) Bromoform 750 705 94 (67-132) Bromomethane 750 886 118 (53-143)	Bromobenzene	750	783	104	(78-121)
Bromoform 750 705 94 (67-132) Bromomethane 750 886 118 (53-143)	Bromochloromethane	750	742	99	(78-125)
Bromomethane 750 886 118 (53-143)	Bromodichloromethane	750	800	107	(75-127)
	Bromoform	750	705	94	(67-132)
Carbon disulfide 1130 1260 112 (63-132)	Bromomethane	750	886	118	(53-143)
	Carbon disulfide	1130	1260	112	(63-132)

Print Date: 10/30/2015 11:39:46AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1155836 [VXX28068] Blank Spike Lab ID: 1297573 Date Analyzed: 10/13/2015 18:11

Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836009, 1155836011


Results by SW8260B

	E	Blank Spike	(ug/Kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
Carbon tetrachloride	750	774	103	(70-135)
Chlorobenzene	750	766	102	(79-120)
Chloroethane	750	837	112	(59-139)
Chloroform	750	726	97	(78-123)
Chloromethane	750	942	126	(50-136)
cis-1,2-Dichloroethene	750	750	100	(77-123)
cis-1,3-Dichloropropene	750	806	108	(74-126)
Dibromochloromethane	750	720	96	(74-126)
Dibromomethane	750	708	94	(78-125)
Dichlorodifluoromethane	750	989	132	(29-149)
Ethylbenzene	750	787	105	(76-122)
Freon-113	1130	1180	105	(66-136)
Hexachlorobutadiene	750	850	113	(61-135)
Isopropylbenzene (Cumene)	750	809	108	(68-134)
Methylene chloride	750	738	98	(70-128)
Methyl-t-butyl ether	1130	1160	103	(73-125)
Naphthalene	750	656	87	(62-129)
n-Butylbenzene	750	753	100	(70-128)
n-Propylbenzene	750	818	109	(73-125)
o-Xylene	750	765	102	(77-123)
P & M -Xylene	1500	1560	104	(77-124)
sec-Butylbenzene	750	756	101	(73-126)
Styrene	750	788	105	(76-124)
tert-Butylbenzene	750	820	109	(73-125)
Tetrachloroethene	750	819	109	(73-128)
Toluene	750	769	102	(77-121)
trans-1,2-Dichloroethene	750	779	104	(74-125)
trans-1,3-Dichloropropene	750	717	96	(71-130)
Trichloroethene	750	814	109	(77-123)
Trichlorofluoromethane	750	890	119	(62-140)
Vinyl acetate	750	828	110	(50-151)
Vinyl chloride	750	903	120	(56-135)
Xylenes (total)	2250	2330	103	(78-124)

Print Date: 10/30/2015 11:39:46AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Print Date: 10/30/2015 11:39:46AM

Toluene-d8 (surr)

Analyst: ST

Batch Information

Analytical Batch: VMS15333

Analytical Method: SW8260B

Instrument: Agilent 7890-75MS

750

106

106

(85-116)

Prep Batch: VXX28068

Prep Method: SW5035A

Prep Date/Time: 10/13/2015 08:00

Dupe Init Wt./Vol.: Extract Vol:

Spike Init Wt./Vol.: 750 ug/Kg Extract Vol: 25 mL

Matrix Spike Summary

Original Sample ID: 1297574 MS Sample ID: 1297575 MS MSD Sample ID: 1297576 MSD

QC for Samples: 1155836009, 1155836011

Analysis Date: 10/13/2015 20:57 Analysis Date: 10/13/2015 18:50 Analysis Date: 10/13/2015 19:06 Matrix: Solid/Soil (Wet Weight)

		Mat	rix Spike (ι	ug/Kg)	Spike	Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD C
,1,1,2-Tetrachloroethane	12.2U	728	804	110	728	824	113	78-125	2.40	(< 20)
,1,1-Trichloroethane	12.2U	728	841	115	728	831	114	73-130	1.20	(< 20)
1,2,2-Tetrachloroethane	6.05U	728	743	102	728	776	106	70-124	4.40	(< 20
,1,2-Trichloroethane	4.86U	728	784	108	728	795	109	78-121	1.40	(< 20
1-Dichloroethane	12.2U	728	764	105	728	754	104	76-125	1.30	(< 20
,1-Dichloroethene	12.2U	728	840	115	728	826	113	70-131	1.70	(< 20
1-Dichloropropene	12.2U	728	763	105	728	765	105	76-125	0.22	(< 20
,2,3-Trichlorobenzene	24.3U	728	660	91	728	814	112	66-130	20.90	* (< 20
2,3-Trichloropropane	12.2U	728	728	100	728	755	104	73-125	3.50	(< 20
2,4-Trichlorobenzene	12.2U	728	696	96	728	792	109	67-129	12.90	(< 20
2,4-Trimethylbenzene	29.6J	728	807	107	728	812	107	75-123	0.57	(< 20
2-Dibromo-3-chloropropane	48.5U	728	737	101	728	828	114	61-132	11.60	(< 20
2-Dibromoethane	4.86U	728	801	110	728	822	113	78-122	2.70	(< 20
2-Dichlorobenzene	12.2U	728	730	100	728	738	101	78-121	1.00	(< 20
2-Dichloroethane	4.86U	728	733	101	728	723	99	73-128	1.30	(< 20
2-Dichloropropane	4.86U	728	774	106	728	772	106	76-123	0.22	(< 20
3,5-Trimethylbenzene	11.2J	728	786	106	728	799	108	73-124	1.70	(< 20
3-Dichlorobenzene	12.2U	728	723	99	728	735	101	77-121	1.70	(< 20
3-Dichloropropane	4.86U	728	785	108	728	800	110	77-121	2.00	(< 20
4-Dichlorobenzene	12.2U	728	747	103	728	751	103	75-120	0.52	(< 20
2-Dichloropropane	12.2U	728	826	113	728	810	111	67-133	1.90	(< 20
-Butanone (MEK)	122U	2190	2030	93	2190	2230	102	51-148	9.40	(< 20
-Chlorotoluene	12.2U	728	764	105	728	775	106	75-122	1.50	(< 20
Hexanone	122U	2190	2160	99	2190	2310	106	53-145	6.50	(< 20
-Chlorotoluene	12.2U	728	754	104	728	776	106	72-124	2.80	(< 20
-Isopropyltoluene	12.2U	728	823	113	728	815	112	73-127	1.00	(< 20
-Methyl-2-pentanone (MIBK)	122U	2190	2090	96	2190	2220	102	65-135	6.40	(< 20
enzene	6.05U	728	770	106	728	782	107	77-121	1.60	(< 20
romobenzene	12.2U	728	753	103	728	762	105	78-121	1.10	(< 20
romochloromethane	12.2U	728	734	101	728	724	99	78-125	1.40	(< 20
romodichloromethane	12.2U	728	793	109	728	791	109	75-127	0.28	(< 20
romoform	12.2U	728	709	97	728	713	98	67-132	0.61	(< 20
romomethane	97.0U	728	871	120	728	826	113	53-143	5.30	(< 20
arbon disulfide	48.5U	1090	1270	116	1090	1230	113	63-132	2.80	(< 20
arbon tetrachloride	6.05U	728	773	106	728	755	104	70-135	2.30	(< 20
hlorobenzene	12.2U	728	760	104	728	770	106	79-120	1.30	(< 20
Chloroethane	97.0U	728	839	115	728	811	111	59-139	3.40	(< 20

Print Date: 10/30/2015 11:39:47AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1297574 MS Sample ID: 1297575 MS MSD Sample ID: 1297576 MSD

QC for Samples: 1155836009, 1155836011

Analysis Date: 10/13/2015 20:57 Analysis Date: 10/13/2015 18:50 Analysis Date: 10/13/2015 19:06 Matrix: Solid/Soil (Wet Weight)

		Mat	rix Spike (ι	Ja/Ka)	Spike	Duplicate	(ug/Ka)			
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CI
Chloroform	12.2U	728	719	<u>99</u>	728	713	<u>98</u>	<u>0L</u> 78-123	0.85	(< 20)
Chloromethane	12.2U	728	933	128	728	899	123	50-136	3.80	(< 20)
cis-1,2-Dichloroethene	12.2U	728	748	103	728	736	101	77-123	1.50	(< 20)
cis-1,3-Dichloropropene	12.2U	728	805	111	728	804	110	74-126	0.18	(< 20)
Dibromochloromethane	12.2U	728	718	99	728	719	99	74-126	0.10	(< 20)
Dibromomethane	12.2U	728	727	100	728	704	97	78-125	3.20	(< 20)
Dichlorodifluoromethane	24.3U	728	1000	137	728	951	131	29-149	5.10	(< 20)
Ethylbenzene	12.2U	728	796	109	728	802	110	76-122	0.76	(< 20)
Freon-113	48.5U	1090	1190	108	1090	1170	107	66-136	1.50	(< 20)
Hexachlorobutadiene	24.3U	728	844	116	728	871	120	61-135	3.20	(< 20)
Isopropylbenzene (Cumene)	12.2U	728	804	110	728	791	109	68-134	1.60	(< 20)
Methylene chloride	48.5U	728	725	100	728	719	99	70-128	0.87	(< 20)
Methyl-t-butyl ether	48.5U	1090	1150	105	1090	1160	106	73-125	0.78	(< 20)
Naphthalene	19.7J	728	666	89	728	817	109	62-129	20.40	* (< 20)
n-Butylbenzene	12.2U	728	739	101	728	728	100	70-128	1.50	(< 20)
n-Propylbenzene	9.47J	728	796	108	728	800	109	73-125	0.58	(< 20)
o-Xylene	12.2U	728	762	105	728	766	105	77-123	0.51	(< 20)
P & M -Xylene	24.3U	1460	1570	107	1460	1580	108	77-124	0.79	(< 20)
sec-Butylbenzene	7.77J	728	740	100	728	740	101	73-126	0.10	(< 20)
Styrene	12.2U	728	757	104	728	769	106	76-124	1.60	(< 20)
tert-Butylbenzene	12.2U	728	802	110	728	808	111	73-125	0.69	(< 20)
Tetrachloroethene	6.05U	728	815	112	728	832	114	73-128	2.10	(< 20)
Toluene	12.2U	728	761	105	728	786	108	77-121	3.10	(< 20)
trans-1,2-Dichloroethene	12.2U	728	776	107	728	758	104	74-125	2.30	(< 20)
trans-1,3-Dichloropropene	12.2U	728	722	99	728	730	100	71-130	1.10	(< 20)
Trichloroethene	6.05U	728	807	111	728	806	111	77-123	0.15	(< 20)
Trichlorofluoromethane	24.3U	728	895	123	728	806	111	62-140	10.50	(< 20)
Vinyl acetate	48.5U	728	824	113	728	833	114	50-151	1.10	(< 20)
Vinyl chloride	4.86U	728	903	124	728	864	119	56-135	4.50	(< 20)
Xylenes (total)	36.4U	2190	2330	106	2190	2340	107	78-124	0.70	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		728	725	100	728	726	100	71-136	0.10	
4-Bromofluorobenzene (surr)		1940	1690	87	1940	1740	89	55-151	2.70	
Toluene-d8 (surr)		728	777	107	728	800	110	85-116	2.90	

Print Date: 10/30/2015 11:39:47AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Matrix Spike Summary										
Original Sample ID: 12975 MS Sample ID: 1297575 MSD Sample ID: 1297576 QC for Samples: 1155836	MS	1	_		Analysis	Date: 10 Date: 10	0/13/2015 0/13/2015 (Wet Weig	19:06		
Results by SW8260B										
			atrix Spike			ke Duplica				
Parameter	Sample	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Batch Information										
Analytical Batch: VMS153 Analytical Method: SW82 Instrument: Agilent 7890- Analyst: ST Analytical Date/Time: 10/	60B 75MS)PM		Prep Prep Prep	Method: Date/Tim Initial Wt	/XX28068 Vol. Extra ne: 10/13/ ./Vol.: 51. /ol: 25.00	action SW82 2015 8:00 48g	260 Field :00AM	Extracted L	

SGS

Method Blank Blank ID: MB for HBN 1723 Blank Lab ID: 1297617 QC for Samples: 1155836001, 1155836002, 1		Matrix	: Water (Surfa	ce, Eff., Ground)
Results by AK101				
Parameter Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L
Surrogates 4-Bromofluorobenzene (surr)	96.8	50-150		%
Batch Information				
Analytical Batch: VFC127 Analytical Method: AK101 Instrument: Agilent 7890 I Analyst: CRD Analytical Date/Time: 10/	PID/FID	Prep Met Prep Dat Prep Initia	ch: VXX28072 thod: SW5030E e/Time: 10/13/ al Wt./Vol.: 5 m ract Vol: 5 mL	3 2015 8:00:00AM
	13/2015 6.22.00PM		Iact Vol. 5 mL	

Print Date: 10/30/2015 11:39:49AM

Blank Spike ID: LCS for HBN 1155836 [VXX28072] Blank Spike Lab ID: 1297620 Date Analyzed: 10/13/2015 19:44 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28072] Spike Duplicate Lab ID: 1297621 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155836001, 1155836002, 1155836003, 1155836004

Results by AK101									
	1	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	0.993	99	1.00	0.959	96	(60-120)	3.50	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	99	99	0.0500	97.7	98	(50-150)	1.30	
Batch Information									
Analytical Batch: VFC12746				Prep	Batch: V	XX28072			
Analytical Method: AK101					Method:				
Instrument: Agilent 7890 PID/	FID					e: 10/13/201			
Analyst: CRD							g/L Extract		
				Dup	e Init Wt./V	/ol.: 1.00 mg	g/L Extract V	ol: 5 mL	

Print Date: 10/30/2015 11:39:51AM

SGS

- Method Blank					
Blank ID: MB for HBN 1723767 Blank Lab ID: 1300813	[VXX/28165]	Matrix:	Soil/Solid (dry	weight)	
QC for Samples: 1155836009					
		L			
Results by AK101					
Parameter Gasoline Range Organics	<u>Results</u> 1.25U	<u>LOQ/CL</u> 2.50	<u>DL</u> 0.751	<u>Units</u> mg/Kg	
Surrogates 4-Bromofluorobenzene (surr)	96.4	50-150		%	
Batch Information					
Analytical Batch: VFC12779 Analytical Method: AK101 Instrument: Agilent 7890A PID/ Analyst: CRD Analytical Date/Time: 10/27/20		Prep Meth Prep Date Prep Initia	h: VXX28165 hod: SW5035A e/Time: 10/27/20 Il Wt./Vol.: 49.9 act Vol: 25 mL	015 8:00:00AM 2 g	

Print Date: 10/30/2015 11:39:53AM

Blank Spike ID: LCS for HBN 1155836 [VXX28165] Blank Spike Lab ID: 1300814 Date Analyzed: 10/27/2015 13:18 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28165] Spike Duplicate Lab ID: 1300815 Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836009

Results by AK101									
	E	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	12.5	12.7	102	12.5	12.8	103	(60-120)	0.92	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	99	99	1.25	98.6	99	(50-150)	0.47	
Batch Information									
Analytical Batch: VFC12779				Pre	p Batch: V	XX28165			
Analytical Method: AK101				Pre	p Method:	SW5035A			
Instrument: Agilent 7890A PII	D/FID					e: 10/27/201			
Analyst: CRD							g/Kg Extrac		
				Dup	e init Wt./V	ol.: 12.5 mg	g/Kg Extract	Voi: 25 mL	

Print Date: 10/30/2015 11:39:55AM

SGS

Parameter Results LOQ/CL DL Units Gasoline Range Organics 1.51J 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 97.9 50-150 % Statch Information Prep Batch: VFC12781 Prep Batch: VXX28170 % Analytical Batch: VFC12781 Prep Method: SW5035A Prep Date/Time: 10/28/2015 8:00:00AM Instrument: Agilent 7890A PID/FID Prep Initial Wt./Vol.: 50 g 8:00:00AM	Parameter Results LOQ/CL DL Units Gasoline Range Organics 1.51J 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 97.9 50-150 % Statch Information Prep Batch: VXX28170 VXX28170 Analytical Batch: VFC12781 Prep Method: SW5035A Prep Date/Time: 10/28/2015 Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/28/2015 8:00:00AM	Parameter Results LOQ/CL DL Units Gasoline Range Organics 1.51J 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 97.9 50-150 % Batch Information Prep Batch: VXX28170 % Analytical Batch: VFC12781 Prep Batch: VXX28170 Prep Method: SW5035A Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/28/2015 8:00:00AM Analyst: CRD Prep Initial Wt./Vol.: 50 g ************************************	Blank ID: MB for HBN 17238 Blank Lab ID: 1301301 QC for Samples: 1155836008, 1155836011	92 [VXX/28170]	Matrix	k: Soil/Solid (di	ry weight)	
Gasoline Range Organics 1.51J 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 97.9 50-150 % Batch Information	Gasoline Range Organics 1.51J 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 97.9 50-150 % Batch Information	Gasoline Range Organics 1.51J 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 97.9 50-150 % Batch Information	Results by AK101					
4-Bromofluorobenzene (surr) 97.9 50-150 % Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID Analyst: CRD Prep Initial Wt./Vol.: 50 g	4-Bromofluorobenzene (surr) 97.9 50-150 % Batch Information Analytical Batch: VFC12781 Prep Batch: VXX28170 Analytical Method: AK101 Prep Method: SW5035A Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/28/2015 8:00:00AM Analyst: CRD Prep Initial Wt./Vol.: 50 g	Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID Analyst: CRD Prep Date/Time: 10/28/2015 8:00:00AM Prep Initial Wt./Vol.: 50 g						
Analytical Batch: VFC12781Prep Batch: VXX28170Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	Analytical Batch: VFC12781Prep Batch: VXX28170Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	Analytical Batch: VFC12781Prep Batch: VXX28170Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	-	97.9	50-150		%	
Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	Batch Information					
			Analytical Method: AK101 Instrument: Agilent 7890A P Analyst: CRD	ID/FID	Prep Me Prep Da Prep Init	ethod: SW5035/ te/Time: 10/28/ tial Wt./Vol.: 50	A /2015 8:00:00AM g	

Print Date: 10/30/2015 11:39:58AM

Blank Spike ID: LCS for HBN 1155836 [VXX28170] Blank Spike Lab ID: 1301302 Date Analyzed: 10/28/2015 15:41 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28170] Spike Duplicate Lab ID: 1301303 Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836008, 1155836011

Results by AK101			_						
	-	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	12.5	13.1	104	12.5	12.7	101	(60-120)	3.00	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	105	105	1.25	103	103	(50-150)	2.20	
Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Instrument: Agilent 7890A Pli Analyst: CRD	D/FID			Pre Pre Spil	ke Init Wt./\	SW5035A e: 10/28/20 1 /ol.: 12.5 mg	5 08:00 g/Kg Extrac g/Kg Extract		

Print Date: 10/30/2015 11:40:00AM

SGS

4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Prep Batch: VXX28171 Prep Method: SW5035A	Blank Lab ID: 1301304 QC for Samples: 1155836010 Results by AK101 Parameter Results LOQ/CL DL Units Gasoline Range Organics 1.25U 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Analytical Batch: VFC12781 Prep Batch: VXX28171	Method Blank					
1155836010 Results by AK101 Parameter Results Gasoline Range Organics 1.25U Surrogates 4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Analytical Batch: VFC12781 Analytical Method: AK101 Prep Batch: VXX28171 Prep Method: SW5035A	1155836010 Results by AK101 Parameter Results LOQ/CL DL Units Gasoline Range Organics 1.25U 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Analytical Batch: VFC12781 Analytical Batch: VFC12781 Prep Batch: VXX28171 Prep Method: SW5035A Prep Date/Time: 10/28/2015 8:00:00AM Analyst: CRD Prep Initial Wt./Vol.: 50 g Prep Initial Wt./Vol.: 50 g Prep Initial Wt./Vol.: 50 g		93 [VXX/28171]	Matrix	:: Soil/Solid (d	ry weight)	
Parameter Results LOQ/CL DL Units Gasoline Range Organics 1.25U 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Prep Batch: VXX28171 Analytical Method: AK101 Prep Method: SW5035A	Parameter Results LOQ/CL DL Units Gasoline Range Organics 1.25U 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Prep Batch: VXX28171 % Analytical Batch: VFC12781 Prep Batch: VXX28171 Prep Method: SW5035A Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/28/2015 8:00:00AM Analyst: CRD Prep Initial Wt./Vol.: 50 g Prep Initial Wt./Vol.: 50 g						
Gasoline Range Organics 1.25U 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Prep Batch: VXX28171 Prep Method: SW5035A	Gasoline Range Organics 1.25U 2.50 0.750 mg/Kg Surrogates 4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Prep Batch: VXX28171 % Analytical Batch: VFC12781 Prep Batch: VXX28171 Prep Method: SW5035A Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/28/2015 8:00:00AM Analyst: CRD Prep Initial Wt./Vol.: 50 g Prep Initial Wt./Vol.: 50 g	Results by AK101					
4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information	4-Bromofluorobenzene (surr) 96.3 50-150 % Batch Information Analytical Batch: VFC12781 Prep Batch: VXX28171 Analytical Method: AK101 Prep Method: SW5035A Instrument: Agilent 7890A PID/FID Prep Date/Time: 10/28/2015 Analyst: CRD Prep Initial Wt./Vol.: 50 g						
Analytical Method: AK101 Prep Method: SW5035A	Analytical Batch: VFC12781Prep Batch: VXX28171Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	Surrogates 4-Bromofluorobenzene (surr)	96.3	50-150		%	
Analytical Method: AK101 Prep Method: SW5035A	Analytical Method: AK101Prep Method: SW5035AInstrument: Agilent 7890A PID/FIDPrep Date/Time: 10/28/2015 8:00:00AMAnalyst: CRDPrep Initial Wt./Vol.: 50 g	Batch Information					
Analyst: CRD Prep Initial Wt./Vol.: 50 g		Analytical Method: AK101 Instrument: Agilent 7890A P Analyst: CRD		Prep Me Prep Dat Prep Initi	thod: SW5035, te/Time: 10/28, ial Wt./Vol.: 50	A /2015 8:00:00AM g	

Blank Spike ID: LCS for HBN 1155836 [VXX28171] Blank Spike Lab ID: 1301305 Date Analyzed: 10/28/2015 23:17 Spike Duplicate ID: LCSD for HBN 1155836 [VXX28171] Spike Duplicate Lab ID: 1301306 Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836010

Results by AK101										
	E	Blank Spike (mg/Kg)			pike Duplic	ate (mg/Kg)				
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL	
Gasoline Range Organics	12.5	12.4	99	12.5	12.2	98	(60-120)	1.50	(< 20)	
Surrogates										
4-Bromofluorobenzene (surr)	1.25	99.7	100	1.25	98.7	99	(50-150)	1.00		
Batch Information										
Analytical Batch: VFC12781				Pre	b Batch: V	XX28171				
Analytical Method: AK101				Pre	o Method:	SW5035A				
Instrument: Agilent 7890A PID/FID				Prep Date/Time: 10/28/2015 08:00						
Analyst: CRD					g/Kg Extract					
				Dup	e Init Wt./V	/ol.: 12.5 mg	g/Kg Extract	Vol: 25 mL		

Print Date: 10/30/2015 11:40:04AM

Method Blank

Blank ID: MB for HBN 1722083 [XXX/34344] Blank Lab ID: 1295861 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155836001, 1155836005

Results by 8270D SIMS LV (PAH)

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0250U	0.0500	0.0150	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0250U	0.0500	0.0150	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Fluorobiphenyl (surr)	68.6	53-106		%
Terphenyl-d14 (surr)	96.4	58-132		%

Batch Information

Analytical Batch: XMS9000 Analytical Method: 8270D SIMS LV (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: NRB Analytical Date/Time: 10/21/2015 6:49:00PM Prep Batch: XXX34344 Prep Method: SW3520C Prep Date/Time: 10/7/2015 10:30:37AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/30/2015 11:40:07AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1155836 [XXX34344] Blank Spike Lab ID: 1295862 Date Analyzed: 10/21/2015 19:05 Spike Duplicate ID: LCSD for HBN 1155836 [XXX34344] Spike Duplicate Lab ID: 1295863 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155836001, 1155836003, 1155836005

Results by 8270D SIMS LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Parameter	Spike	<u>Result</u>	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.09	54	2	1.26	63	(41-115)	14.50	(< 20)
2-Methylnaphthalene	2	1.03	52	2	1.22	61	(39-114)	16.60	(< 20)
Acenaphthene	2	1.13	56	2	1.34	67	(48-114)	17.40	(< 20)
Acenaphthylene	2	1.15	58	2	1.39	70	(35-121)	18.90	(< 20)
Anthracene	2	1.37	69	2	1.65	83	(53-119)	18.50	(< 20)
Benzo(a)Anthracene	2	1.87	93	2	1.94	97	(59-120)	3.70	(< 20)
Benzo[a]pyrene	2	1.82	91	2	1.99	99	(53-120)	8.90	(< 20)
Benzo[b]Fluoranthene	2	1.90	95	2	2.03	101	(53-126)	6.60	(< 20)
Benzo[g,h,i]perylene	2	1.90	95	2	1.97	99	(44-128)	3.60	(< 20)
Benzo[k]fluoranthene	2	2.16	108	2	2.11	105	(54-125)	2.40	(< 20)
Chrysene	2	1.99	99	2	2.03	101	(57-120)	1.90	(< 20)
Dibenzo[a,h]anthracene	2	1.96	98	2	2.01	100	(44-131)	2.40	(< 20)
Fluoranthene	2	1.25	63	2	1.53	77	(58-120)	20.10	* (< 20)
Fluorene	2	1.22	61	2	1.50	75	(50-118)	21.10	* (< 20)
Indeno[1,2,3-c,d] pyrene	2	2.02	101	2	2.08	104	(48-130)	3.20	(< 20)
Naphthalene	2	1.07	53	2	1.23	62	(43-114)	14.20	(< 20)
Phenanthrene	2	1.29	65	2	1.62	81	(53-115)	22.50	* (< 20)
Pyrene	2	1.26	63	2	1.53	77	(53-121)	19.40	(< 20)
Surrogates									
2-Fluorobiphenyl (surr)	2	61.5	62	2	74.1	74	(53-106)	18.70	
Terphenyl-d14 (surr)	2	91.3	91	2	96.7	97	(58-132)	5.70	

Batch Information

Analytical Batch: XMS9000 Analytical Method: 8270D SIMS LV (PAH) Instrument: HP 6890/5973 MS SVQA Analyst: NRB Prep Batch: XXX34344 Prep Method: SW3520C Prep Date/Time: 10/07/2015 10:30 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 10/30/2015 11:40:09AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Blank ID: MB for HBN 172 Blank Lab ID: 1296555	2280 [XXX/34370]	Matrix	x: Soil/Solid (d	ry weight)
QC for Samples: 1155836008, 1155836009, 1	155836010			
Results by AK102				
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Diesel Range Organics	10.0U	20.0	6.20	mg/Kg
Surrogates				
5a Androstane (surr)	86.5	60-120		%
Batch Information				
Analytical Batch: XFC121	151	Prep Ba	tch: XXX34370)
Analytical Method: AK102			ethod: SW3550	
Instrument: HP 6890 Ser Analyst: NLL	IES II FID SV D R		tial Wt./Vol.: 30	2015 12:22:16PM
	11/2015 1:17:00PM		tract Vol: 1 mL	9

Blank Spike ID: LCS for HBN 1155836 [XXX34370] Blank Spike Lab ID: 1296556 Date Analyzed: 10/11/2015 13:27 Spike Duplicate ID: LCSD for HBN 1155836 [XXX34370] Spike Duplicate Lab ID: 1296557 Matrix: Soil/Solid (dry weight)

QC for Samples: 1155836008, 1155836009, 1155836010

Results by AK102			_							
	E	Blank Spike (mg/Kg)			pike Duplic	ate (mg/Kg)				
Parameter	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL	
Diesel Range Organics	167	150	90	167	127	76	(75-125)	16.60	(< 20)	
Surrogates										
5a Androstane (surr)	3.33	93.6	94	3.33	87.5	88	(60-120)	6.70		
Batch Information										
Analytical Batch: XFC1215	1			Pre	p Batch: X	XX34370				
Analytical Method: AK102					p Method:					
Instrument: HP 6890 Serie	s II FID SV D R	2				e: 10/09/201				
Analyst: NLL						0	/Kg Extract			
				Duj	be init Wt./\	/ol.: 167 mg	/Kg Extract	voi: 1 mL		

Print Date: 10/30/2015 11:40:14AM

SGS

Method Blank									
Blank ID: MB for HBN 172 Blank Lab ID: 1297600	2676 [XXX/34405]	Matrix: Water (Surface, Eff., Ground)							
QC for Samples: 1155836001, 1155836002, 1	155836003, 1155836004								
Results by AK102									
Parameter Diesel Range Organics	<u>Results</u> 0.300U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L					
Surrogates									
5a Androstane (surr)	107	60-120		%					
Batch Information									
Analytical Method: AK10 Instrument: HP 7890A Analyst: KJO	Analytical Batch: XFC12158 Analytical Method: AK102 Instrument: HP 7890A FID SV E R			5 C /2015 10:08:17AM 0 mL					

Blank Spike ID: LCS for HBN 1155836 [XXX34405] Blank Spike Lab ID: 1297601 Date Analyzed: 10/14/2015 22:47 Spike Duplicate ID: LCSD for HBN 1155836 [XXX34405] Spike Duplicate Lab ID: 1297602 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1155836001, 1155836002, 1155836003, 1155836004

Results by AK102									
		Blank Spike (mg/L)			Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	20.4	102	20	19.7	98	(75-125)	3.80	(< 20)
Surrogates									
5a Androstane (surr)	0.4	101	101	0.4	96.4	96	(60-120)	4.20	
Batch Information									
Analytical Batch: XFC1215	8			Pre	p Batch: X	XX34405			
Analytical Method: AK102					p Method:				
Instrument: HP 7890A	FID SV E R					e: 10/14/201			
Analyst: KJO						0	 Extract Vo Extract Vol 		
				Dup		20 Mg/L			

Print Date: 10/30/2015 11:40:18AM

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

Locations Nationwide ka Maryland Jersey New York h Carolina Indiana it Virgina Kentucky www.us.sgs.com		Page of				REMARKS/ I OC ID						Data Daliverahle Boquiromonte:		al Instructions:	Chain of Custody Seal: (Circle)	(See attached Sample Receipt Form)	
Locations Alaska New Jersey North Carolina West Virgina	istructions: Sections 1 - 5 must be filled out. <u>Omissions may delay the onset of analysis.</u>	Preservative		নি০গ	<u>ر</u> ه	570/						Saction 4 DON Project? Ves No		Requested Turnaround Time and/or Special Instructions: Sfandard	Town Block .c. 1, 9° /24 /	[] teceipt Form)	1
SGS North America Inc. HAIN OF CUSTODY RECORD	Instructions: So Omissions ma	Section 3	** U	Comp Comp				\sim	ц Х Х	×						Received For Laboratory By:	
		21112	105. 00(04.1400)	arsulting.com	_	TIME MATRIX/ HH:MM CODE	$\left \right $			OCC			UROC Received By:	Received By:	Received By:	X	343 Fax: (907) 561-53 1903 Fax: (910) 350-1
1155836		PHONE NO: 901 372 III 2		57	аиоте <i>#</i> : 1,2310 P.o.#:	DATE mm/dd/yy		5	(/i5	6/38/12 JUSE			Date Ime	Date CO Time	Date	Date Time [0]5]/5 \$8 & \$\$\$	/ / 518 Tel: (907) 562-23 28405 Tel: (910) 350-1
SSS	CLIENT: SLR	CONTACT: Vary Cray PH	E PROJECT BINAME: A USUA AT KOTZELE PER	V REPORTS TO: U COLONIA E-1	INVOICE TO: 0 CLA STAND	RESERVED SAMPLE IDENTIFICATION for lab use	J.A	G R& 0930154W35	H (5 11-4 JN 57.87				Relinquished By: (2) ស ភូចិ	6 Relinquished By: (3)	(t) Kelinquished By: (4)	 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

8%
ら
5

SGS North America Inc. 200 W. Potter Dr., Anchonzge, AK 99518 (ph) 907-562-2343, (fax) 907-561-5301 3180 Peger Rd., Fairbanks, AK 99701 (ph) 907-474-8656, (fax) 907-474-9685

	igray@slrconsulting.com		105.00104.14001	LVL2-ADEC. standard TAT		
Alaska	e-mail:	(907)264-6965	Project/Permit#: 105.00104.14001	Deliverables:		
SLR Alaska	Jason Gray, Ben Siwiec	(907)26	Kotzebue Groundwater	2015 SLR Open Quote - 12390		
Client Name:	Ordered By:	Phone #:	Project Name:	Quote #:	Delivery:	

<u>e Kit Re</u>	Be sure to ask if client will ship by ground (DOT) or air carrier (IATA)	ent:	ier:	Der:	by:	tes:	by: JAN Date: 9/28/2015	by: X. C Date: 7() 8/1 C	
Client nickun Date: 0/28/2015	Be sure to ask if clien	Deliver to client:	□ Ship by/Air Carrier:	Airbill Number:	Date to ship by:	Notes:	Kit request taken by:	Kit prepared by:	ece for near'd hattlas) shading built
									ě

Kit (including lid tightness for pres'd bottles) checked by:

Kit (including lid tightness for pres'd bottles) checked by: All Date: 785, 915 Kit packed & shipped by: All Date: 9128, 15	te Haid # 0C	NA LOCA OF A LOCA STORE SOUTHER SO THE SOUTHER SOUTHER SO THE SOUTHER S		14d 0 7					>		Attention Client/Sampler: 1. Do <u>not</u> rinse container before filling and be aware of any acid preservative in container. 2. Fill container to top, but do not overfill (except volatiles which should be headspace free). 3. Label the container with your sample/site ID, as well as the date & time of collection. 4. Fill in the Chain of Custody. 5. Add frozen gel packs or ice to your cooler & pack to prevent breakage. Charges may be invoiced for bottles which are unused or improperly used. If you have any questions concerning this sample kit, please contact your Project Manager for assistance. <i>Thank you</i> .	
Kit (incl	Pres			MeOH	HCI	HCI	HCI	None			s custom packing <i>(circle one)</i> el ICe by PM (attached)	
	Coutainer Size & Type	amber glass		amber w/ septa	amber glass	amber w/ septa	amber w/ septa	amber glass		-	* % Solid her OR Reminde Zen G	
	Container 3	l x 4-oz	Eb	I X 4-02 prewta	2 x 250-ml	3 x 40-mL	3 x 40-mL	2 x 250 mL			 Total # includes bottles for % Solids Track all Lot# Foreign Soil Pack similar bottles together OR contestruction Pack similar bottles together OR contestruction 	
	And Association and Associationa and Association and Association and Association and Association and Association and Association and Associationa and Ass	DRO by AK 102	GRO by AK101	VOCs by 8260B	DRO by AK 102	GRO by AK101	VOCs by 8260B	PAHs by 8270D SIM			Pack for Shipping via <i>ground</i> (DOT) Pack for Shipping via <i>gir carrier</i> (IATA) Temperature Blank (<i>circle one</i> 120-ml) OR 500-ml) Soil VOA Trip Blank - Lot#: $VWB - 73 - 15$ Soil VOA Trip Blank - Lot#: $VWB - 73 - 15$ Water VOA Trip Blank - Lot#: $VWB - 73 - 15$ Sold VOA Trip Blank - Lot#: $VWB - 73 - 15$ Low Level Mercury Trip Blank - Lot#: TO [73] Low Level Mercury Trip Blank - Lot#: TO [73] Low Level Mercury Trip Blank - Lot#: TO [74] Low Level Mercury Trip Blank - Lot#: TO [75] Low Level Mercury Trip Blank - Lot#: TO [74] Low Level Mercury Trip Blank - Lot#: TO [75] Low Level Mercury Trip Blank - Lot#: TO [74] Low Level Mercury Trip Blank - Lot#: TO [75] Low Level Mercury Trip Blank - Lot#: TO [75] Coolers Gel Ice (<i>circle one</i> : in each cooler OR in a separate cooler) Bubble Wrap Labels Custody Seals So COS - <i>Circle reg'd format</i> : * Blank COC * Pow COC -	
	No. Samples Matrix	7 soil	_ 7 _ soil		5 water	5 water	5 water	4 water			Pack for Shipping via ground (DOT) Pack for Shipping via air carrier (IATA) Temperature Blank (circle one 120-ml) Soil VOA Trip Blank - Lot#: Water VOA Trip Blank - Lot#: Uw Level Mercury Trip Blank - Lot#: Low Level Mercury Trip Blank - Lot#: Coolers Gel Ice (circle one: in each cooler OR in Bubble Wrap Bubble Wrap Custody Seals Soc COCs - Circle reg d format: Soc COCs - Circle reg d format:	

Returned Bottles Inventory

Name of individual returning bottles:	Jason SLR	Gray	_	Date Received:	10105115	
Client Name:	SLR		_	Received by:	EDT	
Project Name:	Alaska A:	r hotzebue	GW	SGS PM:	FT JN	
	1-L					
le:	500-ml					
HDPE/Nalgene:	250-ml or 8-oz					
PE/I	125-ml or 4-oz					
Ĥ	60-ml or 2-oz					
	other					
	1-L		ann a ha bha ann an ann ann an ha ann ann ann ann		den ander an en seiner der einer	ninana seria ana ang ini na pasa ana ini panananana.
	500-ml					
amber glass:	250-ml or 8-oz	3			· · · · ·	
nber	125-ml or 4-oz with or without septa	8 . EDT				
aı	40-ml VOA vial	109				
	other					
Subtotal:		an a niae - Na nga pilanan ni ni na ng San Sana an	na 1949 - Sanata Andrea Sanata Andrea Sanata Andrea Sanata 	na telefonda da com en como en esta en		n an

Note: Returned bottles (regardless of size/pres.) are billed back at \$4/bottle unless otherwise quoted.

Amount to Invoice Client \$:

60

wo#: 1155836

1155836

SAMPLE RECEIPT FORM

Review Criteria:	Yes	N/A	No	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.	\mathbf{V}			Exemption permitted if sampler hand carries/delivers.
COC accompanied samples?	\checkmark			2 Side
Temperature blank compliant* (i.e., 0-6°C after CF)?	IЦ		Ц	Exemption permitted if chilled & collected <8 hrs ago.
If >6 °C, were samples collected <8 hours ago?			Н	
If <0 °C, were all sample containers ice free?		V		
Cooler ID:				
Cooler ID: W/ Therm ID:				
Cooler ID: @ w/ Therm.ID: Cooler ID: @ w/ Therm.ID:				
Cooler ID: (a) w/ Therm.ID:				
If samples are received without a temperature blank, the "cooler				
temperature" will be documented in lieu of the temperature blank &				
"COOLER TEMP" will be noted to the right. In cases where neither a				<i>Note: Identify containers received at non-compliant temperature. Use form FS-0029 if more space is needed.</i>
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."				temperature. Use form 13-0029 if more space is needed.
Delivery method (specify all that apply): Client (hand carried) USPS Lynden AK Air Alert Courier				
$\Box UPS \qquad \Box FedEx \qquad \Box RAVN \qquad \Box C\&D Delivery$				
Carlile Pen Air Warp Speed Other:				
\rightarrow For WO# with airbills, was the WO# & airbill				
info recorded in the Front Counter eLog?		\checkmark		
				•
	Yes	N/A	No	
Were samples received within hold time?	$\mathbf{\nabla}$			Note: Refer to form F-083 "Sample Guide" for hold times.
Do samples match COC * (i.e., sample IDs, dates/times collected)?		Ц	Ц	<i>Note: If times differ <1hr, record details and login per COC.</i>
Were analyses requested unambiguous?			⊢⊢	
Were samples in good condition (no leaks/cracks/breakage)?				
Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other:				
Were proper containers (type/mass/volume/preservative*) used?				Exemption permitted for metals (e.g., 200.8/6020A).
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?		Н	H	
Were all VOA vials free of headspace (i.e., bubbles ≤ 6 mm)?		H	H	
Were all soil VOAs field extracted with MeOH+BFB?		H	H	
For preserved waters (other than VOA vials, LL-Mercury or				
microbiological analyses), was pH verified and compliant?	\checkmark			
If pH was adjusted, were bottles flagged (i.e., stickers)?		\checkmark		
For special handling (e.g., "MI" soils, foreign soils, lab filter for				Limited volume for water TBs.
dissolved, lab extract for volatiles, Ref Lab, limited volume),				Limited volume for water TBS.
were bottles/paperwork flagged (e.g., sticker)?				
For RUSH/SHORT Hold Time , were COC/Bottles flagged				
accordingly? Was Rush/Short HT email sent, if applicable?		\checkmark		
For SITE-SPECIFIC QC, e.g. BMS/BMSD/BDUP, were		\checkmark		
containers / paperwork flagged accordingly? For any question answered "No," has the PM been notified and		V		SRF Completed by: EDJ
the problem resolved (or paperwork put in their bin)?		\checkmark		PM notified:
Was PEER REVIEW of <i>sample numbering/labeling completed?</i>			\exists	Peer Reviewed by: DC
Additional notes (if applicable):				
Additional notes (11 applicable).				

Note to Client: Any "no" answer above indicates non-compliance with standard procedures and may impact data quality.

Sample Containers and Preservatives

Container Id	Preservative	Container Condition
1155836001-A	HCL to pH < 2	OK
1155836001-В	HCL to $pH < 2$	OK
1155836001-С	HCL to $pH < 2$	OK
1155836001-D	HCL to $pH < 2$	OK
1155836001-Е	HCL to $pH < 2$	OK
1155836001-F	HCL to $pH < 2$	OK
1155836001-G	HCL to $pH < 2$	OK
1155836001-Н	HCL to $pH < 2$	OK
1155836001-I	No Preservative Required	OK
1155836001-J	No Preservative Required	OK
1155836002-A	HCL to pH < 2	OK
1155836002-В	HCL to $pH < 2$	OK
1155836002-С	HCL to pH < 2	OK
1155836002-D	HCL to pH < 2	OK
1155836002-Е	HCL to pH < 2	OK
1155836002-F	HCL to pH < 2	OK
1155836002-G	HCL to pH < 2	OK
1155836002-Н	HCL to pH < 2	OK
1155836003-A	HCL to pH < 2	OK
1155836003-В	HCL to pH < 2	OK
1155836003-C	HCL to pH < 2	OK
1155836003-D	HCL to pH < 2	OK
1155836003-Е	HCL to pH < 2	OK
1155836003-F	HCL to pH < 2	OK
1155836003-G	HCL to pH < 2	OK
1155836003-Н	HCL to pH < 2	OK
1155836003-I	No Preservative Required	OK
1155836003-J	No Preservative Required	OK
1155836004-A	HCL to pH < 2	OK
1155836004-В	HCL to pH < 2	OK
1155836004-C	HCL to pH < 2	OK
1155836004-D	HCL to pH < 2	OK
1155836004-Е	HCL to pH < 2	OK
1155836004-F	HCL to pH < 2	OK
1155836004-G	HCL to pH < 2	OK
1155836004-Н	HCL to pH < 2	OK
1155836005-A	No Preservative Required	OK
1155836005-В	No Preservative Required	OK
1155836006-A	HCL to pH < 2	OK
1155836006-В	HCL to pH < 2	OK
1155836007-A	HCL to pH < 2	OK
1155836007-В	HCL to pH < 2	OK

Container Id	Preservative	Container Condition
1155836008-A	No Preservative Required	ОК
1155836008-В	Methanol field pres. 4 C	ОК
1155836009-A	No Preservative Required	ОК
1155836009-В	Methanol field pres. 4 C	ОК
1155836010-A	No Preservative Required	ОК
1155836010-В	Methanol field pres. 4 C	ОК
1155836011-A	Methanol field pres. 4 C	ОК

Container Id

Preservative

Container Condition

Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added. PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

BU - The container was received with headspace greater than 6mm.

APPENDIX E

DATA QUALITY ASSURANCE REVIEW AND ADEC LABORATORY CHECKLIST

ALASKA AIRLINES

Alaska Airlines, Inc PO Box 68900-SEAZE Seattle, WA 98168-0900

December 2015

LABORATORY DATA QUALITY ASSURANCE REVIEW

ALASKA AIRLINES KOTZEBUE GROUNDWATER MONITORING

SLR Project Number 105.00104.14001 ADEC File Number 410.26.005

This report summarizes a review of analytical results for work order number 1155836, for samples collected on September 30, 2015 and October 1, 2015. Samples were collected by SLR International Corporation (SLR), and submitted to SGS North America Inc. (SGS) in Anchorage, Alaska. Samples were analyzed for the following parameters:

- Gasoline range organics (GRO), using Alaska Method 101 (AK101)
- Diesel range organics (DRO), using Alaska Method 102 (AK102), low volume
- Volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) SW-846 Method 8260B
- Polynuclear aromatic hydrocarbons (PAHs), using USEPA SW-846 Method 8270D with selective ion monitoring (SIM), low volume

Both soil and water samples were collected for this sampling event. Soil samples were collected for waste characterization purposes only. Waste characterization data were not included in the quality assessment report (QAR). A cursory review of the data was performed upon receipt.

Quality Assurance Program

A quality assurance (QA) program was followed that addressed project administration, sampling protocols, data review, and data QA. Sample QA was provided by SLR through adherence to sampling protocols. Chain of custody (COC) procedures were followed as an integral part of the QA program.

Data validation consisted of the following:

- Verifying that quality control (QC) blanks were properly prepared, identified, and analyzed.
- Reviewing COC records for completeness, signatures, and dates.
- Verifying that surrogate analyses (when applicable) were within recovery acceptance limits.
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD) were within recovery acceptance limits.
- Verifying that Continuing Calibration Verification (CCV) recoveries were within applicable acceptance limits.

- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples and LCS and LCSD.
- Evaluating whether laboratory reporting limits met project goals.
- Providing an overall assessment of laboratory data quality and qualifying sample results if necessary.

Data Qualifications

The comments presented in this QA review refer to the field procedures and the laboratory's performance in meeting the QC specifications. The sample results were reviewed using the following documents:

- Alaska Department of Environmental Conservation (ADEC), 18 AAC 75, Oil and Other Hazardous Substances Pollution Control (June 17, 2015).
- ADEC, Underground Storage Tanks Procedure Manual Guidance for Treatment of Petroleum – Contaminated Soil and Water and Standard Sampling Procedures (November 2002).
- ADEC, Technical Memorandum 06-002, Environmental Laboratory Data and Quality Assurance Requirements (March 2009).
- USEPA Document 530/SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, fourth edition (November 1991).

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of the samples, except as noted below.

• Two coolers were received at SGS, Anchorage. Only one cooler temperature (2.4°C) was recorded on the sample receipt form. Each cooler temperature was written on the correct COC page. Refer to the Holding Times and Preservation section below for a discussion of cooler receipt temperatures. Data was not impacted.

Holding Times and Preservation

Samples were appropriately preserved upon collection and were submitted to SGS. Sample analyses were conducted within holding time criteria. No issues were noted in regard to sample preservation, except as noted below.

Two coolers were submitted to SGS, Anchorage with temperature blanks at 1.9°C and 2.4°C. One of two was slightly below the ADEC required temperature range of 4±2°C. The cooler received at 1.9°C contained only waste soil samples. Waste samples were not reviewed in this QAR. The cooler containing groundwater samples was received

with a temperature blank within the ADEC required 4±2°C. All data was usable without qualification.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected in method blanks at or above the limit of detection (LOD).

Trip Blanks

Laboratory trip blanks were analyzed at the appropriate frequencies. Analytes were not detected at or above the LOD in either trip blank.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits, except as noted below.

For Method AK101, 4-bromofluorobenzene surrogate in sample 100115MW1R recovered above the acceptable upper control limit of 150%. This was likely due to matrix interference. The GRO result for this sample was qualified with an "M+", and should be considered estimated with a potential high bias. Since a high bias was indicated and the affected result was below the applicable cleanup level of 2.2 mg/L listed in 18 AAC 75, Method Two, Table C, Groundwater Cleanup Levels (ADEC, June 17, 2015), data usability was not affected.

Calibration Verifications

CCVs were performed at the required frequencies. It should be noted that CCV recoveries were included only in the electronic data deliverables, not in the case narrative. All CCV percent recoveries were within analytical method and SGS percent recovery acceptance limits as reviewed in the data deliverables.

 For VOCs by SW8260B, 2-butanone recovered above the acceptable upper control limit in the CCV for analytical batch VMS15328. Associated samples were 100115MW1R, 100115MW2, 100115MW3R, 100115MW4, and GWTB2. Since a high bias was indicated and all associated samples were non-detect for this analyte, data was not impacted. All data was usable without qualification.

Field Duplicates

Three primary groundwater samples and one duplicate sample were submitted for GRO by AK101, DRO by AK102 and VOCs by SW8260B. Two primary groundwater samples and one duplicate sample were submitted for PAH SIM by SW8270D. The field duplicate sample frequency was in compliance with regulatory requirements because a minimum of one per every ten field samples for each matrix, method and target analyte was achieved. All field duplicates were submitted blind to the laboratory.

The following field duplicates were collected:

- 100115MW5 is the duplicate to primary sample 100115MW1R.
- 100115MW4 is the duplicate to primary sample 100115MW2.

All RPDs between parent and duplicate samples were within limits for all analytes detected above the LOQ (less than 30% required for water samples), except as noted in the table below.

Results for samples listed in the table are recommended for qualification with a "QN", and should be considered estimated with unknown bias.

For acenaphthene, both affected results were well below the applicable cleanup level, therefore, all data was usable as qualified. For DRO, to err on the conservative, the higher of the two values should be reported. The reported value exceeds the applicable cleanup level listed in 18 AAC 75, Table C, Groundwater Cleanup Levels (ADEC, June 17, 2015). Data is usable as qualified.

RELATIVE PERCENT DIFFERENCES						
Primary Sample	Duplicate Sample	Analyte	Primary Result (mg/L)	Duplicate Result (mg/L)	RPD	Cleanup Level (mg/L)
100115MW1R	100115MW5	acenaphthene	ND ¹ [0.000024]	0.000167	149%	2.2
100115MW2	100115MW4	DRO	1.47	2.29	44%	1.5

1 - For non-detect results, the LOD [listed in brackets] was used to calculate RPD.

RPDs for all duplicate/parent sample pairs with both results below the LOQ are considered to be acceptable without qualification.

Laboratory Control Samples/Laboratory Control Duplicate Samples

LCS and LCSDs were analyzed at the appropriate frequencies. LCS/LCSD results and RPDs met percent recovery acceptance limits, except as noted below.

 For PAH SIMs by Method SW8270D, LCS/LCSD RPDs for fluorene and phenanthrene slightly exceeded laboratory limits. Associated samples were 100115MW1R, 100115MW3R, and 100115MW5. All associated samples had results of non-detect for the affected analytes; therefore, data was not impacted. All data was usable without qualification.

Laboratory Duplicate Samples

No laboratory duplicates were analyzed with these groundwater samples.

Matrix Spike/Matrix Spike Duplicate Samples

No MS and MSD samples were analyzed with these groundwater samples.

Limits of Detection

LODs were compared to applicable cleanup levels for the site. LODs were compared with 18 AAC 75 *Oil and Other Hazardous Substances Pollution Control*, Method Two, Table C, Groundwater Cleanup Levels (ADEC, June 17, 2015). All results of non-detect had LODs at or below applicable cleanup levels, except as shown in the table below.

The table below shows results of nondetect with LODs and DLs not meeting project limits. All affected analytes were VOCs by SW8260. In some instances the detection limit (DL) met project goals where the LOD did not. In these cases, data was considered to have met project goals. This data was not presented in the table. For all analytes presented in the table, typical methodology limitations caused the LOD and DL to not meet project goals. Data quality was not impacted; however, it is not possible to determine with certainty whether the analytes were present in the affected samples over the cleanup levels.

Sample ID	Laboratory ID	Method Analyte	Result (mg/L)	Dilution	LOD (mg/L)	DL (mg/L)	ADEC Limit (mg/L)
100115MW1R	1155836001		ND	10	0.005	0.0031	
100115MW2	1155836002		ND	1	0.0005	0.00031	
100115MW3R	1155836003	SW8260B 1,2,3-Trichloropropane	ND	10	0.005	0.0031	0.00012
100115MW4	1155836004		ND	1	0.0005	0.00031	
GWTB2	1155836007		ND	1	0.0005	0.00031	
100115MW1R	1155836001		ND	10	0.005	0.0031	
100115MW2	1155836002		ND	1	0.0005	0.00031	
100115MW3R	1155836003	SW8260B 1.2-Dibromoethane	ND	10	0.005	0.0031	0.00005
100115MW4	1155836004		ND	1	0.0005	0.00031	
GWTB2	1155836007		ND	1	0.0005	0.00031	
100115MW1R	1155836001	SW8260B	ND	10	0.005	0.0031	0.002
100115MW3R	1155836003	Vinyl chloride	ND	10	0.005	0.0031	0.002

Overall Assessment

This data was considered of good quality acceptable for use as qualified.

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity

- Precision: Precision goals were met, except as noted in the Field Duplicates and LCS/LCSD sections.
- Accuracy: Accuracy goals were met except as noted in the Surrogate Recovery and CCV sections.
- Representativeness: Representativeness goals were met.
- Comparability: Comparability goals were met.
- Completeness: Completeness goals were met.
- Sensitivity: Sensitivity goals were met, except as noted in the Limits of Detection section.

Laboratory Data Review Checklist

Completed by:	Jennifer McLean		
Title:	Project Scientist	Date:	November 12, 2015
CS Report Name	Alaska Airlines Kotzebue GW M	Monitoring Report Date	e: October 30, 2015
Consultant Firm:	SLR International Corporation		
Laboratory Name	SGS North America, Inc.	Laboratory Report N	Jumber: 1155836
ADEC File Numl	ber: 410.26.005	ADEC RecKey Number	r: NA
b. If the	samples were transferred to another tory, was the laboratory performing	(Please explain.)	Comments:
	information completed, signed, and	dated (including released/ (Please explain.)	/received by)? Comments:
	ct analyses requested? Yes No NA ((Please explain.)	Comments:
a. Sampl Two coo of two w 1.9°C co	olers were submitted to SGS, Ancho as slightly below the ADEC require intained only waste soil samples. Wa ontaining groundwater samples was	(Please explain.) prage with temperature bla ed temperature range of 4- aste samples were not rev	Comments: anks at 1.9°C and 2.4°C. One \pm 2°C. The cooler received at iewed in this QAR. The

	b.	Volatile Chlorina	ated Solvents, o	<u>,</u>	
		Yes Yes	No	NA (Please explain.)	Comments:
	c.	Sample condition	n documented -	- broken, leaking (Methanol), zer	o headspace (VOC vials)? Comments:
	d.	•	-	, were they documented? For example, temperature outside of acceptable	1 1
		🛛 Yes	🗌 No	NA (Please explain.)	Comments:
		A limited volume f nethods.	for the trip blar	nks was noted. Trip blanks were a	nalyzed for appropriate
	e.	Data quality or u	sability affecte	ed? (Please explain.) Commen	nts:
	Α	All data was usable	e without quali	fication.	
4. Ca	se l	Varrative			
		Present and unde	erstandable?	NA (Please explain.)	Comments:
	W		ion, a cursory 1	resses both soil and water sample review was conducted upon receip ecklist.	
	1.	Disenseration		lungs identified by the lab?	
	D.	Yes		lures identified by the lab?	Comments:
	c.	Were all correcti	ve actions doc	umented? NA (Please explain.)	Comments:
	1	None were taken.			
	d.	What is the effec	et on data quali	ty/usability according to the case Commen	
	1	No impact.			

5. Samples Results

		Correct analys	ses performed/r	eported as requested on COC?	Comments:
	b.	All applicable	holding times	met?	Comments:
	c.	All soils repor	ted on a dry we	eight basis?	Comments:
	,	Soil samples we	re waste charac	eterization, thus were not reviewed	in this checklist.
	d.	Are the report project?	ed PQLs less th	an the Cleanup Level or the minim	um required detection level for th
			🖂 No	NA (Please explain.)	Comments:
	li a c a	mits. All affect nd vinyl chlorid ases, data was c	results of nonc ed analytes wer le). In some ins considered to ha ented in the tabl ls.	letect with LODs and detection limite voCs by SW8260 (1,2,3-trichlor tances the (DL) met project goals w we met project goals. This data wa le, typical methodology limitations	opropane, 1,2-dibromoethane, where the LOD did not. In these s not presented in the table. For caused the LOD and DL to not
		Data quality or i	ısabilitywas no	t impacted; however, it is not possi	
			•	nt in the affected samples over the	
6. <u>Q</u>	<u>C Sa</u> a.	amples Method Blank i. One m Xes		oorted per matrix, analysis and 20 sa	amples? Comments:
		ii. All me ⊠ Yes	thod blank resu	Ilts less than PQL?	Comments:

iii. If above PQL, what samples are affected? Comments: Not applicable. iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined? NA (Please explain.) No Yes Comments: v. Data quality or usability affected? (Please explain.) Comments: No impact. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics - One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) NA (Please explain.) X Yes No Comments: ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples? \square NA (Please explain.) Yes No Comments: No inorganics were analyzed with this work order. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) No No Yes NA (Please explain.) Comments: For VOCs by SW8260B, 2-butanone recovered above the acceptable upper control limit in the CCV for analytical batch VMS15328. iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) No NA (Please explain.) Yes Comments:

For PAH SIMs by Method SW8270D, LCS/LCSD RPDs for fluorene and phenanthrene slightly exceeded laboratory limits

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

For VOCs by SW8260B, associated samples were 100115MW1R, 100115MW2, 100115MW3R, 100115MW4, and GWTB2. For PAH SIMs by Method SW8270D, associated samples were 100115MW1R, 100115MW3R,
and 100115MW5. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No NA (Please explain.) Comments:
For VOCs by SW8260B, since a high bias was indicated and all associated samples were non- detect for this analyte, data was not qualified. For PAH SIMs by Method SW8270D, all associated samples had results of non-detect for the affected analytes; therefore, data was not qualified.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data was not impacted. All data was usable without qualification.
 c. Surrogates – Organics Only i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? Xes No NA (Please explain.) Comments:
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No NA (Please explain.) Comments:
For Method AK101, 4-bromofluorobenzene surrogate in sample 100115MW1R recovered above the acceptable upper control limit of 150%.
 iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? Yes No NA (Please explain.) Comments:
The surrogate exceedance was likely due to matrix interference. The GRO result for this sample was qualified with an "M+", and should be considered estimated with a potential high bias.
iv. Data quality or usability affected? (Use the comment box to explain.) Comments:
Since a high bias was indicated and the affected result was below the applicable cleanup level of 2.2 mg/L listed in 18 AAC 75, Method Two, Table C, Groundwater Cleanup Levels (ADEC, June

17, 2015), data usability was not affected.

d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>

i.	One trip blank reported per matrix, analysis and for each cooler containing volatile samples?
	(If not, enter explanation below.)

🛛 Yes	No No	NA (Ple
-------	-------	---------

NA (Please explain.)

Comments:

ii.	Is the cooler used to tran	nsport the trip blank and VOA sa	amples clearly indicated on th	ne COC?
	(If not, a comment expl	aining why must be entered belo	ow)	
\square		\square NA (Dlassa avalain)	Comments:	

			Comments.	
iii. All re ⊠ Yes	sults less than P	QL?	Comments:	

iv. If above PQL, what samples are affected?

Comments:

Not applicable.

v. Data quality or usability affected? (Please explain.)

Comments:

No impact.

e. Field Duplicate

i. One fie	eld duplicate su	bmitted per matrix, analysis and 10) project samples?
🖂 Yes	🗌 No	NA (Please explain.)	Comments:

ii. Submitted blind to lab ⁶ ∑ Yes □ No	? 🗌 NA (Please explain.)	Comments:		
100115MW5 is the duplicate to 100115MW4 is the duplicate to				
iii. Precision – All relative (Recommended: 30%)	e percent differences (RPD) less that water, 50% soil)	n specified DQOs?		
RPD (%) = Absolute v	x 100			
	$((R_1+R_2)/2)$			
Where $R_1 = Sample$				
$\square \text{ Yes} \qquad \qquad$	Duplicate Concentration INA (Please explain.)	Comments:		
results for parent sample 100115	sample 100115MW1R and duplicat MW2 and duplicate 100115MW4, ended for qualification with a "QN	exceeded the required		
iv. Data quality or usabilit	y affected? (Use the comment box	to explain why or why not.)		
	Commen	ts:		
For acenaphthene, both affected results were well below the applicable cleanup level, therefore, all data was usable as qualified. For DRO, to err on the conservative, the higher of the two values should be reported. The reported value exceeds the applicable cleanup level listed in 18 AAC 75, Table C, Groundwater Cleanup Levels (ADEC, June 17, 2015). All data was usable as qualified.				
f. Decontamination or Equipmen	nt Blank (If not used explain why).			
Yes No	🛛 NA (Please explain.)	Comments:		
Samples were collected with disp	osable equipment.			
i. All results less than PC)L?			
Yes No	🔀 NA (Please explain.)	Comments:		
ii. If above PQL, what sa	mples are affected?			
	Commen	ts:		
Not applicable.				
iii. Data quality or usabilit	iii. Data quality or usability affected? (Please explain.)			
1				
	Commen	ts:		

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a.	Defined and ap	propriate?			
	X Yes		NA (Please explain.)	Comments:	