

global environmental solutions

2016 Groundwater Monitoring and Well Installation Report Alaska Airlines Kotzebue Facility

SLR Ref: 105.00104.16004

ADEC File Number: 410.26.005

December 2016

2016 Groundwater Monitoring and Well Installation Report Alaska Airlines Kotzebue Facility

Prepared for:

Alaska Airlines Inc., Environmental Affairs P.O. Box 68900 Seattle, Washington 98168

This document has been prepared by SLR International Corporation. The material and data in this document were prepared under the supervision and direction of the undersigned.

Ben Siwiec Associate Geologist

Stan Flagel Principal Scientist

Reviewed and Approved By:

CONTENTS

ACR	ONYM	S	iii
1.	INTRO	DUCTION	1
	1.1	Site Setting	1
	1.2	Regional and Local Geology	
	1.3	Site History	
		1.3.1 2000 Remedial Investigation	2
		1.3.2 2002 Remedial Investigation	3
		1.3.3 2010 Groundwater Sampling	3
		1.3.4 2015 Groundwater Sampling, Well Replacement, and Air	1
	1.4	Sampling Questionnaire Project Objectives	
2.			
	2.1	Groundwater	
	2.2	Soil	6
3.	FIELD	ACTIVITIES	7
	3.1	Soil Borings, Screening, and Sampling	7
	3.2	Monitoring wells	7
	3.3	Groundwater Sampling	7
	3.4	Analytical Sampling Program	8
	3.5	Sample Handling	8
	3.6	Quality Assurance and Quality Control	8
4.	FIELD	PROCEDURES	10
	4.1	Soil Screening and Sampling	10
		4.1.1 Screening	10
		4.1.2 Sampling	11
	4.2	Monitoring Wells	11
		4.2.1 Decommissioning	
		4.2.2 Installation	
	4.0	4.2.3 Development	
	4.3	Groundwater Sampling	
		4.3.1 Low-Flow Purging and Sampling Methodology4.3.2 Alternative Purging and Sampling Methodology	
	4.4	4.3.2 Alternative Purging and Sampling Methodology Sampling Equipment Decontamination Procedures	
	4.4 4.5	Instrument Calibration	
	4.5 4.6		
	4.0	Waste Management	13
5.	ANAL	YTICAL RESULTS AND CONCEPTUAL SITE MODEL	15

	5.1	Soil Sampling Results	15
	5.2	Groundwater Sampling Results	15
	5.3	Laboratory Data Quality	16
	5.4	Conceptual Site Model	16
6.	DISC	USSION AND CONCLUSIONS	17
•.	_	USSION AND CONCLUSIONS	

FIGURES

Figure 1	Site Location Map
Figure 2	Site Detail and Monitoring Well Locations

TABLES

- Table 1Soil Boring Sample Results
- Table 2
 Groundwater Sampling Analytical Data
- Table 3Historical Groundwater Data

APPENDICES

- Appendix A Photograph Log
- Appendix B Field Forms and Logs
- Appendix C Data Quality Assessment, ADEC Laboratory Data Review Checklist, and the SGS Analytical Data Reports
- Appendix D Conceptual Site Model Scoping and Graphic Forms

ACRONYMS

±	plus or minus
°C	degrees Celsius
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
AOC	area of concern
AS	Alaska Airlines, Inc.
AST	aboveground storage tank
ASTM	American Society for Testing and Materials
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
COC	chain of custody
COPCs	contaminants of potential concern
CSM	conceptual site model
DRO	diesel-range organics
ft	feet
EPA	U.S. Environmental Protection Agency
GRO	gasoline-range organics
LOD	Limit of detection
LOQ	Limit of quantitation
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
mS/cm	millisiemens per centimeter
mV	millivolts
PAH	polynuclear aromatic hydrocarbon
PID	photoionization detector
PVC	polyvinyl chloride
RI	remedial investigation
SGS	SGS North America, Inc.
SLR	SLR International Corporation
UST	underground storage tank

THIS PAGE INTENTIONALLY LEFT BLANK

At the request of Alaska Airlines, Inc. (AS), SLR International Corporation (SLR) has completed a groundwater investigation at the AS airport terminal facility (Site) located at the Ralph Wein Memorial Airport in Kotzebue, Alaska. The Site is identified by Alaska Department of Environmental Conservation (ADEC) file number 410.26.005. The investigation included decommissioning and installation of monitoring wells, and groundwater monitoring.

1.1 SITE SETTING

Kotzebue, Alaska is located on the Baldwin Peninsula in Kotzebue Sound, on a three-mile-long spit near the Kobuk and Noatak rivers (Figure 1). Kotzebue is approximately 550 air miles northwest of Anchorage, Alaska.

The airport was constructed in 1950 and is located in Kotzebue, at 66° 53' 4.8" N latitude and 162° 35' 54.78" W longitude. The airport was built on gravel fill material that was placed on top of arctic tundra. The ground surface at the airport is generally level and sits at an elevation of approximately 11.5 feet (ft) above mean sea level. Municipal utilities, including potable water and sewers, serve the airport area.

The AS terminal is located on Alaska Department of Transportation and Public Facilities lease Lots E, F, and G, Block 1, and includes a two-story terminal building (Figure 2), a fueling area, and a cargo storage area to the west of the terminal building.

1.2 REGIONAL AND LOCAL GEOLOGY

The Kotzebue area is underlain by continuous permafrost with a near-surface soil layer that freezes and thaws annually (i.e., an "active layer"). The active layer is typically less than 2 ft thick beneath undeveloped areas and seasonal thaw water depths of up to 10 ft may be present in developed areas such as beneath the AS terminal facility. Suprapermafrost groundwater (i.e., water above the permafrost layer) exists beneath the airport area and has been observed at between 2 to 5 ft below ground surface (bgs). The direction of water flow beneath the AS terminal facility was estimated to be to the northwest based on suprapermafrost groundwater elevations measured in 2015 (SLR, 2015) and to the east based on measurements in 2000 (URS, 2001). The specific flow gradients are difficult to determine because of the transient nature of the suprapermafrost water.

The airport is bordered by surface water with Kotzebue Sound located to the west and Kotzebue Lagoon to the east. Groundwater beneath the airport is not used as a drinking water source because permafrost conditions limit the quantity of available water and the suprapermafrost water in the area is of brackish quality (Maul Foster & Alongi, Inc. and SLR Alaska, 2003). Water for domestic use is piped to Kotzebue from Vortac and Devil's Lakes located more than one mile east and upgradient of the airport (U.S. Geological Survey, 1995).

1.3 SITE HISTORY

Areas of concern (AOCs) at the Site include fuel storage tanks and other operation-related features identified during the February 2000 remedial investigation (RI; URS, 2001). The four AOCs identified during the RI are summarized as:

- A former 550-gallon diesel underground storage tank (UST) removed in 1994;
- A former 10,000-gallon Jet A UST used to supply fuel to an aircraft refueling hydrant system and the terminal building heating system;
- The area to the southwest of the AS terminal; and
- A former heating oil aboveground storage tank (AST) and fuel line that was used during construction of the AS terminal building in the mid-1980s.

1.3.1 2000 REMEDIAL INVESTIGATION

The Remedial Investigation (RI) completed in 2000 consisted of drilling and sampling 28 soil borings (TB-1 through TB-28) and installation of three monitoring wells (MW-1, MW-2, and MW-3). The purpose of the RI was to assess potential soil and water impacts at the four AOCs. Concurrent with the RI, the Jet A UST was removed and four soil samples from the tank excavation were submitted for laboratory analysis.

Results from the 2000 RI for the four AOCs indicated:

- Former 550-gallon Gasoline UST: Alaska Department of Environmental Conservation (ADEC) soil cleanup levels were exceeded only for xylenes from boring TB-1. Monitoring well MW-1 contained concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX), gasoline-range organics (GRO), and diesel-range organics (DRO) that exceeded the ADEC groundwater cleanup standards.
- Area Southwest of Terminal Building: Petroleum hydrocarbons were detected only in samples from TB-13; however, all petroleum hydrocarbon concentrations were below ADEC soil cleanup standards. The only reported exceedance of groundwater cleanup levels was reported for benzene in the sample from MW-2.
- Former 10,000-gallon Jet A UST: Concentrations of detected compounds were below ADEC soil cleanup levels for all soil samples from soil borings, TB-12, TB-20, TB-22, and TB-24 drilled at the former Jet A UST, associated fuel line, and hydrant system.
- Former Heating Oil AST: DRO was reported below the soil cleanup level for all soil samples collected in the vicinity of the abandoned fuel line. GRO was also reported below the cleanup level in one soil sample from boring TB-21, near the location of the former heating oil AST. A single groundwater sample from monitoring well MW-3 contained benzene, GRO, and DRO at concentrations above the ADEC groundwater cleanup levels.

1.3.2 2002 REMEDIAL INVESTIGATION

An additional RI was conducted in 2002 to further characterize the Site and develop a conceptual site model (CSM) to evaluate the risks associated with impacted soil and water (Maul Foster & Alongi, Inc. and SLR Alaska, 2003). Activities completed during the 2002 field investigation included: drilling four soil borings (SB-1, SB-2, WP-1, and WP-2); collecting and testing soil samples from each boring; installing two water well points (WP-1 and WP-2); measuring depths to water in the well points and existing onsite monitoring wells (MW-1, MW-2, and MW-3); collecting and testing suprapermafrost water samples from the new well points and existing monitoring wells; and collecting air samples from four locations within the AS terminal building.

Results from the 2002 investigation indicated the following:

The soil and suprapermafrost water samples collected from the borings and well points near the former Jet A UST contained petroleum hydrocarbons. With the exception of DRO, all concentrations were below the ADEC cleanup standards.

Soil sample results from boring SB-1, located near the former heating oil AST, indicated that GRO and xylenes were present at concentrations exceeding the ADEC soil cleanup standard and confirmed the 2000 RI results. Because boring SB-1 is located on the eastern boundary of the Site and there are no known onsite gasoline sources in this area, the source of the gasoline may be at the Bering Air terminal located to the east (Figure 2).

The water sample collected from MW-2, near the former Jet A fuel hydrant, contained petroleum hydrocarbon compounds but at concentrations below the ADEC groundwater cleanup standards.

The results from four indoor air samples showed that detectable BTEX concentrations were present at each sample location. The benzene concentrations in each sample exceeded U.S. Environmental Protection Agency (EPA) Region 9 ambient air preliminary remediation goal. However, it is unlikely that air sample results were representative of volatile hydrocarbons solely migrating from the subsurface into the building airspace as other potential sources were noted (e.g., aircraft exhaust or incidental fuel on clothing).

Contaminants of potential concern (COPCs) included:

- Soil: GRO, toluene, ethylbenzene, and xylenes; and
- Groundwater: GRO and benzene.

No COPCs were identified with regard to inhalation of vapors emitted from the subsurface to indoor air.

1.3.3 2010 GROUNDWATER SAMPLING

The Site was revisited in 2010, but only monitoring well MW-2 was sampled. Monitoring well MW-1 was not found and monitoring well MW-3 was found to be broken. Analytical results from the October 2010 sampling event indicated a decrease in GRO and BTEX concentrations, and

increase in DRO concentrations since 2002 in the wells sampled. Decommissioning and replacement of monitoring wells MW-1 and MW-3 was recommended along with additional groundwater sampling at the Site (SLR, 2010).

1.3.4 2015 GROUNDWATER SAMPLING, WELL REPLACEMENT, AND AIR SAMPLING QUESTIONNAIRE

The most recent monitoring event was completed in 2015 and included replacement of two monitoring wells (MW-1 and MW-3), collection of soil samples for waste characterization during installation of the replacement wells, and collection of groundwater samples from monitoring wells. Additionally, groundwater flow direction was determined from available monitoring wells and an *ADEC Building Survey and Indoor Air Sampling Questionnaire* was completed for the terminal building. The results of the 2015 investigation are presented in the *2015 Groundwater Monitoring Report* (SLR, 2015) and are summarized below:

- Soil waste characterization results: GRO and DRO were reported above the method limit of detection (LOD) but below ADEC Method Two soil cleanup levels for the Arctic Zone and the migration to groundwater for the Under 40 inch Precipitation Zone.
- Groundwater monitoring results: Exceedances of groundwater cleanup levels were reported for GRO in MW-3R and benzene and DRO in MW-1R, MW-2, and MW-3R. Polynuclear aromatic hydrocarbons (PAHs) did not exceed groundwater cleanup levels.
- The groundwater flow direction was inferred to be to the northwest with a gradient of 0.0015 ft/ft. The groundwater flow direction is shown on Figure 2.

No ambient indoor air volatile hydrocarbon contamination was detected during screening using a photoionization detector (PID). However, potential sources of volatile hydrocarbon were identified in the garage area and included heavy equipment exhaust, drums containing used oil and glycol (drums were in good condition and sealed), and a fuel oil powered boiler; no potential sources were found in the terminal or office areas.

1.4 **PROJECT OBJECTIVES**

The objectives for the 2016 activities were based on findings and recommendations presented in the *2015 Groundwater Monitoring Report* (SLR, 2015) and comments from the ADEC. The 2016 objectives included:

- Decommission and replace monitoring well MW-1R located within the footprint of the planned terminal building expansion;
- Install and develop three new monitoring wells, MW-4, MW-5, and MW-6 to evaluate the extent of impacted groundwater;
- Collect one soil sample per boring during installation of the four wells listed above and submit for laboratory analysis of GRO, DRO, BTEX, and PAHs; and

• Collect groundwater samples from existing monitoring wells MW-2 and MW-3R, replacement well MW-1R2, and new wells MW-4, MW-5, and MW-6. Analyze samples for GRO, DRO, and BTEX as part of annual monitoring event.

The applicable regulatory criteria for groundwater at the Site are described in this section.

2.1 GROUNDWATER

Groundwater cleanup levels for contaminated sites are specified in Title 18 of the Alaska Administrative Code (AAC), Chapter 75, *Oil and Other Hazardous Substances Pollution Control*, a revised as of November 6, 2016 (ADEC, 2016b). While groundwater cleanup levels do not apply to suprapermafrost groundwater, they are used as guidelines to discuss the magnitude of hydrocarbon contamination at this site. A summary of the groundwater cleanup levels listed in the regulation for constituents detected at the Site are provided below.

- GRO, 2.2 milligrams per liter (mg/L);
- DRO, 1.5 mg/L;
- Benzene, 0.0046 mg/L;
- Toluene, 1.1 mg/L;
- Ethylbenzene, 0.015 mg/L, and
- Xylenes, 0.19 mg/L.

2.2 SOIL

The relevant applicable soil cleanup levels for the Site, located in the Arctic Zone, are contained in Method Two (Tables B1 and B2) of 18 AAC 75. The most stringent of the direct contact or outdoor inhalation pathway cleanup levels apply to this Arctic Zone site. For reference, "migration to groundwater" cleanup levels are also given (in parentheses). The applicable soil cleanup levels are:

- GRO, 1,400 (300) milligrams per kilogram (mg/kg);
- DRO, 12,500 (250) mg/kg;
- Benzene, 16 (0.022) mg/kg;
- Toluene, 200 (6.5) mg/kg;
- Ethylbenzene, 72 (0.13) mg/kg; and
- Total xylenes, 57 (1.5) mg/kg.

The cleanup levels for individual PAHs are not listed, but the applicable cleanup levels for these compounds will be the most stringent of the Method Two Arctic Zone pathways for direct contact, outdoor inhalation, or migration to groundwater and are listed in Table 1.

Activities at the Site in 2016 included the decommissioning and replacement of one monitoring well and installation of three new monitoring wells, followed by a groundwater sampling event. The field activities were conducted in accordance with ADEC *Field Sampling Guidance* (ADEC, 2016a) and SLR's Health and Safety Plan. All work described in this section was completed or overseen by SLR Associate Geologist Ben Siwiec, who met the ADEC definition of a "qualified environmental professional" 18 AAC 75.325 (ADEC, 2016b).

3.1 SOIL BORINGS, SCREENING, AND SAMPLING

SLR oversaw the installation and collection soil samples from soil borings that were completed as monitoring wells. A total of four borings (MW-1R2, MW-4, MW-5, and MW-6) were drilled by Drake Construction of Kotzebue, Alaska using a solid-stemmed auger. SLR coordinated the location of underground utilities prior to commencement of subsurface activities. The locations of pre-existing monitoring wells and new monitoring wells are shown on Figure 2. Borings ranged from 6 to 8 ft bgs.

Monitoring well MW-1R2 was installed as a replacement for monitoring well MW-1R, which was located in the proposed terminal building expansion area. MW-1R2 and MW-4 are located as close as possible to, but not within, the footprint of the proposed expansion (Figure 2).

Soil was recovered from each boring for field soil classification and soil screening. The results of soil classification and screening were used to determine the interval for laboratory analysis as described in Section 4.1. Soil samples were submitted for laboratory analysis of potential contaminants (listed in Section 3.4) to evaluate for the presence of petroleum-hydrocarbon impacts.

3.2 MONITORING WELLS

Monitoring well MW-1R was decommissioned and replaced with monitoring well MW-1R2. New monitoring wells MW-4, MW-5, and MW-6 were installed. Monitoring wells were decommissioned, installed, and developed consistent with ADEC-recommended practices in order to prevent the wells from becoming pathways for surficial contaminants (ADEC, 2013), as described in Section 4.2.

3.3 GROUNDWATER SAMPLING

SLR conducted a single groundwater sampling event for the Site in 2016. This sampling included all onsite groundwater monitoring wells (MW-1R2, MW-2, MW-3R, MW-4, MW-5, and MW-6). Groundwater samples were collected from the monitoring wells consistent with the industry-standard methods using low-flow or conventional sampling methodology, as discussed in Section 4.3. Results of groundwater samples submitted for laboratory analyses shown in the following section were used to evaluate groundwater impacts at the Site.

3.4 ANALYTICAL SAMPLING PROGRAM

Soil and groundwater samples were submitted to SGS North America, Inc. (SGS), in Anchorage, Alaska, an ADEC-approved laboratory. Analyses were performed by the following methods:

- GRO/BTEX by Alaska Method 101/EPA Method 8021B; and
- DRO by Alaska Method 102;
- PAHs (soil) by USEPA Method 8270C SIM (10% of samples collected); and
- Percent moisture (soil) by EPA Method 2540G.

3.5 SAMPLE HANDLING

Procedures used to maintain the integrity of soil and groundwater samples collected for laboratory analysis began at the time of collection and continued until analysis.

A bound field logbook, sample collection forms, and field logs were maintained to document the 2015 soil removal and sampling activities. Samples were assigned a unique identifier using project specific nomenclature. Field notes written in ink provided a record of information such as field staff, sample locations, field screening results, site observations, and work directives.

At the time of collection, sample containers appropriate for the specified analysis were filled and sealed. A blind sample designation was assigned to replicate samples and the collection time for these samples corresponded with the collection time of the primary sample. A trip blank was included in each cooler that contained samples to be analyzed for volatiles (i.e. GRO and BTEX). Labels indicating sample identification, date, time and the sampler's initials were affixed to the sample containers.

Chain of custody (COC) forms were completed as the samples were packaged into coolers for transport to the laboratory. Trip blanks, temperature blanks, and frozen gel ice packs were added to each cooler as required. The samples were maintained at a temperature of approximately 4 degrees Celsius (°C) from the time of collection until arrival at the laboratory. Samples delivered by SLR personnel directly to SGS with sufficient time to allow for sample extraction within the holding time requirements of the test methods.

3.6 QUALITY ASSURANCE AND QUALITY CONTROL

All field activities were documented in a bound project field logbook. Field duplicate samples were collected throughout the sampling period at a frequency of 10 percent of the total number of samples collected during the sampling event. A minimum of one duplicate sample was collected from each media (i.e., one groundwater duplicate and one soil duplicate). To ensure complete laboratory blindness, duplicates were given false sample names on the label and COC. Duplicate sample identification was documented in the field logbook and on field forms, in connection with the primary sample identification.

Trip blanks for volatile contaminant analysis accompanied the sample containers from the laboratory to the field, to the sample sites as samples were collected, and remained in the coolers as they were transported back to the laboratory. Trip blanks were noted on the COCs for the relevant coolers.

SLR completed an ADEC Laboratory Data Review Checklist and data quality assurance review consistent with ADEC guidance for each analytical report.

Sample collection, sample preservation, COC documentation, and delivery to the analytical laboratory was performed in accordance with standard industry practices. This section includes summaries of applicable field procedures that were followed during site activities including monitoring well decommissioning and replacement and groundwater and soil sampling.

4.1 SOIL SCREENING AND SAMPLING

Soil was retrieved from borings for field screening and collection of analytical samples. Soil was collected for screening potential sampling every 2 ft from the surface to the water table. Retrieval of soil from borings entailed:

- Removal of the solid stem drill auger from the boring;
- Insertion of hand auger tool into boring, advancing the hand auger 0.5 ft;
- Removal of the hand auger and collection of soil sample from the hand auger drum; and
- Reinsertion of the solid stem auger to continue drilling.

The hand auger was decontaminated between analytical samples, as described in Section 4.4.

Soil collected from the borings was logged on a field form consistent with American Society for Testing and Materials (ASTM) D2488 Standard Practice for Description and Identification of Soil and screened for the presence of petroleum hydrocarbon impacts.

4.1.1 SCREENING

Soil screening consisted of visual and olfactory observations and evaluation of total volatile hydrocarbons using a PID and the heated headspace method consistent with ADEC *Field Sampling Guidance* (ADEC, 2016a). Heated headspace procedures are as follows:

- Calibrate the PID with 10 electron volt lamps according to the manufacturer's specifications and requirements.
- Partially fill (one-third to one-half) a re-sealable polyethylene bag with freshly uncovered soil and seal quickly.
- In a heated space, allow headspace vapors to develop in the bag for at least 10 minutes but no longer than one hour.
- Shake or agitate containers for 15 seconds at the beginning and end of the headspace development period to assist volatilization. Temperatures of the headspace must be warmed to at least 40 degrees Fahrenheit (approximately 4.5 °C).
- After headspace development, insert the instrument sampling probe to a point about one-half the headspace depth. The container opening must be minimized and care must be taken to avoid uptake of water droplets and soil particulates.
- After probe insertion, record the highest meter reading in the field record or log book.

Screening results are included on boring logs in Appendix B.

4.1.2 SAMPLING

One soil sample was collected from the interval in each boring identified by field screening as having the greatest potential petroleum hydrocarbon impacts, or from the zone immediately above the water table if no impacts were identified. All soil samples were analyzed for DRO, GRO, and BTEX and one sample (from the boring interval with the highest level of petroleum hydrocarbon impacts observed at the Site) was selected for analyses of PAHs.

Soil samples for laboratory analysis were collected as soon as possible after the auger bucket emerged from the boring to avoid loss of volatile compounds. Samples were collected directly from the hand auger drum using new stainless steel spoons and were placed directly into laboratory-supplied containers. Sample information was recorded on boring logs and is available in Appendix B.

A new clean pair of nitrile gloves were donned to collect each sample and/or handle sampling equipment.

4.2 MONITORING WELLS

The field procedures used for decommissioning, installation, and development of monitoring wells are described in the following sections.

4.2.1 DECOMMISSIONING

Decommissioning of MW-1R was completed by removing the surface vault by hand with a shovel, then using the drill rig to lift the well casing out of the ground by wrapping a chain around it. Due to the shallow depth of the well (and short casing and screen; about 6 ft), the well was removed in one motion. Bentonite chips were poured into the open hole to a depth of 1 foot below ground surface and hydrated. As the surrounding area is surfaced with gravel, no pavement patching was necessary. The Site was regraded using gravel from the surrounding area.

4.2.2 INSTALLATION

New monitoring wells were constructed in a manner consistent with ADEC *Monitoring Well Guidance* (ADEC, 2013). The well casings consist of 2-inch diameter schedule-40 polyvinyl chloride (PVC). The well screens consist of a slotted 2-inch diameter schedule-40 PVC pipe with 0.010-inch slots. All risers and screens used threaded connections. A compression-fit end plug was fitted to the bottom of each screen. No primers or glues were used. The wells were constructed as follows:

- Screens and risers were placed into the boring;
- The annular space around screen was filled with Colorado silica sand (10/20) to between 1 and 2 ft above the screen;

- A well seal of ³/₄-inch bentonite chips was poured into the boring above the sand pack to a depth of between 1 and 1.5 ft and hydrated;
- Clean gravel was placed over the well seal to a depth of about 1 foot;
- A 6-inch diameter steel flush-mount vault-style monument was installed over each well, and the remaining exterior annular space was backfilled with clean gravel. For wells installed in paved areas, hot asphalt was packed around the monument. Care was taken to leave the monument covers slightly below grade to avoid damage from snow plowing activities in the winter.

4.2.3 DEVELOPMENT

Monitoring wells were developed in accordance with ADEC *Monitoring Well Guidance* (ADEC, 2013). Wells were developed at least 24 hours after installation. Wells were surged and purged using Waterra tubing, valve, and surge block. Surging was performed by moving the surge block up and down through the screened interval for a period of time (between 4 and 10 minutes). Purging was performed after surging. Where possible, five well volumes were purged; however, very slow recharge in some wells prevented purging the desired volumes. In cases of slow recharge, after purging the well dry, the well was allowed to recharge. Periods of time the well was allowed to recharge ranged from 1 hour to overnight. Following recharge, the well was purged dry again, repeating the process as many times as practical.

4.3 GROUNDWATER SAMPLING

SLR used low-flow purging and sampling techniques to collect groundwater samples from monitoring wells, where possible. Where well recharge was too slow to allow purging and sampling using a peristaltic pump, the well was purged completely dry and the sample was collected from the recharge water. The procedures for these methods are described in the sections below.

No submersible pumps were used; therefore no decontamination of pumps was necessary. New, disposable tubing was used for each well. Clean nitrile gloves were donned by field staff handling sampling equipment, and new gloves were donned for each well.

Samples were collected directly into laboratory-supplied sample containers appropriate for the required analyses. Samples were placed in a chilled cooler as soon as possible after collection. Sample and cooler temperatures were maintained at approximately 4 °C \pm 2°C throughout transport to the laboratory. Each sample and trip blank was documented on the COC form.

Water quality parameters and other sampling information were documented on field data sheets and in the field logbook provided in Appendix B.

4.3.1 LOW-FLOW PURGING AND SAMPLING METHODOLOGY

Low-flow purging and sampling methodology was conducted using a peristaltic pump. Groundwater sample collection by low-flow methods was conducted according to EPA *Standard*

Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection (EPA, 2010).

Depth to water was measured prior purging. A low-flow purge rate of less than 0.5 liters per minute was used to minimize drawdown of the water column. Water quality parameters were measured at regular intervals during purging using a YSI 556 meter and recorded on the field water sampling data sheet (Appendix B). Purging was considered complete once water quality parameters had stabilized with three successive, discrete measurements of temperature and three other parameters within the following criteria:

- pH, standard units: plus or minus (±) 0.1;
- Specific Conductance, millisiemens per centimeter (mS/cm): ± 3%;
- DO, mg/L: ± 10%;
- ORP, millivolts (mV): ± 10; and
- Temperature, degrees Celsius (°C): ± 3%

4.3.2 ALTERNATIVE PURGING AND SAMPLING METHODOLOGY

Although it was SLR's preference was to use the low-flow methodology, recharge in some wells was insufficient to use the low-flow method (typically where the well recharges at less than 0.1 liters per minute). In these cases the well was purged dry and left to recharge. When sufficient water had recharged into the well, the peristaltic pump was reinstalled and water was pumped directly into the sample containers without purging or collection of water quality parameters. After the sample containers were filled, an additional aliquot of water was collected for a single reading of water quality parameters with the YSI 556 meter. The method was noted on the field forms and field notebook (Appendix B).

4.4 SAMPLING EQUIPMENT DECONTAMINATION PROCEDURES

Non-disposable sampling equipment was cleaned off-site prior to use and after use at each sampling location. Decontamination consisted of a wash with potable water with Alconox[®] detergent, or equivalent, followed by a deionized water rinse. Water generated during decontamination of sampling equipment was treated in the same manner as purge water generated while sampling the monitoring wells.

4.5 INSTRUMENT CALIBRATION

Field instruments were calibrated according to manufacturer specifications prior to use, daily. Calibration information was recorded on calibration field forms (Appendix B).

4.6 WASTE MANAGEMENT

Wastes generated during the field event included disposable sampling equipment, well purge and decontamination water, and soil cuttings. Disposable sampling material was disposed of as non-oily waste. Purge water was filtered through a granulated activated carbon filter and discharged to the ground at the Site. Soil cuttings were kept to a minimum and were containerized at each boring site and transported back to Anchorage, pending sample results. No hazardous waste was generated.

5. ANALYTICAL RESULTS AND CONCEPTUAL SITE MODEL

This section provides a summary of field and analytical results.

5.1 SOIL SAMPLING RESULTS

GRO was detected at concentrations above the LOD in soils from three of the four borings (at 1.6 to 3.2 mg/kg) but below the most stringent ADEC cleanup level of 300 mg/kg. GRO was not detected in the sample from MW-4 (MW4-2.5) (Table 1).

DRO was detected in soils from each of the four borings. Concentrations did not exceed the Human Health cleanup level for the Arctic Zone of 12,500 mg/kg; however, the concentration of DRO in sample MW5-2 (410 mg/kg) exceeded the ADEC Migration to Groundwater soil cleanup level of 250 mg/kg. Concentrations in the other three samples ranged from 28.5 to 116 mg/kg (Table 1).

BTEX compounds were detected in samples from each of the four borings but did not exceed the most stringent cleanup levels (i.e., Migration to Groundwater). All BTEX detections were between the LOD and the lower Limit of Quantitation (LOQ) and as such were flagged with a "J" in Table 1.

Only sample MW5-2 and its duplicate MW5-9 were sampled for PAHs. No PAHs were detected except chrysene and pyrene, both at levels between the LOD and the lower LOQ (Table 1).

All soil sample laboratory data are presented in Table 1 and Appendix C.

5.2 GROUNDWATER SAMPLING RESULTS

GRO was detected in water from five of the six wells (at 0.111 to 1.07 mg/L), all below the ADEC cleanup level of 2.2 mg/L. GRO was not detected at MW-4.

DRO was detected in groundwater from all six wells at concentrations ranging from 0.353 to 6.49 mg/L. DRO concentrations exceeded the ADEC cleanup level of 1.5 mg/L at 5 of 6 wells with concentrations ranging from 1.59 mg/L at MW-2 to 6.49 mg/L at MW-3R.

BTEX compounds were detected in groundwater samples from all six wells. Benzene was detected above the ADEC cleanup level of 0.0046 mg/L at five of the six wells with concentrations ranging from 0.0104 mg/L at MW-3R to 0.0487 mg/L at MW-1R2. Benzene was detected at a concentration of 0.00162 mg/L in MW-4. Ethylbenzene was detected in each well except for MW-4 and exceeded the ADEC cleanup level of 0.015 mg/L in one well, MW-3R with a concentration of 0.0507 mg/L. No other BTEX compounds exceeded the ADEC cleanup levels.

All water sample laboratory data are presented in Table 2 and Appendix C.

5.3 LABORATORY DATA QUALITY

The discrete sample data was reviewed in accordance with the ADEC Environmental Laboratory Data and Quality Assurance Requirements Technical Memorandum (ADEC, 2009). Appendix C presents a Data Quality Assessment, ADEC Laboratory Data Review Checklist, and the SGS Analytical Data Reports. All results were found to be of good quality and usable for the intended purpose. No data was rejected.

5.4 CONCEPTUAL SITE MODEL

A CSM provides a way to describe how people, animals, and plants may come in contact with contaminants. Health risks to humans and the environment cannot exist unless chemicals detected at a given site have the ability to cause an adverse effect and come into contact with a human or ecological receptor. The presence of potentially complete pathways alone, however, does not imply the existence of unacceptable risks.

The CSM for this report has been prepared following ADEC guidance (ADEC, 2010) and present exposure pathways for chemicals of potential concern, routes of migration, and potential current and future receptors. ADEC Human Health scoping forms and graphical representations are provided in Appendix D.

There are no residents at the Alaska Airlines Terminal in Kotzebue. The facility has restricted access which precludes recreational activities. The facility property is fully developed with asphalt, gravel and concrete surfaces, and the terminal building. It is heavily used every day as an active airport facility and provides no ecological habitat. The lack of habitat and access restrictions eliminates any potential for subsistence activities. The only potential receptors at the facility are indoor and outdoor commercial workers, construction workers, and site visitors. There is no residential use at or near the airport, but residential use was considered for development of the CSM.

Potential exposure media include groundwater, soil, and outdoor air. Potentially complete pathways include exposure to groundwater, soil, and indoor and outdoor air to site commercial workers, construction workers, and site visitors or trespassers. Indoor and outdoor air pathways, although complete, are considered insignificant due to low concentrations of volatiles. For soil, out, and indoor air, the pathway is insignificant due to low soil concentrations.

One monitoring well was decommissioned, three new monitoring wells were installed (MW-4, MW-5, and MW-6), and one replacement monitoring well (MW-1R2) was installed on October 4 and 5, 2016 by SLR field staff. The four newly installed wells were developed on October 6, 2016. Groundwater samples were collected from all six monitoring wells on October 3, 6, and 7, 2016.

With the exception of DRO at MW-5, all DRO, GRO, BTEX, and PAH concentrations in soil samples collected from borings MW-1R, MW-4, MW-5, and MW-6, were below the ADEC Method Two soil cleanup level for migration to groundwater (Table 1). The DRO concentration at MW-5 was below the Human Health soil cleanup level for the Arctic Zone but exceeded the Migration to Groundwater cleanup level. MW-5 is located near a former aboveground oil storage tank, next to an active aboveground oil storage tank, and near the current location of the facility's dumpster.

At MW-1R2 and MW-1R, GRO, DRO, and benzene concentrations in groundwater decreased since 2000 relative to historical results from lost monitoring well MW-1. At MW-2, GRO and benzene concentrations decreased between 2000 and 2015, and then increased slightly between 2015 and 2016. DRO concentrations at MW-2 increased between 2000 and 2010, and then decreased between 2010 and 2016. At MW-3R, GRO, DRO, and benzene concentrations have decreased since 2015. Historical groundwater analytical results are summarized below and presented in Table 3.

At new monitoring well MW-4, GRO, DRO, and benzene were detected at concentrations below ADEC groundwater cleanup levels. DRO and benzene concentrations at new wells MW-5 and MW-6 each exceeded their respective groundwater cleanup levels.

mg/L	CLEANUP LEVEL	MW-1 2000	MW-1R 2015	MW-1R2 2016	MW-2 2000	MW-2 2002	MW-2 2010	MW-2 2015	MW-2 2016
GRO	2.2	59	1.9	0.175	0.830	0.559	0.100	0.092	0.177
DRO	1.5	6.6	3.22	1.73	0.240	1.01	6.70	2.29	1.59
Benzene	0.0046	0.785	0.024	0.0487	0.036	0.0300	0.0234	0.013	0.037

mg/L	CLEANUP LEVEL	MW-3 2000	MW-3R 2015	MW-3R 2016	MW-4 2016	MW-5 2016	MW-6 2016
GRO	2.2	6.2	3.1	1.07	ND	0.267	0.122
DRO	1.5	3.3	11.1	6.49	0.353	5.84	1.72
Benzene	0.0046	0.180	0.0553	0.0104	0.00162	0.0316	0.0238

The 2016 groundwater results were generally consistent with previous monitoring events (Table 3). As shown in the table above, contaminant concentration trends in wells at the Site are generally decreasing. Of the three new monitoring wells installed, monitoring well MW-4, located

on the northwest boundary of the Site had no contaminant concentrations exceeding regulatory levels.

As discussed in the *Groundwater Monitoring Report, Ralph Wien Memorial Airport, Kotzebue. Alaska* (Shannon and Wilson, 2014), multiple plumes exist across the airport facility and off the AS lease property. As a result, identifying the provenance of groundwater contamination at the Site or the surrounding properties is difficult. However, the decreasing concentration trends observed on the AS lease property suggest a stable or decreasing plume with no current active source impacting water quality.

SLR recommends continued monitoring of the decreasing concentration trends at the AS Terminal Building property in 2017.

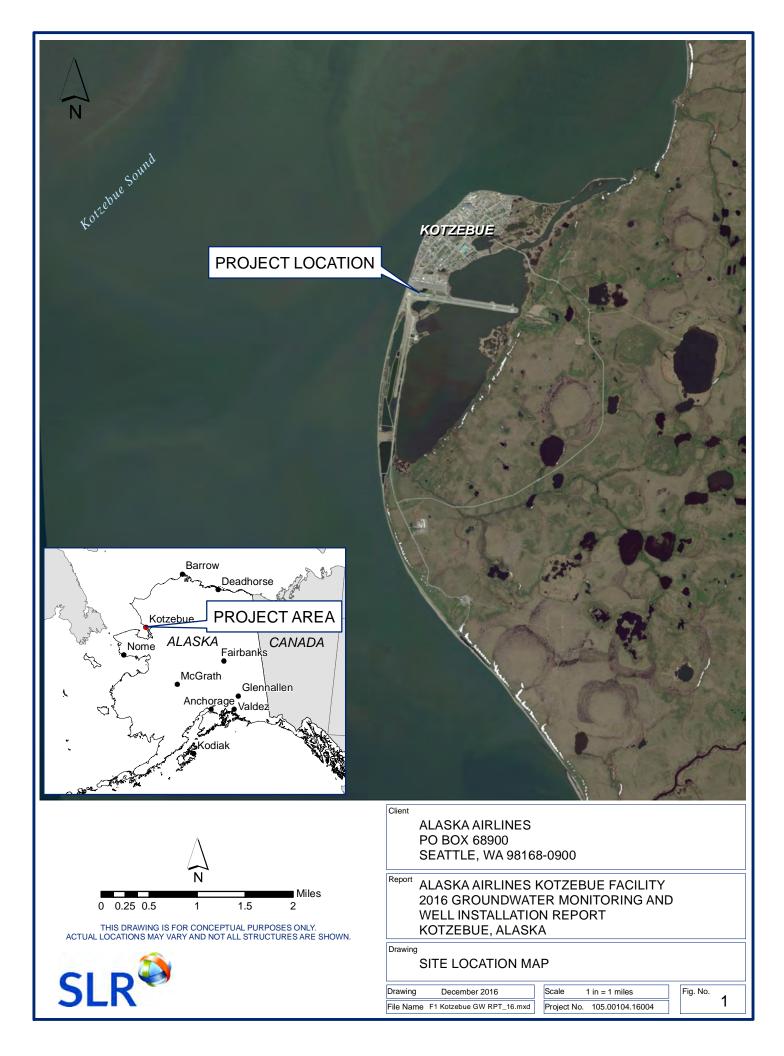
- Alaska Department of Environmental Conservation (ADEC). 2009. Environmental Laboratory Data and Quality Assurance Requirements Technical Memorandum. March.
- ADEC, 2010. Policy Guidance on Developing Conceptual Site Models. October.
- ADEC, 2013. ADEC Monitoring Well Guidance. Division of Spill Prevention and Response, Contaminated Site Program. September.
- ADEC, 2016a. Field Sampling Guidance. March.
- ADEC, 2016b. Alaska Administrative Code (18 AAC 75), Oil and Other Hazardous Substances Pollution Control Regulations, revised as of November 6.
- Maul Foster & Alongi, Inc. and SLR Alaska, 2003. Release Investigation and Exposure Pathway Assessment Report, Alaska Airlines Terminal, Ralph Wein Memorial Airport, Kotzebue, Alaska. January.
- Shannon and Wilson, 2014. Groundwater Monitoring Report, Ralph Wien Memorial Airport, Kotzebue, Alaska. June.
- SLR International Corporation (SLR), 2010. Alaska Airlines Kotzebue Facility 2010 Groundwater Monitoring Report, Kotzebue, Alaska. September.
- SLR, 2015. 2015 Groundwater Monitoring Report, Ralph Wein Memorial Airport, Kotzebue, Alaska. December 2015.
- U.S. Environmental Protection Agency (EPA), 2010. Standard Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection. EPA Region 9, Quality Assurance Office, Field Sampling Procedures Web Reference: <u>http://www.epa.gov/region9/ga/pdfs/finalsopls1217.pdf</u>
- U.S. Geological Survey, 1995. Overview of Environmental and Hydrogeologic Conditions at Kotzebue, Alaska. USGS Open-File Report 95-349.
- URS. 2001. Final Kotzebue Airport Terminal Release Investigation and UST Removal. July.

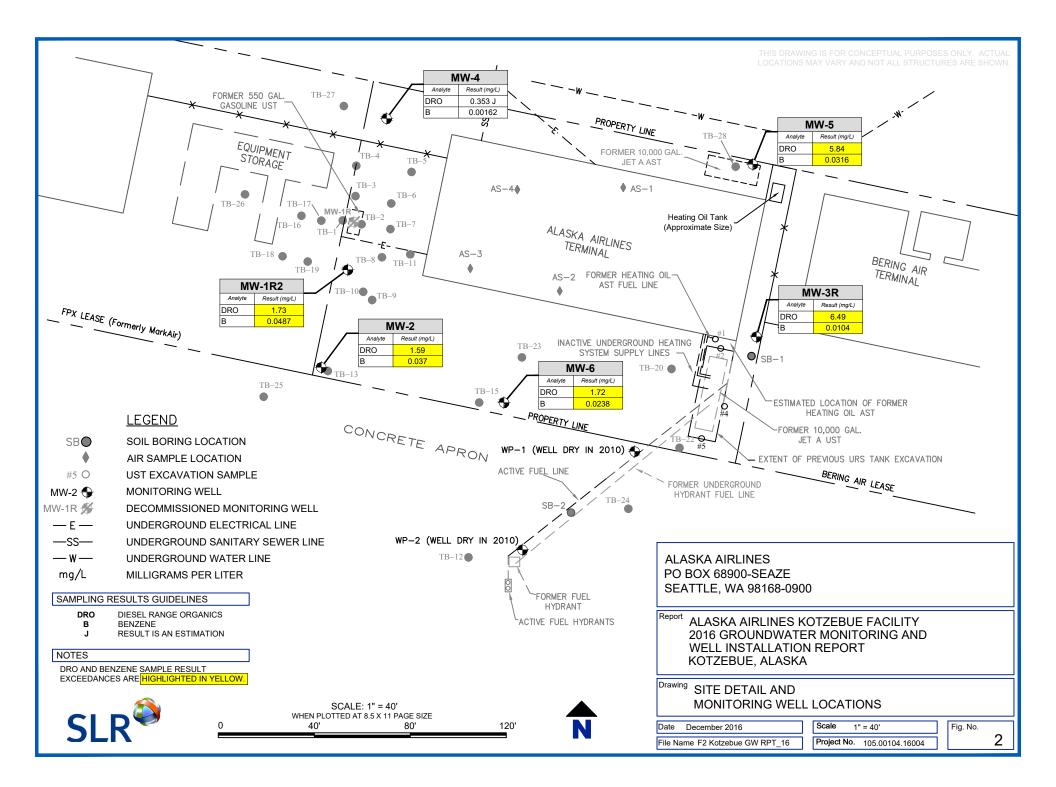
The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.


Environmental conditions that are not apparent may exist at the site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall site environmental conditions.


The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.

This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Detail and Monitoring Well Locations

TABLES

- Table 1
 Soil Boring Sampling Results
- Table 2
 Groundwater Sampling Analytical Data
- Table 3Historical Groundwater Data

Table 1 - 2016 Soil Boring Sampling ResultsWein Memorial Airport, Kotzebue, Alaska

	Screen	ning Criteria				5	Sample Lo	cations	3				Trip Blank	
Compound in milligrams per kilogram (mg/kg)	18 AAC 75 Arctic Zone ¹	18 AAC 75 Migration to Groundwater ²	MW1R2-4.5 05-Oct-16 1166058009		MW4-2.5 05-Oct-16 1166058011		Primary: MW5-2 05-Oct-16 1166058012		Duplicate: MW5-9 05-Oct-16 1166058013		MW6-4 05-Oct-16 1166058010		TB-2 05-Oct- 1166058	-16
Fuels (AK101 and AK102)														
Gasoline Range Organics	1400	300	3.17	J	[2.36]	ND	1.6	J	1.8	J	3.2	J	[1.25]	ND
Diesel Range Organics	12500	250	28.5	=	116	=	388	=	410	=	88.7	J		
BTEX (SW8021)														
Benzene	16	0.022	0.0116	J	[0.0118]	ND	[0.0133]	ND	[0.0127]	ND	0.0138	J	[0.0062]	ND
Toluene	200	6.5	0.0225	J	0.0156	J	0.0223	J	0.0243	J	0.0429	J	[0.0124]	ND
Ethylbenzene	72	0.13	[0.034]	ND	[0.0236]	ND	0.017	J	0.0197	J	[0.0405]	ND	[0.0124]	ND
o-Xylene			[0.034]	ND	[0.0236]	ND	0.0197	J	0.0172	J	[0.0405]	ND	[0.0124]	ND
P & M -Xylene			[0.068]	ND	[0.0471]	ND	0.0644	J	0.0572	J	[0.081]	ND	[0.0249]	ND
Total Xylenes ⁴	57	1.5	[0.102]	ND	[0.0707]	ND	0.0841	J	0.0744	J	[0.1215]	ND	[0.0373]	ND
Polynuclear Aromatic Hydrocarb	ons SIM (SM	18270D)											•	
1-Methylnaphthalene	68	0.41					[0.052]	ND	[0.052]	ND				
2-Methylnaphthalene	420	1.3					[0.052]	ND	[0.052]	ND				
Acenaphthene	6300	37					[0.052]	ND	[0.052]	ND				
Acenaphthylene	3100	18					[0.052]	ND	[0.052]	ND				
Anthracene	31000	390					[0.052]	ND	[0.052]	ND				
Benzo(a)Anthracene	2.7	0.28					[0.052]	ND	[0.052]	ND				
Benzo[a]pyrene	0.28	0.27					[0.052]	ND	[0.052]	ND				
Benzo[b]Fluoranthene	2.8	2.7					[0.052]	ND	[0.052]	ND				
Benzo[g,h,i]perylene	3100	15000					[0.052]	ND	[0.052]	ND				
Benzo[k]fluoranthene	28	27					[0.052]	ND	[0.052]	ND				
Chrysene	280	82					0.0752	J	0.065	J				
Dibenzo[a,h]anthracene	0.28	287					[0.052]	ND	[0.052]	ND				
Fluoranthene	4200	590					[0.052]	ND	[0.052]	ND				
Fluorene	4200	36					[0.052]	ND	[0.052]	ND				
Indeno[1,2,3-c,d] pyrene	2.8	8.8					[0.052]	ND	[0.052]	ND				
Naphthalene	42	0.038					[0.052]	ND	[0.052]	ND				
Phenanthrene	3100	39					[0.052]	ND	[0.052]	ND				
Pyrene	3100	87					[0.052]	ND	0.0322	J				
Percent Solids (SM21 2540G)	-			•	*				•		•		•	
Total Solids			94	=	96.6	=	95.6	=	95.5	=	87.6	=		

Notes:

1 - The cleanup level corresponds to the most stringent of direct contact or inhalation of soil as listed in 18 AAC 75.341, Tables B1 and B2, Method Two cleanup levels for the Arctic Zone (ADEC, November 6, 2016).

2 - The cleanup level corresponds to Migration to Groundwater as listed in 18 AAC 75.341, Tables B1 and B2, Method Two cleanup levels for Under 40

Inch Zone (ADEC, November 6, 2016).

3 - The field sample identification number, date collected, and laboratory sample identification number are provided.

4 - Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.

Data Flags

Nondetect, LOD is presented in brackets to the left
The analyte was positively identified, but the result was between
the LOQ and DL; the quantitation was an estimate.
A detected compound [concentration listed in column to the left]

Abbreviations

	Not applicable or screening criteria does not exist for this compound	LOD	Limit of Detection
AAC	Alaska Administrative Code	LOQ	Limit of Quantitation
ADEC	Alaska Department of Environmental Conservation	mg/kg	milligrams per kilogram
DL	Detection Limit		

Table 2 - 2016 Groundwater MonitoringWein Memorial Airport, Kotzebue, Alaska

Compound in milligrams per	Screening Criteria						Sa	mple Locatior	ıs²							Trip Bla	nks
liter (mg/L)	18 AAC 75, Table C Groundwater Cleanup Levels ¹	100316 03-Oc 116605	t-16	100316MW3R 100616MW4 03-Oct-16 06-Oct-16 1166058001 1166058005		16	Primary 100616MW6 06-Oct-16 1166058003		Duplicate: 100616MW9 06-Oct-16 1166058004		100716MW1F 07-Oct-16 1166058006		2 100716MW5 07-Oct-16 1166058007		TBW1 03-Oct-16 1166058008		
Fuels (AK101 and AK102)																	
Gasoline Range Organics	2.2	0.177	=	1.07	=	[0.05]	ND	0.122	=	0.111	=	0.175	Ξ	0.267	=	[0.05]	ND
Diesel Range Organics	1.5	1.59	=	6.49	=	0.353	J	1.72	=	1.4	=	1.73	п	5.84	=		
BTEX (SW8021B)																	
Benzene	0.0046	0.037	=	0.0104	=	0.00162	=	0.0238	=	0.0237	=	0.0487	=	0.0316	=	[0.00025]	ND
Toluene	1.1	0.00075	J	[0.0005]	ND	[0.0005]	ND	0.00072	J	0.00039	J	0.00143	=	0.00211	=	[0.0005]	ND
Ethylbenzene	0.015	0.0056	=	0.0507	=	[0.0005]	ND	0.00348	=	0.00339	=	0.00264	=	0.00353	=	[0.0005]	ND
o-Xylene		[0.0005]	ND	0.0114	=	[0.0005]	ND	0.0006	J	0.00052	J	0.00122	=	0.003	=	[0.0005]	ND
P & M -Xylene		0.00361	=	0.0797	=	[0.001]	ND	0.00439	=	0.00421	=	0.00648	=	0.00849	=	[0.001]	ND
Total Xylenes	0.19	0.00411	=	0.0911	=	[0.0015]	ND	0.00499	=	0.0047	=	0.0079	=	0.01149	=	[0.0015]	ND

Notes:

1 - This is the primary cleanup level for groundwater and corresponds to values listed in 18 AAC 75.345 Table C (ADEC, November 6, 2016).

2 - The field sample identification number, date collected and laboratory sample identification number are provided.

3 - Total values were the summation of detected compounds only. If compounds were not detected, then the highest LOD was listed.

Data Flags

- ND nondetect, LOD is presented in brackets to the left
- J reported value was between the laboratory DL and LOQ
- Q The quantitation was an estimate due to quality control failure. Where applicable, a "H", "L", or "N" was used to indicate possible high, low, or unknown bias.
- M The quantitation was an estimate due to matrix interference. Where applicable, a "+" or "-" was used to indicate possible high or low bias.
- = A detected compound [concentration listed in column to the left]

Abbreviations

	Not applicable or screening criteria does not exist for this compound
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
DL	Detection Limit
LOD	Limit of Detection

- LOQ Limit of Quantitation
- LV low volume
- mg/L milligrams per liter
- PAH Polynuclear Aromatic Hydrocarbons
- SIM Selective Ion Monitoring

Bold and shaded - The value exceeds the primary screening criteria, 18 AAC 75 Table C.

Table 3 - Historical Groundwater ResultsWein Memorial Airport, Kotzebue, Alaska

		AK101	AK102		BTEX USEPA	Method 8021	3			PAHs USEPA	Method 8270D	В	
Sample Location	Sample Date	Gasoline Range Organics	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Xylenes	Phenanthrene	Pyrene	Chrysene	Naphthalene	1-MethyInaphthlene	2-Methylnaphthlene
ADEC Ground V	Vater Cleanup Levels ^A	2.2	1.5	0.0046	1.1	0.015	0.19	0.17	0.12	0.002	0.0017	0.011	0.036
MW-1*	7/22/2000	59	6.6	0.785	3	1.55	14.5						
MW-2	7/22/2000	0.830	0.240	0.036	0.0014	0.017	0.01						
MW-3	7/22/2000	6.2	3.3	0.180	0.032	0.2	1.2						
MW-2	9/13/2002	0.559	1.01	0.0300	0.00136	0.00814	0.00815						
Duplicate of MW-2	9/13/2002	0.605	0.381	0.0331	0.00160	0.00901	0.00895						
WP-1	9/13/2002	0.228	0.223	0.0115	<0.0005	<0.0005	0.00163						
WP-2	9/13/2002	0.0526	1.990	0.00168	<0.0005	0.00067	0.00513						
MW-2	10/7/2010	0.100	6.70 H	0.0234	0.000810 J	0.00137 J	0.00162 J	0.0000896	0.000205	0.000182	0.000115	0.0000742	0.0000693
Duplicate of MW-2	10/7/2010	0.0910 J	11.8 H	0.0215	ND	0.00115 J	0.00113 J	0.0000630 J	0.000155	0.000149	0.0000954 J	0.0000534	0.0000504 J
MW-1R	10/1/2015	1.9	3.22	0.0245	0.0032 J	0.0688	0.363	ND	ND	ND	0.315	0.00524	0.00628
MW-2	10/1/2015	0.074	1.47	0.013	ND	0.00081 J	0.00096 J						
Duplicate of MW-2	10/1/2015	0.0923	2.29	0.0129	ND	0.00078 J	0.00096 J				-		
MW-3R	10/1/2015	3.1	11.1	0.0553	ND	0.245	0.809	ND	ND	ND	0.0017	0.000266	ND
MW-1R2	10/7/2016	0.175	1.73	0.0487	0.00143	0.00264	0.0077						
MW-2	10/3/2016	0.177	1.59	0.0370	0.000750 J	0.00560	0.00361						
MW-3R	10/3/2016	1.07	6.49	0.0104	ND	0.0507	0.0911						
MW-4	10/6/2016	ND	0.353 J	0.00162	ND	ND	ND						
MW-5	10/7/2016	0.267	5.84	0.0316	0.00143	0.00353	0.01149						
MW-6	10/6/2016	0.122	1.72	0.0238	0.000720 J	0.00348	0.00499						
Duplicate of MW-6	10/6/2016	0.111	1.40	0.0237	0.000390 J	0.00339	0.00473						

Notes:

^A ADEC Cleanup Levels (18 AAC 70) as revised on November 6, 2016.

^B PAHs not presented in this table were not detected in ground water samples

^{*}Duplicate samples were averaged

All units in mg/L

Abbreviations:

-- - not analyzed

< - less than

BTEX - benzene, toluene, ethylbenzene, and xylenes

H - Result is biased high due to heavier hydrocarbons contributing to middle distillate range.

J - estimated value

mg/L - milligrams per liter

N/A - not applicable

ND - not detected at or above [Limit of Quantitation]

PAH - polynuclear aromatic hydrocarbons

USEPA - Environmental Protection Agency

APPENDIX A

PHOTOGRAPH LOG

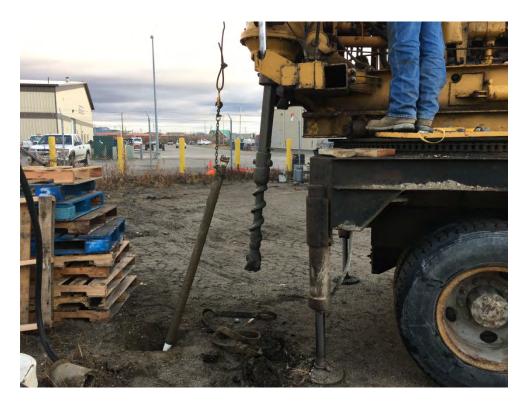


Photo 1: Decommissioning monitoring well MW-1R using drill rig and winch line. 10/5/2016

Photo 2: Drilling boring for monitoring well MW-4. 10/5/2016

Monitoring Well Installation and Groundwater Sampling Alaska Airlines Terminal Kotzebue, Alaska

Job No: 105.00104.16004

Photo 3: Drilling boring for monitoring well MW-5. 10/5/2016

Photo 4: Installing monitoring well casing at replacement well MW-1R2. 10/5/2016

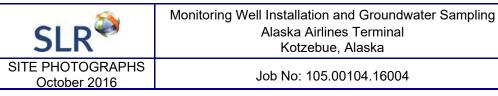


Photo 5: Groundwater sampling equipment set up at monitoring well MW-6. 10/6/2016

Photo 6:

Monitoring well MW-5 site after installation. Well is installed in gravel between asphalt of the parking area and cement pad next to dumpster. 10/7/2016

Monitoring Well Installation and Groundwater Sampling Alaska Airlines Terminal Kotzebue, Alaska

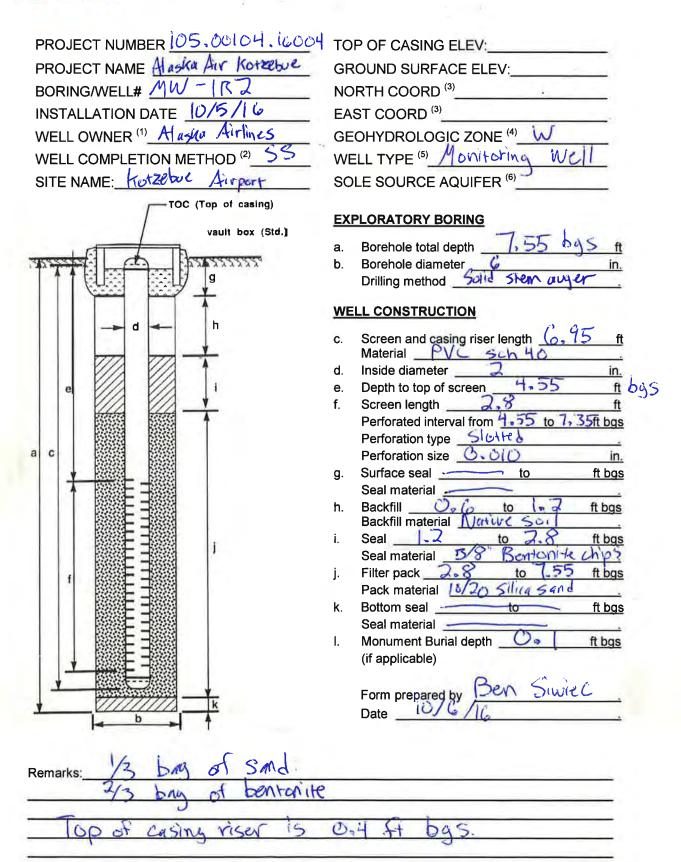
Job No: 105.00104.16004

APPENDIX B

FIELD FORMS AND LOGS

Groundwater Sampling Form

Site/Client Nam	ne: Alaska	Arlin	es Kot	zebue	Well ID	- MW-	2					
Project # :	05.001	04.160	204		Sample	Sample ID: 1003164W2						
	75 7	Wia			Sample	Sample Time: 1713 Sample Date: 10/3/16						
Weather Conditi			NG Lin	ht wind	Duplica	Duplicate ID:						
Sampling Method:	-		5 1.9	il w. c		D 🗌 Yes	No.	Trip Blank R	Required: 🔽	Yes 🗌 No		
Samping Metricu.				Well In	formation				in qui non ve			
Well Type: Per	manent 🗌 Te	emporary	V	Vell Diameter		Screen Int	erval:	ft BG	iS to	_ft BGS		
Well Condition:						Stickup	Yes XN	; If yes,	ft above	e ground		
		-	-	Gauging/Pur	ging Informa	tion		B8 10/				
Depth to Water (ft		.83					n (ft. BTOC)	6 5				
Total Depth (ft BT		.95				tart Time (2		431				
Depth to Product (Product Thickness		A LA				nd Time (2) Irge Time (1		lld				
LOW FLOW: M	lax Draw Down creen, then use			Screen Depth)				rval is not know	vn or water table	e is below top of		
Min. purge volume				water/ft(ga	/ft) X Water col	umn thicknes		X # of casing v	olumes	=gal		
Well Diameter			041 gal/ft	2"-0	.163 gal/ft	- 1	4" - 0.653	gal/ft	6" – 1.4	69 gal/ft		
				Water Qua	lity Paramete	ers						
				parameters if pract								
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)		
(24,117)	(liter/ minute)	(gal)	(± 3 %)	(μS/cm ^c) (± 3%)	(± 10%)	(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)		
1640	0.25	1	2.90	1.205	0.60	612	-56.4	10.95	2.99			
1644	0-25	7	270	1.420	0.58	6.26	-70-1	9.33	2.99			
1648	2 75	2	264	1.883	0.57	6.44	-87.1	4.18	2.99			
1100	0-25	4	2.55	2.293	0.60	6.59	-98.7	2.17	2.94			
1652	0.25	F		2.477	0.55	6.70	-93.8	114	2.99			
1456	0.25	50	2.54	the second se		6.77	-93.1	12-	2.99			
1760	0.25	5-8	2.50	2.606	0.55		-91.9	1.35				
(104	0.25	6.8	2.50	2.705	0.57	6.83		3.53	2.99			
(708	0.25	18	2.52	2.754	0.55	6.87	- 87.9	0.66	2.99			
17.12	0.25	8-8	2.53	2782	0.52	6.90	-87.8	0.47	2.99			
	1	1	-						1			
2-10	gal tot	a	-	1		- 10 m				5 - I		
Parameter Stal	ble (Check ap	olicable)	V				V			-		
Sample Color:	liph a n.A	llow		Sample Odor	Frinthu	trouch	Shee	en: nc)			
	Julia	110.0	-		al Sampling							
	Analy	/505			k Applicable			Comme	ents			
DRo				1	/							
(380)					11							
BTE	X				V				_			
0.0												
Notes:												
	Qar	es altie				tellin-	Level 1		-			
Equipment: Pur		La Dicati	V Mad 51	Tubing (1 153 Multi-Paran	ype/Length)	IL-TION I	YSI SE	Bailer Type	MAKI3			
Water Level Mete Turbidity Meter (N					ieter meter (M	nake/SN#)_		ilter Lot #	00912	-		
						CL	1 de		PAC			
Purge Water Har	ndling: 🗌 Dis	charged to s	surface 🗌 Co	ntainerized 🖂	Freated (how?) filter	ed Th	rough	GAC			
BGS = Below Gro	ound Surface B	TOC= Below	v Top of Casin	g, NA = Not Appl	icable			Page 1 of				
				-, ····PP*				-				


Groundwater Sampling Form

Site/Client Name: A	uska Air	Kotzebu	12	Well ID	: MU	V-3R					
	20104.160			Sample		0316M	W3R				
Sampled By: Ben	Simec			Sample	Sample Time: 555 Sample Date: 10/3/16						
	Clovey, 40	15 11 m	in h	Duplica	Duplicate ID:						
Sampling Method: X Low					D 🗌 Yes	No '	Trip Blank F	Required: 🔀	Yes 🗌 No		
			Well Inf	ormation		1.1	-				
Well Type: 🕅 Permanent	Temporary	N	/ell Diameter 🗾		Screen Int	erval; _ 🖉	9ft BG	GS to <u>59</u>	_ft BGS		
Well Condition: Good [🛛 Fair 🗋 Poor (if	fair or poor e				Yes No	; If yes,	ft above	ground		
	2 20		Gauging/Purg			A PTOC	4.5	-			
Depth to Water (ft BTOC): Total Depth (ft BTOC):	5.48				Pump Depti Start Time (2		510 -2	-			
Depth to Product (ft. BTO					Ind Time (24	and the second s	54				
Product Thickness (ft)	NA			Total Pu	urge Time (r		5				
	Down ≕ (Tubing D n use default value (Screen Depth)	X 0.25 =	=(ft); i	f screen inter	val is not knov	vn or water table	is below top of		
Min. purge volume if require Well Diameter – gal/ft		al) = volume of v)41 gal/ft		ft) X Water co 163 gal/ft		s(ft) 4" – 0.653 (X # of casing v		gal 69 gal/ft		
Well Diameter - gaint	- 0.0	H I gaint	Water Quali			4 - 0.000		0 1.4	oo gunt		
(Achieve stable param	eters for 3 consecut	tive reading, 4 p	arameters if practic	al [each read	ing taken afte	r pumping a	minimum of 1 f	flow through cell	volume])		
Time Flo (24-hr) Ra	te Volume	Temp (°C)	Specific Conductance	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU) (± 10%, or	DTW (ft BTOC)	Drawdown (ft)		
(lite minu		(± 3 %)	(μS/cm°) (± 3%)	(± 10%)	(± 0.1)	(± 10mV)	(± 10%, ör <5 NTU)		(Maxft)		
1534 0.1	2 2	5.01	0.785	1.62	623	-335	18.6	359			
1538 6.	7 2.5	4.99	6.783	1.16	633	-42.2	13.8	3.60			
1542 0	2 3	4.96	6.782	1.23	639	-39.5	16-1	3.60			
1546 0.	2 3.5	4.98	B.781	1.30	6.50	-41.2	3.92	3.60			
1550 0.		4.95	0.780	1.29	6.52	-42.3		3.60			
1554 0.	2 5	4.93	6.780	1.28	6.54	-43.3	~~~	3.60			
			0	1.00	land						
							-				
1.											
-6 94	total		1		1		1				
Parameter Stable (Che	ck applicable)		~	V		1					
Sample Color: Vinu	whit ten/c	lear	Sample Odor:	light hy	Jociarbo	A Shee	n: No				
	3. 1			al Sampling	-						
	Analyses		Check	Applicable			Comm	ents			
DRO					1	_					
GRO			V		1						
BIEX					-		_				
Notes:				_							
Equipment: Pump Type Water Level Meter 2000 Turbidity Meter (Make/SN	+) LaMotte	1 del 7/45 7070 e	ろ Multi-Parame <u>14728</u>		Make/SN#)	<u>61 55</u>	Bailer Typ	00573			
Purge Water Handling:					n filte		Page 1 of	GAL			

CLIENT & SITE NAM	E: Alaska	Airt	Grzebue BC	RING ID: MW-1	12	
Project #: 105-	00104.16			gged By: Ban S	Siwiec	
Start Date/Time:	0935 1	015/16	Dri	illing Contractor: Pro	ane Constructio	10
Completion Date/Time	a: 1015	115	0954 Dri	iller's Name (License [)		
	BOREHOLE			LO	CATION SKETCH	
Drill Method: HSA	Direct Pu	sh 🗌 Rota	ary (mud/air) 🔲 Sonic			
Rig (Make/Model):	Texoma	500	>			
Sampling Method:	and augu	(/ disp	esable spoon			
Borehole diameter (in						
Borehole Total Depth		7.55				
Water Level (ft bgs):			me: (0/5/10			
	WELL D					
Completed as Well:	No Yes	Temporar	v Ves. Extraction			
Yes, Permanent (i						
Well ID: MW-			5/			
		Date/Tim	e: 10/6/16 1035			
	13.04		DRILLING L	OG		
GRAVEL (3 - 0.08 in)	SAND (0.08	- 0.003 in)	SILT (< 0.003 in) C	LAY (no grains visible)		(< 50% mineral soil)
GW GP GM GC	SW SP	SM SC		CL OL MH CH OH		РТ
Drive Interval Blow Counts (per 6") or Drill Effort Recovery (% or ft)	USCS CODE /Lithology Sketch PID PPM (in situ)	Depth	(e.g., overburden / fi	n angularity; moisture; s ill / native / other); Samp	heen/stain; odor; co ble ID (if applicable)	onsistency; unit type
		25	2" Apphalt 1 30" Gravelly e		F	
		2.	5-5 Gravely	sund, SP, ligh	hr brown, 2	ry 87
		4.5				PID HH:att bgs
		5-	Saturated - 1	mud		
		7.	5-7D			PID HH:atft bgs
						PID HH:atft bgs
			I methods; PID model). HH 4 7.5.54 an 4.5.collectes at			

FLUSH MOUNTED WELL COMPLETION DETAILS

Rev. Jan 2016

Su

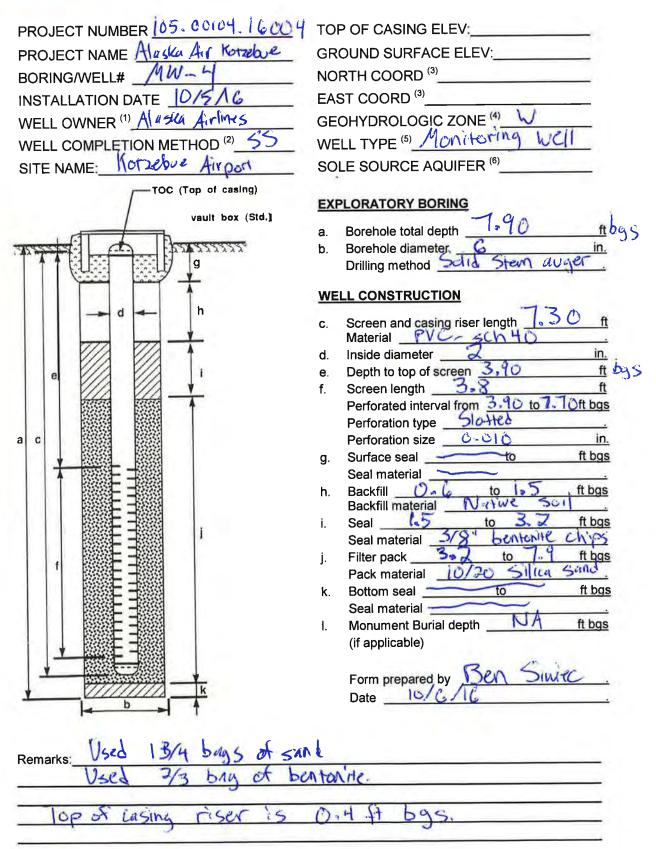
Well Development Form

	lame: Al		Air Kotze	ebue		II ID:	MW-1			
,			, 16004		De	veloped	By: Ber	Sivier		
Date (mm/dd/	yy): 10,	1616)	_						
	-		Inter I	,	Well Info			Danati 🗍 Den I		tural
Vell Installatio				>					Packed; 🗌 Na	5
Date Last Dev							ding Depth:	m)(ft bgs): 2.	8 to T.:	00
Vellbore Dian		62					Depth to War		3.72 BT	ac
Nell Diameter Nell Depth Up			has): 7 55	(boreho			and the second sec	s in Well (ft):		00
Screen (top to				135			auging: 10/			
	, bottom)(it	530).		Develop			Equipment		Li de la compañía de	
Mechanica	Suraina	п	Over-Pumping				Joa (J).			1 . 1
Surging/Pu			High Pressure	letting				pm): Wate	rra by	hand
		Ц	nigh Flessule a	Jetting			ump or Airlift	and the second se	3.1-	1 1. 1
Other (des	cnpe):	•		_				e: Water	ra vawe/	Sorge block
	***						(if required)		27	
			ck = Saturate						and the second sec	
			sing = Height o = $I(a) + (b)$				ng Volumes (-)	
c) Minimum	Purge Vol	une	- [(a) + (D)		Surging I		-	9ui/.		
	Surge Interv	al (ft bgs)			Surge S	tart Time			Surge Finish	n Time
uly tos	3.7 to	-1			10.	53		1	203	
Purge u	to to	Water		+0 1120	, wel	dru	Si Appro	x 1.5	liters pro 5 liters F	tored
PUrge 1	Nith to	W/ate	Ara +121	and the second sec				Dowx 1.5	liters	Die Lared
~				Purging a	and Water	Quality	Parameters*	1	/	
Time	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm°)	DO (mg/L)	ORP (mV)	рН	Turbidity (NTU) and/or Color	Measured Depth to Water (ft BTOC)	Total Drawdown (ft)	Sediment In Discharge Wate (y/n)
1129							E	6.93		
1134								6-80		10 St. 10
1428								448	pursed 1	rw at 1430
1718								4.30	3	J
1.00										1
Tot	al p	urae	din	3 PL	roina	SU	ntil dr	4)= A	5 liters	1.2 99
	1					1		33		
101						1				
101		K				-				
101		-		1						
101				1		-				
CWE		oment (v/	n) (hune/volume);	NA						
Fluids added d	uring develo	pment (y/	n) (type/volume):	NG eatment, disp	posal): Stilte	~ 20	nd disr	haraed	te Sur	face.
Fluids added d IDW Managem	filtere	er type an	date sealed, tre	No eatment, disp & AC	posal): Stilte	n a	nd disc	hurged	to Sur	face.
Fluids added d	filtere	er type an	date sealed, tre	NG eatment, disp EAC	posal): Silte	N do	nd disc	harged	te Sur	face.
Fluids added d DW Managem	filtere	er type an H	t BGS	N 6 atment, disp & A C	posal): Silte	n do	nd disc	harged	10 Sur	face.

Table 1 – Vo	olume of V	ater in Filf assur		er Foot (30°	% porosity						
Well Diameter		Borehole Diameter (in)									
(in)	2	4	6	8	10						
1	0.037	0.184	0.428	0.771	1.212						
2	- 3.	0.147	0.392	0.734	1.175						
4			0.245	0.587	1.028						

Table 2 – Volume of Water in Well per Foot								
Well Diameter (in)	Volume of Water per Foot (gal)							
1	0.41							
2	0.163							
4	0.653							

Groundwater Sampling Form


Site/Client Nam	e: Ala	cin Air	Kon	ebur	Well ID	MIN	1 - 1R)				
Project # :		004.	16004			Sample ID: 100116MW182						
Sampled By:		with .	14001		Sample Time: (000) Sample Date: [0/7/6							
Weather Condition	1		11 0	2/6	-	Duplicate ID:						
			ndy, n	36°	-			Trin Diank D				
Sampling Method:	LT LOW FIOM	Other_	_	Well led		D 🗌 Yes	NO	т пр віалк н	Required: 🚺			
Well Type: 🗹 Perr		emporany	1		in.	Screen Int	terval:	5 ft BG	S to To 35	ft BGS		
Well Condition:							Yes XN			e ground		
				Gauging/Purg	ing Informa				ICMG	ground		
Depth to Water (ft	BTOC): 3	.37					h (ft. BTOC)		- 6.2			
Total Depth (ft BTOC): 6.95 Purge Start Time (24-hr) N.												
Depth to Product (1		MA	_			nd Time (2		JA				
Product Thickness	~ 1		anth - Top of	Screen Depth)		rge Time (I		V/I	un or water table	e is below top of		
	reen, then use			Screen Deptinj	^ 0.23 =	((t),	il screen inte	Val is not know				
Min. purge volume i Well Diameter -			al) = volume of 041 gal/ft		ft) X Water col 163 gal/ft		ss(ft) 4" – 0.653	X # of casing v gal/ft		_= <u>g</u> al 69 gal/ft		
				Water Quali				minimum of 4 f		volume)		
Time				parameters if practic	DO		ORP	Turbidity	DTW	Drawdown		
(24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	(mg/L)	pН	(mV)	(NTU)	(ft BTOC)	(ft)		
	(liter/ (gal) minute) (± 3 %)					(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)		
IDOF	1005 4.04 I				(± 10%) 35,17	6.83		37.6				
1005			1.01	148	3311	6.01	-600	51.0	-			
Due	to ex	tremeli	Slow	J rechar	re f	n's v	vell	Nas I	Durge	ł		
druk	00	16/0	11/2		impled	ON	101	7/16 1	From			
what	10.00	hat re	charac			with		punje				
(API		rameta		ere calle		ha	RAD	hur	Filing			
Pili	Ida	Centa		AC CONT	1	101	cop	4110	1 Star			
2010	mpre	coning	in									
			1		-		-					
					1	-						
/												
						-						
Parameter Stab	le (Check an	plicable)			-				-			
Sample Color:	Clear	piloabic)		Sample Odor:	No	-	Shee	n: No				
Sample Color:	Circui				al Sampling	_	Shee		_			
	Analy	vses			Applicable	1		Comme	ents			
DRO	/RRO			A later and	1							
GRO	BIE	X			1							
CAL	1 1 10 10											
1												
Notes:												
								2.2				
.	P.	richaltir			pe/Length)	eften-	lined Ht	PE	NA			
Equipment: Pum Water Level Meter	p lype 0	n Lucated	5462	Tubing (Ty	pe/Length)	ako/Chim	YSI F	Bailer Type	STLIGA	SI3		
Turbidity Meter (M	aka/SNI#)	1. Matte	2020	2 14728				ilter Lot #	NX			
	ane/orv#)		- Control			~	1. 14			te de al		
Purge Water Han	dling: Dis	charged to s	urface CC	ntainerized 🕅 Tr	eated (how?	filtere	d three	righ GAC	- and J	"Schanded		
BCS - Below Grou	und Surface B	TOC= Below	Top of Casin	g, NA = Not Applic	able			Page 1 of				

SLR

LIEN	IT & SITE	NAM	E: A	45	46	Air	Kotzebue	BORING ID: ////
rojec		05.			_	004		Logged By: Ren Siwith
_	Date/Time	-	1/1	6		40		Drilling Contractor: Drake Construction
_	letion Dat		12/1	151	16		200	Driller's Name (License [y/n]): Bub
P.			BORE	HOL	E DE			LOCATION SKETCH
rill M	lethod:	HSA	Dire	ect Pu			y (mud/air) 🗌 So	onic
Oth		Salid		em		Nger		
ig (N	lake/Mod	el):	texc	ome	1 5	30		
amp	ling Meth	od: A	and a	Uge	5/	lisper	sable spece	<u>n</u>
oreh	ole diame	eter (in		1		•		
	ole Total				7-9	0		
/ater	Level (ft	bgs):					ne: 10/6/16	
					DETA			
							Yes, Extracti	on
_	s, Perma			ompl	ete a	well log])	
/ell I		Nui			1-	1	WEAT ID	- X
ater	Level in	well (ft	(bgs)	5.9	(Da	ite/Time	10/6/16 180	
			1.0					
	/EL (3 - 0.		-	<u> </u>)03 in)	SILT (< 0.003 in)	CLAY (no grains visible) HIGH ORGANIC (< 50% mineral soil) CL OL MH CH OH PT
GW	GP GM	GC	SW	SP	SM	SC	ML	
Interval	Blow Counts (per 6") or Drill Effort	Recovery (% or ft)	USCS CODE /Lithology Sketch	PID PPM (in situ)	Depth ft bgs		% fine materia (e.g., overburd	Description RIAL TYPE; secondary material type; color; % coarse material; ; grain angularity; moisture; sheen/stain; odor; consistency; unit type en / fill / native / other); Sample ID (if applicable).
-				-	0	0-7	5" Aco	nult pavement
			1 1					latt
					2.5			hult pavement velly sand, SP, light brown, dry PID HH: at the
1					4			ind, SP, light brown, dry PID HH: <u>O at 4</u> Rb
						4 -	SillySan	di SM light brown i dry
4						4.5	- inlater	all muddy below here.
1								
	-	-						PID HH:atft t
						7.9	OTD	
				1		1. 1		
		ă.						
			1					
								PID HH: atft b
	s: (indicate	IDW co		zation	and o M W	lisposal	methods; PID mode	1). HH = heated headspace screening the at 1145 at 2.5 ft bgs.
-		1	June 1					d.

FLUSH MOUNTED WELL COMPLETION DETAILS

Rev. Jan 2016

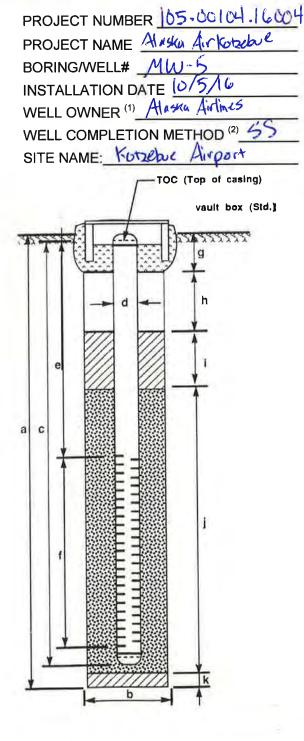
Well Development Form

Site / Client N	lame: /4	4544	Air Kot	sebul	We	ell ID:	MW-4	Sec		
Project #: /(16004		De	veloped	By: Ben	Siwie	C	
Date (mm/dd/										
			1.1-1			ormation				
			: 10/5/1.	6	-		C Poured S	100		atural 3
Date Last Dev							(top to botto	and the second data and the se		7.70 865
Wellbore Dian		6					ding Depth: Depth to Wat	7.30)	1000	Broc
Well Diameter Well Depth Up		ation (ft	has): 740	11.00			umn Thicknes		3-1-2	SIUC
Screen (top to			3 4 to	bore.		ne of G		<u>300</u>	Jela	
Screen (top to	bottom)(it	Ugs).	2,1 10	Developm			Equipment			
Machanias	Curring							Vo Rigt	type:	1 . I
Mechanica			Over-Pumping		Pu	тр Тур	e/Capacity (g	om): 🕡 🕯	terra bu	n hand
Surging/Pu			High Pressure J	etting	De	pth of F	or Airlift	Line (ft bgs):	3.6 +	0 1.5
🗋 Other (des	cribe):					-	ck Length/Typ	e: Vatom	a vulve/	Surge block
				the second s			(if required)			
	f Water in						x Table 1 Val			
2. 1. 1.			sing = Height o							
(c) Minimum	Purge Vol	ume	= [(a) + (b)				ng Volumes (gal):		
	Surge Interv	al /A has	the I	S	Surge S	nformati			Surge Finish	Time
SURAL	3. Le to	al (II bgs	30100	1812	+0	1810	0	4	ourger mis	T TIMO
Puise	3. (oto		3	1819	to	1840	5 7-	5 99 .	19491.	
	to									
	to to									
1				Purging an	d Water	Quality	Parameters*			
Time	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm°)	DO (mg/L)	ORP (mV)	рН	Turbidity (NTU) and/or Color	Measured Depth to Water (ft BTOC)	Total Drawdown (ft)	Sediment in Discharge Water (y/n)
1842	7.5						brown	4.25		Yes
10.0	Fre	11 0	urameters	not	Call	ected		ney w	one a	sllected
	-	rediat		devel			as par		Sampling	loure ina.
6.	Cutu	ICau		Geven		1			13	1 3.9.
						-	-	12200	1	
						1				
								-		
		-		V						
					_					
									-	
			(type/volume):	No						
			nd date sealed tre	atment dispo	osal):	ad a	lishuro	ed to	Surface	e .
IDW Managem	ent (contain	er type an	nd date sealed tre	atment dispo	osal): Y al	nd a	lischurg	ed to	SUFRE	ë.
IDW Managem	ent (contain - Il tered - IS (er type an Thro D. 4	tt Dgs.	atment dispo	osal): Y QI	nd .	lischaro	ed to	SUFRIC	ť.

Table 1 – Volume of Water in Filter Pack per Foot (30% porosity assumed)											
Well Diameter		Borehole Diameter (in)									
(in)	2	4	6	8	10						
1	0.037	0.184	0.428	0.771	1.212						
2		0.147	0.392	0.734	1.175						
4			0.245	0.587	1.028						

Table 2 – Volume of Water in Well per Foot								
Well Diameter (in)	Volume of Water per Foot (gal)							
1	0.41							
2	0.163							
4	0.653							

Groundwater Sampling Form


Site/Client Na	me: A 436	a Air	Kotze	bue		Well ID	MW	-4				
Project # :			6004			Sample ID: 100616MW4						
Sampled By:	and the second s	1	6007	_		Sample Time: (140) Sample Date: 10/6/16						
				1 5 (Duplicate ID:						
Weather Cond			indy .	40'5				NT-NI-	Trin Dianis D	anuiradi 🔽		
Sampling Metho	od: 🔼 Low Flow	U Other_		_		1	D 🗌 Yes	NO	тр Валк н	equired: 🔀		
	ermanent 🗌 Te		Lv		Well Inf	ormation in.	Screen Int	erval: 3	ft BG	S to 77	ft BGS	
						<u> </u>		Yes M			ground	
Well Condition:	🕺 Good 🔲 Fai		tair or poor e			ing Informa		res XIN	0, II yes,	11 20040	ground	
Depth to Water	(# BTOC): 7	75 0	1856	Gaug	ing/Purg	Tubing/	Pump Depti	n (ft. BTOC	: 5.3			
Total Depth (ft		30	ycon		_		itart Time (2		857			
Depth to Produc		VA				Purge E	nd Time (24	4-hr)	1934	5		
Product Thickne	ess (ft)	VA					urge Time (1		tO			
LOW FLOW:	Max Draw Down screen, then use of	= (Tubing D default value o	epth – Top of of 0.3 ft.;	Screen D	epth)	X 0.25 =	(ft);	if screen inte	rval is not know	n or water table	e is below top of	
Min. purge volum Well Diamete	ne if required: pur er – gal/ft		al) = volume of)41 gal/ft	water/ft		ft) X Water col 163 gal/ft		s <u>(ft)</u> 4" – 0.653	X # of casing v gal/ft		_= <u>gal</u> 69 gal/ft	
1 4 - 18 Same				Wa	ter Quali	ty Paramete	ers					
(Achieve s	stable parameters f	or 3 consecut	tive reading, 4	parameter	s if practic	al [each read	ing taken afte	er pumping a	minimum of 1 f	low through cell	volume])	
Time	Flow	Purge	Temp		cific	DO	pН	ORP	Turbidity	DTW (ft BTOC)	Drawdown	
(24-hr)	Rate (liter/	Volume	(°C)		ictance	(mg/L)		(mV)	(NTU) (± 10%, or	(11.11.100)	(ft)	
	minute)	liter	(± 3 %)	(± :	3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Maxft)	
1912	0.22	2.5	321	Ga	4	227	645	71.2	106-8	3.85	0.10	
1919	02.	14	3,14	60	T	1.72	6.69	36.8	93.6	385	0.10	
1922	0.22	4.7	5.07	60	5	1.60	682	26.5	64.4	385	0-10	
1975	0.22	5.4	3.07	60		147	6.87	21.4	583	3.85	0.10	
1195	0.00	G	3.06		(E.S.	130	01	1	53.6	3.85	0.10	
1120	Veda	AP		60		1-30	6.91	16.2				
1921	0.22	6.6	3.06	60	2	1-76	6.95	11.5	45.7	385	0.10	
1937	0.22	1.5	3-06	GO	2	1.11	6.15	6.5	71.7	3.85	0.10	
1937	0.22	8	3.06	60		1.44	695	1-6	40.5	385	0-10	
1												
total	aallon	5 QU	ged=	2.	5							
10.1	9		3		-		1					
Parameter S	table (Check ap	plicable)			-		V	1			1	
Sample Color:	Clear			Sampl	e Odor:	Nč	5	She	en: N	8		
	-			· · · · · · · · · · · · · · · · · · ·	Analytic	al Sampling	0					
	Analy	ses			Check	Applicable			Comm	ents		
DR	A/RRO				V							
GP		×			V							
							1					
Water Level Me	ump Type Per ster Sope ((Make/SN#)	na cator	C 51453 2070	Mul	ubing (T) Iti-Paramo	ype/Length) eter Meter (N	tefi∍n Make/SN#)_	1 2 2:	Bailer Typ	NA		
Purge Water H	landling: 🗖 Dis	charged to :	surface 🗌 Co	ontaineriz	ed 🗹 T	reated (how?	Filton	ed three	sugh GA	C and d	lischarged	
BGS = Below G	Ground Surface, B	TOC= Below	Top of Casin	g, NA = 1	Not Applie	cable			Page 1 of			

SLR

CLIEN	T & SITE	NAM	E: At	ask	A	ir Kota	ebue B	DRING ID: MW-	5.
Project			COI			004		gged By: Ran	will</td
	ate/Time	10	15/1	G	122	-	Di	illing Contractor: Di	take Construction
Comple	etion Dat	e/Time	: 10/	5/10	6	1237	Di	iller's Name (License [
			BORE					LC	DCATION SKETCH
Drill Me	ethod: 🗌	HSA	Dire	ect Pu	ish [N .	nud/air) 🔲 Sonic		-
	ake/Mode		Tex	Om	or	500	1		
	ng Metho					dispos	ible spacen		
	le diame): 6	>		Constant of the			
Boreho	le Total	Depth	(ft bgs)	6		()		0)
Water	Level (ft	bgs):	4		C	ate/Time:	10/5/16	N III.	
					DETA				
						nporary	Yes, Extraction		
Well ID		1-					and the second		
	Level in	well (ft	(6gs): 0	.15	Da	te/Time: 10	17/16 0830		
			<u> </u>				DRILLING I		
GRAV	EL (3 – 0.	08 in)	SAND			03 in) S		CLAY (no grains visible)	HIGH ORGANIC (< 50% mineral soil)
	GP GM		SW	SP	SM	SC	ML	CL OL MH CH OH	PT
Drive Interval	Blow Counts (per 6") or Drill Effort	Recovery (% or ft)	USCS CODE /Lithology Sketch	PID PPM (in situ)) Depth ft bgs		% fine material; gra	Description TYPE; secondary mate in angularity; moisture; s ill / native / other); Sam	rial type; color; % coarse material; sheen/stain; odor; consistency; unit type
					0	0-2	Gravelly	sand, sp,	light brown, dry
					2	2-4	Gravelly	sant, SP,	PID HH: <u>at thess</u> hight brown, dry PID HH: <u>at 4 ft bgs</u>
					4	4-	Gravelly :	sand, SP, br	own Saturated
									PID HH:atft bgs
		4			(0.7	TD		
						÷.,			
							<u></u>		PID HH:atft bgs
Notes Ith O	alyticate	IDW C Al Sc He S	ontaineri IMPR MW	Mu 5-	n and c NS 9	disposal met -2 col	ected At	H = heated headspace sc 230.	reening

FLUSH MOUNTED WELL COMPLETION DETAILS

TOP OF CASING ELEV:
GROUND SURFACE ELEV:
NORTH COORD ⁽³⁾
EAST COORD (3)
WELL TYPE (5) Monitoring Well
SOLE SOURCE AQUIFER (6)

EXPLORATORY BORING

- a. Borehole total depth <u>6.70</u> ft bg 5 b. Borehole diameter <u>6</u> in
- Drilling method Solid Stern auger.

WELL CONSTRUCTION

- c. Screen and casing riser length 6.10 ft
- d. Inside diameter ______ in.
- e. Depth to top of screen 243 201 ft 695
- f. Screen length 3.8 ft Perforated interval from 2.1 to 6.5 ft bgs Perforation type Perforation size 0.010 in.
- g. Surface seal ______to ____tbgs Seal material ______
- h. Backfill O-6 to ft bgs Backfill material Natwe Scil.
- j. Filter pack 2 to 6, 7 ft bas Pack material 10/20 Silicy Sand.
- k. Bottom seal to ft bgs Seal material ______
- I. Monument Burial depth <u>NA ft bgs</u> (if applicable)

Switc Form prepared by Date

Remarks:

Weil Development Form

Site / Client N	lame: 44	15Ka	Air Kotz	Phul	We	II ID:	MW-5	1					
	05,00		16004	000	Dev	eloped	By: Be	n Siw	ill.				
Date (mm/dd/		17/16											
			The second		Well Info								
Well Installation	on Date (m	m/dd/yy)	: 10/5/1	6	Filte	er Pack	Poured	Sand; Pre-	Packed; 🗌 Na	itural			
Date Last Dev	eloped (m	m/dd/yy)				Filter Pack (top to bottom)(ft bgs): a to 6,7							
Wellbore Dian	neter (in):	G				Well Sounding Depth: 6.10 Btoc							
Well Diameter		3	· · · · · · · · · · · · · · · · · · ·					iter (ft. bgs):	3.75 6	stoc			
Well Depth Up	oon Compl	etion (ft.	(gs) 6- 10					ss in Well (ft):	2,35				
Screen (top to	bottom)(ft	bgs):	7.7 to (105			auging:	0830					
	-			Develop		_	Equipment	A 1					
🗍 Mechanica	I Surging		Over-Pumping				sed (y/n):		type:	in t			
Surging/Pu	umpina		High Pressure	Jetting						hand			
Other (des				5	Dep	Depth of Pump or Airlift Line (ft bgs): 3.75 - 6.1 Surge Block Length/Type: Waterra Valve/Surge block							
		_			Sur	ge Blog	K Length/Ty	pe: Waren	a vuive/	ronge Mach			
	C144 1 1		al. Oaturata				(if required)						
A THE REAL PROPERTY AND A THE	of Water in						x Table 1 Va						
			sing = Height o										
(c) Minimum	Purge Vol	ume	= [(a) + (b)	-			ng Volumes	(gai):					
0	Surge Inten	al (ft bee	NH4C2	1	Surging In Surge St				Surge Finish	Time			
Surge only			15	0839	- 084	3		disease-					
PURMEENT	y to			0245	- 03	49		0.4 99	lon 3				
								C)					
	to to			-		2							
				Purging a	and Water	Quality	Parameters*						
Time	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm°)	DO (mg/L)	ORP (mV)	рН	Turbidity (NTU) and/or Color	Measured Depth to Water (ft BTOC)	Total Drawdown (ft)	Sediment in Discharge Water (y/n)			
0349	- 115	er	purging	La				dry					
0400	-		Fording	er y		1		6.05					
0910	-							5.99	Decharger	2+2 0.00/1/			
	-							5.93	- cechance	ate 0.006 L/m rate 0.006 L/m			
0920	-								sec. a. JC	rare choca in			
1455					-			4.56	-				
-				- 15 - 10		1							
la	stal	pun	led = C	10 L Q	alon	5		-		1			
		1											
	-												
÷													
Fluids added di	uring develo	pment (y/	n) (type/volume):	NC									
			n) (type/volume): nd date sealed, tre			dis	charged	to Surf	ace.				
	ent (contain		hd date sealed, tre			dis	charged	to Surf	ace.				
IDW Managem	il tered	er type an Throwe Do4 f	t bgS			d's	Charged	to Surf	àce.				

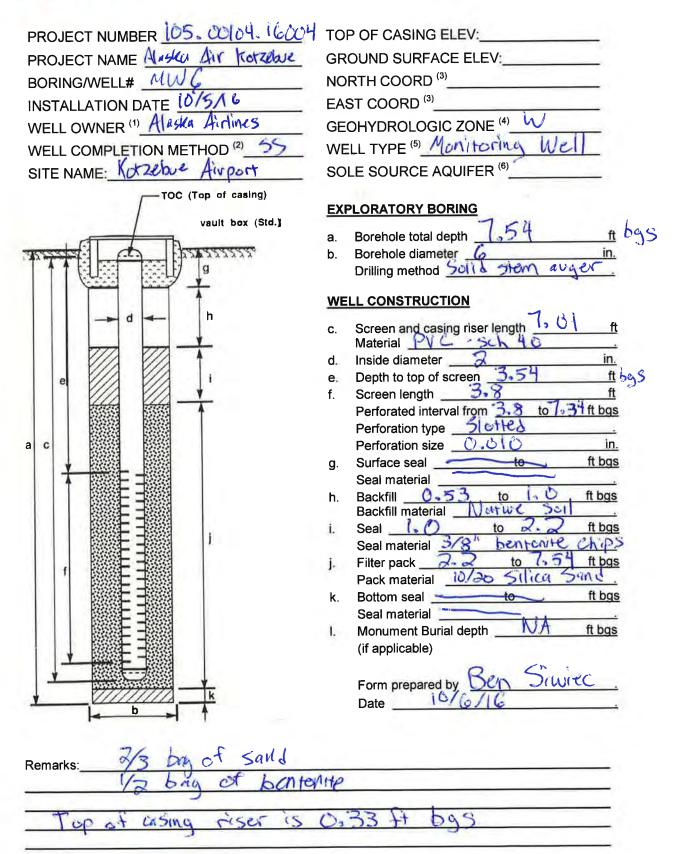
Table 1 – Vo	olume of W	ater in Fili/ assur		er Foot (30°	% porosity
Well Diameter		Bore	hole Diame	eter (in)	
(in)	2	4	6	8	10
1	0.037	0.184	0.428	0.771	1.212
2	÷	0.147	0.392	0.734	1.175
4		-	0.245	0.587	1.028

Table 2 – Volume of Water in Well per Foot									
Well Diameter (in)	Volume of Water per Foot (gal)								
1	0.41								
2	0.163								
4	0.653								

Groundwater Sampling Form

Site/Client Name	Ale	la Air	10-+-26	11.2	Well ID	·	1-5-				
				ive	Sample		DO716A	11.15			
	5.001		6004						Date: 10/-	7/1	
Sampled By: R				-		e Time:	202	Sample	Date. 10/	(1)6	
Weather Conditio		ar, Wind	y, 40	5	Duplicate ID:						
Sampling Method: [Low Flow	Other_	-		MS/MSD 🗌 Yes 🖾 No 🛛 Trip Blank Required: 😡 Yes 🗌 No						
in the second	-		ч.		ormation	-	. 7	1	S to 6.5	4.000	
Well Type: Perm				Vell Diameter	in.		erval: 🟒				
Well Condition: 🗹	Good 📙 Fa	ir 🗋 Poor (if	fair or poor e		Level and a series		Yes No	; if yes,	π above	e ground	
Depth to Water (ft B		CC.		Gauging/Purg			h (ft. BTOC)	: 5.61	5		
Total Depth (ft BTC		10			-	itart Time (NA	1		
Depth to Product (ft		NA			Purge E	nd Time (2	4-hr)	NA		1	
Product Thickness		NA				urge Time (i		NA			
scre	een, then use	default value o	f 0.3 ft.;	Screen Depth)	X 0.25 =	:(ft);				e is below top of	
Min. purge volume if Well Diameter –			al) = volume of 41 gal/ft	water/ft(gal/f	t) X Water col 63 gal/ft		4" – 0.653 g	X # of casing v gal/ft		= <u>gal</u> 69 gal/ft	
				Water Qualit	ty Paramete	ers					
				parameters if practic	al [each read	ing taken afte					
Time	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	DTW (ft BTOC)	Drawdown (ft)	
(24-hr)	(liter/	(gal)	(0)	(μS/cm ^c)				(± 10%, or	,		
	minute)		(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)	Int	(Maxft)	
		5	330	643	21.50	3.67	-10-	-02) 10	1116		
1510			4.41	642	8.95	7.90	-74.0	44.1			
10 00	15			1							
IN LE	WI	5 QU	raild	dry ear	lier t	oday	(09)	20)			
	10	0.0	10)	1 I LAND	wat		Lu II	Cat	1.0	
59	mple	Caller	e tr	om rec	harge	War	or u	PITHOUT	1) 0 (1	her	
	2000	Cal	0.000	maters	Ilacha	1 05	brc	amole	on hainer	s filled.	
F	rige.	Mela	para	meters c	dlecte	e ar	2 3	ample c	DITMINE	S may	
		-									
					1						
						1					
D		<u> </u>	L								
Parameter Stabl							L				
Sample Color: (lear-cl	10000		Sample Odor:	Nu		Shee	en: 🔿	0		
		-			al Sampling	1	_	0			
1	Analy			Check	Applicable			Comme	ents		
DRO					V/						
GR	0 / 131	IEX			V	-					
1						_					
N 4					_						
Notes:											
						-		FE	A.A.	i	
Equipment: Pump	Type Pla	istalitic		Tubina (Tv	pe/Length)	teston-	lined "	Bailer Type	NA	-	
Water Level Meter	Slope	Indicator	- 51453	Multi-Parame	eter Meter (M	Aake/SN#)	151 5	56 0	761009	13	
Turbidity Meter (Ma		a Matte					F	ilter Lot #	NA		
745,08					1.1.1	Die	ad the	wh ra	(and	lixhurged.	
Purge Water Hand	dling: 🔀 Dis	charged to s	urface 🔲 Co	ntainerized	eated (how?	p) +1 ten	ec. Thus	<u>vgn 67</u>	L and c	vanurger.	

BGS = Below Ground Surface, BTOC= Below Top of Casing, NA = Not Applicable


Page 1 of

SLR

CLIENT &	SITE NAM	E: ALAS	Ka A	ir Kotzebue	BORING ID: MW-6	
Project # :		DOIO		004	Logged By: Bun Si	wite
Start Date			10	55	Drilling Contractor: Dru	
Completio	n Date/Tim	e: 10/1	5/16	1109	Driller's Name (License [y	
	_	BOREH				CATION SKETCH
		Direct	Push [Rotary (mud/air)	Sonic	
Rig (Make		Texo				
Sampling			uger	Dispussible of	200h	
	liameter (ir		-15	EÌ .		
and the second se	Total Depth	(ft bgs):		Date/Time: 10/5/10	r	
Water Lev	ei (n bgs):	4 WEL			2	
Completer				nporary 🔲 Yes, Extra	action	
	ermanent (
Well ID:	MW		S		0 A 0 1	
a first a first first	el in well (f		54 Da	te/Time: 1530	0/6/16	
		~3.	59	DRI	LLING LOG	
GRAVEL (3 – 0.08 in)	SAND (0.08 – 0.0	03 in) SILT (< 0.003		HIGH ORGANIC (< 50% mineral soil)
-	GM GC	SW S	SP SM	SC ML	CL OL MH CH OH	PT
Drive Interval Blow Counts	(per 6") or Drill Effort Recovery (% or ft)	USCS CODE /Lithology Sketch PID PPM	(in situ) Depth ft bgs	% fine mate (e.g., overb	ourden / fill / native / other); Samp	heen/stain; odor; consistency; unit type le ID (if applicable).
			2	2.5"-30" - 5	Sphalt pavemen Gravely sand, SP,	light brown, dry 0.9 2.5 PID HH:atft bgs
					sand, SP, light Sand, SP brown,	PID HH: atft bgs
						PID HH:atft bgs
				TD= 7.5	4	
Net	linete IDIAL	antair arts -	lon and	ionocal matheday DID -		PID HH: atft bgs
Analy	rical 3	imple	ANG	- 4 Collected	at 105 @ 4.ft	bys

FLUSH MOUNTED WELL COMPLETION DETAILS

Rev. Jan 2016

Well Development Form

	Site / Client N	AT AT	1110	Air Te	+2ebut	Wo	II ID: /	Mul-L					
-			45/64	the second day is not second	12000		veloped		SWIEC				
-			5104	16004	-	De	veloped	By Ben	Julier				
	Date (mm/dd/)	y): 107	6/10		_	Wall Infe	all Information						
-		n Data (m	middhau	· INFAR		College and an and a second second			Sand: DPre-F	Packed; 🗌 Na	hural		
-	Well Installation								m)(ft bgs): 🤿	and the second se	54		
-	Wellbore Diam		1							STOC			
	Well Diameter		6				Well Sounding Depth: 7-01 BTOC Measured Depth to Water (ft. bgs): 3, 26 BTOC						
-	Well Depth Up		ation (ft	bgs): 7.54	(born		Water Column Thickness in Well (ft): 3-75						
- F	Screen (top to				7.34				530	0110			
H	Screen (top to	Dottom)(it	bys).	01710	Develor			Equipment	120				
t i								sed (y/n):	Rig t	ype:			
	Mechanica	Surging		Over-Pumping			-	e/Capacity (g			hand		
1	Surging/Pu	mping		High Pressure	Jetting				Line (ft bgs):	3.2-	7		
-	Other (des	cribe):				Su	ge Blog	ck Length/Typ	e: Water	ra value/	Surge block		
ł					Purge Vo			(if required)	VV WI DI		All and		
ł	(a) Volume o	f Water in	Filter Pa	ck = Saturate				x Table 1 Val	ue (gal):				
ŀ	(b) Volume o							Value (gal)					
-	(c) Minimum			0 0				ng Volumes					
2	(b) Winning	Turge Vol	amo	I(d) (d)		Surging I							
		Surge Interv	al (ft bgs)			Surge S	art Time			Surge Finish	Time		
Surge	only 3.	2 to		7.		115			120		Next at		
rige a		Dunged to	Until	dry		120			1204	3 AL	produced		
Jurge	OTILY	7 vice to		- dry		132			1324	2E	produced.		
652	reonly	1/10	til d	n	1	141	7 to	1418	3.51	Pratuci	o d.		
1)	Purging	and Water	Quality	Parameters*		,	- 17 D 1		
	Time	Purge Volume (gal)	Temp (°C)	Specific Conductance (µS/cm°)	DO (mg/L)	ORP (mV)	рH	Turbidity (NTU) and/or Color	Measured Depth to Water (ft BTOC)	Total Drawdown (ft)	Sediment in Discharge Water (y/n)		
	1210								6012				
	1224					-	-		6.07	-			
	1224					-	1		5.52		1000		
	1400						-		6	-			
									3.70				
	1318								7 52		i in the sele		
	1318						-		3.55-	purged d	wit is ary		
	1318			1			- 14	1		purged d			
			6.22	Cin 4	DURGIN	nas VI	1+11	dry):		1			
	1318 1417 Tota	l pur	बुरटे	(in 4	purgin	ngs vi	+11,	dry):	9.5	1	.5 gallons		
		l pur	बुरटे	(in 4	purgin	ngs VI	1411	dry):		1			
		l pur	<u>क</u> ुश्टे	(in 4	purgin	ngs VI	n+11 .	dry):		1			
	Tota				A 1	ngs VI	1+11	dry):		1			
	Tota Fluids added da	uring develo	pment (y/	n) (type/volume):	No		n+11,	dry):		1			
	Tota Fluids added da	uring develo	pment (y/	n) (type/volume): id date sęaled, tre	No eatment, dis				9.5	us/2	.5 gallons		
	Tota Fluids added da	uring develo	pment (y/	n) (type/volume): nd date sealed, tre	No atment, dis	sposal): Filter			9.5	1	.5 gallons		
	Fluids added du IDW Managem	uring develo	pment (y/	n) (type/volume): nd date sealed, tre	No eatment, dis	sposal): Filter			9.5	us/2	.5 gallons		
	Fluids added du IDW Managem	uring develo ent (contain -(1+taica C 'i S	pment (y/ er type ar Th Ø_33	n) (type/volume): nd date sealed, tre rc Sh FA belo	No atment, dis	sposal): Filter			9.5	us/2	.5 gallons		

Table 1 – Vo	olume of V	ater in Fill/ assur		er Foot (30°	% porosity
Well Diameter		Bore	hole Diame	eter (in)	141
(in)	2	4	6	8	10
1	0.037	0.184	0.428	0.771	1.212
2	-	0.147	0.392	0.734	1.175
4	-	-	0.245	0.587	1.028

	- Volume of Water in Vell per Foot
Well Diameter (in)	Volume of Water per Foot (gal)
1	0.41
2	0.163
4	0.653

Groundwater Sampling Form

	- 11		-	1 .		1	11.1	n				
Site/Client Na	me: Alas	ku Au	Tot2	ebue	-	Well ID						
Project # :	105.001	04. 16	004			Sample ID: 100 616 MW 6						
Sampled By:	BenSiw					Sample	e Time: 👖	247	Sample	Date: 10/	616	
Weather Cond			ity, win	nha 40	15	Duplicate ID: 100 616 MW9						
Sampling Metho			1 11 101	1, 10	-	MS/MSD Yes No Trip Blank Required: Yes No						
Sampling Metho		Other_		14/-	11 1-6-	rmation			пр Банк н			
Well Type:			14	/ell Diameter			Screen Inte	erval: 3.	54 ft BG	iS to 1.3	ft BGS	
								Yes No			e ground	
Well Condition:	Good LI Fa		fair or poor e			a Informa		Tes La In	, ii yes,		ground	
Depth to Water (H PTOCH 7	HA		Gauging	Purgi	ng Informa	Pump Depth	(ft. BTOC)	5.5			
Total Depth (ft E		01				1	Start Time (2		34			
Depth to Produc		NA				Purge End Time (24-hr)						
Product Thickne		NA				Total Purge Time (min)						
LOW FLOW:	Max Draw Down	= (Tubing De		Screen Depth)		X 0.25 =	=(ft); i	f screen inte	rval is not know	vn or water tabl	e is below top of	
	screen, then use		_		1. 11.11		44.4	163	Ma estated	s		
Min. purge volum				water/ft		X Water co 33 gal/ft	lumn thicknes	4" – 0.653	X # of casing v		= <u>gal</u> 69 gal/ft	
Well Diamete	er – gai/π	1 - 0.0	41 gal/ft				-	4 - 0.000	gaint	0 1.1	oo guin	
(Achieve s	table parameters	for 3 consecuti	ve reading. 4 p	Water (arameters if c	ractical	/ Paramete [[each read	e rs ling taken afte	r pumping a	minimum of 1	flow through cell	volume])	
Time	Flow	Purge	Temp	Specific		DO	pH	ORP	Turbidity	DTW	Drawdown	
(24-hr)	Rate	Volume	(°C)	Conductance		(mg/L)	- Pr	(mV)	(NTU)	(ft BTOC)	(ft)	
	(liter/ minute)	(gal)	(+ 2.0()	(μS/cm°) (± 3%)		(± 10%)	(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)	1 ······	(Maxft)	
	_	liter	(± 3 %)	(1370)	4	10-1	12	88.1	r17	040	1.09	
1616	Onl	3	3-10	10	-	104	6.51	00-	51.1	1110		
1621	0.1	3.8	3.63	1695		1.51	6.61	86.1	45.8	7.48	1.08	
16 30	0.1	4.7	3.58	1681		1.42	6-16	80.7	36.6	9.56	1.10	
1635	0.1	5	245	1687		1-23	6.77	20.4	26.4	19.51	1.11	
1040	0.1	-	345	1685		1.07	6.79	287	27.8	9.51	1.11	
645	0.1	6.5	3.40	1684		1.19	6.80	-11	10.5	451	1 11	
647	0-1	6.2	V~ (U	1601	-	I.I.I	Leigo	71.6	1012	1-21	1.11	
					-					-		
				- m								
					-1	_						
otal	Tallons	DUIDO	upto	(* .	(>						
1 - 1	Jacons	1 Sc										
Parameter St	table (Check ap	plicable)	1	1	-		V	./				
		p,	V	•		All	V		XI.	1		
Sample Color:	Clear			Sample O		No		She	en: IVO	1		
						Sampling			Comm	anto		
	Anal	yses		C	heck A	Applicable			Comm	ents		
D	ro /rro				V	1						
G	SRO/BT	ÈΧ			V							
Notes:												
										÷.		
	P	S	6				Section 1	Level 4	NPE	NIA		
Equipment: P	ump Type	ristal+11		Tubir	ng (Ty	pe/Length)	te.Hon-	linea II	Bailer Typ	e VI	-	
Water Level Me		the second se	r 5145	Multi-P	arame	ter Meter (Make/SN#)_	12 2-	1601	-10051	.)	
Turbidity Meter	(Make/SN#)	Lamoth	2 200	10 P	19	(dy		F	ilter Lot #	NA	λ.	
Purge Water H					Par /		Filler	ed the	anh RA	Cand .	Schuraph	
Purge Water H	andling: 🔀 Dis	scharged to s	surface 🗌 Co	ntainerized	LXTre	eated (how) I THE	e ante	of a Cal	C		
BGS = Below C	Ground Surface, H	BTOC= Below	Top of Casin	g, NA = Not	Applica	able			Page 1 of	<u>.</u>		

n By:	en Siwie span Gas 1 isobutylene (100 ppm) 106 Check, Span Gas 1 isobutylene (100 ppm) 98.6	Calibration with Acceptable Range? yes no Calibration with Acceptable Range?
n By:	Span Gas 1 isobutylene (100 ppm) IOC Check, Span Gas 1 isobutylene (100 ppm)	Calibration with Acceptable Range?
n By: B n By: B n By: B n By: B n By: B	isobutylene (100 ppm) 106 Check, Span Gas 1 isobutylene (100 ppm)	Acceptable Range?
n By: B o Gas ent air D n By: B	Span Gas 1 isobutylene (100 ppm)	no Calibration with Acceptable Range?
n By: B o Gas ent air D n By: B	Span Gas 1 isobutylene (100 ppm)	Acceptable Range?
n By:	Span Gas 1 isobutylene (100 ppm)	Acceptable Range?
n By:	Span Gas 1 isobutylene (100 ppm)	Acceptable Range?
n By:	isobutylene (100 ppm)	Acceptable Range?
n By:	98.6	
	oen Siwirk	6
Gas	Span Gas 1	Calibration with
ent air	isobutylene (100 ppm)	Acceptable Range?
0	106	ves
n By: 5 5 Gas ient air	Span Gas 1 isobutylene (100 ppm)	Calibration with Acceptable Range
0	97.6	Tes
n By:		
Gas	Span Gas 1	Calibration with
ient air	isobutylene (100 ppm)	Acceptable Range?
	1	yes
b		no
_		
n By:		
o Gas	Span Gas 1	Calibration with Acceptable Range
ient air	isobutylene (100 ppm)	yes
		по
m Due		
in by:	Span Gas 1 isobutylene (100 ppm)	Calibration with Acceptable Range
o Gas		yes
	lon By: ro Gas bient air	ro Gas Span Gas 1

		Wate	r Paramete				DLI	1
	3/1 G	_ Identification #:	Time: 1436	56 07	Calibration By:	Ren Si	wiel	
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7,00	7.01	TPI	8/10/16	11/2017	7.27	7.01	± 0.10
рН	4.00	4.00	IDAIR	8117/16	1/2/18	383	4.00	± 0.10
	10.00	(0.06	TS2	7/9/6	8/2017	10.01	10.05	± 0.10
Sp Cond (mS/cm)	1.413	1.413	TPI	OBhoh 6	11/2017	1.335	1413	± 10%
ORP (mV)	240	240	9232		61/2020	236.3	240.0	
DO*			1			92-0	98.8	± 2%

) WI C

Sen

If parameter not included in sampling event, fill in box with NA (not applicable) * Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table Ros Cinc

Date: 10/6/6 Meter Manufacturer and Identification #:			Time: 100	Time: 1003 Calibration By: Ben Siwiec					
Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criterla	
	7.00	7.03	TPI	8/10/16	(1/2017	7-03	7.03	± 0.10	
pН	4,00	4.00	16AIR	8/12/6	1/12/18	4.02	4.00	± 0.10	
	10.00	10-11	TS2	7/9/16	\$/2017	10.11	10,11	± 0.10	
Sp Cond (mS/cm)	1.413	1.413	TPI	8/10/16	11/2017	1-427	1.413	± 10%	
ORP (mV)	240	240	9232		9/2020	239.5	240.0		
DO*						95.1	97.8	± 2%	

If parameter not included in sampling event, fill in box with NA (not applicable)
* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Date: ()/ 716 Time: 093 Calibration By: 16100 -Meter Manufacturer and Identification #:

Parameter	Standard	True Value	Lot #	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.03	TPI	811016	11/2017	7.01	7.03	± 0.10
рН	4.00	4.00	16AIR	8/1716	1/12/18	4.01	4.00	± 0.10
	10.00	10-11	tsa	79/16	8/2017	10-11	10-11	± 0.10
Sp Cond (mS/cm)	1.413	1.413	TPI	8/10/6	11/2017	1.401	1-413	± 10%
ORP (mV)	240	240	9732		9/2020	238.0	240.0	
DO*						97.2	98.0	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Turbidimeter Calibration Log

Calibration Date D/3//C	Calibration Time 1500	Calibration By	en Siwiec	
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
Lo Motter 2020e	14728	JU NTU	100 NTU	Range?
		Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	(yes)
Bump Check 🗆 or Calibration 🖄 No	tes:	18.44	103.9	по
Calibration Date	Calibration Time	Calibration By		
Calibration Date 10/6/6	1015		en Siwiec	2
Instrument Make/Model	Callbration Time 1015 Serial # 14728	Cal Fluid #1	Cal Fluid #2	Within Acceptable
La Motte 2020e	1110.0		Bump check result or post-	Range?
Bump Check 🖾 or Calibration 🗆 No	tes:	Bump check result or post- calibration reading:	Bump chack result or post- calibration reading:	yes
		<i>ib</i> .18	104.5	no
Calibration Date	Calibration Time 0945	Calibration By	3en Siwiec	-
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
LaMotte 2020e	11778	(O NTU	100 NTU	Range?
	1 14:00	Bump check result or post-	Bump check result or post-	yes
Bump Check or Calibration 🗆 No	ites:	calibration reading:	calibration reading:	
		(0-33	10000	no
Calibration Date	Calibration Time	Callbration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
		Bump check result or post- callbration reading:	Bump check result or post- calibration reading:	yes
Bump Check 🗆 or Calibration 🛛 🛛 No	nes:	Calibration reading.	capitation routing.	no
				10
Calibration Date	Calibration Time	Calibration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
Bump Check 🗌 or Calibration 🔲 No		Bump check result or post- calibration reading:	Bump check result or post- calibration reading:	yes
	nes.	salaran and a salar a s		no
				10
Calibration Date	Calibration Time	Calibration By		
Instrument Make/Model	Serial #	Cal Fluid #1	Cal Fluid #2	Within Acceptable
		NTU	NTU	Range?
		Bump check result or post- calibration reading:	Bump check result or post- callbration reading:	yes
	169.			no
Bump Check 🗆 or Calibration 🗅 🛛 No	otes:	callbration reading:	callbration reading:	ye: no

Note: A bump check can verify the instrument is in proper calibration if the instrument reads an accurate value for a calibration solution (without performing a full calibration). In the event a bump check does not indicate the instrument is properly calibrated, a calibration will be performed, per manufacturer instructions. **APPENDIX C**

DATA QUALITY ASSESSMENT ADEC LABORATORY DATA REVIEW CHECKLIST SGS ANALYTICAL DATA REPORTS

Report

LABORATORY DATA QUALITY ASSURANCE REVIEW

GROUNDWATER MONITORING AND SOIL INVESTIGATION ALASKA AIRLINES KOTZEBUE FACILITY 2016

KOTZEBUE, ALASKA

November 2016

Prepared by: Jennifer McLean Reviewed by: Ben Siwiec

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

SLR Project Number 105.00104.16004

ACRONYMS AND ABBREVIATIONS

%	percent
AAC	Alaska Administrative Code
AK	Alaska
ADEC	Alaska Department of Environmental Conservation
BTEX	benzene, toluene, ethylbenzene, and xylenes
°C	degrees Celsius
CCV	continuing calibration verification
COC	chain of custody
DL	detection limit
DRO	diesel range organics
EDDS	electronic data deliverable
EPA	Environmental Protection Agency
GRO	gasoline range organics
LCL	lower control limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
LOQ	limit of quantitation
mg/L	milligrams per liter
mg/Kg	milligrams per kilogram
MS	matrix spike
MSD	matrix spike duplicate
PAH	polynuclear aromatic hydrocarbons
PARCCS	precision, accuracy, representativeness, comparability, completeness, and sensitivity
QA	quality assurance
QAR	quality assurance review
QC	quality control
QCS	quality control sample
RPD	relative percent difference
SDG	sample delivery group
SIM	selective ion monitoring
SLR	SLR International Corporation
SGS	SGS North America, Inc.
SM	Standard Methods
SVOCS	semi-volatile organic compounds
UCL	upper control limit
VOCS	volatile organic compounds

Introduction

This report summarizes a review of analytical data for groundwater and soil samples collected from October 3, 2016 through October 7, 2016, at Kotzebue, Alaska. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (UST-005) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

SDG	Date Collected	Date Received by Laboratory	Temp. Blank	Matrix	Analytical Method	Analyte
			0.000		SW8021B	BTEX
		2.6°C GW	W AK101	GRO		
				AK102	AK102	DRO
1166058	10/3-7/2016	10/10/2016			SW8021B	BTEX
			3.0°C	soil	AK101	GRO
			3.0 C	5011	AK102	DRO
					SW8270D	PAH SIM

Table 1	Sample Receipt, Method, and Analyte Summary
---------	---

Acronyms: °C – degrees Celsius AK – Alaska BTEX – benzene, toluene, ethylbenzene, and xylenes DRO – diesel range organics GRO – gasoline range organics GW - groundwater PAH – polynuclear aromatic hydrocarbons SDG – sample delivery group

SIM – selective ion monitoring

The laboratory final report was provided as a Level II deliverable, and included documentation of the delivery group chain-of-custody (COC) and sample receipt condition. An Microsoft Access compatible electronic data deliverable (EDD) for the report were also provided. The PDF laboratory report and the EDD are provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control, and data review. SLR adhered to required and established sampling and COC protocols. The select laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project specific requirements (Method Statement, April 2016), *ADEC Technical Memorandum, Environmental Laboratory Data and Quality Assurance* (ADEC 2009a) requirements, analytical method criteria and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG, and is included as Attachment 1 to this Quality Assurance Review (QAR). A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS) are noted in this QAR, and any data qualifications discussed.

Alaska Airlines Kotzebue Airport

November 2016

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that quality control (QC) blanks (e.g., field blanks, equipment blanks, trip blanks, etc.); were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did not identify any Continuing Calibration Verification (CCV) recoveries or other calibration related criteria as being outside applicable acceptance limits;
- Reviewing the case narrative for any discussion of any internal standard recoveries outside of acceptance limits. Internal standard performance was not otherwise presented in the report or in the electronic data deliverable and was reviewed only from the case narrative;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS), Laboratory Control Sample Duplicates (LCSD), Matrix Spike (MS), and Matrix Spike Duplicate (MSD) recoveries were within acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSD, MS/MSD, and laboratory duplicates; and
- Providing an overall assessment of laboratory data quality and qualifying sample results as necessary.

Data Qualifications

As part of the quality assurance review, qualifiers (i.e. flags) were applied to data as determined necessary based on specified criteria, or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Table 2	Data Qualifiers
---------	-----------------

Qualifier	Definition
Q	One or more laboratory quality control criteria (e.g., LCS recovery, surrogate spike recovery) failed. Where applicable, an "H", "L", or "N" was appended to indicate positive, negative, or unknown bias, respectively.
J	The analyte was positively identified but the result was outside the calibration range, between the limit of quantitation (LOQ) and the detection limit (DL); the quantitation was an estimate.
М	The concentration was an estimate due to a sample matrix quality control failure. Where applicable, an "H", "L", or "N" was appended to indicate positive, negative, or unknown bias, respectively.
В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank, method blank, equipment blank, etc.) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone).
Р	Sample preservation requirements were not satisfied.

A discussion of the project data quality relative to PARCCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with regards to the data package.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of the samples.

Preservation (Chemical and Temperature)

Samples were appropriately preserved and were submitted to SGS. No issues were noted in regard to sample preservation.

Holding Times

Analytical holding times were satisfied for all sample results.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected in any method blanks at or above the Limit of Detection (LOD).

Trip Blanks

Trip blanks were included in each cooler containing volatile organic compounds (VOCs) and analyzed at appropriate frequencies. Analytes were not detected in the trip blanks at or above the LOD.

Reporting Limits

For non-detect results, LODs were compared to applicable cleanup levels for the site. For groundwater samples, LODs were compared to 18 AAC 75.345, Method Two, Table C, Groundwater Cleanup Levels (ADEC, November 6, 2016). For soil samples, LODs were compared to 18 AAC 75.341, Method Two for the Arctic Zone, Tables B1 and B2 (ADEC, November 6, 2016). For reference only, for soil samples, LODs were also compared to 18 AAC 75.341, Method Two for the Arctic Zone, Tables B1 and B2 (ADEC, November 6, 2016). For reference only, for soil samples, LODs were also compared to 18 AAC 75.341, Method Two, Migration to Groundwater, Tables B1 and B2 (ADEC, November 6, 2016). All results of non-detected analytes had LODs at or below applicable cleanup levels and reference levels.

Continuous Calibration Verifications (CCVs)

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, but not in the case narrative. All CCV recoveries were within acceptable limits as reviewed in the EDD.

Internal Standards

No internal standards were noted in the case narrative as outside of acceptance limits. Internal standard performance criteria were considered met.

Surrogate Recovery Results

Surrogate analysis was performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits, except as noted in Table 3.

Table 3	Surrogate Recovery Exceedances and Affected Data
---------	--

Sample ID	Lab ID	Method (Analyte)	Surrogate	Sur. Rec. (%)	LCL- UCL (%)	Result (mg/L)	Flag
100316MW3R	1166058001	SW8021B (BTEX)	1,4- difluorobenzene	50	77-115	varied	QL^1

Notes:

1 – The surrogate recovery exceedance was likely due to matrix interference; therefore, the bias to the analyte result was considered minimal. All data is considered usable as qualified.

Abbreviations:

LCL - lower control limit

UCL - upper control limit

Laboratory Control Samples and Laboratory Control Duplicate Samples

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS and LCSD recoveries and RPDs were within acceptable limits.

Matrix Spike and Matrix Spike Duplicate Samples

LCS/LCSD and MS/MSD pairs were analyzed at the appropriate frequencies. All MS/MSD percent recoveries and RPDs were within acceptable limits.

Field Duplicates

The field duplicate sample frequency is presented in Table 4. Parent Sample and Field Duplicate pairs are presented in Table 5. The frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory. All parent sample/field duplicate pairs had RPDs within acceptable limits for all analytes.

Matrix	Analytical Method	Analyte	Number of Primary Samples	Number of Field Duplicates
	SW8021B	BTEX	6	1
Groundwater	AK101	GRO	6	1
	AK102	DRO	6	1
	SW8021B	BTEX	4	1
Soil	AK101	GRO	4	1
3011	AK102	DRO	4	1
	SW8270D	PAH SIM	1	1

Table 4Field Duplicate Frequency, Methods, and Analyes

Matrix	Parent Sample ID	Duplicate Sample ID	All RPDs acceptable (Y/N)
Groundwater	100616MW6	100616MW9	Y
Soil	MW5-2	MW5-9	Y

Laboratory Duplicate Samples

Laboratory duplicates were analyzed at appropriate frequencies. All duplicate RPDs were within acceptable limits.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity Summary

- Precision: Precision goals were met.
- Accuracy: Overall project accuracy goals were met, except as noted in the Surrogate Recovery section.
- Representativeness: Representativeness goals were met. The samples were collected from planned locations in accordance with the Work Plan.
- Comparability: Comparability goals were considered acceptable. SGS laboratory provided analytical support for all methods.
- Completeness: Completeness goals were met. The data were 100% complete with respect to analysis because no data were rejected.
- Sensitivity: Sensitivity goals were considered met.

This data were considered of good quality and acceptable for use. No data were rejected.

Alaska Airlines Kotzebue Airport

November 2016

References

- Alaska Department of Environmental Conservation (ADEC), 18 AAC 75, Oil and Other Hazardous Substances Pollution Control (November 6, 2016).
- ADEC, Technical Memorandum 06-002, Environmental Laboratory Data and Quality Assurance Requirements (ADEC, March 2009).
- USEPA Document 530/SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, fourth edition (USEPA, November 1991).
- Standard Methods for the Examination of Water and Wastewater, 21st Edition, (2005).

Attachments

Attachment 1 – ADEC Data Review Checklist Attachment 2 – Laboratory Deliverable Attachment 1

ADEC Data Review Checklist

Attachment 2 Laboratory Deliverable

(Data package and electronic file)

Laboratory Data Review Checklist

Completed by: Jer	nnifer McLean	
Title: Pr	oject Scientist	Date: November 18, 2016
CS Report Name:	Alaska Airlines Kotzebue Airport GW Monitoring and Soil Investigation	Report Date: October 21, 2016
Consultant Firm:	SLR International Corporation	
Laboratory Name:	SGS North America, Inc. Lab	oratory Report Number: 1166058
ADEC File Number:	NA ADEC	RecKey Number: NA
1. <u>Laboratory</u> a. Did an Al ⊠ Ye	<u> </u>	perform all of the submitted sample analyses? xplain.) Comments:
	, was the laboratory performing the anal	11
2. <u>Chain of Custody</u> a. COC info	rmation completed, signed, and dated (in	e
b. Correct an	nalyses requested? es INO NA (Please e	xplain.) Comments:
	ole Receipt Documentation ooler temperature documented and withir es No NA (Please e	
Volatile C	Chlorinated Solvents, etc.)?	Methanol preserved VOC soil (GRO, BTEX,
Ye	es No NA (Please e	xplain.) Comments:

	c.	Sample condition	n documented -	- broken, leaking (Methanol), zero hea	dspace (VOC vials)? Comments:
	d.			were they documented? For example, temperature outside of acceptable ran	
					Comments.
	<u> </u>	None were noted.			
	e.	Data quality or us	sability affecte	d? (Please explain.) Comments:	
	N	lo impact.			
-	e N	<u>Varrative</u> Present and undes ∑Yes	rstandable? □ No	NA (Please explain.)	Comments:
	b.	Discrepancies, er X Yes	rors or QC fail	ures identified by the lab?	Comments:
	S	Surrogate recovery	exceedance w	as noted.	
	c.	Were all correctiv	ve actions docu	umented? NA (Please explain.)	Comments:
	N	None were taken.			
	d.	What is the effect	t on data qualit	ty/usability according to the case narra Comments:	tive?
	N	No impact.			
	-	es Results Correct analyses ⊠ Yes	performed/rep	orted as requested on COC?	Comments:
	b.	All applicable ho	lding times me	et?	Comments:

5.

4.

C	All soils report	No	$\square NA (Please explain.)$	Comments:					
[
d	d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level project?								
	🛛 Yes	🗌 No	NA (Please explain.)	Comments:					
	For groundwater samples, LODs were compared to 18 AAC 75.345, Method Two, Table C, Groundwater Cleanup Levels (ADEC, November 6, 2016). For soil samples, LODs were compared to 18 AAC 75.341, Method Two for the Arctic Zone, Tables B1 and B2 (ADEC, November 6, 2016). For reference only, for soil samples, LODs were also compared to Method Two, Migration to Groundwater, Tables B1 and B2 (ADEC, November 6, 2016).								
e	. Data quality or	usability affect	cted? Comme	ents:					
[No impact.								
-									
<u>QC S</u> a			oorted per matrix, analysis and 20 s	samples? Comments:					
[ii. All met ⊠ Yes	thod blank resu	ults less than PQL?	Comments:					
·	iii. If above	e PQL, what sa	amples are affected?	ents:					
	Not applicable.								
Ī	iv. Do the Yes	affected sampl	e(s) have data flags and if so, are t NA (Please explain.)	he data flags clearly defined? Comments:					
l	D .								
	v. Data qu	uality or usabil	ity affected? (Please explain.) Comme	ents:					

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i	-		CSD reported per matrix, analysis	s and 20 samples? (LCS/LCSD
[X Yes		NA (Please explain.)	Comments:
i	i. Metals/In samples? Yes	-	ne LCS and one sample duplicate r	reported per matrix, analysis and 20 Comments:
_	And proj	ect specified	t recoveries (%R) reported and wi DQOs, if applicable. (AK Petroleu K103 60%-120%; all other analyse NA (Please explain.)	m methods: AK101 60%-120%,
_	laborator LCS/LC	ry limits? And SD, MS/MSD	e percent differences (RPD) report l project specified DQOs, if applica), and or sample/sample duplicate. laboratory QC pages) NA (Please explain.)	
	v. If %R or	RPD is outsid	de of acceptable limits, what samp Comme	
Not ap	plicable.			
N [vi. Do the a	ffected sample	e(s) have data flags? If so, are the o	data flags clearly defined? Comments:
<u> </u>	vii. Data qua	lity or usabili	ty affected? (Use comment box to Comme	- · ·
No im	pact.			
c. Surr	ogates – Org	ganics Only		
5	. Are surro	ogate recoveri	es reported for organic analyses – NA (Please explain.)	field, QC and laboratory samples? Comments:

	 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) 							
	Yes	🖂 No	NA (Please explain.)	Comments:				
	BTEX, for ts of 77-11:	1	IW3R, 1,4-difluorobenzene had a	surrogate recovery of 50%				
		e sample results v elearl <u>y d</u> efined?	with failed surrogate recoveries ha	ave data flags? If so, are the data				
	🛛 Yes	🗌 No	NA (Please explain.)	Comments:				
		or sample 100316 otential low bias	5MW3R were qualified, "QL," an	d should be considered				
	iv. Data c	quality or usabilit	y affected? (Use the comment boy Comme	- · · ·				
			ce was likely due to matrix interfondered usab					
d. Tr <u>Sc</u>	-	Volatile analyses	only (GRO, BTEX, Volatile Chlo	prinated Solvents, etc.): Water and				
		ip blank reported		cooler containing volatile samples?				
	Yes Yes	No	NA (Please explain.)	Comments:				
			ansport the trip blank and VOA sa laining why must be entered belo	mples clearly indicated on the COC? w)				
	🛛 Yes		NA (Please explain.)	Comments:				
	iii. All res	sults less than PQ	QL?					
	Xes Yes	No No	NA (Please explain.)	Comments:				

iv.	If above PQ	L, what samples	are affected?
-----	-------------	-----------------	---------------

Comments:

v. Data quality or usability affected? (Please explain.) Comments:							
No impact							
e. Field Duplicate							
i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes No NA (Please explain.) Comments:							
ii. Submitted blind to lab? ∑ Yes □ No □ NA (Please explain.) Comments:							
100616MW9 was a duplicate of 100616MW6. MW5-9 was a duplicate of MW5-2.							
 iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R₁-R₂)/(x 100) 							
$((R_1+R_2)/2)$ Where $R_1 = $ Sample Concentration $R_2 = $ Field Duplicate Concentration $Yes \qquad \square \text{ No} \qquad \square \text{ NA (Please explain.)} \qquad Comments:$							
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:							
No impact.							
f. Decontamination or Equipment Blank (If not used explain why).							
YesNoNA (Please explain.)Comments:							
Disposal or dedicated sampling equipment was used for collection of all samples.							
i. All results less than PQL?							
YesNoNA (Please explain.)Comments:							

ii.	If above	PQL,	what	samples	are	affected?
-----	----------	------	------	---------	-----	-----------

	Comments:									
Not applicable.										
iii. Data quality or	iii. Data quality or usability affected? (Please explain.)									
	Comments:									
Not applicable.										
a. Defined and appropriate	COE, AFCEE, Lab Specific, etc.) e? No INA (Please explain.)	Comments:								

Laboratory Report of Analysis

To: SLR Alaska-Anchorage 2700 Gambell St. Suite 200 Anchorage, AK 99503 (907)222-1112

Report Number: 1166058

Client Project: Kotzebue Groundwater/Soil

Dear Ben Siwiec,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/21/2016 7:46:11AM

SGS North America Inc.

Case Narrative

SGS Client: SLR Alaska-Anchorage SGS Project: 1166058 Project Name/Site: Kotzebue Groundwater/Soil Project Contact: Ben Siwiec

Refer to sample receipt form for information on sample condition.

100316MW3R (1166058001) PS

8021B - Surrogate recovery for 1,4-difluorobenzene (50.4%) does not meet QC criteria due to matrix interference.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/21/2016 7:46:12AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Report of Manual Integrations							
Laboratory ID	<u>Client Sample ID</u>	Analytical Batch	<u>Analyte</u>	Reason			
8270D SIM (PAH	ł)						
1166058012	MW5-2	XMS9698	Chrysene	BLC			
1166058013	MW5-9	XMS9698	Chrysene	BLC			

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 10/21/2016 7:46:14AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
D	The analyte concentration is the result of a dilution.
DF	Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
F	Indicates value that is greater than or equal to the DL
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
JL	The analyte was positively identified, but the quantitation is a low estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
Μ	A matrix effect was present.
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
Q	QC parameter out of acceptance range.
R	Rejected
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Print Date: 10/21/2016 7:46:15AM

Note:

Sample	Summary
--------	---------

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
100316MW3R	1166058001	10/03/2016	10/10/2016	Water (Surface, Eff., Ground)
100316MW2	1166058002	10/03/2016	10/10/2016	Water (Surface, Eff., Ground)
100616MW6	1166058003	10/06/2016	10/10/2016	Water (Surface, Eff., Ground)
100616MW9	1166058004	10/06/2016	10/10/2016	Water (Surface, Eff., Ground)
100616MW4	1166058005	10/06/2016	10/10/2016	Water (Surface, Eff., Ground)
100716MW1R2	1166058006	10/07/2016	10/10/2016	Water (Surface, Eff., Ground)
100716MW5	1166058007	10/07/2016	10/10/2016	Water (Surface, Eff., Ground)
TBW1	1166058008	10/03/2016	10/10/2016	Water (Surface, Eff., Ground)
MW1R2-4.5	1166058009	10/05/2016	10/10/2016	Soil/Solid (dry weight)
MW6-4	1166058010	10/05/2016	10/10/2016	Soil/Solid (dry weight)
MW4-2.5	1166058011	10/05/2016	10/10/2016	Soil/Solid (dry weight)
MW5-2	1166058012	10/05/2016	10/10/2016	Soil/Solid (dry weight)
MW5-9	1166058013	10/05/2016	10/10/2016	Soil/Solid (dry weight)
TB-2	1166058014	10/05/2016	10/10/2016	Soil/Solid (dry weight)

<u>Method</u>

8270D SIM (PAH) AK101 SW8021B AK101 SW8021B AK102 AK102 SM21 2540G Method Description 8270 PAH SIM Semi-Volatiles GC/MS AK101/8021 Combo. AK101/8021 Combo. AK101/8021 Combo. (S) AK101/8021 Combo. (S) Diesel Range Organics (S) DRO Low Volume (W) Percent Solids SM2540G

Print Date: 10/21/2016 7:46:16AM

Detectable Results Summary Client Sample ID: 100316MW3R Lab Sample ID: 1166058001 Parameter Result Units **Diesel Range Organics** 6.49 mg/L Semivolatile Organic Fuels Benzene 10.4 ug/L **Volatile Fuels** Ethylbenzene 50.7 ug/L **Gasoline Range Organics** 1.07 mg/L 11.4 ug/L o-Xylene P & M -Xylene 79.7 ug/L Client Sample ID: 100316MW2 Lab Sample ID: 1166058002 Parameter Result <u>Units</u> **Diesel Range Organics** 1.59 mg/L Semivolatile Organic Fuels 37.0 ug/L **Volatile Fuels** Benzene Ethylbenzene 5.60 ug/L Gasoline Range Organics 0.177 mg/L P & M -Xylene 3.61 ug/L Toluene 0.750J ug/L Client Sample ID: 100616MW6 Lab Sample ID: 1166058003 Parameter Result Units **Diesel Range Organics** 1.72 mg/L Semivolatile Organic Fuels 23.8 **Volatile Fuels** Benzene ug/L Ethylbenzene 3.48 ug/L **Gasoline Range Organics** 0.122 mg/L o-Xylene 0.600J ug/L P & M -Xylene 4.39 ug/L Toluene 0.720J ug/L Client Sample ID: 100616MW9 Lab Sample ID: 1166058004 Parameter Result Units Semivolatile Organic Fuels **Diesel Range Organics** 1.40 mg/L Volatile Fuels Benzene 23.7 ug/L Ethylbenzene 3.39 ug/L Gasoline Range Organics 0.111 mg/L o-Xylene 0.520J ug/L P & M -Xylene 4.21 ug/L 0.390J Toluene ug/L Client Sample ID: 100616MW4 Lab Sample ID: 1166058005 Parameter Units Result **Diesel Range Organics** 0.353J mg/L Semivolatile Organic Fuels Benzene Volatile Fuels 1.62 ug/L

Print Date: 10/21/2016 7:46:18AM

SGS North America Inc.

Detectable Results Summary Client Sample ID: 100716MW1R2 Lab Sample ID: 1166058006 Parameter Result Units **Diesel Range Organics** 1.73 mg/L Semivolatile Organic Fuels Benzene 48.7 ug/L Volatile Fuels Ethylbenzene 2.64 ug/L **Gasoline Range Organics** 0.175 mg/L 1.22 ug/L o-Xylene P & M -Xylene 6.48 ug/L Toluene 1.43 ug/L Client Sample ID: 100716MW5 Lab Sample ID: 1166058007 Parameter Result Units **Diesel Range Organics** 5.84 Semivolatile Organic Fuels mg/L Volatile Fuels Benzene 31.6 ug/L Ethylbenzene 3.53 ug/L **Gasoline Range Organics** 0.267 mg/L 3.00 o-Xylene ug/L P & M -Xylene 8.49 ug/L Toluene 2.11 ug/L Client Sample ID: MW1R2-4.5 Lab Sample ID: 1166058009 Parameter Units Result **Diesel Range Organics** 28.5 mg/Kg Semivolatile Organic Fuels Volatile Fuels Benzene 11.6J ug/Kg Gasoline Range Organics 3.17J mg/Kg Toluene 22.5J ug/Kg Client Sample ID: MW6-4 Lab Sample ID: 1166058010 Parameter Result Units **Diesel Range Organics** Semivolatile Organic Fuels 88.7J mg/Kg Benzene 13.8J ug/Kg Volatile Fuels **Gasoline Range Organics** 3.20J mg/Kg Toluene 42.9J ug/Kg Client Sample ID: MW4-2.5 Lab Sample ID: 1166058011 Parameter Result Units **Diesel Range Organics** 116 mg/Kg Semivolatile Organic Fuels Toluene 15.6J **Volatile Fuels** ug/Kg Client Sample ID: MW5-2 Lab Sample ID: 1166058012 Parameter Result Units 75.2J **Polynuclear Aromatics GC/MS** Chrysene ug/Kg Semivolatile Organic Fuels **Diesel Range Organics** 388 mg/Kg **Volatile Fuels** Ethylbenzene 17.0J ug/Kg **Gasoline Range Organics** 1.60J mg/Kg 19.7J o-Xylene ug/Kg P & M -Xylene 64.4J ug/Kg 22.3J Toluene ug/Kg

Print Date: 10/21/2016 7:46:18AM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: MW5-9 Lab Sample ID: 1166058013 Polynuclear Aromatics GC/MS

Semivolatile Organic Fuels Volatile Fuels

Parameter	Result	Units
Chrysene	65.0J	ug/Kg
Pyrene	32.2J	ug/Kg
Diesel Range Organics	410	mg/Kg
Ethylbenzene	19.7J	ug/Kg
Gasoline Range Organics	1.80J	mg/Kg
o-Xylene	17.2J	ug/Kg
P & M -Xylene	57.2J	ug/Kg
Toluene	24.3J	ug/Kg

Print Date: 10/21/2016 7:46:18AM

SGS North America Inc.

Results of 100316MW3R							
Client Sample ID: 100316MW3R Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058001 Lab Project ID: 1166058	ater/Soil	R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 10/10/	16 09:20		
Results by Semivolatile Organic Fuels	S						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 6.49	<u>LOQ/CL</u> 0.620	<u>DL</u> 0.186	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/13/16 01:30
Surrogates							
5a Androstane (surr)	94.2	50-150		%	1		10/13/16 01:30
Batch Information Analytical Batch: XFC12946 Analytical Method: AK102 Analyst: NRO Analytical Date/Time: 10/13/16 01:30 Container ID: 1166058001-D		F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 10/12/ [,] /t./Vol.: 242	16 10:30		

J flagging is activated

Client Sample ID: 100316MW3R Client Project ID: Kotzebue Ground Lab Sample ID: 1166058001 Lab Project ID: 1166058	at Project ID: Kotzebue Groundwater/Soil Sample ID: 1166058001 Project ID: 1166058			Collection Date: 10/03/16 15:55 Received Date: 10/10/16 09:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels			_							
Parameter	Result Qua	<u>l LOQ/C</u>	<u>)L DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed			
Gasoline Range Organics	1.07	<u>0.100</u>	<u>0.0310</u>	mg/L	1		10/16/16 13:1			
Surrogates 4-Bromofluorobenzene (surr)	95.2	50-150	1	%	1		10/16/16 13:1			
	00.2		, ,	70	•		10/10/10 10.1			
Batch Information										
Analytical Batch: VFC13384 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/16/16 13:12 Container ID: 1166058001-A			Prep Metho Prep Date/T	VXX29776 d: SW5030E Time: 10/15/ Wt./Vol.: 5 m t Vol: 5 mL	16 06:00					
						Allowable				
Parameter	<u>Result Qua</u> 10.4			<u>Units</u>	<u>DF</u> ₄	<u>Limits</u>	Date Analyze			
Benzene	10.4 50.7	0.500 1.00	0.150 0.310	ug/L	1 1		10/17/16 16:4 10/17/16 16:4			
Ethylbenzene o-Xylene	11.4	1.00	0.310	ug/L ug/L	1		10/17/16 16:4			
P & M -Xylene	79.7	2.00	0.620	ug/L	1		10/17/16 16:4			
Toluene	0.500 U	1.00	0.310	ug/L	1		10/17/16 16:4			
Surrogates				Ū						
1,4-Difluorobenzene (surr)	50.4	* 77-11	5	%	1		10/17/16 16:4			
	50.4	77-11	,	70	'		10/17/10 10.4			
Batch Information										
Analytical Batch: VFC13389 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/17/16 16:49 Container ID: 1166058001-A			Prep Metho Prep Date/1	VXX29789 d: SW5030E Time: 10/17/ Wt./Vol.: 5 m t Vol: 5 mL	3 16 06:00					

Results of 100316MW2							
Client Sample ID: 100316MW2 Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058002 Lab Project ID: 1166058	ater/Soil	R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 10/10/	16 09:20		
Results by Semivolatile Organic Fuel	s		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 1.59	<u>LOQ/CL</u> 0.588	<u>DL</u> 0.176	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/13/16 01:51
Surrogates 5a Androstane (surr)	90.9	50-150		%	1		10/13/16 01:51
Batch Information							
Analytical Batch: XFC12946 Analytical Method: AK102 Analyst: NRO Analytical Date/Time: 10/13/16 01:51 Container ID: 1166058002-D		F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 10/12/1 /t./Vol.: 255	16 10:30		

J flagging is activated

Client Sample ID: 100316MW2 Client Project ID: Kotzebue Groundv Lab Sample ID: 1166058002 Lab Project ID: 1166058	vater/Soil	Collection Date: 10/03/16 17:13 Received Date: 10/10/16 09:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels			_			Allowable		
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed	
Gasoline Range Organics	0.177	0.100	0.0310	mg/L	1		10/16/16 13:3	
urrogates								
4-Bromofluorobenzene (surr)	92.6	50-150		%	1		10/16/16 13:3	
Batch Information								
Analytical Batch: VFC13384 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/16/16 13:31 Container ID: 1166058002-A			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 10/15/1 t./Vol.: 5 m	6 06:00			
		1.00/01			55	Allowable		
<u>Parameter</u> Benzene	<u>Result Qual</u> 37.0	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyze 10/16/16 13:3	
Ethylbenzene	5.60	1.00	0.310	ug/L	1		10/16/16 13:3	
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/16/16 13:3	
P & M -Xylene	3.61	2.00	0.620	ug/L	1		10/16/16 13:3	
Toluene	0.750 J	1.00	0.310	ug/L	1		10/16/16 13:3	
urrogates								
1,4-Difluorobenzene (surr)	91.7	77-115		%	1		10/16/16 13:3	
Batch Information								
Analytical Batch: VFC13384 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/16/16 13:31 Container ID: 1166058002-A		I	Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	SW5030B ne: 10/15/1 t./Vol.: 5 m	6 06:00			

Results of 100616MW6 Client Sample ID: 100616MW6 Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058003 Lab Project ID: 1166058	ater/Soil	R M S	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 10/10/	16 09:20		
Results by Semivolatile Organic Fuel	S		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 1.72	<u>LOQ/CL</u> 0.615	<u>DL</u> 0.184	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/13/16 02:12
Surrogates 5a Androstane (surr)	93.3	50-150		%	1		10/13/16 02:12
Batch Information Analytical Batch: XFC12946 Analytical Method: AK102 Analyst: NRO Analytical Date/Time: 10/13/16 02:12 Container ID: 1166058003-D		F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	XXX36506 : SW3520C me: 10/12/1 /t./Vol.: 244	; 6 10:30		

J flagging is activated

<u>Ilt Qual LOQ/Cl</u> 2 0.100 6 50-150	0.0310 Prep Batch: V Prep Method:		<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 10/18/16 15:4 10/18/16 15:4
0.100	0.0310 Prep Batch: N Prep Method:	mg/L % /XX29795	1		10/18/16 15:4
0.100	0.0310 Prep Batch: N Prep Method:	mg/L % /XX29795	1		10/18/16 15:4
.6 50-150	Prep Batch: N Prep Method:	% /XX29795	1		10/18/16 15:4
.6 50-150	Prep Batch: \ Prep Method:	/XX29795	1		10/18/16 15:4
	Prep Batch: \ Prep Method:	/XX29795	·		10/10/10 13.4
	Prep Method:				
	Prep Method:				
	Prep Initial Wt Prep Extract \	ne: 10/18/1 /Vol.: 5 ml			
				Allowable	
				<u>Limits</u>	Date Analyze 10/18/16 15:4
		-			10/18/16 15:4
		-			10/18/16 15:4
		-			10/18/16 15:4
	0.310	ug/L	1		10/18/16 15:4
.9 77-115		%	1		10/18/16 15:4
	Prep Method: Prep Date/Tim Prep Initial Wt	SW5030B ne: 10/18/1 ./Vol.: 5 ml			
	8 0.500 8 1.00 10 J 1.00 9 2.00 10 J 1.00	.8 0.500 0.150 .8 1.00 0.310 .00 J 1.00 0.310 .9 2.00 0.620 .00 J 1.00 0.310 .9 77-115	8 0.500 0.150 ug/L .8 1.00 0.310 ug/L .00 J 1.00 0.310 ug/L .9 2.00 0.620 ug/L .00 J 1.00 0.310 ug/L .9 77-115 %	8 0.500 0.150 ug/L 1 1.88 1.00 0.310 ug/L 1 10 J 1.00 0.310 ug/L 1 19 2.00 0.620 ug/L 1 10 J 1.00 0.310 ug/L 1 19 2.00 0.620 ug/L 1 10 J 1.00 0.310 ug/L 1 9 77-115 % 1 Prep Batch: VXX29795 Prep Date/Time: 10/18/16 06:00 Prep Initial Wt./Vol.: 5 mL 5	8 0.500 0.150 ug/L 1 1.00 0.310 ug/L 1 1.01 1.00 0.310 ug/L 1 1.02 1.00 0.620 ug/L 1 1.00 0.310 ug/L 1 1.00 1.00 1 1 1.00 1.00 1 1 1.00 1.00 1 1 1.00 1.00

SGS North America Inc.

Results of 100616MW9 Client Sample ID: 100616MW9 Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058004 Lab Project ID: 1166058	ater/Soil	R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	te: 10/10/	16 09:20		
Results by Semivolatile Organic Fuel	s		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 1.40	<u>LOQ/CL</u> 0.615	<u>DL</u> 0.184	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed 10/13/16 02:32
Surrogates							
5a Androstane (surr)	93.5	50-150		%	1		10/13/16 02:32
Batch Information							
Analytical Batch: XFC12946 Analytical Method: AK102 Analyst: NRO Analytical Date/Time: 10/13/16 02:32 Container ID: 1166058004-D			Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 10/12/1 /t./Vol.: 244	6 10:30		

J flagging is activated

<u>Qual</u> <u>LOQ/(</u> 0.100	0.0310 0 Prep Batch: Prep Metho	Units mg/L %	<u>DF</u> 1 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 10/18/16 16:0 10/18/16 16:0
0.100	0.0310 0 Prep Batch: Prep Metho	mg/L %	1		10/18/16 16:0
	0 Prep Batch: Prep Metho	%			
50-15	Prep Batch: Prep Metho		1		10/18/16 16:0
50-150	Prep Batch: Prep Metho		1		10/18/16 16:0
	Prep Metho	VXX29795			
	Prep Metho	VXX29795			
		d: SW5030B Time: 10/18/1 Wt./Vol.: 5 m	6 06:00		
		Units	DF	Allowable	Date Analyze
	0.150	ug/L	1		10/18/16 16:0
1.00	0.310	ug/L	1		10/18/16 16:0
J 1.00	0.310	ug/L	1		10/18/16 16:0
	0.620	ug/L	1		10/18/16 16:0
J 1.00	0.310	ug/L	1		10/18/16 16:0
77-11	5	%	1		10/18/16 16:0
	Prep Metho Prep Date/T Prep Initial	d: SW5030B Fime: 10/18/1 Wt./Vol.: 5 m	6 06:00		
	0.500 1.00 J 1.00 2.00 J 1.00	0.500 0.150 1.00 0.310 J 1.00 0.310 2.00 0.620 J 1.00 0.310 777-115 Prep Batch: Prep Metho Prep Date/T Prep Initial	0.500 0.150 ug/L 1.00 0.310 ug/L 1.01 0.310 ug/L 1.02 0.310 ug/L 2.00 0.620 ug/L 1.00 0.310 ug/L 1.00 1.00 ug/L 1.00 1.00 ug/L 1.00 1.00 ug/L 1.00 1.00 ug/	0.500 0.150 ug/L 1 1.00 0.310 ug/L 1 1.00 0.310 ug/L 1 2.00 0.620 ug/L 1 1.00 0.310 ug/L 1 2.00 0.620 ug/L 1 7.0 0.310 ug/L 1 7.0 0.310 ug/L 1 7.0 0.310 ug/L 1 7.0 9% 1 1 Prep Batch: VXX29795 VX5030B Prep Date/Time: 10/18/16 06:00 Prep Initial Wt./Vol.: 5 mL 5mL 5mL	0.500 0.150 ug/L 1 1.00 0.310 ug/L 1 1.00 0.310 ug/L 1 2.00 0.620 ug/L 1 1.00 0.310 ug/L 1 7J 1.00 0.310 ug/L 1 7J 77-115 % 1 Prep Batch: VXX29795 Prep Date/Time: 10/18/16 06:00 Prep Initial Wt./Vol.: 5 mL

Results of 100616MW4 Client Sample ID: 100616MW4 Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058005 Lab Project ID: 1166058	ater/Soil	R M S	eceived Da	ate: 10/06/ ite: 10/10/ [/] r (Surface,	16 09:20		
Results by Semivolatile Organic Fuels	5		_				
Parameter Diesel Range Organics	<u>Result Qual</u> 0.353 J	<u>LOQ/CL</u> 0.605	<u>DL</u> 0.181	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 10/13/16 02:53
Surrogates							
5a Androstane (surr)	85.5	50-150		%	1		10/13/16 02:53
Batch Information Analytical Batch: XFC12946 Analytical Method: AK102 Analyst: NRO Analytical Date/Time: 10/13/16 02:53		F	Prep Date/Ti	XXX36506 : SW3520C me: 10/12/1 /t./Vol.: 248	6 10:30		
Container ID: 1166058005-D		F	Prep Extract	Vol: 1 mL			

J flagging is activated

Results by Volatile Fuels	Client Sample ID: 100616MW4 Client Project ID: Kotzebue Groundwater/Soil Lab Sample ID: 1166058005 Lab Project ID: 1166058 Results by Volatile Fuels			Collection Date: 10/06/16 19:40 Received Date: 10/10/16 09:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
			_							
Parameter Gasoline Range Organics	<u>Result Qual</u> 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyzed			
urrogates										
4-Bromofluorobenzene (surr)	82.9	50-150		%	1		10/18/16 16:2			
Batch Information										
Analytical Batch: VFC13392 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/18 Container ID: 1166058005-/	/16 16:21	1	Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	SW5030B ne: 10/18/1 t./Vol.: 5 m	6 06:00					
<u>Parameter</u> Benzene	<u>Result Qual</u> 1.62	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzec</u> 10/18/16 16:2			
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/18/16 16:2			
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/18/16 16:2			
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/18/16 16:2			
Toluene	0.500 U	1.00	0.310	ug/L	1		10/18/16 16:2			
Surrogates	07.0	77.445		0/						
1,4-Difluorobenzene (surr)	87.2	77-115		%	1		10/18/16 16:2			
Batch Information										
Analytical Batch: VFC13392 Analytical Method: SW8021 Analyst: ST Analytical Date/Time: 10/18 Container ID: 1166058005-/	B /16 16:21	1	Prep Batch: N Prep Method: Prep Date/Tin Prep Initial W Prep Extract N	SW5030B ne: 10/18/1 t./Vol.: 5 m	6 06:00					

Results of 100716MW1R2 Collection Date: 10/07/16 10:00 Client Sample ID: 100716MW1R2 Received Date: 10/10/16 09:20 Client Project ID: Kotzebue Groundwater/Soil Matrix: Water (Surface, Eff., Ground) Lab Sample ID: 1166058006 Lab Project ID: 1166058 Solids (%): Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual DL <u>Units</u> DF LOQ/CL Limits Date Analyzed **Diesel Range Organics** 1.73 0.605 0.181 mg/L 1 10/13/16 03:14 Surrogates 5a Androstane (surr) 94 50-150 % 1 10/13/16 03:14 **Batch Information** Analytical Batch: XFC12946 Prep Batch: XXX36506 Analytical Method: AK102 Prep Method: SW3520C Prep Date/Time: 10/12/16 10:30 Analyst: NRO Analytical Date/Time: 10/13/16 03:14 Prep Initial Wt./Vol.: 248 mL Container ID: 1166058006-D Prep Extract Vol: 1 mL

Print Date: 10/21/2016 7:46:19AM

J flagging is activated

Client Sample ID: 100716MW1R2 Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058006 Lab Project ID: 1166058	ater/Soil	Collection Date: 10/07/16 10:00 Received Date: 10/10/16 09:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels								
Parameter Gasoline Range Organics	<u>Result</u> Qual 0.175	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 10/19/16 19:5	
urrogates								
4-Bromofluorobenzene (surr)	107	50-150		%	1		10/19/16 19:5	
Batch Information								
Analytical Batch: VFC13394 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/19/16 19:52 Container ID: 1166058006-A			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 10/19/1 t./Vol.: 5 m	6 06:00			
Parameter Benzene	<u>Result Qual</u> 48.7	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyze</u> 10/19/16 19:5	
Ethylbenzene	40.7 2.64	1.00	0.150	ug/L ug/L	1		10/19/16 19:5	
o-Xylene	1.22	1.00	0.310	ug/L	1		10/19/16 19:5	
P & M -Xylene	6.48	2.00	0.620	ug/L	1		10/19/16 19:5	
Toluene	1.43	1.00	0.310	ug/L	1		10/19/16 19:5	
urrogates								
1,4-Difluorobenzene (surr)	93.1	77-115		%	1		10/19/16 19:5	
Batch Information								
Analytical Batch: VFC13394 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/19/16 19:52 Container ID: 1166058006-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B ne: 10/19/1 t./Vol.: 5 m	6 06:00			

000

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of 100716MW5 Client Sample ID: 100716MW5 Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058007 Lab Project ID: 1166058	R M S	ollection Da eceived Da latrix: Wate olids (%): ocation:	te: 10/10/	16 09:20			
Results by Semivolatile Organic Fuels	S						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 5.84	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 10/13/16 03:35
Surrogates 5a Androstane (surr)	93.7	50-150		%	1		10/13/16 03:35
Batch Information							
Analytical Batch: XFC12946 Analytical Method: AK102 Analyst: NRO Analytical Date/Time: 10/13/16 03:35 Container ID: 1166058007-D		1	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW35200 me: 10/12/1 /t./Vol.: 250	16 10:30		

J flagging is activated

		Collection Date: 10/07/16 15:05 Received Date: 10/10/16 09:20 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
LOQ/CL DL U	Jnits DF	Allowable Limits	Date Analyzed				
	ng/L 1		10/19/16 20:1				
	-						
50-150 %	6 1		10/19/16 20:1				
	•						
Prep Batch: VXX2 Prep Method: SW Prep Date/Time: 1 Prep Initial Wt./Vol Prep Extract Vol:	V5030B 10/19/16 06:00 bl.: 5 mL						
		Allowable					
	<u>Jnits DF</u>	<u>Limits</u>	Date Analyze				
	ıg/L 1 ıg/L 1		10/19/16 20:1 10/19/16 20:1				
·	ıg/L 1 ıg/L 1		10/19/16 20:1				
	ıg/L 1		10/19/16 20:1				
·	ig/L 1		10/19/16 20:1				
77-115 %	% 1		10/19/16 20:1				
Prep Batch: VXX2 Prep Method: SW Prep Date/Time: 1 Prep Initial Wt./Vol Prep Extract Vol:	V5030B 10/19/16 06:00 bl.: 5 mL						
Prep Method: SN Prep Date/Time: Prep Initial Wt./V	۸ 0	W5030B 10/19/16 06:00 ol.: 5 mL	N5030B 10/19/16 06:00 ol.: 5 mL				

SGS North America Inc.

	DL 0.0310 Prep Batch: ^ Prep Method: Prep Date/Tir Prep Initial W Prep Extract ^	SW5030B ne: 10/14/1 t./Vol.: 5 m	6 06:00	Allowable Limits	Date Analyzed 10/14/16 19:55 10/14/16 19:55
0.100	0.0310 Prep Batch: V Prep Method: Prep Date/Tir Prep Initial W	mg/L % VXX29773 SW5030B ne: 10/14/1 t./Vol.: 5 m	1 1 6 06:00		10/14/16 19:59
	Prep Method: Prep Date/Tir Prep Initial W	VXX29773 SW5030B ne: 10/14/1 t./Vol.: 5 m	6 06:00		10/14/16 19:5
	Prep Method: Prep Date/Tir Prep Initial W	VXX29773 SW5030B ne: 10/14/1 t./Vol.: 5 m	6 06:00		10/14/16 19:5
	Prep Method: Prep Date/Tir Prep Initial W	SW5030B ne: 10/14/1 t./Vol.: 5 m	6 06:00		
	Prep Method: Prep Date/Tir Prep Initial W	SW5030B ne: 10/14/1 t./Vol.: 5 m	6 06:00		
		Vol: 5 mL			
1.00/01	51		55	Allowable	
<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed
		-			10/14/16 19:5
		-			10/14/16 19:5
		-			10/14/16 19:5
1.00	0.310	ug/L	1		10/14/16 19:5
77-115		%	1		10/14/16 19:5
	Prep Method: Prep Date/Tir Prep Initial W	SW5030B ne: 10/14/1 t./Vol.: 5 m	6 06:00		
	77-115	1.00 0.310 2.00 0.620 1.00 0.310 77-115 Prep Batch: Y Prep Method: Prep Date/Tir Prep Initial W	1.00 0.310 ug/L 2.00 0.620 ug/L 1.00 0.310 ug/L 77-115 % Prep Batch: VXX29773 Prep Method: SW5030B Prep Date/Time: 10/14/1	1.00 0.310 ug/L 1 2.00 0.620 ug/L 1 1.00 0.310 ug/L 1 77-115 % 1 Prep Batch: VXX29773 Prep Method: SW5030B Prep Date/Time: 10/14/16 06:00 Prep Initial Wt./Vol.:	1.00 0.310 ug/L 1 2.00 0.620 ug/L 1 1.00 0.310 ug/L 1 77-115 % 1 Prep Batch: VXX29773 Prep Method: SW5030B Prep Date/Time: 10/14/16 06:00 Prep Initial Wt./Vol.: 5 mL

Container ID: 1166058009-A

Results of MW1R2-4.5 Collection Date: 10/05/16 09:54 Client Sample ID: MW1R2-4.5 Received Date: 10/10/16 09:20 Client Project ID: Kotzebue Groundwater/Soil Matrix: Soil/Solid (dry weight) Lab Sample ID: 1166058009 Lab Project ID: 1166058 Solids (%):94.0 Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual <u>Units</u> DF LOQ/CL DL Limits Date Analyzed **Diesel Range Organics** 28.5 21.0 6.52 mg/Kg 1 10/17/16 11:09 Surrogates 5a Androstane (surr) 95.9 50-150 % 1 10/17/16 11:09 **Batch Information** Analytical Batch: XFC12971 Prep Batch: XXX36510 Analytical Method: AK102 Prep Method: SW3550C Prep Date/Time: 10/12/16 18:20 Analyst: NRO Analytical Date/Time: 10/17/16 11:09 Prep Initial Wt./Vol.: 30.334 g

Prep Extract Vol: 1 mL

Print Date: 10/21/2016 7:46:19AM

J flagging is activated

Client Sample ID: MW1R2-4.5 Client Project ID: Kotzebue Ground Lab Sample ID: 1166058009 Lab Project ID: 1166058	F M S	Collection Da Received Da Matrix: Soil/S Colids (%):94 ocation:					
Results by Volatile Fuels							
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyze
Gasoline Range Organics	3.17 J	6.81	2.04	mg/Kg	1		10/18/16 02:3
Surrogates							
4-Bromofluorobenzene (surr)	89.3	50-150		%	1		10/18/16 02:3
Batch Information							
Analytical Batch: VFC13387 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/18/16 02:31 Container ID: 1166058009-B			Prep Date/Ti Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 20.4 Vol: 26.225	6 09:54 91 g		
Deremeter	Regult Quel	1.00/01		Linita		Allowable	Data Analyza
<u>Parameter</u> Benzene	<u>Result Qual</u> 11.6 J	<u>LOQ/CL</u> 34.0	<u>DL</u> 10.9	<u>Units</u> ug/Kg	<u>DF</u> 1	<u>Limits</u>	Date Analyze 10/18/16 02:3
Ethylbenzene	34.0 U	68.1	21.2	ug/Kg	1		10/18/16 02:3
o-Xylene	34.0 U	68.1	21.2	ug/Kg	1		10/18/16 02:3
P & M -Xylene	68.0 U	136	40.8	ug/Kg	1		10/18/16 02:3
Toluene	22.5 J	68.1	21.2	ug/Kg	1		10/18/16 02:3
Surrogates							
1,4-Difluorobenzene (surr)	83.3	72-119		%	1		10/18/16 02:3
Batch Information							
Analytical Batch: VFC13387 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/18/16 02:31 Container ID: 1166058009-B			Prep Date/Ti Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 20.4 Vol: 26.225	6 09:54 ·91 g		

Results of MW6-4									
Client Sample ID: MW6-4		Collection Date: 10/05/16 11:05							
Client Project ID: Kotzebue Groundw	ater/Soil	Received Date: 10/10/16 09:20							
Lab Sample ID: 1166058010	Matrix: Soil/Solid (dry weight)								
Lab Project ID: 1166058	Solids (%):87.6								
		L	ocation:						
Results by Semivolatile Organic Fuel	s								
						Allowable			
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyze		
Diesel Range Organics	88.7 J	113	35.0	mg/Kg	1		10/17/16 11:1		
Surrogates									
5a Androstane (surr)	104	50-150		%	1		10/17/16 11:1		
Batch Information									
Analytical Batch: XFC12971			Prep Batch:	XXX36510					
Analytical Method: AK102				d: SW3550C					
			Prep Date/T						
Analyst: NRO Analytical Date/Time: 10/17/16 11:19				Vt./Vol.: 30.3					

J flagging is activated

Client Sample ID: MW6-4 Client Project ID: Kotzebue Ground Lab Sample ID: 1166058010 Lab Project ID: 1166058	R M S	eceived Da	ate: 10/05/ [,] ate: 10/10/1 Solid (dry we 7.6	6 09:20			
Results by Volatile Fuels							
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Gasoline Range Organics	3.20 J	8.10	2.43	mg/Kg	1		10/18/16 03:2
Surrogates							
4-Bromofluorobenzene (surr)	84.1	50-150		%	1		10/18/16 03:2
Batch Information							
Analytical Batch: VFC13387 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/18/16 03:28 Container ID: 1166058010-B		F	· Prep Date/Ti Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 19.3 Vol: 27.405	23 g		
						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	13.8 J	40.5	13.0	ug/Kg	1		10/18/16 03:2
Ethylbenzene	40.5 U	81.0	25.3	ug/Kg	1		10/18/16 03:2
o-Xylene	40.5 U	81.0	25.3	ug/Kg	1		10/18/16 03:2
P & M -Xylene	81.0 U	162	48.6	ug/Kg	1		10/18/16 03:2
Toluene	42.9 J	81.0	25.3	ug/Kg	1		10/18/16 03:2
Surrogates							
1,4-Difluorobenzene (surr)	85.2	72-119		%	1		10/18/16 03:2
Batch Information							
Analytical Batch: VFC13387 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/18/16 03:28 Container ID: 1166058010-B		F F	Prep Date/Ti Prep Initial V	VXX29788 I: SW5035A ime: 10/05/1 Vt./Vol.: 19.3 Vol: 27.405	6 11:05 23 g		

Results of MW4-2.5	ŀ						
Client Sample ID: MW4-2.5 Client Project ID: Kotzebue Ground Lab Sample ID: 1166058011 Lab Project ID: 1166058	R M Se	eceived Da	ate: 10/05/ [,] ate: 10/10/1 Solid (dry we 6.6	6 09:20			
Results by Semivolatile Organic Fue	els						
Parameter Diesel Range Organics	<u>Result Qual</u> 116	<u>LOQ/CL</u> 103	<u>DL</u> 32.0	<u>Units</u> mg/Kg	<u>DF</u> 1	Allowable Limits	Date Analyzed
urrodates							
Surrogates 5a Androstane (surr)	107	50-150		%	1		10/17/16 11:2

Results of MW4-2.5							
Client Sample ID: MW4-2.5 Client Project ID: Kotzebue Ground Lab Sample ID: 1166058011 Lab Project ID: 1166058	F M S	Received Da	ate: 10/05/ [,] ate: 10/10/1 Solid (dry we 6.6	6 09:20			
Results by Volatile Fuels							
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
Gasoline Range Organics	2.36 U	4.71	1.41	mg/Kg	1		10/18/16 03:47
Surrogates							
4-Bromofluorobenzene (surr)	84	50-150		%	1		10/18/16 03:47
Batch Information							
Analytical Batch: VFC13387 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/18/16 03:47 Container ID: 1166058011-B			Prep Date/T Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 28.5 : Vol: 25.967	08 g		
						Allowable	
Parameter Benzene	<u>Result Qual</u> 11.8 U	<u>LOQ/CL</u> 23.6	<u>DL</u> 7.54	<u>Units</u> ug/Kg	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 10/18/16 03:4
Ethylbenzene	23.6 U	47.1	14.7	ug/Kg	1		10/18/16 03:4
o-Xylene	23.6 U	47.1	14.7	ug/Kg	1		10/18/16 03:4
P & M -Xylene	47.1 U	94.3	28.3	ug/Kg	1		10/18/16 03:4
Toluene	15.6 J	47.1	14.7	ug/Kg	1		10/18/16 03:4
Surrogates							
1,4-Difluorobenzene (surr)	85.2	72-119		%	1		10/18/16 03:47
Batch Information							
Analytical Batch: VFC13387 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/18/16 03:47 Container ID: 1166058011-B			Prep Date/T Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 28.5 : Vol: 25.967	08 g		

Results of MW5-2

Client Sample ID: **MW5-2** Client Project ID: **Kotzebue Groundwater/Soil** Lab Sample ID: 1166058012 Lab Project ID: 1166058 Collection Date: 10/05/16 12:30 Received Date: 10/10/16 09:20 Matrix: Soil/Solid (dry weight) Solids (%):95.6 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
Parameter_	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
1-Methylnaphthalene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
2-Methylnaphthalene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Acenaphthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Acenaphthylene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Anthracene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Benzo(a)Anthracene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Benzo[a]pyrene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Benzo[b]Fluoranthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Benzo[g,h,i]perylene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Benzo[k]fluoranthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Chrysene	75.2 J	104	31.1	ug/Kg	4	10/14/16 14:26
Dibenzo[a,h]anthracene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Fluoranthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Fluorene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Indeno[1,2,3-c,d] pyrene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Naphthalene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Phenanthrene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Pyrene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:26
Surrogates						
2-Fluorobiphenyl (surr)	79.4	46-115		%	4	10/14/16 14:26
Terphenyl-d14 (surr)	94.5	58-133		%	4	10/14/16 14:26

Batch Information

Analytical Batch: XMS9698 Analytical Method: 8270D SIM (PAH) Analyst: S.G Analytical Date/Time: 10/14/16 14:26 Container ID: 1166058012-A Prep Batch: XXX36508 Prep Method: SW3550C Prep Date/Time: 10/12/16 14:15 Prep Initial Wt./Vol.: 22.717 g Prep Extract Vol: 5 mL

Print Date: 10/21/2016 7:46:19AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW5-2							
Client Sample ID: MW5-2 Client Project ID: Kotzebue Groundw Lab Sample ID: 1166058012 Lab Project ID: 1166058	ater/Soil	R M S	ollection Date eceived Date latrix: Soil/Solids (%):9 ocation:				
Results by Semivolatile Organic Fuels	3						
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyze
Diesel Range Organics	388	104	32.4	mg/Kg	1		10/17/16 11:3
Surrogates							
5a Androstane (surr)	117	50-150		%	1		10/17/16 11:3
Batch Information							
Analytical Batch: XFC12971			Prep Batch:				
Analytical Method: AK102 Analyst: NRO				1: SW3550C ime: 10/12/1	6 18:20		
Analytical Date/Time: 10/17/16 11:38				Vt./Vol.: 30.0			

Print Date: 10/21/2016 7:46:19AM

000

Member of SGS Group

Results of MW5-2							
Client Sample ID: MW5-2 Client Project ID: Kotzebue Groun Lab Sample ID: 1166058012 Lab Project ID: 1166058	dwater/Soil	F N S	Received Da	ate: 10/05/ ate: 10/10/1 Solid (dry we 5.6	6 09:20		
Results by Volatile Fuels							
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.60 J	5.32	1.60	mg/Kg	1		10/18/16 00:17
Surrogates							
4-Bromofluorobenzene (surr)	83.8	50-150		%	1		10/18/16 00:17
Batch Information							
Analytical Batch: VFC13387 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/18/16 00:17 Container ID: 1166058012-B	7		Prep Date/T Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 25.6 : Vol: 26.118	67 g		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	13.3 U	26.6	8.51	ug/Kg	1		10/18/16 00:1
Ethylbenzene	17.0 J	53.2	16.6	ug/Kg	1		10/18/16 00:1
o-Xylene	19.7 J	53.2	16.6	ug/Kg	1		10/18/16 00:1
P & M -Xylene Toluene	64.4 J 22.3 J	106 53.2	31.9 16.6	ug/Kg ug/Kg	1 1		10/18/16 00:17 10/18/16 00:17
Surrogates				0 0			
1,4-Difluorobenzene (surr)	86.6	72-119		%	1		10/18/16 00:17
Batch Information							
Analytical Batch: VFC13387 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/18/16 00:17 Container ID: 1166058012-B	7		Prep Date/T Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 25.6 : Vol: 26.118	6 12:30 67 g		

000

Results of MW5-9

Client Sample ID: **MW5-9** Client Project ID: **Kotzebue Groundwater/Soil** Lab Sample ID: 1166058013 Lab Project ID: 1166058 Collection Date: 10/05/16 12:30 Received Date: 10/10/16 09:20 Matrix: Soil/Solid (dry weight) Solids (%):95.5 Location:

Results by Polynuclear Aromatics GC/MS

						Allowable
Parameter_	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits Date Analyzed
1-Methylnaphthalene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
2-Methylnaphthalene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Acenaphthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Acenaphthylene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Anthracene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Benzo(a)Anthracene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Benzo[a]pyrene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Benzo[b]Fluoranthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Benzo[g,h,i]perylene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Benzo[k]fluoranthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Chrysene	65.0 J	104	31.1	ug/Kg	4	10/14/16 14:46
Dibenzo[a,h]anthracene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Fluoranthene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Fluorene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Indeno[1,2,3-c,d] pyrene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Naphthalene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Phenanthrene	52.0 U	104	31.1	ug/Kg	4	10/14/16 14:46
Pyrene	32.2 J	104	31.1	ug/Kg	4	10/14/16 14:46
Surrogates						
2-Fluorobiphenyl (surr)	80.9	46-115		%	4	10/14/16 14:46
Terphenyl-d14 (surr)	93.1	58-133		%	4	10/14/16 14:46

Batch Information

Analytical Batch: XMS9698 Analytical Method: 8270D SIM (PAH) Analyst: S.G Analytical Date/Time: 10/14/16 14:46 Container ID: 1166058013-A Prep Batch: XXX36508 Prep Method: SW3550C Prep Date/Time: 10/12/16 14:15 Prep Initial Wt./Vol.: 22.746 g Prep Extract Vol: 5 mL

Print Date: 10/21/2016 7:46:19AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW5-9							
Client Sample ID: MW5-9 Client Project ID: Kotzebue Groundwater/Soil Lab Sample ID: 1166058013 Lab Project ID: 1166058		R	ollection D eceived Da latrix: Soil/s olids (%):9				
		L	ocation:				
Results by Semivolatile Organic Fuels	3						
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyze
Diesel Range Organics	410	104	32.1	mg/Kg	1		10/17/16 11:4
Surrogates							
5a Androstane (surr)	112	50-150		%	1		10/17/16 11:4
Batch Information							
Analytical Batch: XFC12971 Analytical Method: AK102			- Prep Methoo	XXX36510 d: SW3550C ime: 10/12/1	6 18:20		
Analyst: NRO Analytical Date/Time: 10/17/16 11:48				Vt./Vol.: 30.3			

Print Date: 10/21/2016 7:46:19AM

000

Member of SGS Group

Results of MW5-9							
Client Sample ID: MW5-9 Client Project ID: Kotzebue Ground Lab Sample ID: 1166058013 Lab Project ID: 1166058	lwater/Soil	F M	Received Da	ate: 10/05/ [.] ate: 10/10/1 Solid (dry we 5.5	6 09:20		
Results by Volatile Fuels						Allowable	
Parameter Gasoline Range Organics	<u>Result Qual</u> 1.80 J	<u>LOQ/CL</u> 5.06	<u>DL</u> 1.52	<u>Units</u> mg/Kg	<u>DF</u> 1	Limits	Date Analyzed
	1.00 3	5.00	1.52	ilig/itg	I		10/10/10 04.00
Surrogates 4-Bromofluorobenzene (surr)	79.7	50-150		%	1		10/18/16 04:06
	19.1	50-150		70	I		10/10/10 04.00
Batch Information							
Analytical Batch: VFC13387 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/18/16 04:06 Container ID: 1166058013-B			Prep Date/T Prep Initial V	VXX29788 d: SW5035A ime: 10/05/1 Vt./Vol.: 27.0 Vol: 26.209	92 g		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	12.7 U 19.7 J	25.3 50.6	8.10 15.8	ug/Kg	1 1		10/18/16 04:00 10/18/16 04:00
Ethylbenzene o-Xylene	19.7 J 17.2 J	50.6 50.6	15.8	ug/Kg ug/Kg	1		10/18/16 04:00
P & M -Xylene	57.2 J	101	30.4	ug/Kg ug/Kg	1		10/18/16 04:00
Toluene	24.3 J	50.6	15.8	ug/Kg	1		10/18/16 04:00
Surrogates							
1,4-Difluorobenzene (surr)	84.8	72-119		%	1		10/18/16 04:00
Batch Information							
Analytical Batch: VFC13387 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/18/16 04:06 Container ID: 1166058013-B			Prep Date/T Prep Initial V	VXX29788 I: SW5035A ime: 10/05/1 Vt./Vol.: 27.0 Vol: 26.209	6 12:30 92 g		

000

Member of SGS Group

Client Sample ID: TB-2 Client Project ID: Kotzebue Ground Lab Sample ID: 1166058014 Lab Project ID: 1166058	water/Soil	R M S	eceived Da	ate: 10/05/ [,] te: 10/10/1 Solid (dry we	6 09:20		
Results by Volatile Fuels						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.25 U	2.49	0.747	mg/Kg	1		10/17/16 23:58
Surrogates							
4-Bromofluorobenzene (surr)	87.4	50-150		%	1		10/17/16 23:58
Batch Information							
Analytical Batch: VFC13387 Analytical Method: AK101 Analyst: ST Analytical Date/Time: 10/17/16 23:58 Container ID: 1166058014-A		F	Prep Date/Ti	: SW5035A me: 10/05/1 /t./Vol.: 50.2	6 09:54		
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u> 1	<u>Limits</u>	Date Analyzed
Benzene	6.20 U	12.4	3.98	ug/Kg			10/17/16 23:5
Ethylbenzene o-Xylene	12.4 U 12.4 U	24.9 24.9	7.77 7.77	ug/Kg ug/Kg	1 1		10/17/16 23:5 10/17/16 23:5
P & M -Xylene	24.9 U	24.9 49.8	14.9	ug/Kg	1		10/17/16 23:56
Toluene	12.4 U	24.9	7.77	ug/Kg	1		10/17/16 23:58
Surrogates							
1,4-Difluorobenzene (surr)	85.5	72-119		%	1		10/17/16 23:58
Batch Information							
Analytical Batch: VFC13387 Analytical Method: SW8021B Analyst: ST Analytical Date/Time: 10/17/16 23:58 Container ID: 1166058014-A		F	Prep Date/Ti	: SW5035A me: 10/05/1 /t./Vol.: 50.2	6 09:54		

SGS North America Inc.

000

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS	
the second of the second se	

Method Blank					
Blank ID: MB for HBN Blank Lab ID: 1358223	1745503 [SPT/10020] 7	Matrix	:: Soil/Solid (c	dry weight)	
QC for Samples: 1166058009, 116605801	10, 1166058011, 1166058012, 116	6058013			
Results by SM21 2540)G				
Parameter Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information					
Analytical Batch: SP Analytical Method: S Instrument: Analyst: RJA	M21 2540G				
Analytical Date/Time:	10/11/2016 6:54:00PM				

Print Date: 10/21/2016 7:46:23AM

SGS	
the second se	

Duplicate Sample Summary	/					
Original Sample ID: 116605 Duplicate Sample ID: 13582			Analysis Date: Matrix: Soil/Sol	10/11/2016 18:54 id (dry weight)		
QC for Samples:						
1166058009, 1166058010, 1	166058011, 11660	958012				
Results by SM21 2540G						K
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL	
Total Solids	96.6	96.7	%	0.08	(< 15)	
Batch Information						\neg
Analytical Batch: SPT10020 Analytical Method: SM21 254 Instrument: Analyst: RJA	40G					

SGS	
UUU	

uplicate Sample Summ	nary				
original Sample ID: 1166 Ouplicate Sample ID: 138	6058012 58229		Analysis Date: Matrix: Soil/So	10/11/2016 18:54 lid (dry weight)	
C for Samples:					
166058012, 1166058013	3				
esults by SM21 2540G					
AME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
otal Solids	95.6	95.7	%	0.03	(< 15)
atch Information					
Analytical Batch: SPT1002 Analytical Method: SM21 Instrument: Analyst: RJA	20 2540G				

Duplicate Sample Summary	1					
Original Sample ID: 116607 Duplicate Sample ID: 13582	nple ID: 1166075030 Analysis Date: 10/11/2016 18:54 ample ID: 1358230 Matrix: Soil/Solid (dry weight)					
QC for Samples:						
1166058013						
Results by SM21 2540G						
-	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL	
<u>NAME</u> Total Solids	90.6	90.6	%	0.04	(< 15)	
	30.0	00.0	70	0.04	((10))	
Batch Information						
Analytical Batch: SPT10020 Analytical Method: SM21 254 Instrument: Analyst: RJA	10G					

Print Date: 10/21/2016 7:46:23AM

SGS

Method Blank				
Blank ID: MB for HBN 1745789 [VXX/29773] Blank Lab ID: 1359222	Matrix	: Water (Surface, E	ff., Ground)	
QC for Samples: 1166058008				
Results by AK101				
Parameter Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Gasoline Range Organics 0.0500U	0.100	0.0310	mg/L	
Surrogates4-Bromofluorobenzene (surr)78.6	50-150		%	
Batch Information				
Analytical Batch: VFC13375 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID Analyst: ST Analytical Date/Time: 10/14/2016 9:52:00AM	Prep Me Prep Da Prep Init	ch: VXX29773 thod: SW5030B te/Time: 10/14/2016 ial Wt./Vol.: 5 mL ract Vol: 5 mL	6:00:00AM	

Blank Spike ID: LCS for HBN 1166058 [VXX29773] Blank Spike Lab ID: 1359225 Date Analyzed: 10/14/2016 18:45 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29773] Spike Duplicate Lab ID: 1359226 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058008

Results by AK101			_						
	E	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.17	117	1.00	1.03	103	(60-120)	13.10	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	87.9	88	0.0500	81.2	81	(50-150)	8.00	
Batch Information									
Analytical Batch: VFC13375				Prep	Batch: V	XX29773			
Analytical Method: AK101					Method:				
Instrument: Agilent 7890A PII	D/FID					e: 10/14/201			
Analyst: ST							g/L Extract V		
				Dup	e mit vvt./v	oi 1.00 mg	J/L Extract V	UL SINL	

Print Date: 10/21/2016 7:46:28AM

Method Blank

Blank ID: MB for HBN 1745789 [VXX/29773] Blank Lab ID: 1359222

QC for Samples: 1166058008

Results by SW8021B

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	91.1	77-115		%

Batch Information

Analytical Batch: VFC13375 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Analytical Date/Time: 10/14/2016 9:52:00AM Prep Batch: VXX29773 Prep Method: SW5030B Prep Date/Time: 10/14/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 10/21/2016 7:46:31AM

Blank Spike ID: LCS for HBN 1166058 [VXX29773] Blank Spike Lab ID: 1359223 Date Analyzed: 10/14/2016 18:26 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29773] Spike Duplicate Lab ID: 1359224 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058008

Results by SW8021B

		Blank Spike	e (ug/L)	Ś	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	109	109	100	113	113	(80-120)	3.70	(< 20)
Ethylbenzene	100	112	112	100	117	117	(75-125)	4.20	(< 20)
o-Xylene	100	110	110	100	115	115	(80-120)	4.30	(< 20)
P & M -Xylene	200	224	112	200	234	117	(75-130)	4.30	(< 20)
Toluene	100	113	113	100	118	118	(75-120)	4.00	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	97.5	98	50	97.5	98	(77-115)	0.00	
Batch Information									

Analytical Batch: VFC13375 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST

Prep Batch: VXX29773 Prep Method: SW5030B Prep Date/Time: 10/14/2016 06:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 10/21/2016 7:46:33AM

Method Blank					
Blank ID: MB for HBN 1745901 [VXX/29776] Blank Lab ID: 1359319		Matrix	k: Water (Surfac	e, Eff., Ground)	
QC for Samples: 1166058001, 1166058002					
Results by AK101					
Parameter Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
Surrogates					
4-Bromofluorobenzene (surr)	87.5	50-150		%	
Batch Information					
Analytical Batch: VFC13384 Analytical Method: AK101 Instrument: Agilent 7890A F Analyst: ST Analytical Date/Time: 10/16	PID/FID	Prep Me Prep Da Prep Ini	tch: VXX29776 ethod: SW5030B ite/Time: 10/15/2 tial Wt./Vol.: 5 m tract Vol: 5 mL	016 6:00:00AM L	

Print Date: 10/21/2016 7:46:35AM

Blank Spike ID: LCS for HBN 1166058 [VXX29776] Blank Spike Lab ID: 1359322 Date Analyzed: 10/16/2016 09:28 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29776] Spike Duplicate Lab ID: 1359323 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058001, 1166058002

Results by AK101									
	1	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	1.08	108	1.00	0.958	96	(60-120)	12.40	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	99.5	100	0.0500	96.4	96	(50-150)	3.10	
Batch Information Analytical Batch: VFC13384 Analytical Method: AK101 Instrument: Agilent 7890A Plu Analyst: ST	D/FID			Prep Prep Spik	e Init Wt./\	SW5030B e: 10/15/201 /ol.: 1.00 mg	6 06:00 g/L Extract V		

Print Date: 10/21/2016 7:46:38AM

Method Blank

Blank ID: MB for HBN 1745901 [VXX/29776] Blank Lab ID: 1359319 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058001, 1166058002

Results by SW8021B

-				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	85	77-115		%

Batch Information

Analytical Batch: VFC13384 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Analytical Date/Time: 10/16/2016 10:06:00AM Prep Batch: VXX29776 Prep Method: SW5030B Prep Date/Time: 10/15/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/21/2016 7:46:40AM

Blank Spike ID: LCS for HBN 1166058 [VXX29776] Blank Spike Lab ID: 1359320 Date Analyzed: 10/16/2016 09:09 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29776] Spike Duplicate Lab ID: 1359321 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058001, 1166058002

Results by SW8021B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	108	108	100	109	109	(80-120)	0.90	(< 20)
Ethylbenzene	100	108	108	100	109	109	(75-125)	0.87	(< 20)
o-Xylene	100	101	101	100	105	105	(80-120)	3.10	(< 20)
P & M -Xylene	200	205	103	200	212	106	(75-130)	3.10	(< 20)
Toluene	100	116	116	100	113	113	(75-120)	3.10	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	95.1	95	50	96	96	(77-115)	0.86	

Batch Information

Analytical Batch: VFC13384 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Prep Batch: VXX29776 Prep Method: SW5030B Prep Date/Time: 10/15/2016 06:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 10/21/2016 7:46:42AM

166058009, 1166058010, 116	6058011, 1166058012, 1166	0058013, 1166058014	ł	
Results by AK101				
<u>Parameter</u> Gasoline Range Organics	<u>Results</u> 1.25U	<u>LOQ/CL</u> 2.50	<u>DL</u> 0.750	<u>Units</u> mg/Kg
urrogates				
-Bromofluorobenzene (surr)	84.2	50-150		%
atch Information				
Analytical Batch: VFC13387	7		tch: VXX29788	
Analytical Method: AK101 Instrument: Agilent 7890 PI			ethod: SW5035A	A 2016 12:30:00AM
Analyst: ST			tial Wt./Vol.: 50	
	/2016 11:39:00PM		tract Vol: 25 mL	

Print Date: 10/21/2016 7:46:44AM

Blank Spike ID: LCS for HBN 1166058 [VXX29788] Blank Spike Lab ID: 1359785 Date Analyzed: 10/17/2016 21:25 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29788] Spike Duplicate Lab ID: 1359786 Matrix: Soil/Solid (dry weight)

QC for Samples: 1166058009, 1166058010, 1166058011, 1166058012, 1166058013, 1166058014

Results by AK101									
	E	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	12.5	12.4	99	12.5	12.6	101	(60-120)	1.80	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25	89.9	90	1.25	88.3	88	(50-150)	1.80	
Batch Information									
Analytical Batch: VFC13387				Pre	p Batch: V	XX29788			
Analytical Method: AK101					p Method:				
Instrument: Agilent 7890 PID/	FID					e: 10/17/201			
Analyst: ST							g/Kg Extrac		
				Dup	be init Wt./V	/ol.: 12.5 mg	g/Kg Extract	voi: 25 mL	

Print Date: 10/21/2016 7:46:46AM

Method Blank

Blank ID: MB for HBN 1746024 [VXX/29788] Blank Lab ID: 1359782 Matrix: Soil/Solid (dry weight)

QC for Samples:

1166058009, 1166058010, 1166058011, 1166058012, 1166058013, 1166058014

<u>arameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
Benzene	6.25U	12.5	4.00	ug/Kg	
Ethylbenzene	12.5U	25.0	7.80	ug/Kg	
o-Xylene	12.5U	25.0	7.80	ug/Kg	
P & M -Xylene	25.0U	50.0	15.0	ug/Kg	
Toluene	12.5U	25.0	7.80	ug/Kg	
Surrogates					
1,4-Difluorobenzene (surr)	84.7	72-119		%	

Analytical Batch: VFC13387 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 10/17/2016 11:39:00PM Prep Batch: VXX29788 Prep Method: SW5035A Prep Date/Time: 10/17/2016 12:30:00AM Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 10/21/2016 7:46:48AM

Blank Spike ID: LCS for HBN 1166058 [VXX29788] Blank Spike Lab ID: 1359783 Date Analyzed: 10/17/2016 20:47 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29788] Spike Duplicate Lab ID: 1359784 Matrix: Soil/Solid (dry weight)

QC for Samples: 1166058009, 1166058010, 1166058011, 1166058012, 1166058013, 1166058014

	1	Blank Spike	(ug/Kg)	Spike Duplicate (ug/Kg)					
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	1250	1210	97	1250	1170	94	(75-125)	2.90	(< 20)
Ethylbenzene	1250	1210	97	1250	1180	94	(75-125)	2.50	(< 20)
o-Xylene	1250	1180	94	1250	1150	92	(75-125)	2.30	(< 20)
P & M -Xylene	2500	2440	97	2500	2380	95	(80-125)	2.20	(< 20)
Toluene	1250	1210	97	1250	1170	93	(70-125)	3.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	1250	88.6	89	1250	91.5	92	(72-119)	3.20	
Batch Information				Pre	p Batch: V	XX29788			
Applytical Mathad: SW9021P					n Mothod:				

Analytical Batch: VFC13387 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Prep Batch: VXX29788 Prep Method: SW5035A Prep Date/Time: 10/17/2016 00:30 Spike Init Wt./Vol.: 1250 ug/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1250 ug/Kg Extract Vol: 25 mL

Print Date: 10/21/2016 7:46:50AM

Matrix Spike Summary

Original Sample ID: 1166058012 MS Sample ID: 1359787 MS MSD Sample ID: 1359788 MSD

Analysis Date: 10/18/2016 0:17 Analysis Date: 10/17/2016 22:04 Analysis Date: 10/17/2016 22:23 Matrix: Soil/Solid (dry weight)

QC for Samples: 1166058009, 1166058010, 1166058011, 1166058012, 1166058013, 1166058014

Benzene Z	<u>Sample</u> 13.3U	<u>Spike</u> 2552	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Ethylbenzene		2552	0040					<u>UL</u>	$\left[\left(1 \right) \right] \left(1 \right) \left[\left(1 \right) \right] \right]$	IND OL
·) · · · ·	47 0 1		2343	92	2552	2249	88	75-125	4.30	(< 20)
	17.0J	2552	2291	90	2552	2228	87	75-125	2.80	(< 20)
o-Xylene	19.7J	2552	2218	86	2552	2123	83	75-125	4.50	(< 20)
P & M -Xylene 6	64.4J	5094	4623	90	5094	4446	86	80-125	4.00	(< 20)
Toluene	22.3J	2552	2280	89	2552	2218	86	70-125	2.50	(< 20)
Surrogates										
1,4-Difluorobenzene (surr)		2552	2228	87	2552	2280	89	72-119	2.20	

Analytical Batch: VFC13387 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 10/17/2016 10:04:00PM Prep Batch: VXX29788 Prep Method: AK101 Extraction (S) Prep Date/Time: 10/17/2016 12:30:00AM Prep Initial Wt./Vol.: 25.67g Prep Extract Vol: 25.00mL

Print Date: 10/21/2016 7:46:52AM

Method Blank

SG

Blank ID: MB for HBN 1746025 [VXX/29789] Blank Lab ID: 1359789

QC for Samples: 1166058001

Results by SW8021B

Parameter	<u>Results</u>	LOQ/CL	DL	<u>Ur</u>
Benzene	0.250U	0.500	0.150	ug
Ethylbenzene	0.500U	1.00	0.310	ug/
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	88.4	77-115		%

Batch Information

Analytical Batch: VFC13389 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Analytical Date/Time: 10/17/2016 10:48:00AM Prep Batch: VXX29789 Prep Method: SW5030B Prep Date/Time: 10/17/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 10/21/2016 7:46:53AM

Blank Spike ID: LCS for HBN 1166058 [VXX29789] Blank Spike Lab ID: 1359790 Date Analyzed: 10/17/2016 12:03 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29789] Spike Duplicate Lab ID: 1359791 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058001

Results by SW8021B

		Blank Spike	e (ug/L)	5	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	108	108	100	115	115	(80-120)	6.50	(< 20)
Ethylbenzene	100	109	109	100	116	116	(75-125)	6.50	(< 20)
o-Xylene	100	96.4	96	100	112	112	(80-120)	14.60	(< 20)
P & M -Xylene	200	197	99	200	227	114	(75-130)	14.10	(< 20)
Toluene	100	118	118	100	119	119	(75-120)	1.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	93.5	94	50	94.5	95	(77-115)	1.00	

Batch Information

Analytical Batch: VFC13389 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Prep Batch: VXX29789 Prep Method: SW5030B Prep Date/Time: 10/17/2016 06:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 10/21/2016 7:46:55AM

ethod Blank					
Blank ID: MB for HBN 17461 Blank Lab ID: 1360073	23 [VXX/29795]	Matrix	: Water (Surfa	ce, Eff., Ground)	
QC for Samples: 1166058003, 1166058004, 116	6058005				
Results by AK101					
Parameter	<u>Results</u>	LOQ/CL	DL	Units	
Gasoline Range Organics	0.0500U	0.100	0.0310	mg/L	
Surrogates					
4-Bromofluorobenzene (surr)	80.8	50-150		%	
atch Information					
Analytical Batch: VFC13392		Prep Bate	ch: VXX29795		
Analytical Method: AK101			hod: SW5030E		
Instrument: Agilent 7890 PII Analyst: ST	D/FID		e/Time: 10/18/2 al Wt./Vol.: 5 m	2016 6:00:00AM	
Analytical Date/Time: 10/18/	2016 10:39:00AM		ract Vol: 5 mL	L	

Print Date: 10/21/2016 7:46:57AM

Blank Spike ID: LCS for HBN 1166058 [VXX29795] Blank Spike Lab ID: 1360076 Date Analyzed: 10/18/2016 11:36 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29795] Spike Duplicate Lab ID: 1360077 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058003, 1166058004, 1166058005

Results by AK101			_						
	E	Blank Spike	e (mg/L)	S	pike Duplic	cate (mg/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	0.895	90	1.00	0.877	88	(60-120)	2.10	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	95.9	96	0.0500	85.7	86	(50-150)	11.30	
Batch Information									
Analytical Batch: VFC13392				Prep	Batch: V	XX29795			
Analytical Method: AK101					Method:				
Instrument: Agilent 7890 PID/	FID					e: 10/18/201			
Analyst: ST							g/L Extract		
				Dup	e Init Wt./V	ol.: 1.00 mg	g/L Extract V	ol: 5 mL	

Print Date: 10/21/2016 7:47:00AM

Method Blank

Blank ID: MB for HBN 1746123 [VXX/29795] Blank Lab ID: 1360073 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058003, 1166058005

Results by SW8021B

Parameter	Results	LOQ/CL	DL	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	84.6	77-115		%

Batch Information

Analytical Batch: VFC13392 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Analytical Date/Time: 10/18/2016 10:39:00AM Prep Batch: VXX29795 Prep Method: SW5030B Prep Date/Time: 10/18/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/21/2016 7:47:02AM

Blank Spike ID: LCS for HBN 1166058 [VXX29795] Blank Spike Lab ID: 1360074 Date Analyzed: 10/18/2016 11:16 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29795] Spike Duplicate Lab ID: 1360075 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058003, 1166058004, 1166058005

Results by SW8021B									
		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	90.7	91	100	89.8	90	(80-120)	1.10	(< 20)
Ethylbenzene	100	93.1	93	100	89.8	90	(75-125)	3.60	(< 20)
o-Xylene	100	92.0	92	100	87.4	87	(80-120)	5.10	(< 20)
P & M -Xylene	200	186	93	200	180	90	(75-130)	2.90	(< 20)
Toluene	100	88.8	89	100	90.0	90	(75-120)	1.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	91.5	92	50	95.4	95	(77-115)	4.20	
Batch Information									

Analytical Batch: VFC13392 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID Analyst: ST Prep Batch: VXX29795 Prep Method: SW5030B Prep Date/Time: 10/18/2016 06:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 10/21/2016 7:47:04AM

Method Blank					
Blank ID: MB for HBN 17462 Blank Lab ID: 1360329	12 [VXX/29803]	Matrix	: Water (Surfac	e, Eff., Ground)	
QC for Samples: 1166058006, 1166058007					
Results by AK101					
Parameter Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	
Surrogates 4-Bromofluorobenzene (surr)	104	50-150		%	
Batch Information Analytical Batch: VFC13394 Analytical Method: AK101 Instrument: Agilent 7890A P Analyst: ST Analytical Date/Time: 10/19/	ID/FID	Prep Me Prep Da Prep Init	tch: VXX29803 thod: SW5030B te/Time: 10/19/2 ial Wt./Vol.: 5 mL tract Vol: 5 mL	016 6:00:00AM -	

Print Date: 10/21/2016 7:47:07AM

Blank Spike ID: LCS for HBN 1166058 [VXX29803] Blank Spike Lab ID: 1360332 Date Analyzed: 10/19/2016 12:51 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29803] Spike Duplicate Lab ID: 1360333 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058006, 1166058007

Results by AK101			_						
	1	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	0.932	93	1.00	1.10	110	(60-120)	16.50	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	111	111	0.0500	113	113	(50-150)	2.20	
Batch Information Analytical Batch: VFC13394 Analytical Method: AK101 Instrument: Agilent 7890A PI Analyst: ST	D/FID			Prep Prep Spik	e Init Wt./\	SW5030B e: 10/19/201 /ol.: 1.00 mg	6 06:00 g/L Extract V		

Print Date: 10/21/2016 7:47:10AM

Method Blank

Blank ID: MB for HBN 1746212 [VXX/29803] Blank Lab ID: 1360329 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058006, 1166058007

Results by SW8021B

-				
Parameter	Results	LOQ/CL	DL	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	89.7	77-115		%

Batch Information

Analytical Batch: VFC13394 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST Analytical Date/Time: 10/19/2016 11:55:00AM Prep Batch: VXX29803 Prep Method: SW5030B Prep Date/Time: 10/19/2016 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/21/2016 7:47:12AM

Blank Spike ID: LCS for HBN 1166058 [VXX29803] Blank Spike Lab ID: 1360330 Date Analyzed: 10/19/2016 12:32 Spike Duplicate ID: LCSD for HBN 1166058 [VXX29803] Spike Duplicate Lab ID: 1360331 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058006, 1166058007

Results by SW8021B

		Blank Spike	e (ug/L)	9	Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Benzene	100	106	106	100	104	104	(80-120)	1.80	(< 20)
Ethylbenzene	100	109	109	100	105	105	(75-125)	3.10	(< 20)
o-Xylene	100	107	107	100	104	104	(80-120)	3.00	(< 20)
P & M -Xylene	200	219	110	200	212	106	(75-130)	3.30	(< 20)
Toluene	100	108	108	100	106	106	(75-120)	1.80	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	101	101	50	103	103	(77-115)	1.60	

Analytical Batch: VFC13394 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID Analyst: ST

Prep Batch: VXX29803 Prep Method: SW5030B Prep Date/Time: 10/19/2016 06:00 Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 10/21/2016 7:47:13AM

SGS	

Method Blank								
Blank ID: MB for HBN 1745504 [XXX/36506] Blank Lab ID: 1358233		Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1166058001, 1166058002, 1	166058003, 1166058004, 116	6058005, 1166058006	, 1166058007					
Results by AK102								
Parameter Diesel Range Organics	<u>Results</u> 0.300U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.180	<u>Units</u> mg/L				
Surrogates 5a Androstane (surr)	92.1	60-120		%				
Batch Information								
Analytical Batch: XFC129 Analytical Method: AK103 Instrument: HP 7890A Analyst: NRO Analytical Date/Time: 10/	2 FID SV E F	Prep Me Prep Da Prep Init	tch: XXX36506 thod: SW3520 te/Time: 10/12 ial Wt./Vol.: 25 tract Vol: 1 mL	C 2016 10:30:31AM				

Print Date: 10/21/2016 7:47:20AM

Blank Spike ID: LCS for HBN 1166058 [XXX36506] Blank Spike Lab ID: 1358234 Date Analyzed: 10/12/2016 23:47 Spike Duplicate ID: LCSD for HBN 1166058 [XXX36506] Spike Duplicate Lab ID: 1358235 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1166058001, 1166058002, 1166058003, 1166058004, 1166058005, 1166058006, 1166058007

		_						
	Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
20	20.1	100	20	20.0	100	(75-125)	0.23	(< 20)
0.4	113	113	0.4	110	110	(60-120)	2.90	
j								
						0 40 00		
FIDSVEF							l·1 ml	
					0			
	<u>Spike</u> 20 0.4	<u>Spike</u> <u>Result</u> 20 20.1 0.4 113	20 20.1 100 0.4 113 113	Spike Result Rec (%) Spike 20 20.1 100 20 0.4 113 113 0.4 FID SV E F	Spike Result Rec (%) Spike Result 20 20.1 100 20 20.0 0.4 113 113 0.4 110 Prep Batch: X Prep Method: Prep Date/Tim Spike Init Wt./N	Spike Result Rec (%) Spike Result Rec (%) 20 20.1 100 20 20.0 100 0.4 113 113 0.4 110 110 Prep Batch: XXX36506 Prep Method: SW3520C Prep Date/Time: 10/12/201 Spike Init Wt./Vol.: 20 mg/l	Spike Result Rec (%) Spike Result Rec (%) CL 20 20.1 100 20 20.0 100 (75-125) 0.4 113 113 0.4 110 110 (60-120) Prep Batch: XXX36506 Prep Method: SW3520C Prep Date/Time: 10/12/2016 10:30 Spike Init Wt./Vol.: 20 mg/L Extract Vol	Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) 20 20.1 100 20 20.0 100 (75-125) 0.23 0.4 113 113 0.4 110 110 (60-120) 2.90 Prep Batch: XXX36506 Prep Method: SW3520C

Print Date: 10/21/2016 7:47:22AM

Method Blank

Blank ID: MB for HBN 1745531 [XXX/36508] Blank Lab ID: 1358428 Matrix: Soil/Solid (dry weight)

QC for Samples: 1166058012, 1166058013

Results by 8270D SIM (PAH)

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
2-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
Acenaphthene	2.50U	5.00	1.50	ug/Kg
Acenaphthylene	2.50U	5.00	1.50	ug/Kg
Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo(a)Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo[a]pyrene	2.50U	5.00	1.50	ug/Kg
Benzo[b]Fluoranthene	2.50U	5.00	1.50	ug/Kg
Benzo[g,h,i]perylene	2.50U	5.00	1.50	ug/Kg
Benzo[k]fluoranthene	2.50U	5.00	1.50	ug/Kg
Chrysene	2.50U	5.00	1.50	ug/Kg
Dibenzo[a,h]anthracene	2.50U	5.00	1.50	ug/Kg
luoranthene	2.50U	5.00	1.50	ug/Kg
Fluorene	2.50U	5.00	1.50	ug/Kg
ndeno[1,2,3-c,d] pyrene	2.50U	5.00	1.50	ug/Kg
Naphthalene	2.50U	5.00	1.50	ug/Kg
Phenanthrene	2.50U	5.00	1.50	ug/Kg
Pyrene	2.50U	5.00	1.50	ug/Kg
urrogates				
2-Fluorobiphenyl (surr)	97.3	46-115		%
Terphenyl-d14 (surr)	97.5	58-133		%

Batch Information

Analytical Batch: XMS9698 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: S.G Analytical Date/Time: 10/14/2016 1:24:00PM Prep Batch: XXX36508 Prep Method: SW3550C Prep Date/Time: 10/12/2016 2:15:41PM Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 1 mL

Print Date: 10/21/2016 7:47:25AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1166058 [XXX36508] Blank Spike Lab ID: 1358429 Date Analyzed: 10/14/2016 13:44 Spike Duplicate ID: LCSD for HBN 1166058 [XXX36508] Spike Duplicate Lab ID: 1358436 Matrix: Soil/Solid (dry weight)

QC for Samples: 1166058012, 1166058013

Results by 8270D SIM (PAH)

	I	Blank Spike	(ug/Kg)	S	pike Duplic	ate (ug/Kg)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	22.2	19.2	87	22.2	18.6	84	(43-111)	3.10	(< 20)
2-Methylnaphthalene	22.2	18.5	83	22.2	18.2	82	(39-114)	1.90	(< 20)
Acenaphthene	22.2	21.9	99	22.2	21.0	94	(44-111)	4.50	(< 20)
Acenaphthylene	22.2	18.3	82	22.2	18.0	81	(39-116)	1.70	(< 20)
Anthracene	22.2	19.4	87	22.2	18.8	84	(50-114)	3.50	(< 20)
Benzo(a)Anthracene	22.2	19.7	89	22.2	19.0	86	(54-122)	3.40	(< 20)
Benzo[a]pyrene	22.2	21.3	96	22.2	21.0	95	(50-125)	1.60	(< 20)
Benzo[b]Fluoranthene	22.2	20.5	92	22.2	19.6	88	(53-128)	4.40	(< 20)
Benzo[g,h,i]perylene	22.2	21.7	98	22.2	21.0	95	(49-127)	3.20	(< 20)
Benzo[k]fluoranthene	22.2	21.3	96	22.2	20.2	91	(56-123)	5.30	(< 20)
Chrysene	22.2	21.7	98	22.2	21.0	95	(57-118)	3.00	(< 20)
Dibenzo[a,h]anthracene	22.2	22.2	100	22.2	21.9	98	(50-129)	1.70	(< 20)
Fluoranthene	22.2	20.1	90	22.2	19.6	88	(55-119)	2.50	(< 20)
Fluorene	22.2	20.0	90	22.2	19.5	88	(47-114)	2.50	(< 20)
Indeno[1,2,3-c,d] pyrene	22.2	22.0	99	22.2	21.5	97	(49-130)	2.00	(< 20)
Naphthalene	22.2	18.6	84	22.2	18.4	83	(38-111)	0.99	(< 20)
Phenanthrene	22.2	18.6	84	22.2	18.1	81	(49-113)	3.00	(< 20)
Pyrene	22.2	21.1	95	22.2	20.5	92	(55-117)	2.90	(< 20)
Surrogates									
2-Fluorobiphenyl (surr)	22.2	95.5	96	22.2	93.7	94	(46-115)	1.90	
Terphenyl-d14 (surr)	22.2	97.5	98	22.2	96.3	96	(58-133)	1.20	

Batch Information

Analytical Batch: XMS9698 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS Analyst: S.G Prep Batch: XXX36508 Prep Method: SW3550C Prep Date/Time: 10/12/2016 14:15 Spike Init Wt./Vol.: 22.2 ug/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 22.2 ug/Kg Extract Vol: 1 mL

Print Date: 10/21/2016 7:47:27AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

15549 [XXX/36510]	Matrix	: Soil/Solid (d	y weight)			
166058011, 1166058012, 116605	58013					
Results	LOQ/CL	<u>DL</u>	<u>Units</u>			
10.0U	20.0	6.20	mg/Kg			
87.5	60-120		%			
971	Prep Bat	tch: XXX36510				
2						
BR						
Analyst: NRO Analytical Date/Time: 10/17/2016 10:59:00AM		Prep Initial Wt./Vol.: 30 g Prep Extract Vol: 1 mL				
	166058011, 1166058012, 116605 <u>Results</u> 10.0U 87.5	166058011, 1166058012, 1166058013 Results 10.0U 87.5 60-120 Prep Bai 2 Prep Me	166058011, 1166058012, 1166058013 Results LOQ/CL DL 10.0U 20.0 6.20 87.5 60-120 Prep Batch: XXX36510 971 Prep Method: SW35500			

Print Date: 10/21/2016 7:47:30AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1166058 [XXX36510] Blank Spike Lab ID: 1358479 Date Analyzed: 10/17/2016 09:59 Spike Duplicate ID: LCSD for HBN 1166058 [XXX36510] Spike Duplicate Lab ID: 1358480 Matrix: Soil/Solid (dry weight)

QC for Samples: 1166058009, 1166058010, 1166058011, 1166058012, 1166058013

Results by AK102									
	E	Blank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	167	166	100	167	139	84	(75-125)	17.80	(< 20)
Surrogates									
5a Androstane (surr)	3.33	108	108	3.33	93.2	93	(60-120)	14.80	
Batch Information									
Analytical Batch: XFC12971				Pre	p Batch: X	XX36510			
Analytical Method: AK102					p Method:				
Instrument: Agilent 7890B R						e: 10/12/201			
Analyst: NRO						0	/Kg Extract		
				Dup	e mit Wt./V	01.: 167 mg	/Kg Extract \	VOI: I ML	

Print Date: 10/21/2016 7:47:32AM

रु	オ	•
ζ		
Ę	A	

SGS North America Inc. CHAIN OF CUSTODY RECORD

SLR Alaska					Omi	Omissions	s may	nav delav	the or	iset of	Omissions may delay the onset of analysis.	is.	
CONTACT: Ben Siwiec	PHONE #: (907	(907)264-6953		Section 3	n 3				Preser	Preservative			Page 1 of 1
PROJECT KOTZ CW and	Project/ PWSID/ PERMIT#:	105.00104.16004	16004		Pres: Type:	104	134	10118178W	ouon	\square			
REPORTS TO: Stan Stand	E-MAIL: 59 453 2 1 r. Consulting Com bsiniec@streonsulting.com	e Sl ۲Con المراجع	sulting com	oz⊦	Comp Grab				1				r
INVOICE TO: SI R Alaska	QUOTE #: P.O. #:			< - 2		518	×		WIS 30				
RESERVED SAMPLE IDENTIFICATION for lab use	NON DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	: u a: o	incre- mental)	3RO/BTE		08/101/80	728 8HAc				REMARKS/ LOC ID
100316 MW3R	2 10/3/6	1555	5	5							-		
42 100316 MWZ		1713	3	i			x						
10001	10/0/6	1647	2	5		$\frac{1}{x}$	X						
16 141	10/6/6	2491	3	5		ス ス							
AK 100616 MW41	1 10/6/6	0461	3	5		へん							
AF 100 THEMWZR	R2 (0/1/16	UDQI	N	5		X V	~						
4-8 100716 MW5	5 10/7/16	1505	Ś	u/		×	く						
CTBWI	10/3/6	1555		ก		$\sim \\ \lambda$	X						
				h									
Relinquished By: (1)	Date	Time	Received By:				Ň	Section 4) Project	DOD Project? Yes No		Data Deliverable Requirements:
	91/2/01	1700	N				0	Cooler ID:					LVL2-ADEC, standard TAT
Relimquished By: (2)	Date	Time	Received By:				Be	juested 7	Turnarou	Ind Time	and/or Sp	Requested Turnaround Time and/or Special Instructions:	ons:
EC Belinauished Bv: (3)	Date	Time	Received Bv:					ť,					
							Her H	Temp Blank °C:		26	2	Chain o	Chain of Custody Seal: (Circle)
Relinquished By: (4)	Date Date	Time	Received For	ived For Laboratory By:	ory By:				or Am	or Ambient []		INTACT	$\frac{\pi}{\delta}$ Broken Absent
	d1/~1/1)	1 PAR	N N	N		5	See attac	thed San	nple Rec	(See attached Sample Receipt Form)		(See attached Sample Receipt Form)

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

7	ゎ
Ę	B
Ç	A
	1

CLIENT:	: SLR Alaska					Instructions: Omissions	1 200	Sections 1 nav delav t	ns 1 - av the	5 mus	t be fil of and	5 must be filled out. onset of analysis.		2 2 0
CONTACT:	CT: Ben Siwiec	PHONE #: (90	(907)264-6953		Section 3	e			Ρŗ	Preservative	ġ			0
ection 1 NAME:	rkotz (JW mk sil	Project/ PWSID/ PERMIT#:	105.00104.16004	16004		Pres: Type:	104	loughter w	oj vore			\sum		
S REPOR	REPORTS TO: San Alauge (E-MAIL: 551 mg e (@51 rcons J t) bsiwiec@sirconsulting.com 66	ge(e5/rc	ons J ting.	0 Z F	Comp Grab								
INVOICE TO	1	QUOTE #:			ء ۲									
	SLR Alaska	P.O. #:				ХЭТ				0/7				
RESERVED for lab use	VED SAMPLE IDENTIFICATION	DATE DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	л сс ох Э	GBO/B.	\r01) IA ОЯД	АК101/ GBO/B	А ОЯС	8 8HAq				REMARKS/ LOC ID
J-7 (b)	R MWIRZ-4.5	1015/6	0154	S	\sim			X	X					
	43 MW 6 - 4	1015/16	1105	5	3			X	X					
G		10/5/16	145	5	5			X	X					
	WWS-2	$\langle \mathbf{N} \rangle$	1230	S	5			X	\sim	L				
ecti O	2 MW 5-9	1015/10	0EE1 8	5	7			X	́`` X	<u></u>				
E	A TB-2	1015/12	40954											
									+					
Reling	Relinquished By: (1)	Date	Time	Received By:		- - -		Section 4		DOD Pro	DOD Project? Yes No	s No	Data Deliv	Data Deliverable Requirements:
	L'XX	INNO	$(\mathcal{V}\mathcal{C})$		\cap			Cooler ID:	ä				LVL2-AI	LVL2-ADEC, standard TAT
on 5	Relinquished By: (2)	Date	Time	Received By:				Reques	ted Turn	around T	Ime and	or Specia	Requested Turnaround Time and/or Special Instructions:	ż
	Relinquished By: (3)	Date	Time	Received By:										
		/						Temp B	Temp Blank °C:	9	R)	Chain of C	Custody Seal: (Circle)
71 of	10 Lt Relinquished By: (4)	Date Date	Time 9 ¹ ZC/	Received For	wed For Laboratory By:	V By:		9	. o	or Ambiént [(INTACY	BROKEN ABSENT
75			<u> </u>	No N				(See	attached	(See attached Sample Heceipt Form)	Heceipt		see attache	(See attached Sample Hecelpt Form)
[] 20 [] 55] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557	<pre>< 99518 Tel: (907 NC 28405 Tel: (9)</pre>	r) 562-2343 Fa 10) 350-1903 1	ax: (907) 561-5 Fax: (910) 350-	301 1557			http://v	ww.sgs.	http://www.sgs.com/terms-and-conditions	<u>s-and-cor</u>	<u>Iditions</u>		

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

Returned Bottles Inventory

Name of individual returning bottles:	Ben Si	w`cc		Date Received:	10 /to/16	
Client Name:	<u>Ren</u> Si SLR A Kotz GW	lagka		Received by:	JRP	
Project Name:	Kotz GW	and Soil	-	8G8 PM:	JAN)
	1-L					
ii	500-ml					
HDPE/Nalgene:	250-ml or 8-oz					
PE/N	125-ml or 4-oz					
Ĥ	60-ml or 2-oz					
	other					
	l-L					
	500-ml					
glase	250-ml or 8-oz	2				
amber glass:	125-ml or 4-oz with or without septa	2				
8	40-ml VOA vial	4				
	other					
Subtotal:	· · · ·	B				

Note: Returned bottles (regardless of size/pres.) are billed back at \$4/bottle unless otherwise quoted.

Amount to Invoice Client \$:

.

		116	605	58		1 1	660	5 8	
Review Criteria	Y/N (ye	s/no)		Exc	eptions N	loted b	elow		
Were Custody Seals intact? Note # 8 COC accompanied]		exemption pern	nitted if sam 1F-1B	<mark>pler han</mark>	d carri	es/delivers.	
**exemption perm		& collect	ed <8h	rs ago or chlling no	t required (i.e., wast	e, oil)		
	Y	_	er ID:		@	2.6	°C	Therm ID:	D6
	Y	Coo	er ID: 2	2	@	3.0	°C	Therm ID:	D6
Temperature blank compliant* (i.e., 0-6 °C a	after CF)? Y	Coo	er ID:		@		°C	Therm ID:	
	Y	Coo	er ID:		@		°C	Therm ID:	
	Y	Coo	er ID:		@		°C	Therm ID:	
*If >6°C, were samples collected <8 hold \leq	ırs ago? Y								
If <0°C, were sample containers	ice free?	1							
If samples received <u>without</u> a temperature blank, the "cooler temperat be documented in lieu of the temperature blank & " COOLER TEMP " wi noted to the right. In cases where neither a temp blank nor cooler tem obtained, note "ambient" or "chilled".	ll be								
Note: Identify containers received at non-compliant temperature . Us FS-0029 if more space is needed.	e form								
		Note:	Refer to	o form F-083 "Sam	ple Guide" f	or hold ti	mes.		
Were samples received within he	old time?								
Do samples match COC** (i.e.,sample IDs,dates/times collected)?									
**Note: If times differ <1hr, record details & login per COC.									
Were analyses requested unam	biguous? Y								
		_		***Exemption p	ermitted fo	r metals	(e.g,20	0.8/6020A).	
Were proper containers (type/mass/volume/preservative*	**)used? Y								
IF APPLICABLE	·	<u> </u>							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with									
Were all VOA vials free of headspace (i.e., bubbles		_							
Were all soil VOAs field extracted with Me		!							
Note to Client: Any "no" answer above indicates	s non-complia	nce with	standa	rd procedures and	may impact	data qua	ality.		
Addit	<mark>ional notes</mark>	(if app	licable	e):					

Sample Containers and Preservatives

Container Id	Preservative	<u>Container</u> Condition	Container Id	<u>Preservative</u>	<u>Container</u> Condition
1166058001-A	HCL to pH < 2	OK	1166058011-A	No Preservative Required	ОК
1166058001-B	HCL to pH < 2	OK	1166058011-B	Methanol field pres. 4 C	ОК
1166058001-C	HCL to pH < 2	ОК	1166058012-A	No Preservative Required	ОК
1166058001-D	HCL to pH < 2	ОК	1166058012-B	Methanol field pres. 4 C	ОК
1166058001-E	HCL to $pH < 2$	ОК	1166058013-A	No Preservative Required	ОК
1166058002-A	HCL to pH < 2	ОК	1166058013-B	Methanol field pres. 4 C	ОК
1166058002-B	HCL to pH < 2	ОК	1166058014-A	Methanol field pres. 4 C	ОК
1166058002-C	HCL to $pH < 2$	ОК			
1166058002-D	HCL to pH < 2	ОК			
1166058002-E	HCL to $pH < 2$	ОК			
1166058003-A	HCL to pH < 2	ОК			
1166058003-B	HCL to $pH < 2$	ОК			
1166058003-C	HCL to pH < 2	ОК			
1166058003-D	HCL to pH < 2	ОК			
1166058003-E	HCL to $pH < 2$	ОК			
1166058004-A	HCL to pH < 2	ОК			
1166058004-B	HCL to $pH < 2$	ОК			
1166058004-C	HCL to $pH < 2$	ОК			
1166058004-D	HCL to $pH < 2$	OK			
1166058004-E	HCL to $pH < 2$	OK			
1166058005-A	HCL to $pH < 2$	ОК			
1166058005-B	HCL to $pH < 2$	ОК			
1166058005-C	HCL to $pH < 2$	ОК			
1166058005-D	HCL to $pH < 2$	ОК			
1166058005-E	HCL to $pH < 2$	ОК			
1166058006-A	HCL to $pH < 2$	ОК			
1166058006-B	HCL to $pH < 2$	ОК			
1166058006-C	HCL to $pH < 2$	ОК			
1166058006-D	HCL to $pH < 2$	ОК			
1166058006-E	HCL to $pH < 2$	ОК			
1166058007-A	HCL to $pH < 2$	ОК			
1166058007-B	HCL to $pH < 2$	ОК			
1166058007-C	HCL to $pH < 2$	ОК			
1166058007-D	HCL to $pH < 2$	ОК			
1166058007-E	HCL to $pH < 2$	ОК			
1166058008-A	HCL to $pH < 2$	OK			
1166058008-B	HCL to $pH < 2$	OK			
1166058008-C	HCL to $pH < 2$	OK			
1166058009-A	No Preservative Required	OK			
1166058009-B	Methanol field pres. 4 C	OK			
1166058010-A	No Preservative Required	OK			
1166058010-B	Methanol field pres. 4 C	OK			

Container Id

<u>Preservative</u>

Container Condition Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM- The container was received damaged.

FR- The container was received frozen and not usable for Bacteria or BOD analyses.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

APPENDIX D

CONCEPTUAL SITE MODEL SCOPING AND GRAPHIC FORMS

Human Health Conceptual Site Model Scoping Form

Site Name:	Alaska Airlines Terminal, Kotzebue, Alaska
File Number:	410.26.005
Completed by:	Ben Siwiec, SLR

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

🖂 USTs	☐ Vehicles
\boxtimes ASTs	
Dispensers/fuel loading racks	Transformers
Drums	Conter:
Release Mechanisms (check potential release mecha	nisms at the site)
⊠ Spills	Direct discharge
X Leaks	☐ Burning

Other:

Impacted Media (check potentially-impacted media at the site)

\boxtimes Surface soil (0-2 feet bgs*)	⊠ Groundwater
Subsurface soil (>2 feet bgs)	Surface water
Air	🗌 Biota
Sediment	Other:

Receptors (check receptors that could be affected by contamination at the site)

Residents (adult or child)	
----------------------------	--

- \boxtimes Commercial or industrial worker
- \boxtimes Construction worker
- Subsistence harvester (i.e. gathers wild foods)
- Subsistence consumer (i.e. eats wild foods)
- Farmer

 \boxtimes Site visitor

 \boxtimes Trespasser

Recreational user

Other:

^{*} bgs - below ground surface

- 2. Exposure Pathways: (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)
- a) Direct Contact -

b)

1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.) $\overline{\times}$

Г

If the box is checked, label this pathway complete:	Complete	
Comments:		
2. Dermal Absorption of Contaminants from Soil		
Are contaminants present or potentially present in surface soil l (Contamination at deeper depths may require evaluation on a si		the ground surface? \boxtimes
Can the soil contaminants permeate the skin (see Appendix B in	n the guidance document)?	X
If both boxes are checked, label this pathway complete:	Complete	
Comments:		
Two soil contaminants, Chrysene and Pyrene, were detected, although a limit of quantitation.	t levels below the laboratory	
Ingestion - 1. Ingestion of Groundwater		
Have contaminants been detected or are they expected to be det or are contaminants expected to migrate to groundwater in the	-	X
Could the potentially affected groundwater be used as a current source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source of to 18 AAC 75.350.	determined the ground-	
If both boxes are checked, label this pathway complete:	Incomplete	
Comments:		
Only suprapermafrost water which is seasonally frozen exists in the grou of drinking water. Kotzebue draws drinking water from lakes over 1 mile		

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:	Incomplete
Comments:	
No surface water is near the site. The nearest surface water body is Kotze 1000 feet west.	bue Sound, which is about
3. Ingestion of Wild and Farmed Foods	
Is the site in an area that is used or reasonably could be used for harvesting of wild or farmed foods?	hunting, fishing, or
Do the site contaminants have the potential to bioaccumulate (se document)?	ee Appendix C in the guidance
Are site contaminants located where they would have the potent biota? (i.e. soil within the root zone for plants or burrowing dep groundwater that could be connected to surface water, etc.)	1
If all of the boxes are checked, label this pathway complete:	Incomplete
Comments:	
This site is located in the secure area of an airport and in the paved parkir fishing, and harvesting are not possible at the site.	ng lot for the airport. Hunting,
Inhalation- 1. Inhalation of Outdoor Air	
Are contaminants present or potentially present in surface soil b ground surface? (Contamination at deeper depths may require e	
Are the contaminants in soil volatile (see Appendix D in the g	uidance document)?
If both boxes are checked, label this pathway complete:	Complete

Comments:

c)

Benzene, toluene, ethylbenzene, and xylenes have all been detected in the soil, although all at levels below the laboratory level of quantitation. All soil concntration are below 1/10 human health limits in Table B1

 \square

 \square

Complete

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

Pathway complete but insignificant . All volatile concentrations are below 1/10 the human health screening level.

 $\overline{\times}$

 $\overline{\times}$

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be protective of this pathway.

Check the box if further evaluation of this pathway is needed:

Comments:

Construction activities will occur at this site, which may encounter suprapermafrost water in the ground during the thawed season.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be protective of this pathway.

Check the box if further evaluation of this pathway is needed:

Comments:

 \square

 $\overline{\times}$

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.
- Chromium is present in soil that can be dispersed as dust particles of any size.

Generally, DEC direct contact soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because it is assumed most dust particles are incidentally ingested instead of inhaled to the lower lungs. The inhalation pathway only needs to be evaluated when very small dust particles are present (e.g., along a dirt roadway or where dusts are a nuisance). This is not true in the case of chromium. Site specific cleanup levels will need to be calculated in the event that inhalation of dust containing chromium is a complete pathway at a site.

Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: Alaska Airlines Terminal, Kotzebue, Alaska

<u>Instructions</u>: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

Completed	_{By:} Ben Siwiec, SLR										
Date Completed: 11/29/2016								((5)		
(1)	(2)	(3)		(4)	exp "F"	osure for futu	pathway ure rece	/: Ente ptors, '	tentially a r "C" for ("C/F" for I r insignifi	current re both curre	eceptors ent and
Check the media		Check all exposure		Check all pathways that could be complete. <u>The pathways identified in this column must</u>			•		ture F		
could be directly by the release.	affected top arrow <u>and</u> check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	media identified in (Z).	agree with Sections 2 and 3 of the Human Health CSM Scoping Form.				(6)		-	
Media	Transport Mechanisms	Exposure M	edia	Exposure Pathway/Route	/	Iren,	Kers	den l	vork bsis	nsuo,	/ /
Surface Soil (0-2 ft bgs)	Direct release to surface soil check soil ✓ Migration to subsurface check soil ✓ Migration to groundwater check groundwater ✓ Volatilization check air				Residents	Commercial	Site visitors, theory	Construction	Farmers or subsistence	Subsistence consumers Other	;
	Runoff or erosion check surface water		✓ Incide	ental Soil Ingestion	1	1	I	L			
	Uptake by plants or animals check biota	Soil	Derma	al Absorption of Contaminants from Soil	I	1	I	I			7
	Other (list):		Inhala	ation of Fugitive Dust							
Subsurface Soil (2-15 ft bgs)	Direct release to subsurface soil check soil ✓ Migration to groundwater check groundwater ✓ Volatilization check air ✓ Uptake by plants or animals check biota Other (list): Check biota	groundwater	✓ Derma	tion of Groundwater al Absorption of Contaminants in Groundwater		C/F	=	C/F			
	Direct release to groundwater check groundwater			ation of Volatile Compounds in Tap Water							
Ground- water	Flow to surface water body check surface water	air		ation of Indoor Air	1	1	1	י ו			_
	Flow to sediment Check sediment Uptake by plants or animals Check biota Other (list):	air	/	ation of Fugitive Dust				1			
	Direct release to surface water check surface water		Ingest	tion of Surface Water							
Surface	Volatilization check air	Surface water	Derma	al Absorption of Contaminants in Surface Water							
Water	Uptake by plants or animals check biota Other (list):		Inhala	tion of Volatile Compounds in Tap Water							
	Direct release to sediment check sediment	sediment	Direct	Contact with Sediment							
Sediment	Resuspension, runoff, or erosion <u>check surface water</u> Uptake by plants or animals <u>check biota</u> Other (list):	biota		tion of Wild or Farmed Foods							

Revised, 10/01/2010