

25 May, 2022

**VIA EMAIL** 

Ms. Jessica Hall ADEC CSP 555 Cordova Street Anchorage, AK 99501 <u>1laska1.hall@alaska</u>.gov

### Re: HGCMC Concentrate Storage Building, Revised May 2022

Dear Ms. Hall:

The following report documents Hecla Greens Creek Mining Company's (HGCMC) additional cleanup of contaminated soil from around the perimeter of the Concentrate Storage Building (CSB). This revised report incorporates comments from the Alaska Department of Environmental Conservation's (ADEC) October 5, 2021 letter. The Site is listed in the ADEC Contaminated Site Database under File # 1513.38.120 and Hazard ID# 27226. The nearest potable water intake is located on Cannery Creek, 2,500 feet away from the CSB and 155 feet higher in elevation (upgradient). According to the ADEC Drinking Water Protection Map, the CSB is not located within a drinking water protection area. The CSB is approximately 50 feet from Hawk Inlet.

## Introduction

During an Environmental Protection Agency (EPA) inspection in August 2019, lead and zinc concentrate material was observed on the ground around the perimeter of the CSB located at HGCMC's port facility. Upon investigation, HGCMC discovered that concentrate had slipped between the framing and corrugated metal siding of the CSB. Within days after the inspection, HGCMC developed a plan to seal the building to prevent the further escape of concentrate material. By November 2019, HGCMC obtained a bid from Statewide Foam & Coatings, LLC to seal the CSB using foam and a waterproof, spray-on membrane.

Due to winter conditions, the contractor advised the work needed to be completed in the spring, and a contract was executed in March 2020. However, due to the impacts of the COVID-19 pandemic, the project was delayed until the summer. The CSB was sealed in early August 2020. See HGCMC's 27 August 2020 letter for additional information regarding the completion of the work (attached). Prior to completion of the sealing, HGCMC stored concentrate materials away from the exterior corrugated metal walls and has periodically inspected the exterior of the CSB to ensure that no additional material had escaped. Cleanup activities began after the CSB had been sealed.

Work to date has been completed in two phases. Phase I consisted of hand removing soils visibly impacted by the concentrate from around the CSB and sampling of remaining soils to determine if additional cleanup was necessary. Using that data to determine appropriate Decision Units (DU), Phase II consisted of incremental sampling around the CSB and cleanup of areas where incremental sampling indicated soils remained impacted by lead and zinc. After excavation of each DU, discrete samples were collected to confirm clean. Phase II has been partially completed and additional soil removal remains necessary in DU-2.

Phase I activities were reported to the ADEC in letters dated 12 May 2020 (attached). This report documents Phase II activities undertaken by HGCMC to date. Additional work is required in DU-2 and will be discussed in a separate workplan to be submitted to the ADEC after approval of this report.

## Objectives

The objective of the Phase 2 activities was to remove soil around the perimeter of the CSB that contained lead or zinc in concentrations above cleanup levels approved by the ADEC. Following characterization, impacted soils above cleanup levels would be excavated, placed in appropriate containers, characterized and properly disposed.

## **Cleanup Levels**

Cleanup levels for lead are based on land use. For industrial land use, as applied in 18 AAC 75.341, the soil cleanup level is 800 mg/kg. The applicable soil cleanup level for zinc, in a zone with greater than 40 inches of precipitation, is 25,000 mg/kg. HGCMC proposed these cleanup levels in our letter dated 12 May 2020, and they were approved by ADEC via email on 28 August 2020 (attached). However, based on multi-incremental sampling, after removal of concentrates from the exterior of the building tested soils met the most stringent (Migration to Groundwater) cleanup levels of 4,900 mg/Kg for zinc.

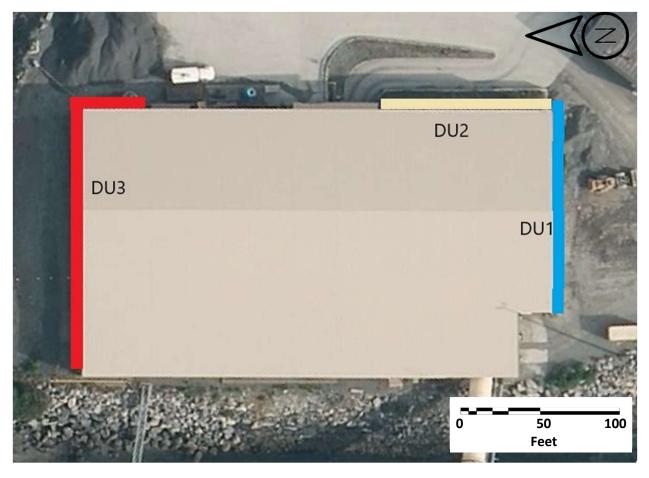
## **Previous Work**

Under oversight from the Alaska Department of Environmental Conservation (ADEC) and consistent with HGCMC's letters dated 2 and 28 October 2019 to Mr. David Khan and HGCMC's letter to you dated 12 May 2020 (letters attached), HGCMC has followed a two-phase process to remove the lead and zinc concentrate from the perimeter of the CSB and investigate and remove any impacted soils. Phase 1, which occurred in October 2019 and again in August 2020, involved the recovery of approximately 3 cubic yards of concentrate-laden soil from discrete surface areas around the perimeter of the CSB. Approximately 1.5 cubic yards was removed using hand shovels in October 2019. We reported these activities to you in a letter dated 12 May 2020.

After the CSB was sealed, HGCMC used a vacuum truck to remove another 1.5 cubic yards of concentrate and soil in August 2020. In both instances, the recovered product was reprocessed in the mill for metals recovery. After product recovery of the concentrate around the exterior of the CSB occurred, HGCMC collected soil samples to determine if additional cleanup was necessary.

Sampling completed in August 2019, showed the north and northeast sides of the CSB had the highest lead concentrations while the south and southeast sides had the highest zinc concentrations. This is consistent with the locations where the lead concentrate and zinc concentrate products are stored inside

the CSB. The sample results showed lead and zinc concentrations were elevated close to the foundation walls but generally decreased to background levels within three feet from the walls. Samples did not generally show elevated concentrations below a depth of 12 inches. These results were reported to ADEC in our letter dated 12 May 2020.


Based on the sampling information, the area of concern was limited to an approximately 3-ft. wide strip around the perimeter of the CSB on the north, east, and south sides, and to a depth of 12 inches. This information was used to determine appropriate Dus for Phase II of the project.

## Methodology

## **Decision Units**

The exterior of the CSB was divided into three separate Decision Units (DU) for the sampling plan based on laboratory results from August 2019. Figure 1 shows the location of each DU. The south side is DU1 and measures 115 feet in length. The southeast side is DU2 and measures 107 feet in length. The north and northeast sides were combined into DU3, which measures 200 feet in length.

Figure 1: Aerial view of CSB showing the location of the Dus for characterization sampling



### Incremental Sampling

In order to determine if the mean concentration of lead or zinc was above applicable cleanup levels, HGCMC conducted incremental sampling in each of the three established Dus. Laboratory results of these characterization samples were used to guide additional cleanup, if needed. Sampling was conducted by Mr. David Landes, Chief Environmental Engineer at Hecla Greens Creek Mine. Mr. Landes is a Qualified Environmental Professional in accordance with 18 AAC 75.3331.

The measured length of each DU was divided by 10 to calculate the size of ten equal cells. Then, using a 300-ft. tape measure laid along the edge of the CSB, the midpoint of each cell was located. For example, DU3 was 200 feet long. This equates to ten cells, each 20 feet long. Starting at the northwest corner of the CSB, cell 1 extended from 0 to 20 feet with the mid-point at 10 feet, cell 2 extended from 20 to 40 feet with the mid-point at 30 feet, and so on.

Orange pin flags were placed at distances of 1 ft., 2 ft., and 3 ft. off the building wall at the mid-point of each cell. These marked the locations where 30 core samples, measuring 2-inch diameter by 12-inches deep, were collected from each DU. A new corer was used for each location.

Each core sample was sieved to remove rocks and larger materials that are not representative of the finegrained concentrates. The sieved samples were combined into one container and homogenized to produce one bulk soil sample for each DU.

Sub-sampling of each sieved bulk sample was then conducted by spreading the entire sieved and homogenized sample out to a thin layer on a clean flat surface to create a slab cake. A grid of 30 uniform cells was laid out on the slab, and a level teaspoon was collected from each cell. A clean spoon was used for each subsample. These subsamples were placed into a clean sample container to form one incremental sample from a DU for laboratory analysis. The process was repeated for each bulk sample.

The three incremental characterization samples were sent to ACZ Laboratories, located in Steamboat Springs, Colorado, to be analyzed for total lead and total zinc via EPA Method 6010D. Samples were given unique identifications, collected into laboratory supplied containers, and sent to ACZ Laboratories under laboratory chain of custody procedures. Photos 1 through 8 show the process of collecting the characterization samples.

### **Discrete Sampling**

Sampling was conducted by Mr. David Landes, Chief Environmental Engineer at Hecla Greens Creek Mine. Mr. Landes is a Qualified Environmental Professional in accordance with 18 AAC 75.333I. After cleanup activities in DU2 and DU3 were completed, HGCMC collected discrete soil samples from each DU to ensure the excavation had achieved clean limits. As sampling during Phase I activities showed lead and zinc impacted soils did not extend beyond three feet from the CSB, discrete samples were collected from the bottom of the excavation only.

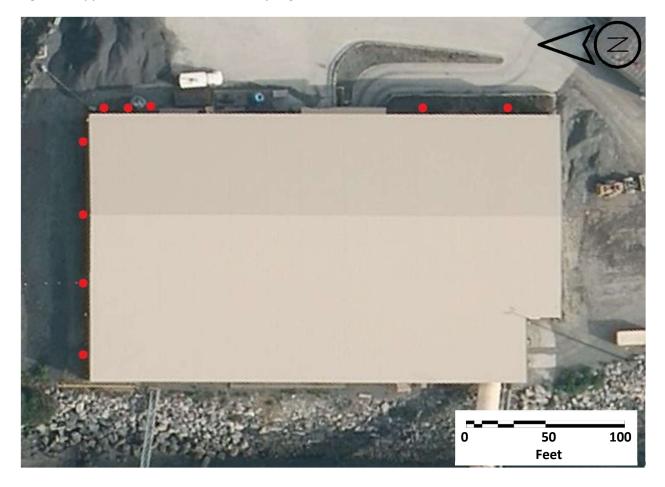
Field screening for lead and zinc in soils requires an X-ray Florence device (XRF). HGCMC did not have access to an XRF and therefore field screening of soils could not occur. Confirmation samples were collected from areas most likely to be contaminated based on previous laboratory results, field observations, and visual indicators.

Samples were collected using reusable sampling media and placed in laboratory supplied containers. Sampling spoons were cleaned between each use. Samples were given unique identifications and sent under laboratory chain of custody procedures to ACZ Laboratories, located in Steamboat Springs, Colorado, to be analyzed for total lead and total zinc via EPA method 6010D.

## **Field Activities**

## Decision Unit 3 Cleanup

Soil removal began in DU3 on 26 September 2020 by excavating a trench approximately 4-ft. wide by 1ft. deep along the exterior of the foundation. Large rocks were sorted by hand from the excavated material and placed back in the trench. Photos 9 through 12 show the first round of excavation. The material was placed in open-top totes and super sacks, then placed in a sealed shipping container. Discrete sampling methods, described in the Methodology Section, were used to collect confirmation samples from within the final limits of the excavation.


Seven confirmation samples were collected from the bottom of the excavation, four on the north side of the CSB and three on the northeast side. The approximate location of the samples is shown in Figure 2. The samples were sent to ACZ Laboratories and analyzed for total lead. As previous multi-incremental sampling within DU3 indicated zinc concentrations were below applicable 18 AAC 75 Migration to Groundwater Cleanup Levels, samples were not analyzed for zinc.

Laboratory results of the initial seven discrete samples indicated additional soil removal was required on the east half of the north side and on the southern part of the northeast side.

The second round of excavation on the east half of the north side of the CSB occurred on 17 October 2020. The existing trench was excavated about one foot deeper, and there was a noticeable difference in the color and odor of the soil in this depth interval. Large rocks were sorted by hand from the excavated material and placed back in the trench. The excavated material was placed in a lined, open-top, half-high shipping container. Photos 15 through 17 show the second round of excavation.

Two confirmation samples were collected from the bottom of the trench at approximately the same location as the previous confirmation samples (CSB North-C3 and CSB North-C4). Freezing conditions and a winter storm occurred prior to receiving the results from the confirmation samples collected on the northeast side of the CSB.

Therefore, the second round of excavation in this area was postponed until spring 2021. In May 2021, additional material was excavated from the south end of the northeast side. Approximately one cubic yard of soil was excavated and placed in a super sack. Based on results from a discrete sample collected after the second round of excavation, no additional soil removal was required on the northeast side of the CSB. Figure 2 shows the approximate locations of discrete confirmation samples collected within DU3.



### Figure 2: Approximate confirmation sampling locations for DU2 and DU3.

### Decision Unit 2 Cleanup

Excavation in DU2 occurred on 5 October 2020. The excavation was approximately 3-ft. wide by 1-ft. deep. Large rocks were sorted by hand from the excavated material and placed in the trench. The excavated material was placed in super sacks and stored inside a sealed shipping container. Two discrete confirmation samples were collected from the bottom of the excavation. The samples were sent to ACZ Laboratories and analyzed for total lead, consistent with the characterization results discussed above. Figure 2 shows the approximate locations of discrete samples collected in DU2.

Freezing conditions and a winter storm occurred prior to receiving the results from the confirmation samples. Confirmation samples indicated that additional soil should be removed from DU2, however work could not be completed immediately due to the onset of winter. Therefore, the second round of excavation in this area was postponed until spring 2021. Due again to weather, HGCMC was not able to complete the additional removal prior to the start of a major contracted project to replace the roof on the CSB, which began in early June, 2021.

HGCMC is planning to perform additional soil removal from the southeast side of the CSB using a vacuum truck. The soil will be placed in a super sack and characterized. HGCMC intends to complete the remaining work this year. A workplan will be submitted to the ADEC for approval prior to commencing additional work in DU2.

### Decision Unit 1 Cleanup

In DU1, located on the south side of the CSB, the mean concentrations of both lead and zinc were below the applicable soil cleanup levels. Therefore, no additional soil removal was needed in that area.

## Laboratory Results

### Incremental Sampling

Incremental samples were collected as described in the Methodology section and analyzed for total lead and total zinc via EPA Method 6010D. Laboratory results are summarized in Table 1. Zinc concentrations were below the most stringent (18 AAC 75 Migration to Groundwater) Cleanup Levels of 4,900 mg/Kg. Total lead concentrations ranged from 427 mg/Kg within DU1 to 2,160 mg/Kg in DU3.

| Location                  | Lead (mg/Kg) | Zinc (mg/Kg) |
|---------------------------|--------------|--------------|
| DU1 (CSB South)           | 427          | 3370         |
| DU2 (CSB Southeast)       | 1450         | 2770         |
| DU3 (CSB North/Northeast) | 2160         | 1500         |

### Table 1: Mean concentrations of Lead and Zinc in top 12 inches of soil around CSB

### Decision Unit 3

Two rounds of confirmation sampling occurred within DU3. A total of seven discrete samples were collected from the DU3 excavation in October 2020. An additional composite sample was also collected. Discrete samples were analyzed by ACZ Laboratory in Steamboat Springs, CO for total lead via EPA Method 6010D. The composite sample was analyzed for TCLP of Lead. October 2020 DU3 laboratory results are summarized in Table 2.

Total lead ranged from 109 mg/Kg in samples CSB North-C1 to 5,240 mg/Kg in sample CSB North C-3. As these discrete samples indicated soils within the excavation did not meet cleanup levels, additional soil removal activities were conducted. An additional 12 inches of soil was removed from the northeast portion of DU3, which corresponded to samples CSB North-C3, CSB North C-4, and CSB NE-C3. The northern portion of DU3 had laboratory concentrations of total lead below Industrial Use cleanup levels in an Over 40 Inches Zone and were not further excavated.

Two discrete confirmation samples and three TCLP samples were submitted to ACZ Laboratory. The discrete samples were collected from the approximate locations of CSB North C-3 and CSB North C-4 after an additional foot of soil was removed. Total lead ranged from 117 mg/Kg to 342 mg/Kg and are below the most stringent (Migration to Groundwater) Cleanup Levels in 18 AAC 75. TCLP samples were collected for disposal characterization purposes only. Table 3 summarizes the results of discrete samples from the second round of laboratory samples from DU3. TCLP results will be discussed with disposal samples.

| Sample ID    | Description                                       | Total Lead<br>(mg/Kg) |
|--------------|---------------------------------------------------|-----------------------|
| CSB North-C1 | Confirmation, north side – west, +12" depth       | 109                   |
| CSB North-C2 | Confirmation, north side – mid-west, +12" depth   | 253                   |
| CSB North-C3 | Confirmation, north side – mid-east, +12" depth   | 5240                  |
| CSB North-C4 | Confirmation, north side – east, +12" depth       | 2190                  |
| CSB NE-C1    | Confirmation, northeast side – north, +12" depth  | 247                   |
| CSB NE-C2    | Confirmation, northeast side – middle, +12" depth | 744                   |
| CSB NE-C3    | Confirmation, northeast side – south, +12" depth  | 1430                  |

### Table 3: Confirmation samples following second round of excavation in DU3

| Sample ID       | Description                                                                | Total Lead<br>(mg/Kg) |
|-----------------|----------------------------------------------------------------------------|-----------------------|
| CSB-N-Rd2-C1    | Confirmation, north side – mid-east, +24"<br>depth, CSB North C-3 Location | 342                   |
| CSB-N-Rd2-C1    | Confirmation, north side – east, +24" depth,<br>CSB North C-3 Location     | 117                   |
| CSB-East Trench | south end of the northeast side of CSB                                     | 211                   |

### Decision Unit 2

Two discrete confirmation samples were collected from DU2 after the initial round of soil removal. Discrete samples were analyzed by ACZ Laboratory in Steamboat Springs, CO for total lead via EPA Method 6010D. Total lead ranged from 633 mg/Kg to 1080 mg/Kg and are above cleanup levels. Laboratory results are summarized in Table 4.

| Sample ID | Description                  | Total Lead<br>(mg/Kg) |
|-----------|------------------------------|-----------------------|
| CSB SE-C1 | Confirmation, northeast side | 633                   |
| CSB SE-C2 | Confirmation, northeast side | 1080                  |

### **Disposal Characterization**

Composite samples were collected from the soils generated during the CSB cleanup for analysis using the Toxicity Characteristic Leachate Procedure (TCLP). All soils excavated from the north side of the CSB in DU3 were characterized as hazardous waste based on the lead TCLP result. This material was initially

stored in totes and super sacks but was consolidated and transferred to lined, half-high containers for shipping. Soil excavated in the first round on the northeast side was also characterized as hazardous waste based on the lead TCLP result. The soils excavated from DU2 on the southeast side of the CSB did not exhibit a hazardous waste characteristic. However, the soil was consolidated with the other excavated soil and disposed of off-site. The analytical results are shown in Table 5 below.

| Sample ID       | Description                                        | Lead (µg/L) |
|-----------------|----------------------------------------------------|-------------|
| CSB North RD1 E | Composite super sacks, north side-east half, 0-12" | 23400       |
| CSB North RD1 W | Composite totes, north side-west half, 0-12"       | 37300       |
| CSB North RD2   | Composite half-high, north side-east half, 12-24"  | 43600       |
| TCLP NE         | Composite super sacks, northeast side, 0-12"       | 7780        |
| TCLP SE         | Composite super sacks, southeast side, 0-12"       | 2500        |
| CSB-East Waste  | Composite super sack, northeast side, 12-24"       | 2000        |

### Table 5: Results from Soil Characterization Sampling (TCLP)

Note: TCLP limit =  $5000 \, \mu g/L$ 

## Soil Disposal

In December 2020, HGCMC shipped three full half-high containers and one container with super sacks of soil, weighing a total of 130,170 pounds, to Chemical Waste Management in Arlington, Oregon, for disposal. Copies of the hazardous waste manifests and certificates of disposal are attached. Also attached is a copy of the completed Contaminated Media Transport and Treatment or Disposal Approval Form required by the ADEC.

The TCLP result from the super sack of soil excavated from the northeast side of the CSB in May 2021 is below the lead limit; therefore, the soil is not a characteristic hazardous waste. That soil is currently being stored on-site. HGCMC is seeking concurrence from ADEC that the soil can be placed in the tailings facility.

## Investigation Derived Waste

Lead and zinc concentrate removed from around the CSB was reprocessed through the mill as approved by the EPA. Soil removed from around the CSB with TCLP for lead results greater than the RCRA limit of 5,000 µg/L were shipped to an appropriate disposal landfill as described in the Soil Disposal section. Used disposable sampling and equipment supplies were double-bagged and disposed with other nonhazardous waste. Reusable sampling equipment was taken to the on-Site laboratory and decontaminated in accordance with HGCMC's internal Standard Operating Procedures. Water used to decontaminate reusable sampling equipment was treated in accordance with other water used in the on-Site laboratory.

## Quality Control

The project laboratory implements on-going quality assurance/quality control procedures to evaluate conformance to data quality objective (DQOs). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spike/matrix spike duplicates, method blank/method blank duplicate, and laboratory control sample/laboratory control sample duplicates to assess precision, accuracy, and matrix bias. If a DQO was not met, the project

laboratory provides a brief narrative within the Case Narrative concerning the problem. Laboratory reports, including the Case Narrative, are attached.

The goal of the project was to produce data of adequate quality for comparison to 18 AAC 75 Method II Migration to Groundwater Cleanup levels. The primary tool used to assess the quality of data is the ADEC Laboratory Data Review Checklist (LDRC). A LDRC was completed for each individual laboratory work order and is included. The laboratory report Case Narrative was reviewed against the ADEC LDRC for potential quality control issues. No issues were identified that would negatively affect data quality or usability.

## Conceptual Site Model

A Conceptual Site Model (CSM) has been prepared for the Site and is attached to this report. According to the CSM, Incidental Soil Ingestion is the only complete pathway at the Site. However, the Site is a working lead and zinc mine with multiple internal operating procedures to protect workers from exposure to high levels of lead and zinc. HGCMC's internal operating procedures meet Occupational Safety and Health Administration (OSHA) requirements for protection of workers. As internal, OSHA compliant safety procedures are already in place, it is unlikely this open pathway will impact human health or safety at the Site.

## Recommendations and Conclusions

Based on available data, the following conclusions can be made:

- In August 2019, lead and zinc concentrate was observed along the exterior perimeter of the Concentrate Storage Building
  - Samples were collected to determine total lead and zinc concentrations in the soil
    - Samples also served to delineate the impacted area
    - Lab results indicated the north and northeast sides of the building had the highest lead concentrations, the south and southeast sides had the highest zinc concentrations
- In October 2019 and August 2020 3.0 cubic yards of concentrate was removed from the building perimeter
  - This material was processed through the on-Site mill for metals recovery
- The building was sealed using foam and a waterproof coating in August 2020
   The Covid-19 pandemic delayed the project
- Using data from August 2019, three Decision Units were established
- Incremental sampling techniques were used to determine the mean concentrations of lead and zinc in each DU
  - o DU1 had total lead and zinc below cleanup levels and no further work was conducted
  - DU2 and DU3 had mean lead concentrations above cleanup levels
    - Mean zinc concentrations were below 18 AAC 75 Migration to Groundwater Cleanup Levels
- Cleanup of DU3 was completed in October 2020
  - Discrete samples from the excavation area were below Industrial use cleanup levels for an Over 40 Inches of rain Zone for total lead

- Total lead at the final limits of excavation ranged from 109 mg/Kg to 744 mg/Kg
- Partial cleanup of DU2 occurred in October 2020
  - Twelve inches of soil was removed from DU2
    - Discrete samples from the initial excavation indicated additional soil removal was necessary
      - Total lead ranged from 633 mg/Kg to 1080 mg/Kg
- Winter weather and storms postponed additional soil removal in 2020
- A late winter thaw meant additional soil removal could not occur in 2021
  - Replacement of the Concentrate Storage Building roof meant personnel and equipment was not available to conduct additional soil removal after the spring 2021 thaw
- Soil removal is currently scheduled to occur in 2022
  - HGCMC will submit necessary workplans for needed work to the ADEC prior to commencing work
- A Conceptual Site Model was completed for the Site
  - The CSM indicates Incidental Soil Ingestion is the only completed pathway
  - On Site safety protocols at HGCMC are OSHA compliant and protective of workers' health and safety for this pathway

Based on the above conclusions, further removal of soils in DU2 are recommended. An ADEC approved workplan should be in place prior to commencing further work.

Please let me know if I can provide you with additional information.

Sincerely,

Christopher Wallace

Permitting and Environmental Compliance Coordinator Hecla Greens Creek Mining Company

Attachments

- A) Photo Pages
- B) Laboratory Reports and LDRCs
- C) Disposal Paperwork and Permission to Transport Form
- D) Communications with ADEC
- E) Conceptual Site Model

# Attachment A

## **Photos**



Photo 1: Core sampler used for collecting composite intervals.



Photo 2: Flags showing grid sample locations in DU1 (CSB South). Note this is where the vacuum truck was used to clean residual concentrate material along the edge of the foundation.



Photo 3: Flags marking approximate sample locations in DU2 (CSB Southeast). Note fill material is primarily rocks, significantly hindering sampling.



Photo 4: Flags marking grid sample locations in a portion of DU3 (CSB Northeast).



Photo 5: Flags marking grid sample locations in a portion of DU3 (CSB North).



Photo 6: Collecting 12-inch core samples at 1 ft., 2 ft., and 3 ft. off the wall.



Photo 7: Sieve used to remove larger particles from composite samples.



Photo 8: Sub-sampling of bulk composite from DU1 to prepare laboratory sample.



Photo 9: First round of excavation in DU3 (near the northeast corner of CSB). Note foam sealant at the base of metal siding.



Photo 10: First round of excavation in DU3 (CSB North). Large rocks were sorted and placed back in the trench.



Photo 11: Completed first round of excavation in DU3 (CSB North).



Photo 12: Completed first round of excavation in DU3 (CSB Northeast).



Photo 13: Sampling prior to the second round of excavation in DU3 (CSB North-middle).



Photo 14: Sampling prior to the second round of excavation in DU3 (CSB North-east).



Photo 15: The second round of excavation in DU3 (CSB North-East half).



Photo 16: The completed second round of excavation in DU3 (CSB North).



Photo 17: Container of soil from the second round of excavation in DU3. The material was shipped to a licensed hazardous waste disposal facility.



Photo 18: Additional excavation on the northeast side of CSB in May 2021.



Photo 19: Super sack of material excavated from the northeast side of CSB in May 2021.



Photo 20: DU2 following soil removal.

# **Attachment B**

# Laboratory Reports and LDRCs



September 17, 2020

Report to: gcenvdata@hecla-mining.com Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99801-2199 Bill to: Accounts Payable Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99803-2199

Project ID: S20058 ACZ Project ID: L61369

gcenvdata@hecla-mining.com:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 10, 2020. This project has been assigned to ACZ is project number, L61369. Please reference this number in all future inquiries.

All analyses were performed according to ACZ<sup>S</sup> Quality Assurance Plan. The enclosed results relate only to the samples received under L61369. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ<sup>S</sup> current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after October 17, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ is stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re alalle

Sue Webber has reviewed and approved this report.





| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058    |
|-------------|-----------|
| Sample ID:  | CSB NORTH |

### ACZ Sample ID: **L61369-01** Date Sampled: 09/06/20 15:00 Date Received: 09/10/20 Sample Matrix: Soil

| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
|-----------------------|---------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Lead, total (3050)    | M6020B ICP-MS | 1000     | 2160   |      | *  | mg/Kg | 0.1 | 0.5 | 09/15/20 14:03 | s mfm   |
| Zinc, total (3050)    | M6020B ICP-MS | 1000     | 1500   |      | *  | mg/Kg | 6   | 20  | 09/15/20 14:03 | s mfm   |
| Soil Analysis         |               |          |        |      |    |       |     |     |                |         |
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent       | D2216-80      | 1        | 83.7   |      | *  | %     | 0.1 | 0.5 | 09/10/20 20:18 | krs     |
| Soil Preparation      |               |          |        |      |    |       |     |     |                |         |
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Digestion - Hot Plate | M3050B ICP-MS |          |        |      |    |       |     |     | 09/11/20 11:30 | krs     |

Arizona license number: AZ0102



| Project ID: | S20058    |
|-------------|-----------|
| Sample ID:  | CSB SOUTH |

### ACZ Sample ID: **L61369-02** Date Sampled: 09/06/20 15:20 Date Received: 09/10/20 Sample Matrix: Soil

| Metals Analysis       |               |          |        |      |    |       |     |     |                |         |
|-----------------------|---------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Lead, total (3050)    | M6020B ICP-MS | 1000     | 427    |      | *  | mg/Kg | 0.1 | 0.5 | 09/15/20 14:04 | mfm     |
| Zinc, total (3050)    | M6020B ICP-MS | 1000     | 3370   |      | *  | mg/Kg | 6   | 20  | 09/15/20 14:04 | mfm     |
| Soil Analysis         |               |          |        |      |    |       |     |     |                |         |
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent       | D2216-80      | 1        | 89.1   |      | *  | %     | 0.1 | 0.5 | 09/11/20 4:26  | krs     |
| Soil Preparation      |               |          |        |      |    |       |     |     |                |         |
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Digestion - Hot Plate | M3050B ICP-MS |          |        |      |    |       |     |     | 09/11/20 12:30 | ) krs   |

Arizona license number: AZ0102



| Project ID: | S20058        |
|-------------|---------------|
| Sample ID:  | CSB SOUTHEAST |

| ACZ Sample ID: | L61369-03      |
|----------------|----------------|
| Date Sampled:  | 09/06/20 15:40 |
| Date Received: | 09/10/20       |
| Sample Matrix: | Soil           |

| Metals Analysis       |               |          |        |      |    |       |     |     |                |         |
|-----------------------|---------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Lead, total (3050)    | M6020B ICP-MS | 1000     | 1450   |      | *  | mg/Kg | 0.1 | 0.5 | 09/15/20 14:10 | ) mfm   |
| Zinc, total (3050)    | M6020B ICP-MS | 1000     | 2770   |      | *  | mg/Kg | 6   | 20  | 09/15/20 14:10 | ) mfm   |
| Soil Analysis         |               |          |        |      |    |       |     |     |                |         |
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent       | D2216-80      | 1        | 77.8   |      | *  | %     | 0.1 | 0.5 | 09/11/20 8:30  | krs     |
| Soil Preparation      |               |          |        |      |    |       |     |     |                |         |
| Parameter             | EPA Method    | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Digestion - Hot Plate | M3050B ICP-MS |          |        |      |    |       |     |     | 09/11/20 15:30 | ) krs   |

Arizona license number: AZ0102



Inorganic Reference

| port Heade                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Batch                                                                                                                                                                                                                                         | A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Found                                                                                                                                                                                                                                         | Value of the QC Type of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit                                                                                                                                                                                                                                         | Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lower                                                                                                                                                                                                                                         | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MDL                                                                                                                                                                                                                                           | Method Detection Limit. Same as Minimum Reporting Limit ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nless omitted or e                                                                                                                                                                                                                                                                     | qual to the PQL (see comment #5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                               | Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCN/SCN                                                                                                                                                                                                                                       | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        | ate of analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PQL                                                                                                                                                                                                                                           | Practical Quantitation Limit. Synonymous with the EPA term "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | minimum level".                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC                                                                                                                                                                                                                                            | True Value of the Control Sample or the amount added to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spike                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rec                                                                                                                                                                                                                                           | Recovered amount of the true value or spike added, in % (exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ept for LCSS, mg                                                                                                                                                                                                                                                                       | /Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RPD                                                                                                                                                                                                                                           | Relative Percent Difference, calculation used for Duplicate QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTypes                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Upper                                                                                                                                                                                                                                         | Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample                                                                                                                                                                                                                                        | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C Sample Ty                                                                                                                                                                                                                                   | /pes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS                                                                                                                                                                                                                                            | Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LCSWD                                                                                                                                                                                                                                                                                  | Laboratory Control Sample - Water Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ASD                                                                                                                                                                                                                                           | Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LFB                                                                                                                                                                                                                                                                                    | Laboratory Fortified Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ССВ                                                                                                                                                                                                                                           | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LFM                                                                                                                                                                                                                                                                                    | Laboratory Fortified Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CCV                                                                                                                                                                                                                                           | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LFMD                                                                                                                                                                                                                                                                                   | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DUP                                                                                                                                                                                                                                           | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LRB                                                                                                                                                                                                                                                                                    | Laboratory Reagent Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ICB                                                                                                                                                                                                                                           | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MS                                                                                                                                                                                                                                                                                     | Matrix Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ICV                                                                                                                                                                                                                                           | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSD                                                                                                                                                                                                                                                                                    | Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ICSAB                                                                                                                                                                                                                                         | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PBS                                                                                                                                                                                                                                                                                    | Prep Blank - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCSS                                                                                                                                                                                                                                          | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PBW                                                                                                                                                                                                                                                                                    | ,<br>Prep Blank - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                               | <b>J</b> - <b>I</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCSSD                                                                                                                                                                                                                                         | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PQV                                                                                                                                                                                                                                                                                    | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSSD<br>LCSW                                                                                                                                                                                                                                 | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PQV<br>SDL                                                                                                                                                                                                                                                                             | Practical Quantitation Verification standard<br>Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW                                                                                                                                                                                                                                          | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>LCSW</i><br>C Sample Ty                                                                                                                                                                                                                    | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL                                                                                                                                                                                                                                                                                    | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>LCSW</i><br>C Sample Ty<br>Blanks                                                                                                                                                                                                          | Laboratory Control Sample - Water<br>ype Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SDL                                                                                                                                                                                                                                                                                    | Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sa                                                                                                                                                                                                   | Laboratory Control Sample - Water  /pe Explanations  Verifies that there is no or minimal co imples  Verifies the accuracy of the method,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDL<br>ontamination in the<br>including the prep                                                                                                                                                                                                                                       | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sa<br>Duplicates                                                                                                                                                                                     | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.                                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For                                                                                                                                                                         | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sa<br>Duplicates                                                                                                                                                                                     | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For                                                                                                                                                                         | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard                                                                                                                                                             | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard                                                                                                                                                             | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat                                                                                                                                                                             | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B                                                                                                                                        | Laboratory Control Sample - Water         /pe Explanations         umples       Verifies that there is no or minimal control of the method, Verifies the accuracy of the method, Verifies the precision of the instrume         trified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t                                                                                                                                                       | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H                                                                                                                                   | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control         umples       Verifies the accuracy of the method,<br>Verifies the precision of the instrume         ttified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.                                                                                                                                  | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                                                              | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control         umples       Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the assoc                                                                                                          | Serial Dilution  e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                                                              | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control         umples       Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the assoc                                                                                                          | Serial Dilution  e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                                                                      | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control         umples       Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>n immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect                                                                               | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                                                         | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control of the instrume         umples       Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.       Verifies the validity of the calibration.         s (Qual)       Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the test was analyzed for the sample quantitation limit or the test was analyzed for the sample quantitation limit or the test was analyzed for the sample quantitation limit or the test was analyzed for the sample quantitation limit or the test was analyzed for the sample quantitation limit or test test was analyzed for the sample quantitation limit or test test was analyzed for the test was analyzed for test was analyzed for test was analyzed for the test was analyzed for test was | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the asso<br>the sample detect                                                                                      | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciciated value. tion limit. th 1983.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                                                         | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control of the instrume         trified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         state       Verifies the value between MDL and F         Analysis exceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The associated value is either the sample quantitation limit or the         ences       EPA 600/4-83-020. Methods for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>nic Substances in l                                       | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bt 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>CQUALIFIERS<br>B<br>H<br>L<br>U<br>U<br>Ethod Reference<br>(1)<br>(2)                                                                                                 | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control         umples       Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined nego         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for Chemical Analysis of Water and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>nic Substances in l                                       | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bt 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)                                                                                        | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal converting the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         tified Matrix       Determines sample matrix interference         tifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and T         Target analyte response was below the laboratory defined negret         The material was analyzed for, but was not detected above the T         The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals in the top of the t                                                                                      | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marca<br>nic Substances in l<br>in Environmental S                | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bt 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                              | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal convertifies the accuracy of the method, Verifies the precision of the instrume         trified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         state       Verifies the validity of the calibration.         state       Cqual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marca<br>nic Substances in l<br>in Environmental S                | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bt 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>CQualifiers<br>B<br>H<br>L<br>U<br>U<br>C<br>C<br>C<br>C<br>Qualifiers<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control         umples       Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.       Verifies the validity of the calibration.         s (Qual)       Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>in Environmental s<br>ater.                               | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. bciated va |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>CQUALIFIERS<br>B<br>H<br>L<br>U<br>U<br>Ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Domments<br>(1)                                                         | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal control         umples       Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.       Verifies the validity of the calibration.         s (Qual)       Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined nego The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the ences         EPA 600/4-83-020. Methods for Chemical Analysis of Water at EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>in Environmental s<br>ater.                               | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)                                                | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal converting the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined nego         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for the Determination of Metals in         EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slightly         Soil, Sludge, and Plant matrices for Inorganic analyses are reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>in immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marco-<br>ic Substances in la<br>in Environmental so<br>ater. | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>D<br>mments<br>(1)<br>(2)<br>(3)                                       | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal converting the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for the Determination of Metals is         EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa         QC results calculated from raw data. Results may vary slightly         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>in Environmental s<br>ater.                               | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. time. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. tight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)                                                | Laboratory Control Sample - Water         /pe Explanations         Imples       Verifies that there is no or minimal converting the precision of the method, Verifies the precision of the instrume the precision of the instrume the precision of the instrume the precision of the calibration.         s (Qual)       Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg. The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the PA 600/R-93-100. Methods for Chemical Analysis of Water and PA 600/R-93-100. Methods for the Determination of Inorgani EPA 600/R-94-111. Methods for the Determination of Inorgani EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wasteward Methods for the Examination of Water and Wasteward Methods for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>in Environmental s<br>ater.                               | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. time. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. tight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>D<br>mments<br>(1)<br>(2)<br>(3)                                       | Laboratory Control Sample - Water         ype Explanations         umples       Verifies that there is no or minimal converting the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interference         verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for the Determination of Metals is         EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa         QC results calculated from raw data. Results may vary slightly         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>n immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marco<br>in Environmental S<br>atter.                          | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. ertification qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

### ACZ Project ID: L61369

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

| Lead, total (3050  | )     |                | M6020B I   | CP-MS   |        |        |       |       |         |        |     |       |       |
|--------------------|-------|----------------|------------|---------|--------|--------|-------|-------|---------|--------|-----|-------|-------|
| ACZ ID             | Туре  | Analyzed       | PCN/SCN    | QC      | Sample | Found  | Units | Rec%  | Lower   | Upper  | RPD | Limit | Qual  |
| WG505160           |       |                |            |         |        |        |       |       |         |        |     |       |       |
| WG505160ICV        | ICV   | 09/15/20 13:21 | MS200812-2 | .05     |        | .05023 | mg/L  | 100   | 90      | 110    |     |       |       |
| WG505160ICB        | ICB   | 09/15/20 13:23 |            |         |        | U      | mg/L  |       | -0.0003 | 0.0003 |     |       |       |
| WG504817PBS        | PBS   | 09/15/20 13:34 |            |         |        | U      | mg/Kg |       | -0.15   | 0.15   |     |       |       |
| WG504817LCSS       | LCSS  | 09/15/20 13:36 | PCN61790   | 92.3    |        | 91.05  | mg/Kg |       | 76.7    | 108    |     |       |       |
| WG504817LCSSD      | LCSSD | 09/15/20 13:38 | PCN61790   | 92.3    |        | 88.32  | mg/Kg |       | 76.7    | 108    | 3   | 20    |       |
| WG504817LFB        | LFB   | 09/15/20 13:39 | MS200818-3 | .05005  |        | .05124 | mg/Kg | 102   | 80      | 120    |     |       |       |
| WG504817LFBD       | LFBD  | 09/15/20 13:41 | MS200818-3 | .05005  |        | .0553  | mg/Kg | 110   | 80      | 120    | 8   | 20    |       |
| WG504969PBS        | PBS   | 09/15/20 13:57 |            |         |        | U      | mg/Kg |       | -0.15   | 0.15   |     |       |       |
| WG504969LCSS       | LCSS  | 09/15/20 13:59 | PCN61790   | 92.3    |        | 105.72 | mg/Kg |       | 76.7    | 108    |     |       |       |
| WG504969LCSSD      | LCSSD | 09/15/20 14:01 | PCN61790   | 92.3    |        | 92.63  | mg/Kg |       | 76.7    | 108    | 13  | 20    |       |
| L61369-02MS        | MS    | 09/15/20 14:06 | MS200818-3 | 50.05   | 427    | 575.39 | mg/Kg | 296   | 75      | 125    |     |       | M3    |
| L61369-02MSD       | MSD   | 09/15/20 14:08 | MS200818-3 | 50.05   | 427    | 406.36 | mg/Kg | -41   | 75      | 125    | 34  | 20    | M3 RD |
| Solids, Percent    |       |                | D2216-80   |         |        |        |       |       |         |        |     |       |       |
| ACZ ID             | Туре  | Analyzed       | PCN/SCN    | QC      | Sample | Found  | Units | Rec%  | Lower   | Upper  | RPD | Limit | Qual  |
| WG504941           |       |                |            |         |        |        |       |       |         |        |     |       |       |
| WG504941PBS        | PBS   | 09/10/20 16:15 |            |         |        | U      | %     |       | -0.1    | 0.1    |     |       |       |
| L61369-01DUP       | DUP   | 09/11/20 0:22  |            |         | 83.7   | 84.18  | %     |       |         |        | 1   | 20    |       |
| Zinc, total (3050) |       |                | M6020B I   | CP-MS   |        |        |       |       |         |        |     |       |       |
| ACZ ID             | Туре  | Analyzed       | PCN/SCN    | QC      | Sample | Found  | Units | Rec%  | Lower   | Upper  | RPD | Limit | Qual  |
| WG505160           |       |                |            |         |        |        |       |       |         |        |     |       |       |
| WG505160ICV        | ICV   | 09/15/20 13:21 | MS200812-2 | .05     |        | .0486  | mg/L  | 97    | 90      | 110    |     |       |       |
| WG505160ICB        | ICB   | 09/15/20 13:23 |            |         |        | U      | mg/L  |       | -0.018  | 0.018  |     |       |       |
| WG504817PBS        | PBS   | 09/15/20 13:34 |            |         |        | U      | mg/Kg |       | -9      | 9      |     |       |       |
| WG504817LCSS       | LCSS  | 09/15/20 13:36 | PCN61790   | 369     |        | 368    | mg/Kg |       | 298     | 440    |     |       |       |
| WG504817LCSSD      | LCSSD | 09/15/20 13:38 | PCN61790   | 369     |        | 358    | mg/Kg |       | 298     | 440    | 3   | 20    |       |
| WG504817LFB        | LFB   | 09/15/20 13:39 | MS200818-3 | .050075 |        | .0508  | mg/Kg | 101   | 80      | 120    |     |       |       |
| WG504817LFBD       | LFBD  | 09/15/20 13:41 | MS200818-3 | .050075 |        | .0525  | mg/Kg | 105   | 80      | 120    | 3   | 20    |       |
| WG504969PBS        | PBS   | 09/15/20 13:57 |            |         |        | U      | mg/Kg |       | -9      | 9      |     |       |       |
| WG504969LCSS       | LCSS  | 09/15/20 13:59 | PCN61790   | 369     |        | 433    | mg/Kg |       | 298     | 440    |     |       |       |
| WG504969LCSSD      | LCSSD | 09/15/20 14:01 | PCN61790   | 369     |        | 377    | mg/Kg |       | 298     | 440    | 14  | 20    |       |
| L61369-02MS        | MS    | 09/15/20 14:06 | MS200818-3 | 50.075  | 3370   | 3602.8 | mg/Kg | 465   | 75      | 125    |     |       | M3    |
| L61369-02MSD       | MSD   | 09/15/20 14:08 | MS200818-3 | 50.075  | 3370   | 2770.2 | mg/Kg | -1198 | 75      | 125    | 26  | 20    | M3 RD |



2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

### Hecla Greens Creek Mining Company

### ACZ Project ID: L61369

| ACZ ID    | WORKNUM  | PARAMETER          | METHOD        | QUAL | DESCRIPTION                                                                                                                                                                                           |
|-----------|----------|--------------------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L61369-01 | WG505160 | Lead, total (3050) | M6020B ICP-MS | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                    | M6020B ICP-MS | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          |                    | M6020B ICP-MS | ZG   | The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.                                                                   |
|           |          | Zinc, total (3050) | M6020B ICP-MS | M3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                    | M6020B ICP-MS | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          |                    | M6020B ICP-MS | ZH   | Serial Dilution exceeded the acceptance criteria. Matrix interference [physical or chemical] is suspected.                                                                                            |
| L61369-02 | WG505160 | Lead, total (3050) | M6020B ICP-MS | M3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                    | M6020B ICP-MS | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          |                    | M6020B ICP-MS | ZG   | The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.                                                                   |
|           |          | Zinc, total (3050) | M6020B ICP-MS | M3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                    | M6020B ICP-MS | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          |                    | M6020B ICP-MS | ZH   | Serial Dilution exceeded the acceptance criteria. Matrix interference [physical or chemical] is suspected.                                                                                            |
| L61369-03 | WG505160 | Lead, total (3050) | M6020B ICP-MS | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                    | M6020B ICP-MS | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          |                    | M6020B ICP-MS | ZG   | The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.                                                                   |
|           |          | Zinc, total (3050) | M6020B ICP-MS | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                    | M6020B ICP-MS | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          |                    | M6020B ICP-MS | ZH   | Serial Dilution exceeded the acceptance criteria. Matrix interference [physical or chemical] is suspected.                                                                                            |



## ACZ Project ID: L61369

Soil Analysis

| The following parameters are not offered for certificati | on or are not covered by AZ certificate #AZ0102. |
|----------------------------------------------------------|--------------------------------------------------|
| Solids, Percent                                          | D2216-80                                         |
| The following parameters are not offered for certificati | on or are not covered by NELAC certificate #ACZ. |
| Solids, Percent                                          | D2216-80                                         |

|                                                                                         | ACZ Project I<br>Date Receive |    |          | L61369  |
|-----------------------------------------------------------------------------------------|-------------------------------|----|----------|---------|
| 120030                                                                                  | Received E                    |    | 9/10/202 | 0 12.10 |
|                                                                                         | Date Printe                   | •  | 9/       | 11/2020 |
| Receipt Verification                                                                    |                               |    |          |         |
|                                                                                         | Y                             | ΈS | NO       | NA      |
| 1) Is a foreign soil permit included for applicable samples?                            |                               |    |          | Х       |
| 2) Is the Chain of Custody form or other directive shipping papers present?             |                               | Х  |          |         |
| 3) Does this project require special handling procedures such as CLP protocol?          |                               |    | Х        |         |
| 4) Are any samples NRC licensable material?                                             |                               |    |          | Х       |
| 5) If samples are received past hold time, proceed with requested short hold time analy | /ses?                         | Х  |          |         |
| 6) Is the Chain of Custody form complete and accurate?                                  |                               | Х  |          |         |
| 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sa     | mples?                        |    | Х        |         |

| Х | + |   |
|---|---|---|
| ^ |   |   |
| Х |   |   |
| Х |   |   |
|   |   | Х |
| Х |   |   |
|   |   | Х |
|   |   | Х |
| Х |   |   |
|   |   | Х |
|   |   | Х |
| Х |   |   |
|   |   |   |

### Chain of Custody Related Remarks

**Client Contact Remarks** 

Shipping Containers

| Cooler Id | Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|----------|----------------------|------------|-------------------------|
|           |          |                      |            |                         |
| NA33589   | 5.9      | NA                   | 15         | N/A                     |

#### Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.





ACZ Project ID: L61369 Date Received: 09/10/2020 12:15 Received By: Date Printed: 9/11/2020

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

|      | ¢ |
|------|---|
|      | 4 |
|      | Q |
|      |   |
|      | Q |
|      | 5 |
| 000  |   |
| 3000 |   |
|      |   |
|      |   |
|      |   |

L61369-2009171136

| ain o         | ain of Custody Re | /Record / Analysis Request L61369     | equest      | 61369         |   | Lab Sent To:<br>ACZ | Sent To<br>ACZ   |   |           |
|---------------|-------------------|---------------------------------------|-------------|---------------|---|---------------------|------------------|---|-----------|
|               |                   |                                       |             |               | ┝ |                     | $\left  \right $ | - | ł         |
|               |                   | Project Name:                         | Miscel      | Aiscellaneous |   | <br>                |                  |   |           |
| uming company |                   | Report To: gcenvdata@hecla-mining.com | ecla-mining | com           |   |                     |                  |   |           |
|               |                   | Sampler: DL, GF                       | ĿЧ          | Container     |   |                     |                  |   | <br>***** |

à

|                                                                                            | i                                                |                                       |                 |                        |                                                                      |                             |                             |          |         | Lab Se        | Lab Sent To:                            |                                              |      |                  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|-----------------|------------------------|----------------------------------------------------------------------|-----------------------------|-----------------------------|----------|---------|---------------|-----------------------------------------|----------------------------------------------|------|------------------|
| Chain of Custod                                                                            | ain of Custody Record / Analysis Request LOI 567 | cord / A                              | nalysis         | Reques                 |                                                                      | 150-                        | 2                           |          |         | ¥             | ACZ                                     |                                              |      |                  |
| Company Address:<br>Hoolo Geoore Central Mining Com                                        |                                                  | Project Name:                         | ame:            | Mis                    | Miscellaneous                                                        | S                           |                             |          |         |               |                                         |                                              |      |                  |
| P.O. Box 32199                                                                             | any                                              | Report To: gcenvdata@hecla-mining.com | gcenvdata(      | 2hecla-mi              | ning.com                                                             |                             |                             |          |         |               |                                         | <u>.                                    </u> |      |                  |
| Juneau, AK 99803                                                                           |                                                  | Sampler:                              |                 | DL, GF                 |                                                                      | Container                   |                             |          |         |               |                                         |                                              |      |                  |
|                                                                                            |                                                  | P.O.Number:                           |                 | S20058                 |                                                                      |                             |                             |          |         |               |                                         |                                              |      |                  |
| Telephone: (907) 790-XXXX<br>8482 D. Maller 8420 D. Landes<br>8457 C. Sell 8461 G. Fredhei | XX<br>8420 D. Landes<br>8461 G. Fredheim         | Date Collected                        | lime Collected  | Matrix<br>Water / Soil | 82819                                                                |                             |                             | bsəJ li  | onis le |               |                                         |                                              |      | ( wolsd sse ) Hi |
| Sample I.D.                                                                                |                                                  |                                       | 1               |                        | 20 8                                                                 |                             |                             |          | 10 J    | <br>          |                                         |                                              | • Hq | หกล              |
| CSB North                                                                                  |                                                  | 9/6/2020                              | 15:00           | Soil                   | 1                                                                    |                             |                             |          | ×       |               |                                         |                                              | -    |                  |
| CSB South                                                                                  |                                                  | 9/6/2020                              | 15:20           | Soil                   | 1                                                                    |                             |                             | -        | ×       |               |                                         |                                              | +-   | ×                |
| CSB Southeast                                                                              | st                                               | 9/6/2020                              | 15:40           | Soil                   | 1                                                                    |                             |                             | <b>_</b> | ×       |               |                                         |                                              | 1    | ×                |
|                                                                                            |                                                  |                                       |                 |                        |                                                                      |                             |                             | ┼┼┼┼┤    |         |               |                                         |                                              |      |                  |
|                                                                                            |                                                  |                                       |                 |                        |                                                                      |                             |                             |          |         |               |                                         |                                              |      |                  |
|                                                                                            |                                                  |                                       |                 |                        |                                                                      |                             |                             | ╀┼       |         |               |                                         |                                              |      | ТТ               |
|                                                                                            |                                                  |                                       |                 |                        |                                                                      |                             |                             |          |         |               |                                         |                                              |      |                  |
|                                                                                            |                                                  |                                       |                 |                        |                                                                      |                             |                             | +-       |         |               | -                                       |                                              |      |                  |
| Comments:                                                                                  |                                                  |                                       |                 | 1 Ioo                  |                                                                      | Deliverable Instructions:   | Instructions:               |          |         |               | Shipment Checklist                      | hecklist                                     | 1    | T                |
| Please Rush                                                                                | tush                                             |                                       |                 | be ref<br>202          | be replaced by the lab Project ID<br>20200908 Miscellaneous ACZ XXXX | lab Project II<br>Aiscellan | eport. XXX<br>D<br>IEOUS A( |          | CXXX    |               | Lab Contacted<br>FedEx Pickup Scheduled | Scheduled                                    |      |                  |
|                                                                                            |                                                  |                                       |                 | e-mai                  | e-mail to: gcenvdata@hecla-mining.com                                | a@hecla-mir                 | ning.com                    | 1        |         |               |                                         |                                              |      |                  |
| RELINQUISHED BY SAMPLER:<br>Siedenref. ///                                                 | RECEIVED BY:<br>Signature:                       |                                       | RELINQUISHED BY | HED BY:                |                                                                      | RECEIVED BY                 | OBY:                        |          |         | Conditic      | Condition of Sample Containers:         | Containers:                                  |      | TT               |
| Und hard                                                                                   |                                                  |                                       | orgiature.      | 3                      |                                                                      | Signature:                  |                             |          |         | Temp R        | Temp Received:                          |                                              | ů    |                  |
| avit dinko                                                                                 | Printed Name:                                    |                                       | Printed Name:   | N.                     |                                                                      | Printed Name:               | ne:                         |          |         | # of Coolers: | oolers:                                 |                                              |      |                  |
| HGCMC                                                                                      | Firm:                                            |                                       | Firm:           |                        |                                                                      | Firm:                       |                             |          |         | Seals Intact: | Intact:                                 |                                              |      |                  |
| 00:40 00:40                                                                                | Date / Time:                                     | 12:15                                 | Date / Time:    |                        |                                                                      | Date / Time:                | ä                           |          |         | Page          | of                                      |                                              |      |                  |

.

### **Laboratory Data Review Checklist**

## Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

### Date:

5/16/2022

### Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L61369

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

Hazard Identification Number:

L61369

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

### Note: Any N/A or No box checked must have an explanation in the comments box.

### 1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

| Yes□ | No⊠  | N/A | Comments:  |
|------|------|-----|------------|
| 100  | 1102 |     | Community. |

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

|    | Yes⊠ No□ N/A□               | Comments: |
|----|-----------------------------|-----------|
|    |                             |           |
| b. | Correct analyses requested? |           |

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

### 3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Temperature documented and within range

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Metals do not need preservative

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No discrepancies found

e. Data quality or usability affected?

Comments:

Data quality and usability not affected

- 4. <u>Case Narrative</u>
  - a. Present and understandable?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Spike recovery did not meet QC, RPD did not meet QC, ICP or ICP-MS Serial Dilution was not used because sample concentration was less than 50 times the MDL

c. Were all corrective actions documented?

| Yes□ | No□ | $N/A \boxtimes$ | Comments: |
|------|-----|-----------------|-----------|
|------|-----|-----------------|-----------|

No corrective action possible

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Recovery of the associate control sample was used instead of the Spike Recovery to meet QC Criteria, LC/LCSD RPD failed as the sample was non-homogenous, so data quality and usability are not affected.

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

### 5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. All applicable holding times met?

| Yes⊠ No□ N | $/A\square$ Comments: |
|------------|-----------------------|
|------------|-----------------------|

c. All soils reported on a dry weight basis?

| Yes $\boxtimes$ No $\square$ N/A $\square$ | Comments: |
|--------------------------------------------|-----------|
|--------------------------------------------|-----------|

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

### 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

### c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

%R did not meet QC as the analyte concentration is the sample is disproportionate to the spike level.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

All

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected as sample matrix caused the QC failure.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

- e. Trip Blanks
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1$  = Sample Concentration  $R_2$  = Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

iii. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

September 17, 2020

CS Site Name:

Greens Creek Concentrate Building

# 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

# a. Defined and appropriate?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:



October 13, 2020

Report to: gcenvdata@hecla-mining.com Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99801-2199

cc: Cameron Sell

Bill to: Accounts Payable Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99803-2199

Project ID: S20058 ACZ Project ID: L61897

gcenvdata@hecla-mining.com:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 02, 2020. This project has been assigned to ACZ is project number, L61897. Please reference this number in all future inquiries.

All analyses were performed according to ACZ<sup>S</sup> Quality Assurance Plan. The enclosed results relate only to the samples received under L61897. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ<sup>S</sup> current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 12, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ is stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

no- gilalle

Sue Webber has reviewed and approved this report.







| Project ID: | S20058         |
|-------------|----------------|
| Sample ID:  | CBS NORTH - C1 |

### ACZ Sample ID: **L61897-01** Date Sampled: 09/28/20 14:15 Date Received: 10/02/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 109    |      | *  | mg/Kg | 3.03 | 15.2 | 10/13/20 6:26  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 85.9   |      | *  | %     | 0.1  | 0.5  | 10/08/20 3:03  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 10/05/20 17:45 | i krs   |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 10/08/20 14:21 | krs/mlp |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |      |      | 10/07/20 17:18 | s krs   |



# Inorganic Analytical Results

#### Hecla Greens Creek Mining Company Project ID: \$20058

| Project ID: | S20058         |
|-------------|----------------|
| Sample ID:  | CBS NORTH - C2 |

| ACZ Sample ID: | L61897-02      |
|----------------|----------------|
| Date Sampled:  | 09/28/20 14:18 |
| Date Received: | 10/02/20       |
| Sample Matrix: | Soil           |

| Metals Analysis            |                    |          |        |      |    |       |     |     |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 100      | 253    |      | *  | mg/Kg | 3   | 15  | 10/13/20 6:46  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 85.9   |      | *  | %     | 0.1 | 0.5 | 10/08/20 4:03  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |     |     | 10/05/20 17:55 | i krs   |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |     |     | 10/08/20 15:22 | krs/mlp |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |     |     | 10/07/20 17:22 | e krs   |



| Project ID: | S20058         |
|-------------|----------------|
| Sample ID:  | CBS NORTH - C3 |

### ACZ Sample ID: **L61897-03** Date Sampled: 09/28/20 14:21 Date Received: 10/02/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |     |     |                |           |
|----------------------------|--------------------|----------|--------|------|----|-------|-----|-----|----------------|-----------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst   |
| Lead, total (3050)         | M6010D ICP         | 200      | 5240   |      | *  | mg/Kg | 6   | 30  | 10/13/20 6:50  | kja       |
| Soil Analysis              |                    |          |        |      |    |       |     |     |                |           |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst   |
| Solids, Percent            | D2216-80           | 1        | 89.8   |      | *  | %     | 0.1 | 0.5 | 10/08/20 5:03  | krs       |
| Soil Preparation           |                    |          |        |      |    |       |     |     |                |           |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst   |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |     |     | 10/05/20 18:05 | 5 krs     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |     |     | 10/08/20 16:23 | 8 krs/mlp |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |     |     | 10/07/20 17:26 | 6 krs     |



| Project ID: | S20058         |
|-------------|----------------|
| Sample ID:  | CBS NORTH - C4 |

### ACZ Sample ID: **L61897-04** Date Sampled: 09/28/20 14:25 Date Received: 10/02/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 2190   |      | *  | mg/Kg | 3.03 | 15.2 | 10/13/20 6:53  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 86.6   |      | *  | %     | 0.1  | 0.5  | 10/08/20 6:04  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 10/05/20 18:15 | 5 krs   |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 10/08/20 16:44 | krs/mlp |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |      |      | 10/07/20 17:30 | ) krs   |

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058             |
|-------------|--------------------|
| Sample ID:  | CBS NORTH - W COMP |

### ACZ Sample ID: **L61897-05** Date Sampled: 09/28/20 14:30 Date Received: 10/02/20 Sample Matrix: Soil

| Inorganic Prep               |            |          |        |      |    |       |     |     |               |         |
|------------------------------|------------|----------|--------|------|----|-------|-----|-----|---------------|---------|
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP |          |        |      |    |       |     |     | 10/09/20 15:2 | 24 jlw  |
| Metals Analysis              |            |          |        |      |    |       |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| Lead (TCLP)                  | M6010D ICP | 1        | 43100  |      | *  | ug/L  | 30  | 150 | 10/12/20 22:0 | )7 kja  |
| Soil Preparation             |            |          |        |      |    |       |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| TCLP Metal Extractio         | n M1311    |          |        |      |    |       |     |     | 10/07/20 7:5  | 3 mlp   |



Inorganic Reference

| eport Header                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Batch                                                                                                                                                                                                                        | A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Found                                                                                                                                                                                                                        | Value of the QC Type of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Limit                                                                                                                                                                                                                        | Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Lower                                                                                                                                                                                                                        | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| MDL                                                                                                                                                                                                                          | Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                              | Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| PCN/SCN                                                                                                                                                                                                                      | A number assigned to reagents/standards to trace to the manu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ufacturers certific                                                                                                                                                                                                                                                                                              | ate of analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| PQL                                                                                                                                                                                                                          | Practical Quantitation Limit. Synonymous with the EPA term "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | minimum level".                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| QC                                                                                                                                                                                                                           | True Value of the Control Sample or the amount added to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spike                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Rec                                                                                                                                                                                                                          | Recovered amount of the true value or spike added, in $\%$ (exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ept for LCSS, mg                                                                                                                                                                                                                                                                                                 | /Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| RPD                                                                                                                                                                                                                          | Relative Percent Difference, calculation used for Duplicate QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Types                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Upper                                                                                                                                                                                                                        | Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Sample                                                                                                                                                                                                                       | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| C Sample Ty                                                                                                                                                                                                                  | rpes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| AS                                                                                                                                                                                                                           | Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LCSWD                                                                                                                                                                                                                                                                                                            | Laboratory Control Sample - Water Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| ASD                                                                                                                                                                                                                          | Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LFB                                                                                                                                                                                                                                                                                                              | Laboratory Fortified Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| CCB                                                                                                                                                                                                                          | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LFM                                                                                                                                                                                                                                                                                                              | Laboratory Fortified Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| CCV                                                                                                                                                                                                                          | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LFMD                                                                                                                                                                                                                                                                                                             | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| DUP                                                                                                                                                                                                                          | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LRB                                                                                                                                                                                                                                                                                                              | Laboratory Reagent Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| ICB                                                                                                                                                                                                                          | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MS                                                                                                                                                                                                                                                                                                               | Matrix Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| ICV                                                                                                                                                                                                                          | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MSD                                                                                                                                                                                                                                                                                                              | Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| ICSAB                                                                                                                                                                                                                        | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PBS                                                                                                                                                                                                                                                                                                              | Prep Blank - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                              | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PBW                                                                                                                                                                                                                                                                                                              | Prep Blank - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  | Flep blark - Waler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| LCSS                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  | Practical Quantitation Varification atondard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| LCSSD                                                                                                                                                                                                                        | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PQV                                                                                                                                                                                                                                                                                                              | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  | Practical Quantitation Verification standard<br>Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW                                                                                                                                                                                                                | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQV<br>SDL                                                                                                                                                                                                                                                                                                       | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks                                                                                                                                                                                       | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQV<br>SDL                                                                                                                                                                                                                                                                                                       | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San                                                                                                                                                                        | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>Pe Explanations<br>Verifies that there is no or minimal co<br>mples Verifies the accuracy of the method,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PQV<br>SDL<br>Intamination in the<br>including the prep                                                                                                                                                                                                                                                          | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates                                                                                                                                                          | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>Pe Explanations<br>Werifies that there is no or minimal co<br>Werifies the accuracy of the method,<br>Verifies the precision of the instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.                                                                                                                                                                                                                                     | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sau<br>Duplicates<br>Spikes/For                                                                                                                                            | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>PE Explanations<br>Verifies that there is no or minimal co<br>mples<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix<br>Determines sample matrix interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.                                                                                                                                                                                                                                     | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates                                                                                                                                                          | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>Pe Explanations<br>Werifies that there is no or minimal co<br>Werifies the accuracy of the method,<br>Verifies the precision of the instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.                                                                                                                                                                                                                                     | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sau<br>Duplicates<br>Spikes/For                                                                                                                                            | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal co<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix Determines sample matrix interference<br>Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.                                                                                                                                                                                                                                     | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard                                                                                                                               | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal co<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix Determines sample matrix interference<br>Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                     | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/For<br>Standard                                                                                                                                | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>The Explanations<br>Werifies that there is no or minimal consistence of the method,<br>Werifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix Determines sample matrix interference<br>Verifies the validity of the calibration.<br>S (Qual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                     | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard<br>C2 Qualifiers<br>B                                                                                                         | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         rpe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>i immediate hold t                                                                                                                                                                          | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H                                                                                                    | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>immediate hold t<br>rative threshold.                                                                                                                                                       | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sau<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L                                                                                                | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         rpe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix         Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined neg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>immediate hold t<br>ative threshold.<br>e level of the associated                                                                                                                           | Serial Dilution  e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sau<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L                                                                                                | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal co         mples       Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analysis exceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>immediate hold t<br>ative threshold.<br>e level of the associated                                                                                                                           | Serial Dilution  e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. bciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                           | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal co         mples       Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analysis exceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>i immediate hold t<br>ative threshold.<br>a level of the association<br>the sample detect                                                                                                   | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sat<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                           | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method.<br>ces, if any.<br>PQL. The associat<br>i immediate hold t<br>ative threshold.<br>e level of the associate<br>the sample detect                                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                          | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrument tified Matrix         Determines sample matrix interference         Verifies the validity of the calibration.         state         Analyte concentration detected at a value between MDL and F         Analytic concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         EPA 600/4-83-020. Methods for Chemical Analysis of Water and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>immediate hold to<br>ative threshold.<br>the sample detect<br>and Wastes, Marce<br>in Substances in the                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit.  h 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)                                                        | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water <b>pe Explanations</b> Werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix         Determines sample matrix interference         Verifies the validity of the calibration. <b>s (Qual)</b> Analyte concentration detected at a value between MDL and P         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined negged         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or temes         EPA 600/4-83-020. Methods for Chemical Analysis of Water at         EPA 600/R-93-100. Methods for the Determination of Inorgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>immediate hold to<br>ative threshold.<br>the sample detect<br>and Wastes, Marce<br>in Substances in the                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit.  h 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)                                              | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         mples       Verifies that there is no or minimal comples         Werifies the accuracy of the method, Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and P         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or test and the sample quantitation limit or test and the part of the complexity of the calibration.         EPA 600/4-83-020. Methods for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals in the sample quantitation function of Metals in the sample quantitation function of Metals in the part of the p | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>immediate hold t<br>ative threshold.<br>a level of the associat<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental S                                           | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit.  h 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                               | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix         Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and P         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or t         ences         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-94-111. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>immediate hold t<br>ative threshold.<br>a level of the associat<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental S                                           | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit.  h 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/For<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal comples<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix Determines sample matrix interference<br>Verifies the validity of the calibration.<br><b>c (Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or to<br><b>ences</b><br><b>EPA 600/4-83-020</b> . Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method.<br>ces, if any.<br>PQL. The associate<br>immediate hold t<br>ative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marci<br>ic Substances in<br>n Environmental s<br>ter.                               | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. bciated va |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sau<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>COmments<br>(1)            | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal comples<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix<br>Determines sample matrix interference<br>Verifies the validity of the calibration.<br><b>5 (Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or to<br><b>Preces</b><br>EPA 600/4-83-020. Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method.<br>ces, if any.<br>PQL. The associate<br>immediate hold to<br>ative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marci<br>ic Substances in in<br>n Environmental st<br>ter.                          | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time.  ciated value. tion limit.  th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.  alues are used in the calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sau<br>Duplicates<br>Spikes/Forr<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)        | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal comples<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix Determines sample matrix interference<br>Verifies the validity of the calibration.<br><b>5 (Qual)</b><br>Analyte concentration detected at a value between MDL and P<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or to<br><b>ences</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewar<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>immediate hold to<br>ative threshold.<br>the sample detect<br>and Wastes, Marc<br>ic Substances in in<br>n Environmental st<br>ter.                                                        | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time.  ciated value. tion limit.  th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.  alues are used in the calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>COMMENTS<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal co-<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix Determines sample matrix interference<br>Verifies the validity of the calibration.<br><b>s (Qual)</b><br>Analyte concentration detected at a value between MDL and P<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>Proces</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>immediate hold t<br>lative threshold.<br>e level of the associat<br>in sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental s<br>ter.                                   | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. tight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control Sau<br>Duplicates<br>Spikes/Forr<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)        | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water <b>pe Explanations</b> mples        Verifies that there is no or minimal comples                verifies the accuracy of the method, Verifies the precision of the instrument to the instrument of the method halt in the region of the calibration.                 cOual)        Determines sample matrix interference Verifies the validity of the calibration.                 concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the the associated value is either the sample quantitation limit or the the sample quantitation of Inorgan EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste.                 QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as An asterisk in the "XQ" column indicates there is an extended or an "as An asterisk in the "XQ" column indicates there is an extended or an "as An asterisk in the "XQ" column indicates there is an extended or an "as An asterisk in the "XQ" column indicates there is an extended or an "as An asterisk in the "XQ" column indicates there is an extended or an "as An asterisk in the "XQ" column indicates there is an extended or an "as An asterisk in the  | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>immediate hold t<br>lative threshold.<br>e level of the associat<br>in sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental s<br>ter.                                   | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. teight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSSD<br>LCSW<br>C Sample Ty<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>COMMENTS<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal co-<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix Determines sample matrix interference<br>Verifies the validity of the calibration.<br><b>s (Qual)</b><br>Analyte concentration detected at a value between MDL and P<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>Proces</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method.<br>ces, if any.<br>PQL. The associant<br>immediate hold to<br>ative threshold.<br>e level of the associant<br>in Environmental st<br>ter.<br>or f the rounded var<br>ported on a dry we<br>received" basis.<br>qualifier and/or ce | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. ertification qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

#### ACZ Project ID: L61897

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

| Lead (TCLP)       |       |                | M6010D      | ICP      |        |         |       |      |       |       |     |       |       |
|-------------------|-------|----------------|-------------|----------|--------|---------|-------|------|-------|-------|-----|-------|-------|
| ACZ ID            | Туре  | Analyzed       | PCN/SCN     | QC       | Sample | Found   | Units | Rec% | Lower | Upper | RPD | Limit | Qual  |
| WG507084          |       |                |             |          |        |         |       |      |       |       |     |       |       |
| WG507084ICV       | ICV   | 10/12/20 21:15 | II201009-1  | 4        |        | 3.887   | mg/L  | 97   | 90    | 110   |     |       |       |
| WG507084ICB       | ICB   | 10/12/20 21:19 |             |          |        | U       | mg/L  |      | -0.09 | 0.09  |     |       |       |
| WG506692PBS       | PBS   | 10/12/20 21:43 |             |          |        | U       | mg/L  |      | -0.09 | 0.09  |     |       |       |
| WG506692LFB       | LFB   | 10/12/20 21:47 | IITCLPSPIKE | 1.001    |        | 1.006   | mg/L  | 100  | 80    | 120   |     |       |       |
| L61895-01MS       | MS    | 10/12/20 21:55 | IITCLPSPIKE | 1.001    | U      | .986    | mg/L  | 99   | 75    | 125   |     |       |       |
| L61895-01MSD      | MSD   | 10/12/20 21:59 | IITCLPSPIKE | 1.001    | U      | .999    | mg/L  | 100  | 75    | 125   | 1   | 20    |       |
| L61895-01DUP      | DUP   | 10/12/20 22:03 |             |          | U      | U       | mg/L  |      |       |       | 0   | 20    | RA    |
| Lead, total (3050 | )     |                | M6010D      | ICP      |        |         |       |      |       |       |     |       |       |
| ACZ ID            | Туре  | Analyzed       | PCN/SCN     | QC       | Sample | Found   | Units | Rec% | Lower | Upper | RPD | Limit | Qual  |
| WG507078          |       |                |             |          |        |         |       |      |       |       |     |       |       |
| WG507078ICV       | ICV   | 10/13/20 4:41  | II201009-1  | 4        |        | 3.885   | mg/L  | 97   | 90    | 110   |     |       |       |
| WG507078ICB       | ICB   | 10/13/20 4:45  |             |          |        | U       | mg/L  |      | -0.09 | 0.09  |     |       |       |
| WG506815PBS       | PBS   | 10/13/20 5:09  |             |          |        | U       | mg/Kg |      | -9    | 9     |     |       |       |
| WG506815LCSS      | LCSS  | 10/13/20 5:13  | PCN61789    | 92.3     |        | 86.23   | mg/Kg |      | 76.7  | 108   |     |       |       |
| WG506815LCSSD     | LCSSD | 10/13/20 5:17  | PCN61789    | 92.3     |        | 80.77   | mg/Kg |      | 76.7  | 108   | 7   | 20    |       |
| L61897-01MS       | MS    | 10/13/20 6:30  | II201002-6  | 100.14   | 109    | 276.3   | mg/Kg | 167  | 75    | 125   |     |       | MC    |
| L61897-01MSD      | MSD   | 10/13/20 6:42  | II201002-6  | 101.1414 | 109    | 184.022 | mg/Kg | 74   | 75    | 125   | 40  | 20    | MC RD |
| Solids, Percent   |       |                | D2216-80    | )        |        |         |       |      |       |       |     |       |       |
| ACZ ID            | Туре  | Analyzed       | PCN/SCN     | QC       | Sample | Found   | Units | Rec% | Lower | Upper | RPD | Limit | Qual  |
| WG506792          |       |                |             |          |        |         |       |      |       |       |     |       |       |
| L61929-01DUP      | DUP   | 10/08/20 8:04  |             |          | 18     | 17.83   | %     |      |       |       | 1   | 20    |       |
| WG506792PBS       | PBS   | 10/08/20 10:05 |             |          |        | U       | %     |      | -0.1  | 0.1   |     |       |       |



(800) 334-5493

#### Hecla Greens Creek Mining Company

ACZ Project ID: L61897

| ACZ ID    | WORKNUM  | PARAMETER          | METHOD     | QUAL | DESCRIPTION                                                                                                                                                           |
|-----------|----------|--------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L61897-01 | WG507078 | Lead, total (3050) | M6010D ICP | MC   | Recovery for matrix spike and matrix spike duplicate are<br>outside of acceptance limits; recovery for the method<br>control sample was acceptable.                   |
|           |          |                    | M6010D ICP | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                       |
| L61897-02 | WG507078 | Lead, total (3050) | M6010D ICP | MC   | Recovery for matrix spike and matrix spike duplicate are<br>outside of acceptance limits; recovery for the method<br>control sample was acceptable.                   |
|           |          |                    | M6010D ICP | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                       |
| L61897-03 | WG507078 | Lead, total (3050) | M6010D ICP | MC   | Recovery for matrix spike and matrix spike duplicate are<br>outside of acceptance limits; recovery for the method<br>control sample was acceptable.                   |
|           |          |                    | M6010D ICP | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                       |
| L61897-04 | WG507078 | Lead, total (3050) | M6010D ICP | MC   | Recovery for matrix spike and matrix spike duplicate are<br>outside of acceptance limits; recovery for the method<br>control sample was acceptable.                   |
|           |          |                    | M6010D ICP | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                       |
| L61897-05 | WG507084 | Lead (TCLP)        | M6010D ICP | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL). |



ACZ Project ID: L61897

Soil Analysis

| The following parameters are not offered for certification or are not covered by AZ certificate #AZ0102. |                                                                                                          |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Solids, Percent                                                                                          | D2216-80                                                                                                 |  |  |  |  |  |  |  |  |
| The following parameters are not offered for certification                                               | The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ. |  |  |  |  |  |  |  |  |
| Solids, Percent                                                                                          | D2216-80                                                                                                 |  |  |  |  |  |  |  |  |

| ACZ Proje<br>Date Rece<br>Receive<br>Date Pr | eived: 1                              | 0/02/202                                                                                                                | L61897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receive                                      |                                       | 0/02/202                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | ed By:                                | 0/02/202                                                                                                                | 20 12:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date Pr                                      | •                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | inted:                                | 10                                                                                                                      | )/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                              | YES                                   | NO                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              |                                       | _                                                                                                                       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              | Х                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                       | Х                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                       |                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /ses?                                        | X                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | Х                                     |                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mples?                                       |                                       | Х                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | -                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | YES                                   | NO                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              | Х                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | Х                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| īme?                                         | Х                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                       |                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              | Х                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                       |                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              |                                       |                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              | Х                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                       |                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              |                                       |                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              | Х                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | yses?<br>umples?<br><sup>-</sup> ime? | yses? X<br>X<br>X<br>mples? X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | Image: Second state sta |

### Chain of Custody Related Remarks

**Client Contact Remarks** 

**Shipping Containers** 

| Cooler Id | Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|----------|----------------------|------------|-------------------------|
|           |          |                      |            |                         |
| NA33775   | 9.8      | NA                   | 15         | N/A                     |

#### Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s) but was thawed by receipt at ACZ.

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.



Sample Receipt

Hecla Greens Creek Mining Company S20058

ACZ Project ID: L61897 Date Received: 10/02/2020 12:30 Received By: Date Printed: 10/5/2020

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

|               |              |                             |                  |                                                     |                  |             | ( wolad aas ) HSUS                                                            | -          | ×              | х              | ×              | ×              | x                  |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       |                                 | (<br>0        | ç             |                    |               |
|---------------|--------------|-----------------------------|------------------|-----------------------------------------------------|------------------|-------------|-------------------------------------------------------------------------------|------------|----------------|----------------|----------------|----------------|--------------------|---|----------|---|--------------|---|---|----|---|---|--------------------|-----------|----|---------------------------|----------------------------------------------|-----------------------------------|------------------------|---------------------------------------|---------------------------------|---------------|---------------|--------------------|---------------|
|               |              |                             |                  |                                                     |                  |             | 7 > He                                                                        | ╀          | +              |                |                |                |                    |   | $\vdash$ | ╀ | +            | ╋ | + | -  | - | + |                    | -         |    | _                         |                                              |                                   | g                      |                                       | ers:                            |               | I             |                    |               |
|               |              |                             |                  |                                                     |                  |             |                                                                               | ╉          | +              |                |                |                |                    |   | <br>-    | ╞ | +            | ┼ | ╋ | +  | - | ╉ | +                  |           |    | -                         | ecklist                                      |                                   | FedEx Pickup Scheduled |                                       | Condition of Sample Containers: |               |               |                    |               |
|               |              |                             |                  |                                                     |                  |             |                                                                               | t          | 1              |                |                |                | ,                  |   | ſ        | T |              | ╋ | T | 1  |   |   |                    |           |    |                           | Suprient Checklist                           | tacted                            | ickup S                |                                       | ample                           | +             | į.            |                    |               |
| I ah Sant Ta. |              | ACZ                         |                  |                                                     |                  |             |                                                                               | T          | 1              |                |                |                |                    |   | T        | T | T            |   | 1 |    |   |   | T                  |           |    | .10                       | Idine                                        | ab Con                            | edEx P                 |                                       | on of S                         | Temn Received | # of Coolere: | UUIUIS.<br>Intact: | Intact:       |
| S 40          |              | ¥                           |                  |                                                     |                  |             | · · · · · · · · · · · · · · · · · · ·                                         | T          | 1              |                |                |                |                    |   |          | ╞ | $\mathbf{T}$ |   | 1 | +- |   |   | ┢                  | $\square$ |    |                           |                                              | Г<br>М                            |                        |                                       | Conditi                         | Tenn          | U3~ #         | n v r<br>Sagle I   | Seals Intact: |
|               |              |                             |                  |                                                     |                  |             |                                                                               | Ţ          | $\square$      |                |                |                |                    |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       | ſ                               | T             |               | Τ                  |               |
|               |              |                             |                  |                                                     |                  |             |                                                                               | ∔          | $\downarrow$   |                |                |                |                    |   |          | L |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   | XX                     |                                       |                                 |               |               |                    |               |
|               |              |                             |                  |                                                     |                  |             | ICLP - Lead (Pb)                                                              | L          |                |                |                |                | X                  |   |          |   |              |   |   |    |   |   |                    |           |    |                           | _                                            | -                                 | Miscellaneous_ACZ_XXXX |                                       |                                 |               |               |                    |               |
|               |              |                             |                  |                                                     |                  |             | (dY) bssJ lstol                                                               | <u>ر</u> ۽ | ×              | ×              | x              | X              |                    |   |          |   |              |   |   | ╎  |   |   |                    |           | +  |                           | Use naming system below for report XXXX will |                                   | CZ                     |                                       |                                 |               |               |                    |               |
|               |              |                             |                  |                                                     |                  |             |                                                                               |            |                |                |                |                |                    |   |          | T |              |   |   |    |   |   |                    |           |    | Chiome:                   |                                              |                                   | A_st                   | com                                   |                                 |               |               |                    |               |
|               | <i>с</i>     | ~                           |                  |                                                     |                  |             | 199,0                                                                         | ╀          | $\downarrow$   | _              | _              |                |                    |   |          |   | -            | _ |   |    | _ |   |                    |           | _  | Delivershla Instructions: | report                                       | i<br>A                            | neou                   | ining.                                | ED BY:                          |               | ame:          |                    |               |
|               | Ł            | 5                           |                  |                                                     | Container        |             |                                                                               | ╀          | ┽              | -              | 4              | _              | _                  |   |          | - | ╞            |   | - | ╞  | + |   |                    |           | _  | Internation               | W for                                        | roject                            | cella                  | ecla-m                                | RECEIVED BY                     | Signature:    | Printed Name: | Ë                  |               |
|               | 0            |                             | sn               |                                                     | Con              |             |                                                                               | +          | ╉              | +              | -              | -              | -                  | _ |          |   | +-           | - |   | +  | ╞ | ┢ | $\left  - \right $ |           | -+ |                           | m belo                                       | e lab P                           | Mise                   | ata@h                                 | E                               | Sig           | E             | Firm:              |               |
|               | _            | 1,58197                     | aneo             | com                                                 |                  | -           |                                                                               | t          | ╋              | +              | ┫              |                |                    |   |          |   |              |   |   |    | - |   |                    |           | +  |                           | g svste                                      | by the                            | 28                     | cenvd                                 |                                 |               |               |                    |               |
|               |              |                             | Miscellaneous    | ining.                                              | Ц                |             | sear Glass So S                                                               | ł          | -              | -              | -              | -              | -                  |   |          |   |              |   |   |    |   |   |                    |           |    |                           | namin                                        | be replaced by the lab Project ID | 20200928_              | e-mail to: gcenvdata@hecla-mining.com |                                 |               |               |                    |               |
|               |              | kecora / Analysis kequest   | Μ                | Report To: gcenvdata@hecla-mining.com               |                  | 8           | Mater / Soil<br>Water / Soil                                                  | 1.<br>2    | NOT            | Soil           | Soil           | Soil           | Soil               |   |          |   |              |   |   |    |   |   |                    |           |    |                           | Use                                          | be re                             | 202                    | e-ma                                  | D BY:                           |               |               |                    |               |
|               | С            |                             |                  | ata@h                                               | DL               | S20058      |                                                                               | t          | +              | <u>~</u>       |                | 5              |                    | _ |          |   |              | ┢ |   | +  |   |   |                    | _         |    |                           |                                              |                                   |                        |                                       | UISHE                           |               | ame:          |                    |               |
|               |              | arys                        | ne:              | cenvd                                               |                  |             | Time Collected                                                                |            | 1415           | 1418           | 1421           | 1425           | 1430               |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       | RELINQUISHED BY                 | Signature:    | Printed Name: | Firm:              |               |
|               | / <b>A</b> = |                             | Project Name:    | To: g                                               | er:              | mber:       |                                                                               | 000        | 770            | 020            | 020            | 020            | 020                |   |          |   |              |   |   | Ì  |   |   |                    |           |    | 1                         |                                              |                                   |                        |                                       | m                               | Ś             | <u>م</u>      |                    | -             |
|               | he o         |                             | Proje            | Report                                              | Sampler:         | P.O.Number: | Date Collected                                                                | 0/06/06/0  | 710716         | 9/28/2020      | 9/28/2020      | 9/28/2020      | 9/28/2020          |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       |                                 |               |               |                    |               |
|               | D, s         | ž [                         |                  |                                                     | ¢1               | Ī           |                                                                               | t          | ╈              | Ť              | 1              |                |                    |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       |                                 |               |               |                    |               |
|               |              | Śp.                         |                  |                                                     |                  |             |                                                                               |            |                |                |                |                |                    |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       | ×                               | 6             | N.            |                    |               |
|               |              | stod                        |                  |                                                     |                  |             | eim                                                                           |            |                |                |                |                |                    |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       | VED B                           | ire:          | Printed Name: |                    |               |
|               |              | č                           |                  | any                                                 |                  |             | Lande<br>Fredh                                                                | F          | -              | 2              | 8              | 7              | Comp               |   |          |   | -            |   |   |    |   |   |                    |           |    | ļ                         |                                              |                                   |                        |                                       | RECEIVED BY                     | Signature:    | Printed       | Firm:              |               |
|               |              | o<br>c                      |                  | Comp                                                |                  |             | XX<br>8420 D. Landes<br>8461 G. Fredheim<br>nple L.D.                         | 4          |                | -<br>H         | - ft           | 4<br>F         | ₩                  |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              |                                   |                        |                                       |                                 |               |               |                    | 1             |
|               |              | 61897 Chain of Custod 'UY I |                  | guini                                               |                  |             | XXXX<br>8420 D.<br>8461 G.<br>Sample I.D.                                     | No.        | COD NOTIN - CI | CSB North - C2 | CSB North - C3 | CSB North - C4 | CSB North - W Comp |   |          |   |              |   | i |    |   |   |                    |           |    |                           |                                              | Please Rush                       |                        |                                       | LER:                            | 110           | 2             |                    |               |
|               |              |                             |                  | sek M                                               | ŝ                |             | 2-067                                                                         | Ĕ          | ة إذ           | ទ              | ΰ              | ő              | CSB                |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              | Re F                              |                        |                                       | SAMPLER                         | 1 cm          | Candos        | HGCMC              |               |
|               |              | <b>1</b>                    | ddres            | ns Cre<br>1100                                      | 9980             |             | (907)<br>Iler                                                                 |            |                |                |                |                |                    |   |          |   |              |   |   |    |   |   |                    |           |    |                           |                                              | Plea                              | 21                     |                                       | ED BY                           | R             | 2             | HGC                |               |
|               |              | -J                          | Company Address: | Hecla Ureens Creek Mining Company<br>P.O. Roy 32100 | Juneau, AK 99803 |             | Telephone: (907) 790-XXXX<br>8482 D. Maller 842<br>8457 C. Sell 846<br>Sample |            |                |                |                |                |                    |   |          |   |              |   |   |    |   |   |                    |           |    | <u>tts:</u>               |                                              |                                   |                        |                                       | RELINQUISHED BY                 |               | Name:         |                    |               |
|               |              |                             | Comp             | Hecla<br>P ∩ F                                      | Juneau           |             | Telep<br>8482 ]<br>8457 (                                                     |            |                |                |                |                |                    |   |          |   |              |   |   |    |   |   |                    |           |    | Comments:                 |                                              |                                   |                        |                                       | ELIN                            | Signature     |               | Firm:              |               |

### **Laboratory Data Review Checklist**

# Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

### Date:

5/16/2022

### Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L621897

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

Hazard Identification Number:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

### Note: Any N/A or No box checked must have an explanation in the comments box.

### 1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

| Yes□ | No⊠ | N/A | Comments:      |
|------|-----|-----|----------------|
| 1.60 |     |     | e e unitentes. |

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

| Yes $\boxtimes$ No $\square$ N/A $\square$ | Comments: |
|--------------------------------------------|-----------|
|                                            |           |
| Correct analyses requested?                |           |

b. Correct analyses requested?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

### 3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Temperature documented, metals analysis do not have a temperature requirement

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Metals do not require preservation

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

|                                        | Yes, samples OK                                                                               |                                                                                                                              |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| _                                      | • 1                                                                                           | s, were they documented? For example, incorrect sample<br>e temperature outside of acceptable range, insufficient or missing |  |
| _                                      | Yes $\square$ No $\square$ N/A $\boxtimes$                                                    | Comments:                                                                                                                    |  |
|                                        | No discrepancies found                                                                        |                                                                                                                              |  |
| e. Data quality or usability affected? |                                                                                               |                                                                                                                              |  |
|                                        |                                                                                               | Comments:                                                                                                                    |  |
|                                        | Data quality and usability not affect                                                         | cted                                                                                                                         |  |
| 4.                                     | Case Narrative                                                                                |                                                                                                                              |  |
|                                        | a. Present and understandable?                                                                |                                                                                                                              |  |
|                                        | Yes⊠ No□ N/A□                                                                                 | Comments:                                                                                                                    |  |
|                                        |                                                                                               |                                                                                                                              |  |
|                                        | b. Discrepancies, errors, or QC f                                                             | failures identified by the lab?                                                                                              |  |
|                                        | Yes⊠ No□ N/A□                                                                                 | Comments:                                                                                                                    |  |
|                                        | MS/MSD outside of QC Limits, MS/MSD RPD outside QC Criteria for all samples                   |                                                                                                                              |  |
|                                        | c. Were all corrective actions documented?                                                    |                                                                                                                              |  |
|                                        | Yes $\square$ No $\square$ N/A $\boxtimes$                                                    | Comments:                                                                                                                    |  |
|                                        | No corrective action possible                                                                 |                                                                                                                              |  |
|                                        | d. What is the effect on data qua                                                             | lity/usability according to the case narrative?                                                                              |  |
| Comments:                              |                                                                                               |                                                                                                                              |  |
|                                        | Recovery for the method control sample can be used instead, MS/MSD RPD QC failure due to non- |                                                                                                                              |  |

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

homogenous nature of sample matrix

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

b. All applicable holding times met?

c. All soils reported on a dry weight basis?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

TCLP results are reported as mg/L

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

### 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. If above LOQ or project specified objectives, what samples are affected?

Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

### Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

%R did not meet QC

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

MS/MSD was not within QC Criteria due to non-homogeneity of sample matrix

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

All

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected as sample matrix caused the RPD QC failure and the %R of the control sample was acceptable.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

e. Trip Blanks

i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1 =$  Sample Concentration  $R_2 =$  Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

iii. Data quality or usability affected? Comments:

Data quality and usability not affected

### 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

| Yes⊠ | No□ | $N/A\square$ | Comments: |
|------|-----|--------------|-----------|
|------|-----|--------------|-----------|

### Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

Date:

5/16/2022

Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L621897

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

# Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Hazard Identification Number:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

### Note: Any N/A or No box checked must have an explanation in the comments box.

### 1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

| Yes $\boxtimes$ No $\square$ N/A $\square$ | Comments: |
|--------------------------------------------|-----------|
|                                            |           |
| Correct analyses requested?                |           |

b. Correct analyses requested?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

### 3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Temperature documented, metals analysis do not have a temperature requirement

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Metals do not require preservation

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

| Yes, samples OK                                                                  |                                                                                                                               |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| • 1                                                                              | s, were they documented? For example, incorrect sample<br>le temperature outside of acceptable range, insufficient or missing |  |
| Yes $\square$ No $\square$ N/A $\boxtimes$                                       | Comments:                                                                                                                     |  |
| No discrepancies found                                                           |                                                                                                                               |  |
| e. Data quality or usability affec                                               | ted?                                                                                                                          |  |
|                                                                                  | Comments:                                                                                                                     |  |
| Data quality and usability not affe                                              | ected                                                                                                                         |  |
| Case Narrative                                                                   |                                                                                                                               |  |
| a. Present and understandable?                                                   |                                                                                                                               |  |
| Yes No N/A                                                                       | Comments:                                                                                                                     |  |
|                                                                                  |                                                                                                                               |  |
| b. Discrepancies, errors, or QC                                                  | failures identified by the lab?                                                                                               |  |
| Yes No N/A                                                                       | Comments:                                                                                                                     |  |
| MS/MSD outside of QC Limits, MS/MSD RPD outside QC Criteria for all samples      |                                                                                                                               |  |
| c. Were all corrective actions de                                                | ocumented?                                                                                                                    |  |
| Yes No N/A                                                                       | Comments:                                                                                                                     |  |
| No corrective action possible                                                    |                                                                                                                               |  |
| d. What is the effect on data quality/usability according to the case narrative? |                                                                                                                               |  |
|                                                                                  | Comments:                                                                                                                     |  |
| Recovery for the method control homogenous nature of sample m                    | sample can be used instead, MS/MSD RPD QC failure due to non-<br>atrix                                                        |  |

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

b. All applicable holding times met?

c. All soils reported on a dry weight basis?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

TCLP results are reported as mg/L

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

### 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. If above LOQ or project specified objectives, what samples are affected?

Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

# Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

%R did not meet QC

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

MS/MSD was not within QC Criteria due to non-homogeneity of sample matrix

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

All

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected as sample matrix caused the RPD QC failure and the %R of the control sample was acceptable.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

e. Trip Blanks

i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected? Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1 =$  Sample Concentration  $R_2 =$  Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected?

Comments:

iii. Data quality or usability affected? Comments:

Data quality and usability not affected

# 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

| Yes⊠ | No□ | N/A | Comments: |
|------|-----|-----|-----------|
|------|-----|-----|-----------|



November 06, 2020

Report to: gcenvdata@hecla-mining.com Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99801-2199 Bill to: Accounts Payable Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99803-2199

Project ID: S20058 ACZ Project ID: L62081

gcenvdata@hecla-mining.com:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 09, 2020. This project has been assigned to ACZ is project number, L62081. Please reference this number in all future inquiries.

All analyses were performed according to ACZ<sup>S</sup> Quality Assurance Plan. The enclosed results relate only to the samples received under L62081. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ<sup>S</sup> current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after December 06, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ is stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re Wellin

Sue Webber has reviewed and approved this report.





Project ID: S20058 Sample ID: CSB NE-C1 ACZ Sample ID: **L62081-01** Date Sampled: 10/05/20 16:00 Date Received: 10/09/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 247    |      |    | mg/Kg | 3.03 | 15.2 | 11/04/20 6:01  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 86.4   |      | *  | %     | 0.1  | 0.5  | 10/21/20 2:22  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 10/20/20 15:30 | krs     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 10/31/20 11:53 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |      |      | 10/30/20 15:00 | krs     |



Project ID: S20058 Sample ID: CSB NE-C2

# ACZ Sample ID: **L62081-02** Date Sampled: 10/05/20 16:05 Date Received: 10/09/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |     |     |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 100      | 744    |      |    | mg/Kg | 3   | 15  | 11/04/20 6:13  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 85.7   |      | *  | %     | 0.1 | 0.5 | 10/21/20 3:26  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |     |     | 10/20/20 15:45 | i krs   |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |     |     | 10/31/20 12:35 | i krs   |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |     |     | 10/30/20 15:05 | i krs   |



Project ID: S20058 Sample ID: CSB NE-C3

# ACZ Sample ID: **L62081-03** Date Sampled: 10/05/20 16:10 Date Received: 10/09/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |     |     |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 100      | 1430   |      |    | mg/Kg | 3   | 15  | 11/04/20 6:17  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 82.6   |      | *  | %     | 0.1 | 0.5 | 10/21/20 4:31  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |     |     | 10/20/20 16:00 | ) krs   |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |     |     | 10/31/20 13:17 | ′ krs   |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |     |     | 10/30/20 15:10 | ) krs   |



Project ID: S20058 Sample ID: CSB SE-C1

# ACZ Sample ID: **L62081-04** Date Sampled: 10/05/20 16:15 Date Received: 10/09/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 633    |      |    | mg/Kg | 3.03 | 15.2 | 11/04/20 6:20  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 82.8   |      | *  | %     | 0.1  | 0.5  | 10/21/20 5:36  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 10/20/20 16:15 | krs     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 10/31/20 13:31 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |      |      | 10/30/20 15:15 | i krs   |



Project ID: S20058 Sample ID: CSB SE-C2

# ACZ Sample ID: **L62081-05** Date Sampled: 10/05/20 16:20 Date Received: 10/09/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 1080   |      |    | mg/Kg | 3.03 | 15.2 | 11/04/20 6:31  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 79.8   |      | *  | %     | 0.1  | 0.5  | 10/21/20 6:41  | krs     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 10/20/20 16:30 | krs     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 10/31/20 13:45 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      | *  |       |      |      | 10/30/20 15:20 | krs     |



Inorganic Reference

|                                                                                                                                                                                                                                                                                                                                                                                                                                    | Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Batch                                                                                                                                                                                                                                                                                                                                                                                                                              | A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| Found                                                                                                                                                                                                                                                                                                                                                                                                                              | Value of the QC Type of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| Limit                                                                                                                                                                                                                                                                                                                                                                                                                              | Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| Lower                                                                                                                                                                                                                                                                                                                                                                                                                              | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| MDL                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Detection Limit. Same as Minimum Reporting Limit ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nless omitted or e                                                                                                                                                                                                                                                                    | qual to the PQL (see comment #5).                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    | Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ee                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          |
| PCN/SCN                                                                                                                                                                                                                                                                                                                                                                                                                            | A number assigned to reagents/standards to trace to the man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       | ate of analysis                                                                                                                                                                                                                                                                                                                                          |
| PQL                                                                                                                                                                                                                                                                                                                                                                                                                                | Practical Quantitation Limit. Synonymous with the EPA term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| QC                                                                                                                                                                                                                                                                                                                                                                                                                                 | True Value of the Control Sample or the amount added to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                          |
| Rec<br>RPD                                                                                                                                                                                                                                                                                                                                                                                                                         | Recovered amount of the true value or spike added, in % (exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       | /Kg)                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relative Percent Difference, calculation used for Duplicate QC<br>Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Types                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |
| Upper<br>Sample                                                                                                                                                                                                                                                                                                                                                                                                                    | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| C Sample Typ                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |
| AS                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LCSWD                                                                                                                                                                                                                                                                                 | Laboratory Control Sample - Water Duplicate                                                                                                                                                                                                                                                                                                              |
| ASD                                                                                                                                                                                                                                                                                                                                                                                                                                | Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LFB                                                                                                                                                                                                                                                                                   | Laboratory Fortified Blank                                                                                                                                                                                                                                                                                                                               |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LFM                                                                                                                                                                                                                                                                                   | Laboratory Fortified Matrix                                                                                                                                                                                                                                                                                                                              |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LFMD                                                                                                                                                                                                                                                                                  | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                                                                                    |
| DUP                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LRB                                                                                                                                                                                                                                                                                   | Laboratory Reagent Blank                                                                                                                                                                                                                                                                                                                                 |
| ICB                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS                                                                                                                                                                                                                                                                                    | Matrix Spike                                                                                                                                                                                                                                                                                                                                             |
| ICV                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MSD                                                                                                                                                                                                                                                                                   | Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                   |
| ICSAB                                                                                                                                                                                                                                                                                                                                                                                                                              | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PBS                                                                                                                                                                                                                                                                                   | Prep Blank - Soil                                                                                                                                                                                                                                                                                                                                        |
| 1.000                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0014/                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |
| LCSS                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PBW                                                                                                                                                                                                                                                                                   | Prep Blank - Water                                                                                                                                                                                                                                                                                                                                       |
| LCSSD                                                                                                                                                                                                                                                                                                                                                                                                                              | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQV                                                                                                                                                                                                                                                                                   | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                        |
| LCSSD<br>LCSW                                                                                                                                                                                                                                                                                                                                                                                                                      | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL                                                                                                                                                                                                                                                                            | Practical Quantitation Verification standard<br>Serial Dilution                                                                                                                                                                                                                                                                                          |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks                                                                                                                                                                                                                                                                                                                                                                                            | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PQV<br>SDL                                                                                                                                                                                                                                                                            | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San                                                                                                                                                                                                                                                                                                                                                                             | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal control of the method,<br>Nerifies the accuracy of the method,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQV<br>SDL<br>ontamination in the<br>including the prep                                                                                                                                                                                                                               | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates                                                                                                                                                                                                                                                                                                                                                               | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Verifies that there is no or minimal control of the method,<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                           | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort                                                                                                                                                                                                                                                                                                                                                | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>PE Explanations<br>Nerifies that there is no or minimal control of the method,<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                           | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates                                                                                                                                                                                                                                                                                                                                                               | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Verifies that there is no or minimal control of the method,<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                           | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort                                                                                                                                                                                                                                                                                                                                                | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         nples       Verifies that there is no or minimal control for the method, verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                           | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard                                                                                                                                                                                                                                                                                                                                  | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         nples       Verifies that there is no or minimal control for the method, verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                           | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard                                                                                                                                                                                                                                                                                                                                   | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         weifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interference         verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa                                                                                                                                                                       | Practical Quantitation Verification standard<br>Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity.                                                                                                                                                                                                   |
| LCSSD<br>LCSW<br>Sample Type<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                                                                                                                                                                                                                                     | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         mples       Verifies that there is no or minimal control from the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined negotiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>i immediate hold to<br>pative threshold.                                                                                                                           | Practical Quantitation Verification standard<br>Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time.                                                                                                                                                                                             |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H                                                                                                                                                                                                                                                                                                       | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         weifies that there is no or minimal comples         Nerifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nego The material was analyzed for, but was not detected above the second seco | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold is<br>pative threshold.                                                                                                                             | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.<br>ted value is an estimated quantity. time.<br>poiated value.                                                                                                                                                                |
| LCSSD<br>LCSW<br>Sample Type<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                                                                                                                                                                                                                                     | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         mples       Verifies that there is no or minimal control from the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined negotiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold is<br>pative threshold.                                                                                                                             | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.<br>ted value is an estimated quantity. time.<br>poiated value.                                                                                                                                                                |
| LCSSD<br>LCSW<br>Sample Type<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                                                                                                                                                                                                                                     | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix         Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold is<br>pative threshold.                                                                                                                             | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.<br>ted value is an estimated quantity. time.<br>poiated value.                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                                                                                                                                                                                                                             | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix         Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold to<br>pative threshold.<br>the sample detect                                                                                                        | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>pociated value.<br>tion limit.                                                                                                                                               |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                                                                                                                                                                                                                             | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         nples       Verifies that there is no or minimal control frequencies         nples       Verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and T         Target analyte response was below the laboratory defined nego         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc                                                             | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity. time.<br>poiated value. tion limit.                                                                                                                                                      |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                                                                                                                                                                                                                             | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control Sample - Water         Imples       Verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and F         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the the the sample quantitation limit or the                                                                                | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold to<br>pative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>ic Substances in                                      | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botiated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                               |
| LCSSD<br>LCSW<br>Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>Stand Reference<br>(1)<br>(2)                                                                                                                                                                                                                                                          | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control from the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined nego         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the associated value is for Chemical Analysis of Water and EPA 600/R-93-100. Methods for the Determination of Inorgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold to<br>pative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>ic Substances in                                      | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botiated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                               |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)                                                                                                                                                                                                                                                 | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control Sample - Water         Imples       Verifies the accuracy of the method, Verifies the precision of the instrume         Ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         nces         EPA 600/R-93-100. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for the Determination of Metals in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold to<br>pative threshold.<br>Is level of the association<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental              | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botiated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                               |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>Sthod Referee<br>(1)<br>(2)<br>(3)<br>(4)                                                                                                                                                                                                                                           | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control Sample - Water         Imples       Verifies the accuracy of the method, Verifies the precision of the instrume         Ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.       Verifies the validity of the calibration.         (Qual)       Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the BPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold to<br>pative threshold.<br>Is level of the association<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental              | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botiated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                               |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referee<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                                                                                                                                                                                                                    | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control Sample - Water         Imples       Verifies the accuracy of the method, Verifies the precision of the instrume         Ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.       Verifies the validity of the calibration.         (Qual)       Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the BPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold in<br>pative threshold.<br>I level of the association<br>the sample detect<br>and Wastes, Marci<br>ic Substances in<br>n Environmental<br>iter.    | Practical Quantitation Verification standard<br>Serial Dilution e prop method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.                                                                     |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>C<br>C<br>C Qualifiers<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                            | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water <b>pe Explanations</b> Imples       Verifies that there is no or minimal control for the precision of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined nego         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the PA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan         EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>ontamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold to<br>pative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marci<br>ic Substances in<br>n Environmental<br>iter.    | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botated value.<br>tion limit.<br>ch 1983.<br>Environmental Samples, August 1993.<br>Samples - Supplement I, May 1994.<br>alues are used in the calculations.                 |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>C<br>C<br>C<br>C<br>Qualifiers<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                    | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Verifies that there is no or minimal content<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.<br><b>(Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>nces</b><br>EPA 600/4-83-020. Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold for<br>pative threshold.<br>Is level of the association<br>in Environmental<br>iter.                                                            | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botated value.<br>tion limit.<br>ch 1983.<br>Environmental Samples, August 1993.<br>Samples - Supplement I, May 1994.<br>alues are used in the calculations.                 |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>Ethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)                                                                                                                                                                                                         | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Verifies that there is no or minimal content<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.<br><b>(Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>nces</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewar<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>is immediate hold to<br>pative threshold.<br>Is level of the association<br>the sample detect<br>and Wastes, Marca<br>ic Substances in<br>n Environmental<br>ter. | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>ociated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.<br>alues are used in the calculations.<br>eight basis.       |
| LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>C<br>C<br>C<br>C<br>Qualifiers<br>B<br>H<br>L<br>U<br>U<br>C<br>C<br>C<br>Qualifiers<br>C<br>S<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>C<br>C<br>C<br>Qualifiers<br>C<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>S<br>S<br>S<br>S | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control for the precision of the instrume         ified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.       Verifies the validity of the calibration.         (Qual)       Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and T arget analyte response was below the laboratory defined nego.         The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the A 600/R-93-100. Methods for the Determination of Inorgan.         EPA 600/R-93-100. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>is immediate hold to<br>pative threshold.<br>Is level of the association<br>the sample detect<br>and Wastes, Marca<br>ic Substances in<br>n Environmental<br>ter. | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>ociated value.<br>tion limit.<br>ch 1983.<br>Environmental Samples, August 1993.<br>Samples - Supplement I, May 1994.<br>alues are used in the calculations.<br>eight basis. |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

#### ACZ Project ID: L62081

| Lead, total (3050) | )     |                | M6010D     | ICP      |        |        |       |      |       |       |     |       |      |
|--------------------|-------|----------------|------------|----------|--------|--------|-------|------|-------|-------|-----|-------|------|
| ACZ ID             | Туре  | Analyzed       | PCN/SCN    | QC       | Sample | Found  | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG508720           |       |                |            |          |        |        |       |      |       |       |     |       |      |
| WG508720ICV        | ICV   | 11/04/20 4:34  | II201023-2 | 4        |        | 4.009  | mg/L  | 100  | 90    | 110   |     |       |      |
| WG508720ICB        | ICB   | 11/04/20 4:38  |            |          |        | U      | mg/L  |      | -0.09 | 0.09  |     |       |      |
| WG508608PBS        | PBS   | 11/04/20 5:01  |            |          |        | U      | mg/Kg |      | -9    | 9     |     |       |      |
| WG508608LCSS1      | LCSS  | 11/04/20 5:05  | PCN61045   | 105      |        | 112.8  | mg/Kg |      | 86.7  | 123   |     |       |      |
| WG508608LCSSD1     | LCSSD | 11/04/20 5:09  | PCN61045   | 105      |        | 113.5  | mg/Kg |      | 86.7  | 123   | 1   | 20    |      |
| L62081-01MS        | MS    | 11/04/20 6:05  | II201027-3 | 101.1414 | 247    | 355.52 | mg/Kg | 107  | 75    | 125   |     |       |      |
| L62081-01MSD       | MSD   | 11/04/20 6:09  | II201027-3 | 100.14   | 247    | 371.4  | mg/Kg | 124  | 75    | 125   | 4   | 20    |      |
| Solids, Percent    |       |                | D2216-80   | )        |        |        |       |      |       |       |     |       |      |
| ACZ ID             | Туре  | Analyzed       | PCN/SCN    | QC       | Sample | Found  | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG507734           |       |                |            |          |        |        |       |      |       |       |     |       |      |
| WG507734PBS        | PBS   | 10/20/20 14:30 |            |          |        | U      | %     |      | -0.1  | 0.1   |     |       |      |
| L61933-01DUP       | DUP   | 10/20/20 16:39 |            |          | 34     | 34.56  | %     |      |       |       | 2   | 20    |      |



(800) 334-5493

#### **Hecla Greens Creek Mining Company**

WORKNUM PARAMETER ACZ ID

METHOD

QUAL DESCRIPTION

ACZ Project ID: L62081

No extended qualifiers associated with this analysis



ACZ Project ID: L62081

Soil Analysis

| The following parameters are not offered for certification | n or are not covered by AZ certificate #AZ0102. |
|------------------------------------------------------------|-------------------------------------------------|
| Solids, Percent                                            | D2216-80                                        |
| The following parameters are not offered for certification | n or are not covered by NELAC certificate #ACZ. |
| Solids, Percent                                            | D2216-80                                        |

| ACZ Laboratories, Inc.<br>2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493   |              | Sampl<br>Receip |           |
|--------------------------------------------------------------------------------------------|--------------|-----------------|-----------|
| Hecla Greens Creek Mining Company ACZ                                                      | Z Project ID |                 | L62081    |
|                                                                                            | e Received   |                 | 020 10:52 |
|                                                                                            | leceived By  |                 |           |
| Receipt Verification                                                                       | ate Printed  | : 10            | )/12/2020 |
| Receipt vernication                                                                        | YE           | S NO            | NA        |
| 1) Is a foreign soil permit included for applicable samples?                               |              |                 | X         |
| 2) Is the Chain of Custody form or other directive shipping papers present?                | X            |                 |           |
| 3) Does this project require special handling procedures such as CLP protocol?             |              | Х               |           |
| 4) Are any samples NRC licensable material?                                                |              |                 | Х         |
| 5) If samples are received past hold time, proceed with requested short hold time analyses | s? X         |                 |           |
| 6) Is the Chain of Custody form complete and accurate?                                     | X            |                 |           |
| 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samp      | les?         | Х               |           |
| Samples/Containers                                                                         |              |                 |           |
|                                                                                            | YE           | S NO            | NA        |
| 8) Are all containers intact and with no leaks?                                            | X            |                 |           |
| 9) Are all labels on containers and are they intact and legible?                           | X            |                 |           |
| 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time     | e? X         |                 |           |
| 11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$              |              |                 | Х         |
| 12) Is there sufficient sample volume to perform all requested work?                       | Х            |                 |           |
| 13) Is the custody seal intact on all containers?                                          |              |                 | Х         |
| 14) Are samples that require zero headspace acceptable?                                    |              |                 | Х         |
| 15) Are all sample containers appropriate for analytical requirements?                     | X            |                 |           |
| 16) Is there an Hg-1631 trip blank present?                                                |              |                 | Х         |
| 17) Is there a VOA trip blank present?                                                     |              |                 | Х         |
| 18) Were all samples received within hold time?                                            | X            |                 |           |

#### Chain of Custody Related Remarks

**Client Contact Remarks** 

Shipping Containers

| Cooler Id | Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|----------|----------------------|------------|-------------------------|
|           |          |                      |            |                         |
| 6330      | 2.7      | NA                   | 15         | Yes                     |

#### Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.



Sample Receipt

Hecla Greens Creek Mining Company S20058

ACZ Project ID: L62081 Date Received: 10/09/2020 10:52 Received By: Date Printed: 10/12/2020

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

| Octoanter         ACZ           Container         Container           Container         PPH < 2           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           X         X         X           Deliverable lastractions         Stimmentions           Stimmentions         Stimmentions           Stimmentions         Stimmentions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACZ<br>Interesting to the second of the second | ACZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Allary Sisteria |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Instantion:     Image: Second se                                                                                                                                                                                                                                                                                                                                                                                                           | Image: constraint of the state of the s                                  | Image: Sector of the sector                  |                 |
| Container Contai                                                                                                                                                                                                                                                                                                                                                                                 | Container     Container       Container     Container       Container     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K     K       K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Container Contai | Project Name:   |
| Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container<br>Container | Container Contai   | Container Contai | o: gcenvdata    |
| 20201006_CSB_ACZ XXXX       CSB_ACZ XXXX       PH < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clear Class       PH < 2         Clear Class       PH < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solii       Water / Soii         Solii       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       X       N         N       N       N         N       N       N         N       N <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| 20201006_CSB_ACZ       Solution       PH < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Constrained by the lab Project ID       Constrained by the lab Project ID       Mater / Soil         Constrained by the lab Project ID       Constrained by the lab Project ID       Mater / Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solii X       X       Solii X       X       Solii Y       X       X       Solii Y       X       X       Solii Y       X       X       Solii Y       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P.O.Number: S20 |
| 82     7     7       X     X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X       X       X </td <td>82     7     7       X     X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X    &lt;</td> <td>8         9         9           X         X         X         X         X           X         X         X         X         X         X           X         X         X         X         X         X         X           X         X         X         X         X         X         X         X           X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X</td> <td>Time Collected</td>                                                                           | 82     7     7       X     X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8         9         9           X         X         X         X         X           X         X         X         X         X         X           X         X         X         X         X         X         X           X         X         X         X         X         X         X         X           X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time Collected  |
| X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       Deliverable Instructions:       Deliverable Instructions:       Data system below for report. XXXX will       Teplaced by the lab Project ID       D201006_CSB_ACZ_XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       Deliverable Instructions:       x     X       Deliverable Instructions:       x     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X        X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       Deliverable Instructions:       Deliverable Instructions:       x     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X        X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/5/2020 1600  |
| X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X </td <td>X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X</td> <td>X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       Deliverable Instructions:       x     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X        X       X&lt;</td> <td>10/5/2020 1605</td>                                                                                                                                                                                                                                                                                                                                  | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       Deliverable Instructions:       x     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X        X       X<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/5/2020 1605  |
| X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X       X <t< td=""><td>X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X         X       X       X       X         X       X       X       X         X       X       X       X         X       X       X       X         X       X       X       X       X         X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       X       X       X         X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X         X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/5/2020 1615  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/5/2020 1620  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EXX will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×X will<br>XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| CSB_ACZ_XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to mode to consider the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e-mail to: gcenvdata@hecla-mining.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature:      |
| Condition of Sample Containers:<br>Temb Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RECEIVED BY:     Condition of Sample Containers:     Signature:     Temp Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temp Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed Name:   |
| Recruit ou gour additional Recent Infinition of the Signature:<br>Signature:<br>Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : RECEIVED BY: Condition of Sample Containers:<br>Signature: Temp Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Firm:           |
| Received     Received       Signature:     Condition of Sample Containers:       Signature:     Temp Received:       Printed Name:     # of Coolers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RECEIVED BY:     Condition of Sample Containers:       Signature:     Temp Received:       Printed Name:     # of Coolers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temp Received:me:<br>me:# of Coolers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| RECEIVED BY:     Condition of Sample Containers:       Signature:     Temp Received:       Printed Name:     # of Coolers:       Firm:     Seals Intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RECEIVED BY:     Condition of Sample Containers:       Signature:     Temp Received:       Printed Name:     # of Coolers:       Firm:     Seals Intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp Received:# of Coolers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date / Time:    |

#### **Laboratory Data Review Checklist**

# Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

#### Date:

5/16/2022

#### Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L62081

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

Hazard Identification Number:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

### Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
  - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

| Yes□ | No⊠ | N/A | Comments:  |
|------|-----|-----|------------|
| IUS  |     |     | community. |

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

|    | Yes⊠ No□ N/A□               | Comments: |
|----|-----------------------------|-----------|
|    |                             |           |
| b. | Correct analyses requested? |           |

- Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:
- 3. Laboratory Sample Receipt Documentation
  - a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Temperature documented, metals analysis do not have a temperature requirement

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Metals do not require preservation

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

| Yes $\square$ No $\square$ N/A $\boxtimes$ | Comments: |  |
|--------------------------------------------|-----------|--|
| Yes, samples OK                            |           |  |

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

| Vac   | No□ | N/A 🖂 | Comments: |  |
|-------|-----|-------|-----------|--|
| Y es∟ | NOL | N/A🖂  | Comments: |  |

No discrepancies found

e. Data quality or usability affected?

Comments:

Data quality and usability not affected

- 4. Case Narrative
  - a. Present and understandable?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

MS/MSD outside of QC Limits, MS/MSD RPD outside QC Criteria for all samples

c. Were all corrective actions documented?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No corrective action possible

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Recovery for the method control sample can be used instead, MS/MSD RPD QC failure due to non-homogenous nature of sample matrix

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

# 5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. All applicable holding times met?

| Yes⊠ No□ | $N/A\square$ | Comments: |
|----------|--------------|-----------|
|----------|--------------|-----------|

c. All soils reported on a dry weight basis?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

TCLP results are reported as mg/L

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

# 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

# c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

%R did not meet QC

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\square$  No  $\boxtimes$  N/A  $\square$ Comments:

MS/MSD was not within QC Criteria due to non-homogeneity of sample matrix

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

All

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected as sample matrix caused the RPD QC failure and the %R of the control sample was acceptable.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

- e. Trip Blanks
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1$  = Sample Concentration  $R_2$  = Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

iii. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

October 13, 2020

CS Site Name:

Greens Creek Concentrate Building

# 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

# a. Defined and appropriate?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:



October 28, 2020

Report to: gcenvdata@hecla-mining.com Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99801-2199 Bill to: Accounts Payable Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99803-2199

Project ID: S20058 ACZ Project ID: L62075

gcenvdata@hecla-mining.com:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 09, 2020. This project has been assigned to ACZ is project number, L62075. Please reference this number in all future inquiries.

All analyses were performed according to ACZ<sup>S</sup> Quality Assurance Plan. The enclosed results relate only to the samples received under L62075. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ<sup>S</sup> current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 27, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ is stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re Wall

Sue Webber has reviewed and approved this report.







October 28, 2020

# Project ID: S20058 ACZ Project ID: L62075

#### Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 3 miscellaneous samples from Hecla Greens Creek Mining Company on October 9, 2020. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ is computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L62075. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

#### Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports.

This project was revised on 10/28/2020 to report additional TCLP RCRA metals for L62075-02. No other changes were made.

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058     |
|-------------|------------|
| Sample ID:  | TCLP NORTH |

# ACZ Sample ID: **L62075-01** Date Sampled: 10/05/20 16:25 Date Received: 10/09/20 Sample Matrix: Soil

| Inorganic Prep               |            |          |        |      |    |       |     |     |               |         |
|------------------------------|------------|----------|--------|------|----|-------|-----|-----|---------------|---------|
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP |          |        |      |    |       |     |     | 10/16/20 11:1 | 5 kja   |
| Metals Analysis              |            |          |        |      |    |       |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| Lead (TCLP)                  | M6010D ICP | 2        | 54300  |      | *  | ug/L  | 60  | 300 | 10/23/20 0:3  | 1 kja   |
| Soil Preparation             |            |          |        |      |    |       |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| TCLP Metal Extraction        | M1311      |          |        |      |    |       |     |     | 10/14/20 23:1 | 6 mlp   |

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058  |
|-------------|---------|
| Sample ID:  | TCLP NE |

# Inorganic Analytical Results

ACZ Sample ID: **L62075-02** Date Sampled: 10/05/20 16:30 Date Received: 10/09/20 Sample Matrix: Soil

| Inorganic Prep               |             |          |        |        |         |     |     |                |         |
|------------------------------|-------------|----------|--------|--------|---------|-----|-----|----------------|---------|
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP  |          |        |        |         |     |     | 10/16/20 13:48 | kja     |
| Metals Analysis              |             |          |        |        |         |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| Arsenic (TCLP)               | M6010D ICP  | 1        | <40    | U *    | ug/L    | 40  | 200 | 10/21/20 6:34  | jlw     |
| Barium (TCLP)                | M6010D ICP  | 1        | 946    |        | ug/L    | 7   | 35  | 10/21/20 6:34  | jlw     |
| Cadmium (TCLP)               | M6010D ICP  | 1        | 105    | *      | ug/L    | 8   | 25  | 10/21/20 6:34  | jlw     |
| Chromium (TCLP)              | M6010D ICP  | 1        | <10    | U *    | ug/L    | 10  | 50  | 10/21/20 6:34  | jlw     |
| Lead (TCLP)                  | M6010D ICP  | 1        | 7780   | *      | ug/L    | 30  | 150 | 10/21/20 6:34  | jlw     |
| Mercury (TCLP)               | M7470A CVAA | 1        | <0.2   | U *    | ug/L    | 0.2 | 1   | 10/28/20 14:08 | llr     |
| Selenium (TCLP)              | M6010D ICP  | 1        | <50    | U *    | ug/L    | 50  | 250 | 10/21/20 6:34  | jlw     |
| Silver (TCLP)                | M6010D ICP  | 1        | <10    | U *    | ug/L    | 10  | 25  | 10/21/20 6:34  | jlw     |
| Soil Preparation             |             |          |        |        |         |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| TCLP Metal Extraction        | M1311       |          |        |        |         |     |     | 10/15/20 8:33  | mlp     |

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058  |
|-------------|---------|
| Sample ID:  | TCLP SE |

# ACZ Sample ID: **L62075-03** Date Sampled: 10/05/20 16:35 Date Received: 10/09/20 Sample Matrix: Soil

| Inorganic Prep               |            |          |        |        |          |     |     |               |         |
|------------------------------|------------|----------|--------|--------|----------|-----|-----|---------------|---------|
| Parameter                    | EPA Method | Dilution | Result | Qual 2 | (Q Units | MDL | PQL | Date          | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP |          |        |        |          |     |     | 10/16/20 14:3 | 9 kja   |
| Metals Analysis              |            |          |        |        |          |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual 2 | KQ Units | MDL | PQL | Date          | Analyst |
| Lead (TCLP)                  | M6010D ICP | 1        | 2500   |        | * ug/L   | 30  | 150 | 10/21/20 6:42 | 2 jlw   |
| Soil Preparation             |            |          |        |        |          |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual 2 | KQ Units | MDL | PQL | Date          | Analyst |
| TCLP Metal Extractio         | n M1311    |          |        |        |          |     |     | 10/15/20 11:3 | 9 mlp   |



Inorganic Reference

| eport Header                                                                                                                                                                                                                     | Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Batch                                                                                                                                                                                                                            | A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Found                                                                                                                                                                                                                            | Value of the QC Type of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit                                                                                                                                                                                                                            | Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lower                                                                                                                                                                                                                            | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MDL                                                                                                                                                                                                                              | Method Detection Limit. Same as Minimum Reporting Limit un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nless omitted or e                                                                                                                                                                                                                                                                                                                                        | qual to the PQL (see comment #5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                  | Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCN/SCN                                                                                                                                                                                                                          | A number assigned to reagents/standards to trace to the man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ufacturers certific                                                                                                                                                                                                                                                                                                                                       | ate of analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PQL                                                                                                                                                                                                                              | Practical Quantitation Limit. Synonymous with the EPA term "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | minimum level".                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC                                                                                                                                                                                                                               | True Value of the Control Sample or the amount added to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spike                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rec                                                                                                                                                                                                                              | Recovered amount of the true value or spike added, in % (exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ept for LCSS, mg                                                                                                                                                                                                                                                                                                                                          | /Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RPD                                                                                                                                                                                                                              | Relative Percent Difference, calculation used for Duplicate QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Types                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Upper                                                                                                                                                                                                                            | Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample                                                                                                                                                                                                                           | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C Sample Typ<br>AS                                                                                                                                                                                                               | pes<br>Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LCSWD                                                                                                                                                                                                                                                                                                                                                     | Laboratory Control Sample - Water Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ASD                                                                                                                                                                                                                              | Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LFB                                                                                                                                                                                                                                                                                                                                                       | Laboratory Fortified Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CCB                                                                                                                                                                                                                              | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LFM                                                                                                                                                                                                                                                                                                                                                       | Laboratory Fortified Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CCV                                                                                                                                                                                                                              | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LFMD                                                                                                                                                                                                                                                                                                                                                      | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DUP                                                                                                                                                                                                                              | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LRB                                                                                                                                                                                                                                                                                                                                                       | Laboratory Reagent Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ICB                                                                                                                                                                                                                              | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MS                                                                                                                                                                                                                                                                                                                                                        | Matrix Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ICV                                                                                                                                                                                                                              | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSD                                                                                                                                                                                                                                                                                                                                                       | Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ICSAB                                                                                                                                                                                                                            | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PBS                                                                                                                                                                                                                                                                                                                                                       | Prep Blank - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCSS                                                                                                                                                                                                                             | Laboratory Control Sample Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PBW                                                                                                                                                                                                                                                                                                                                                       | Prep Blank - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                  | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCSSD                                                                                                                                                                                                                            | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PQV                                                                                                                                                                                                                                                                                                                                                       | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           | Practical Quantitation Verification standard Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSSD<br>LCSW                                                                                                                                                                                                                    | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PQV                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW                                                                                                                                                                                                                    | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Typ                                                                                                                                                                                                    | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQV<br>SDL                                                                                                                                                                                                                                                                                                                                                | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks                                                                                                                                                                                          | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQV<br>SDL<br>ontamination in the<br>including the prep                                                                                                                                                                                                                                                                                                   | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San                                                                                                                                                                           | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Nerifies that there is no or minimal or<br>Nerifies the accuracy of the method,<br>Verifies the precision of the instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.                                                                                                                                                                                                                                                                              | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates                                                                                                                                                             | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Nerifies that there is no or minimal or<br>Nerifies the accuracy of the method,<br>Verifies the precision of the instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Fort                                                                                                                                              | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>De Explanations<br>Nerifies that there is no or minimal control of the method,<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard                                                                                                                                 | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>De Explanations<br>Nerifies that there is no or minimal control of the method,<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B                                                                                                           | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         nples       Verifies that there is no or minimal control structure         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H                                                                                                      | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         weifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                              | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L                                                                                                 | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         mples       Verifies that there is no or minimal control from the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined negotiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.                                                                                                                                                                                              | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H                                                                                                      | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         weifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the assoc                                                                                                                                                                      | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                            | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the assoc                                                                                                                                                                      | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                            | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the association<br>the sample detect                                                                                                                                           | Serial Dilution  e prep method or calibration procedure. procedure.  ted value is an estimated quantity. time. pociated value. tion limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                            | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/4-83-020. Methods for Chemical Analysis of Water and the sample complexity of the sample of the sam | PQV<br>SDL                                                                                                                                                                                                                                                                                                                                                | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U                                                                                       | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         nples       Verifies that there is no or minimal control from the structure of the method, Verifies the precision of the instrume of the method. Verifies the precision of the instrume of the method. Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and P Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or neces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, March<br>nic Substances in                                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U                                                                                       | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         mples       Verifies that there is no or minimal or         mples       Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, March<br>nic Substances in                                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>lethod Refere<br>(1)<br>(2)<br>(3)<br>(4)                                          | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal or         mples       Verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-94-111. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>in Environmental s                                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U                                                                                       | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         mples       Verifies that there is no or minimal or         mples       Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Inorgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>in Environmental s                                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>lethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                      | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water <b>pe Explanations</b> werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-94-111. Methods for the Determination of Inorgan         EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>n immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, March<br>in Environmental stater.                                                                                          | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. bciated va |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>V<br>Rethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                 | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Verifies that there is no or minimal or<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.<br>(Qual)<br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above th<br>The associated value is either the sample quantitation limit or<br><b>nces</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA SW-846. Test Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marci<br>in Environmental s<br>ater.                                                                                          | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bt 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>lethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)       | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Verifies that there is no or minimal or<br>nples Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.<br><b>(Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above th<br>The associated value is either the sample quantitation limit or<br><b>nces</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water at<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewa<br>QC results calculated from raw data. Results may vary slighth<br>Soil, Sludge, and Plant matrices for Inorganic analyses are reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>nic Substances in 1<br>in Environmental s<br>ater.                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bt 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>V<br>Nethod Referee<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Nomments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control for the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-93-100. Methods for the Determination of Inorgand         EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slighth         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold to<br>gative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marca<br>nic Substances in a<br>in Environmental stater.                                                                  | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. tight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>lethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)       | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Market Stratt Control Sample - Water         Pole Explanations         Verifies that there is no or minimal or         Imples       Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water a         EPA 600/R-93-100. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for the Determination of Metals         EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa         QC results calculated from raw data. Results may vary slighth         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as         An asterisk in the "XQ" column indicates there is an extended                                                                                                                                                                                                                                                          | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold to<br>gative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marca<br>nic Substances in a<br>in Environmental stater.                                                                  | Serial Dilution  e prep method or calibration procedure. procedure.  ted value is an estimated quantity. time. beciated value. tion limit.  ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.  alues are used in the calculations. eight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>V<br>Nethod Referee<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Nomments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control for the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above th         The associated value is either the sample quantitation limit or         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-93-100. Methods for the Determination of Inorgand         EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slighth         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, March<br>in Environmental s<br>ater.<br>y if the rounded vas<br>ported on a dry we<br>received" basis.<br>qualifier and/or ce | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time.  ciated value. tion limit.  th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.  alues are used in the calculations. eight basis. ertification qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

#### ACZ Project ID: L62075

| Arsenic (TCLP)                                                                                                   |                                                      |                                                                                                                                 | M6010D I                                                                       | СР                                    |                          |                                                             |                                               |                        |                                                 |                                                   |        |          |            |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------------|-------------------------------------------------|---------------------------------------------------|--------|----------|------------|
| ACZ ID                                                                                                           | Туре                                                 | Analyzed                                                                                                                        | PCN/SCN                                                                        | QC                                    | Sample                   | Found                                                       | Units                                         | Rec%                   | Lower                                           | Upper                                             | RPD    | Limit    | Qual       |
| WG507722                                                                                                         |                                                      |                                                                                                                                 |                                                                                |                                       |                          |                                                             |                                               |                        |                                                 |                                                   |        |          |            |
| WG507722ICV                                                                                                      | ICV                                                  | 10/21/20 5:48                                                                                                                   | II201009-1                                                                     | 4                                     |                          | 3.984                                                       | mg/L                                          | 100                    | 90                                              | 110                                               |        |          |            |
| WG507722ICB                                                                                                      | ICB                                                  | 10/21/20 5:51                                                                                                                   |                                                                                |                                       |                          | U                                                           | mg/L                                          |                        | -0.12                                           | 0.12                                              |        |          |            |
| WG507291PBS                                                                                                      | PBS                                                  | 10/21/20 6:15                                                                                                                   |                                                                                |                                       |                          | U                                                           | mg/L                                          |                        | -0.12                                           | 0.12                                              |        |          |            |
| WG507291LFB                                                                                                      | LFB                                                  | 10/21/20 6:19                                                                                                                   | IITCLPSPIKE                                                                    | 1.001                                 |                          | 1.095                                                       | mg/L                                          | 109                    | 80                                              | 120                                               |        |          |            |
| L62075-01MS                                                                                                      | MS                                                   | 10/21/20 6:26                                                                                                                   | IITCLPSPIKE                                                                    | 1.001                                 | U                        | 1.071                                                       | mg/L                                          | 107                    | 75                                              | 125                                               |        |          |            |
| L62075-01MSD                                                                                                     | MSD                                                  | 10/21/20 6:30                                                                                                                   | IITCLPSPIKE                                                                    | 1.001                                 | U                        | 1.096                                                       | mg/L                                          | 109                    | 75                                              | 125                                               | 2      | 20       |            |
| L62075-03DUP                                                                                                     | DUP                                                  | 10/21/20 6:46                                                                                                                   |                                                                                |                                       | U                        | U                                                           | mg/L                                          |                        |                                                 |                                                   | 0      | 20       | RA         |
| Barium (TCLP)                                                                                                    |                                                      |                                                                                                                                 | M6010D I                                                                       | СР                                    |                          |                                                             |                                               |                        |                                                 |                                                   |        |          |            |
| ACZ ID                                                                                                           | Туре                                                 | Analyzed                                                                                                                        | PCN/SCN                                                                        | QC                                    | Sample                   | Found                                                       | Units                                         | Rec%                   | Lower                                           | Upper                                             | RPD    | Limit    | Qual       |
| WG507722                                                                                                         |                                                      |                                                                                                                                 |                                                                                |                                       |                          |                                                             |                                               |                        |                                                 |                                                   |        |          |            |
| WG507722ICV                                                                                                      | ICV                                                  | 10/21/20 5:48                                                                                                                   | II201009-1                                                                     | 2                                     |                          | 1.984                                                       | mg/L                                          | 99                     | 90                                              | 110                                               |        |          |            |
| WG507722ICB                                                                                                      | ICB                                                  | 10/21/20 5:51                                                                                                                   |                                                                                |                                       |                          | U                                                           | mg/L                                          |                        | -0.021                                          | 0.021                                             |        |          |            |
| WG507291PBS                                                                                                      | PBS                                                  | 10/21/20 6:15                                                                                                                   |                                                                                |                                       |                          | .0147                                                       | mg/L                                          |                        | -0.021                                          | 0.021                                             |        |          |            |
| WG507291LFB                                                                                                      | LFB                                                  | 10/21/20 6:19                                                                                                                   | IITCLPSPIKE                                                                    | 20.5                                  |                          | 20.3                                                        | mg/L                                          | 99                     | 80                                              | 120                                               |        |          |            |
| L62075-01MS                                                                                                      | MS                                                   | 10/21/20 6:26                                                                                                                   | IITCLPSPIKE                                                                    | 20.5                                  | .909                     | 21.05                                                       | mg/L                                          | 98                     | 75                                              | 125                                               |        |          |            |
| L62075-01MSD                                                                                                     | MSD                                                  | 10/21/20 6:30                                                                                                                   | IITCLPSPIKE                                                                    | 20.5                                  | .909                     | 21.05                                                       | mg/L                                          | 98                     | 75                                              | 125                                               | 0      | 20       |            |
| L62075-03DUP                                                                                                     | DUP                                                  | 10/21/20 6:46                                                                                                                   |                                                                                |                                       | 1.25                     | 1.244                                                       | mg/L                                          |                        |                                                 |                                                   | 0      | 20       |            |
| Cadmium (TCLP                                                                                                    | ')                                                   |                                                                                                                                 | M6010D I                                                                       | СР                                    |                          |                                                             |                                               |                        |                                                 |                                                   |        |          |            |
| ACZ ID                                                                                                           | Туре                                                 | Analyzed                                                                                                                        | PCN/SCN                                                                        | QC                                    | Sample                   | Found                                                       | Units                                         | Rec%                   | Lower                                           | Upper                                             | RPD    | Limit    | Qual       |
| WG507722                                                                                                         |                                                      |                                                                                                                                 |                                                                                |                                       |                          |                                                             |                                               |                        |                                                 |                                                   |        |          |            |
| WG507722ICV                                                                                                      | ICV                                                  | 10/21/20 5:48                                                                                                                   | II201009-1                                                                     | 2                                     |                          | 1.927                                                       | mg/L                                          | 96                     | 90                                              | 110                                               |        |          |            |
| WG507722ICB                                                                                                      | ICB                                                  | 10/21/20 5:51                                                                                                                   |                                                                                |                                       |                          | U                                                           | mg/L                                          |                        | -0.024                                          | 0.024                                             |        |          |            |
| WG507291PBS                                                                                                      | PBS                                                  | 10/21/20 6:15                                                                                                                   |                                                                                |                                       |                          | U                                                           | mg/L                                          |                        | -0.024                                          | 0.024                                             |        |          |            |
| WG507291LFB                                                                                                      | LFB                                                  | 10/21/20 6:19                                                                                                                   | IITCLPSPIKE                                                                    | .501                                  |                          |                                                             |                                               |                        | ~~                                              |                                                   |        |          |            |
| L62075-01MS                                                                                                      |                                                      |                                                                                                                                 |                                                                                | .001                                  |                          | .5021                                                       | mg/L                                          | 100                    | 80                                              | 120                                               |        |          |            |
|                                                                                                                  | MS                                                   | 10/21/20 6:26                                                                                                                   | IITCLPSPIKE                                                                    | .501                                  | .0979                    | .5021<br>.5862                                              | mg/L<br>mg/L                                  | 100<br>97              | 80<br>75                                        | 120<br>125                                        |        |          |            |
| L62075-01MSD                                                                                                     | MS<br>MSD                                            |                                                                                                                                 |                                                                                |                                       | .0979<br>.0979           |                                                             | -                                             |                        |                                                 |                                                   | 1      | 20       |            |
|                                                                                                                  |                                                      | 10/21/20 6:26                                                                                                                   | IITCLPSPIKE                                                                    | .501                                  |                          | .5862                                                       | mg/L                                          | 97                     | 75                                              | 125                                               | 1<br>3 | 20<br>20 | RA         |
| L62075-03DUP                                                                                                     | MSD<br>DUP                                           | 10/21/20 6:26<br>10/21/20 6:30                                                                                                  | IITCLPSPIKE                                                                    | .501<br>.501                          | .0979                    | .5862<br>.5926                                              | mg/L<br>mg/L                                  | 97                     | 75                                              | 125                                               |        |          | RA         |
| L62075-03DUP<br>Chromium (TCLF                                                                                   | MSD<br>DUP                                           | 10/21/20 6:26<br>10/21/20 6:30                                                                                                  | IITCLPSPIKE<br>IITCLPSPIKE                                                     | .501<br>.501                          | .0979                    | .5862<br>.5926                                              | mg/L<br>mg/L<br>mg/L                          | 97                     | 75                                              | 125                                               |        |          | RA<br>Qual |
| L62075-03DUP<br>Chromium (TCLF                                                                                   | MSD<br>DUP<br>P)                                     | 10/21/20 6:26<br>10/21/20 6:30<br>10/21/20 6:46                                                                                 | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D I                                         | .501<br>.501<br>CP                    | .0979<br>.0365           | .5862<br>.5926<br>.0353                                     | mg/L<br>mg/L<br>mg/L                          | 97<br>99               | 75<br>75                                        | 125<br>125                                        | 3      | 20       |            |
| L62075-03DUP<br>Chromium (TCLF<br>ACZ ID                                                                         | MSD<br>DUP<br>P)                                     | 10/21/20 6:26<br>10/21/20 6:30<br>10/21/20 6:46                                                                                 | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D I                                         | .501<br>.501<br>CP                    | .0979<br>.0365           | .5862<br>.5926<br>.0353                                     | mg/L<br>mg/L<br>mg/L                          | 97<br>99               | 75<br>75                                        | 125<br>125                                        | 3      | 20       |            |
|                                                                                                                  | MSD<br>DUP<br>P)<br>Type                             | 10/21/20 6:26<br>10/21/20 6:30<br>10/21/20 6:46<br>Analyzed                                                                     | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D I<br>PCN/SCN                              | .501<br>.501<br>CP<br>QC              | .0979<br>.0365           | .5862<br>.5926<br>.0353<br>Found                            | mg/L<br>mg/L<br>mg/L                          | 97<br>99<br>Rec%       | 75<br>75<br>Lower                               | 125<br>125<br>Upper                               | 3      | 20       |            |
| L62075-03DUP<br>Chromium (TCLF<br>ACZ ID<br>WG507722<br>WG507722ICV<br>WG507722ICB                               | MSD<br>DUP<br>P)<br>Type                             | 10/21/20 6:26<br>10/21/20 6:30<br>10/21/20 6:46<br>Analyzed<br>10/21/20 5:48                                                    | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D I<br>PCN/SCN                              | .501<br>.501<br>CP<br>QC              | .0979<br>.0365           | .5862<br>.5926<br>.0353<br>Found                            | mg/L<br>mg/L<br>mg/L<br>Units<br>mg/L         | 97<br>99<br>Rec%       | 75<br>75<br>Lower<br>90                         | 125<br>125<br>Upper<br>110                        | 3      | 20       |            |
| L62075-03DUP<br>Chromium (TCLF<br>ACZ ID<br>WG507722<br>WG507722ICV                                              | MSD<br>DUP<br>P)<br>Type<br>ICV<br>ICB               | 10/21/20 6:26<br>10/21/20 6:30<br>10/21/20 6:46<br>Analyzed<br>10/21/20 5:48<br>10/21/20 5:51                                   | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D I<br>PCN/SCN                              | .501<br>.501<br>CP<br>QC              | .0979<br>.0365           | .5862<br>.5926<br>.0353<br>Found<br>1.988<br>U              | mg/L<br>mg/L<br>mg/L<br>Units<br>mg/L<br>mg/L | 97<br>99<br>Rec%       | 75<br>75<br>Lower<br>90<br>-0.03                | 125<br>125<br>Upper<br>110<br>0.03                | 3      | 20       |            |
| L62075-03DUP<br>Chromium (TCLF<br>ACZ ID<br>WG507722<br>WG507722ICV<br>WG507722ICB<br>WG507291PBS                | MSD<br>DUP<br>P)<br>Type<br>ICV<br>ICB<br>PBS        | 10/21/20 6:26<br>10/21/20 6:30<br>10/21/20 6:46<br>Analyzed<br>10/21/20 5:48<br>10/21/20 5:51<br>10/21/20 6:15                  | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D I<br>PCN/SCN<br>II201009-1                | .501<br>.501<br>CP<br>QC<br>2         | .0979<br>.0365           | .5862<br>.5926<br>.0353<br>Found<br>1.988<br>U<br>U<br>U    | mg/L<br>mg/L<br>Units<br>mg/L<br>mg/L         | 97<br>99<br>Rec%<br>99 | 75<br>75<br>Lower<br>90<br>-0.03<br>-0.03       | 125<br>125<br>Upper<br>110<br>0.03<br>0.03        | 3      | 20       |            |
| L62075-03DUP<br>Chromium (TCLF<br>ACZ ID<br>WG507722<br>WG507722ICV<br>WG507722ICB<br>WG507291PBS<br>WG507291LFB | MSD<br>DUP<br>P)<br>Type<br>ICV<br>ICB<br>PBS<br>LFB | 10/21/20 6:26<br>10/21/20 6:30<br>10/21/20 6:46<br>Analyzed<br>10/21/20 5:48<br>10/21/20 5:51<br>10/21/20 6:15<br>10/21/20 6:19 | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D I<br>PCN/SCN<br>II201009-1<br>IITCLPSPIKE | .501<br>.501<br>CP<br>QC<br>2<br>.501 | .0979<br>.0365<br>Sample | .5862<br>.5926<br>.0353<br>Found<br>1.988<br>U<br>U<br>.517 | mg/L<br>mg/L<br>Units<br>mg/L<br>mg/L<br>mg/L | 97<br>99<br>Rec%<br>99 | 75<br>75<br>Lower<br>90<br>-0.03<br>-0.03<br>80 | 125<br>125<br>Upper<br>110<br>0.03<br>0.03<br>120 | 3      | 20       |            |

#### ACZ Project ID: L62075

| Lead (TCLP)     |      |                | M6010D      | CP      |        |        |       |      |          |         |     |       |      |
|-----------------|------|----------------|-------------|---------|--------|--------|-------|------|----------|---------|-----|-------|------|
| ACZ ID          | Туре | Analyzed       | PCN/SCN     | QC      | Sample | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG507722        |      |                |             |         |        |        |       |      |          |         |     |       |      |
| WG507722ICV     | ICV  | 10/21/20 5:48  | II201009-1  | 4       |        | 3.907  | mg/L  | 98   | 90       | 110     |     |       |      |
| WG507722ICB     | ICB  | 10/21/20 5:51  |             |         |        | U      | mg/L  |      | -0.09    | 0.09    |     |       |      |
| WG507291PBS     | PBS  | 10/21/20 6:15  |             |         |        | U      | mg/L  |      | -0.09    | 0.09    |     |       |      |
| WG507291LFB     | LFB  | 10/21/20 6:19  | IITCLPSPIKE | 1.001   |        | 1.021  | mg/L  | 102  | 80       | 120     |     |       |      |
| L62075-01MS     | MS   | 10/21/20 6:26  | IITCLPSPIKE | 1.001   | 50.1   | 50.29  | mg/L  | 19   | 75       | 125     |     |       | M3   |
| L62075-01MSD    | MSD  | 10/21/20 6:30  | IITCLPSPIKE | 1.001   | 50.1   | 50.39  | mg/L  | 29   | 75       | 125     | 0   | 20    | M3   |
| L62075-03DUP    | DUP  | 10/21/20 6:46  |             |         | 2.5    | 3.083  | mg/L  |      |          |         | 21  | 20    | RD   |
| WG507797        |      |                |             |         |        |        |       |      |          |         |     |       |      |
| WG507797ICV     | ICV  | 10/22/20 23:56 | II201009-1  | 4       |        | 3.937  | mg/L  | 98   | 90       | 110     |     |       |      |
| WG507797ICB     | ICB  | 10/23/20 0:00  |             |         |        | U      | mg/L  |      | -0.09    | 0.09    |     |       |      |
| WG507291PBS     | PBS  | 10/23/20 0:23  |             |         |        | U      | mg/L  |      | -0.09    | 0.09    |     |       |      |
| WG507291LFB     | LFB  | 10/23/20 0:27  | IITCLPSPIKE | 1.001   |        | 1.078  | mg/L  | 108  | 80       | 120     |     |       |      |
| L62075-01MS     | MS   | 10/23/20 0:35  | IITCLPSPIKE | 1.001   | 54.3   | 54.92  | mg/L  | 62   | 75       | 125     |     |       | M3   |
| L62075-01MSD    | MSD  | 10/23/20 0:39  | IITCLPSPIKE | 1.001   | 54.3   | 53.28  | mg/L  | -102 | 75       | 125     | 3   | 20    | M3   |
| L62075-03DUP    | DUP  | 10/23/20 0:51  |             |         | 2.61   | 3.255  | mg/L  |      |          |         | 22  | 20    | RD   |
| Mercury (TCLP)  |      |                | M7470A (    | CVAA    |        |        |       |      |          |         |     |       |      |
| ACZ ID          | Туре | Analyzed       | PCN/SCN     | QC      | Sample | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG508289        |      |                |             |         |        |        |       |      |          |         |     |       |      |
| WG508289ICV     | ICV  | 10/28/20 14:00 | HG200810-2  | .005    |        | .00482 | mg/L  | 96   | 90       | 110     |     |       |      |
| WG508289ICB     | ICB  | 10/28/20 14:01 |             |         |        | U      | mg/L  |      | -0.0006  | 0.0006  |     |       |      |
| WG508289PBW     | PBW  | 10/28/20 14:03 |             |         |        | U      | mg/L  |      | -0.00044 | 0.00044 |     |       |      |
| WG507291PBS     | PBS  | 10/28/20 14:04 |             |         |        | U      | mg/L  |      | -0.0006  | 0.0006  |     |       |      |
| WG507291LFB     | LFB  | 10/28/20 14:05 | HG201027-4  | .002002 |        | .00193 | mg/L  | 96   | 85       | 115     |     |       |      |
| L62075-01MS     | MS   | 10/28/20 14:06 | HG201027-4  | .002002 | U      | .00203 | mg/L  | 101  | 85       | 115     |     |       |      |
| L62075-01MSD    | MSD  | 10/28/20 14:07 | HG201027-4  | .002002 | U      | .00196 | mg/L  | 98   | 85       | 115     | 4   | 20    |      |
| L62075-03DUP    | DUP  | 10/28/20 14:10 |             |         | U      | U      | mg/L  |      |          |         | 0   | 20    | RA   |
| WG507968PBS     | PBS  | 10/28/20 14:13 |             |         |        | U      | mg/L  |      | -0.0006  | 0.0006  |     |       |      |
| WG507968LFB     | LFB  | 10/28/20 14:14 | HG201027-4  | .002002 |        | .00198 | mg/L  | 99   | 85       | 115     |     |       |      |
| Selenium (TCLP) |      |                | M6010D      | CP      |        |        |       |      |          |         |     |       |      |
| ACZ ID          | Туре | Analyzed       | PCN/SCN     | QC      | Sample | Found  | Units | Rec% | Lower    | Upper   | RPD | Limit | Qual |
| WG507722        |      |                |             |         |        |        |       |      |          |         |     |       |      |
| WG507722ICV     | ICV  | 10/21/20 5:48  | II201009-1  | 4       |        | 3.997  | mg/L  | 100  | 90       | 110     |     |       |      |
| WG507722ICB     | ICB  | 10/21/20 5:51  |             |         |        | U      | mg/L  |      | -0.15    | 0.15    |     |       |      |
| WG507291PBS     | PBS  | 10/21/20 6:15  |             |         |        | U      | mg/L  |      | -0.15    | 0.15    |     |       |      |
| WG507291LFB     | LFB  | 10/21/20 6:19  | IITCLPSPIKE | 1.001   |        | 1.09   | mg/L  | 109  | 80       | 120     |     |       |      |
| L62075-01MS     | MS   | 10/21/20 6:26  | IITCLPSPIKE | 1.001   | U      | 1.054  | mg/L  | 105  | 75       | 125     |     |       |      |
| L62075-01MSD    | MSD  | 10/21/20 6:30  | IITCLPSPIKE | 1.001   | U      | 1.062  | mg/L  | 106  | 75       | 125     | 1   | 20    |      |
| L62075-03DUP    | DUP  | 10/21/20 6:46  |             |         | U      | U      | mg/L  |      |          |         | 0   | 20    | RA   |

#### ACZ Project ID: L62075

| Silver (TCLP) |      |               | M6010D I    | CP   |        |       |       |      |       |       |     |       |      |
|---------------|------|---------------|-------------|------|--------|-------|-------|------|-------|-------|-----|-------|------|
| ACZ ID        | Туре | Analyzed      | PCN/SCN     | QC   | Sample | Found | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG507722      |      |               |             |      |        |       |       |      |       |       |     |       |      |
| WG507722ICV   | ICV  | 10/21/20 5:48 | II201009-1  | 1    |        | 1.006 | mg/L  | 101  | 90    | 110   |     |       |      |
| WG507722ICB   | ICB  | 10/21/20 5:51 |             |      |        | U     | mg/L  |      | -0.03 | 0.03  |     |       |      |
| WG507291PBS   | PBS  | 10/21/20 6:15 |             |      |        | U     | mg/L  |      | -0.03 | 0.03  |     |       |      |
| WG507291LFB   | LFB  | 10/21/20 6:19 | IITCLPSPIKE | .501 |        | .493  | mg/L  | 98   | 80    | 120   |     |       |      |
| L62075-01MS   | MS   | 10/21/20 6:26 | IITCLPSPIKE | .501 | U      | .493  | mg/L  | 98   | 75    | 125   |     |       |      |
| L62075-01MSD  | MSD  | 10/21/20 6:30 | IITCLPSPIKE | .501 | U      | .499  | mg/L  | 100  | 75    | 125   | 1   | 20    |      |
| L62075-03DUP  | DUP  | 10/21/20 6:46 |             |      | U      | U     | mg/L  |      |       |       | 0   | 20    | RA   |



(800) 334-5493

Inorganic Extended Qualifier Report

#### Hecla Greens Creek Mining Company

ACZ Project ID: L62075

| ACZ ID    | WORKNUM  | PARAMETER       | METHOD      | QUAL | DESCRIPTION                                                                                                                                                                                           |
|-----------|----------|-----------------|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L62075-01 | NG507797 | Lead (TCLP)     | M6010D ICP  | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                 | M6010D ICP  | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
| L62075-02 | WG507722 | Arsenic (TCLP)  | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Cadmium (TCLP)  | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Chromium (TCLP) | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Lead (TCLP)     | M6010D ICP  | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                 | M6010D ICP  | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           | WG508289 | Mercury (TCLP)  | M7470A CVAA | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           | WG507722 | Selenium (TCLP) | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Silver (TCLP)   | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
| L62075-03 | WG507722 | Lead (TCLP)     | M6010D ICP  | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           |          |                 | M6010D ICP  | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-<br>homogeneity of the sample.                                                   |



ACZ Project ID: L62075

No certification qualifiers associated with this analysis

REPAD.05.06.05.01

| ACZ Laboratories, Inc.<br>2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493 |          | Sample<br>Receipt |          |         |
|------------------------------------------------------------------------------------------|----------|-------------------|----------|---------|
|                                                                                          | CZ Proje |                   |          | L62075  |
|                                                                                          |          | eived: 10         | )/09/202 | 0 10:52 |
|                                                                                          | Receive  | •                 | 404      | 40/0000 |
| Receipt Verification                                                                     | Date Pr  | intea:            | 10/*     | 12/2020 |
|                                                                                          |          | YES               | NO       | NA      |
| 1) Is a foreign soil permit included for applicable samples?                             |          |                   | _        | Х       |
| 2) Is the Chain of Custody form or other directive shipping papers present?              |          | Х                 |          |         |
| 3) Does this project require special handling procedures such as CLP protocol?           |          |                   | Х        |         |
| 4) Are any samples NRC licensable material?                                              |          |                   |          | Х       |
| 5) If samples are received past hold time, proceed with requested short hold time analys | es?      | Х                 |          |         |
| 6) Is the Chain of Custody form complete and accurate?                                   |          | Х                 |          |         |
| 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the same    | ples?    |                   | Х        |         |
| Samples/Containers                                                                       |          |                   |          |         |
|                                                                                          |          | YES               | NO       | NA      |
| 8) Are all containers intact and with no leaks?                                          |          | Х                 |          |         |
| 9) Are all labels on containers and are they intact and legible?                         |          | Х                 |          |         |
| 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Tir    | ne?      | Х                 |          |         |
| 11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$            |          |                   |          | Х       |
| 12) Is there sufficient sample volume to perform all requested work?                     |          | Х                 |          |         |
| 13) Is the custody seal intact on all containers?                                        |          |                   |          | Х       |
| 14) Are samples that require zero headspace acceptable?                                  |          |                   |          | Х       |
| 15) Are all sample containers appropriate for analytical requirements?                   |          | Х                 |          |         |
| 16) Is there an Hg-1631 trip blank present?                                              |          |                   |          | Х       |
| 17) Is there a VOA trip blank present?                                                   |          |                   |          | Х       |
| 18) Were all samples received within hold time?                                          |          | Х                 |          |         |

#### Chain of Custody Related Remarks

**Client Contact Remarks** 

Shipping Containers

| Cooler Id | Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|----------|----------------------|------------|-------------------------|
|           |          |                      |            |                         |
| 6330      | 2.7      | NA                   | 15         | Yes                     |

#### Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.



Sample Receipt

Hecla Greens Creek Mining Company S20058

ACZ Project ID: L62075 Date Received: 10/09/2020 10:52 Received By: Date Printed: 10/12/2020

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

| Comparison     Comparison       Comparison     Contained       Comparison     Comparison       Comparison     Project Name:       Comparison     Project Name:       Comparison     Project Name:       Comparison     Project Name:       Project Name:     Project Name: <tr< th=""></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chain of Custody Record / Analysis Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chain of Custody Record / Analysis Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chain of Custody Record / Analysis Requirements<br>mpany Report To: gcenvdata@hecla-min<br>Sampler: GF<br>D. Landes<br>D. Landes<br>D. Fredheim<br>D. Landes<br>D. Landes<br>D. Landes<br>D. Landes<br>D. Landes<br>D. Landes<br>D. Landes<br>D. Landes<br>D. Landes<br>S. Soil<br>E. D. Landes<br>D. Landes<br>S. Soil<br>E. D. Landes<br>D. Landes<br>S. Soil<br>E. D. Landes<br>D. Landes<br>S. Soil<br>E. D. Landes<br>S. Soil<br>E. D. Landes<br>S. Soil<br>B. D. D. Landes<br>S. Soil<br>B. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chain of Custody Record / Anal<br>mpany Report To: gcenvdat<br>Sampler: S:<br>D. Landes<br>D. La |
| Chain of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Chain of Custo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### **Laboratory Data Review Checklist**

## Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

#### Date:

5/16/2022

### Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L62075

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

Hazard Identification Number:

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

#### Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. <u>Laboratory</u>
  - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

| Yes□ | No⊠ | N/A | Comments:  |
|------|-----|-----|------------|
| IUS  |     |     | community. |

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

|    | Yes⊠ No□ N/A□               | Comments: |
|----|-----------------------------|-----------|
|    |                             |           |
| b. | Correct analyses requested? |           |

- Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:
- 3. Laboratory Sample Receipt Documentation
  - a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Temperature documented, metals analysis do not have a temperature requirement

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Metals do not require preservation

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Yes, samples OK

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

| Yes□ | No | $N/A \boxtimes$ | Comments: |
|------|----|-----------------|-----------|
| 103  |    |                 | Comments. |

No discrepancies found

e. Data quality or usability affected?

Comments:

Data quality and usability not affected

- 4. Case Narrative
  - a. Present and understandable?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

MS %R outside of QC Criteria, MS/MSD RPD does not meet QC,

c. Were all corrective actions documented?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No corrective action possible

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Recovery for the LCS can be used instead, MS/MSD RPD QC failure due to non-homogenous nature of sample matrix, therefore data quality and usability are not affected

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

#### 5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. All applicable holding times met?

| Yes⊠ No□ | $N/A\square$ | Comments: |
|----------|--------------|-----------|
|----------|--------------|-----------|

c. All soils reported on a dry weight basis?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

TCLP results are reported as mg/L

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

### 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

### c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

%R did not meet QC

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\square$  No  $\boxtimes$  N/A  $\square$ Comments:

MS/MSD was not within QC Criteria due to non-homogeneity of sample matrix

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

All

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected as sample matrix caused the RPD QC failure and the %R of the LCS was acceptable.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

- e. Trip Blanks
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1$  = Sample Concentration  $R_2$  = Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

iii. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

October 28, 2020

CS Site Name:

Greens Creek Concentrate Building

## 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

## a. Defined and appropriate?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:



October 30, 2020

Report to: gcenvdata@hecla-mining.com Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99801-2199 Bill to: Accounts Payable Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99803-2199

Project ID: S20058 ACZ Project ID: L62358

gcenvdata@hecla-mining.com:

Enclosed are revised analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 21, 2020 and originally reported on October 29, 2020. Refer to the case narrative for an explanation of the changes. This project was assigned to ACZ is project number, L62358. Please reference this number in all future inquiries.

All analyses were performed according to ACZ<sup>S</sup> Quality Assurance Plan. The enclosed results relate only to the samples received under L62358. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ<sup>S</sup> current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 28, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZs stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

re Wellen

Sue Webber has reviewed and approved this report.







October 30, 2020

## Project ID: S20058 ACZ Project ID: L62358

#### Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 5 miscellaneous samples from Hecla Greens Creek Mining Company on October 21, 2020. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ is computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L62358. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

#### Holding Times

All analyses were performed within EPA recommended holding times.

#### Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports.

This project was revised on 10/30/2020 to report the correct analyses for samples L62358-04 and -05. No other changes were made.

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058        |
|-------------|---------------|
| Sample ID:  | CSB NORTH RD2 |

# Inorganic Analytical Results

ACZ Sample ID: **L62358-01** Date Sampled: 10/17/20 14:00 Date Received: 10/21/20 Sample Matrix: Soil

| Inorganic Prep               |             |          |        |        |         |     |     |                |         |
|------------------------------|-------------|----------|--------|--------|---------|-----|-----|----------------|---------|
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP  |          |        |        |         |     |     | 10/26/20 13:01 | kja     |
| Metals Analysis              |             |          |        |        |         |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| Arsenic (TCLP)               | M6010D ICP  | 1        | <40    | U *    | * ug/L  | 40  | 200 | 10/27/20 20:55 | kja     |
| Barium (TCLP)                | M6010D ICP  | 1        | 807    |        | ug/L    | 7   | 35  | 10/27/20 20:55 | kja     |
| Cadmium (TCLP)               | M6010D ICP  | 1        | 32.1   | ł      | * ug/L  | 8   | 25  | 10/27/20 20:55 | kja     |
| Chromium (TCLP)              | M6010D ICP  | 1        | <10    | U *    | * ug/L  | 10  | 50  | 10/27/20 20:55 | kja     |
| Lead (TCLP)                  | M6010D ICP  | 1        | 43600  | ł      | * ug/L  | 30  | 150 | 10/27/20 20:55 | kja     |
| Mercury (TCLP)               | M7470A CVAA | 1        | <0.2   | U *    | * ug/L  | 0.2 | 1   | 10/28/20 14:15 | llr     |
| Selenium (TCLP)              | M6010D ICP  | 1        | <50    | U *    | * ug/L  | 50  | 250 | 10/27/20 20:55 | kja     |
| Silver (TCLP)                | M6010D ICP  | 1        | <10    | U *    | * ug/L  | 10  | 25  | 10/27/20 20:55 | kja     |
| Soil Preparation             |             |          |        |        |         |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| TCLP Metal Extraction        | n M1311     |          |        |        |         |     |     | 10/23/20 0:08  | mlp     |

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058          |
|-------------|-----------------|
| Sample ID:  | CSB NORTH RD1 E |

# Inorganic Analytical Results

| ACZ Sample ID: | L62358-02      |
|----------------|----------------|
| Date Sampled:  | 10/17/20 15:30 |
| Date Received: | 10/21/20       |
| Sample Matrix: | Soil           |

| Inorganic Prep               |             |          |        |      |    |       |     |     |                |         |
|------------------------------|-------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter                    | EPA Method  | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP  |          |        |      |    |       |     |     | 10/26/20 14:40 | ) kja   |
| Metals Analysis              |             |          |        |      |    |       |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Arsenic (TCLP)               | M6010D ICP  | 1        | <40    | U    | *  | ug/L  | 40  | 200 | 10/27/20 21:07 | ′ kja   |
| Barium (TCLP)                | M6010D ICP  | 1        | 842    |      |    | ug/L  | 7   | 35  | 10/27/20 21:07 | ′ kja   |
| Cadmium (TCLP)               | M6010D ICP  | 1        | 66.1   |      | *  | ug/L  | 8   | 25  | 10/27/20 21:07 | ′ kja   |
| Chromium (TCLP)              | M6010D ICP  | 1        | <10    | U    | *  | ug/L  | 10  | 50  | 10/27/20 21:07 | ′ kja   |
| Lead (TCLP)                  | M6010D ICP  | 1        | 23400  |      | *  | ug/L  | 30  | 150 | 10/27/20 21:07 | ′ kja   |
| Mercury (TCLP)               | M7470A CVAA | 1        | <0.2   | U    | *  | ug/L  | 0.2 | 1   | 10/26/20 14:45 | 5 llr   |
| Selenium (TCLP)              | M6010D ICP  | 1        | <50    | U    | *  | ug/L  | 50  | 250 | 10/27/20 21:07 | ′ kja   |
| Silver (TCLP)                | M6010D ICP  | 1        | <10    | U    | *  | ug/L  | 10  | 25  | 10/27/20 21:07 | ′ kja   |
| Soil Preparation             |             |          |        |      |    |       |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| TCLP Metal Extraction        | n M1311     |          |        |      |    |       |     |     | 10/23/20 6:59  | mlp     |

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S20058          |
|-------------|-----------------|
| Sample ID:  | CSB NORTH RD1 W |

## Inorganic Analytical Results

ACZ Sample ID: **L62358-03** Date Sampled: 10/17/20 15:45 Date Received: 10/21/20 Sample Matrix: Soil

| Inorganic Prep               |             |          |        |        |         |     |     |                |         |
|------------------------------|-------------|----------|--------|--------|---------|-----|-----|----------------|---------|
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP  |          |        |        |         |     |     | 10/26/20 15:46 | kja     |
| Metals Analysis              |             |          |        |        |         |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| Arsenic (TCLP)               | M6010D ICP  | 1        | <40    | U *    | ug/L    | 40  | 200 | 10/27/20 21:23 | kja     |
| Barium (TCLP)                | M6010D ICP  | 1        | 679    |        | ug/L    | 7   | 35  | 10/27/20 21:23 | kja     |
| Cadmium (TCLP)               | M6010D ICP  | 1        | 149    | *      | ug/L    | 8   | 25  | 10/27/20 21:23 | kja     |
| Chromium (TCLP)              | M6010D ICP  | 1        | <10    | U *    | ug/L    | 10  | 50  | 10/27/20 21:23 | kja     |
| Lead (TCLP)                  | M6010D ICP  | 1        | 37300  | *      | ug/L    | 30  | 150 | 10/27/20 21:23 | kja     |
| Mercury (TCLP)               | M7470A CVAA | 1        | <0.2   | U *    | ug/L    | 0.2 | 1   | 10/26/20 14:36 | llr     |
| Selenium (TCLP)              | M6010D ICP  | 1        | <50    | U *    | ug/L    | 50  | 250 | 10/27/20 21:23 | kja     |
| Silver (TCLP)                | M6010D ICP  | 1        | <10    | U *    | ug/L    | 10  | 25  | 10/27/20 21:23 | kja     |
| Soil Preparation             |             |          |        |        |         |     |     |                |         |
| Parameter                    | EPA Method  | Dilution | Result | Qual X | Q Units | MDL | PQL | Date           | Analyst |
| TCLP Metal Extraction        | n M1311     |          |        |        |         |     |     | 10/23/20 11:33 | mlp     |

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

## Inorganic Analytical Results

### Hecla Greens Creek Mining Company

| Project ID: | S20058       |
|-------------|--------------|
| Sample ID:  | CSB-N-RD2-C1 |

### ACZ Sample ID: **L62358-04** Date Sampled: 10/17/20 16:40 Date Received: 10/21/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 342    |      | *  | mg/Kg | 3.03 | 15.2 | 10/29/20 10:46 | kja     |
| Zinc, total (3050)         | M6010D ICP         | 101      | 285    |      | *  | mg/Kg | 2.02 | 5.05 | 10/29/20 10:46 | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 88.3   |      | *  | %     | 0.1  | 0.5  | 10/26/20 15:30 | jms     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      |    |       |      |      | 10/26/20 15:15 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 10/27/20 14:57 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |      |      | 10/27/20 9:10  | krs     |



| Project ID: | S20058       |
|-------------|--------------|
| Sample ID:  | CSB-N-RD2-C2 |

### ACZ Sample ID: **L62358-05** Date Sampled: 10/17/20 16:50 Date Received: 10/21/20 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 102      | 117    |      | *  | mg/Kg | 3.06 | 15.3 | 10/29/20 10:49 | kja     |
| Zinc, total (3050)         | M6010D ICP         | 102      | 148    |      | *  | mg/Kg | 2.04 | 5.1  | 10/29/20 10:49 | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 87.2   |      | *  | %     | 0.1  | 0.5  | 10/27/20 7:16  | jms     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      |    |       |      |      | 10/26/20 15:30 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 10/27/20 15:18 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |      |      | 10/27/20 9:20  | krs     |



Inorganic Reference

| eport Header                                                                                                                                                                                                  | r Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Batch                                                                                                                                                                                                         | A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Found                                                                                                                                                                                                         | Value of the QC Type of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit                                                                                                                                                                                                         | Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lower                                                                                                                                                                                                         | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MDL                                                                                                                                                                                                           | Method Detection Limit. Same as Minimum Reporting Limit un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nless omitted or e                                                                                                                                                                                                                                                                                                                                       | qual to the PQL (see comment #5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                               | Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCN/SCN                                                                                                                                                                                                       | A number assigned to reagents/standards to trace to the man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ufacturers certific                                                                                                                                                                                                                                                                                                                                      | ate of analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PQL                                                                                                                                                                                                           | Practical Quantitation Limit. Synonymous with the EPA term "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | minimum level".                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC                                                                                                                                                                                                            | True Value of the Control Sample or the amount added to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spike                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rec                                                                                                                                                                                                           | Recovered amount of the true value or spike added, in % (exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ept for LCSS, mg                                                                                                                                                                                                                                                                                                                                         | /Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RPD                                                                                                                                                                                                           | Relative Percent Difference, calculation used for Duplicate QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C Types                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Upper                                                                                                                                                                                                         | Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample                                                                                                                                                                                                        | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C Sample Ty                                                                                                                                                                                                   | pes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS                                                                                                                                                                                                            | Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LCSWD                                                                                                                                                                                                                                                                                                                                                    | Laboratory Control Sample - Water Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ASD                                                                                                                                                                                                           | Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LFB                                                                                                                                                                                                                                                                                                                                                      | Laboratory Fortified Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ССВ                                                                                                                                                                                                           | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LFM                                                                                                                                                                                                                                                                                                                                                      | Laboratory Fortified Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CCV                                                                                                                                                                                                           | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LFMD                                                                                                                                                                                                                                                                                                                                                     | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DUP                                                                                                                                                                                                           | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LRB                                                                                                                                                                                                                                                                                                                                                      | Laboratory Reagent Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ICB                                                                                                                                                                                                           | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MS                                                                                                                                                                                                                                                                                                                                                       | Matrix Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ICV                                                                                                                                                                                                           | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSD                                                                                                                                                                                                                                                                                                                                                      | Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ICSAB                                                                                                                                                                                                         | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PBS                                                                                                                                                                                                                                                                                                                                                      | Prep Blank - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCSS                                                                                                                                                                                                          | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PBW                                                                                                                                                                                                                                                                                                                                                      | Prep Blank - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I CSSD                                                                                                                                                                                                        | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POV                                                                                                                                                                                                                                                                                                                                                      | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSSD<br>LCSW                                                                                                                                                                                                 | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQV<br>SDL                                                                                                                                                                                                                                                                                                                                               | Practical Quantitation Verification standard<br>Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW                                                                                                                                                                                                          | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>LCSW</i><br>C Sample Ty                                                                                                                                                                                    | Laboratory Control Sample - Water<br>pe Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL                                                                                                                                                                                                                                                                                                                                                      | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>LCSW</i><br>C Sample Ty<br>Blanks                                                                                                                                                                          | Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDL                                                                                                                                                                                                                                                                                                                                                      | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW<br>C Sample Tyj<br>Blanks<br>Control Sar                                                                                                                                                                 | Laboratory Control Sample - Water         pe Explanations         Verifies that there is no or minimal comples         Verifies the accuracy of the method,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SDL<br>ontamination in the<br>including the prep                                                                                                                                                                                                                                                                                                         | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates                                                                                                                                                    | Laboratory Control Sample - Water         pe Explanations         Verifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.                                                                                                                                                                                                                                                                                    | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW<br>C Sample Tyj<br>Blanks<br>Control Sar                                                                                                                                                                 | Laboratory Control Sample - Water         pe Explanations         Verifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                                    | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW<br>C Sample Typ<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard                                                                                                                        | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                                    | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort                                                                                                                                     | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                                    | Serial Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B                                                                                                   | Laboratory Control Sample - Water         pe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix         Determines sample matrix interferen         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.                                                                                                                                                                                                                                                                    | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H                                                                                              | Laboratory Control Sample - Water         pe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t                                                                                                                                                                                                                         | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L                                                                                         | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         state       Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.                                                                                                                                                                                                    | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H                                                                                              | Laboratory Control Sample - Water         pe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the assoc                                                                                                                                                                            | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSW<br>C Sample Typ<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                   | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the assoc                                                                                                                                                                            | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L                                                                                         | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>n immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect                                                                                                                                                 | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U                                                                               | Laboratory Control Sample - Water         pe Explanations         mples       Verifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect                                                                                                                                                    | Serial Dilution  e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. th 1983.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U                                                                               | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         c(Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or         EPA 600/4-83-020. Methods for Chemical Analysis of Water and the sample complexity of the sampl | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the asso<br>the sample detect<br>and Wastes, Marc<br>nic Substances in l                                                                                                             | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>u<br>ethod Refere<br>(1)<br>(2)                                                 | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined nego         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or         ences         EPA 600/4-83-020. Methods for Chemical Analysis of Water at         EPA 600/R-93-100. Methods for the Determination of Inorgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the asso<br>the sample detect<br>and Wastes, Marc<br>nic Substances in l                                                                                                             | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSW<br>C Sample Typ<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)                                              | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>tified Matrix         Determines sample matrix interferent<br>Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with ar<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or<br>ences         EPA 600/4-83-020. Methods for Chemical Analysis of Water a<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for the Determination of Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>n immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marc<br>in Environmental s                                                                                                       | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)                                        | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>tified Matrix         Determines sample matrix interferent<br>Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with ar<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or<br>EPA 600/R-93-100. Methods for Chemical Analysis of Water a<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for the Determination of Metals<br>EPA SW-846. Test Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDL<br>entamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associate<br>n immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marc<br>in Environmental s                                                                                                       | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                 | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>tified Matrix         Determines sample matrix interferent<br>Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with ar<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or<br>EPA 600/R-93-100. Methods for Chemical Analysis of Water a<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for the Determination of Metals<br>EPA SW-846. Test Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>in Environmental s<br>ater.                                                                                                 | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. tion limit. bciated value. bciated va |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                 | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>tified Matrix         Determines sample matrix interferen<br>Verifies the validity of the calibration.         c(Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or         mces         EPA 600/R-93-100. Methods for Chemical Analysis of Water an<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>nic Substances in l<br>in Environmental s<br>ater.                                                                          | Serial Dilution  e prep method or calibration procedure. p procedure.  ted value is an estimated quantity. time. beiated value. tion limit. beiated value. tion limit. beiated value. tion limit. beiated value. beiated |
| LCSW<br>C Sample Typ<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>omments<br>(1)<br>(2)       | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>tified Matrix         Determines sample matrix interferen<br>Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or<br>EPA 600/4-83-020. Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for the Determination of Metals<br>EPA SW-846. Test Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marco-<br>nic Substances in l<br>in Environmental s<br>ater.                                                                      | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. beiated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>omments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal or         mples       Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or         PRCES         EPA 600/R-93-100. Methods for Chemical Analysis of Water and         EPA 600/R-93-100. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa         QC results calculated from raw data. Results may vary slightly         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>nic Substances in l<br>in Environmental s<br>ater.                                                                          | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSW<br>C Sample Typ<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>omments<br>(1)<br>(2)       | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>tified Matrix         Determines sample matrix interferent<br>Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with ar<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or<br>EPA 600/R-93-100. Methods for Chemical Analysis of Water at<br>EPA 600/R-93-100. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for the Determination of Metals<br>EPA SW-846. Test Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewar<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SDL<br>ontamination in the<br>including the prep<br>nt and/or method.<br>ces, if any.<br>PQL. The associat<br>n immediate hold t<br>gative threshold.<br>e level of the associat<br>the sample detect<br>and Wastes, Marc<br>nic Substances in l<br>in Environmental s<br>ater.                                                                          | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCSW<br>C Sample Ty<br>Blanks<br>Control Sar<br>Duplicates<br>Spikes/Fort<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>omments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Water         pe Explanations         Werifies that there is no or minimal or         mples       Verifies the accuracy of the method,         Verifies the precision of the instrume         tified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.         c(Qual)         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with ar         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or         PRCes         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-93-111. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward         QC results calculated from raw data. Results may vary slightly         Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as         An asterisk in the "XQ" column indicates there is an extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SDL<br>ontamination in the<br>including the prep<br>int and/or method.<br>ces, if any.<br>PQL. The associate<br>in immediate hold to<br>gative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, March<br>in Environmental s<br>ater.<br>y if the rounded value<br>orted on a dry we<br>received" basis.<br>qualifier and/or ce | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. ciated value. tion limit. th 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. tight basis. entification qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

#### ACZ Project ID: L62358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

| Arsenic (TCLP)                                                       |                          |                                                                      | M6010D I                  | СР        |        |                         |                              |          |                      |                     |     |       |      |
|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|---------------------------|-----------|--------|-------------------------|------------------------------|----------|----------------------|---------------------|-----|-------|------|
| ACZ ID                                                               | Туре                     | Analyzed                                                             | PCN/SCN                   | QC        | Sample | Found                   | Units                        | Rec%     | Lower                | Upper               | RPD | Limit | Qual |
| WG508223                                                             |                          |                                                                      |                           |           |        |                         |                              |          |                      |                     |     |       |      |
| WG508223ICV                                                          | ICV                      | 10/27/20 20:07                                                       | II201023-2                | 4         |        | 3.94                    | mg/L                         | 99       | 90                   | 110                 |     |       |      |
| WG508223ICB                                                          | ICB                      | 10/27/20 20:11                                                       |                           |           |        | U                       | mg/L                         |          | -0.12                | 0.12                |     |       |      |
| WG507968PBS                                                          | PBS                      | 10/27/20 20:35                                                       |                           |           |        | U                       | mg/L                         |          | -0.12                | 0.12                |     |       |      |
| WG507968LFB                                                          | LFB                      | 10/27/20 20:39                                                       | IITCLPSPIKE               | 1.001     |        | 1.007                   | mg/L                         | 101      | 80                   | 120                 |     |       |      |
| L62358-01MS                                                          | MS                       | 10/27/20 20:59                                                       | IITCLPSPIKE               | 1.001     | U      | 1.033                   | mg/L                         | 103      | 75                   | 125                 |     |       |      |
| L62358-01MSD                                                         | MSD                      | 10/27/20 21:03                                                       | IITCLPSPIKE               | 1.001     | U      | 1.036                   | mg/L                         | 103      | 75                   | 125                 | 0   | 20    |      |
| L62358-02DUP                                                         | DUP                      | 10/27/20 21:11                                                       |                           |           | U      | U                       | mg/L                         |          |                      |                     | 0   | 20    | RA   |
| Barium (TCLP)                                                        |                          |                                                                      | M6010D I                  | СР        |        |                         |                              |          |                      |                     |     |       |      |
| ACZ ID                                                               | Туре                     | Analyzed                                                             | PCN/SCN                   | QC        | Sample | Found                   | Units                        | Rec%     | Lower                | Upper               | RPD | Limit | Qual |
| WG508223                                                             |                          |                                                                      |                           |           |        |                         |                              |          |                      |                     |     |       |      |
| WG508223ICV                                                          | ICV                      | 10/27/20 20:07                                                       | II201023-2                | 2         |        | 1.96                    | mg/L                         | 98       | 90                   | 110                 |     |       |      |
| WG508223ICB                                                          | ICB                      | 10/27/20 20:11                                                       |                           | -         |        | U                       | mg/L                         |          | -0.021               | 0.021               |     |       |      |
| WG507968PBS                                                          | PBS                      | 10/27/20 20:35                                                       |                           |           |        | .0157                   | mg/L                         |          | -0.021               | 0.021               |     |       |      |
| WG507968LFB                                                          | LFB                      | 10/27/20 20:39                                                       | IITCLPSPIKE               | 20.5      |        | 19.63                   | mg/L                         | 96       | 80                   | 120                 |     |       |      |
| L62358-01MS                                                          | MS                       | 10/27/20 20:59                                                       | IITCLPSPIKE               | 20.5      | .807   | 20.7                    | mg/L                         | 97       | 75                   | 125                 |     |       |      |
| L62358-01MSD                                                         | MSD                      | 10/27/20 21:03                                                       | IITCLPSPIKE               | 20.5      | .807   | 20.74                   | mg/L                         | 97       | 75                   | 125                 | 0   | 20    |      |
| L62358-02DUP                                                         | DUP                      | 10/27/20 21:11                                                       |                           |           | .842   | .82                     | mg/L                         |          |                      |                     | 3   | 20    |      |
| Cadmium (TCLF                                                        | ?)                       |                                                                      | M6010D I                  | СР        |        |                         |                              |          |                      |                     |     |       |      |
| ACZ ID                                                               | Туре                     | Analyzed                                                             | PCN/SCN                   | QC        | Sample | Found                   | Units                        | Rec%     | Lower                | Upper               | RPD | Limit | Qual |
| WG508223                                                             |                          |                                                                      |                           |           |        |                         |                              |          |                      |                     |     |       |      |
| WG508223ICV                                                          | ICV                      | 10/27/20 20:07                                                       | II201023-2                | 2         |        | 1.89                    | mg/L                         | 95       | 90                   | 110                 |     |       |      |
| WG508223ICB                                                          | ICB                      | 10/27/20 20:11                                                       |                           |           |        | U                       | mg/L                         |          | -0.024               | 0.024               |     |       |      |
| WG507968PBS                                                          | PBS                      | 10/27/20 20:35                                                       |                           |           |        | U                       | mg/L                         |          | -0.024               | 0.024               |     |       |      |
| WG507968LFB                                                          | LFB                      | 10/27/20 20:39                                                       | IITCLPSPIKE               | .501      |        | .4737                   | mg/L                         | 95       | 80                   | 120                 |     |       |      |
| L62358-01MS                                                          | MS                       | 10/27/20 20:59                                                       | IITCLPSPIKE               | .501      | .0321  | .5063                   | mg/L                         | 95       | 75                   | 125                 |     |       |      |
| L62358-01MSD                                                         | MSD                      | 10/27/20 21:03                                                       | IITCLPSPIKE               | .501      | .0321  | .5175                   | mg/L                         | 97       | 75                   | 125                 | 2   | 20    |      |
| L62358-02DUP                                                         | DUP                      | 10/27/20 21:11                                                       |                           |           | .0661  | .0686                   | mg/L                         |          |                      |                     | 4   | 20    | RA   |
| Chromium (TCL                                                        | P)                       |                                                                      | M6010D I                  | СР        |        |                         |                              |          |                      |                     |     |       |      |
| A07 ID                                                               |                          |                                                                      |                           | 00        | Sample | Found                   | Units                        | Rec%     | Lower                | Upper               | RPD | Limit | Qual |
|                                                                      | Туре                     | Analyzed                                                             | PCN/SCN                   | QC        | Sample | Found                   | Units                        |          |                      |                     |     |       |      |
| WG508223                                                             | Туре                     | Analyzed                                                             | PCN/SCN                   | QC        | Sample | Found                   | Units                        |          |                      |                     |     | _     |      |
| ACZ ID<br>WG508223<br>WG508223ICV                                    |                          |                                                                      | PCN/SCN                   | 2         | Sample | 1.913                   | mg/L                         | 96       | 90                   | 110                 |     |       |      |
| WG508223<br>WG508223ICV                                              | Type<br>ICV<br>ICB       | Analyzed<br>10/27/20 20:07<br>10/27/20 20:11                         |                           | 2         | Sample |                         |                              |          | 90<br>-0.03          | 110<br>0.03         |     |       |      |
| WG508223<br>WG508223ICV<br>WG508223ICB                               | ICV                      | 10/27/20 20:07<br>10/27/20 20:11                                     |                           | 2         | Sample | 1.913                   | mg/L                         |          | -0.03                | 0.03                |     |       |      |
| WG508223                                                             | ICV<br>ICB               | 10/27/20 20:07<br>10/27/20 20:11<br>10/27/20 20:35                   |                           | 2<br>.501 | Sample | 1.913<br>U              | mg/L<br>mg/L                 |          |                      | 0.03<br>0.03        |     |       |      |
| WG508223<br>WG508223ICV<br>WG508223ICB<br>WG507968PBS<br>WG507968LFB | ICV<br>ICB<br>PBS<br>LFB | 10/27/20 20:07<br>10/27/20 20:11<br>10/27/20 20:35<br>10/27/20 20:39 | II201023-2                | 2<br>.501 |        | 1.913<br>U<br>U<br>.476 | mg/L<br>mg/L<br>mg/L<br>mg/L | 96       | -0.03<br>-0.03<br>80 | 0.03<br>0.03<br>120 |     |       |      |
| WG508223<br>WG508223ICV<br>WG508223ICB<br>WG507968PBS                | ICV<br>ICB<br>PBS        | 10/27/20 20:07<br>10/27/20 20:11<br>10/27/20 20:35                   | II201023-2<br>IITCLPSPIKE | 2         | UUU    | 1.913<br>U<br>U         | mg/L<br>mg/L<br>mg/L         | 96<br>95 | -0.03<br>-0.03       | 0.03<br>0.03        | 1   | 20    |      |

#### ACZ Project ID: L62358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

| Lead (TCLP)        |       |                | M6010D                   | ICP      |        |             |       |           |               |         |     |       |       |
|--------------------|-------|----------------|--------------------------|----------|--------|-------------|-------|-----------|---------------|---------|-----|-------|-------|
| ACZ ID             | Туре  | Analyzed       | PCN/SCN                  | QC       | Sample | Found       | Units | Rec%      | Lower         | Upper   | RPD | Limit | Qual  |
| WG508223           |       |                |                          |          |        |             |       |           |               |         |     |       |       |
| WG508223ICV        | ICV   | 10/27/20 20:07 | II201023-2               | 4        |        | 3.823       | mg/L  | 96        | 90            | 110     |     |       |       |
| WG508223ICB        | ICB   | 10/27/20 20:11 |                          |          |        | U           | mg/L  |           | -0.09         | 0.09    |     |       |       |
| WG507968PBS        | PBS   | 10/27/20 20:35 |                          |          |        | U           | mg/L  |           | -0.09         | 0.09    |     |       |       |
| WG507968LFB        | LFB   | 10/27/20 20:39 | IITCLPSPIKE              | 1.001    |        | .961        | mg/L  | 96        | 80            | 120     |     |       |       |
| L62358-01MS        | MS    | 10/27/20 20:59 | IITCLPSPIKE              | 1.001    | 43.6   | 43.96       | mg/L  | 36        | 75            | 125     |     |       | M3    |
| L62358-01MSD       | MSD   | 10/27/20 21:03 | IITCLPSPIKE              | 1.001    | 43.6   | 43.61       | mg/L  | 1         | 75            | 125     | 1   | 20    | M3    |
| L62358-02DUP       | DUP   | 10/27/20 21:11 |                          |          | 23.4   | 23.5        | mg/L  |           |               |         | 0   | 20    |       |
| Lead, total (3050) | )     |                | M6010D                   | ICP      |        |             |       |           |               |         |     |       |       |
| ACZ ID             | Туре  | Analyzed       | PCN/SCN                  | QC       | Sample | Found       | Units | Rec%      | Lower         | Upper   | RPD | Limit | Qual  |
| WG508365           |       |                |                          |          |        |             |       |           |               |         |     |       |       |
| WG508365ICV        | ICV   | 10/29/20 9:11  | II201023-2               | 4        |        | 3.809       | mg/L  | 95        | 90            | 110     |     |       |       |
| WG508365ICB        | ICB   | 10/29/20 9:15  |                          |          |        | U           | mg/L  |           | -0.09         | 0.09    |     |       |       |
| WG508204PBS        | PBS   | 10/29/20 9:38  |                          |          |        | U           | mg/Kg |           | -9            | 9       |     |       |       |
| WG508204LCSS       | LCSS  | 10/29/20 9:42  | PCN61045                 | 105      |        | 102.8       | mg/Kg |           | 86.7          | 123     |     |       |       |
| WG508204LCSSD      | LCSSD | 10/29/20 9:46  | PCN61045                 | 105      |        | 109.098     | mg/Kg |           | 86.7          | 123     | 6   | 20    |       |
| L62358-05MS        | MS    | 10/29/20 10:53 | II201015-4               | 101.1414 | 117    | 198.061     | mg/Kg | 80        | 75            | 125     |     |       |       |
| L62358-05MSD       | MSD   | 10/29/20 10:57 | II201015-4               | 102.1428 | 117    | 263.568     | mg/Kg | 143       | 75            | 125     | 28  | 20    | M1 RD |
| Mercury (TCLP)     |       |                | M7470A                   | CVAA     |        |             |       |           |               |         |     |       |       |
| ACZ ID             | Туре  | Analyzed       | PCN/SCN                  | QC       | Sample | Found       | Units | Rec%      | Lower         | Upper   | RPD | Limit | Qual  |
| WG508043           |       |                |                          |          |        |             |       |           |               |         |     |       |       |
| WG508043ICV1       | ICV   | 10/26/20 10:39 | HG200810-2               | .005     |        | .00486      | mg/L  | 97        | 95            | 105     |     |       |       |
| WG508043ICB        | ICB   | 10/26/20 10:39 | 1102000102               | .000     |        | .00400<br>U | mg/L  | 51        | -0.0002       | 0.0002  |     |       |       |
| WG508098           |       |                |                          |          |        |             |       |           |               |         |     |       |       |
| WG508098PBW        | PBW   | 10/26/20 14:15 |                          |          |        | U           | mg/L  |           | -0.00044      | 0.00044 |     |       |       |
| WG507968PBS        | PBS   | 10/26/20 14:15 |                          |          |        | U           | mg/L  |           | -0.00044      | 0.00044 |     |       |       |
| WG507968LFB        | LFB   | 10/26/20 14:10 | HG201009-6               | .002002  |        | .00176      | mg/L  | 88        | -0.0000       | 115     |     |       |       |
| L62358-01MS        | MS    | 10/26/20 14:17 | HG201009-6               | .002002  | .00142 | .00170      | mg/L  | 31        | 85            | 115     |     |       | M2    |
| L62358-01MSD       | MSD   | 10/26/20 14:44 | HG201009-6               | .002002  | .00142 | .00203      | mg/L  | 27        | 85            | 115     | 4   | 20    | M2    |
| WG508289           |       |                |                          |          |        |             | -     |           |               |         |     |       |       |
| WG508289ICV        | ICV   | 10/28/20 14:00 | HG200810-2               | .005     |        | .00482      | mg/L  | 96        | 90            | 110     |     |       |       |
| WG508289ICB        | ICB   | 10/28/20 14:00 | 1102000102               | .005     |        | .00402<br>U | mg/L  | 30        | -0.0006       | 0.0006  |     |       |       |
| WG508289PBW        | PBW   | 10/28/20 14:01 |                          |          |        | U           | mg/L  |           | -0.00044      | 0.00044 |     |       |       |
| WG507291PBS        | PBS   | 10/28/20 14:03 |                          |          |        | U           | mg/L  |           | -0.0006       | 0.00044 |     |       |       |
| WG507291LFB        | LFB   | 10/28/20 14:04 | HG201027-4               | .002002  |        | .00193      | mg/L  | 96        | -0.0000<br>85 | 115     |     |       |       |
| WG507968PBS        | PBS   | 10/28/20 14:03 | .10201021-4              | .002002  |        | .00193<br>U | mg/L  | 30        | -0.0006       | 0.0006  |     |       |       |
|                    |       |                | HG201027-4               | 002002   |        | .00198      |       | 00        | -0.0006<br>85 |         |     |       |       |
| WG507968LFB        | LFB   | 10/28/20 14:14 |                          | .002002  |        |             | mg/L  | 99<br>102 |               | 115     |     |       |       |
| L62358-01MS        | MS    | 10/28/20 14:16 | HG201027-4<br>HG201027-4 | .002002  | U      | .00206      | mg/L  | 103       | 85<br>85      | 115     | 2   | 20    |       |
| L62358-01MSD       | MSD   | 10/28/20 14:17 | 113201027-4              | .002002  | U      | .00213      | mg/L  | 106       | 85            | 115     | 3   | 20    | D ^   |
| L62358-02DUP       | DUP   | 10/28/20 14:19 |                          |          | U      | U           | mg/L  |           |               |         | 0   | 20    | RA    |

#### ACZ Project ID: L62358

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

| Selenium (TCLP)                                                                                                                                                                     |                                                       |                                                                                                                                           | M6010D                                                                    | ICP                                     |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|------------------|-----------------------------------------------|------------------------------------------------|-----------|-------------|-----|
| ACZ ID                                                                                                                                                                              | Туре                                                  | Analyzed                                                                                                                                  | PCN/SCN                                                                   | QC                                      | Sample              | Found                                                        | Units                                                                    | Rec%             | Lower                                         | Upper                                          | RPD       | Limit       | Qua |
| WG508223                                                                                                                                                                            |                                                       |                                                                                                                                           |                                                                           |                                         |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
| WG508223ICV                                                                                                                                                                         | ICV                                                   | 10/27/20 20:07                                                                                                                            | II201023-2                                                                | 4                                       |                     | 3.871                                                        | mg/L                                                                     | 97               | 90                                            | 110                                            |           |             |     |
| WG508223ICB                                                                                                                                                                         | ICB                                                   | 10/27/20 20:11                                                                                                                            |                                                                           |                                         |                     | U                                                            | mg/L                                                                     |                  | -0.15                                         | 0.15                                           |           |             |     |
| WG507968PBS                                                                                                                                                                         | PBS                                                   | 10/27/20 20:35                                                                                                                            |                                                                           |                                         |                     | U                                                            | mg/L                                                                     |                  | -0.15                                         | 0.15                                           |           |             |     |
| WG507968LFB                                                                                                                                                                         | LFB                                                   | 10/27/20 20:39                                                                                                                            | IITCLPSPIKE                                                               | 1.001                                   |                     | .975                                                         | mg/L                                                                     | 97               | 80                                            | 120                                            |           |             |     |
| L62358-01MS                                                                                                                                                                         | MS                                                    | 10/27/20 20:59                                                                                                                            | IITCLPSPIKE                                                               | 1.001                                   | U                   | 1                                                            | mg/L                                                                     | 100              | 75                                            | 125                                            |           |             |     |
| L62358-01MSD                                                                                                                                                                        | MSD                                                   | 10/27/20 21:03                                                                                                                            | IITCLPSPIKE                                                               | 1.001                                   | U                   | 1.02                                                         | mg/L                                                                     | 102              | 75                                            | 125                                            | 2         | 20          |     |
| L62358-02DUP                                                                                                                                                                        | DUP                                                   | 10/27/20 21:11                                                                                                                            |                                                                           |                                         | U                   | U                                                            | mg/L                                                                     |                  |                                               |                                                | 0         | 20          | RA  |
| Silver (TCLP)                                                                                                                                                                       |                                                       |                                                                                                                                           | M6010D                                                                    | ICP                                     |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
| ACZ ID                                                                                                                                                                              | Туре                                                  | Analyzed                                                                                                                                  | PCN/SCN                                                                   | QC                                      | Sample              | Found                                                        | Units                                                                    | Rec%             | Lower                                         | Upper                                          | RPD       | Limit       | Qua |
| WG508223                                                                                                                                                                            |                                                       |                                                                                                                                           |                                                                           |                                         |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
| WG508223ICV                                                                                                                                                                         | ICV                                                   | 10/27/20 20:07                                                                                                                            | II201023-2                                                                | 1                                       |                     | .999                                                         | mg/L                                                                     | 100              | 90                                            | 110                                            |           |             |     |
| WG508223ICB                                                                                                                                                                         | ICB                                                   | 10/27/20 20:11                                                                                                                            |                                                                           |                                         |                     | U                                                            | mg/L                                                                     |                  | -0.03                                         | 0.03                                           |           |             |     |
| WG507968PBS                                                                                                                                                                         | PBS                                                   | 10/27/20 20:35                                                                                                                            |                                                                           |                                         |                     | U                                                            | mg/L                                                                     |                  | -0.03                                         | 0.03                                           |           |             |     |
| WG507968LFB                                                                                                                                                                         | LFB                                                   | 10/27/20 20:39                                                                                                                            | IITCLPSPIKE                                                               | .501                                    |                     | .472                                                         | mg/L                                                                     | 94               | 80                                            | 120                                            |           |             |     |
| L62358-01MS                                                                                                                                                                         | MS                                                    | 10/27/20 20:59                                                                                                                            | IITCLPSPIKE                                                               | .501                                    | U                   | .476                                                         | mg/L                                                                     | 95               | 75                                            | 125                                            |           |             |     |
| L62358-01MSD                                                                                                                                                                        | MSD                                                   | 10/27/20 21:03                                                                                                                            | IITCLPSPIKE                                                               | .501                                    | U                   | .475                                                         | mg/L                                                                     | 95               | 75                                            | 125                                            | 0         | 20          |     |
| L62358-02DUP                                                                                                                                                                        | DUP                                                   | 10/27/20 21:11                                                                                                                            |                                                                           |                                         | U                   | U                                                            | mg/L                                                                     |                  |                                               |                                                | 0         | 20          | RA  |
| Solids, Percent                                                                                                                                                                     |                                                       |                                                                                                                                           | D2216-80                                                                  | )                                       |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
| ACZ ID                                                                                                                                                                              | Туре                                                  | Analyzed                                                                                                                                  | PCN/SCN                                                                   | QC                                      | Sample              | Found                                                        | Units                                                                    | Rec%             | Lower                                         | Upper                                          | RPD       | Limit       | Qua |
| WG508171                                                                                                                                                                            |                                                       |                                                                                                                                           |                                                                           |                                         |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
| L62358-04DUP                                                                                                                                                                        | DUP                                                   | 10/26/20 23:23                                                                                                                            |                                                                           |                                         | 88.3                | 88.52                                                        | %                                                                        |                  |                                               |                                                | 0         | 20          |     |
| WG508171PBS                                                                                                                                                                         | PBS                                                   | 10/27/20 15:10                                                                                                                            |                                                                           |                                         |                     | U                                                            | %                                                                        |                  | -0.1                                          | 0.1                                            |           |             |     |
| Zinc (TCLP)                                                                                                                                                                         |                                                       |                                                                                                                                           | M6010D                                                                    | ICP                                     |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
| ACZ ID                                                                                                                                                                              | Туре                                                  | Analyzed                                                                                                                                  | PCN/SCN                                                                   | QC                                      | Sample              | Found                                                        | Units                                                                    | Rec%             | Lower                                         | Upper                                          | RPD       | Limit       | Qua |
| WG508223                                                                                                                                                                            |                                                       |                                                                                                                                           |                                                                           |                                         |                     |                                                              |                                                                          |                  |                                               |                                                |           |             |     |
| NG508223ICV                                                                                                                                                                         | ICV                                                   | 10/27/20 20:07                                                                                                                            | II201023-2                                                                | 2                                       |                     | 1.938                                                        | mg/L                                                                     | 97               | 90                                            | 110                                            |           |             |     |
| NG508223ICB                                                                                                                                                                         | ICB                                                   | 10/27/20 20:11                                                                                                                            |                                                                           | _                                       |                     | U                                                            | mg/L                                                                     |                  | -0.06                                         | 0.06                                           |           |             |     |
| WG507968PBS                                                                                                                                                                         | PBS                                                   | 10/27/20 20:35                                                                                                                            |                                                                           |                                         |                     | U                                                            | mg/L                                                                     |                  | -0.06                                         | 0.06                                           |           |             |     |
|                                                                                                                                                                                     |                                                       | 10/21/20 20:00                                                                                                                            |                                                                           |                                         |                     | •                                                            | 0                                                                        |                  |                                               |                                                |           |             |     |
| NG507968LEB                                                                                                                                                                         | I FR                                                  | 10/27/20 20:39                                                                                                                            | IITCLPSPIKE                                                               | 5005                                    |                     | 515                                                          | ma/L                                                                     | 103              | 80                                            | 120                                            |           |             |     |
|                                                                                                                                                                                     | LFB<br>MS                                             | 10/27/20 20:39<br>10/27/20 20:59                                                                                                          | IITCLPSPIKE                                                               | .5005<br>5005                           | 4 4 1               | .515<br>4 877                                                | mg/L<br>mg/L                                                             | 103<br>93        | 80<br>75                                      | 120<br>125                                     |           |             |     |
| _62358-01MS                                                                                                                                                                         | MS                                                    | 10/27/20 20:59                                                                                                                            | IITCLPSPIKE                                                               | .5005                                   | 4.41                | 4.877                                                        | mg/L                                                                     | 93               | 75                                            | 125                                            | 1         | 20          |     |
| _62358-01MS<br>_62358-01MSD                                                                                                                                                         |                                                       |                                                                                                                                           |                                                                           |                                         | 4.41<br>4.41<br>9.6 |                                                              | -                                                                        |                  |                                               |                                                | 1<br>49   | 20<br>20    | RD  |
| L62358-01MS<br>L62358-01MSD<br>L62358-02DUP                                                                                                                                         | MS<br>MSD                                             | 10/27/20 20:59<br>10/27/20 21:03                                                                                                          | IITCLPSPIKE                                                               | .5005<br>.5005                          | 4.41                | 4.877<br>4.824                                               | mg/L<br>mg/L                                                             | 93               | 75                                            | 125                                            |           |             | RD  |
| _62358-01MS<br>_62358-01MSD<br>_62358-02DUP<br>Zinc, total (3050)                                                                                                                   | MS<br>MSD                                             | 10/27/20 20:59<br>10/27/20 21:03                                                                                                          | IITCLPSPIKE                                                               | .5005<br>.5005                          | 4.41                | 4.877<br>4.824<br>15.62                                      | mg/L<br>mg/L                                                             | 93               | 75                                            | 125                                            |           |             | RD  |
| .62358-01MS<br>.62358-01MSD<br>.62358-02DUP<br>Zinc, total (3050)<br>ACZ ID                                                                                                         | MS<br>MSD<br>DUP                                      | 10/27/20 20:59<br>10/27/20 21:03<br>10/27/20 21:11                                                                                        | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D                                      | .5005<br>.5005                          | 4.41<br>9.6         | 4.877<br>4.824<br>15.62                                      | mg/L<br>mg/L<br>mg/L                                                     | 93<br>83         | 75<br>75                                      | 125<br>125                                     | 49        | 20          |     |
| L62358-01MS<br>L62358-01MSD<br>L62358-02DUP<br>Zinc, total (3050)<br>ACZ ID<br>WG508365                                                                                             | MS<br>MSD<br>DUP                                      | 10/27/20 20:59<br>10/27/20 21:03<br>10/27/20 21:11                                                                                        | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D                                      | .5005<br>.5005<br>ICP<br>QC             | 4.41<br>9.6         | 4.877<br>4.824<br>15.62                                      | mg/L<br>mg/L<br>mg/L                                                     | 93<br>83         | 75<br>75                                      | 125<br>125                                     | 49        | 20          |     |
| L62358-01MS<br>L62358-01MSD<br>L62358-02DUP<br>Zinc, total (3050)<br>ACZ ID<br>WG508365<br>WG508365ICV                                                                              | MS<br>MSD<br>DUP<br>Type                              | 10/27/20 20:59<br>10/27/20 21:03<br>10/27/20 21:11<br><b>Analyzed</b><br>10/29/20 9:11                                                    | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D<br>PCN/SCN                           | .5005<br>.5005                          | 4.41<br>9.6         | 4.877<br>4.824<br>15.62<br>Found                             | mg/L<br>mg/L<br>mg/L<br>Units<br>mg/L                                    | 93<br>83<br>Rec% | 75<br>75<br>Lower<br>90                       | 125<br>125<br>Upper<br>110                     | 49        | 20          |     |
| .62358-01MS<br>.62358-01MSD<br>.62358-02DUP<br>Zinc, total (3050)<br>ACZ ID<br>WG508365<br>WG508365ICV<br>WG508365ICV                                                               | MS<br>MSD<br>DUP<br>Type<br>ICV<br>ICB                | 10/27/20 20:59<br>10/27/20 21:03<br>10/27/20 21:11<br><b>Analyzed</b><br>10/29/20 9:11<br>10/29/20 9:15                                   | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D<br>PCN/SCN                           | .5005<br>.5005<br>ICP<br>QC             | 4.41<br>9.6         | 4.877<br>4.824<br>15.62<br>Found<br>1.944<br>U               | mg/L<br>mg/L<br>mg/L<br>Units<br>mg/L<br>mg/L                            | 93<br>83<br>Rec% | 75<br>75<br>Lower<br>90<br>-0.06              | 125<br>125<br>Upper<br>110<br>0.06             | 49        | 20          |     |
| L62358-01MS<br>L62358-01MSD<br>L62358-02DUP<br>Zinc, total (3050)<br>ACZ ID<br>WG508365<br>WG508365ICV<br>WG508365ICB<br>WG508204PBS                                                | MS<br>MSD<br>DUP<br>Type<br>ICV<br>ICB<br>PBS         | 10/27/20 20:59<br>10/27/20 21:03<br>10/27/20 21:11<br><b>Analyzed</b><br>10/29/20 9:11<br>10/29/20 9:15<br>10/29/20 9:38                  | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D<br>PCN/SCN<br>II201023-2             | .5005<br>.5005                          | 4.41<br>9.6         | 4.877<br>4.824<br>15.62<br>Found<br>1.944<br>U<br>U          | mg/L<br>mg/L<br>Units<br>mg/L<br>mg/L<br>mg/Kg                           | 93<br>83<br>Rec% | 75<br>75<br>Lower<br>90<br>-0.06<br>-6        | 125<br>125<br>Upper<br>110<br>0.06<br>6        | 49        | 20          |     |
| L62358-01MS<br>L62358-01MSD<br>L62358-02DUP<br>Zinc, total (3050)<br>ACZ ID<br>WG5083655<br>WG508365ICV<br>WG508365ICB<br>WG508204PBS<br>WG508204PBS                                | MS<br>MSD<br>DUP<br>Type<br>ICV<br>ICB<br>PBS<br>LCSS | 10/27/20 20:59<br>10/27/20 21:03<br>10/27/20 21:11<br><b>Analyzed</b><br>10/29/20 9:11<br>10/29/20 9:15<br>10/29/20 9:38<br>10/29/20 9:42 | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D<br>PCN/SCN<br>II201023-2<br>PCN61045 | .5005<br>.5005<br>ICP<br>QC<br>2<br>212 | 4.41<br>9.6         | 4.877<br>4.824<br>15.62<br>Found<br>1.944<br>U<br>U<br>216.6 | mg/L<br>mg/L<br>mg/L<br>Units<br>Units<br>mg/L<br>mg/L<br>mg/Kg<br>mg/Kg | 93<br>83<br>Rec% | 75<br>75<br>Lower<br>90<br>-0.06<br>-6<br>171 | 125<br>125<br>Upper<br>110<br>0.06<br>6<br>252 | 49<br>RPD | 20<br>Limit |     |
| WG507968LFB<br>L62358-01MS<br>L62358-02DUP<br>Zinc, total (3050)<br>ACZ ID<br>WG508365<br>WG508365ICV<br>WG508365ICB<br>WG508204PBS<br>WG508204LCSS<br>WG508204LCSSD<br>L62358-05MS | MS<br>MSD<br>DUP<br>Type<br>ICV<br>ICB<br>PBS         | 10/27/20 20:59<br>10/27/20 21:03<br>10/27/20 21:11<br><b>Analyzed</b><br>10/29/20 9:11<br>10/29/20 9:15<br>10/29/20 9:38<br>10/29/20 9:42 | IITCLPSPIKE<br>IITCLPSPIKE<br>M6010D<br>PCN/SCN<br>II201023-2             | .5005<br>.5005                          | 4.41<br>9.6         | 4.877<br>4.824<br>15.62<br>Found<br>1.944<br>U<br>U          | mg/L<br>mg/L<br>Units<br>mg/L<br>mg/L<br>mg/Kg                           | 93<br>83<br>Rec% | 75<br>75<br>Lower<br>90<br>-0.06<br>-6        | 125<br>125<br>Upper<br>110<br>0.06<br>6        | 49        | 20          |     |

## 4 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

#### Hecla Greens Creek Mining Company

#### ACZ Project ID: L62358

sample is too low for accurate evaluation (< 10x MDL).

| ACZ ID    | WORKNUM  | PARAMETER       | METHOD      | QUAL | DESCRIPTION                                                                                                                                                                                           |
|-----------|----------|-----------------|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L62358-01 | WG508223 | Arsenic (TCLP)  | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Cadmium (TCLP)  | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Chromium (TCLP) | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Lead (TCLP)     | M6010D ICP  | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           | WG508289 | Mercury (TCLP)  | M7470A CVAA | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           | WG508223 | Selenium (TCLP) | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Silver (TCLP)   | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
| L62358-02 | WG508223 | Arsenic (TCLP)  | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Cadmium (TCLP)  | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Chromium (TCLP) | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Lead (TCLP)     | M6010D ICP  | М3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           | WG508098 | Mercury (TCLP)  | M7470A CVAA | M2   | Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                             |
|           |          |                 | M7470A CVAA | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           | WG508223 | Selenium (TCLP) | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Silver (TCLP)   | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated                                                                                        |

## 40 **AGZ** Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487

(800) 334-5493

#### Hecla Greens Creek Mining Company

## ACZ Project ID: L62358

| ACZ ID    | WORKNUM  | PARAMETER          | METHOD      | QUAL | DESCRIPTION                                                                                                                                                                                           |
|-----------|----------|--------------------|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L62358-03 | WG508223 | Arsenic (TCLP)     | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Cadmium (TCLP)     | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Chromium (TCLP)    | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Lead (TCLP)        | M6010D ICP  | M3   | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable. |
|           | WG508098 | Mercury (TCLP)     | M7470A CVAA | M2   | Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                             |
|           |          |                    | M7470A CVAA | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           | WG508223 | Selenium (TCLP)    | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
|           |          | Silver (TCLP)      | M6010D ICP  | RA   | Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).                                 |
| L62358-04 | WG508365 | Lead, total (3050) | M6010D ICP  | M1   | Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                            |
|           |          |                    | M6010D ICP  | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          | Zinc, total (3050) | M6010D ICP  | MA   | Recovery for either the spike or spike duplicate was outside<br>of the acceptance limits; the RPD was within the<br>acceptance limits.                                                                |
|           |          |                    | M6010D ICP  | ZG   | The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.                                                                   |
| L62358-05 | WG508365 | Lead, total (3050) | M6010D ICP  | M1   | Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.                                                                                            |
|           |          |                    | M6010D ICP  | RD   | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample.                                                       |
|           |          | Zinc, total (3050) | M6010D ICP  | MA   | Recovery for either the spike or spike duplicate was outside<br>of the acceptance limits; the RPD was within the<br>acceptance limits.                                                                |
|           |          |                    | M6010D ICP  | ZG   | The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.                                                                   |



ACZ Project ID: L62358

Soil Analysis

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Solids, Percent

D2216-80

| ACZ Laboratories, Inc.<br>2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493                                                                 |                    |                  | mple<br>ceipt |         |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|---------------|---------|--|--|--|--|
|                                                                                                                                                          | -                  | Project ID: L623 |               |         |  |  |  |  |
|                                                                                                                                                          |                    | eived: 10        | )/21/202      | 0 10:44 |  |  |  |  |
|                                                                                                                                                          | Receive<br>Date Pr | •                | 40/           |         |  |  |  |  |
| Receipt Verification                                                                                                                                     | Jale Pr            | inted:           | 10/2          | 22/2020 |  |  |  |  |
|                                                                                                                                                          |                    | YES              | NO            | NA      |  |  |  |  |
| 1) Is a foreign soil permit included for applicable samples?                                                                                             |                    |                  |               | Х       |  |  |  |  |
| 2) Is the Chain of Custody form or other directive shipping papers present?                                                                              |                    | Х                |               |         |  |  |  |  |
| 3) Does this project require special handling procedures such as CLP protocol?                                                                           |                    |                  | Х             |         |  |  |  |  |
| 4) Are any samples NRC licensable material?                                                                                                              |                    |                  |               | Х       |  |  |  |  |
| 5) If samples are received past hold time, proceed with requested short hold time analyse                                                                | s?                 | Х                |               |         |  |  |  |  |
| 6) Is the Chain of Custody form complete and accurate?                                                                                                   |                    | Х                |               |         |  |  |  |  |
| 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samp                                                                    | les?               |                  | Х             |         |  |  |  |  |
| Samples/Containers                                                                                                                                       |                    |                  |               |         |  |  |  |  |
|                                                                                                                                                          |                    | YES              | NO            | NA      |  |  |  |  |
| 8) Are all containers intact and with no leaks?                                                                                                          |                    | Х                |               |         |  |  |  |  |
| 9) Are all labels on containers and are they intact and legible?                                                                                         |                    | Х                |               |         |  |  |  |  |
| 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time                                                                   | e?                 | Х                |               |         |  |  |  |  |
| 11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$                                                                            |                    |                  |               | Х       |  |  |  |  |
| 12) Is there sufficient sample volume to perform all requested work?                                                                                     |                    | Х                |               |         |  |  |  |  |
| 13) Is the custody seal intact on all containers?                                                                                                        |                    |                  |               | Х       |  |  |  |  |
| 13) is the custody sear mact on an containers?                                                                                                           |                    |                  |               |         |  |  |  |  |
| 14) Are samples that require zero headspace acceptable?                                                                                                  |                    |                  |               | Х       |  |  |  |  |
|                                                                                                                                                          |                    | X                |               | X       |  |  |  |  |
| 14) Are samples that require zero headspace acceptable?                                                                                                  |                    | X                |               | X<br>X  |  |  |  |  |
| <ul><li>14) Are samples that require zero headspace acceptable?</li><li>15) Are all sample containers appropriate for analytical requirements?</li></ul> |                    | X                | X             |         |  |  |  |  |

#### Chain of Custody Related Remarks

**Client Contact Remarks** 

Shipping Containers

| Cooler Id | Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|----------|----------------------|------------|-------------------------|
|           |          |                      |            |                         |
| 6211      | 2.1      | <=6.0                | 15         | Yes                     |

#### Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.



Sample Receipt

Hecla Greens Creek Mining Company S20058

ACZ Project ID: L62358 Date Received: 10/21/2020 10:44 Received By: Date Printed: 10/22/2020

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

| I ab Sent To: | ACZ                    |                  |                                       |                                   |        | Total Zinc (Zn)<br>PH < 2<br>RUSH ( see below )                                                            |                  | X               | X               | X                | X            |   |  |  |  |  |  |  | Shipment Checklist        | I ah Contacted                                | <u>ן</u><br>פו | 3                      |                                       | Condition of Sample Containers:      | Temn Received: °C |               | # 01 Coolers. | Seals Intact: | Page of                      |
|---------------|------------------------|------------------|---------------------------------------|-----------------------------------|--------|------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|------------------|--------------|---|--|--|--|--|--|--|---------------------------|-----------------------------------------------|----------------|------------------------|---------------------------------------|--------------------------------------|-------------------|---------------|---------------|---------------|------------------------------|
| (             | <b>)</b>               |                  |                                       | Container 8                       | sla    | TCLP - RCRA Met                                                                                            | ┢                | x               | X               | X                | X            |   |  |  |  |  |  |  | Deliverable Instructions: | Use naming system below tor report. XXXX Will | Toject IL      | Miscellaneous_ACZ_XXXX | necla-mining.com                      | RECEIVED BY:                         | Signature:        | Printed Name: |               | Firm:         | Date / Time:                 |
|               | -                      | Miscellaneous    | a-mining.com                          |                                   | S20058 | Matrix<br>Water / Soil<br>Plastic Bag                                                                      | Soil 1           | Soil 1          | Soil 1          | Soil 1           | Soil         |   |  |  |  |  |  |  |                           | Use naming system bei                         |                | 2020101 <b>%</b> Mis   | e-mail to: gcenvdata@hecla-mining.com | RELINQUISHED BY: RELINQUISHED BY:    | ×                 |               | į             | <u>1</u>      |                              |
|               | ora / Anarysis Kequest | Project Name:    | Report To: gcenvdata@hecla-mining.com |                                   | er:    | Date Collected                                                                                             | 10/17/2020 14:00 |                 |                 | 10/17/2020 16:40 |              | - |  |  |  |  |  |  |                           |                                               |                |                        |                                       | RELINQUI                             | Signature:        | Printed Name  | i             | Firm:         | 1 1 I Late / Time            |
|               |                        | Company Address: | eek Mining Company                    | F.U. BOX 32199<br>Juneau AK 00803 |        | Telephone: (907) 790-XXXX<br>8482 D. Maller 8420 D. Landes<br>8457 C. Sell 8461 G. Fredheim<br>Sample I.D. | CSB North Rd2    | CSB North Rd1 E | CSB North Rd1 W | CSB-N-Rd2-C1     | CSB-N-Rd2-C2 |   |  |  |  |  |  |  | Comments:                 |                                               | PLEASE RUSH    |                        |                                       | RELINGUISHED BY SAMPLER RECEIVED BY: |                   | Printed Name: | WID LUNK      |               | Date (Time) And IS (Time) AN |

#### **Laboratory Data Review Checklist**

## Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

#### Date:

5/16/2022

### Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L65563

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

Hazard Identification Number:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

#### Note: Any N/A or No box checked must have an explanation in the comments box.

#### 1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

| Yes□ | No⊠  | N/A | Comments:  |
|------|------|-----|------------|
| 100  | 1102 |     | Community. |

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

| Yes $\boxtimes$ No $\square$ N/A $\square$ | Comments: |
|--------------------------------------------|-----------|
|                                            |           |
| Correct analyses requested?                |           |

b. Correct analyses requested?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

### 3. <u>Laboratory Sample Receipt Documentation</u>

a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Temperature documented, metals analysis do not have a temperature requirement

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Metals do not require preservation

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Yes, samples OK

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

| Yes□ | No | $N/A \boxtimes$ | Comments: |
|------|----|-----------------|-----------|

No discrepancies found

e. Data quality or usability affected?

Comments:

Data quality and usability not affected

- 4. Case Narrative
  - a. Present and understandable?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No discrepancies, errors, or QC failures occured

c. Were all corrective actions documented?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No corrective action needed

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Data quality and usability are not affected

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

#### 5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. All applicable holding times met?

c. All soils reported on a dry weight basis?

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

### 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

## c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

Data quality and usability not affected.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

- e. Trip Blanks
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1$  = Sample Concentration  $R_2$  = Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

iii. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

# 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

# a. Defined and appropriate?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:



May 06, 2021

Report to: gcenvdata@hecla-mining.com Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99801-2199 Bill to: Accounts Payable Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99803-2199

Project ID: S21050 ACZ Project ID: L65563

gcenvdata@hecla-mining.com:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on April 29, 2021. This project has been assigned to ACZ's project number, L65563. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L65563. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after June 05, 2021. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

re Well.

Sue Webber has reviewed and approved this report.





| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-NE-C3A |

## ACZ Sample ID: **L65563-01** Date Sampled: 04/27/21 12:05 Date Received: 04/29/21 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |     |     |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 100      | 706    |      |    | mg/Kg | 3   | 15  | 05/06/21 2:34  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 90.4   |      | *  | %     | 0.1 | 0.5 | 04/29/21 15:30 | jms     |
| Soil Preparation           |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |     |     | 04/29/21 15:41 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |     |     | 05/04/21 14:24 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |     |     | 05/04/21 7:30  | krs     |



| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-NE-C3B |

## ACZ Sample ID: **L65563-02** Date Sampled: 04/27/21 12:10 Date Received: 04/29/21 Sample Matrix: Soil

| Matala Analysia            |                    |          |        |      |    |        |     |     |                |         |
|----------------------------|--------------------|----------|--------|------|----|--------|-----|-----|----------------|---------|
| Metals Analysis            |                    | Dilution | Decult | Qual | VO | llette | MDI | DOI | Dete           | Anchest |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units  | MDL | PQL | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 100      | 1000   |      |    | mg/Kg  | 3   | 15  | 05/06/21 2:38  | kja     |
| Soil Analysis              |                    |          |        |      |    |        |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units  | MDL | PQL | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 90.5   |      | *  | %      | 0.1 | 0.5 | 04/29/21 22:12 | jms     |
| Soil Preparation           |                    |          |        |      |    |        |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units  | MDL | PQL | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |        |     |     | 04/29/21 15:45 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |        |     |     | 05/04/21 14:43 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |        |     |     | 05/04/21 9:00  | krs     |

L65563-2105061521



| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-NE-C3C |

## ACZ Sample ID: **L65563-03** Date Sampled: 04/27/21 12:20 Date Received: 04/29/21 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 1260   |      |    | mg/Kg | 3.03 | 15.2 | 05/06/21 2:49  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 85.0   |      | *  | %     | 0.1  | 0.5  | 04/30/21 1:34  | jms     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 04/29/21 15:49 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 05/04/21 15:02 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |      |      | 05/04/21 10:30 | krs     |



| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-NE-C2A |

## ACZ Sample ID: **L65563-04** Date Sampled: 04/27/21 12:25 Date Received: 04/29/21 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 1520   |      |    | mg/Kg | 3.03 | 15.2 | 05/06/21 2:53  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 83.0   |      | *  | %     | 0.1  | 0.5  | 04/30/21 4:55  | jms     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 04/29/21 15:52 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 05/04/21 15:21 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |      |      | 05/04/21 12:00 | krs     |



| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-NE-C2B |

## ACZ Sample ID: **L65563-05** Date Sampled: 04/27/21 12:30 Date Received: 04/29/21 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 882    |      |    | mg/Kg | 3.03 | 15.2 | 05/06/21 2:57  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 84.0   |      | *  | %     | 0.1  | 0.5  | 04/30/21 8:17  | jms     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |       |      |      | 04/29/21 15:56 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 05/04/21 15:40 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |      |      | 05/04/21 13:30 | krs     |



| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-NE-C2C |

## ACZ Sample ID: **L65563-06** Date Sampled: 04/27/21 12:35 Date Received: 04/29/21 Sample Matrix: Soil

| Matala Analysia            |                    |          |        |      |    |        |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|--------|------|------|----------------|---------|
| Metals Analysis            |                    | Dilution | Decult | Qual | VO | 110:40 | MDI  | DOI  | Dete           | Analust |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units  | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 292    |      |    | mg/Kg  | 3.03 | 15.2 | 05/06/21 3:01  | kja     |
| Soil Analysis              |                    |          |        |      |    |        |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units  | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 85.0   |      | *  | %      | 0.1  | 0.5  | 04/30/21 11:38 | jms     |
| Soil Preparation           |                    |          |        |      |    |        |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units  | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      | *  |        |      |      | 04/29/21 15:59 | jms     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |        |      |      | 05/04/21 15:59 | krs     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |        |      |      | 05/04/21 15:00 | krs     |



Inorganic Reference

|                                                                                                                                                                                                                                           | Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Batch                                                                                                                                                                                                                                     | A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Found                                                                                                                                                                                                                                     | Value of the QC Type of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Limit                                                                                                                                                                                                                                     | Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Lower                                                                                                                                                                                                                                     | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| MDL                                                                                                                                                                                                                                       | Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                           | Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| PCN/SCN                                                                                                                                                                                                                                   | A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| PQL                                                                                                                                                                                                                                       | Practical Quantitation Limit. Synonymous with the EPA term "minimum level".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| QC                                                                                                                                                                                                                                        | True Value of the Control Sample or the amount added to the Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Rec                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| RPD                                                                                                                                                                                                                                       | Relative Percent Difference, calculation used for Duplicate QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Types                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Upper                                                                                                                                                                                                                                     | Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Sample                                                                                                                                                                                                                                    | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| C Sample Typ                                                                                                                                                                                                                              | pes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| AS                                                                                                                                                                                                                                        | Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCSWD                                                                                                                                                                                                                                                                              | Laboratory Control Sample - Water Duplicate                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| ASD                                                                                                                                                                                                                                       | Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LFB                                                                                                                                                                                                                                                                                | Laboratory Fortified Blank                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| CCB                                                                                                                                                                                                                                       | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LFM                                                                                                                                                                                                                                                                                | Laboratory Fortified Matrix                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| CCV                                                                                                                                                                                                                                       | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LFMD                                                                                                                                                                                                                                                                               | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| DUP                                                                                                                                                                                                                                       | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LRB                                                                                                                                                                                                                                                                                | Laboratory Reagent Blank                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| ICB                                                                                                                                                                                                                                       | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MS                                                                                                                                                                                                                                                                                 | Matrix Spike                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| ICV                                                                                                                                                                                                                                       | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSD                                                                                                                                                                                                                                                                                | Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                           | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PBS                                                                                                                                                                                                                                                                                | Prep Blank - Soil                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| ICSAB                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| LCSS                                                                                                                                                                                                                                      | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PBW                                                                                                                                                                                                                                                                                | Prep Blank - Water                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| LCSS<br>LCSSD                                                                                                                                                                                                                             | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQV                                                                                                                                                                                                                                                                                | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSS                                                                                                                                                                                                                                      | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW                                                                                                                                                                                                                     | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQV                                                                                                                                                                                                                                                                                | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW                                                                                                                                                                                                                     | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL                                                                                                                                                                                                                                                                         | Practical Quantitation Verification standard                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ                                                                                                                                                                                                     | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PQV<br>SDL                                                                                                                                                                                                                                                                         | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks                                                                                                                                                                                           | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br>pe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PQV<br>SDL<br>ontamination in the<br>including the prep                                                                                                                                                                                                                            | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti                                                                                                                                              | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal control structure         nples       Verifies the accuracy of the method, verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                        | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates                                                                                                                                                              | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         verifies that there is no or minimal control verifies the accuracy of the method, verifies the precision of the instrume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                        | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti                                                                                                                                              | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         verifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interferen         verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                        | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard                                                                                                                                  | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         verifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interferen         verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                        | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard                                                                                                                                  | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Verifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa                                                                                                                                                                    | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B                                                                                                           | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         verifies that there is no or minimal comples         verifies the accuracy of the method,         verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>i immediate hold                                                                                                                                                | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H                                                                                                       | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water <b>pe Explanations</b> Number of the state         Number of the state <td>PQV<br/>SDL<br/>entamination in the<br/>including the prep<br/>nt and/or method<br/>ces, if any.<br/>PQL. The associa<br/>in mmediate hold<br/>gative threshold.</td> <td>Practical Quantitation Verification standard<br/>Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in mmediate hold<br>gative threshold.                                                                                                                           | Practical Quantitation Verification standard<br>Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time.                                                                                                                                                                                       |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L                                                                                                  | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Verifies that there is no or minimal control         nples       Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined negotiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>gative threshold.                                                                                                                             | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.<br>ted value is an estimated quantity. time.<br>pociated value.                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Typ<br>Blanks<br>Control San<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L                                                                                                  | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>gative threshold.                                                                                                                             | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.<br>ted value is an estimated quantity. time.<br>pociated value.                                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>L<br>U                                                                                       | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferen         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the association<br>the sample detect                                                                          | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>point de value.<br>tion limit.                                                                                                                                         |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U                                                                                            | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Imples       Verifies that there is no or minimal control Sample accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>pative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc                                                      | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>point dimit.<br>ch 1983.                                                                                                                                               |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U                                                                                       | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water <b>pe Explanations</b> werifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrume         ified Matrix         Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte sexceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         nces         EPA 600/4-83-020. Methods for Chemical Analysis of Water and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the association<br>the sample detection<br>and Wastes, Marco<br>ic Substances in                              | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity. time.<br>poiated value. tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                                |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSVV<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refereet<br>(1)<br>(2)                                                      | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>DEXPLANATIONS</b><br>Verifies that there is no or minimal control of the method,<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.<br>(Qual)<br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br>nces<br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the association<br>the sample detection<br>and Wastes, Marco<br>ic Substances in                              | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity. time.<br>poiated value. tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                                |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)                                                | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         Verifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and F         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         nces         EPA 600/R-93-100. Methods for the Determination of Inorgan         EPA 600/R-94-111. Methods for the Determination of Metals in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>Is level of the association<br>the sample detection<br>and Wastes, Marc<br>ic Substances in<br>n Environmental           | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>poiated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                          |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                  | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and P         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>Is level of the association<br>the sample detection<br>and Wastes, Marc<br>ic Substances in<br>n Environmental           | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity. time.<br>bociated value. tion limit.<br>ch 1983. Environmental Samples, August 1993.                                                                                               |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)<br>(4)                                         | Laboratory Control Sample - Soil         Laboratory Control Sample - Soil Duplicate         Laboratory Control Sample - Water         pe Explanations         werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrume         ified Matrix       Determines sample matrix interferent         Verifies the validity of the calibration.         (Qual)         Analyte concentration detected at a value between MDL and P         Analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         nces         EPA 600/R-93-100. Methods for Chemical Analysis of Water at EPA 600/R-94-111. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>pative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marci<br>ic Substances in<br>n Environmental<br>iter. | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>beiated value.<br>tion limit.<br>ch 1983.<br>Environmental Samples, August 1993.<br>Samples - Supplement I, May 1994.                                                  |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                  | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>DEExplanations</b><br>Verifies that there is no or minimal consistency of the method,<br>Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.<br><b>(Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>nces</b><br>EPA 600/4-83-020. Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgand<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PQV<br>SDL<br>ontamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the associate<br>the sample detect<br>and Wastes, Marci<br>ic Substances in<br>n Environmental<br>iter.      | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botated value.<br>tion limit.<br>ch 1983.<br>Environmental Samples, August 1993.<br>Samples - Supplement I, May 1994.<br>alues are used in the calculations.           |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSVV<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                 | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Verifies that there is no or minimal content<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferente<br>Verifies the validity of the calibration.<br><b>(Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>nces</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-94-111. Methods for the Determination of Inorgand<br>EPA SW-846. Test Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQV<br>SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>pative threshold.<br>e level of the association<br>is substances in a Environmental<br>iter.                                               | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>botated value.<br>tion limit.<br>ch 1983.<br>Environmental Samples, August 1993.<br>Samples - Supplement I, May 1994.<br>alues are used in the calculations.           |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)        | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>PEExplanations</b><br>Verifies that there is no or minimal content<br>mples Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferente<br>Verifies the validity of the calibration.<br><b>(Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with and<br>Target analyte response was below the laboratory defined nego<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>nces</b><br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgand<br>EPA 600/R-94-111. Methods for the Determination of Metals is<br>EPA SW-846. Test Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are replaced by the<br>Soli, Sludge, and Plant matrices for Inorganic analyses are replaced by the<br>Analyses are replaced by the solid waste and wasteward by the solid waste and | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>is immediate hold<br>pative threshold.<br>Is level of the association<br>the sample detection<br>ic Substances in<br>n Environmental<br>iter.                  | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>ociated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.<br>alues are used in the calculations.<br>eight basis. |  |  |  |  |  |  |  |
| LCSS<br>LCSSD<br>LCSW<br>C Sample Type<br>Blanks<br>Control Sam<br>Duplicates<br>Spikes/Forti<br>Standard<br>CZ Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Referent<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Comments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Soil<br>Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water<br><b>pe Explanations</b><br>Werifies that there is no or minimal control Matrix Verifies the accuracy of the method,<br>Verifies the precision of the instrume<br>ified Matrix Determines sample matrix interferent<br>Verifies the validity of the calibration.<br><b>(Qual)</b><br>Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with and<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br><b>nces</b><br>EPA 600/A-83-020. Methods for Chemical Analysis of Water and<br>EPA 600/R-93-100. Methods for the Determination of Inorgand<br>EPA 600/R-94-111. Methods for the Determination of Metals is<br>EPA SW-846. Test Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQV<br>SDL<br>entamination in the<br>including the prep<br>int and/or method<br>ces, if any.<br>PQL. The associa<br>is immediate hold<br>pative threshold.<br>Is level of the association<br>the sample detection<br>ic Substances in<br>n Environmental<br>iter.                  | Practical Quantitation Verification standard<br>Serial Dilution<br>e prep method or calibration procedure.<br>procedure.<br>ted value is an estimated quantity.<br>time.<br>ociated value.<br>tion limit.<br>ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.<br>alues are used in the calculations.<br>eight basis. |  |  |  |  |  |  |  |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

## ACZ Project ID: L65563

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

| )     |                                                                | M6010D                                                                                                                                                                                                                                                                                                                                                    | ICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре  | Analyzed                                                       | PCN/SCN                                                                                                                                                                                                                                                                                                                                                   | QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rec%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                                                |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ICV   | 05/06/21 0:52                                                  | ll210419-1                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ICB   | 05/06/21 0:56                                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PBS   | 05/06/21 1:19                                                  |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCSS  | 05/06/21 1:23                                                  | PCN63144                                                                                                                                                                                                                                                                                                                                                  | 77.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LCSSD | 05/06/21 1:27                                                  | PCN63144                                                                                                                                                                                                                                                                                                                                                  | 77.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MS    | 05/06/21 1:34                                                  | ll210503-2                                                                                                                                                                                                                                                                                                                                                | 101.1414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97.849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MSD   | 05/06/21 1:38                                                  | ll210503-2                                                                                                                                                                                                                                                                                                                                                | 101.1414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                | D2216-8                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Туре  | Analyzed                                                       | PCN/SCN                                                                                                                                                                                                                                                                                                                                                   | QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rec%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                                                |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DUP   | 04/29/21 18:51                                                 |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PBS   | 04/30/21 15:00                                                 |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | ICV<br>ICB<br>PBS<br>LCSS<br>LCSSD<br>MS<br>MSD<br>Type<br>DUP | Type         Analyzed           ICV         05/06/21 0:52           ICB         05/06/21 0:56           PBS         05/06/21 1:56           PBS         05/06/21 1:23           LCSS         05/06/21 1:23           LCSSD         05/06/21 1:34           MSD         05/06/21 1:38           Type         Analyzed           DUP         04/29/21 18:51 | Type         Analyzed         PCN/SCN           ICV         05/06/21 0:52         II210419-1           ICB         05/06/21 0:56         II210419-1           PBS         05/06/21 1:19         PCN63144           LCSSD         05/06/21 1:23         PCN63144           MS         05/06/21 1:27         PCN63144           MSD         05/06/21 1:34         II210503-2           MSD         05/06/21 1:38         II210503-2           D2216-80           Type         Analyzed         PCN/SCN | Type         Analyzed         PCN/SCN         QC           ICV         05/06/21 0:52         II210419-1         4           ICB         05/06/21 0:56         II210419-1         4           PBS         05/06/21 1:19         -         -           LCSS         05/06/21 1:23         PCN63144         77.6           MS         05/06/21 1:34         II210503-2         101.1414           MSD         05/06/21 1:38         II210503-2         101.1414           DUP         Analyzed         PCN/SCN         QC | Type         Analyzed         PCN/SCN         QC         Sample           ICV         05/06/21 0:52         II210419-1         4         4           ICB         05/06/21 0:56         II210419-1         4         4           PBS         05/06/21 1:56         PCN63144         77.6         4           LCSS         05/06/21 1:23         PCN63144         77.6         4           MS         05/06/21 1:27         PCN63144         77.6         101.1414         12.6           MSD         05/06/21 1:34         II210503-2         101.1414         12.6           MSD         05/06/21 1:38         II210503-2         101.1414         12.6           MSD         05/06/21 1:38         II210503-2         101.1414         12.6           DUP         Analyzed         PCN/SCN         QC         Sample | Type         Analyzed         PCN/SCN         QC         Sample         Found           ICV         05/06/21 0:52         II210419-1         4         3.968           ICB         05/06/21 0:56         U         U           PBS         05/06/21 1:19         U         U           LCSS         05/06/21 1:23         PCN63144         77.6         76.9           LCSSD         05/06/21 1:27         PCN63144         77.6         77.49           MS         05/06/21 1:34         II210503-2         101.1414         12.6         98.01           MSD         05/06/21 1:38         II210503-2         101.1414         12.6         98.01           D2216-80           DUP         04/29/21 18:51         90.4         92 | Type         Analyzed         PCN/SCN         QC         Sample         Found         Units           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L           ICB         05/06/21 0:56         II210419-1         4         3.968         mg/L           PBS         05/06/21 1:56         III         III         III         III         III         III         III         III         III         IIII         IIII         IIII         IIII         IIII         IIIII         IIIII         IIIIIIIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | Type         Analyzed         PCN/SCN         QC         Sample         Found         Units         Rec%           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L         99           ICB         05/06/21 0:56             mg/L         99           ICB         05/06/21 1:56             mg/L         99           ICSS         05/06/21 1:23         PCN63144         77.6          76.9         mg/Kg           ICSS         05/06/21 1:27         PCN63144         77.6         77.49         mg/Kg           MS         05/06/21 1:34         II210503-2         101.1414         12.6         97.849         mg/Kg         84           MSD         05/06/21 1:38         II210503-2         101.1414         12.6         98.01         mg/Kg         84           MSD         05/06/21 1:38         II210503-2         101.1414         12.6         98.01         mg/Kg         84           MSD         05/06/21 1:38         II210503-2         101.1414         12.6         98.01         mg/Kg         84           DUP         04/29/21 18:51         PCN/SCN | Type         Analyzed         PCN/SCN         QC         Sample         Found         Units         Rec%         Lower           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L         99         90           ICB         05/06/21 0:56         II210419-1         4         3.968         mg/L         99         90           PBS         05/06/21 1:56         II210419-1         4         3.968         mg/L         99         90           PBS         05/06/21 1:56         II210419-1         4         3.968         mg/L         99         90           LCSS         05/06/21 1:56         II210419-1         4         III2         90         -0.09         0         IIII         -0.09         0         mg/Kg         -9         64.7           LCSS         05/06/21 1:27         PCN63144         77.6         77.49         mg/Kg         84         75           MSD         05/06/21 1:38         II210503-2         101.1414         12.6         98.01         mg/Kg         84         75           MSD         05/06/21 1:38         II210503-2         101.1414         12.6         98.01         mg/Kg         84         75 | Type         Analyzed         PCN/SCN         QC         Sample         Found         Units         Rec%         Lower         Upper           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L         99         90         110           ICB         05/06/21 0:56              mg/L         99         90         110           ICB         05/06/21 1:56              mg/K         99         90         0.09           PBS         05/06/21 1:23         PCN63144         77.6          76.9         mg/Kg         64.7         90.4           LCSSD         05/06/21 1:27         PCN63144         77.6          77.49         mg/Kg         84         75         125           MSD         05/06/21 1:34         II210503-2         101.1414         12.6         97.849         mg/Kg         84         75         125           MSD         05/06/21 1:38         II210503-2         101.1414         12.6         98.01         mg/Kg         84         75         125           MSD         05/06/21 1:38         II210503-2 <td< td=""><td>Type         Analyzed         PCN/SCN         QC         Sample         Found         Units         Rec%         Lower         Upper         RPD           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L         99         90         110           ICB         05/06/21 0:56         III         III         III         III         III         III         -0.09         0.09         -0.09         0.09         PGN           PBS         05/06/21 1:23         PCN63144         77.6         IIII         IIIII         IIIIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>Type         Analyzed         PCN/SCN         QC         Sample         Found         Units         Rec%         Lower         Upper         RPD         Limit           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L         99         90         110         -         -         -         -         -0.09         0.09         -         -         -         -         -         -         -         -         -         -         0.09         0.09         -         -         -         -         -         0.09         0.09         -         -         -         -         0.09         0.09         0.09         -         -         -         -         0.09         0.09         -         -         -         -         -         0.09         0.09         -         -         -         -         -         -         0.09         0.09         -         -         -         -         -         -         -         -         -         0.09         0.09         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td></td<> | Type         Analyzed         PCN/SCN         QC         Sample         Found         Units         Rec%         Lower         Upper         RPD           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L         99         90         110           ICB         05/06/21 0:56         III         III         III         III         III         III         -0.09         0.09         -0.09         0.09         PGN           PBS         05/06/21 1:23         PCN63144         77.6         IIII         IIIII         IIIIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | Type         Analyzed         PCN/SCN         QC         Sample         Found         Units         Rec%         Lower         Upper         RPD         Limit           ICV         05/06/21 0:52         II210419-1         4         3.968         mg/L         99         90         110         -         -         -         -         -0.09         0.09         -         -         -         -         -         -         -         -         -         -         0.09         0.09         -         -         -         -         -         0.09         0.09         -         -         -         -         0.09         0.09         0.09         -         -         -         -         0.09         0.09         -         -         -         -         -         0.09         0.09         -         -         -         -         -         -         0.09         0.09         -         -         -         -         -         -         -         -         -         0.09         0.09         -         -         -         -         -         -         -         -         -         -         -         -         -         - |



(800) 334-5493

ACZ Project ID: L65563

#### Hecla Greens Creek Mining Company

| ACZ ID | WORKNUM PARAMETER | METHOD | QUAL DESCRIPTION |  |
|--------|-------------------|--------|------------------|--|
|        |                   |        |                  |  |

No extended qualifiers associated with this analysis



ACZ Project ID: L65563

Soil Analysis

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Solids, Percent

D2216-80

| ACZ | Laboratories, Inc.                         |  |
|-----|--------------------------------------------|--|
|     | Steamboat Springs, CO 80487 (800) 334-5493 |  |

# Sample Receipt

| Hecla Greens Creek Mining Company                                                   | ACZ Project ID: |               | L65563    |
|-------------------------------------------------------------------------------------|-----------------|---------------|-----------|
| S21050                                                                              | Date Received:  | 04/29/20      | 21 11:39  |
|                                                                                     | Received By:    |               |           |
|                                                                                     | Date Printed:   | 4/            | /30/2021  |
| Receipt Verification                                                                |                 |               | N1.4      |
| 1) Is a foreign soil permit included for applicable samples?                        | YE              | S NO          | NA<br>X   |
| 2) Is the Chain of Custody form or other directive shipping papers present?         | X               |               |           |
| 3) Does this project require special handling procedures such as CLP protocol?      |                 | X             |           |
| 4) Are any samples NRC licensable material?                                         |                 |               | Х         |
| 5) If samples are received past hold time, proceed with requested short hold time a | nalyses? X      |               |           |
| 6) Is the Chain of Custody form complete and accurate?                              | X               |               |           |
| 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the    | e samples?      | Х             |           |
| Samples/Containers                                                                  |                 |               |           |
|                                                                                     | YE              | S NO          | NA        |
| 8) Are all containers intact and with no leaks?                                     | X               |               |           |
| 9) Are all labels on containers and are they intact and legible?                    | X               |               |           |
| 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, ar    | nd Time? X      |               |           |
| 11) For preserved bottle types, was the pH checked and within limits? $^{1}$        |                 |               | Х         |
| 12) Is there sufficient sample volume to perform all requested work?                | X               |               |           |
| 13) Is the custody seal intact on all containers?                                   |                 |               | Х         |
| 14) Are samples that require zero headspace acceptable?                             |                 |               | Х         |
| 15) Are all sample containers appropriate for analytical requirements?              | X               |               |           |
| 16) Is there an Hg-1631 trip blank present?                                         |                 |               | Х         |
| 17) Is there a VOA trip blank present?                                              |                 |               | Х         |
| 18) Were all samples received within hold time?                                     | X               |               |           |
|                                                                                     | NA inc          | licates Not A | pplicable |

#### Chain of Custody Related Remarks

**Client Contact Remarks** 

Shipping Containers

| Cooler Id | Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|----------|----------------------|------------|-------------------------|
|           |          |                      |            |                         |
| NA35003   | 4.2      | NA                   | 15         | N/A                     |

#### Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s) but was thawed by receipt at ACZ.

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.





ACZ Project ID: L65563 Date Received: 04/29/2021 11:39 Received By: Date Printed: 4/30/2021

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

| Lab Sent To:<br>ACZ               |                                                       |                                                      |             |                                                                             |             |              |               |               |            |             |             |  |      |      |      |          |             |         | Shipment Checklist        | I ah Contracted                               | Fadev Dichun Schadulad            |                                 |                                       | Condition of Sample Container |                   |
|-----------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------|-----------------------------------------------------------------------------|-------------|--------------|---------------|---------------|------------|-------------|-------------|--|------|------|------|----------|-------------|---------|---------------------------|-----------------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-------------------------------|-------------------|
| 20550                             |                                                       | Container                                            |             | al Lead (Pb)                                                                | IJ          | X            | X             | X             | X          | x           |             |  |      |      |      |          |             |         | Deliverable Instructions: | Use naming system below for report. XXXX will | be replaced by the lab Project IL | 20210427_Miscellaneous_ACZ_XXXX | e-mail to: gcenvdata@hecla-mining.com | RECEIVED BY:                  |                   |
| Custody Record / Analysis Request | Name: Miscellaneous                                   | Report To: gcenvdata@hecla-mining.com<br>Sampler: DL | S           | Time Collected<br>Matrix<br>Water / Soil<br>2. Clear Glass                  |             | 1205 Soil    | 1 1210 Soil 1 | 1 1220 Soil 1 | 1225       | 1230        | 1235        |  |      |      |      |          |             |         |                           | Use naming sys                                | be replaced by t                  | 20210427                        | e-mail to: gcenv                      | RELINQUISHED BY:              | Sionature.        |
| Chain of Custody Record / /       |                                                       |                                                      | P.O.Number. | XX<br>8420 D. Landes<br>8461 G. Fredheim<br>Date Collected                  |             | 3A 4/27/2021 | B 4/27/2021   | C 4/27/2021   |            | B 4/27/2021 | C 4/27/2021 |  |      |      |      |          |             |         |                           |                                               | SE KUSH                           |                                 |                                       | RECEIVED BY:                  | Signature:        |
| Chain of Custody Chai             | Company Address:<br>Hecla Greens Creek Mining Company | P.O. Box 32199<br>Juneau, AK 99803                   |             | Telephone: (907) 790-XXXX<br>8482 D. Maller 8420 D.<br>8457 C. Sell 8461 G. | Sample I.D. | CSB-NE-C3A   | CSB-NE-C3B    | CSB-NE-C3C    | CSB-SE-C2A | CSB-SE-C2B  | CSB-SE-C2C  |  |      |      |      |          |             |         | Comments:                 | DID                                           | PLEASE K                          |                                 |                                       | IED/BY SAMPLER:               | Signature: C L. V |
| E Solo                            | 63-21                                                 | 0506                                                 | 615         | 21                                                                          |             |              |               |               |            |             |             |  | <br> | <br> | <br> | <u> </u> | <br><b></b> | <u></u> | <u> </u>                  |                                               |                                   |                                 |                                       | Pa                            |                   |

( wolad ase ) HSUS

× × × × × ×

2 > Hq

ပ္ရ

Temp Received:

Printed Name:

Printed Name:

Printed Name:

Signature:

Firm:

Date /

Date / Time:

Date / Time:

Firm:

HGCMC

Ë

Firm:

Signatuy

# of Coolers:

Seals Intact:

of

Page

#### **Laboratory Data Review Checklist**

## Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

#### Date:

5/16/2022

## Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L65563

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

Hazard Identification Number:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

#### Note: Any N/A or No box checked must have an explanation in the comments box.

#### 1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

| Yes□ | No⊠  | N/A | Comments:  |
|------|------|-----|------------|
| 100  | 1102 |     | Community. |

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

| Yes $\boxtimes$ No $\square$ N/A $\square$ | Comments: |
|--------------------------------------------|-----------|
|                                            |           |
| Correct analyses requested?                |           |

b. Correct analyses requested?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

## 3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Temperature documented, metals analysis do not have a temperature requirement

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Metals do not require preservation

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Yes, samples OK

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

| Yes | No | $N/A \boxtimes$ | Comments: |
|-----|----|-----------------|-----------|

No discrepancies found

e. Data quality or usability affected?

Comments:

Data quality and usability not affected

- 4. Case Narrative
  - a. Present and understandable?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No discrepancies, errors, or QC failures occured

c. Were all corrective actions documented?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No corrective action needed

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Data quality and usability are not affected

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

#### 5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. All applicable holding times met?

| Yes⊠ 1 | No | $N/A\square$ | Comments: |
|--------|----|--------------|-----------|
|--------|----|--------------|-----------|

c. All soils reported on a dry weight basis?

| Yes⊠ | No | $N/A\square$ | Comments: |
|------|----|--------------|-----------|
|------|----|--------------|-----------|

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

## 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

## c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

Data quality and usability not affected.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

- e. Trip Blanks
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1$  = Sample Concentration  $R_2$  = Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

iii. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

May 6, 2021

CS Site Name:

Greens Creek Concentrate Building

# 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

# a. Defined and appropriate?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:



November 19, 2021

Report to: gcenvdata@hecla-mining.com Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99801-2199 Bill to: Accounts Payable Hecla Greens Creek Mining Company P.O. Box 32199 Juneau, AK 99803-2199

Project ID: S21050 ACZ Project ID: L69792

gcenvdata@hecla-mining.com:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on November 09, 2021. This project has been assigned to ACZ's project number, L69792. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L69792. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after December 19, 2021. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

- 9. h / 1

Sue Webber has reviewed and approved this report.





| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-SE-C3A |

## ACZ Sample ID: **L69792-01** Date Sampled: 11/02/21 15:50 Date Received: 11/09/21 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 102      | 1660   |      |    | mg/Kg | 3.06 | 15.3 | 11/19/21 1:15  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 79.8   |      | *  | %     | 0.1  | 0.5  | 11/17/21 10:10 | mlp     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      |    |       |      |      | 11/11/21 15:36 | jpb     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 11/16/21 12:44 | mep     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |      |      | 11/16/21 8:40  | mep     |



| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-SE-C3B |

## ACZ Sample ID: **L69792-02** Date Sampled: 11/02/21 15:55 Date Received: 11/09/21 Sample Matrix: Soil

| Matala Analysia            |                    |          |        |      |    |       |      |      |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|------|------|----------------|---------|
| Metals Analysis            |                    |          | _      |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 101      | 824    |      |    | mg/Kg | 3.03 | 15.2 | 11/19/21 1:23  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 80.0   |      | *  | %     | 0.1  | 0.5  | 11/17/21 21:12 | mlp     |
| Soil Preparation           |                    |          |        |      |    |       |      |      |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL  | PQL  | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      |    |       |      |      | 11/11/21 15:48 | jpb     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |      |      | 11/16/21 13:12 | mep     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |      |      | 11/16/21 8:50  | mep     |



| Project ID: | S21050     |
|-------------|------------|
| Sample ID:  | CSB-SE-C3C |

## ACZ Sample ID: **L69792-03** Date Sampled: 11/02/21 16:00 Date Received: 11/09/21 Sample Matrix: Soil

| Metals Analysis            |                    |          |        |      |    |       |     |     |                |         |
|----------------------------|--------------------|----------|--------|------|----|-------|-----|-----|----------------|---------|
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Lead, total (3050)         | M6010D ICP         | 100      | 564    |      |    | mg/Kg | 3   | 15  | 11/19/21 1:27  | kja     |
| Soil Analysis              |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Solids, Percent            | D2216-80           | 1        | 80.8   |      | *  | %     | 0.1 | 0.5 | 11/18/21 2:43  | mlp     |
| Soil Preparation           |                    |          |        |      |    |       |     |     |                |         |
| Parameter                  | EPA Method         | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date           | Analyst |
| Air Dry at 34 Degrees<br>C | USDA No. 1, 1972   |          |        |      |    |       |     |     | 11/11/21 16:00 | jpb     |
| Digestion - Hot Plate      | M3050B ICP         |          |        |      |    |       |     |     | 11/16/21 13:40 | mep     |
| Sieve-2000 um<br>(2.0mm)   | ASA No.9, 15-4.2.2 |          |        |      |    |       |     |     | 11/16/21 9:00  | mep     |

| ACZ                 | Laboratories, Inc.                         |
|---------------------|--------------------------------------------|
| 2773 Downhill Drive | Steamboat Springs, CO 80487 (800) 334-5493 |

| Project ID: | S21050      |
|-------------|-------------|
| Sample ID:  | CSB-SE-TCLP |

# ACZ Sample ID: L69792-04 Date Sampled: 11/02/21 16:05 Date Received: 11/09/21 Sample Matrix: Soil

| Inorganic Prep               |            |          |        |      |    |       |     |     |               |         |
|------------------------------|------------|----------|--------|------|----|-------|-----|-----|---------------|---------|
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| Total Hot Plate<br>Digestion | M3010A ICP |          |        |      |    |       |     |     | 11/17/21 14:5 | 58 jlw  |
| Metals Analysis              |            |          |        |      |    |       |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| Lead (TCLP)                  | M6010D ICP | 1        | 1680   |      | *  | ug/L  | 30  | 150 | 11/18/21 11:5 | 6 jlw   |
| Soil Preparation             |            |          |        |      |    |       |     |     |               |         |
| Parameter                    | EPA Method | Dilution | Result | Qual | XQ | Units | MDL | PQL | Date          | Analyst |
| TCLP Metal Extraction        | M1311      |          |        |      |    |       |     |     | 11/16/21 7:50 | 6 ksf   |



Inorganic Reference

| Batch                                                                                                                                                                                                | r Explanations<br>A distinct set of samples analyzed at a specific time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
| Found                                                                                                                                                                                                | Value of the QC Type of interest<br>Upper limit for RPD, in %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
| Limit<br>Lower                                                                                                                                                                                       | Lower Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
| MDL                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | loss smitted or a                                                                                                                                                                                                                                                     | qual to the POL (and comment #5)                                                                                                                                                                                                                                                        |
| WDL                                                                                                                                                                                                  | Method Detection Limit. Same as Minimum Reporting Limit ur<br>Allows for instrument and annual fluctuations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | liess officied of e                                                                                                                                                                                                                                                   | qual to the PQE (see comment #5).                                                                                                                                                                                                                                                       |
| PCN/SCN                                                                                                                                                                                              | A number assigned to reagents/standards to trace to the man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ufacturer's certific                                                                                                                                                                                                                                                  | ate of analysis                                                                                                                                                                                                                                                                         |
| PQL                                                                                                                                                                                                  | Practical Quantitation Limit. Synonymous with the EPA term "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                      | True Value of the Control Sample or the amount added to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
| Rec                                                                                                                                                                                                  | Recovered amount of the true value or spike added, in % (exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                     | ı/Ka)                                                                                                                                                                                                                                                                                   |
| RPD                                                                                                                                                                                                  | Relative Percent Difference, calculation used for Duplicate QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                       |
| Upper                                                                                                                                                                                                | Upper Recovery Limit, in % (except for LCSS, mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |
| Sample                                                                                                                                                                                               | Value of the Sample of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
| Sample Ty<br>AS                                                                                                                                                                                      | Analytical Spike (Post Digestion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LCSWD                                                                                                                                                                                                                                                                 | Laboratory Control Sample - Water Duplicat                                                                                                                                                                                                                                              |
| AS<br>ASD                                                                                                                                                                                            | Analytical Spike (Post Digestion)<br>Analytical Spike (Post Digestion) Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LESWD                                                                                                                                                                                                                                                                 | Laboratory Fortified Blank                                                                                                                                                                                                                                                              |
| CCB                                                                                                                                                                                                  | Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LFM                                                                                                                                                                                                                                                                   | Laboratory Fortified Matrix                                                                                                                                                                                                                                                             |
| CCV                                                                                                                                                                                                  | Continuing Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LFMD                                                                                                                                                                                                                                                                  | Laboratory Fortified Matrix Duplicate                                                                                                                                                                                                                                                   |
| DUP                                                                                                                                                                                                  | Sample Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LRB                                                                                                                                                                                                                                                                   | Laboratory Reagent Blank                                                                                                                                                                                                                                                                |
| ICB                                                                                                                                                                                                  | Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MS                                                                                                                                                                                                                                                                    | Matrix Spike                                                                                                                                                                                                                                                                            |
| ICV                                                                                                                                                                                                  | Initial Calibration Verification standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSD                                                                                                                                                                                                                                                                   | Matrix Spike Duplicate                                                                                                                                                                                                                                                                  |
| ICSAB                                                                                                                                                                                                | Inter-element Correction Standard - A plus B solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PBS                                                                                                                                                                                                                                                                   | Prep Blank - Soil                                                                                                                                                                                                                                                                       |
| LCSS                                                                                                                                                                                                 | Laboratory Control Sample - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PBW                                                                                                                                                                                                                                                                   | Prep Blank - Water                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . =                                                                                                                                                                                                                                                                   | op Blanne Tratol                                                                                                                                                                                                                                                                        |
| LCSSD                                                                                                                                                                                                | Laboratory Control Sample - Soil Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PQV                                                                                                                                                                                                                                                                   | Practical Quantitation Verification standard                                                                                                                                                                                                                                            |
| LCSSD<br>LCSW                                                                                                                                                                                        | Laboratory Control Sample - Soil Duplicate<br>Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PQV<br>SDL                                                                                                                                                                                                                                                            | Practical Quantitation Verification standard<br>Serial Dilution                                                                                                                                                                                                                         |
| LCSW                                                                                                                                                                                                 | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
| <i>LCSW</i><br>C Sample Ty                                                                                                                                                                           | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL                                                                                                                                                                                                                                                                   | Serial Dilution                                                                                                                                                                                                                                                                         |
| <i>LCSW</i><br>Sample Ty<br>Blanks                                                                                                                                                                   | Laboratory Control Sample - Water<br>vpe Explanations<br>Verifies that there is no or minimal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SDL                                                                                                                                                                                                                                                                   | Serial Dilution<br>e prep method or calibration procedure.                                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa                                                                                                                                                            | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>entamination in the<br>including the prep                                                                                                                                                                                                                      | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates                                                                                                                                              | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates                                                                                                                                              | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard                                                                                                                    | Laboratory Control Sample - Water         rpe Explanations         weifies that there is no or minimal comples         Verifies the accuracy of the method,         Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SDL<br>ontamination in the<br>including the prep<br>nt and/or method                                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard                                                                                                                    | Laboratory Control Sample - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.                                                                                                                                                                                  | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B                                                                                               | Laboratory Control Sample - Water         rpe Explanations         with the end of the second structure of the seco | SDL<br>ontamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa                                                                                                                                                              | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H                                                                                          | Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal completes         tified Matrix       Verifies the accuracy of the method, Verifies the precision of the instrument verifies the validity of the calibration.         s (Qual)       Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an analysis exceeded method hold time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>i immediate hold                                                                                                                                          | Serial Dilution<br>e prep method or calibration procedure.<br>o procedure.                                                                                                                                                                                                              |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L                                                                                     | Laboratory Control Sample - Water         vpe Explanations         with the explanation of the instrument         with the explanation of the explanation         s (Qual)         Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>i immediate hold<br>gative threshold.                                                                                                                     | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time.                                                                                                                                                                          |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H                                                                                          | Laboratory Control Sample - Water         vpe Explanations         with the end of the second of the method, were the accuracy of the method, verifies the precision of the instrument to the the the end of the method is the precision of the instrument to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmmediate hold<br>pative threshold.<br>e level of the associa                                                                                            | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                           |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                             | Laboratory Control Sample - Water         vpe Explanations         with the explanations         withe explanations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmmediate hold<br>pative threshold.<br>e level of the associa                                                                                            | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. pciated value.                                                                                                                                                           |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                | Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal comples         tified Matrix       Verifies the accuracy of the method, Verifies the precision of the instrument Verifies the validity of the calibration.         s (Qual)       Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>i immediate hold<br>pative threshold.<br>the sample detect                                                                                                | Serial Dilution e prep method or calibration procedure. procedure. ted value is an estimated quantity. time. pociated value. tion limit.                                                                                                                                                |
| LCSW<br>Sample Ty<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U                                                                                | Laboratory Control Sample - Water         rpe Explanations         Imples       Verifies that there is no or minimal complex         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analyte sexceeded method hold time. pH is a field test with an         Target analyte response was below the laboratory defined neg         The associated value is either the sample quantitation limit or to the         EPA 600/4-83-020. Methods for Chemical Analysis of Water at the sample for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmmediate hold<br>pative threshold.<br>e level of the association<br>the sample detection<br>and Wastes, Marc                                            | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983.                                                                                                                                      |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)                                                       | Laboratory Control Sample - Water         vpe Explanations         with the explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix         Determines sample matrix interference<br>Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or test<br>ences         EPA 600/R-83-020. Methods for Chemical Analysis of Water as<br>EPA 600/R-93-100. Methods for the Determination of Inorgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>ic Substances in                                | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                  |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)                                                | Laboratory Control Sample - Water         xpe Explanations         with the explanation of the explanation of the explanation         with the explanation of the explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>ic Substances in                                | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                  |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)                                            | Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal converting the precision of the method, Verifies the precision of the instrument to the precision of the instrument to the precision of the instrument to the precision of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the the precision of linorgan EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>pative threshold.<br>I level of the association<br>the sample detection<br>and Wastes, Marca<br>ic Substances in<br>n Environmental  | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                  |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)                                                | Laboratory Control Sample - Water         xpe Explanations         with the explanation of the explanation of the explanation         with the explanation of the explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>pative threshold.<br>I level of the association<br>the sample detection<br>and Wastes, Marca<br>ic Substances in<br>n Environmental  | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                  |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Refere<br>(1)<br>(2)<br>(3)<br>(4)                                            | Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal converting the precision of the method, Verifies the precision of the instrument to the precision of the instrument to the precision of the instrument to the precision of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the the precision of linorgan EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>in immediate hold<br>pative threshold.<br>I level of the association<br>the sample detection<br>and Wastes, Marca<br>ic Substances in<br>n Environmental  | Serial Dilution e prep method or calibration procedure. p procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993.                                                                                                  |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>Sthod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                  | Laboratory Control Sample - Water         rpe Explanations         mples       Verifies that there is no or minimal converting the precision of the method, Verifies the precision of the instrument to the precision of the instrument to the precision of the instrument to the precision of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F Analysis exceeded method hold time. pH is a field test with an Target analyte response was below the laboratory defined neg The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the the precision of linorgan EPA 600/R-93-100. Methods for Chemical Analysis of Water and EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>i immediate hold<br>pative threshold.<br>e level of the associa<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental<br>iter.  | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. botated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.                                                  |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                   | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrument         tified Matrix       Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and         Target analyte response was below the laboratory defined neg         The material was analyzed for, but was not detected above the         The associated value is either the sample quantitation limit or the         ences         EPA 600/R-93-100. Methods for Chemical Analysis of Water at         EPA 600/R-94-111. Methods for the Determination of Inorgan         EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental<br>ter. | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.              |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>ethod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>E<br>E<br>M<br>mments<br>(1)  | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix         Determines sample matrix interference<br>Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or the<br>ences         EPA 600/R-93-100. Methods for Chemical Analysis of Water at<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wastewat         QC results calculated from raw data. Results may vary slightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>is immediate hold<br>pative threshold.<br>I here sample detection<br>in Environmental<br>iter.                                                            | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations.              |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>thod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)                                   | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method,<br>Verifies the precision of the instrument<br>tified Matrix         Determines sample matrix interference<br>Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F<br>Analysis exceeded method hold time. pH is a field test with an<br>Target analyte response was below the laboratory defined neg<br>The material was analyzed for, but was not detected above the<br>The associated value is either the sample quantitation limit or termination of Inorgan<br>EPA 600/R-93-100. Methods for Chemical Analysis of Water and<br>EPA 600/R-94-111. Methods for the Determination of Inorgan<br>EPA 600/R-94-111. Methods for Evaluating Solid Waste.<br>Standard Methods for the Examination of Water and Wasteward<br>QC results calculated from raw data. Results may vary slightly<br>Soil, Sludge, and Plant matrices for Inorganic analyses are reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental<br>ter. | Serial Dilution e prep method or calibration procedure. procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis.   |
| LCSW<br>Blanks<br>Control Sa<br>Duplicates<br>Spikes/For<br>Standard<br>Z Qualifiers<br>B<br>H<br>L<br>U<br>U<br>Sthod Reference<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>Somments<br>(1)<br>(2)<br>(3) | Laboratory Control Sample - Water         rpe Explanations         Werifies that there is no or minimal comples         Verifies the accuracy of the method, Verifies the precision of the instrument tified Matrix         Determines sample matrix interference         Verifies the validity of the calibration.         s (Qual)         Analyte concentration detected at a value between MDL and F         Analyte concentration detected at a value between MDL and F         Analysis exceeded method hold time. pH is a field test with and Target analyte response was below the laboratory defined negod The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Determination of Metals is EPA SW-846. Test Methods for Evaluating Solid Waste.         Standard Methods for the Examination of Water and Wasteward QC results calculated from raw data. Results may vary slightly Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SDL<br>entamination in the<br>including the prep<br>nt and/or method<br>ces, if any.<br>PQL. The associa<br>inmediate hold<br>pative threshold.<br>e level of the association<br>the sample detect<br>and Wastes, Marc<br>ic Substances in<br>n Environmental<br>ter. | Serial Dilution e prep method or calibration procedure. p procedure. to procedure. ted value is an estimated quantity. time. bciated value. tion limit. ch 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. eight basis. |

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

# ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

#### HECLAAK

#### ACZ Project ID: L69792

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

| Lead (TCLP)                   |       |                | M6010D      | ICP      |        |        |       |      |       |       |     |       |      |
|-------------------------------|-------|----------------|-------------|----------|--------|--------|-------|------|-------|-------|-----|-------|------|
| ACZ ID                        | Туре  | Analyzed       | PCN/SCN     | QC       | Sample | Found  | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG531982                      |       |                |             |          |        |        |       |      |       |       |     |       |      |
| WG531982ICV                   | ICV   | 11/18/21 11:12 | II211104-6  | 4        |        | 4.063  | mg/L  | 102  | 90    | 110   |     |       |      |
| WG531982ICB                   | ICB   | 11/18/21 11:16 |             |          |        | .031   | mg/L  |      | -0.09 | 0.09  |     |       |      |
| WG531736PBS                   | PBS   | 11/18/21 11:40 |             |          |        | U      | mg/L  |      | -0.09 | 0.09  |     |       |      |
| WG531736LFB                   | LFB   | 11/18/21 11:44 | IITCLPSPIKE | 1.001    |        | .946   | mg/L  | 95   | 80    | 120   |     |       |      |
| L69792-04DUP                  | DUP   | 11/18/21 12:00 |             |          | 1.68   | 2.76   | mg/L  |      |       |       | 49  | 20    | RD   |
| L69792-04MS                   | MS    | 11/18/21 12:04 | IITCLPSPIKE | 1.001    | 1.68   | 2.52   | mg/L  | 84   | 75    | 125   |     |       |      |
| L69792-04MSD                  | MSD   | 11/18/21 12:09 | IITCLPSPIKE | 1.001    | 1.68   | 2.509  | mg/L  | 83   | 75    | 125   | 0   | 20    |      |
| Lead, total (3050) M6010D ICP |       |                |             |          |        |        |       |      |       |       |     |       |      |
| ACZ ID                        | Туре  | Analyzed       | PCN/SCN     | QC       | Sample | Found  | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG531895                      |       |                |             |          |        |        |       |      |       |       |     |       |      |
| WG531895ICV                   | ICV   | 11/19/21 0:02  | II211104-6  | 4        |        | 3.945  | mg/L  | 99   | 90    | 110   |     |       |      |
| WG531895ICB                   | ICB   | 11/19/21 0:05  |             |          |        | U      | mg/L  |      | -0.09 | 0.09  |     |       |      |
| WG531755PBS                   | PBS   | 11/19/21 0:28  |             |          |        | U      | mg/Kg |      | -9    | 9     |     |       |      |
| WG531755LCSS1                 | LCSS  | 11/19/21 0:32  | PCN63583    | 130      |        | 124.8  | mg/Kg |      | 107   | 152   |     |       |      |
| WG531755LCSSD1                | LCSSD | 11/19/21 0:35  | PCN63583    | 130      |        | 126.5  | mg/Kg |      | 107   | 152   | 1   | 20    |      |
| L69587-01MS                   | MS    | 11/19/21 0:50  | II211104-5  | 101.1414 | 5.06   | 99.869 | mg/Kg | 94   | 75    | 125   |     |       |      |
| L69587-01MSD                  | MSD   | 11/19/21 0:53  | II211104-5  | 101.1414 | 5.06   | 99.697 | mg/Kg | 94   | 75    | 125   | 0   | 20    |      |
| Solids, Percent               |       |                | D2216-80    | )        |        |        |       |      |       |       |     |       |      |
| ACZ ID                        | Туре  | Analyzed       | PCN/SCN     | QC       | Sample | Found  | Units | Rec% | Lower | Upper | RPD | Limit | Qual |
| WG531873                      |       |                |             |          |        |        |       |      |       |       |     |       |      |
| L69792-01DUP                  | DUP   | 11/17/21 15:41 |             |          | 79.8   | 79.5   | %     |      |       |       | 0   | 20    |      |
| WG531873PBS                   | PBS   | 11/18/21 8:15  |             |          |        | U      | %     |      | -0.1  | 0.1   |     |       |      |



2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

# Inorganic Extended Qualifier Report

ACZ Project ID: L69792

#### Hecla Greens Creek Mining Company

| ACZ ID    | WORKNUM  | PARAMETER   | METHOD     | QUAL | DESCRIPTION                                                                                                                                     |
|-----------|----------|-------------|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| L69792-04 | WG531982 | Lead (TCLP) | M6010D ICP |      | For a solid matrix, the duplicate RPD (spike or matrix) exceeded the control limit, which is attributable to the non-homogeneity of the sample. |
|           |          |             | M6010D ICP |      | The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.             |



ACZ Project ID: L69792

Soil Analysis

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Solids, Percent

D2216-80

## ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Hecla Greens Creek Mining Company S21050

## Sample Receipt

ACZ Project ID: L69792 Date Received: 11/09/2021 11:18 Received By: Date Printed: 11/10/2021

YES

#### **Receipt Verification**

- 1) Is a foreign soil permit included for applicable samples?
- 2) Is the Chain of Custody form or other directive shipping papers present?
- 3) Does this project require special handling procedures such as CLP protocol?
- 4) Are any samples NRC licensable material?
- 5) If samples are received past hold time, proceed with requested short hold time analyses?
- 6) Is the Chain of Custody form complete and accurate?
- 7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples?

A change was made in the sample 4 ID was crossed out and rewritten section prior to ACZ custody.

A change was made in the sample 4 ID was crossed out and rewritten section prior to ACZ custody.

A change was made in the sample 4 ID was crossed out and rewritten section prior to ACZ custody.

A change was made in the sample 4 ID was crossed out and rewritten section prior to ACZ custody.

A change was made in the sample 4 ID was crossed out and rewritten section prior to ACZ custody.

Samples/Containers

8) Are all containers intact and with no leaks?

- 9) Are all labels on containers and are they intact and legible?
- 10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?
- 11) For preserved bottle types, was the pH checked and within limits?<sup>1</sup>
- 12) Is there sufficient sample volume to perform all requested work?
- 13) Is the custody seal intact on all containers?
- 14) Are samples that require zero headspace acceptable?
- 15) Are all sample containers appropriate for analytical requirements?
- 16) Is there an Hg-1631 trip blank present?
- 17) Is there a VOA trip blank present?
- 18) Were all samples received within hold time?

**Chain of Custody Related Remarks** 

**Client Contact Remarks** 

REPAD LPII 2012-03

L69792-2111190956

| YES       | NO         | NA       |
|-----------|------------|----------|
| Х         |            |          |
| Х         |            |          |
| Х         |            |          |
|           |            | Х        |
| Х         |            |          |
|           |            | Х        |
|           |            | Х        |
| Х         |            |          |
|           |            | Х        |
|           |            | Х        |
| Х         |            |          |
| NA indica | tes Not Ap | plicable |

|   |   | Х |
|---|---|---|
| Х |   |   |
|   | Х |   |
|   |   | Х |
| Х |   |   |
| Х |   |   |
| Х |   |   |

NO

NA

| ACZ | Laboratories, Inc.                         |
|-----|--------------------------------------------|
|     | Steamboat Springs, CO 80487 (800) 334-5493 |

Hecla Greens Creek Mining Company S21050

**Shipping Containers** 

### ACZ Project ID: L69792 Date Received: 11/09/2021 11:18 Received By: Date Printed: 11/10/2021

| Cooler Id | l Temp(°C) | Temp<br>Criteria(°C) | Rad(µR/Hr) | Custody Seal<br>Intact? |
|-----------|------------|----------------------|------------|-------------------------|
|           |            |                      |            |                         |
| NA36396   | 5.6        | NA                   | 15         | N/A                     |

#### Was ice present in the shipment container(s)?

Yes - Gel ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

<sup>1</sup> The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

|              |                                                  |                  |                                       | <br>· .                           | (           | wolad aas ) HSU                                                     | Я           |            |           |            | T                  | ľ            |    |   | ſ | T          | Τ | Τ      | Ι |   |        |    | -   |   | Γ                  |                           | ,                                            |                        |                                       |                                 | ç              |               |               |                  |
|--------------|--------------------------------------------------|------------------|---------------------------------------|-----------------------------------|-------------|---------------------------------------------------------------------|-------------|------------|-----------|------------|--------------------|--------------|----|---|---|------------|---|--------|---|---|--------|----|-----|---|--------------------|---------------------------|----------------------------------------------|------------------------|---------------------------------------|---------------------------------|----------------|---------------|---------------|------------------|
|              |                                                  |                  |                                       |                                   |             | 2 > H                                                               |             |            | T         | T          | T                  | T            | T  | 1 |   |            | Ι | T      |   |   |        |    |     |   | ]                  |                           |                                              |                        |                                       | ż                               |                |               |               |                  |
|              |                                                  |                  |                                       | · · ·                             |             |                                                                     |             |            |           |            |                    | Τ            |    |   |   |            |   |        |   |   |        |    |     |   | list _             |                           |                                              | FedEx Pickup Scheduled |                                       | Condition of Sample Containers: |                | 1             | 1             |                  |
|              |                                                  |                  |                                       |                                   |             |                                                                     |             |            |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   | Shimment Checklist |                           | ъ                                            | p Sch                  |                                       | le Coi                          |                | ł             |               |                  |
| ö            |                                                  |                  |                                       |                                   |             |                                                                     |             |            |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   | hent               | 111-111-1                 | ontact                                       | Picku                  |                                       | f Sam                           | ived:          | ž             | ÷             | 4                |
| nt T         | Z                                                |                  |                                       |                                   |             |                                                                     | Τ           |            |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   | Ch.                |                           | Lab Contacted                                | FedEy                  |                                       | ition o                         | Temp Received: | # of Coolers: | Seals Intact: |                  |
| Lab Sent To: | ACZ                                              |                  |                                       |                                   |             |                                                                     | 1           | $\uparrow$ | ╋         | ╡          | ╈                  | ╈            | ╈  | ╈ |   | ╋          | ╈ | ╈      | ╈ | ŀ | T      |    |     | T |                    |                           |                                              | D٢                     | j                                     | Cond                            | Tem            | # of          | Seal          |                  |
| La           |                                                  |                  |                                       |                                   | <u>.</u>    |                                                                     |             |            | ~         | 1          |                    | T            | T  | T | T | T          |   |        |   |   |        |    |     |   |                    | L                         |                                              |                        |                                       |                                 |                |               |               |                  |
|              |                                                  |                  |                                       |                                   |             | CLP Pb                                                              | T           |            | Τ         |            | ×                  |              |    |   |   | Τ          | Т |        |   |   |        | T  |     |   |                    |                           |                                              | XX                     |                                       |                                 |                |               |               |                  |
|              |                                                  |                  |                                       |                                   |             | da leso                                                             |             | ×          | ×         | ×          |                    | T            | T  |   | T |            |   | Τ      | Τ |   |        |    |     |   |                    |                           |                                              | ACZ XXXX               |                                       |                                 |                |               |               |                  |
|              |                                                  |                  |                                       |                                   |             |                                                                     | -           |            |           |            | 4                  | $\downarrow$ | +  | ╉ | + | +          | ╉ |        | + | + | ╀      | +- | Н   |   | -                  | lliw.                     |                                              | Z                      |                                       |                                 |                |               |               |                  |
|              |                                                  |                  |                                       | 17.<br>19                         |             |                                                                     |             | 39.93      |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           | Ş                                            |                        | 1 6                                   |                                 |                |               |               |                  |
|              | S                                                |                  |                                       |                                   | .,          | -                                                                   |             |            |           |            |                    |              |    |   | T |            |   |        |   |   |        |    |     |   |                    | Deliverable Instructions: | 01F. 2                                       | sno                    | ng.col                                | ۰.<br>پز                        |                |               |               |                  |
|              | Æ                                                |                  |                                       |                                   |             |                                                                     | _           |            | -         | -          | +                  | +            |    | + | + | ╉          | ╉ | ╉      | ╉ | ╋ | ╉      | +  |     | + |                    |                           |                                              | lane                   | -mini-                                | RECEIVED BY                     | ë              | Printed Name: |               | Time:            |
|              | X-                                               |                  |                                       | Container                         |             | · · · · · · · · · · · · · · · · · · ·                               | -           |            | -         |            | -                  | +            | -+ |   | + | ╉          | ╉ |        | ╉ | ╋ | ╀      | ╉  | ╞── | ╉ | -                  | three for the form        | Proie                                        | scel                   | hecla                                 | ECEI                            | Signature:     | rinted        | Firm:         | Date / Time:     |
|              | 5                                                | IS               |                                       | Cont                              |             |                                                                     | -           |            | $\neg$    |            | ·                  | +            | +  | ╉ | + | +          | ╉ | ╈      | ╉ | ╋ | $^{+}$ | ╋  |     |   | ľ                  | 3 J                       | em oe                                        | Mi                     | -<br>data@                            |                                 |                |               | <u> </u>      | f                |
|              | Ŭ.                                               | neot             | ų                                     |                                   |             |                                                                     |             |            |           |            |                    |              |    | ╋ | ╡ | ╋          | ┫ |        | ╈ |   |        | ╈  |     | ╡ |                    | 40.00                     | g syst<br>4 hv <del>ti</del>                 | 102 I                  | - Jone -                              |                                 |                |               |               |                  |
|              | لہ                                               | cella            | ing c                                 |                                   |             | ass Jar                                                             | er.         | -          | 1         | -          | -                  |              |    | 1 | 1 | 1          | T | 1      | T |   | T      |    |     |   |                    |                           | Use naming system below for report. AAAA win | 20211102 Miscellaneous | e-mail to: ocenvdata@hecla-mining.com |                                 |                |               |               |                  |
|              | Custod Sustody Record / Analysis Request Log 790 | Miscellaneous    | Report To: gcenvdata@hecla-mining.com |                                   |             | Vater / Soil                                                        |             | Soil       | Soil      | Soil       | Soil               |              | 1  | T | T |            |   | Τ      |   |   |        |    | Τ   |   |                    | 11                        | Use<br>F                                     | 200                    | e-ma                                  | ,<br>X                          |                |               |               |                  |
|              | Sequ                                             |                  | hecl                                  |                                   | 050         | xitteM                                                              |             | Ň          | Ň         | Ň          | Ň                  |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       | CHED                            |                | ne:           |               |                  |
|              | sis F                                            |                  | lata(a                                | DĽ                                | S21050      |                                                                     |             | 1550       | 1555      | 1600       | 1605               |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 | Signature:     | Printed Name: |               | Date / Time:     |
|              | aly                                              | me:              | cenv                                  |                                   |             | Time Collected                                                      |             | 15         | 15        | 16         | 16                 |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       | 124                             | Sig            | Print         | Firm:         | Date             |
|              | An'                                              | Project Name:    | To: g                                 | ij                                | mber:       |                                                                     |             | 2021       | 2021      | 2021       | 2021               |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 |                |               |               |                  |
|              | rd/                                              | Proje            | eport                                 | Sampler:                          | P.O.Number: | Date Collected                                                      |             | 11/2/2021  | 11/2/2021 | 11/2/2021  | 11/2/2021          |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 | $\vdash$       |               |               | ğ                |
|              | teco                                             |                  | Ř                                     | ů                                 | 9           |                                                                     |             |            |           |            |                    |              |    | + | + | $\uparrow$ |   | $\neg$ | + | + | ╈      | +  | ╈   |   |                    |                           |                                              |                        |                                       |                                 |                |               |               | -                |
|              | ly R                                             |                  |                                       |                                   |             |                                                                     |             |            |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 |                | 3             |               | 5                |
|              | stod                                             |                  |                                       |                                   |             |                                                                     |             |            |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 |                | ane:          |               | Date / Lime: / 1 |
|              | n<br>D                                           |                  |                                       |                                   |             | XX<br>8420 D. Landes<br>8461 G. Fredheim                            |             |            |           |            |                    | ۵,           |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 | Signatifier )  | Printed Name: | Firm:         | te/Ti            |
|              | tod                                              |                  | any                                   |                                   |             | XX<br>8420 D. Landes<br>8461 G. Fredhei                             |             | ₹          | B         | ŭ          | Ħ                  | CSB-55-766P  |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       | ŀ                               |                | <u> </u>      | -Ei           | †ª               |
|              | E<br>C<br>E<br>S                                 |                  | Com                                   |                                   |             | K<br>20 D<br>61 G                                                   | Sample I.D. | CSB-SE-C3A | E-C       | CSB-SE-C3C | CSB SETCLP         | X            |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 |                |               |               |                  |
|              | <br>                                             |                  | ning                                  |                                   |             | XXX<br>48<br>48                                                     | Samp        | SB-S       | S-B-S     | SB-S       | 3                  | SB.          |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 | , I'rtek       |               | 3 5           | ار               |
|              | Chain of                                         | <b>.</b>         | sk Mi                                 |                                   | _           | 7-062                                                               |             | ľ          |           | ľ          | ש <mark>ו</mark> ש |              |    |   |   |            |   |        |   |   |        |    |     |   |                    |                           |                                              |                        |                                       |                                 |                | 3             | UNUUH         |                  |
|              | S<br>S<br>S                                      | dress            | Cre                                   | 199<br>20803                      | 2000-       | 907)<br>ler                                                         |             |            |           | 1          |                    |              |    |   |   |            |   |        |   |   |        |    |     | 1 |                    |                           |                                              |                        |                                       |                                 |                | ~             | 5             | 3                |
|              | 9792                                             | Company Address: | Hecla Greens Creek Mining Company     | P.O. Box 32199<br>Lungon AV 00803 |             | Telephone: (907) 790-XXXX<br>8482 D. Maller 842<br>8457 C. Sell 845 |             |            |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   |                    | its:                      |                                              |                        |                                       |                                 | Signature, M M | Printed Noe:  |               |                  |
|              | L69792                                           | mpan             | cla G                                 | ). Bo                             | licau,      | lephc<br>82 D.<br>57 C.                                             |             |            |           |            |                    |              |    |   |   |            |   |        |   |   |        |    |     |   |                    | Comments:                 |                                              |                        |                                       |                                 | Signature      | 212           |               |                  |
| _            |                                                  | ි ව              | He                                    | 21                                | Ĩ           | Te<br>84<br>84                                                      |             |            |           |            | 1                  |              |    |   |   |            |   |        |   |   |        |    |     |   |                    | Ú                         | _                                            |                        | _                                     |                                 | Σ<br>Ν         | μĒ.           | <u> </u>      | 10               |

#### **Laboratory Data Review Checklist**

### Completed By:

Jennifer Stoutamore

Title:

Staff Professional II

#### Date:

5/16/2022

#### Consultant Firm:

NORTECH

Laboratory Name:

ACZ Laboratories

Laboratory Report Number:

L69792

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

ADEC File Number:

1513.38.120

Hazard Identification Number:

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

#### Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. <u>Laboratory</u>
  - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

| Yes□ | No⊠ | N/A | Comments:  |
|------|-----|-----|------------|
| 100  |     |     | community. |

ACZ Laboratories, Inc. received and performed sample analysis

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Samples were not transferred

- 2. Chain of Custody (CoC)
  - a. CoC information completed, signed, and dated (including released/received by)?

| Yes⊠ No□ N/A□            | Comments: |
|--------------------------|-----------|
|                          |           |
| most analysis requested? |           |

b. Correct analyses requested?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

#### 3. <u>Laboratory Sample Receipt Documentation</u>

a. Sample/cooler temperature documented and within range at receipt ( $0^{\circ}$  to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Temperature documented, metals analysis does not have a temperature requirement

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes  $\square$  No  $\square$  N/A $\boxtimes$  Comments:

Metals do not require preservation

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

| Yes $\square$ No $\square$ N/A $\boxtimes$ | Comments: |  |  |
|--------------------------------------------|-----------|--|--|
| Yes, samples OK                            |           |  |  |

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

| Yes $\square$ No $\square$ N/A $\boxtimes$ | Comments: |  |
|--------------------------------------------|-----------|--|
|--------------------------------------------|-----------|--|

No discrepancies found

e. Data quality or usability affected?

Comments:

Data quality and usability not affected

- 4. Case Narrative
  - a. Present and understandable?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

MS/MSD RPD does not meet QC, Serial dilution was not sued for data validation as sample concentration was less than 50 times the MDL

c. Were all corrective actions documented?

| Yes⊠ | No | N/A | Comments: |
|------|----|-----|-----------|
|------|----|-----|-----------|

No corrective action possible

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Data quality and usability not affected as RPD failure due to non-homogeneity of the sample.

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

#### 5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

b. All applicable holding times met?

| Yes⊠ No□ | $N/A\square$ | Comments: |
|----------|--------------|-----------|
|----------|--------------|-----------|

c. All soils reported on a dry weight basis?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

TCLP results are reported as mg/L

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

e. Data quality or usability affected?

Data quality and usability not affected

#### 6. QC Samples

- a. Method Blank
  - i. One method blank reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
 Yes⊠ No□ N/A□ Comments:

May 2020

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

Below LOQ

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Below LOQ

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
  - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organic analysis requested

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

%R and RPD met QC for the LCS/LCSD

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected

### c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\square$  No  $\boxtimes$  N/A  $\square$  Comments:

No organics analysis requested

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$  Comments:

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

| $Yes \square No \boxtimes N/A \square C$ | comments: |
|------------------------------------------|-----------|
|------------------------------------------|-----------|

MS/MSD RPD did not meet QC due to the sample matrix not being homogenous

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

CSB-SE-TCLP

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

Yes, and clearly defined

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and usability not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

No organics analysis requested

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No organics analysis requested

iv. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

- e. Trip Blanks
  - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iii. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No volatile analysis requested

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

v. Data quality or usability affected?

Comments:

Data quality and usability not affected

- f. Field Duplicate
  - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

ii. Submitted blind to lab?

Yes  $\square$  No $\boxtimes$  N/A $\square$  Comments:

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:  $(R_1-R_2)/((R_1+R_2)/2)$  x 100

Where  $R_1$  = Sample Concentration  $R_2$  = Field Duplicate Concentration

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

No duplicate submitted

- iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
- g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

Equipment blank not necessary as reusable sampling equipment was decontaminated at the on-Site laboratory using HGCMC's internal SOPs

i. All results less than LOQ and project specified objectives?

Yes  $\square$  No  $\square$  N/A  $\boxtimes$  Comments:

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

iii. Data quality or usability affected?

Comments:

Data quality and usability not affected

Laboratory Report Date:

November 19, 2021

CS Site Name:

Greens Creek Concentrate Building

### 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

## a. Defined and appropriate?

Yes  $\boxtimes$  No $\square$  N/A $\square$  Comments:

# Attachment C

# Disposal Paperwork and Permission to Transport



ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE **Contaminated Sites and Prevention Preparedness and Response Programs** 

**Contaminated Media Transport and Treatment or Disposal Approval Form** 

| DEC HAZARD/SPILL ID #  | NAME OF CONTAMINATED SITE OR SPILL |                         |                                                        |  |  |  |  |  |  |
|------------------------|------------------------------------|-------------------------|--------------------------------------------------------|--|--|--|--|--|--|
| 27226                  | Greens Creek Mine                  |                         |                                                        |  |  |  |  |  |  |
| CONTAMINATED SITE OR S | PILL LOCATION -                    | ADDRESS OR OTHER        | APPROPRIATE DESCRIPTION                                |  |  |  |  |  |  |
|                        | Concentrate Bu                     | ilding, Hawk Inlet, Adn | niralty Island                                         |  |  |  |  |  |  |
| CURRENT PHYSICAL LOCA  | TION OF MEDIA                      |                         | CONTAMINATION<br>H BAY, FIRE TRAINING PIT, LUST, ETC.) |  |  |  |  |  |  |
| Hawk Inlet, Admin      | ralty Island                       | Gradual migration o     | f concentrate through gaps in siding of building       |  |  |  |  |  |  |
| CONTAMINANTS OF CONCE  | CRN E                              | STIMATED VOLUME         | DATE(S) GENERATED                                      |  |  |  |  |  |  |
| Lead                   |                                    | 124,000 Pounds          | Slowly over the last several years                     |  |  |  |  |  |  |
| POST TREATMENT ANALYS  | IS REQUIRED (such                  | as GRO, DRO, RRO, VOC   | s, metals, PFAS, and/or Chlorinated Solvents)          |  |  |  |  |  |  |
|                        |                                    | Stabilization           |                                                        |  |  |  |  |  |  |
| COMMENTS OR OTHER IMP  | ORTANT INFORM                      | ATION                   |                                                        |  |  |  |  |  |  |

| TREATMENT FACILITY, LANDFILL,<br>AND/OR FINAL DESTINATION OF MEDIA | PHYSICAL ADDRESS/PHONE NUMBER                             |
|--------------------------------------------------------------------|-----------------------------------------------------------|
| Chemical Waste Managment of the Northwest                          | 17629 Cedar Springs Lane, Arlington OR 97812 541-454-2643 |
| RESPONSIBLE PARTY                                                  | ADDRESS/PHONE NUMBER                                      |
| Hecla Greens Creek Mine                                            | 3000 Vintage Blvd, Suite 102, 907-790-8461                |
| WASTE MANAGEMENT CO. / ORGANIZER                                   | ADDRESS/PHONE NUMBER                                      |
| Chris Beasley                                                      | 720-4th Avenue Suite 400 Kirkland, WA 98033 206-305-9463  |

\*Note, disposal of polluted soil in a landfill requires prior approval from the landfill operator and ADEC Solid Waste Program.

# Gunnar Fredheim

Name of the Person Requesting Approval (printed)

Gunnar Fredheim Digitally signed by Gunnar Fredheim Date: 2020.12.03 14:02:35 -09'00'

| Environmental     | Specialis | 5 |
|-------------------|-----------|---|
| Title/Association |           |   |

Signature

Date

Phone Number

907-790-8461

--DEC USE ONLY-----

Based on the information provided, ADEC approves transport of the above mentioned material. The Responsible Party or their consultant must submit to the DEC Project Manager a copy of weight receipts of the loads transported and a post treatment analytical report, if disposed of at an approved treatment facility. The contaminated soil shall be transported as a covered load in compliance with 18 AAC 60.015.

## Jessica Hall

DEC Project Manager Name (printed)

| Jessica F | lall | Digitally signed by Jessica Hall<br>Date: 2020.12.07 13:00:07 -09'00' |
|-----------|------|-----------------------------------------------------------------------|
| Signature |      |                                                                       |

Environmental Program Specialist III Project Manager Title

12/7/2020 Date

12/03/2020

907-269-7553 Phone Number

Day 01/2020

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 479843 PLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7320                                               | 93                          | 11                    | 5                 |                                       |                 |         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|-----------------------|-------------------|---------------------------------------|-----------------|---------|--|--|--|
| Ple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ase print or type (Form designed for use on elite (12-pitch) typewriter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                             | 1                     | For               | n Annmund n                           | OMB No 20       | 50,0010 |  |  |  |
| Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UNIFORM HAZARDOUS 1 Generator ID Number 2 Page 1 of 2 Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3. Emergency Respon<br>900-424                     | -9300                       | 4. Manifest T         | racking M         | 154                                   | 9 FI            | F       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S. Generator's Name and Mailing Actress<br>GREENS CREEK MINING<br>P. D. BOK 32199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GREEN!                                             |                             | EK MI                 | vin               | 'G                                    | 0               |         |  |  |  |
| S. Generator's Name and Mailing Address<br>G. KEENS CREEK MINING<br>P. 0- BOK 32199<br>G. HAWK INLET, ADMISALTY ISL<br>G. HAWK INLET, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                             |                       |                   |                                       |                 |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALASKA MARINE LINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45x                                                |                             |                       |                   |                                       | 809             |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UNION PACIFIC RAILROAD<br>8. Designated Facily Name and Site Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                             |                       |                   |                                       | 2910            |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHEMICAL WASTE MANAGEMENT<br>17629 CEDAR SPRINGS LN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All and the se                                     |                             |                       |                   |                                       |                 |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 454-26                                             | 43                          | IORD                  | 089               | 4523                                  | 53              |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99. 90. U.S. DOT Description (including Proper Shipping Name Hazard Class. D Number     and Packing Group (if any))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10. Con<br>No.                                     | Type                        | 11. Total<br>Quantity | 12. Unit<br>WLAbi | 13                                    | Waste Codes     |         |  |  |  |
| ATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UN 3077, ENVIRONMENTALLY HAZAROOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | C.40                        | 70.000                | p                 | Doc8                                  |                 |         |  |  |  |
| GENERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X SUBSTANCES, SOLID, N.O.S., 9, PG #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    | CM                          | 39,340                | P                 |                                       |                 |         |  |  |  |
| Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                             |                       |                   |                                       |                 |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                             |                       |                   |                                       |                 |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                             |                       |                   |                                       |                 | _       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14. Special Handling Instructions and Additional information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                             |                       |                   |                                       |                 |         |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEIGHT LISTED IS NET WEIGHT<br>1.0R 346109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                             |                       |                   | 3820                                  | op.             |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consistment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | are fully and accurately                           | tiateribari abres           | he he the perman shu  | leine nan         | w and are cla                         | ssifiert narkan | a.e)    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | marked and useless/placarded, and are in all respects in proper condition for transport according to app<br>Exporter. I certify that the contents of this consignment conform to the terms of the attached EPA Acknow<br>I certify that the waste minimization statement identified in 40 CFR 262 27(a) (if I am a large quantity equi                                                                                                                                                                                                                                                                                                                                                                                                   | icable international and :<br>stefament of Consent | national governm            | vental regulations.   | if export s       | hipment and i                         | an the Primary  | 1       |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Generator's Offeror's Printed Typed Name S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gnature /                                          | N                           | 1                     |                   |                                       | nth Day         | Year    |  |  |  |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GUNNAR FREDHEIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lefor                                              | K                           | n                     | -                 | 11                                    | 2122            | 20      |  |  |  |
| 1.LNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The second s |                                                    | f entryfexit:<br>saving U S |                       |                   | · · · · · · · · · · · · · · · · · · · |                 |         |  |  |  |
| 2TER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 Transporter Acknowledgment of Receipt of Materials<br>Transporter 1 Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anature                                            | 101                         |                       |                   | 16                                    | oih Dav         | Year    |  |  |  |
| NSPORTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Transporter 2 Printed Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                 | p                           |                       |                   | K                                     | 2 12.4          | 20      |  |  |  |
| TRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TASON SHEAMS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAR                                                | +                           |                       |                   |                                       | (1/3            | 21      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16. Discrepancy Indication Space Cuantay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Residua                                            |                             | Partial Rej           | ection            |                                       | Ful Reject      | ion     |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18b. Atemate Facility (or Generator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manilest Refere                                    | ince Number.                | U.S. EPA (D)          | hanhar            | _                                     |                 |         |  |  |  |
| FACILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Facilit/s Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                             | 1                     | energines :       |                                       |                 |         |  |  |  |
| DESIGNATED FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18c. Signature of Alternate Facility (or Generator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                             |                       |                   | M                                     | onita Day       | Year    |  |  |  |
| SIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19. Hazardous Wasie Report Maragement Method Codes (i.e., codes for hazardous waste treatment, dispos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al, and recycling system                           | s}                          |                       |                   |                                       |                 |         |  |  |  |
| - DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.<br>++111D 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                             | 4                     |                   |                                       |                 |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20. Designated Facility Owner or Operator Certification of receipt of hazardous materials covered by the man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | item 18a                    |                       |                   | -                                     |                 |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Printed Typed Name S<br>MOYOLEIN WOOLF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ill he                                             | 2                           |                       |                   | 13<br>  -                             | onto Day        | Year    |  |  |  |
| EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Form 8700-22 (Rev 005) Previous editions are obsolete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) LUDIF                                            | SIGNATED                    | FACILITY TO           | DESTIN            | ATION ST                              | ATE (IF REC     | UIRED   |  |  |  |

|            | 2                                                                                                                            | 479837                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 1                                        | 11                        | U                                  |                                     |
|------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|------------------------------------|-------------------------------------|
|            |                                                                                                                              |                                                                                                 | PRO 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1321                                                                                                           | RU                                       |                           |                                    |                                     |
| Méa        | se print or type (Form designed for use on elite (12-pite<br>Unitrophy use 74 paperts 11 Generator ID Number                 |                                                                                                 | of 3 Emergency Respon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ise Phone                                                                                                      | 4. Manifest Tr                           | acking Nu                 | mber                               | MB No. 2050-0039                    |
| Î          | WASTE MANIFEST AKD 9830                                                                                                      |                                                                                                 | 800-424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-9300                                                                                                         | 008                                      | 41:                       | 1550                               | FLE                                 |
|            | 5 Generator's Name and Making Address<br>GREENS CREEK Mini                                                                   |                                                                                                 | Generator's Site Addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an Git al Barrant Man                                                                                          | an analytim on and dama or               | 1                         |                                    |                                     |
|            | PO BOX 32199                                                                                                                 |                                                                                                 | LAIRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF                                                                                                            | T. A                                     | Mi                        | DAIT                               | ISI AND                             |
|            | SUNEAU, AK 99903                                                                                                             | 907-740-8461                                                                                    | 1 JUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AU. A                                                                                                          | K 99                                     | 801                       | (), [], [                          | NUM                                 |
|            | 6 Transporter I Company Name                                                                                                 |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | THE EDA ID M                             | mon                       |                                    |                                     |
|            | ALASKA MARINE<br>7 Transporter 2 Company Name                                                                                |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | U.S. EPAID N                             |                           |                                    |                                     |
|            | UNION PACIFIC RA<br>8 Designated Facility Name and Site Address                                                              | FILROAD                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | NED US EPAIDN                            | 00                        | 792                                | 910                                 |
|            | CHEMICAL WASTE M                                                                                                             | ANAGEMENT                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    |                                     |
|            | CHEMILAL WASTE M<br>17629 LEDAR SPRIN<br>FOOLYA PHONE ARLINGTON, O                                                           | 155 6N -                                                                                        | 1 India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | 1000                                     | 0                         | CLIC                               | 1200                                |
|            |                                                                                                                              |                                                                                                 | 11-454-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second s |                                          |                           | 945                                | 1353                                |
|            | 9a 9b. U.S. DOT Description (including Proper Shipping)<br>HM and Packing Group (if any))                                    |                                                                                                 | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type                                                                                                           | 11. Total<br>Quantity                    | 12. Unit<br>Wt.Nol.       | 13. W                              | leste Codes                         |
|            | UN3077, ENVKONI                                                                                                              | NENTALLY HAZAR                                                                                  | DOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                          |                           | 0008                               |                                     |
| GENERATOR  | X SUBSTANCES, SULD                                                                                                           | 405 9. PL                                                                                       | 111 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ch                                                                                                             | 35.090                                   | ρ                         |                                    |                                     |
| ENE        | 2.                                                                                                                           | No water i f I IT                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.1                                                                                                           | Solo a                                   |                           |                                    |                                     |
| 0          |                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    |                                     |
| 11         | 3                                                                                                                            |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                              |                                          |                           |                                    |                                     |
| Н          |                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    |                                     |
|            |                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    |                                     |
|            | 4                                                                                                                            |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    |                                     |
| 11         |                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          | -                         |                                    |                                     |
|            | 14. Special Handling Instructions and Additional Information<br>WEIGHT LISTED S                                              | NET WEIGHT                                                                                      | OF MATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RIAL                                                                                                           |                                          |                           | 354                                | 1800                                |
|            |                                                                                                                              | <i>(</i>                                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.2.4                                                                                                         | A . 0 .                                  | -                         |                                    | T.                                  |
|            | 1. OK 346109                                                                                                                 | CONTA                                                                                           | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                                          |                           |                                    |                                     |
|            | <ol> <li>GENERATOR'S/OFFEROR'S CERTIFICATION: I here<br/>marked and labeled/placarded, and are in all respects in</li> </ol> | by declare that the contents of this consignal<br>proper condition for transport according to : | nent are fully and accurately<br>applicable international and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y described abov<br>I national governi                                                                         | e by the proper sh<br>nental regulations | ipping nam<br>If export s | e, and are clas<br>hipment and 1 i | silied, packaged,<br>am the Primary |
|            | Exporter, I certify that the contents of this consignment<br>I certify that the waste minimization statement dentified       | conform to the terms of the attached EPA Act                                                    | knowledgment of Consent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                          |                           |                                    |                                     |
|            | Generator's/Offeror's Panted/Typed Name                                                                                      |                                                                                                 | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                                              | 1                                        |                           | Mor                                | ih Day Year                         |
| H          | GUNNAR FREDHEIN                                                                                                              | 2                                                                                               | Gen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ph                                                                                                             | ~                                        |                           |                                    | 6122120                             |
| INT        | 16 International Shipments International Shipments                                                                           | Export                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of entrylexit<br>eaving U.S.                                                                                   |                                          |                           |                                    |                                     |
|            |                                                                                                                              |                                                                                                 | 02/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | edunik o a                                                                                                     | 1                                        |                           |                                    |                                     |
| ORTER      |                                                                                                                              |                                                                                                 | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                              | Sha                                      | al-                       | Mor                                | e 74 20                             |
| ANSPE      | Transource 2 Printed Myped Materia                                                                                           |                                                                                                 | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nnov                                                                                                           | MA                                       | 00                        | Voi<br>Voi                         |                                     |
| TRA        | JK                                                                                                                           |                                                                                                 | 1 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                              | -                                        |                           | 11                                 | 13121                               |
| 1          | 18 Discrepancy                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    |                                     |
|            | 18a. Discrepancy Indication Space Quantly                                                                                    | Туре                                                                                            | Residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | Partial Re                               | nection                   | 1                                  | Full Rejection                      |
|            |                                                                                                                              |                                                                                                 | Manifest Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rence Number:                                                                                                  |                                          |                           |                                    |                                     |
| 25         | 18b. Allemate Facility (or Generator)                                                                                        |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | U.S EPA D                                | Number                    |                                    |                                     |
| EACU ITV   |                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 1                                        |                           |                                    |                                     |
| E G        | Facility's Phone:<br>18c. Signature of Alternate Facility (or Generator)                                                     |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           | M                                  | onda Day Year                       |
| MAT        |                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    | 1 1                                 |
| DECICANTER | 19. Hazandous Waste Report Management Method Codes (                                                                         | e., codes lor hazarious waste treatment, di                                                     | A specify of the support of the supp | ms)                                                                                                            | 0.                                       |                           |                                    |                                     |
| 100        | 1. 1.                                                                                                                        |                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | 4                                        |                           |                                    |                                     |
| 1.1        |                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |                           |                                    |                                     |
|            | 20. Designated Facility Owner or Operator: Certification of m                                                                | osipt of hazardous materials covered by the                                                     | manifest except as noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in Nem 18a                                                                                                     |                                          |                           |                                    |                                     |
|            | 20. Designated Facility Owner or Operator: Certification of m<br>Printed/Typed Name                                          | ceipt of hazardous materials covered by the                                                     | manifest except as noted i<br>Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in Nem 18a                                                                                                     |                                          |                           | 9                                  | ont Day Ye⊯                         |
|            |                                                                                                                              |                                                                                                 | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                                                                                              |                                          | - Baran                   | 10                                 | anti Day Year                       |

| 1 e                                                                                                                                   |                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 730                     | 216                      | 1114               | 5                                |                   |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|--------------------|----------------------------------|-------------------|
| Please print or type. (Form designed for use on elite (12-pitch) type                                                                 | ariter) 479842                                   | 1 Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | و میں اپنی              | - p                      | 11                 | )                                | D Ma 2050 0020    |
| UNIFORM HAZARDOUS     WASTE MANIFEST     S. Generator ID Number     MASTE MANIFEST     S. Generator's Name and Maing Aldress          | 2 Page 1 of 3. Enter                             | gency Respons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Phone                 |                          | racking N          | n Approved. OM<br>uniber<br>1551 | FIF               |
| 5. Generator's Name and Maring Address<br>GREENS CREEK MINING<br>PO BOX 32199                                                         | Generat                                          | s Site Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i fid different th      | an mailing address       | e (3               | and a second                     | 1 houling         |
| PO BOX 32199<br>DULLEAU, AV (19802                                                                                                    | 144<br>907-790-8461 JU                           | w/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INLE                    | T, AD                    | Mik                | ALTY )                           | SLAND             |
| Comments ALEAU, AK 99803<br>6. ransporter & Company Name<br>ALAS VA MARS                                                              |                                                  | WEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L. All                  |                          |                    | A dal                            | 0.0               |
| ALASKA MARINE LIN<br>7. Transporter 2 Company Name                                                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | U.S. EPA ID N            | umber              | 11281                            |                   |
| UNION PACIFIC RAILR<br>6. Designated Facility Name and Site Activess                                                                  | 040                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | U.S. EPAID N             | 00<br>umber        | 17929                            | 10                |
| CHEMICAL WASTE MAN<br>17629 CEDAR SPRINGS                                                                                             | AGEMENT                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                    |                                  |                   |
| FASTINGTON, OR 97812<br>9a. 9b. U.S. DOT Description (Including Proper Shipping Name, Ha                                              | 541-45                                           | 4-26<br>10. Conta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                       |                          |                    | 9452:                            | 353               |
| HM and Packing Group (if any)                                                                                                         |                                                  | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре                    | 11. Total<br>Quantity    | 12. Unit<br>Wt.Nol | 13. Wast                         | e Codes           |
| X CRETANE S S. L'O                                                                                                                    |                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                       | 2100                     | 0                  | D008                             |                   |
| X SUBSTANCES, SOLIO, M.                                                                                                               | Q.S., I, Y & HL                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CM                      | 31,540                   | P                  |                                  |                   |
|                                                                                                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                    |                                  |                   |
| 3                                                                                                                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                    |                                  |                   |
| ę                                                                                                                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                       |                          |                    |                                  | _                 |
|                                                                                                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                    |                                  |                   |
| 14. Special Handling Instructions and Additional Information<br>WEIGHT LISTED IS NET                                                  | WEICHT OF M                                      | 9TER'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AC                      |                          |                    |                                  |                   |
| 1. OR 346109                                                                                                                          | CONTAI                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | IT I A                   | 1.00               | ALI                              |                   |
| 15. GENERATOR'S/OFFEROR'S CERTIFICATION: 1 hereby declare<br>marked and labeled/placended, and are in all respects in proper co       | that the contents of this consistent are first a | ad accurates de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second          | his the neares chi       | Shuthin structu    | a and not a position             | d. packaged,      |
| I certify that the waste minimization statement identified in 40 CFR                                                                  | os pers of the attacked FP& acknowledgement      | At Conseast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                          | if export si       | upment and i sim th              | e Primary         |
| GUNNAR FREDHEIM                                                                                                                       | Signature                                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RI                      |                          |                    | Mon#                             | Cay Tear<br>22/20 |
| Le International Shipsnewits Import to U.S.<br>Transporter signature (for exports only);                                              | Exportantius                                     | Port of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Children and the second | <u> </u>                 | -                  | 14                               |                   |
|                                                                                                                                       | Signature                                        | Date leav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ingUS.                  | 1                        | -                  | Monan                            |                   |
| Transporter Acknowledgment of Receipt of Matemats                                                                                     | ~ 10                                             | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                       | 1                        |                    | Ke                               | 24 20             |
| E Jason Steams                                                                                                                        | Signature                                        | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ř                       | 1                        |                    | 1 mg                             | Cay Year          |
| 18. Discrepancy     18a. Discrepancy Indication Space     Quantity                                                                    | Итуре С                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | -                        |                    |                                  |                   |
| Freeliquid in CM is rainwate                                                                                                          | r from record rain Fal                           | _l Resolve<br>U. in Adc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RerCus                  | Portial Reje<br>mar Fred | iction<br>(heim    | GrooteC                          | Will Rejection    |
| 18b. Alternate Facility (or Generator)                                                                                                |                                                  | andest Réferenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Humber.               | U.S. EPAID N             | uniter             | Ciadiaci                         | 1/19/2            |
| Pacificity's Phone:                                                                                                                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 1                        |                    |                                  |                   |
| 186: Signature of Alternate Faculty (or Generator)     19. Hazardous Waste Report Management Method Codes (i.e., codes for     1.  2. |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                    | Month                            | Day Year          |
| 19. Kazerdous Waste Report Management Method Codes i.e., codes for<br>1. 2.                                                           | r bazardous wasie treatment, disposal, and rec   | (cling systems)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Į k                      |                    |                                  |                   |
| 20. Designated Facility Owner or Operator: Certification of receipt of haz                                                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                    |                                  |                   |
| Printed Typed Name                                                                                                                    | Signature                                        | Charles and the second s | m 18a                   |                          |                    | Month                            | Day Year          |
| EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.                                                                          |                                                  | 061F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GNATED F                | ACILITY TO D             | DESTIN             | ATION STATE                      | IF REQUIRED       |

28

|            | *         | 4 N                                                                                                        |                                                     | //                                            |                                               | 1000                                 | Pr                            | 7 01                            | 327          | 24                    |                   |             |            |          |
|------------|-----------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------|-------------------------------|---------------------------------|--------------|-----------------------|-------------------|-------------|------------|----------|
| Pleas      | se pri    | nt or type. (Form desi                                                                                     |                                                     |                                               | iter) 7/                                      | 1838                                 |                               |                                 |              |                       |                   | Approved. ( | DMB No 2   | 050-0039 |
| Î          | W         | FORM HAZARDOUS<br>ASTE MANIFEST                                                                            |                                                     | 306730                                        | 7                                             | 2. Page 1 of                         | 800                           | -424-6                          | 1300         | 4. Manifest Tr        | 41                | 1552        | 2 F        | LE       |
|            | S. Ge     | REENS CV                                                                                                   | EEK M                                               | ining                                         |                                               | 6                                    | GIR                           | EENS                            | CHET         | EK MI<br>T, ADN       | NIN               | 16          | SLAN       | w        |
|            | Gend      | JUNEAU.                                                                                                    | 199<br>AK 991                                       | 303                                           | 907-                                          | 790-84                               | 1                             | SUNER                           | AV_          | AK 9<br>US EPAIDN     | 980               | 31          |            |          |
|            | A         |                                                                                                            | MARIN                                               | E LIN                                         | IES                                           |                                      |                               |                                 | -            | US EPAIDN             |                   |             | 1800       | 1        |
|            | 1         | Insporter 2 Company Nar<br>INTAN P<br>signaled Facility Name a                                             | ALIFIC                                              | RAiten                                        | OAD                                           |                                      |                               |                                 |              | US EPAID N            |                   | 792         | 910        |          |
|            | C         | HEMICAL<br>7624 CE                                                                                         | WASTE<br>TOAR SP                                    | RINGS                                         | AGEM                                          | ENT                                  | nl u                          | 54-21                           | 1112         | 1000                  |                   | 4523        | 53         |          |
|            | 9a.<br>HM | 9b. U.S. DOT Descrip<br>and Packing Group (ii                                                              | tion (including Proper                              | Shipping Name Haz                             | and Class, ID Numb                            | Der,                                 | 11-1                          | 10 Contax                       | iers         | 11. Total<br>Quantity | *2 Usit<br>WL/Vol | 13.1        | Naste Code | s        |
| DR         | TIM       | UN3077                                                                                                     |                                                     | UNMEM                                         | ALLY H                                        | AZAKOO                               | 05                            | No.                             | Туре         | - augentery           | 441.0483          | D008        |            |          |
| GENERATOR  | Х         | SUBSTAN                                                                                                    | CES, 50                                             | LiD, N.C                                      | 1.5.,9,                                       | PG山                                  | -                             | 12                              | CF           | 24.200                | P                 |             |            |          |
| - GEI      |           |                                                                                                            |                                                     |                                               |                                               |                                      |                               | 2-4                             | 9/21         |                       |                   |             |            |          |
|            |           | 3.                                                                                                         |                                                     |                                               |                                               |                                      |                               |                                 |              |                       |                   |             |            |          |
|            |           | 4                                                                                                          |                                                     |                                               |                                               |                                      |                               |                                 |              |                       |                   |             |            |          |
|            |           |                                                                                                            |                                                     |                                               |                                               |                                      |                               |                                 |              |                       |                   | -           |            |          |
|            | 14.1      | Special Handling Instructs                                                                                 | LISTED                                              | IS TH                                         | E NET                                         | WEIG                                 | SHT                           | OFr                             | 1ATO         | RAL                   |                   |             |            |          |
|            | 1         | . OR 340                                                                                                   | 109                                                 |                                               | a                                             | ONTA                                 | iN                            | ER I                            | AM           | LUZ                   | 61                | 123         | 1          |          |
|            | 15.       | GENERATOR'S/OFFEF<br>marked and tabeled/plan<br>Exporter, I certify that the<br>I certify that the waste m | carded, and are in all n<br>e contents of this cons | espects in proper con<br>ignment conform to t | ndition for transport<br>he terms of the alta | t according to ap<br>ached EPA Actor | iplicable inter<br>owledgment | mational and nat<br>of Consent. | ional govern | mental regulations    |                   |             |            |          |
|            | Gen       | erator's/Olleror's Printed                                                                                 |                                                     | 1                                             | ene es lei la con e                           |                                      | Signature                     | folde i men el son              | an quanny g  | D/                    | 2                 | Mo          | 1219       | 2120     |
| INT'L -    |           | TUNAR<br>International Shipments                                                                           |                                                     | -11 1                                         |                                               | Exporte                              | TUS.                          | Port of es                      |              | va                    |                   |             |            |          |
| SPORTER    | -         | nsporter signature (for ex<br>Transporter Acknowledgm<br>sporter 1 Bonned Typed 1                          | ent of Receipt of Mater                             | -17                                           |                                               |                                      | Signature                     | Date eav                        | 1            | A                     |                   | Ma          | nth Day    | Year     |
| NSPOI      | Tran      | nsporter 2 Printed/Typed                                                                                   | Farin                                               | Kin                                           | dL                                            |                                      | Signature                     | 1.4                             | Y            | K                     |                   | X           | ZZ         | AZO      |
| * TR AN    | 1         | Discrepancy                                                                                                | JK                                                  | -                                             |                                               |                                      |                               |                                 | -1-          | P                     |                   |             | I Da       | 5121     |
|            | -         | Discrepancy Indication S                                                                                   | Lund Utilden                                        |                                               | Птуре                                         |                                      | C                             | Residua                         |              | Partial Re            | jaction           |             |            | ijection |
|            | 18        | ece count                                                                                                  | conrection                                          | in per (                                      | Sunnar                                        | Fredhe                               | im/G                          | reens(                          | ineals       | US EPAID              | A 1               | N 1.19      | -21        |          |
| FACHITY    | Fac       | olivs Phone:                                                                                               |                                                     |                                               |                                               |                                      |                               |                                 |              | 1                     |                   |             |            |          |
| VATED      | 180       | : Signature of Atternate F                                                                                 | acility (or Generator)                              |                                               |                                               |                                      |                               |                                 |              |                       |                   | N           | C mai      | ey Year  |
| DESIGNATED | 19.       | Hazandous Waste Report                                                                                     | Management Method                                   | Codes (i.e., codes k<br>2.                    | x hazardous waste                             |                                      | iosal, and rea<br>3.          | cycling systems)                |              | 4                     |                   |             |            | -        |
| 1          | ŀ         | HID<br>Designated Facility Owned                                                                           | er or Operator Certific                             | nice of receipt of hor                        | anitus materiale e                            | covered by the m                     | vanifiest aver                | noise in the                    | sm tPa       | 71                    |                   |             |            |          |
|            |           | Typed Name                                                                                                 | N                                                   | 0100                                          | une under seiterigt sohite s                  |                                      | Signatur                      | 1                               | 500 T 100    | /                     |                   | A I         | fonth Da   | ry Year  |
| 1          |           | 1701-12 (Hev. 3-05                                                                                         | ) Previous editions                                 | are obsolete                                  |                                               |                                      | 14                            | ( DES                           | USINATED     | FACILITY TO           | DESTI             | NATION ST   | ATE (IF F  | EQUIRED  |



CWM OF THE NORTHWEST Federal EPA ID: ORD089452353 17629 CEDAR SPRINGS LANE ARLINGTON, OR 97812

HECLA GREENS CREEK MINING CO ATTN: MANIFEST SECTION AKD983067307 ADMIRALTY ISLAND JUNEAU AK 99801

CERTIFICATE OF DISPOSAL

------

CWM OF THE NORTHWEST, EPA ID: ORD089452353, has received waste material from HECLA GREENS CREEK MINING CO on 01/18/21 as described on Shipping Document number 008411549FLE.

Profile Number: OR346109 CWM Tracking ID: 47984301 CWM Unit #: 1\*0 Disposal Date: 01/20/21

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above-described waste was managed in compliance with all applicable laws, regulations, permits and licenses on the date listed above.

hungter trys

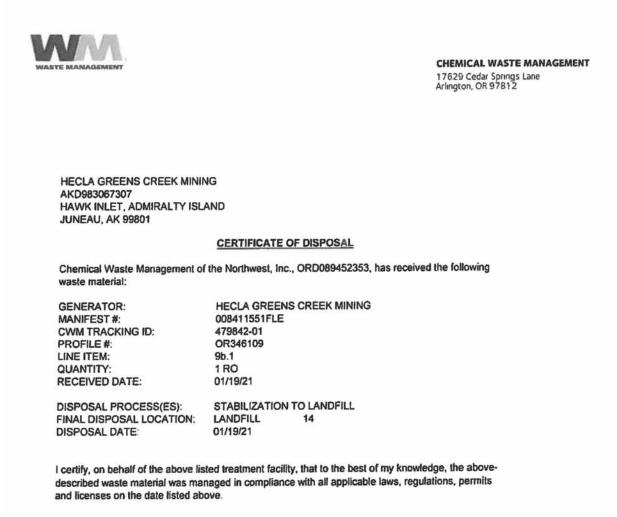
CWMNW RECORDS DEPARTMENT Certificate # 253574 02/10/21



CWM OF THE NORTHWEST Federal EPA ID: ORD089452353 17629 CEDAR SPRINGS LANE ARLINGTON, OR 97812

HECLA GREENS CREEK MINING CO ATTN: MANIFEST SECTION AKD983067307 ADMIRALTY ISLAND JUNEAU AK 99801

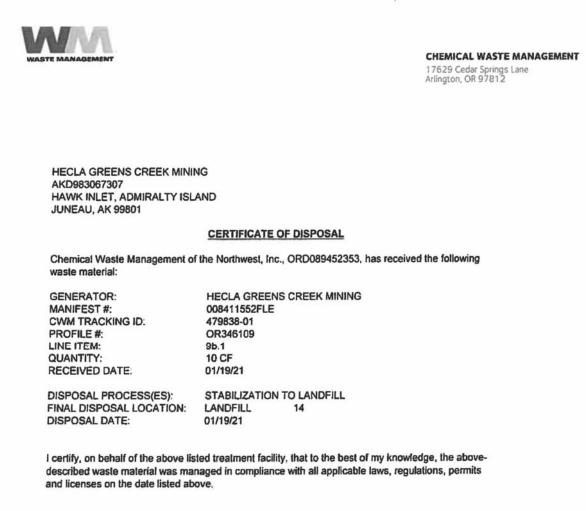
## CERTIFICATE OF DISPOSAL


CWM OF THE NORTHWEST, EPA ID: ORD089452353, has received waste material from HECLA GREENS CREEK MINING CO on 01/18/21 as described on Shipping Document number 008411550FLE.

Profile Number: OR346109 CWM Tracking ID: 47983701 CWM Unit #: 1\*0 Disposal Date: 01/20/21

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above-described waste was managed in compliance with all applicable laws, regulations, permits and licenses on the date listed above.

thrugh Fey St


CWMNW RECORDS DEPARTMENT Certificate # 253573 02/10/21



Jarsen

CWMNW RECORDS DEPARTMENT Date: 1/29/2021

32



Jo 10

CWMNW RECORDS DEPARTMENT Date: 1/29/2021

# Attachment D

# **Communications with ADEC**



2 October 2019

#### VIA HAND-DELIVERY

Mr. David Khan ADEC DOW-MTSS P.O. Box 111800 Juneau, AK 99811-1800 david.khan@alaska.gov

#### Re: Management of Impacted Soils at Concentrate Storage Building

Dear Mr. Khan:

We are writing to notify you that on August 20-21, 2019, Environmental Protection Agency (EPA) inspectors Peter Magolske and Jon Jones conducted an RCRA inspection at Hecla Greens Creek Mining Company's (HGCMC) facility. During the inspection, the EPA inspectors observed concentrate material around the perimeter of the Concentrate Storage Building. HGCMC inspected the Concentrate Storage Building and found small gaps through which the concentrate can escape. HGCMC is in the process of conducting repairs to the Concentrate Storage Building. This letter presents our proposal to remove the concentrate material and excavate any impacted soils around the exterior of the building and, with EPA's and DEC's approval, dispose of any residual concentrate and impacted soils in the tailings disposal facility.

HGCMC proposes to remove the concentrate and impacted soils around the exterior of the Concentrate Storage Building in two phases. Phase 1 will consist of the recovery of the concentrate for reprocessing in the mill. To avoid collecting impacted soils, removal during phase 1 will be with shovels. During phase 2 any remaining concentrate and impacted soil will be excavated to ensure all the concentrate was removed. We estimate the excavation to be approximately 2-3 feet around the perimeter of the building to a depth of 12 to 18 inches. We estimate generating about 35 cubic yds. of residual concentrate and soil. All excavated material will be placed into covered containers and labeled appropriately.

The residual concentrate and soil are expected to contain minimal concentrations of lead and zinc and should be of similar composition as waste from the mill that is currently placed in the tailings disposal facility. As a product of beneficiation process, the concentrate is subject to the Bevill Amendment and would not be considered hazardous waste. Pursuant to Condition 2.1.1.1.4.3 of the Waste Management Permit (Permit No. 2014DB0003), HGCMC seeks DEC's approval to place the excavated material in the tailings disposal facility.

18 AAC 75.341 establishes the following cleanup levels: Lead: 400 mg/kg and Zinc: 25,000 mg/kg. HGCMC proposes to use the regulatory cleanup level of 25,000 mg/kg for Zinc and a proposed cleanup level of 1,000 mg/kg for Lead. Given the use of the facility and the on-going operations, HGCMC believes these levels are protective of human health and the environment. Confirmation samples will be collected from the areas excavated. HGCMC will provide DEC and EPA with a copy of the sampling results.

We would appreciate DEC's written approval to place the residual material and impacted soil into the tailings disposal facility.

Please let me know if I can provide you with additional information.

Very truly yours,

istopher Wallace

Christopher Wallace

Environmental Manager Hecla Greens Creek Mining Company

cc: P. Magolske, EPA (via electronic mail) J. Jones, EPA (via electronic mail)



28 October 2019

#### VIA ELECTRONIC MAIL

Mr. David Khan ADEC DOW-MTSS P.O. Box 111800 Juneau, AK 99811-1800 david.khan@alaska.gov

#### Re: Management of Impacted Soils at Concentrate Storage Building

Dear Mr. Khan:

This letter is a follow up to the October 2, 2019 letter provided to you (with a copy to the EPA Region 10) that described HGCMC's proposed plan for managing concentrate material and potentially impacted soils around the exterior of the Concentrate Storage Building. The proposed plan is to remove the impacted soils in two phases. The material removed in phase 1 will be primarily concentrate, which HGCMC would reprocess through the mill. The material removed in phase 2 is expected to contain minimal concentrations of lead and zinc. HGCMC requested approval from the ADEC and EPA to dispose of this material in the permitted Tailings Disposal Facility (TDF).

The EPA responded to HGCMC via telephone and e-mail on October 15. Their stated position is that the phase 1 material can be reprocessed through the mill, but the phase 2 material is not eligible for the Bevill exemption and would be potentially subject to hazardous waste regulation. Though HGCMC disagrees with the EPA response, we currently are not challenging their position on the eligibility of the phase 2 material for the Bevill exemption. Therefore, the revised plan for managing the phase 2 material will be to collect a representative sample of the excavated material for metals analysis using the Toxicity Characteristic Leaching Procedure (TCLP), test Method 1311. If the sample results have metals at a concentration above the regulatory level, then HGCMC will ship the material offsite to a permitted hazardous waste disposal facility. If the sample results show the material does not exhibit the toxicity characteristic for metals, then HGCMC will dispose of the material onsite in the TDF, as is allowed under section 2.1.2.1.9 of the Waste Management Permit (Permit No. 2014DB0003).

In addition to the waste characterization sample, confirmation samples will be collected from the base of the excavation to ensure the removal of all concentrate and impacted soils. 18 AAC 75.341 establishes the following cleanup levels: Lead: 400 mg/kg and Zinc: 25,000 mg/kg. HGCMC proposes to use the regulatory cleanup level of 25,000 mg/kg for Zinc and a proposed

cleanup level of 1,000 mg/kg for Lead. Given the use of the facility and the on-going operations, HGCMC believes these levels are protective of human health and the environment. Following completion of the cleanup, HGCMC will provide ADEC and EPA with a summary report, including photo documentation and all sampling results.

We would appreciate DEC's written approval of this plan. Please let me know if I can provide you with additional information.

Very truly yours,

David Landes

Sr. Environmental Engineer Hecla Greens Creek Mining Company

cc: P. Magolske, EPA (via electronic mail) K. Schanilec, EPA (via electronic mail)



12 May 2020

VIA EMAIL

Ms. Jessica Hall ADEC CSP 555 Cordova Street Anchorage, AK 99501 Jessica.hall@alaska.gov

#### Re: Management of Residual Concentrate at Concentrate Storage Building, Greens Creek Mine

Dear Ms. Hall:

This follows-up on your request regarding additional information on the status of the removal of residual concentrate around the perimeter of the Concentrate Storage Building (CSB) at the Greens Creek Mine.

By way of background, Greens Creek Mine is solely owned and operated by the Hecla Greens Creek Mining Company (HGCMC). The mine and milling operations are located on the northern end of Admiralty Island, 18 miles southwest of Juneau. HGCMC produces lead, zinc, and bulk concentrates at the mine site and trucks them daily in covered trailers to the CSB at the port facility, 8 miles away. The Greens Creek Mine production of ore concentrate began in February 1989.

Figure 1 shows the relative location of the port facility to Juneau. The yellow outline approximates the boundary of the private property owned by HGCMC. In the late 1980s, the CSB was built on fill material placed for the development of the port facility. The average elevation of the CSB is approximately 25 feet asl. The nearest potable water intake is located on Cannery Creek approximately 2,500 feet away at an elevation of ~180 feet.

As I mentioned, the Environmental Protection Agency (EPA) conducted a RCRA inspection of the facility on August 20-21, 2019. During the inspection, the EPA inspectors observed concentrate material around the perimeter of the CSB. HGCMC inspected the CSB and found small gaps, corrugations in the metal siding, through which the concentrate could escape. Shortly after the inspection, HGCMC formulated a plan to remove the concentrate material and any residuals around perimeter of the CSB.

J. Hall 12 May 2020 Page 2

In the plan, HGCMC proposed to remove the concentrate and impacted soils around the exterior of the CSB in two phases. Phase 1 would consist of the recovery of the concentrate for reprocessing in the mill. Shovels would be used during phase 1 to prevent the excessive removal of soil. During phase 2 any remaining concentrate and impacted soil would be excavated. We estimated the excavation would be approximately 2-3 feet around the perimeter of the CSB to a depth of 12 to 18 inches. It was estimated this would generate about 35 cubic yds. of residual concentrate and soil. All excavated material will be placed into covered containers and labeled appropriately. HGCMC's plan to remove the concentrate and impacted soil was communicated to EPA and ADEC last Fall. Copies of the emails and correspondence are attached.

To date, HGCMC has recovered and reprocessed the concentrate described in phase 1. Prior to implementing phase 2, HGCMC planned to seal the CSB to minimize the future escapement of products from the CSB. This work was contracted to begin in April 2020. However, due to the Covid-19 mitigation measures imposed by the state, HGCMC implemented a 14-day quarantine period for all personnel, including contractors. The contractor who was to conduct the work was not willing to quarantine. HGCMC hopes to complete the work as soon as the mitigation measures are lifted.

Following the removal of any residual concentrate and soil around the perimeter of the CSB, HGCMC will take confirmation samples. Figure 2 shows the approximate locations of the confirmation samples. Because of the lag (+7 days) between collecting samples and receiving results from an independent laboratory, the plan is to run confirmation sampling in-house until Lead values are at or below 1,500 mg/kg and the Zinc values are at or below 25,000 mg/kg. The in-house laboratory can return results in less than 24 hours, which provides immediate feedback to the operations group signaling if additional material needs removed. Once the above thresholds are reached in-house, final confirmation samples will be collected and sent to an independent laboratory for verification.

18 AAC 75.341 establishes the following cleanup levels: Lead: 800 mg/kg (industrial) and Zinc: 25,000 mg/kg. For the removal of the residual concentrate around the perimeter of the CSB, HGCMC proposes to use the regulatory cleanup level of 25,000 mg/kg for Zinc and a proposed cleanup level of 1,000 mg/kg for Lead. Given the current use of the facility and the on-going operations, HGCMC believes these levels are protective of human health and the environment. At closure, the whole of the operations, including the CSB, will be reclaimed in accordance with the Reclamation Plan approved by the Alaska Department of Natural Resources.

The residual concentrate and soil are expected to contain minimal concentrations of lead and zinc and should be of similar composition as waste from the mill that is currently placed in the tailings disposal facility under the Waste Management Permit issued by ADEC. As a product of the beneficiation process, the concentrate is subject to the Bevill Amendment and would not be regulated as a hazardous waste. However, in subsequent discussions with ADEC and the EPA, HGCMC has agreed to complete a TCLP analysis on the removed material and manage the material accordingly. J. Hall 12 May 2020 Page 3

You specifically requested a "Phase I report". I am not aware of any "Phase I report." As noted above, the CSB was constructed in the late 1980s and ore production commenced in 1989. HGCMC has not prepared any "reports" related to the removal of the residual concentrate. Copies of the laboratory reports for the confirmation samples and the TCLP analysis will be sent to EPA and ADEC upon completion of the work.

We appreciate the opportunity to provide this information. Please let me know if you have any additional questions.

Very truly yours,

Wallace

Christopher Wallace

Permitting and Environmental Compliance Coordinator Hecla Greens Creek Mining Company



Figure 1. HGCMC - Port Facility Site Map

J. Hall 12 May 2020 Page 4

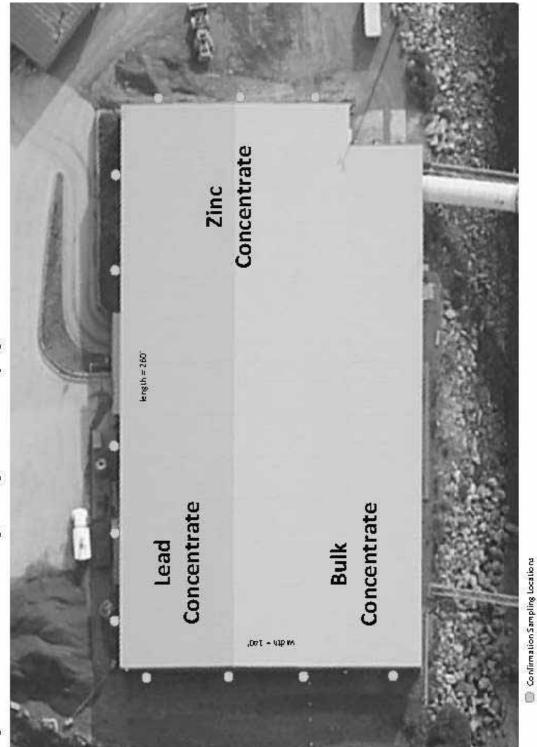



Figure 2. HGCMC - Concentrate Stroage Building Confirmation Sampling Locations

J. Hall 12 May 2020 Page 5



27 August 2020

#### VIA EMAIL

Ms. Jessica Hall ADEC CSP 555 Cordova Street Anchorage, AK 99501 Jessica.hall@alaska.gov

#### Re: HGCMC Concentrate Storage Building

Dear Ms. Hall:

I want to give you an update on the Concentrate Storage Building (CSB) located at the Greens Creek Mine, Admiralty Island. Hecla Greens Creek Mining Company (HGCMC) was successful in sealing the CSB. Unfortunately, this process took considerably longer than HGCMC would like to have taken. HGCMC appreciated the state's patience as we worked to bring the contractor to site in a manner that was protective of our workforce, given the restrictions we all are living with because of the Covid-19 pandemic.

The interior of the metal siding of the CSB was sprayed with expanding foam, the white material in Figure 1. This material was also used to fill void spaces between the siding and other building elements. The foam was topped with a protective spray-on liner, the brown material in Figure 1.

Figure 1. CSB sealing - foam and liner



Figure 2 is a closeup of the foam/liner covering, showing how the foam and liner have contoured to the shape of the siding and were brought out over the interior wall. In the center of the figure

are streaks caused by moisture running down the siding. Before sealing, this moisture would have continued down the panel dripping to the exterior of the building. As seen in the figure, the moisture is now directed to the interior of the building.

Figure 2. Closeup of the sealed siding



With the building sealed and before the onset of fall weather, HGCMC desires to proceed with the cleanup as described in the letter previously sent to you dated 12 May 2020. Does the state approve of HGCMC's plan for the removal and disposal of residual material from the exterior of the CSB?

Please let me know if I can provide you with additional information.

Very truly yours,

) Wallace

Christopher Wallace

Permitting and Environmental Compliance Coordinator Hecla Greens Creek Mining Company

## Attachment E

## **Conceptual Site Model**

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

| Stere       Greens Creek Concentrate Storage Building       Instructions of use controls when descripting adminant concentrations of the development concentes concentes concentrations of the development concent                                                           | red directions below. Do not<br>ations or engineering/land                                                            | auways.                      | (5)                 | Identify the receptors potentially affected by each<br>exposure pathway: Enter "C" for current receptors, | F for tuture receptors, "C/F" for poin current and<br>future receptors, or "I" for insignificant exposure. | Current & Future Receptors                                      | S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S. | Sourun<br>Morkels<br>Morkels<br>Morkels<br>Morkels |                                | s visitia<br>ecrea<br>ners<br>fruc<br>fruc<br>fruc<br>fruc<br>fruc | C/F                         |                                             |                             |                                   |                          |                             |               | - |                           |                                                |                             |               |                            |                |                                               |                     |                                                                     |                             | -             | Ravised 10/01/2010 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------|--------------------------------------------------------------------|-----------------------------|---------------------------------------------|-----------------------------|-----------------------------------|--------------------------|-----------------------------|---------------|---|---------------------------|------------------------------------------------|-----------------------------|---------------|----------------------------|----------------|-----------------------------------------------|---------------------|---------------------------------------------------------------------|-----------------------------|---------------|--------------------|
| ek Concentrate Storage Building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Instructions: Follow the numbered directions below. Do not<br>consider contaminant concentrations or engineering/land | d Guinning Muleu descripting |                     |                                                                                                           |                                                                                                            | Check all pathways that co<br><u>The pathways identified in</u> | ages wursecuous zanu souran<br>Health CSM Scoping Form.  |                                                    |                                |                                                                    | ✓ Incidental Soil Ingestion | Dermal Absorption of Contaminants from Soil | Inhalation of Fugitive Dust |                                   | Ingestion of Groundwater |                             |               |   | Inhalation of Outdoor Air | Inhalation of Indoor Air                       | Inhalation of Fugitive Dust |               | Ingestion of Surface Water | water          | Inhalation of Volatile Compounds in Tap Water | Direct Contact with |                                                                     |                             |               |                    |
| ek Concentrate Storage Building ek Concentrate Storage Building hnifer Stoutamore /12/2022 /12/2022 For each medium identified in (1), follo top arrow <u>and</u> check possible transport mechanisms. Check additional media (2) For each medium identified in (1), follo top arrow <u>and</u> check possible transport active parts or animals in the media acts as a secondary so attribution to groundwater in the media acts as a secondary so attribution |                                                                                                                       |                              |                     |                                                                                                           | (3)                                                                                                        | Check all exp<br>media identifie                                |                                                          | Exposur                                            |                                |                                                                    |                             |                                             |                             |                                   |                          | 🗖 groundw                   |               |   |                           |                                                |                             |               |                            | surf           |                                               | se                  |                                                                     |                             |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sreens Creek Concentrate Storage Building                                                                             | sted By: Jennifer Stoutamore | ompleted: 5/12/2022 |                                                                                                           |                                                                                                            |                                                                 |                                                          |                                                    | Direct release to surface soil | Migration to subsurface  Migration to oroundwater  check on        | Runoff or erosion           |                                             | Other (list):               | Direct release to subsurface soil | Migration to groundwater | Uptake by plants or animals | Other (list): |   | Volatilization            | Flow to surface water body<br>Flow to sediment |                             | Other (list): |                            | Volatilization | Sedimentation cheer                           |                     | Direct release to sediment<br>Resuspension, runoff, or erosion chec | Uptake by plants or animals | Other (list): |                    |

## Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

| Site Name:    | Greens Creek Concentrate Storage Building |
|---------------|-------------------------------------------|
| File Number:  | 1513.38.120                               |
| Completed by: | Jennifer Stoutamore                       |

#### Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

## General Instructions: Follow the italicized instructions in each section below.

## 1. General Information:

**Sources** (check potential sources at the site)

| 🗌 USTs                        | Vehicles                                                                                 |
|-------------------------------|------------------------------------------------------------------------------------------|
| ☐ ASTs                        |                                                                                          |
| Dispensers/fuel loading racks | Transformers                                                                             |
| Drums                         | Image: Other:Lead and Zinc concentrate spillage from the<br>concentrate storage building |

#### Release Mechanisms (check potential release mechanisms at the site)

| Spills  | ☐ Direct discharge                                                                                              |
|---------|-----------------------------------------------------------------------------------------------------------------|
| ☐ Leaks | Burning                                                                                                         |
|         | Other: The building was not sealed and concentrate pushed against the inner walls of the building fell outside. |

#### Impacted Media (check potentially-impacted media at the site)

| Surface soil (0-2 feet bgs*)    | ☐ Groundwater |
|---------------------------------|---------------|
| ☐ Subsurface soil (>2 feet bgs) | Surface water |
| Air                             | ☐ Biota       |
| □ Sediment                      | □ Other:      |
|                                 |               |

## **Receptors** (check receptors that could be affected by contamination at the site)

|                                          | •••                      |
|------------------------------------------|--------------------------|
| Residents (adult or child)               | $\boxtimes$ Site visitor |
| Commercial or industrial worker          | Trespasser               |
| Construction worker                      | Recreational user        |
| Subsistence harvester (i.e. gathers wild | foods)                   |
|                                          |                          |

- Subsistence consumer (i.e. eats wild foods)
- Other:

\* bgs - below ground surface

- **2. Exposure Pathways:** (*The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".*)
- a) Direct Contact -
  - 1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

| If the box is checked, label this pathway complete:                                                                                                                                                           | Complete                   |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|
| Comments:                                                                                                                                                                                                     |                            |                                         |
| The Site is a working lead and zinc mine. Safety measures and internal are in place to ensure lead and zinc exposure is minimized for worker s                                                                |                            |                                         |
| 2. Dermal Absorption of Contaminants from Soil                                                                                                                                                                |                            |                                         |
| Are contaminants present or potentially present in surface soi<br>(Contamination at deeper depths may require evaluation on a                                                                                 |                            | the ground surface? $\boxed{\boxtimes}$ |
| Can the soil contaminants permeate the skin (see Appendix B                                                                                                                                                   | in the guidance document)? |                                         |
| If both boxes are checked, label this pathway complete:                                                                                                                                                       | Incomplete                 |                                         |
| Comments:                                                                                                                                                                                                     |                            |                                         |
| ) Ingestion -<br>1. Ingestion of Groundwater                                                                                                                                                                  |                            |                                         |
| Have contaminants been detected or are they expected to be d<br>or are contaminants expected to migrate to groundwater in the                                                                                 | C ,                        |                                         |
| Could the potentially affected groundwater be used as a curre source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source of to 18 AAC 75.350. | s determined the ground-   | $\overline{\times}$                     |
| If both boxes are checked, label this pathway complete:                                                                                                                                                       | Incomplete                 |                                         |
| Comments:                                                                                                                                                                                                     |                            |                                         |
| The nearest drinking water source is 2,500 feet away and up gradient c                                                                                                                                        | of the mine.               |                                         |

## 2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

| If both boxes are checked, label this pathway complete:                                                                                                                                              | Incomplete                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Comments:                                                                                                                                                                                            |                              |
| The nearest surface water is marine and is unlikely to be used as a drinking surface water at the Site.                                                                                              | g water source. There is no  |
| 3. Ingestion of Wild and Farmed Foods                                                                                                                                                                |                              |
| Is the site in an area that is used or reasonably could be used for harvesting of wild or farmed foods?                                                                                              | hunting, fishing, or         |
| Do the site contaminants have the potential to bioaccumulate (se document)?                                                                                                                          | e Appendix C in the guidance |
| Are site contaminants located where they would have the potenti<br>biota? (i.e. soil within the root zone for plants or burrowing dep<br>groundwater that could be connected to surface water, etc.) | 1                            |
| If all of the boxes are checked, label this pathway complete:                                                                                                                                        | Incomplete                   |
| Comments:                                                                                                                                                                                            |                              |
| The Site is an active mine and forageable foods are not present.                                                                                                                                     |                              |
| nhalation-<br>1. Inhalation of Outdoor Air                                                                                                                                                           |                              |
| Are contaminants present or potentially present in surface soil be<br>ground surface? (Contamination at deeper depths may require e                                                                  |                              |
| Are the contaminants in soil volatile (see Appendix D in the gu                                                                                                                                      | uidance document)?           |
| If both boxes are checked, label this pathway complete:                                                                                                                                              | Incomplete                   |
| If bom boxes are encered, tabet this painway comprete.                                                                                                                                               |                              |

 $\square$ 

 $\square$ 

## 2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

*If both boxes are checked, label this pathway complete:* 

Incomplete

Comments:

The Concentrate Storage Building is used for storage of lead and zinc concentrate. Workers enter the building only to move concentrate into or out of the building.

 $\square$ 

 $\square$ 

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

#### Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

*Check the box if further evaluation of this pathway is needed:* 

Comments:

## Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

*Check the box if further evaluation of this pathway is needed:* 

Comments:

 $\square$ 

Γ

## Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM<sub>10</sub>). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

*Check the box if further evaluation of this pathway is needed:* 

#### Comments:

The Site is a working lead and zinc mine. Safety measures and internal standard operating procedures are in place to ensure lead and zinc exposure is minimized for worker safety. Safety measures to minimize worker exposure are compliant with OSHA standards. Safety measures currently in place due to the nature of work at the mine are sufficient to minimize the exposure to fugitive dust if it were present at the Site.

#### **Direct Contact with Sediment**

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

*Check the box if further evaluation of this pathway is needed:* 

Comments:

# **4. Other Comments** (*Provide other comments as necessary to support the information provided in this form.*)

The Site is a working lead and zinc mine. Safety measures and internal standard operating procedures are in place to ensure lead and zinc exposure is minimized for worker safety. Safety measures to minimize worker exposure are compliant with OSHA standards.