

July 2022

Skagway Ore Terminal Sediment Remediation Project Alaska Department of Environmental Conservation, File No. 1526.38.004 Hazard Identification No. 401

Construction Summary Report Skagway Ore Terminal Sediment Remediation Project

Prepared for White Pass & Yukon Route

July 2022

Skagway Ore Terminal Sediment Remediation Project Alaska Department of Environmental Conservation File No. 1526.38.004 Hazard Identification No. 401

Construction Summary Report Skagway Ore Terminal Sediment Remediation Project

Prepared for White Pass & Yukon Route 231 2nd Avenue Skagway, AK Prepared by

Anchor QEA, LLC 1605 Cornwall Avenue Bellingham, WA

TABLE OF CONTENTS

1	Introduction1					
2	Sum	Summary of Work2				
3	Proje	ect Res	ults and Documentation	. 3		
	3.1	Contra	ctor Pre- and Post-Construction Document Submittal	3		
	3.2	Daily C	onstruction Reports	3		
	3.3	Final C	onstruction Quantities	4		
		3.3.1	Dredging	4		
		3.3.2	Pre-Disposal Stabilization and Verification Sampling and Testing of Leachable Metals Dredge Material	5		
		3.3.3	Mass of Lead Contaminated Sediment Removed	6		
		3.3.4	Off-Site Disposal	9		
		3.3.5	Sand Cover Placement	9		
	3.4	Water	Quality Monitoring Summary	11		
	3.5	Structu	ral Monitoring	.11		
	3.6	Marine	Mammal Monitoring Summary	12		
4	Conclusion1					
5	References					

TABLES

Table 1	Summary Timeline of Key Construction Activities	. 2
Table 2	Dredging Volume Summary	. 5
Table 3	Range of Mass of Lead Contaminated Sediment Removed	. 8
Table 4	Sand Cover Placement Volume Summary	10

i

FIGURES

Figure 1	Vicinity Map
Figure 2	Pre-Construction Conditions
Figure 3	Post-Dredge Conditions
Figure 4	Post-Sand Cover Placement Conditions

APPENDICES

- Appendix A Treatment, Testing, and Disposal Forms and Associated Laboratory Analytical Reports
- Appendix B Disposal Facility Documentation
- Appendix C Sand Cover Material Chemistry Documentation
- Appendix D Turnagain Marine Construction Letter Regarding Sand Placement Quantities
- Appendix E Water Quality Monitoring Daily Reports
- Appendix F Post-Construction Structural Monitoring Results (TMC/KPFF)
- Appendix G Marine Mammal Monitoring Summary Memorandum

ABBREVIATIONS

ADEC	Alaska Department of Environmental Conservation
CWP	Construction Work Plan
CY	cubic yards
H&A	Hughes and Associates
kg	kilogram
kg/cf	Kilograms per cubic foot
mg/kg	Milligrams per kilogram
mg/L	milligrams per liter
RCRA	Resource Conservation and Recovery Act
TCLP	toxicity characteristic leaching procedure
ТМС	Turnagain Marine Construction
TMC Final Package	Skagway Ore Dock Dredging Final Project Package
WPYR	White Pass & Yukon Route

1 Introduction

In March and April 2022 White Pass & Yukon Route (WPYR) implemented the Skagway Ore Terminal Sediment Remediation Project (Project), located in Skagway, Alaska (Figure 1). The Project focused on removal of contaminated sediment within accessible areas of the Skagway Ore Basin (referred herein as the Work Site [also in Figure 1]), adjacent to the Skagway Ore Terminal facility. The Project was completed in coordination with the Alaska Department of Environmental Conservation (ADEC) who approved the contractor's Construction Work Plan (CWP; TMC 2022a) prior to the start of construction. This Project corresponds with ADEC File No. 1526.38.004 and ADEC Hazard Identification No. 401.

Construction was awarded to Turnagain Marine Construction (TMC) as the prime contractor. TMC and several subcontractors completed the construction activities at the Work Site and at off-site facilities, as follows:

- TMC (dredging, stabilization, and sand cover placement)
- Boyer Logistics (in-water towing)
- Waste Management (upland transportation and disposal)
- Hughes and Associates (H&A; hydrographic surveyor)

During implementation, WPYR's supporting consultant team was as follows:

- Anchor QEA (Designers of Record and technical consultant for remediation aspects)
- KPFF (technical consultant for structural engineering aspects)
- Hart Crowser (technical consultant for geotechnical engineering aspects)

This Construction Summary Report, prepared by Anchor QEA on behalf of WPYR, is intended to provide a general overview of the completed construction activities as part of the Project and presents documentation generated to document the work completed and materials used.

The appendices to the Construction Summary Report provide compiled documentation collected as part of inspection, oversight, and tracking, as well as Project information. The information provided in the appendices is listed below:

- Appendix A Treatment, Testing, and Disposal Forms and Associated Laboratory Analytical Reports
- Appendix B Disposal Facility Documentation
- Appendix C Sand Cover Material Chemistry Documentation
- Appendix D Turnagain Marine Construction Letter Regarding Sand Placement Quantities

1

- Appendix E Water Quality Monitoring Daily Reports
- Appendix F Post-Construction Structural Monitoring Results
- Appendix G Marine Mammal Monitoring Summary Memorandum

2 Summary of Work

Work performed by TMC and their subcontractors for the Project included removal of contaminated sediment from the Work Site by mechanical dredging, dredged sediment dewatering, stabilization of the dredge material using Portland Cement, post-stabilization verification testing and reporting, transportation of stabilized dredged material off site by barge, offloading and transferring dredged material to railcars in Seattle, off-site disposal of the stabilized material at a permitted disposal facility, and clean sand cover placement over the dredge footprint after dredging was completed. In addition, environmental monitoring activities consisting of water quality and marine mammal monitoring were conducted during implementation of the Project.

Table 1 presents the key pre-construction, construction, and closeout activities and corresponding dates completed as part of the Project.

Date	Activity
Pre-Construction Activities	
2021 November 5– 2022 February 10	Pre-construction submittals, including CWP, Environmental Protection Plan, and Health and Safety Plan, completed by TMC
2022 February 11	ADEC approval of TMC's CWP
2022 February 21	Kickoff pre-construction meeting: WPYR, SSA Marine, Anchor QEA, KPFF, Hart Crowser, TMC, H&A
2022 February 28	Mobilization to Work Site by TMC
2022 February 28	Pre-construction bathymetric survey conducted by H&A
2022 March 1–2022 March 2	Pre-construction conditions inspection conducted by TMC
Construction Activities (TMC	, H&A, Waste Management)
2022 March 4–2022 April 1	Dredging of contaminated sediment from Dredge Units 1, 2, and 3
2022 March 4–2022 April 1	Water quality monitoring
2022 March 4–2022 April 6	Marine mammal monitoring
2022 March 5–2022 April 1	Stabilization of dredge material and verification testing
2022 April 4–2022 April 6	Clean sand cover placement
2022 March 24	First barge leaves Work Site for Seattle
2022 April 13	First barge received by Waste Management
2022 April 11	Second barge leaves Work Site for Seattle
2022 May 23	Second barge received by Waste Management
Closeout Activities	
2022 April 6	Post-construction bathymetric survey conducted by H&A
2022 April 7	Post-construction conditions inspection conducted by TMC
2022 April 18	Final package of compiled progress submittals provided by TMC to WPYR

Table 1Summary Timeline of Key Construction Activities

3 Project Results and Documentation

In compliance with Project specifications, documents were completed and maintained to record and document the construction activities, and to keep WPYR, the consultant team, and the contractor informed of progress throughout performance of the work.

Key completed monitoring records are attached for reference as appendices to this Construction Summary Report.

3.1 Contractor Pre- and Post-Construction Document Submittal

On behalf of WPYR, relevant members of the consultant team reviewed contractor pre-construction, construction progress, and post-construction submittals to verify compliance with the Project specifications and the ADEC-approved CWP. The pre-construction submittals, including the CWP (TMC 2022a), Environmental Protection Plan (TMC 2022b), and Health and Safety Plan (TMC 2022c) underwent several rounds of consultant review toward development of a final submittal package for review by ADEC. The CWP was formally accepted by ADEC on February 11, 2022, after responses to comments by TMC.

After construction was completed, TMC submitted the *Skagway Ore Dock Dredging Final Project Package* (TMC Final Package; TMC 2022d) on April 18, 2022, which consisted of a compilation of contractor submittals during construction, including daily construction reports, pre- and post-dredge bathymetric surveys, a post-sand cover placement bathymetric survey, final calculated dredging, slough, and sand cover quantities, the final structural monitoring report, compiled daily water quality monitoring reports, marine mammal monitoring reports, and the signed ADEC treatment, transportation, and disposal forms. Much of the documentation provided by TMC as part of the TMC Final Package is appended to or has been incorporated into this Construction Summary Report.

3.2 Daily Construction Reports

During construction, TMC completed daily construction reports to document activities completed each day, including dredging, stabilization, verification testing of the stabilized material, sand cover placement, water quality monitoring, bathymetric progress surveying, and structural monitoring. In addition, these reports contain notes regarding conditions observed during the work, equipment used, a crew list, progress volumes, and identified issues of potential non-compliance with the contract design documents. Daily reports also include limited photographic documentation of the work. Contractor daily construction reports are included in TMC Final Package (TMC 2022d).

3.3 Final Construction Quantities

This section summarizes the final construction volumes for dredging and sand cover placement. Dredging volumes were calculated by Hughes & Associates on behalf of TMC by comparing pre- and post-dredge and post-sand cover surveys.

Figure 2 presents pre-construction seabed conditions, based on the pre-construction bathymetric survey conducted by H&A on February 28, 2022. Figure 3 presents the post-dredge contours achieved within the Work Site, based on the post-dredge bathymetric survey conducted by H&A on April 2, 2022. Finally, Figure 4 presents the extent of sand cover placement, conducted after dredging was completed, and is based on the post-sand cover bathymetric survey conducted by H&A on April 6, 2022 for areas within and adjacent to the sand placement footprint. The April 2, 2022 survey was used in areas outside of the footprint that did not have bathymetric coverage during the April 6 survey.

The following subsections summarize the final quantities for each of the primary construction activities completed by TMC and describe the rationale where actual construction quantities varied from quantities estimated during design.

3.3.1 Dredging

Dredging activities were tracked by TMC to determine the volume of contaminated sediment removed. The dredging volume was determined by comparing the pre-construction survey with the post-dredge survey and included slough material that entered the dredge footprint from the slope under the Ore Dock and was removed as part of the dredging work.

A summary of total dredge volume (including slough volume) removed by TMC is presented in Table 2. The total volume removed from the combined Dredge Units 1, 2, and 3 was 3,277 cubic yards (CY), including daylight side-slopes, removed slough material, and overdredge allowance volumes. The bid volume for this first round of dredge passes was 3,700 CY; TMC achieved removal of 89% of the dredging bid volume. This was as much as could be safely accessed and removed and it accomplished the project goal of completing a mass removal of contaminated sediment from the harbor in the area identified in the Options Analysis and refined in the Basis of Design Report. The primary reason for the difference between the bid and actual dredging volumes is that the bid volume assumed that sloughing from the adjacent slope under the Ore Dock would occur over the entire length of the extents of the dredge footprint; however, only a limited extent of the slope area sloughed into the dredge prism, as can be observed in Figure 2. This slough material was removed as part of the dredging work and is included in the payable volume.

Table 2 Dredging Volume Summary

	Dredging Volumes				
Actual Quantities vs. Bid Quantities	Dredge Unit Volume (CY)	Slough Volume (CY)	Total Volume (CY)		
Total actual quantities	2,812 ¹	465 ¹	3,277		
Total bid volume	3,700				
Difference		-423			

Note:

1. As reported in 4/3/2022 TMC Daily Construction Report.

It should be noted that "additional dredging," defined as conducting a second and third round of dredge passes to remove material below the initial round of dredging grades, was not conducted as part of the Project. This is because sloughing from underneath the Ore Dock structures was not observed in sufficient quantity during construction to warrant dredging deeper. There were concerns that dredging deeper at the toe of the slope adjacent to the Ore Dock would lead to a greater potential for uncontrolled slope movement and potential structural damage to the Ore Dock. This was anticipated and accounted for during remedial design, which is why the dredge cut thicknesses were limited adjacent to the Ore Dock and were required to be completed in a sequential fashion if sufficient sloughing of sediment from under the dock occurred. As such, there is no volume associated with the Additional Dredging bid item.

3.3.2 Pre-Disposal Stabilization and Verification Sampling and Testing of Leachable Metals Dredge Material

During pre-construction characterization, the dredge material was determined to exceed the toxicity characteristic leaching procedure (TCLP) criteria of the Resource Conservation and Recovery Act (RCRA) metals^{*} for lead as described in the *Basis of Design Report - Skagway Ore Terminal Sediment Remediation Project* (Anchor QEA 2020). Pre-construction measured values for leachability, as documented through TCLP testing, ranged from 5.1 to 27.8 milligrams per liter (mg/L) for lead (Anchor QEA 2015). This indicated that the untreated material would be classified as hazardous waste for transport and disposal. To address this concern, the contractor was required to stabilize all dredged sediment on site and conduct in situ verification sampling and testing of the stabilized dredge material.

TMC conducted sediment stabilization within a watertight mixing area on the barge (located within the Work Site). Portland cement was delivered to the site in supersacs and mixed using an excavator on

^{*} RCRA lists a group of eight heavy metals (commonly referred to as the RCRA 8), which include arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.

the barge. Based on the CWP (TMC 2022a), it is assumed that the cement was mixed at a ratio that varied between 3% to 5% (by weight) to stabilize the material, as no additional as-built information was provided by TMC.

Prior to transport from the Work Site, verification sampling and testing was performed over six separate events with each sampling event consisting of three samples collected to represent approximately 500 CY batches of stabilized material, as described in the CWP (TMC 2022a). The analytical testing was performed by SGS Laboratory in Anchorage, an ADEC-certified laboratory. Analytical testing consisted of bulk metals and TCLP testing for RCRA metals to demonstrate that the stabilized sediment TCLP concentrations were below hazardous waste thresholds (U.S. Environmental Protection Agency's Maximum Concentrations of Contaminants for Toxicity Characteristic [Table 1, 40 Code of Federal Regulations 261.24 – Toxic Characteristic]). The analytical results were submitted by TMC for ADEC approval through the completion of ADEC's "Contaminated Media Transport and Treatment, or Disposal Approval Form" with attached post-stabilization verification analytical results. These forms were submitted to ADEC on March 22 and April 11, 2022. The forms and analytical results were approved by ADEC on March 24 and April 11, 2022, respectively, prior to transportation of the stabilized sediment from the Work Site. The Transport and Treatment or Disposal Approval forms signed by ADEC and the associated analytical results for bulk chemistry and TCLP analyses conducted on the stabilized material are presented in Appendix A.

3.3.3 Mass of Lead Contaminated Sediment Removed

The dredge footprint for this Project was developed with the objective of removing a mass of legacy sediment contamination, based on the recommendations of the site-specific Risk Assessment (Golder 2018). This approach was consistent with Remedial Action Objective 1 in the Options Analysis (Anchor QEA 2019), which stated that the objective of the remediation was to remove the majority of the mass of sediment contamination associated with historical ore handling operations in accessible areas of the harbor. As described in the Options Analysis, lead was used as a surrogate for all legacy ore contamination because lead was determined to include the largest area that exceeded screening levels compared to other ore-related contaminants and the lead exceedance areas encompassed exceedances from all other ore-related contaminants. This approach was incorporated into the dredge prism design for the removal action, as described in the Basis of Design Report (Anchor QEA 2020). The dredge prism boundaries were set to remove most of the accessible footprint of lead contaminated sediment in the Ore Basin.

Dredging was completed within the removal action footprint consistent with the dredge prism design. As previously noted, due to limited sloughing of the slope areas during construction leading to structural concerns, only one round of dredging passes was conducted within the Project footprint. The mass of lead associated with the contaminated sediment removed from the design footprint was estimated using lead concentrations from the ex situ samples that were collected for

6

stabilization verification during construction and the volume of dredged material (Table 3). The minimum, average, and maximum concentrations of lead in the dredged sediment were calculated based on 18 ex situ samples, as summarized in Table 3. The range of lead mass removed by the dredging was then calculated using the range of lead concentrations in the ex situ sediment samples multiplied by the dry-weight total actual sediment mass (estimated at 45 kilograms per cubic foot conversion factor for dry-weight sediment). Table 3 presents the estimated range of lead mass removed by the dredging. The average lead contaminated sediment mass removed was calculated as 22,761 kilograms (kg), with minimum and maximum lead contaminated sediment mass removed of 3,500 kg and 88,391 kg, respectively.

Table 3 Range of Mass of Lead Contaminated Sediment Removed

				Lead Concent	rations in Ex Situ Se	ediment Samples		Lead Conta	
Sample Batch ID	Sample ID	Sample Date	Sediment Lead Concentration ¹ (mg/kg)	Minimum (mg/kg)	Average (mg/kg)	Maximum (mg/kg)	Minimum (kg)	Average (kg)	Maximum (kg)
	1		4,830						
1	2	3/4/2022	10,400						
	3		5,710						
	S2 D		14,000						
2	S2 E	3/15/2022	5,890						
	S2 F		9,400						
	S3 D		7,600	-					
3	S3 E	3/16/2022	22,200						
	S3 F		10,600	879	5,717	22,200	3,500	22,761	88,391
	S4 D		879	0.0	0,1 11	,0	2,200	/	00,001
4	S4 E	3/18/2022	1,500						
	S4 F		1,330						
	S5 D		1,680						
5	S5 E	3/20/2022	1,320						
	S5 F		972						
	S6 D		1,600						
6	S6 E	4/1/2022	1,530						
	S6 F		1,460						

Notes:

1. Sediment lead concentrations derived from the SGS Laboratory reports for sample batches 1 to 6 (see Appendix A).

2. A mass conversion factor of 45 kilograms per cubic foot was calculated assuming a conversion factor of 1.8 g/cm³ for sediment (dredge) material.

3. The total actual dredge volume used in the lead contaminated sediment mass calculation includes the dredge volume from the dredge footprints (2,812 CY) and slough volume (465 CY).

In the Options Analysis, the mass of lead associated with the sediment in the removal footprint was estimated to be approximately 78,500 kg. The difference with the pre-construction estimated mass of lead and that calculated in Table 3 is primarily due to the difference in the concentrations of lead measured in historical sediment samples and the ex situ concentrations collected during construction. The average concentration of lead in the historical samples collected within the dredge design footprint was 20,525 milligrams per kilograms (mg/kg), compared to an average lead concentration of 5,717 mg/kg in ex situ samples collected during construction. If the historical lead mass of 81,720 kg.

While the mass of lead removed in the dredged sediment may be lower than the Options Analysis estimate (based on the sensitivity to the difference in historical measured lead concentration versus the ex situ measured concentration), the area of dredging achieved removal of the targeted accessible area of lead contaminated sediment mass, consistent with the Project dredging design plans.

3.3.4 Off-Site Disposal

Stabilized dredge material was disposed of at the Columbia Ridge Subtitle D Landfill Disposal Facility, located in Arlington, Oregon. The dredged material was loaded into 2 CY supersacs after stabilization verification on the barge in Skagway. The barges were then transported to Seattle where material was offloaded at the 8th Avenue Transload Facility on the Duwamish River and transferred to the custody of Waste Management, who then transferred the sediment and any associated debris to railcars and delivered the material to the Columbia Ridge Disposal Facility. The quantity of stabilized material brought to the Columbia Ridge Landfill was established through in situ bathymetric survey measurements and verified using barge displacement load calculations included with the final certificates of disposal. Based on the final certificates of disposal issued by Waste Management, 6052 tons of stabilized dredge material were received at the Seattle Offloading Facility and then disposed of at the Columbia Ridge Subtitle D Landfill Disposal Facility. For comparison, using a typical conversion for sediment of 1.5 tons/CY, this is equivalent to a volume of 4,035 CY⁺ of sediment. The final certificates of disposal were provided by TMC upon completion of the Project and are included as Appendix B.

3.3.5 Sand Cover Placement

A clean sand cover was placed in all dredged areas after dredging was completed, with the intent of preventing exposure to potential generated residuals. Clean sand material was imported to the Work Site by barge on February 21, 2022, from a quarry located in Haines, Alaska. As required by the

[†] Calculated disposed sediment of 4,035 CY differs from the dredged sediment volume of 3.277 CY (Section 3.3.1) due to estimation of the conversion rate between tonnage and volume and inherent inaccuracies in barge displacement measurements.

specifications, physical and chemical testing of the clean sand material was conducted by TMC (through SGS Laboratory), and results are included as Appendix C.

A summary of the total sand cover placement volume completed by TMC is presented in Table 2. This is based on the reported tonnage of sand material imported to the site and placed by TMC: 753 tons. This is equivalent to 538 CY, based on an assumed conversion factor of 1.4 CY/ton for sand material. For comparison purposes, it was estimated during design that the required sand cover volume would range between 422 and 633 CY, corresponding with the required minimum placement thickness of 1 foot and the allowable total thickness of 1.5 feet, respectively. Since the imported sand cover placement volume was within this range, it was accepted by WPYR as sufficient to meet Project requirements. Using the volume of material imported and the area of the dredge prism, it is estimated that the average thickness of sand cover would be approximately 1.27 feet over the dredge footprint, exceeding the minimum required thickness of 1 foot. As shown in Figure 4, sand cover material was placed throughout the full extent of the dredge footprint, with some minor placement of the sand cover material outside of the dredge boundary.

The actual placed sand cover volume was reviewed by comparing the post-dredge survey with the post-sand cover placement survey; however, based on the nature of the sand material and post-dredge surface conditions, and due to survey accuracy, the total thickness of the placed material was difficult to observe through the survey comparison. This is thought to be due to the soft nature of the surface material after dredging was completed, particularly in the slope area where additional soft slough area was documented in final dredge passes. It is thought that due to the soft nature of this material, the placed sand may have consolidated the soft surface material, or some of the placed sand may have settled into the surficial material and as a result, the measured volume through survey comparison did not match the amount of material imported to the site and placed by TMC. TMC confirmed during placement and after construction that they had placed the full volume of imported sand evenly throughout the dredge footprint. TMC's letter, dated April 7, 2022 (Appendix D) documents TMC's methods, while noting the discrepancy between the volume of material imported to the site and that documented by bathymetric surveys.

	Sand Cover Placement			
Actual Quantities vs. Bid Quantities	Reported Tonnage (Tons)	Volume (CY)		
Total actual quantities	753	538 ¹		
Total bid volumes		422–633 ²		

Table 4 Sand Cover Placement Volume Summary

Notes:

- 1. Calculated sand placement volume assumes a conversion factor of 1.4 CY/ton for sand material and includes material placed outside of the dredge footprint, as shown in Figure 4.
- 2. The range of sand cover placement bid volumes is based on the design dredge footprint surface area (11,400 square feet) multiplied by 1-foot minimum sand cover thickness (422 CY) or by 1.5-foot maximum sand cover thickness (which includes a 0.5-foot maximum overplacement allowance, 633 CY).

3.4 Water Quality Monitoring Summary

As required in the Project permitting documents, specifically the ADEC Water Quality Certification, water quality monitoring was performed by TMC to monitor for potential water quality impacts caused by resuspension or discharge of suspended solids during dredging and barge dewatering activities. TMC followed the water quality monitoring protocols and procedures, in accordance with those described in the ADEC-approved Water Quality Monitoring Plan (Anchor QEA 2022). Water quality monitoring was performed over six events, consisting of three initial daily monitoring events at the start of dredging and three weekly monitoring events for the duration of the dredging work. Water quality monitoring forms were provided in the contractor daily construction reports and are included in this report as Appendix E.

TMC implemented appropriate environmental management measures and controls and met the water quality criteria requirements. No exceedances were documented during the water quality monitoring.

3.5 Structural Monitoring

Structural monitoring was performed during the work to monitor for potential movement of the Ore Dock structures (e.g., Ore Loader Platform and Timber Dock) adjacent to the dredge footprint due to the dredging work potentially causing unstable differential forces on the piling support of these structures. Structural monitoring included the following activities:

- A pre-construction conditions inspection was conducted by TMC on March 1 to 2, 2022. This
 included visual observations of the condition of the structures above and below water as
 documented by photographs. A report was submitted on March 9, 2022, to serve as a
 baseline reference for construction (TMC 2022e).
- Daily monitoring of movement for both lateral and vertical deflections at seven monitoring point locations on the Ore Dock structures adjacent to the dredging, with a summary provided in the contractor's daily construction reports

Throughout the Project, some movement was observed that was greater than 3/4 inch, which was the threshold value for stopping work. These movements were discussed with KPFF and Hart Crowser and determined to be a function of the measuring equipment accuracy not actual movement of the structure. As such, work continued and the movement continued to range up and down relative to

the baseline, indicating that the measured movement was resulting from reduced survey accuracy rather than structure movements.

The structural monitoring results for the duration of the Project, conducted by H&A through April 5, 2022, plus vertical, horizontal, and lateral movement charts developed by KPFF based on the data measurements are included in Appendix F.

3.6 Marine Mammal Monitoring Summary

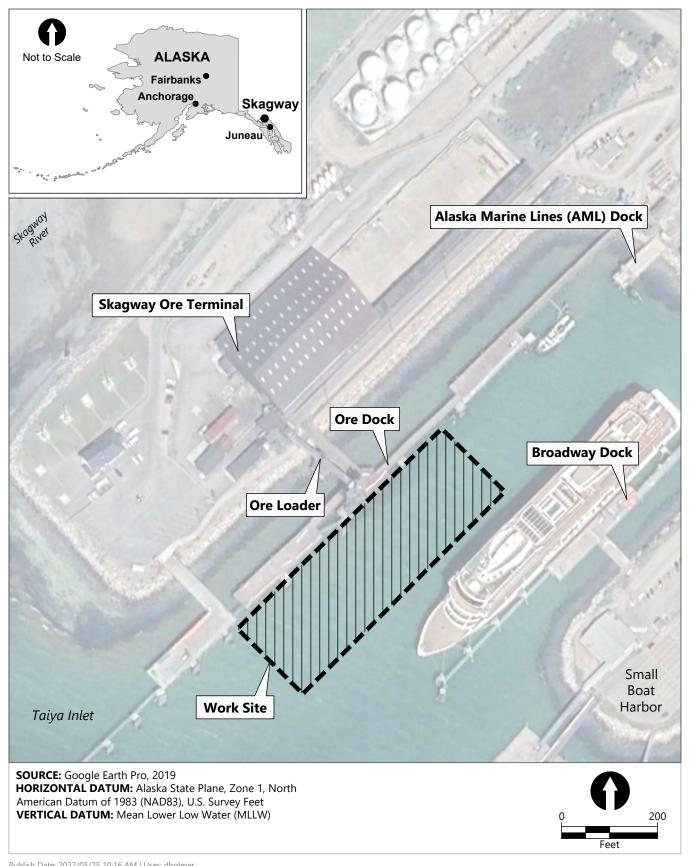
As required in the Project permitting documents, specifically the National Marine Fisheries Service letter of concurrence to the U.S. Army Corps of Engineers, marine mammal monitoring was required to be conducted at all times during in-water activities to observe for the presence of marine mammals and ensure their protection by temporarily stopping work if marine mammals entered the shutdown zone within 200 meters of the dredging. Observations from the marine mammal monitoring observer were submitted as part of the contractor's daily construction reports. No marine mammals were observed to enter the shutdown zone during active dredging or sand cover placement work. The Marine Mammal Monitoring Summary Memorandum, presented in Appendix G, includes additional details of the marine mammal observations during the Project.

4 Conclusion

Removal of contaminated sediment and placement of clean sand cover within the Work Site was completed by TMC in March and April 2022. The work was completed to meet the Project Remedial Action Objectives described in the Options Analysis (Anchor QEA 2019). Specifically, the remedial actions successfully reduced the mass of legacy contaminants in accessible sediment of the Skagway Ore Basin, while not adversely impacting existing or reasonably anticipated future harbor uses. This reduction in the mass of legacy contaminants reduced potential human health risks associated with the consumption of resident Skagway shellfish, reduced the potential risks to benthic invertebrates, and remediated source areas of metals contamination that could potentially spread to adjacent areas that currently are not contaminated and/or have lower risks for benthic and human receptors.

As described in this report, the targeted area of mass removal was completed according to the dredging design plan, while the calculated mass of lead removed in the dredged sediment during construction varied from the predicted mass in the Options Analysis due to the difference between the measured historical versus ex situ lead concentrations. Due to the limited slope sloughing from under and behind the Ore Dock and associated structural considerations, only the first passes of dredging were necessary, as per the design. Although a portion of the previously identified sediment remains along the toe of the slope and the slope under and behind the Ore Dock, the flat portions of the dredge units, which constitute the majority of the overall dredge footprint area, were dredged to full required grades (Figure 3). All sediment was stabilized as per the design and material sampling results were below hazardous waste thresholds. All stabilized sediment was successfully transported and disposed of at the Columbia Ridge Subtitle D Landfill. Finally, the volume of sand material placed to address residuals was considered to meet the placement thickness requirements based on the contractor's reported placement volume.

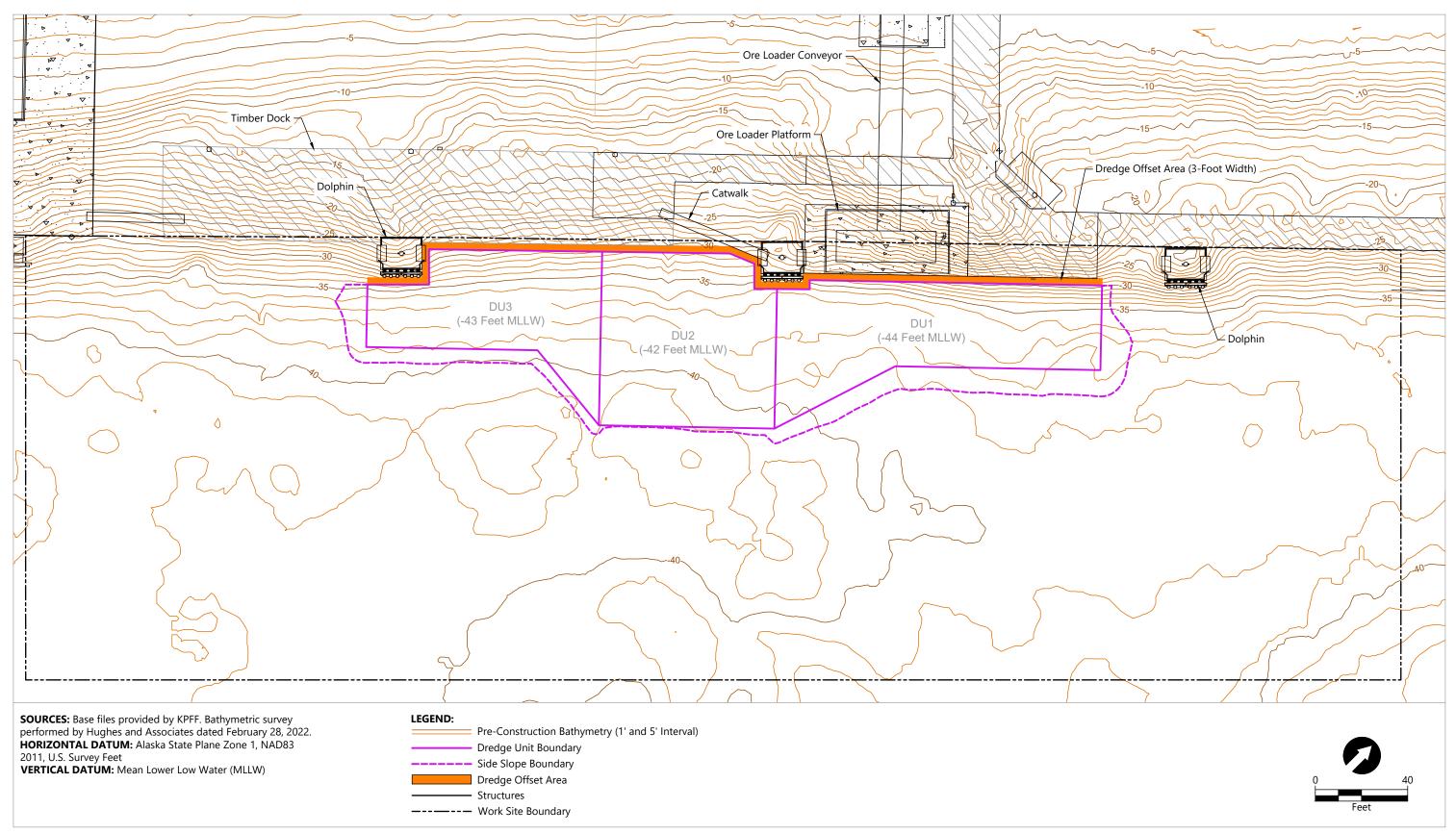
Anchor QEA understands sampling may occur in the harbor in the future and recommends ADEC, as part of an approved sampling program, require sampling within this remediation footprint to verify the success of the cover placement. Because the sand placed was intended to mix with underlying residuals and sediment, future sampling would be representative of this mixed condition and would not be expected to represent solely the sand material placed. Concentrations of contaminants of concern in surficial sediment are expected to be significantly lower than pre-construction surficial concentrations, barring any change of conditions in the interim. This would provide a measure of success of the cover placement, in that it would demonstrate the reduced potential for legacy contaminants to be present in the surface sediment and therefore the reduction of the exposure pathway to benthic invertebrates and shellfish in the harbor.


Overall, the remediation activities were completed in accordance with contract design documents to address the area of highest surface sediment concentrations and the greatest concentration of mass

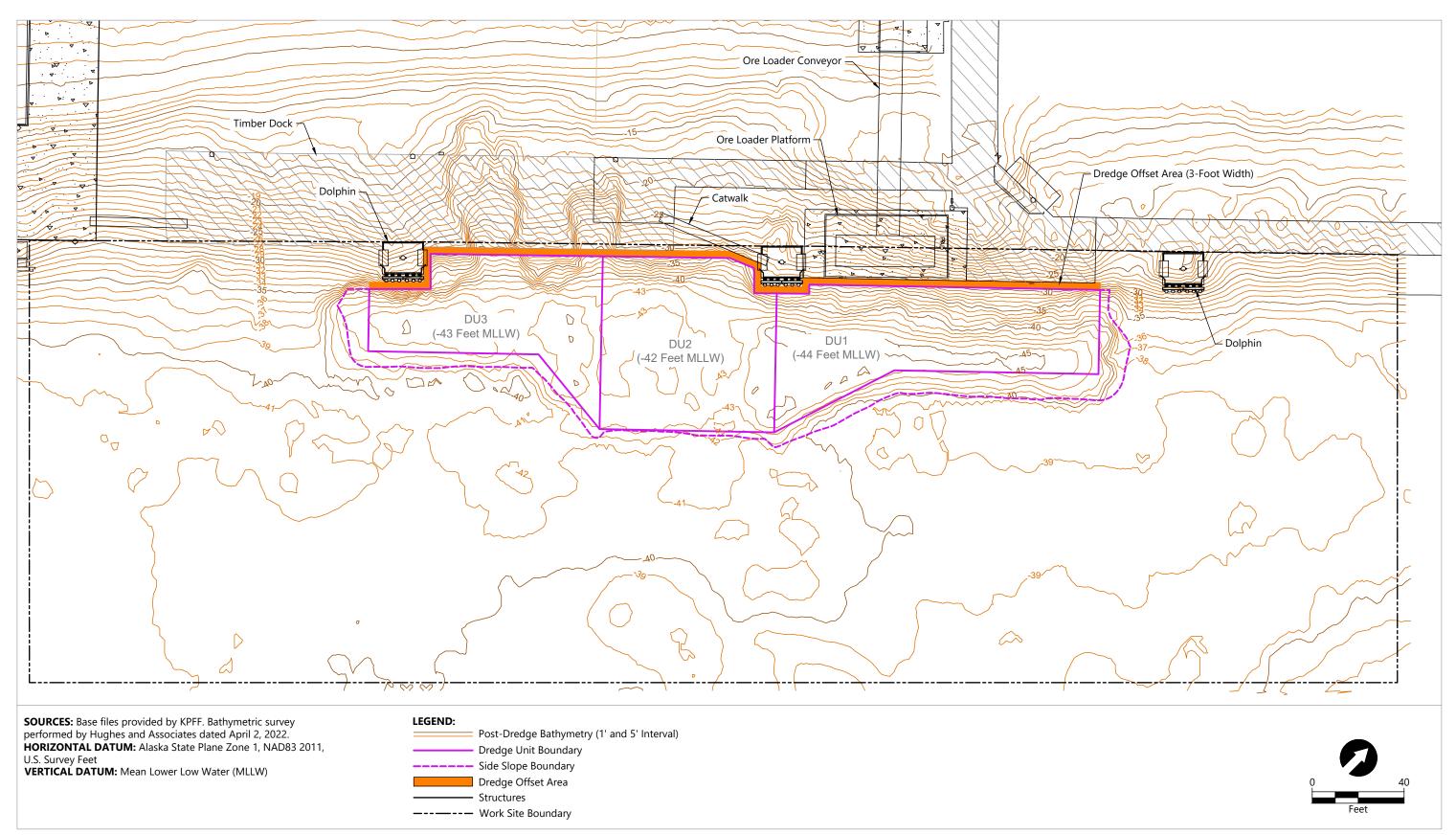
of metals in the Ore Basin. In addition, the remediation activities met the Project Remedial Action Objectives and fulfilled the conclusion of the Risk Assessment (Golder 2018) that removal of a portion of the mass of metals related to ore concentrations would be expected to further reduce the uptake by shellfish (and thus, reduce the potential hazards related to shellfish consumption). The completion of this remedial action should be considered a step towards closure of the Site.

5 References

- Anchor QEA, 2015. Sediment Characterization Report, Skagway Ore Dock and Small Boat Harbor Dredging: Gateway Intermodal Dock Reconstruction Project and Legacy Harbor Contaminant Mitigation Program. Prepared for Alaska Department of Environmental Conservation, U.S. Environmental Protection Agency, and U.S. Army Corps of Engineers on behalf of the Municipality of Skagway, Alaska. June 2015.
- Anchor QEA, 2019. *Remedial Action Options Analysis*. Prepared for Alaska Department of Environmental Conservation, on behalf of White Pass & Yukon Route Railway. October 2019.
- Anchor QEA, 2020. Basis of Design Report Skagway Ore Terminal Sediment Remediation Project. Prepared for White Pass & Yukon Route. April 2020.
- Anchor QEA, 2022. Water Quality Monitoring Plan Skagway Ore Terminal Sediment Remediation Project. Prepared for White Pass & Yukon Route. January 2022.
- Golder, 2018. *Skagway Ore Basin Risk Assessment*. Prepared for White Pass & Yukon Route. January 25, 2018.
- TMC (Turnagain Marine Construction), 2022a. *Skagway Ore Dock Dredging Construction Work Plan*. February 11, 2022.
- TMC, 2022b. Skagway Ore Dock Dredging Environmental Protection Plan. February 11, 2022.
- TMC, 2022c. Skagway Ore Dock Dredging Health and Safety Plan. February 11, 2022.
- TMC, 2022d. Skagway Ore Dock Dredging Final Project Package. April 18, 2022.
- TMC, 2022e. *Pre-Construction Condition Inspection Report*. Skagway Ore Sediment Remediation Project. March 9, 2022.


Figures

Publish Date: 2022/05/25 10:16 AM | User: dholmer Filepath: k:\Projects\0159-kpff consulting engineers\ore terminal remediation support\construction plans\0159-CCR-001 (VICINITY).dwg Figure 1


Figure 1 Vicinity Map

Publish Date: 2022/05/25 10:16 AM | User: dholmer Filepath: k:\Projects\0159-kpff consulting engineers\ore terminal remediation support\construction plans\0159-CCR-004.dwg Figure 2


Figure 2 **Pre-Construction Conditions**

Publish Date: 2022/05/25 10:17 AM | User: dholmer Filepath: k:\Projects\0159-kpff consulting engineers\ore terminal remediation support\construction plans\0159-CCR-002.dwg Figure 3

Figure 3 Post-Dredge Conditions

Publish Date: 2022/05/25 10:17 AM | User: dholmer Filepath: k:\Projects\0159-kpff consulting engineers\ore terminal remediation support\construction plans\0159-CCR-003.dwg Figure 4

Figure 4 **Post-Sand Cover Placement Conditions**

Appendix A Treatment, Testing, and Disposal Forms and Associated Laboratory Analytical Reports

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE **Contaminated Sites and Prevention Preparedness and Response Programs**

Contaminated Media Transport and Treatment or Disposal Approval Form

DEC HAZARD/SPILL ID # NAME OF CONTAMIN		IINATED SITE OR SPII	L		
AKR000200030	5	Skagway Ore Terminal Se	diment Remediation Project		
CONTAMINATED SITE OR	SPILL LOCATION - A	ADDRESS OR OTHER A	APPROPRIATE DESCRIPTION		
		Skagway, Alaska			
CURRENT PHYSICAL LOC	ATION OF MEDIA	SOURCE OF THE C (DAY TANK, WASI	CONTAMINATION H BAY, FIRE TRAINING PIT, LUST, ETC.)		
Skagway,	Alaska		Skagway Ore Loader		
CONTAMINANTS OF CONC	CERN ES	TIMATED VOLUME	DATE(S) GENERATED		
Lead		1500 yards 3/1/22-3/15/22			
POST TREATMENT ANALY	SIS REQUIRED (such	as GRO, DRO, RRO, VOC	s, metals, PFAS, and/or Chlorinated Solvents)		
	TCLP	testing for RCRA 8 Metals			
COMMENTS OR OTHER IM	IPORTANT INFORMA	TION			

TREATMENT FACILITY, LANDFILL, AND/OR FINAL DESTINATION OF MEDIA	PHYSICAL ADDRESS/PHONE NUMBER	
Columbia ridge Commercial Landfill & Recycling	18177 Cedar Springs Ln, Arlington, OR 97812	
RESPONSIBLE PARTY	ADDRESS/PHONE NUMBER	
White Pass Yukon Route	800-343-7373	
WASTE MANAGEMENT CO. / ORGANIZER	ADDRESS/PHONE NUMBER	
Waste Management	38208 SE 35th St Washougal, WA 98671 - (360)-507-6613	

*Note, disposal of polluted soil in a landfill requires prior approval from the landfill operator and ADEC Solid Waste Program.

Tyler Rose Name of the Person Requesting Approval (printed)

WP&YR / Executive Director Title/Association 3/22/22 Gon) 612-0175

--DEC USE ONLY------

Based on the information provided, ADEC approves transport of the above mentioned material. The Responsible Party or their consultant must submit to the DEC Project Manager a copy of weight receipts of the loads transported and a post treatment analytical report, if disposed of at an approved treatment facility. The contaminated soil shall be transported as a covered load in compliance with 18 AAC 60.015.

Nick Waldo	Environmental Program Manager 1		
DEC Project Manager Name/(printed)	Project Manager Title	1	
1 Waldon	3/24/2022	907-465-5270	
Signature	Date	Phone Number	

Laboratory Report of Analysis

To: Turnagain Marine Construction 9330 Vanguard, Suite 100 Anchorage, AK 99507 907-201-1043

Report Number: 1220983

Client Project: Skagway Ore Dock Sediment

Dear Josh Janssen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Cameron at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Cameron Murphy Project Manager Cameron.Murphy@sgs.com Date

Print Date: 03/14/2022 5:10:03PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Turnagain Marine Construction SGS Project: 1220983 Project Name/Site: Skagway Ore Dock Sediment Project Contact: Josh Janssen

Refer to sample receipt form for information on sample condition.

LB1 for HBN 1832550 [TCLP/1166 (1656856) LB1

6020B- Lead is detected in the LB above half of the LOQ. The associated sample concentrations are less than the regulatory limit.

LLIQC3 for HBN 1832638 (MMS/11 (1656914) LLIQC3

6020B- LLIQCS recovery for selenium does not meet the QC criteria. The associated sample concentrations are less than the LOQ.

MB for HBN 1832554 [MXT/6209] (1656863) MB

6020B- Lead is detected in the MB above half of the LOQ. The associated sample concentrations are less than the regulatory limit.

1220983004(1656815MS) (1656816) MS

6020B- MS recoveries for multiple analytes do not meet the QC criteria. The post digestion spike was successful.

1220983004(1656815MSD) (1656817) MSD

6020B- MSD recoveries for multiple analytes do not meet the QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 03/14/2022 5:10:05PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry (Provisionally Certified as of 2/15/2022 for 200.8 Metals) & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 03/14/2022 5:10:06PM

Note:

SW6020B

SM21 2540G

Sample Summary								
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>				
1	1220983001	03/06/2022	03/10/2022	Solid/Soil (Wet Weight)				
2	1220983002	03/06/2022	03/10/2022	Solid/Soil (Wet Weight)				
3	1220983003	03/06/2022	03/10/2022	Solid/Soil (Wet Weight)				
1	1220983004	03/06/2022	03/10/2022	Soil/Solid (dry weight)				
2	1220983005	03/06/2022	03/10/2022	Soil/Solid (dry weight)				
3	1220983006	03/06/2022	03/10/2022	Soil/Solid (dry weight)				
Method	Method Des	scription						
SW6020B TCLP	Metals by IC	CP-MS						

Metals by ICP-MS (S)

Percent Solids SM2540G

	Detectable Results Summ	ary	
Client Sample ID: 1			
Lab Sample ID: 1220983001	Parameter	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.287	mg/L
	Lead	1.45	mg/L
Client Sample ID: 2			
Lab Sample ID: 1220983002	Parameter	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.331	mg/L
	Lead	1.41	mg/L
Client Sample ID: 3			
Lab Sample ID: 1220983003	<u>Parameter</u>	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.265	mg/L
	Lead	0.274	mg/L
Client Sample ID: 1			
Lab Sample ID: 1220983004	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	8.73	mg/kg
	Barium	367	mg/kg
	Cadmium	10.7	mg/kg
	Chromium	19.0	mg/kg
	Lead	4830	mg/kg
	Mercury	4.18	mg/kg
	Silver	5.65	mg/kg
Client Sample ID: 2			
Lab Sample ID: 1220983005	<u>Parameter</u>	Result	Units
Metals by ICP/MS	Arsenic	15.1	mg/kg
	Barium	413	mg/kg
	Cadmium	18.8	mg/kg
	Chromium	20.3	mg/kg
	Lead	10400	mg/kg
	Mercury	6.99	mg/kg
	Silver	11.9	mg/kg
Client Sample ID: 3			
Lab Sample ID: 1220983006	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	8.48	mg/kg
	Barium	369	mg/kg
	Cadmium	10.9	mg/kg
	Chromium	19.8	mg/kg
	Lead	5710	mg/kg
	Mercury	4.32	mg/kg
	Silver	5.16	mg/kg

Print Date: 03/14/2022 5:10:09PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Resu	ılts	of	1

Client Project ID: Skagway Ore Dock Sediment Lab Sample ID: 1220983001 Lab Project ID: 1220983			eceived Date atrix: Solid/S blids (%): bcation:			-	
Results by TCLP Constituents	Metals						
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/12/22 17:07
Barium	0.287	0.150	0.0470	mg/L	25	(<100)	03/12/22 17:07
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/12/22 17:07
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/12/22 17:07
Lead	1.45	0.0500	0.0155	mg/L	25	(<5)	03/12/22 17:07
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/12/22 17:07
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/12/22 17:07
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/12/22 17:07

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/12/22 17:07 Container ID: 1220983001-A Prep Batch: MXT6209 Prep Method: SW3010A Prep Date/Time: 03/11/22 13:00 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

SGS

Results of	2	
------------	---	--

L							
Client Sample ID: 2 Client Project ID: Skagway Ore Lab Sample ID: 1220983002 Lab Project ID: 1220983	Ri M Se	ollection Dat eceived Date atrix: Solid/S olids (%): ocation:	e: 03/10/2	22 08:3	5		
Results by TCLP Constituents	Metals						
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/12/22 17:10
Barium	0.331	0.150	0.0470	mg/L	25	(<100)	03/12/22 17:10
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/12/22 17:10
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/12/22 17:10
Lead	1.41	0.0500	0.0155	mg/L	25	(<5)	03/12/22 17:10
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/12/22 17:10
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/12/22 17:10
	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/12/22 17:10

Analytical Batch: MMS11489

Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/12/22 17:10 Container ID: 1220983002-A Prep Batch: MXT6209 Prep Method: SW3010A Prep Date/Time: 03/11/22 13:00 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

SGS

Client Sample ID: 3 Client Project ID: Skagway Ore E Lab Sample ID: 1220983003 Lab Project ID: 1220983	Collection Date: 03/06/22 17:35 Received Date: 03/10/22 08:35 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:						
Results by TCLP Constituents M	etals) — —				
						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/12/22 17:13
Barium	0.265	0.150	0.0470	mg/L	25	(<100)	03/12/22 17:13
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/12/22 17:13
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/12/22 17:13
Lead	0.274	0.0500	0.0155	mg/L	25	(<5)	03/12/22 17:13
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/12/22 17:13
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/12/22 17:13
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/12/22 17:13

Analytical Batch: MMS11489 Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/12/22 17:13 Container ID: 1220983003-A

Prep Batch: MXT6209 Prep Method: SW3010A Prep Date/Time: 03/11/22 13:00 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of 1

SG

Client Sample ID: 1							
Client Project ID: Skagway Ore Dock Sediment							
Lab Sample ID: 1220983004							
Lab Project ID: 1220983							

Collection Date: 03/06/22 17:30 Received Date: 03/10/22 08:35 Matrix: Soil/Solid (dry weight) Solids (%):65.7 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	8.73	1.48	0.458	mg/kg	10		03/12/22 15:45
Barium	367	0.444	0.139	mg/kg	10		03/12/22 15:45
Cadmium	10.7	0.296	0.0917	mg/kg	10		03/12/22 15:45
Chromium	19.0	1.48	0.458	mg/kg	10		03/12/22 15:45
Lead	4830	29.6	9.17	mg/kg	1000		03/12/22 16:25
Mercury	4.18	0.444	0.148	mg/kg	10		03/12/22 15:45
Selenium	2.96 U	2.96	0.917	mg/kg	10		03/12/22 15:45
Silver	5.65	0.739	0.222	mg/kg	10		03/12/22 15:45

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/12/22 15:45 Container ID: 1220983004-A

Analytical Batch: MMS11489 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/12/22 16:25 Container ID: 1220983004-A Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/22 11:19 Prep Initial Wt./Vol.: 1.029 g Prep Extract Vol: 50 mL

Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/22 11:19 Prep Initial Wt./Vol.: 1.029 g Prep Extract Vol: 50 mL

Results of 2

Client Sample ID: 2 Client Project ID: Skagway Ore Dock Sediment Lab Sample ID: 1220983005 Lab Project ID: 1220983 Collection Date: 03/06/22 17:32 Received Date: 03/10/22 08:35 Matrix: Soil/Solid (dry weight) Solids (%):66.5 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Arsenic	15.1	1.42	0.439	mg/kg	10		03/12/22 15:59
Barium	413	0.425	0.133	mg/kg	10		03/12/22 15:59
Cadmium	18.8	0.283	0.0878	mg/kg	10		03/12/22 15:59
Chromium	20.3	1.42	0.439	mg/kg	10		03/12/22 15:59
Lead	10400	28.3	8.78	mg/kg	1000		03/14/22 10:14
Mercury	6.99	1.06	0.354	mg/kg	25		03/14/22 09:57
Selenium	2.83 U	2.83	0.878	mg/kg	10		03/12/22 15:59
Silver	11.9	7.91	2.37	mg/kg	10		03/14/22 13:47
Silver	11.9	7.91	2.37	mg/kg	10		03/14/22 13:47

Batch Information

Analytical Batch: MMS11491 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/14/22 09:57 Container ID: 1220983005-A

Analytical Batch: MMS11491 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/14/22 10:14 Container ID: 1220983005-A

Analytical Batch: MMS11491 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/14/22 13:47 Container ID: 1220983005-A

Analytical Batch: MMS11489 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/12/22 15:59 Container ID: 1220983005-A Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/22 11:19 Prep Initial Wt./Vol.: 1.061 g Prep Extract Vol: 50 mL

Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/22 11:19 Prep Initial Wt./Vol.: 1.061 g Prep Extract Vol: 50 mL

Prep Batch: MXX35010 Prep Method: SW3050B Prep Date/Time: 03/14/22 11:23 Prep Initial Wt./Vol.: 0.095 g Prep Extract Vol: 50 mL

Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/22 11:19 Prep Initial Wt./Vol.: 1.061 g Prep Extract Vol: 50 mL

Print Date: 03/14/2022 5:10:11PM

Results of 3

SG

Client Sample ID: 3
Client Project ID: Skagway Ore Dock Sediment
Lab Sample ID: 1220983006
Lab Project ID: 1220983

Collection Date: 03/06/22 17:35 Received Date: 03/10/22 08:35 Matrix: Soil/Solid (dry weight) Solids (%):67.1 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	8.48	1.41	0.437	mg/kg	10		03/12/22 16:02
Barium	369	0.423	0.133	mg/kg	10		03/12/22 16:02
Cadmium	10.9	0.282	0.0875	mg/kg	10		03/12/22 16:02
Chromium	19.8	1.41	0.437	mg/kg	10		03/12/22 16:02
Lead	5710	28.2	8.75	mg/kg	1000		03/14/22 10:17
Mercury	4.32	0.423	0.141	mg/kg	10		03/12/22 16:02
Selenium	2.82 U	2.82	0.875	mg/kg	10		03/12/22 16:02
Silver	5.16	0.705	0.212	mg/kg	10		03/12/22 16:02

Batch Information

Analytical Batch: MMS11491 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/14/22 10:17 Container ID: 1220983006-A

Analytical Batch: MMS11489 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/12/22 16:02 Container ID: 1220983006-A Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/22 11:19 Prep Initial Wt./Vol.: 1.057 g Prep Extract Vol: 50 mL

Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/22 11:19 Prep Initial Wt./Vol.: 1.057 g Prep Extract Vol: 50 mL

Print Date: 03/14/2022 5:10:11PM

SGS

Method Blank

Blank ID: LB1 for HBN 1832550 [TCLP/1166 Blank Lab ID: 1656856 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1220983001, 1220983003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.250U	0.500	0.155	mg/L
Barium	0.0750U	0.150	0.0470	mg/L
Cadmium	0.0500U	0.100	0.0300	mg/L
Chromium	0.250U	0.500	0.155	mg/L
Lead	0.0338J	0.0500	0.0155	mg/L
Mercury	0.0125U	0.0250	0.00900	mg/L
Selenium	0.500U	1.00	0.310	mg/L
Silver	0.0500U	0.100	0.0310	mg/L

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 5:22:00PM

Analytical Batch: MMS11490 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 5:22:00PM Prep Batch: MXT6209 Prep Method: SW3010A Prep Date/Time: 3/11/2022 1:00:48PM Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Prep Batch: MXT6209 Prep Method: SW3010A Prep Date/Time: 3/11/2022 1:00:48PM Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Print Date: 03/14/2022 5:10:12PM

Method Blank

Blank ID: MB for HBN 1832554 [MXT/6209] Blank Lab ID: 1656863

QC for Samples: 1220983001, 1220983002, 1220983003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.0250U	0.0500	0.0155	mg/L
Barium	0.00750U	0.0150	0.00470	mg/L
Cadmium	0.00500U	0.0100	0.00300	mg/L
Chromium	0.0250U	0.0500	0.0155	mg/L
Lead	0.00263J	0.00500	0.00155	mg/L
Mercury	0.00125U	0.00250	0.000900	mg/L
Selenium	0.0442J	0.100	0.0310	mg/L
Silver	0.00500U	0.0100	0.00310	mg/L

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 5:02:14PM Prep Batch: MXT6209 Prep Method: SW3010A Prep Date/Time: 3/11/2022 1:00:48PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 03/14/2022 5:10:12PM

200 West Potter Drive Anchorage, AK 95518

Blank Spike Summary

Blank Spike ID: LCS for HBN 1220983 [MXT6209] Blank Spike Lab ID: 1656864 Date Analyzed: 03/12/2022 17:05

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1220983001, 1220983002, 1220983003

Results by SW6020B TCLP

	В	lank Spike	(mg/L)	
Parameter	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>
Arsenic	1	0.962	96	(84-116)
Barium	1	0.996	100	(86-114)
Cadmium	0.1	0.0990	99	(87-115)
Chromium	0.4	0.394	99	(85-116)
Lead	1	0.976	98	(88-115)
Mercury	0.01	0.00985	99	(70-124)
Selenium	1	0.996	100	(80-120)
Silver	0.1	0.100	100	(85-116)

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Prep Batch: MXT6209 Prep Method: SW3010A Prep Date/Time: 03/11/2022 13:00 Spike Init Wt./Vol.: 1 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/14/2022 5:10:15PM

Matrix Spike Summary

Original Sample ID: 1656865 MS Sample ID: 1656867 MS MSD Sample ID: 1656868 MSD

QC for Samples: 1220983001, 1220983002, 1220983003

Results by SW6020B TCLP

Analysis Date: 03/12/2022 17:24 Analysis Date: 03/12/2022 17:27 Analysis Date: 03/12/2022 17:30 Matrix: Solid/Soil (Wet Weight)

		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	0.250U	10.0	9.74	97	10.0	10.0	100	84-116	2.64	(< 20)
Barium	0.197	10.0	10.5	103	10.0	10.6	104	86-114	1.44	(< 20)
Cadmium	0.0500U	1.00	.978	98	1.00	0.970	97	87-115	0.79	(< 20)
Chromium	0.250U	4.00	4.05	101	4.00	4.17	104	85-116	2.93	(< 20)
Lead	0.0195J	10.0	9.72	97	10.0	10.0	100	88-115	2.98	(< 20)
Mercury	0.0125U	0.100	.0957	96	0.100	0.0989	99	70-124	3.27	(< 20)
Silver	0.0500U	1.00	.986	99	1.00	0.996	100	85-116	1.04	(< 20)
Selenium	0.500U	10.0	10	100	10.0	10.0	100	80-120	0.09	(< 20)

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 5:27:00PM

Analytical Batch: MMS11490 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 5:27:00PM Prep Batch: MXT6209 Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 3/11/2022 1:00:48PM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 25.00mL

Prep Batch: MXT6209 Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 3/11/2022 1:00:48PM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 25.00mL

Print Date: 03/14/2022 5:10:16PM

SGS North America Inc.

SGS

Method Blank

Blank ID: MB for HBN 1832542 [MXX/35008] Blank Lab ID: 1656813 Matrix: Soil/Solid (dry weight)

QC for Samples: 1220983004, 1220983005, 1220983006

Results by SW6020B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/kg
Barium	0.150U	0.300	0.0940	mg/kg
Cadmium	0.100U	0.200	0.0620	mg/kg
Chromium	0.500U	1.00	0.310	mg/kg
Lead	0.100U	0.200	0.0620	mg/kg
Mercury	0.150U	0.300	0.100	mg/kg
Selenium	1.00U	2.00	0.620	mg/kg
Silver	0.250U	0.500	0.150	mg/kg

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 3:39:38PM Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 3/11/2022 11:19:20AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

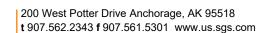
Print Date: 03/14/2022 5:10:17PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1220983 [MXX35008] Blank Spike Lab ID: 1656814 Date Analyzed: 03/12/2022 15:42

Matrix: Soil/Solid (dry weight)

QC for Samples: 1220983004, 1220983005, 1220983006


Results by SW6020B

	B	lank Spike (mg/kg)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Arsenic	50	50.2	100	(82-118)
Barium	50	51.5	103	(86-116)
Cadmium	5	5.09	102	(84-116)
Chromium	20	20.3	102	(83-119)
Lead	50	50.4	101	(84-118)
Mercury	0.5	0.493	99	(74-126)
Selenium	50	50.4	101	(80-119)
Silver	5	5.15	103	(83-118)

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Prep Batch: MXX35008 Prep Method: SW3050B Prep Date/Time: 03/11/2022 11:19 Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 03/14/2022 5:10:19PM

Matrix Spike Summary

Original Sample ID: 1656815 MS Sample ID: 1656816 MS MSD Sample ID: 1656817 MSD

QC for Samples: 1220983004, 1220983005, 1220983006

Results by SW6020B

		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Arsenic	5.74	48.4	52.3	96	47.9	51.3	95	82-118	2.07	(< 20)
Barium	241	48.4	306	134 *	47.9	294	110	86-116	4.05	(< 20)
Cadmium	7.05	4.84	9.33	47 *	4.79	8.94	39 *	84-116	4.27	(< 20)
Chromium	12.5	19.4	32.3	103	19.2	32.2	103	83-119	0.51	(< 20)
Lead	3180	48.4	2580	-1230 *	47.9	2450	-1520 *	84-118	5.33	(< 20)
Mercury	2.75	0.484	2.29	-94 *	0.479	2.14	-127 *	74-126	7.03	(< 20)
Selenium	0.929J	48.4	46.8	95	47.9	46.4	95	80-119	0.84	(< 20)
Silver	3.72	4.84	7.39	76 *	4.79	7.18	72 *	83-118	2.81	(< 20)

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 3:48:10PM

Prep Batch: MXX35008

Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/11/2022 11:19:20AM Prep Initial Wt./Vol.: 1.03g Prep Extract Vol: 50.00mL

Analysis Date: 03/12/2022 15:45

Analysis Date: 03/12/2022 15:48

Analysis Date: 03/12/2022 15:51 Matrix: Solid/Soil (Wet Weight)

Print Date: 03/14/2022 5:10:20PM

Bench Spike Summary

Original Sample ID: 1656815 MS Sample ID: 1656818 BND MSD Sample ID: Analysis Date: 03/12/2022 15:45 Analysis Date: 03/12/2022 15:53 Analysis Date: Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1220983004, 1220983005, 1220983006

Results by SW6020B

		Matr	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Barium	241	243	488	101				75-125		
Cadmium	7.05	121	124	97				75-125		
Lead	3180	12100	14400	92				75-125		
Mercury	2.75	2.43	5.17	100				75-125		
Silver	3.72	2.43	6.13	100				75-125		

Batch Information

Analytical Batch: MMS11489 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/12/2022 3:53:00PM Prep Batch: MXX35008 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/11/2022 11:19:20AM Prep Initial Wt./Vol.: 1.03g Prep Extract Vol: 50.00mL

Print Date: 03/14/2022 5:10:20PM

Blank ID: MB for HBN 1832643 [MXX/35010] Blank Lab ID: 1656945 QC for Samples: 1220983005 Results by SW6020B		Matri:	x: Soil/Solid (dr	y weight)	
<u>Parameter</u> Silver	<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/kg	
atch Information	l				
Analytical Batch: MM Analytical Method: S Instrument: P7 Agiler Analyst: DMM Analytical Date/Time:	W6020B	Prep Me Prep Da Prep Ini	tch: MXX35010 ethod: SW3050B tte/Time: 3/14/20 tial Wt./Vol.: 1 g tract Vol: 50 mL	022 11:23:24AM	

Print Date: 03/14/2022 5:10:21PM

_

Blank Spike Summary										
Blank Spike ID: LCS for HBN 1220983 [MXX35010] Blank Spike Lab ID: 1656946 Date Analyzed: 03/14/2022 13:41				Spike Duplicate ID: LCSD for HBN 1220983 [MXX35010] Spike Duplicate Lab ID: 1656947 Matrix: Soil/Solid (dry weight)						
QC for Samples: 12209830	05									
Results by SW6020B										
		Blank Spike (ate (mg/kg)				
<u>Parameter</u> Silver	<u>Spike</u> 5	<u>Result</u> 4.90	<u>Rec (%)</u> 98	<u>Spike</u> 5	<u>Result</u> 4.91	<u>Rec (%)</u> 98	<u>CL</u> (83-118)	<u>RPD (%)</u> 0.06	<u>RPD CL</u> (< 20)	
Batch Information										
Analytical Batch: MMS11491 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM				Pre Pre Spil	ke Init Wt./\	SW3050B e: 03/14/202 /ol.: 5 mg/kg	g Extract Vo			
				Dup	e Init Wt.∕∖	/ol.: 5 mg/kg	Extract Vol	: 50 mL		

Print Date: 03/14/2022 5:10:23PM

Method Blank							
Blank ID: MB for HBN Blank Lab ID: 165677	I 1832532 [SPT/11480] ′0	Matrix: Soil/Solid (dry weight)					
QC for Samples: 1220983004, 12209830	05, 1220983006						
Results by SM21 2540G							
<u>Parameter</u> Total Solids	<u>Results</u> 99.9	LOQ/CL	<u>DL</u>	<u>Units</u> %			
Batch Information							
Analytical Batch: SF Analytical Method: S Instrument: Analyst: DBR Analytical Date/Time							

SGS	

mary 20980004 656771 05, 1220983006		Analysis Date: 03/10/2022 16:40 Matrix: Soil/Solid (dry weight)				
i						
<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL		
97.8	98.0	%	0.18	(< 15)		
i	556771 05, 1220983006 <u>Original</u>	356771 05, 1220983006 <u>Original Duplicate</u> 97.8 98.0	356771 Matrix: Soil/Sol 05, 1220983006	356771 Matrix: Soil/Solid (dry weight) 05, 1220983006 Original Duplicate Units RPD (%) 97.8 98.0 % 0.18		

Print Date: 03/14/2022 5:10:27PM

SGS North America Inc. DDY RECORD

		*														www.us	.sgs.com	<u>l</u>
	CLIENT:	Turnagain Marine Constr	ruction		NAME OF A CONTRACTOR OF A CONT		이 방법이 있는 것이 많았다.	5. C. A. A.	18 18 T Mar					be fille of anal				
	CONTACT:	Josh Janssen	PHONE #: 907	72011043		Sec	ction 3					Pr	eserva	tive			— P:	age1_ of1
Section 1	PROJECT NAME:	Skagway Ore Dock Sediment Remediation	PROJECT/ PWSID/ PERMIT#:	22-00	01	# c												
ű	REPORTS T	О:	E-MAIL:	jjanssen@tur	magain.us	O N	Comp					Ana	lysis*					E:
	J	oshua Janssen	Profile #:	p# 3785	73 AL	T	Grab										*The	following analyses
	INVOICE TO	:	QUOTE #:	, 3/65	13	1	MI (Multi-		40									re specific method or compound list:
		in Marine Construction	P.O. #: 22-001	T	MATRIX/	N E	(Multa- incre- mental)		tal RCRA									K, Metals, PFAS
	RESERVED	SAMPLE IDENTIFICATI	ION DATE mm/dd/yy	TIME HH:MM	MATRIX CODE	R S		тсер	Total (60								RE	MARKS/LOC ID
	(TAL)	1	03/06/22	1730	S	1	Grab	x	x									
	(ZA)	12	03/06/22	1732	S	1	Grab	x	x									
	(3A)(6A)	3	73/06/22	1735	S	1	Grab	x	x									
u S			/															
Section 2																		
S																		
																	_	
															-		<u> </u>	
	Relinquish	• • •	Date	Time	Received By	/:				Secti	on 4	DOI) Proje	ct? Yes	1	Data De	eliverable	e Requirements:
		Joshua Janssen	3/6/2022	530PM						Coole	r ID:						Lev	el 2
	Relinquishe	ed By: (2)	Date	Time	Received By	/ :						Irnaro	und Tir	ne and/o	-	ial Instru		
Section 5															RUSH	TCI Tot	P-3dan	1 Eperguote
ŝ	Relinquishe	ed By: (3)	Date	Time	Received By	y:											CI- 21W	
Ň	-										Т	emp B	llank °():		Chain o	of Custo	dy Seal: (Circle)
	Relinquishe	ed By: (4)	Date	Time & S	Received Fo	or Labo	ratory By:	در	~			or Am	bient∖	ų		INTACT	BRO	KEN ABSENT
L			3/10/22	M1 >	pm	-0	yh	K	Z		Deli	very M	ethod:	Hand D	elivery	[] Comm	erical De	livery []A] ect

RJC J/10/22

http://www.sgs.com/terms-and-conditions

Characterization of TCLP Samples for LIMS Login

Date Characterized:

Analyst:

Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:			
	Xylene miscible (Top layer * = matrix 3 **)	$\overline{}$		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample			
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No NA Sample description/other observations:			
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	[00]		**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.			
2	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No /(NA) If biphasic, was there only one layer with sufficient sample 2			
C	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:			
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	00		**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.			
S	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ?			
	Water miscible (Middle layer = matrix 6)		(eg)/ No	Yes / No / No Sample description/other observations:			
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100	_	**Are samples Givcol or Solvent in appearance or odor yes schedule TCLP Metals matrix 6 acode.			
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample			
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:			
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? I yes schedule TCLP Metals matrix 6 acode.			
	Xylene miscible (Top layer * = matrix 3 **)	······		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample			
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:			
	Solid (Bottom layer = matrix 7 or 2 if % solids required)		_	**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.			

** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.

*** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

027	JNU 919	2 94	45		C	sil.	lV	/					0:	27-9192 9445
^{Shipper's} Turna 8241 Unit A	^{Name and Address} gain Marine Dimond Hoc	Con ok Dr	istru ive		Shipper's Ac 27442 Customer's 48	4854	80	Aiı	Negotiable r Wayb ed By	ill	P.C	AIR BOX	15KA . CARGO 68900 SEATTLE, WA 9816	
Consigne	e's Name and Addre		lel:		61-8960 Consignee's A	ccount f	Number		Also notify - NLMTC					
	orage, AK 9		Tel:	907-5	62-2343								Tel:	
Issuing Carrier's Agent and City							Accounting Information Turnagain Marine Construction Compa 8241 Dimond Hook Drive Unit A						ion Compa	48806
1	Departure (Addr. of			nd Requeste	ccount No. d Routing		***	US	ichorage, SA oldStreak		507			
То	By First Carrier		Airpor	-t	To / By	T	o / By		rency	WT/VAL	. (Other	Declared Value For Carriage	Declared Value For Customs
	Alaska Airl	nes		Flight/Date		Flight/D	ate		SD PX		×		NVD	NCV
Ancho				AS (065/09				XXX					
Handling	Information NOA 907-56	2-234	43											SCI
No of Pieces	Gross Weight	kg Ib		mmodity em No.	Charge Weig			Rate / harge		⊤ot	al			I Quantity of Goods ensions or Volume)
1	4.0				4	.0				AS A	GRI	EED	DIRTY SAMF Dims: 9 x 12 x4 GSX	
1	4.0									AS AG	GRE	ED	Volume: 0.250	
Prepaid	AS AGREE	D Valuatio	on Charg		Collect		Charges	12.50					······································	
	⊤otal C	ther Ch	harges D	ue Agent		conta	ains dange	rous good	s, such par	t is prop	erly d	escribe	rect and that insofar as any p ad by name and is in proper c	ondition for carriage
	Total O	ther Ch	arges D	ue Carrier		For Coi	: Turn nstruct	again I ion Col	Marine mpa	-		ls Regi	ulations. I consent to the ins Signature of Shipper or	his Agent
	Total Prepaid	D		Total Co	llect	Lea 00	L. DANGE	ROUS GO					THIS SHIPMENT DOES	
							Mar 2	022 08 Date)	5:57	June		nterr Place)		aska Airlines
													C	27-9192 9445

Alert Expeditors Inc.

#417905

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

	and the second	
īo	<u>65</u>	
	Prepay 🗆	Advance Charges
lob #	PO#	
91	12-1445	
	e	
hipped Signatur		

AIRBILL 4644525

I hereby declare that the goods contained herein do not contain dangerous goods.

Date

Signed.....

Alaska Seaplanes

Juneau, Alaska Phone: (907) 789-3331 Freephone: (907) 789-3331

Web: http://www.flyalaskaseaplanes.com

Email: info@flyalaskaseaplanes.com

FREIGHT DETAILS

FROM/TO: Skagway -> Juneau

Receiver: SGS North America Inc Sender: Turnagain Marine 907-562-2343

Flight Departs: Mar 8 22 9:15 AM

Accepted: Mon, Mar 7 22 3:22:00 PM

Description & Comment	Quan.	Wgt.	Handle Fee	Hazmat Fee	Total
brown box	1	4	-	-	\$11.76
TAX: Federal Freight Excise Tax					\$0.74
			Total Pa	yments made:	\$0.00
			Т	otal Unpaid:	\$12.50

TERMS AND CONDITIONS

Limitation of Liability

By tendering this shipment to Alaska Seaplanes, the shipper agrees to these conditions for transportation, and guarantees that an accurate description of the contents of the shipment is furnished.
 Alaska Seaplanes shall not be liable for damages to, or failure to transport, goods which are not acceptable for air transportation due to governmental regulations.
 Although Alaska Seaplanes will attempt to provide care of all shipments, Alaska Seaplanes will not be liable for loss due to: improper or insufficient packing, the nature of the shipment or any defect thereof which would render it unsuitable for air transportation; goods received damaged from shipper, damage to fragile items or other items which Alaska Seaplanes accepts for shipment at "shipper's risk"; damages, delays, or other results caused by other carriers; and spoilage of perishable items.

. Ice cream is only accepted at the shippers' risk. Alaska Seaplanes will in no way be responsible for melted ice cream.

 Alaska Seaplanes will not accept any liability whatsoever for shipments said to contain cash.
 Unless the shipper declares a higher value on a shipment and pays excess valuation charges, the total liability of Alaska Seaplanes shall not exceed the lesser of: one hundred dollars (\$100.00) per shipment, or the amount of damage sustained; or the value of the shipment.

Excess Valuation Charges

• If a higher value is declared by the shipper, an additional transportation charge will be assessed. This charge is one dollar (\$1.00) per one hundred (\$100.00) of declared value or fraction thereof for any amount in excess of one hundred (\$100.00).

The maximum declared value per shipment and the maximum value per shipment that Alaska Seaplanes shall be liable for is three thousand (\$3,000.00).

Regardless of the valuation declared and the excess valuation charges paid, Alaska Seaplanes will only be liable for the actual amount of the damages or the replacement value of any shipment.
 The shipper of a C.O.D. must declare the value of the shipment for collection purposes. However, if the shipper does not agree to accept any applicable excess valuation charges, Alaska Seaplanes will be liable only to the extent named in the limitation of liability.

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1220983001-A 1220983002-A 1220983003-A 1220983004-A 1220983005-A 1220983006-A	No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required	ОК ОК ОК ОК ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Laboratory Report of Analysis

To: Turnagain Marine Construction 9330 Vanguard, Suite 100 Anchorage, AK 99507 907-201-1043

Report Number: 1221082

Client Project: SOD Sediment Remediation

Dear Josh Janssen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Cameron at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Cameron Murphy Project Manager Cameron.Murphy@sgs.com Date

Print Date: 03/21/2022 4:13:00PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Turnagain Marine Construction SGS Project: 1221082 Project Name/Site: SOD Sediment Remediation Project Contact: Josh Janssen

Refer to sample receipt form for information on sample condition.

1221082010(1657302MS) (1657303) MS

6020B- MS recoveries for multiple analytes do not meet the QC criteria. The post digestion spike was successful.

1221082010(1657302MSD) (1657304) MSD

6020B- MSD recoveries for multiple analytes do not meet the QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 03/21/2022 4:13:01PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 03/21/2022 4:13:03PM

Note:

Sample Summary											
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>							
S2 A	1221082001	03/15/2022	03/17/2022	Solid/Soil (Wet Weight)							
S2 B	1221082002	03/15/2022	03/17/2022	Solid/Soil (Wet Weight)							
S2 C	1221082003	03/15/2022	03/17/2022	Solid/Soil (Wet Weight)							
S2 D	1221082010	03/15/2022	03/17/2022	Soil/Solid (dry weight)							
S2 E	1221082011	03/15/2022	03/17/2022	Soil/Solid (dry weight)							
S2 F	1221082012	03/15/2022	03/17/2022	Soil/Solid (dry weight)							
Method	Method Des										

Method SW6020B TCLP SW6020B SM21 2540G

Method Description

Metals by ICP-MS Metals by ICP-MS (S) Percent Solids SM2540G

	Detectable Results Summary		
Client Sample ID: S2 A			
Lab Sample ID: 1221082001	Parameter	Result	Units
TCLP Constituents Metals	Barium	0.360	mg/L
	Lead	1.14	mg/L
Client Sample ID: S2 B			
Lab Sample ID: 1221082002	Parameter	Result	Units
TCLP Constituents Metals	Barium	0.352	mg/L
	Lead	1.74	mg/L
Client Sample ID: S2 C			-
Lab Sample ID: 1221082003	<u>Parameter</u>	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.322	mg/L
	Lead	1.42	mg/L
		1.72	ilig/E
Client Sample ID: S2 D			
Lab Sample ID: 1221082010	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	14.0	mg/kg
	Barium	377	mg/kg
	Cadmium	22.4	mg/kg
	Chromium	19.0	mg/kg
	Lead	14000	mg/kg
Client Sample ID: S2 E			
Lab Sample ID: 1221082011	Parameter	Result	Units
Metals by ICP/MS	Arsenic	8.35	mg/kg
	Barium	396	mg/kg
	Cadmium	9.50	mg/kg
	Chromium	20.6	mg/kg
	Lead	5890	mg/kg
	Mercury	3.85	mg/kg
	Silver	5.33	mg/kg
Client Sample ID: S2 F			
Lab Sample ID: 1221082012	Parameter	Result	Units
Metals by ICP/MS	Arsenic	10.9	mg/kg
	Barium	365	mg/kg
	Cadmium	14.0	mg/kg
	Chromium	18.6	mg/kg
	Lead	9400	mg/kg
	Mercury	6.12	mg/kg
		0.12	

Print Date: 03/21/2022 4:13:06PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Results of S2 A

Client Sample ID: S2 A Client Project ID: SOD Sediment Lab Sample ID: 1221082001 Lab Project ID: 1221082	Remediation	Received Date: 03/17/22 08:58 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:					
Results by TCLP Constituents M	etals)——				
						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:31
Barium	0.360	0.150	0.0470	mg/L	25	(<100)	03/20/22 11:31
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/20/22 11:31
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:31
Lead	1.14	0.0500	0.0155	mg/L	25	(<5)	03/20/22 11:31
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/20/22 11:31
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/20/22 11:31
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/20/22 11:31

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/20/22 11:31 Container ID: 1221082001-A Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/22 14:13 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S2 B

Client Sample ID: S2 B Client Project ID: SOD Sedimer Lab Sample ID: 1221082002 Lab Project ID: 1221082	t Remediation	Received Date: 03/17/22 08:58 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:					
Results by TCLP Constituents I	/letals						
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:43
Barium	0.352	0.150	0.0470	mg/L	25	(<100)	03/20/22 11:43
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/20/22 11:43
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:43
Lead	1.74	0.0500	0.0155	mg/L	25	(<5)	03/20/22 11:43
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/20/22 11:43
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/20/22 11:43
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/20/22 11:43

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP

Analyst: DMM Analytical Date/Time: 03/20/22 11:43 Container ID: 1221082002-A Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/22 14:13 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

SGS

Results of S2 C

Client Sample ID: S2 C Client Project ID: SOD Se Lab Sample ID: 1221082 Lab Project ID: 1221082	R M Se	Collection Date: 03/15/22 14:40 Received Date: 03/17/22 08:58 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:					
Results by TCLP Constitu	uents Metals						
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:45
Barium	0.322	0.150	0.0470	mg/L	25	(<100)	03/20/22 11:45
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/20/22 11:45
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:45
Lead	1.42	0.0500	0.0155	mg/L	25	(<5)	03/20/22 11:45
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/20/22 11:45
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/20/22 11:45
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/20/22 11:45

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/20/22 11:45 Container ID: 1221082003-A Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/22 14:13 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S2 D

Results of S2 D							
Client Sample ID: S2 D Client Project ID: SOD Sedim Lab Sample ID: 1221082010 Lab Project ID: 1221082	R M S	ollection Da eceived Dat latrix: Soil/S olids (%):69 ocation:	te: 03/17/2 olid (dry w	2 08:58			
Results by Metals by ICP/MS							
						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	14.0	1.38	0.429	mg/kg	10		03/17/22 13:54
Barium	377	0.415	0.130	mg/kg	10		03/17/22 13:54
Cadmium	22.4	0.277	0.0857	mg/kg	10		03/17/22 13:54
Chromium	19.0	1.38	0.429	mg/kg	10		03/17/22 13:54
Lead	14000	27.7	8.57	mg/kg	1000		03/18/22 09:31
Mercury	41.5 U	41.5	13.8	mg/kg	1000		03/18/22 09:31
Selenium	2.77 U	2.77	0.857	mg/kg	10		03/17/22 13:54
Silver	6.75 U	6.75	2.03	mg/kg	10		03/18/22 08:46

Batch Information

Analytical Batch: MMS11496 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/18/22 08:46 Container ID: 1221082010-A

Analytical Batch: MMS11496 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/18/22 09:31 Container ID: 1221082010-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 13:54 Container ID: 1221082010-A Prep Batch: MXX35020 Prep Method: SW3050B Prep Date/Time: 03/17/22 15:02 Prep Initial Wt./Vol.: 0.107 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.045 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.045 g Prep Extract Vol: 50 mL

Print Date: 03/21/2022 4:13:07PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Results of S2 E							
Client Sample ID: S2 E Client Project ID: SOD S Lab Sample ID: 1221082 Lab Project ID: 1221082	2011	R M S	collection Da acceived Dat latrix: Soil/S olids (%):60 ocation:	te: 03/17/2 olid (dry w	2 08:58		
Results by Metals by ICP	/MS]				
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	8.35	1.57	0.487	mg/kg	10		03/17/22 14:28
Barium	396	0.471	0.148	mg/kg	10		03/17/22 14:28
Cadmium	9.50	0.314	0.0974	mg/kg	10		03/17/22 14:28
Chromium	20.6	1.57	0.487	mg/kg	10		03/17/22 14:28
Lead	5890	6.28	1.95	mg/kg	200		03/17/22 16:21
Mercury	3.85	0.471	0.157	mg/kg	10		03/17/22 14:28
Selenium	3.14 U	3.14	0.974	mg/kg	10		03/17/22 14:28
Silver	5.33	0.785	0.236	mg/kg	10		03/17/22 14:28

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 14:28 Container ID: 1221082011-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 16:21 Container ID: 1221082011-A

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.046 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.046 g Prep Extract Vol: 50 mL

Results of S2 F

Results of S2 F							
Client Sample ID: S2 F Client Project ID: SOD Sediment F Lab Sample ID: 1221082012 Lab Project ID: 1221082	R M Se	ollection Da eceived Dat atrix: Soil/S olids (%):66 ocation:	e: 03/17/2 olid (dry we	2 08:58			
Results by Metals by ICP/MS							
						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	10.9	1.39	0.430	mg/kg	10		03/17/22 14:31
Barium	365	0.416	0.130	mg/kg	10		03/17/22 14:31
Cadmium	14.0	0.277	0.0859	mg/kg	10		03/17/22 14:31
Chromium	18.6	1.39	0.430	mg/kg	10		03/17/22 14:31
Lead	9400	13.9	4.30	mg/kg	500		03/17/22 16:29
Mercury	6.12	0.416	0.139	mg/kg	10		03/17/22 14:31
Selenium	2.77 U	2.77	0.859	mg/kg	10		03/17/22 14:31
Silver	13.3 U	13.3	4.00	mg/kg	10		03/18/22 08:49

Batch Information

Analytical Batch: MMS11496 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/18/22 08:49 Container ID: 1221082012-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 14:31 Container ID: 1221082012-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 16:29 Container ID: 1221082012-A Prep Batch: MXX35020 Prep Method: SW3050B Prep Date/Time: 03/17/22 15:02 Prep Initial Wt./Vol.: 0.056 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.078 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.078 g Prep Extract Vol: 50 mL

Print Date: 03/21/2022 4:13:07PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Method Blank

Blank ID: LB1 for HBN 1832778 [TCLP/1167 Blank Lab ID: 1657476 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1221082001, 1221082003

Results by SW6020B TCLP

<u>Parameter</u>	Results	LOQ/CL	DL
Arsenic	0.250U	0.500	0.155
Barium	0.0750U	0.150	0.0470
Cadmium	0.0500U	0.100	0.0300
Chromium	0.250U	0.500	0.155
Lead	0.0250U	0.0500	0.0155
Mercury	0.0125U	0.0250	0.00900
Selenium	0.500U	1.00	0.310
Silver	0.0500U	0.100	0.0310

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/20/2022 11:28:47AM Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 3/18/2022 2:13:07PM Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1832794 [MXT/6212] Blank Lab ID: 1657549 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1221082001, 1221082003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.0250U	0.0500	0.0155	mg/L
Barium	0.00750U	0.0150	0.00470	mg/L
Cadmium	0.00500U	0.0100	0.00300	mg/L
Chromium	0.0250U	0.0500	0.0155	mg/L
Lead	0.00250U	0.00500	0.00155	mg/L
Mercury	0.00125U	0.00250	0.000900	mg/L
Selenium	0.0500U	0.100	0.0310	mg/L
Silver	0.00500U	0.0100	0.00310	mg/L

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/20/2022 11:23:04AM Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 3/18/2022 2:13:07PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221082 [MXT6212] Blank Spike Lab ID: 1657550 Date Analyzed: 03/20/2022 11:25

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1221082001, 1221082002, 1221082003

Results by SW6020B TCLP

	I	Blank Spike ((mg/L)	
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
Arsenic	1	0.967	97	(84-116)
Barium	1	1.00	100	(86-114)
Cadmium	0.1	0.0993	99	(87-115)
Chromium	0.4	0.402	100	(85-116)
Lead	1	1.02	102	(88-115)
Mercury	0.01	0.0100	100	(70-124)
Selenium	1	0.981	98	(80-120)
Silver	0.1	0.101	101	(85-116)

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/2022 14:13 Spike Init Wt./Vol.: 1 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1657553 MS Sample ID: 1657555 MS MSD Sample ID: 1657556 MSD

QC for Samples: 1221082001, 1221082002, 1221082003

Results by SW6020B TCLP

Analysis Date: 03/20/2022 11:31 Analysis Date: 03/20/2022 11:34 Analysis Date: 03/20/2022 11:37 Matrix: Solid/Soil (Wet Weight)

		Mat	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	0.250U	10.0	9.74	97	10.0	9.59	96	84-116	1.61	(< 20)
Barium	0.360	10.0	10.4	100	10.0	10.3	100	86-114	0.71	(< 20)
Cadmium	0.0500U	1.00	1	100	1.00	0.998	100	87-115	0.36	(< 20)
Chromium	0.250U	4.00	4.01	100	4.00	3.97	99	85-116	0.92	(< 20)
Lead	1.14	10.0	11.4	102	10.0	11.3	102	88-115	0.70	(< 20)
Mercury	0.0125U	0.100	.104	104	0.100	0.103	103	70-124	1.10	(< 20)
Selenium	0.500U	10.0	9.89	99	10.0	9.43	94	80-120	4.79	(< 20)
Silver	0.0500U	1.00	.999	100	1.00	0.989	99	85-116	0.94	(< 20)

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/20/2022 11:34:28AM Prep Batch: MXT6212

Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 3/18/2022 2:13:07PM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 25.00mL

SGS

Method Blank

Blank ID: MB for HBN 1832736 [MXX/35018] Blank Lab ID: 1657300 Matrix: Soil/Solid (dry weight)

QC for Samples: 1221082010, 1221082011, 1221082012

Results by SW6020B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/kg
Barium	0.112J	0.300	0.0940	mg/kg
Cadmium	0.100U	0.200	0.0620	mg/kg
Chromium	0.500U	1.00	0.310	mg/kg
Lead	0.100U	0.200	0.0620	mg/kg
Mercury	0.150U	0.300	0.100	mg/kg
Selenium	1.00U	2.00	0.620	mg/kg
Silver	0.250U	0.500	0.150	mg/kg

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/17/2022 1:48:00PM Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221082 [MXX35018] Blank Spike Lab ID: 1657301 Date Analyzed: 03/17/2022 13:51

Matrix: Soil/Solid (dry weight)

QC for Samples: 1221082010, 1221082011, 1221082012

Results by SW6020B

		Blank Spike	(iiig/kg)		
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	
Arsenic	50	50.5	101	(82-118)	
Barium	50	50.7	101	(86-116)	
Cadmium	5	5.11	102	(84-116)	
Chromium	20	20.2	101	(83-119)	
_ead	50	51.7	103	(84-118)	
Mercury	0.5	0.508	102	(74-126)	
Selenium	50	50.8	102	(80-119)	
Silver	5	5.07	101	(83-118)	

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/2022 10:38 Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1657302 MS Sample ID: 1657303 MS MSD Sample ID: 1657304 MSD

QC for Samples: 1221082010, 1221082011, 1221082012

Results by SW6020B

Analysis Date: 03/17/2022 13:54 Analysis Date: 03/17/2022 13:57 Analysis Date: 03/17/2022 14:00 Matrix: Solid/Soil (Wet Weight)

		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg))			
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%</u>	<u>6)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	9.71	46.5	53.7	95	48.4	56.5	97		82-118	5.11	(< 20)
Barium	261	46.5	308	102	48.4	320	123	*	86-116	3.94	(< 20)
Cadmium	15.5	4.65	20.7	112	4.84	18.4	59	*	84-116	11.90	(< 20)
Chromium	13.1	18.6	31.5	99	19.4	34.1	108		83-119	7.90	(< 20)
Selenium	1.06J	46.5	43.5	91	48.4	44.6	90		80-119	2.56	(< 20)
Lead	9660	46.5	8440	-2630 *	48.4	9940	582	*	84-118	16.40	(< 20)
Mercury	14.4U	0.465	14.4U	0 *	0.484	14.4U	0	*	74-126	0.00	(< 20)
Silver	23.9U	4.65	23.9U	0 *	4.84	23.9U	0	*	83-118	0.00	(< 20)

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/17/2022 1:57:00PM

Analytical Batch: MMS11496 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/18/2022 9:34:17AM Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.08g Prep Extract Vol: 50.00mL

Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.08g Prep Extract Vol: 50.00mL

Print Date: 03/21/2022 4:13:17PM

SGS North America Inc.

Bench Spike Summary

Original Sample ID: 1657302 MS Sample ID: 1657305 BND MSD Sample ID: Analysis Date: 03/17/2022 13:54 Analysis Date: 03/17/2022 14:02 Analysis Date: Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1221082010, 1221082011, 1221082012

Results by SW6020B

		Matrix Spike (mg/kg)		ng/kg)	Spike	Duplicate	(mg/kg)			
Parameter	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Barium	261	239	494	98				75-125		
Cadmium	15.5	120	126	92				75-125		
Lead	9660	12000	21000	95				75-125		
Mercury	14.4U	239	240	100				75-125		
Silver	23.9U	239	235	98				75-125		

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/17/2022 2:02:00PM

Analytical Batch: MMS11496 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/18/2022 9:39:00AM Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.05g Prep Extract Vol: 50.00mL

Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.05g Prep Extract Vol: 50.00mL

Print Date: 03/21/2022 4:13:17PM

SGS North America Inc.

SGS

		7.			
Method Blank					
Blank ID: MB for HBN Blank Lab ID: 165740	1832764 [MXX/35020] 9	Matrix	:: Soil/Solid (dr	ry weight)	
QC for Samples: 1221082010, 12210820	12				
Results by SW6020B) 			
<u>Parameter</u> Silver	<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/kg	
Batch Information					
Analytical Batch: MM Analytical Method: S Instrument: P7 Agile Analyst: DMM Analytical Date/Time	W6020B	Prep Me Prep Da Prep Init	tch: MXX35020 thod: SW3050E te/Time: 3/17/2 ial Wt./Vol.: 1 g rract Vol: 50 mL	3 022 3:02:45PM I	
Print Date: 03/21/2022 4:13:1	QPM				
1 HIL DALC. UJ/21/2022 4.13.					

Blank Spike Summary Blank Spike ID: LCS for H Blank Spike Lab ID: 1657 Date Analyzed: 03/18/20	7410	[MXX3502	0]	[M) Spi	(X35020] ke Duplica	ate ID: LCS ate Lab ID: Solid (dry w		1221082	
QC for Samples: 1221	082010, 12210	82012							
Results by SW6020B									
	1	Blank Spike	(mg/kg)	s	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Silver	5	4.88	98	5	4.95	99	(83-118)	1.50	(< 20)
Batch Information Analytical Batch: MMS114 Analytical Method: SW602					p Batch: M p Method:				
Instrument: P7 Agilent 78				Pre	p Date/Tim	e: 03/17/202			
Analyst: DMM						0 0	g Extract Vo Extract Vol		

SGS	
JUJ	

Method Blank					
Blank ID: MB for HE Blank Lab ID: 16574	N 1832773 [SPT/11484] i62	Matri	ix: Soil/Solid ((dry weight)	
QC for Samples: 1221082010, 1221082	2011, 1221082012				
Results by SM21 25	40G				
<u>Parameter</u> Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information Analytical Batch: S Analytical Method: Instrument: Analyst: DBR Analytical Date/Tin					

SGS

Duplicate Sample Sumr	1082011			03/17/2022 17:00	
Ouplicate Sample ID: 16	57463		Matrix: Soil/So	lid (dry weight)	
C for Samples:	14 1001000010				
221082010, 122108201	1, 1221082012				
Results by SM21 2540G					
IAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
otal Solids	60.9	68.4	%	11.60	(< 15)
Batch Information					
Analytical Batch: SPT114 Analytical Method: SM21 Instrument: Analyst: DBR					
Analysi. DDR					

SGS North America Inc. CHAIN OF CUSTODY RECORD

cal Delivery 1 Al ut	1. 1. S.	IvrevileC		/		θŪ					~~	85,8	22/21/2			
BROKEN ABSENT	TOATNI			jn9idm	A 10				story By:	Labora	Received For	əmiT	Date	I BV: (4)	bədziupniləA	ī
Custody Seal: (Circle)) to nisdO		:0	Blank °(Temp											
						LIMAE	·				Received By:	əmiT	Date	talinprista By: (3)		
		нгия		ארויא	117	L CDOE									Section	
:suc	ial Instructio	vor Spec				oo Sequested 7)		Received By:	By: (2) Date Time Received By		bədziupniləA	1 1	
Level 2						Cooler ID:			(1
					Г		adabitition Janssen 3/15/2022 5:04PM Recei ved By: 3 1						PelinpniləA			
erable Requirements:	Vil90 bis	oN s	et? Ye	OD Proje	a	Section 4		1	1					(i)		╞
														·····		-
· · · · · · · · · · · · · · · · · · ·																-
																-
							x	x	Grab	ŀ		MIJCC'7	3/12/5025	S2 F	FILE	Ъ.
							x	x	Grab	•			3/12/3033	23 E	AFEXAG	
							x	x	Grab	-			3/12/2025	2 7 2 2 7 D	ALACIN	Ĵ₫
							x	x	Grab	ŀ		2:40PM		25 C	The Vie	
							x	x	Grab	ŀ		2:35PM	3/16/2022	828	08/17	Ĵ
							x	x	Grab	ŀ		2:30PM	3/12/2025	A 22	(BAB)	1
REMARKS/LOC ID							Tota	TCLP		ร ช	MATRIX SODE	MM:HH	DATE Vy/bb/mm	SAMPLE IDENTIFICATION	For lab use]
BTEX, Metals, PFAS				AND I AND I AND I			Total RCRA		incre- incre-	Э		TIME	.#: 22-001	D.9 Marine Construction P.O.		╋
require specific methc and/or compound list:							Â		-itluM)	N I			#: 00 004			
zylana pniwollof edT*		70	OT.						Grab	T A		10010	:# əlij			1
−OTE:		62	5010	155			•		dwog	N O	sn.nísgan	nut@nssenejj	SIL:	С-Э Е-W	от стяочая	<u>1</u> 4
										ວ #	22-001			Skagway Ore Dock PWS		
		<u> </u>	itive	Preserva	I		L	I								1-
									£ noi	292		011043	206 :# 3NC	Josh Janssen PHC	:TOATNOO	>
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,			ustan (tabu),			ay delay							u	Turnagain Marine Constructio	:INEIDO	,
	s:sn:www	no pəj	lif əd	ections 1 - 5 must be filled out. بحرازمانه 1 - 5 must be filled out.											CLIENT:	上

anoitibnoo-bns-ams-terms-and-conditions

	JNU 919		309	93			-	2				02	27-9195 6093		
	Name and Address		000	stru	Shipper's Ac 27442	count N 4854	Number 180		legotiable	• • • •					
	gain Marine Dimond Ho				Customer' 48				Air Waybill Issued By Alaska						
	, prage, AK 9	950)7												
USA	0,			Tel: 907-26	61-8960			P.O. BOX 68900 SEATTLE, WA 98168 800-225-2752 ALASKACARGO.COM							
Consigne	e's Name and Addr	ess			onsignee's A			Also	notify						
200 V	North Ameri	/e			27400	2158	947	-							
	orage, AK 9	951	18												
USA				Tel: 907-56	so 0242						Ŧ	el:			
lssuina C	arrier's Agent and (City			02-2040			Acco	unting Infor	mation			48806		
		,						Tur	-	/arine C	onstructior Drive	Compa	40000		
A # = # + + + + + + +	TA Orde							Uni	it A chorage,	AK 0050	77				
Agent's IA	ATA Code			A	count No.			US		AK 990	JT				
Airport of	Departure (Addr o	f First	t Car	rier) and Requested	Routina			-							
·	au Internatio			, ,				Go	ldStreak						
То	By First Carrier				То / Ву		To / By	Curre		WT/VAL		clared Value For Carriage	Declared Value For Customs		
	Alaska Airl	ine	s	Flight/Date	<u> </u>	Flight/[Date		D PX		X L	NVD	NCV		
Ancho				-	65/16	Ingrivi	2010								
	Information			I		1		i			I				
	NOA 907 56	62 2	343	3											
													SCI		
No of Pieces	Gross Weight	kg Ib		Commodity Item No.	Charge Weig		Rate / Charge			Total			Quantity of Goods ensions or Volume)		
1	4.0				4	.0				AS AG	REED	SOIL SAMPL	ES		
												Dims: 7 x 7 x6	x.1		
													St. Contraction of the second s		
													· ·		
												GSX			
	1.0	++	+												
1	4.0								l A	AS AGI	REED	Volume: 0.170			
Prepaid			ight	Charge	Collect		r Charges								
	AS AGREE		atior	n Charge		X	BC 12.	50							
			Ta	ax		1									
						ļ									
	Total (Other	Cha	rges Due Agent		cont	ains dangerous	goods	, such part	is properly	y described b	and that insofar as any pa y name and is in proper co	ondition for carriage		
	Total C	ther	Char	ges Due Carrier		1				ngerous G	oods Regulat	ions. I consent to the insp Signature of Shipper or h	-		
	For: Turr														
									•	ONTAIN		THIS SHIPMENT DOES C			
	Table				4	Ø	DANGEROL					DANGEROUS GOODS			
				Total Col	ect										
	AS AGREE	U				16	6 Mar 2022	2 11	:10	Juneau	u Internat	tional Ala	ska Airlines		
						Ēxē	ecuted On (Date)				at (Place)	Signature of Issu	ing Carrier or its Agent		
												02	2 7 59195 6093		

Characterization of TCLP Samples for LIMS Login

Date Characterized: 3/17/22

Analyst: R くく

Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:				
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
524	Water miscible (Middle layer = matrix 6)		XQBE / No	Yes / No / NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100		**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.				
52B	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA) If biphasic, was there only one layer with sufficient sample				
3 2 B	Water miscible (Middle layer = matrix 6)		Mes / No	Yes / No /(NA) Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100		**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.				
Szc	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / A If biphasic, was there only one layer with sufficient sample				
	Water miscible (Middle layer = matrix 6)		(Yes) / No	? Yes / No / Wa Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	109		**Are samples Glycol or Solvent in appearance or odor yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.				
	Xytene miscible (Top layer * = matrix 3 **)	```````````````````````````````````````		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
	Water miscible (Middle layer = matrix 6)		Yes / No	? Yes / No / NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.				

Remember: *= Chlorinated oils will be heavier than water and present as the bottom later.

** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.

*** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

Alert Expeditors Inc.

#416917

1.53

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date Urnasain Marine Const From Collect 🗆 Prepay 🗖 Advance Charges Job # PO# Ç 60 SMA Shipped Signature Total Charge 27 of 29 Received By:

e-Sample Receipt Form

SGS	

SGS Workorder #:

1221082

1	.22	1 ∩	82
		тυ	이 스

000	SGS Workorder #:		22	1082	1221082
Review	Criteria	Condition (Yes,	No, N/A	Exc	eptions Noted below
Chain of Cus	tody / Temperature Requi	rements		N/A Exemption pe	ermitted if sampler hand carries/delivers.
We	e Custody Seals intact? Note # &	location Yes			
	COC accompanied sa	amples? No	Clien	t sent COC through e	mail after samples were received.
DOD: Were sample	s received in COC corresponding of	coolers? N/A			
	N/A **Exemption permitted if	chilled & colle	cted <	8 hours ago, or for san	nples where chilling is not required
Temperature b	ank compliant* (i.e., 0-6 °C afte	er CF)? N/A	Coole	er ID: 1	@ambient °C Therm. ID: N/A
			Coole	er ID:	@ °C Therm. ID:
	ature blank, the "cooler temperature" wil		Coole	er ID:	@ °C Therm. ID:
documented instead & "COOLER TEMP" be noted if	vill be noted to the right. "amblent" or "cr leither is available.		Coole	<mark>er ID:</mark>	@ °C Therm. ID:
			Coole	<mark>er ID:</mark>	@ °C Therm. ID:
*lf >6°C, w	ere samples collected <8 hours	ago? N/A			
lf <(°C, were sample containers ice	e free? N/A			
	ceived at non-compliant tempe				
Use in	orm FS-0029 if more space is n	eeaea.			
Holding Time / Docum	entation / Sample Condition R	aquiromonts	Note: F	Refer to form E-083 "Samp	le Guide" for specific holding times
	samples received within holding		NOLE. I		Se Guide for specific holding times.
Do samples match COC** (i	e.,sample IDs,dates/times colle	ected)? Yes			
,	hr, record details & login per C				
***Note: If sample information on containe	•				
Were analytical requests clear?	(i.e., method is specified for ar	nalyses No			ch samples needed TCLP and regular
	option for analysis (Ex: BTEX, I		RCR/	A metals	
				N/A ***Exemption	permitted for metals (e.g,200.8/6020A).
Were proper containers (typ	e/mass/volume/preservative***)used? Yes			
	Volatile / LL-Hg Req				
	/OAs, LL-Hg) in cooler with sa				
	of headspace (i.e., bubbles ≤				
Were all soil V	OAs field extracted with MeOH	+BFB? N/A			
Note to Client: An	y "No", answer above indicates no	n-compliance	with st	andard procedures and	d may impact data quality.
	Additiona	al notes (if a	pplica	able):	

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1221082001-A 1221082002-A 1221082003-A 1221082010-A 1221082011-A 1221082012-A	No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required	ок ок ок ок ок			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Laboratory Report of Analysis

To: Turnagain Marine Construction 9330 Vanguard, Suite 100 Anchorage, AK 99507 907-201-1043

Report Number: 1221083

Client Project: Skagway Ore Dock Sediment Reme

Dear Josh Janssen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Cameron at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Cameron Murphy Project Manager Cameron.Murphy@sgs.com Date

Case Narrative

SGS Client: Turnagain Marine Construction SGS Project: 1221083 Project Name/Site: Skagway Ore Dock Sediment Reme Project Contact: Josh Janssen

Refer to sample receipt form for information on sample condition.

1221082010(1657302MS) (1657303) MS

6020B- MS recoveries for multiple analytes do not meet the QC criteria. The post digestion spike was successful.

1221082010(1657302MSD) (1657304) MSD

6020B- MSD recoveries for multiple analytes do not meet the QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 03/21/2022 4:15:26PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 03/21/2022 4:15:28PM

Note:

SW6020B TCLP

SW6020B

SM21 2540G

Sample Summary										
Client Sample ID	Lab Sample ID	Collected	Received	Matrix						
S3 A	1221083001	03/16/2022	03/17/2022	Solid/Soil (Wet Weight)						
S3 B	1221083002	03/16/2022	03/17/2022	Solid/Soil (Wet Weight)						
S3 C	1221083003	03/16/2022	03/17/2022	Solid/Soil (Wet Weight)						
S3 D	1221083004	03/16/2022	03/17/2022	Soil/Solid (dry weight)						
S3 E	1221083005	03/16/2022	03/17/2022	Soil/Solid (dry weight)						
S3 F	1221083006	03/16/2022	03/17/2022	Soil/Solid (dry weight)						
Method	Method Des	<u>scription</u>								

Metals by ICP-MS

Metals by ICP-MS (S) Percent Solids SM2540G

Detectable Results Summary Client Sample ID: S3 A Lab Sample ID: 1221083001 Parameter Result Units 0.183 mg/L **TCLP Constituents Metals** Lead Client Sample ID: S3 B Lab Sample ID: 1221083002 Result <u>Units</u> Parameter 0.319 mg/L **TCLP Constituents Metals** Barium Lead 1.33 mg/L Client Sample ID: S3 C Lab Sample ID: 1221083003 **Parameter** Result <u>Units</u> **TCLP Constituents Metals** Barium 0.319 mg/L 0.617 Lead mg/L Client Sample ID: S3 D Lab Sample ID: 1221083004 Parameter Result Units Metals by ICP/MS Arsenic 8.96 mg/kg Barium 376 mg/kg Cadmium 11.5 mg/kg 18.2 Chromium mg/kg Lead 7600 mg/kg Mercury 4.72 mg/kg Silver 6.80 mg/kg Client Sample ID: S3 E Lab Sample ID: 1221083005 Parameter Result Units Arsenic 18.6 Metals by ICP/MS mg/kg 359 Barium mg/kg Cadmium 27.3 mg/kg Chromium 18.0 mg/kg Lead 22200 mg/kg Silver 18.1 mg/kg Client Sample ID: S3 F Lab Sample ID: 1221083006 **Parameter** Result <u>Units</u> 12.3 Arsenic Metals by ICP/MS mg/kg Barium 385 mg/kg Cadmium 17.3 mg/kg Chromium 20.3 mg/kg Lead 10600 mg/kg Silver 21.0 mg/kg

Print Date: 03/21/2022 4:15:30PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

SGS

Results of S3 A

Client Sample ID: **S3 A** Client Project ID: **Skagway Ore Dock Sediment Reme** Lab Sample ID: 1221083001 Lab Project ID: 1221083 Collection Date: 03/16/22 08:00 Received Date: 03/17/22 08:58 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:

Results by TCLP Constituents Metals

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:57
Barium	0.150 U	0.150	0.0470	mg/L	25	(<100)	03/20/22 11:57
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/20/22 11:57
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 11:57
Lead	0.183	0.0500	0.0155	mg/L	25	(<5)	03/20/22 11:57
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/20/22 11:57
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/20/22 11:57
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/20/22 11:57

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/20/22 11:57 Container ID: 1221083001-A Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/22 14:13 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S3 B

Client Sample ID: **S3 B** Client Project ID: **Skagway Ore Dock Sediment Reme** Lab Sample ID: 1221083002 Lab Project ID: 1221083 Collection Date: 03/16/22 08:05 Received Date: 03/17/22 08:58 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:

Results by TCLP Constituents Metals

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 12:00
Barium	0.319	0.150	0.0470	mg/L	25	(<100)	03/20/22 12:00
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/20/22 12:00
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 12:00
Lead	1.33	0.0500	0.0155	mg/L	25	(<5)	03/20/22 12:00
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/20/22 12:00
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/20/22 12:00
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/20/22 12:00

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/20/22 12:00 Container ID: 1221083002-A Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/22 14:13 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results	of	S 3	С
---------	----	------------	---

Client Sample ID: **S3 C** Client Project ID: **Skagway Ore Dock Sediment Reme** Lab Sample ID: 1221083003 Lab Project ID: 1221083 Collection Date: 03/16/22 08:10 Received Date: 03/17/22 08:58 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:

Results by TCLP Constituents Metals

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 12:02
Barium	0.319	0.150	0.0470	mg/L	25	(<100)	03/20/22 12:02
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	03/20/22 12:02
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	03/20/22 12:02
Lead	0.617	0.0500	0.0155	mg/L	25	(<5)	03/20/22 12:02
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	03/20/22 12:02
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	03/20/22 12:02
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	03/20/22 12:02

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Analyst: DMM Analytical Date/Time: 03/20/22 12:02 Container ID: 1221083003-A Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/22 14:13 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S3 D

Client Sample ID: **S3 D** Client Project ID: **Skagway Ore Dock Sediment Reme** Lab Sample ID: 1221083004 Lab Project ID: 1221083 Collection Date: 03/16/22 08:15 Received Date: 03/17/22 08:58 Matrix: Soil/Solid (dry weight) Solids (%):67.0 Location:

Results by Metals by ICP/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	8.96	1.45	0.449	mg/kg	10		03/17/22 14:34
Barium	376	0.435	0.136	mg/kg	10		03/17/22 14:34
Cadmium	11.5	0.290	0.0899	mg/kg	10		03/17/22 14:34
Chromium	18.2	1.45	0.449	mg/kg	10		03/17/22 14:34
Lead	7600	14.5	4.49	mg/kg	500		03/17/22 16:32
Mercury	4.72	0.435	0.145	mg/kg	10		03/17/22 14:34
Selenium	2.90 U	2.90	0.899	mg/kg	10		03/17/22 14:34
Silver	6.80	0.725	0.217	mg/kg	10		03/17/22 14:34

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 14:34 Container ID: 1221083004-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 16:32 Container ID: 1221083004-A Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.03 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.03 g Prep Extract Vol: 50 mL

Results of S3 E

Client Sample ID: **S3 E** Client Project ID: **Skagway Ore Dock Sediment Reme** Lab Sample ID: 1221083005 Lab Project ID: 1221083 Collection Date: 03/16/22 08:20 Received Date: 03/17/22 08:58 Matrix: Soil/Solid (dry weight) Solids (%):67.5 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	18.6	1.39	0.430	mg/kg	10		03/17/22 14:37
Barium	359	0.416	0.130	mg/kg	10		03/17/22 14:37
Cadmium	27.3	0.278	0.0860	mg/kg	10		03/17/22 14:37
Chromium	18.0	1.39	0.430	mg/kg	10		03/17/22 14:37
Lead	22200	27.8	8.60	mg/kg	1000		03/17/22 16:35
Mercury	41.6 U	41.6	13.9	mg/kg	1000		03/17/22 16:35
Selenium	2.78 U	2.78	0.860	mg/kg	10		03/17/22 14:37
Silver	18.1	6.94	2.08	mg/kg	100		03/18/22 09:25

Batch Information

Analytical Batch: MMS11496 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/18/22 09:25 Container ID: 1221083005-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 14:37 Container ID: 1221083005-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 16:35 Container ID: 1221083005-A Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.067 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.067 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.067 g Prep Extract Vol: 50 mL

Print Date: 03/21/2022 4:15:31PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of S3 F

Client Sample ID: **S3 F** Client Project ID: **Skagway Ore Dock Sediment Reme** Lab Sample ID: 1221083006 Lab Project ID: 1221083 Collection Date: 03/16/22 08:25 Received Date: 03/17/22 08:58 Matrix: Soil/Solid (dry weight) Solids (%):68.0 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	12.3	1.42	0.441	mg/kg	10		03/17/22 14:40
Barium	385	0.427	0.134	mg/kg	10		03/17/22 14:40
Cadmium	17.3	0.285	0.0883	mg/kg	10		03/17/22 14:40
Chromium	20.3	1.42	0.441	mg/kg	10		03/17/22 14:40
Lead	10600	14.2	4.41	mg/kg	500		03/17/22 16:38
Mercury	21.4 U	21.4	7.12	mg/kg	500		03/17/22 16:38
Selenium	2.85 U	2.85	0.883	mg/kg	10		03/17/22 14:40
Silver	21.0	7.66	2.30	mg/kg	10		03/18/22 08:55

Batch Information

Analytical Batch: MMS11496 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/18/22 08:55 Container ID: 1221083006-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 14:40 Container ID: 1221083006-A

Analytical Batch: MMS11495 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/17/22 16:38 Container ID: 1221083006-A Prep Batch: MXX35020 Prep Method: SW3050B Prep Date/Time: 03/17/22 15:02 Prep Initial Wt./Vol.: 0.096 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.033 g Prep Extract Vol: 50 mL

Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/22 10:38 Prep Initial Wt./Vol.: 1.033 g Prep Extract Vol: 50 mL

Print Date: 03/21/2022 4:15:31PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Method Blank

Blank ID: LB1 for HBN 1832778 [TCLP/1167 Blank Lab ID: 1657476 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1221083001, 1221083003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.250U	0.500	0.155	mg/L
Barium	0.0750U	0.150	0.0470	mg/L
Cadmium	0.0500U	0.100	0.0300	mg/L
Chromium	0.250U	0.500	0.155	mg/L
Lead	0.0250U	0.0500	0.0155	mg/L
Mercury	0.0125U	0.0250	0.00900	mg/L
Selenium	0.500U	1.00	0.310	mg/L
Silver	0.0500U	0.100	0.0310	mg/L

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/20/2022 11:28:47AM Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 3/18/2022 2:13:07PM Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1832794 [MXT/6212] Blank Lab ID: 1657549 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1221083001, 1221083003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.0250U	0.0500	0.0155	mg/L
Barium	0.00750U	0.0150	0.00470	mg/L
Cadmium	0.00500U	0.0100	0.00300	mg/L
Chromium	0.0250U	0.0500	0.0155	mg/L
Lead	0.00250U	0.00500	0.00155	mg/L
Mercury	0.00125U	0.00250	0.000900	mg/L
Selenium	0.0500U	0.100	0.0310	mg/L
Silver	0.00500U	0.0100	0.00310	mg/L

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/20/2022 11:23:04AM Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 3/18/2022 2:13:07PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221083 [MXT6212] Blank Spike Lab ID: 1657550 Date Analyzed: 03/20/2022 11:25

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1221083001, 1221083002, 1221083003

Results by SW6020B TCLP

		Blank Spike		
arameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
rsenic	1	0.967	97	(84-116)
Barium	1	1.00	100	(86-114)
Cadmium	0.1	0.0993	99	(87-115)
Chromium	0.4	0.402	100	(85-116)
_ead	1	1.02	102	(88-115)
Vercury	0.01	0.0100	100	(70-124)
Selenium	1	0.981	98	(80-120)
Silver	0.1	0.101	101	(85-116)

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Prep Batch: MXT6212 Prep Method: SW3010A Prep Date/Time: 03/18/2022 14:13 Spike Init Wt./Vol.: 1 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1657553 MS Sample ID: 1657555 MS MSD Sample ID: 1657556 MSD

QC for Samples: 1221083001, 1221083002, 1221083003

Results by SW6020B TCLP

Analysis Date: 03/20/2022 11:31 Analysis Date: 03/20/2022 11:34 Analysis Date: 03/20/2022 11:37 Matrix: Solid/Soil (Wet Weight)

		Mat	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	0.250U	10.0	9.74	97	10.0	9.59	96	84-116	1.61	(< 20)
Barium	0.360	10.0	10.4	100	10.0	10.3	100	86-114	0.71	(< 20)
Cadmium	0.0500U	1.00	1	100	1.00	0.998	100	87-115	0.36	(< 20)
Chromium	0.250U	4.00	4.01	100	4.00	3.97	99	85-116	0.92	(< 20)
Lead	1.14	10.0	11.4	102	10.0	11.3	102	88-115	0.70	(< 20)
Mercury	0.0125U	0.100	.104	104	0.100	0.103	103	70-124	1.10	(< 20)
Selenium	0.500U	10.0	9.89	99	10.0	9.43	94	80-120	4.79	(< 20)
Silver	0.0500U	1.00	.999	100	1.00	0.989	99	85-116	0.94	(< 20)

Batch Information

Analytical Batch: MMS11497 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/20/2022 11:34:28AM Prep Batch: MXT6212

Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 3/18/2022 2:13:07PM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 25.00mL

SGS

Method Blank

Blank ID: MB for HBN 1832736 [MXX/35018] Blank Lab ID: 1657300 Matrix: Soil/Solid (dry weight)

QC for Samples: 1221083004, 1221083005, 1221083006

Results by SW6020B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/kg
Barium	0.112J	0.300	0.0940	mg/kg
Cadmium	0.100U	0.200	0.0620	mg/kg
Chromium	0.500U	1.00	0.310	mg/kg
Lead	0.100U	0.200	0.0620	mg/kg
Mercury	0.150U	0.300	0.100	mg/kg
Selenium	1.00U	2.00	0.620	mg/kg
Silver	0.250U	0.500	0.150	mg/kg

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/17/2022 1:48:00PM Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221083 [MXX35018] Blank Spike Lab ID: 1657301 Date Analyzed: 03/17/2022 13:51

Matrix: Soil/Solid (dry weight)

QC for Samples: 1221083004, 1221083005, 1221083006

Results by SW6020B

	E	Blank Spike (m	ng/kg)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	CL
Arsenic	50	50.5	101	(82-118)
Barium	50	50.7	101	(86-116)
Cadmium	5	5.11	102	(84-116)
Chromium	20	20.2	101	(83-119)
ead	50	51.7	103	(84-118)
Mercury	0.5	0.508	102	(74-126)
Selenium	50	50.8	102	(80-119)
Silver	5	5.07	101	(83-118)

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Prep Batch: MXX35018 Prep Method: SW3050B Prep Date/Time: 03/17/2022 10:38 Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1657302 MS Sample ID: 1657303 MS MSD Sample ID: 1657304 MSD

QC for Samples: 1221083004, 1221083005, 1221083006

14.4U

23.9U

0.465

4.65

14.4U

23.9U

0 *

0

Results b

Parameter Arsenic Barium Cadmium Chromium Selenium

Lead

Silver

Mercury

by SW6020B											
		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg))			
-	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (<u>%)</u>	CL	<u>RPD (%)</u>	RPD CL
	9.71	46.5	53.7	95	48.4	56.5	97		82-118	5.11	(< 20)
	261	46.5	308	102	48.4	320	123	*	86-116	3.94	(< 20)
	15.5	4.65	20.7	112	4.84	18.4	59	*	84-116	11.90	(< 20)
	13.1	18.6	31.5	99	19.4	34.1	108		83-119	7.90	(< 20)
	1.06J	46.5	43.5	91	48.4	44.6	90		80-119	2.56	(< 20)
	9660	46.5	8440	-2630 *	48.4	9940	582	*	84-118	16.40	(< 20)

0.484 14.4U

23.9U

4.84

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/17/2022 1:57:00PM

Analytical Batch: MMS11496 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/18/2022 9:34:17AM Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.08g Prep Extract Vol: 50.00mL

0

0

*

*

74-126

83-118

Analysis Date: 03/17/2022 13:54

Analysis Date: 03/17/2022 13:57

Analysis Date: 03/17/2022 14:00 Matrix: Solid/Soil (Wet Weight)

Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.08g Prep Extract Vol: 50.00mL

Print Date: 03/21/2022 4:15:42PM

SGS North America Inc.

0.00

0.00

(< 20)

(< 20)

Bench Spike Summary

Original Sample ID: 1657302 MS Sample ID: 1657305 BND MSD Sample ID: Analysis Date: 03/17/2022 13:54 Analysis Date: 03/17/2022 14:02 Analysis Date: Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1221083004, 1221083005, 1221083006

Results by SW6020B

		Mati	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Barium	261	239	494	98				75-125		
Cadmium	15.5	120	126	92				75-125		
Lead	9660	12000	21000	95				75-125		
Mercury	14.4U	239	240	100				75-125		
Silver	23.9U	239	235	98				75-125		

Batch Information

Analytical Batch: MMS11495 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/17/2022 2:02:00PM

Analytical Batch: MMS11496 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM Analytical Date/Time: 3/18/2022 9:39:00AM Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.05g Prep Extract Vol: 50.00mL

Prep Batch: MXX35018 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/17/2022 10:38:33AM Prep Initial Wt./Vol.: 1.05g Prep Extract Vol: 50.00mL

Blank ID: MB for HBN 1832764 [MXX/35020] Blank Lab ID: 1657409 QC for Samples: 1221083006		Matrix	c: Soil/Solid (dr	y weight)
Results by SW6020B				
P <u>arameter</u> Silver	<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.150	<u>Units</u> mg/kg
atch Information	1			
Analytical Batch: MM Analytical Method: S Instrument: P7 Agile Analyst: DMM Analytical Date/Time:	W6020B	Prep Me Prep Da Prep Init	tch: MXX35020 thod: SW3050E te/Time: 3/17/2 ial Wt./Vol.: 1 g tract Vol: 50 mL	3 022 3:02:45PM

Blank Spike Summary Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1657410 Date Analyzed: 03/18/2022	20]	[M) Spi	(X35020] ke Duplica	ate ID: LCS ate Lab ID: Solid (dry w		1221083			
QC for Samples: 12210830	06								
Results by SW6020B									
	Blank Spike		ng/kg) Spike Duplicate (mg/kg)						
<u>Parameter</u> Silver	<u>Spike</u> <u>Result</u> 5 4.88	<u>Rec (%)</u> 98	<u>Spike</u> 5	<u>Result</u> 4.95	<u>Rec (%)</u> 99	<u>CL</u> (83-118)	<u>RPD (%)</u> 1.50	<u>RPD CL</u> (< 20)	
Batch Information									
Analytical Batch: MMS11496 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DMM			Pre Pre Spil	ke Init Wt./\	SW3050B e: 03/17/202 /ol.: 5 mg/kg	22 15:02 g Extract Vo g Extract Vol			

Method Blank					
Blank ID: MB for HBN Blank Lab ID: 1657462		Matri	x: Soil/Solid (dry weight)	
QC for Samples: 1221083004, 122108300	5, 1221083006				
	G				
			-	11.5	
<u>Parameter</u> Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %	
Batch Information					
Analytical Batch: SPT Analytical Method: SI Instrument: Analyst: DBR Analytical Date/Time:	T11484 M21 2540G 3/17/2022 5:00:00PM				

SGS

Duplicate Sample Summary Original Sample ID: 1221082011 Duplicate Sample ID: 1657463 QC for Samples:					
		Analysis Date: 03/17/2022 17:00 Matrix: Soil/Solid (dry weight)			
1221083004, 1221083	005, 1221083006				
Results by SM21 2540G					
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Solids	60.9	68.4	%	11.60	(< 15)
Instrument: Analyst: DBR					

SGS North America Inc. CHAIN OF CUSTODY RECORD

		8					V	04	37	85-	5	сpr	ᡝ			[
	CLIENT:	Turnagain Marine Constru	uction				Ins	tructi	ons:	Secti may d	ons 1	- 5 r	nust					,
-	CONTACT:	Josh Janssen	PHONE #: 907	2011043		Sec	ction 3						eservat					Page1_ of1
Section 1	PROJECT NAME:		PROJECT/ PWSID/ PERMIT#:	22-00)1	# C				-								
S	REPORTS T	0:	E-MAIL:	jjanssen@tur	magain.us	O N	Comp		L.,	1		Ana	lysis*			<u> </u>		
	Joshua Janssen Profile #:				т	Grab											NOTE: *The following analyses	
	INVOICE TO		QUOTE #:	3/83	rs	A I	м											require specific method
	Turnagai	in Marine Construction	P.O. #: 22-001			N E	(Multi- incre-		RCRA									and/or compound list: BTEX, Metals, PFAS
	RESERVED for lab use		ON DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	R	mental)	TCLP	Total R									REMARKS/LOC ID
	(A)	S3 A	3/16/2022	8:00AM		1	Grab	x	x									
	(AA)	S3 B	3/16/2022	8:05AM		1	Grab	x	x									
	(3A)	S3 C	16-Mai	8:10AM		1	Grab	x	x									
Section 2	A A A A A A A A A A A A A A A A A A A	S3 D	3/16/2022	8:15AM		1	Grab	x	x									
ŝĊţi	(JA)	S3 E	3/16/2022	8:20AM		1	Grab	x	x									
ű	(GA)	S3 F	3/16/2022	8:25AM		1	Grab	x	x									<u></u>
									1			-						
	tina anti- Tari anti-																	
	line i Line and a state																	
	Relinquishe	ed By: (1) Joshua Janssen	Date 3/16/2022	Time 9:01AM	Received By	:		•		Sect	tion 4	DOE) Proje	ct? Ye	s No	Data	Delive	erable Requirements:
	Relinquishe	d Dyg (2)	Date	Time	Received By					-	er ID:							
ection 5	Reinquisne	а Бу. (2)	Date	Time	Received by	•)		30a	יאך ל	p RCI	RA		or Spe/ RUS	cial Inst ⊔	tructio	ns:
ecți	Relinquishe	d By: (3)	Date	Time	Received By	÷				24	hour	total	RCR	9	NUS			
Ň											Т	emp B	lank °C	:		Chai	in of C	ustody Seal: (Circle)
	Relinquishe	d By: (4)	Date	Time	Received Fo	r Labo	ratory By:				-	or Am	bient [1		INTA	СТ	BROKEN ABSENT
			3/17/22	8:58	lin	L	hi	Ĉē	5				~	-	Delivery			al Delivery [-] Alach

http://www.sgs.com/terms-and-conditions

Characterization of TCLP Samples for LIMS Login

Is sufficient

Date Characterized:

317122

Analyst:

ass

			available?			
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ? Yes / No / NA		
\$3 A	Water miscible (Middle layer = matrix 6)		Fes / No	Sample description/other observations:		
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100		لازمین **Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.		
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / (AA) If biphasic, was there only one layer with sufficient sample		
S3 B	Water miscible (Middle layer = matrix 6)		Ves / No	Yes / No / NA Sample description/other observations:		
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100		Cland **Are samples Glycol of Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.		
· .	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample		
S3C	Water miscible (Middle layer = matrix 6)		res / No	Yes / No / No Sample description/other observations:		
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100		**Are samples Givcol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.		
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample		
-S3 D	Water miscible (Middle layer = matrix 6)		Free / No	Yes / No / NA Sample description/other observations:		
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	00]		**Are samples Glycol of Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.		
	Xylene miscible (Top layer * = matrix 3 **)	,		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample		
53 E	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:		
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100		**Are samples Glycol or Solvent in appearance or odor? I yes schedule TCLP Metals matrix 6 acode.		

= One must be interable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.
 *** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

SGS North America Inc. 200 W. Potter Drive, Anchorage, AK 99518 phone (907) 562-2343, fax (907) 561-5301

(5)

Characterization of TCLP Samples for LIMS Login

Date Characterized:

3/17/22

Analyst:

Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
53 F	Water miscible (Middle layer = matrix 6)		(res)/ No	Yes / No / الم Sample description/other observations: دراجح
	Solid (Bottom layer = matrix 7 or 2 if % solids required))00		**Are samples Glycol or Solverit in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.
 I	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:
	Solid (Bottom Jayer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? I yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA Sample description/other observations:
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sampl
	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No / NA COS Sample description/other observations:
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.
Remember:	* = Chlorinated oils will be hear	tion them wonter and		

** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.
 *** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

	Address		Shipper's Ac	count Nu	mber	Not Negotiable			02	27-9065 8035
Turnagain M			27442	48548	30	- Air Wayb	ill			
8241 Dimono	d Hook Driv	/e	Customer's	806 Numt	ber	Issued By		Alas		
Unit A Anchorage, <i>I</i>	4K 99207							AIR CA		
USA		Tel: 907-2	61-8060						900 SEATTLE, WA 9816 52 ALASKACARGO.COM	
Consignee's Name a			Consignee's A		umber	Also notify				
Sgc north an						-				
HFPU		· .	5							
ANC, AK 999	999	20								
USA	-	Tel: 90756	22242					-	al	
Issuing Carrier's Age		101. 30/30	022343			Accounting Info	mation	ļ	el:	48806
	unu Oity					Turnagain		onstruction	Compa	40000
						8241 Dimor				
A						Unit A		07		
Agent's IATA Code		A	ccount No.			Anchorage, USA	AV 332	U7		
Airport of Departure (Addr. of First Car	ier) and Requester	d Routing			-				
Juneau Inter		· ·				GoldStreak				
To By First C	arrier		To / By	То	/ Ву	Currency	WT/VAL	++	clared Value For Carriage	Declared Value For Cu
ANC Alaska						USD PX		X	NVD	NCV
Airport of Destination Anchorage	1	Flight/Date)65/16	Flight/Dat	te	Amount of Insur				
Handling Information		ASI	100/10	L				l		
-	N 48806 AC	CT								
										SCI
										
No of Gros Pieces Weig		Commodity Item No.	Charge: Weigl		Rate / Charge		Total			Quantity of Goods nsions or Volume)
	·····				+					
1	4.0 L		4	.0			AS AG	REED		28
I		1		1	1				1	
					ŀ					
									Dims: 11 x 8 x4	x 1
									Dims: 11 x 8 x4	x 1
									Dims: 11 x 8 x4	x 1
										x 1
									_GSX	x 1
1	4.0						AS AGI	REED		x 1
Prepaid	Weight C	Charge	Collect	Other C	Ũ		AS AGI	REED	_GSX	x 1
·····	Weight C REED	-	Collect	Other C XB	Ũ		AS AGF	REED	_GSX	x 1
Prepaid	Weight C	-	Collect		Ũ		AS AGI	REED	_GSX	x 1
Prepaid	Weight C REED	Charge	Collect		Ũ		AS AGE	REED	_GSX	x 1
Prepaid	Weight C REED Valuation	Charge	Collect		Ũ		AS AGI	REED	_GSX	x 1
Prepaid	Weight C REED Valuation	Charge x	Collect	XB	C 12.	50	he face here	eof are correct	GSX Volume: 0.204	t of the consignment
Prepaid AS AG	Weight C REED Valuation Tat	Charge x ges Due Agent	Collect	Shipper	C 12.	50 the particulars on ti goods, such part	he face here	eof are correct y described b	GSX Volume: 0.204	t of the consignment ndition for carriage action of this cargo.
Prepaid AS AG	Weight C REED Valuation Ta	Charge x ges Due Agent	Collect	Shipper contair by air For:	C 12.	the particulars on t goods, such part the applicable Da ain Marine	he face here	eof are correct y described b	GSX Volume: 0.204	t of the consignment ndition for carriage action of this cargo.
Prepaid AS AG	Weight C REED Valuation Tat	Charge x ges Due Agent	Collect	Shipper contair by air For:	C 12. r certifies that t is dangerous according to Turnaga struction	50 50 goods, such part the applicable Da ain Marine Compa	he face her is proper! ngerous G	eof are correct y described b	GSX Volume: 0.204	t of the consignment ndition for carriage action of this cargo. s Agent
Prepaid AS AG	Weight C REED Valuation Tat	Charge x ges Due Agent	Collect	Shipper contair by air For:	C 12. r certifies that t is dangerous according to Turnaga struction	50 the particulars on the goods, such part the applicable Da ain Marine Compa ENT <u>DOES NOT</u> C	he face her is proper! ngerous G	eof are correct y described b	GSX Volume: 0.204	t of the consignment ndition for carriage action of this cargo. s Agent
Prepaid AS AG	Weight C REED Valuation Ta: Total Other Char Total Other Char	Charge x ges Due Agent		Shipper contair by air For: Con:	C 12. r certifies that t is dangerous according to Turnaga struction THIS SHIPM	50 the particulars on the goods, such part the applicable Da ain Marine Compa ENT <u>DOES NOT</u> C	he face her is proper! ngerous G	eof are correct y described b	GSX Volume: 0.204	t of the consignment ndition for carriage action of this cargo. s Agent
Prepaid AS AG	Weight C REED Valuation Ta: Total Other Char Total Other Char	Charge x ges Due Agent ges Due Carrier		Shipper contair by air For: Cons	C 12. r certifies that t is dangerous according to Turnaga struction HIS SHIPM DANGEROU	50 the particulars on t goods, such part the applicable Da ain Marine Compa ENT <u>DOES NOT</u> C IS GOODS	he face hero is proper ngerous G CONTAIN	eof are correct y described by oods Regulati	GSX Volume: 0.204	t of the consignment ndition for carriage setion of this cargo. s Agent
Prepaid AS AG	Weight C REED Valuation Ta: Total Other Char Total Other Char	Charge x ges Due Agent ges Due Carrier		Shipper contair by air For: Con:	C 12. r certifies that t is dangerous according to Turnaga struction HIS SHIPM DANGEROU	50 the particulars on t goods, such part the applicable Da ain Marine Compa ENT <u>DOES NOT</u> C IS GOODS	he face her is properly ngerous G CONTAIN JUNEAL	eof are correct y described b	and that insofar as any party name and is in proper colons. I consent to the inspections. I cons	t of the consignment ndition for carriage action of this cargo. s Agent

Alert Expeditors Inc.

#416915

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date From Ent Collect 🗆 Prepay 🗖 Advance Charges Job # PO# 9065-8035 Kim Ales Shipped Signature Total Charge Received By: 28 of 30

e-Sample Receipt Form

CCC	
203	

SGS Workorder #:

1221083

1221083

Review Criteria	Condition (Yes,	No, N/A	Except	tions Note	d below	
Chain of Custody / Temperature Requi	rements	N	A Exemption permi			vers.
Were Custody Seals intact? Note # &		Absent				
COC accompanied sa	amples? No	Samples r	eceived without CO	С		
DOD: Were samples received in COC corresponding of	coolers? N/A					
Yes **Exemption permitted if	chilled & colle	cted <8 hou	rs ago, or for sample	s where chilli	ng is not required	
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)? N/A	Cooler ID:	Ambient	@	°C Therm. ID:	
		Cooler ID:		@	°C Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will		Cooler ID:		@	°C Therm. ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch be noted if neither is available.	nilled" will	Cooler ID:		@	°C Therm. ID:	
		Cooler ID:		@	°C Therm. ID:	
*If >6°C, were samples collected <8 hours	s ago? N/A			-		
If <0°C, were sample containers ice	e free? N/A					
Note: Identify containers received at non-compliant tempe	rature .					
Use form FS-0029 if more space is n						
Holding Time / Documentation / Sample Condition Re	equirements	Note: Refer to	o form F-083 "Sample G	uide" for specif	ic holding times.	
Were samples received within holding	g time? Yes					
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes					
**Note: If times differ <1hr, record details & login per C	OC.					
***Note: If sample information on containers differs from COC, SGS will default to (COC information					
Were analytical requests clear? (i.e., method is specified for an		Client did RCRA met	not specify which c	ontainers ne	eded TCLP metals	s and
with multiple option for analysis (Ex: BTEX,	Metals)		ais.			
		N	/A ***Exemption per	mitted for me	tals (e.g,200.8/602	<u>0B).</u>
Were proper containers (type/mass/volume/preservative***)used? Yes					
Volatile / LL-Hg Reg						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa						
Were all water VOA vials free of headspace (i.e., bubbles ≤	·					
Were all soil VOAs field extracted with MeOH						
Note to Client: Any "No", answer above indicates no	n-compliance	with standar	d procedures and ma	ay impact dat	a quality.	
Additiona	al notes (if a	pplicable)	:			
	•					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1221083001-A 1221083002-A 1221083003-A 1221083004-A 1221083005-A 1221083006-A	No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required	ОК ОК ОК ОК ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites and Prevention Preparedness and Response Programs

Contaminated Media Transport and Treatment or Disposal Approval Form

EC HAZARD/SPILL ID # NAME OF CONTAMINATED SITE OR SPILL						
AKR000200030	Skagway Ore Terminal Sediment Remediation Project					
CONTAMINATED SITE OR	SPILL LOCATION - A	DDRESS OR OTHER A	APPROPRIATE DESCRIPTION			
		Skagway, Alaska				
CURRENT PHYSICAL LOC	ATION OF MEDIA	SOURCE OF THE O (DAY TANK, WAS)	CONTAMINATION H BAY, FIRE TRAINING PIT, LUST, ETC.)			
Skagway,	Alaska	and the second second second	Skagway Ore Loader			
CONTAMINANTS OF CONC	CERN EST	IMATED VOLUME	DATE(S) GENERATED			
Lead		1500 yards 03/16/2022-04/01/2022				
POST TREATMENT ANALY	SIS REQUIRED (such a	s GRO, DRO, RRO, VOC	s, metals, PFAS, and/or Chlorinated Solvents)			
	TCLP to	esting for RCRA 8 Metals	5			
COMMENTS OR OTHER IN	IPORTANT INFORMA	TION				
POST TREATMENT ANALY	TCLP to	esting for RCRA 8 Metals				

TREATMENT FACILITY, LANDFILL, AND/OR FINAL DESTINATION OF MEDIA	PHYSICAL ADDRESS/PHONE NUMBER
Columbia Ridge Commercial Landfill & Recycling	18177 Cedar Springs Ln, Arlington, OR 97812
RESPONSIBLE PARTY	ADDRESS/PHONE NUMBER
White Pass Yukon Route	800-343-7373
WASTE MANAGEMENT CO. / ORGANIZER	ADDRESS/PHONE NUMBER
Waste Management	38208 SE 35th St Washougal, WA 98671 - (360)-507-6613

*Note, disposal of polluted soil in a landfill requires prior approval from the landfill operator and ADEC Solid Waste Program.

Tyler Rose

Name of the Person Requesting Approval (printed)

Signature/

WP & YR/Executive Director

Title/Association

04/11/2022

Date

Phone Number

(907)612-0175

--DEC USE ONLY--

Based on the information provided, ADEC approves transport of the above mentioned material. The Responsible Party or their consultant must submit to the DEC Project Manager a copy of weight receipts of the loads transported and a post treatment analytical report, if disposed of at an approved treatment facility. The contaminated soil shall be transported as a covered load in compliance with 18 AAC 60.015.

Nick Waldo

DEC Project Manager Name (printed)

Signature

Environmental Program Manager

Project Manager Title

4/11/22

Date

907-465-5270

Phone Number

Laboratory Report of Analysis

To: Turnagain Marine Construction 9330 Vanguard, Suite 100 Anchorage, AK 99507 907-201-1043

Report Number: 1221265

Client Project: Skagway Ore Dock Sediment Rem

Dear Josh Janssen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Cameron at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Cameron Murphy Project Manager Cameron.Murphy@sgs.com Date

Print Date: 04/04/2022 3:36:57PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Turnagain Marine Construction SGS Project: 1221265 Project Name/Site: Skagway Ore Dock Sediment Rem Project Contact: Josh Janssen

Refer to sample receipt form for information on sample condition.

1221265004(1658479MS) (1658482) MS

6020B - Metals MS recoveries for several analytes do not meet QC criteria. The post digestion spike was successful.

1221265004(1658479MSD) (1658483) MSD

6020B - Metals MSD recoveries for several analytes do not meet QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/04/2022 3:36:58PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 04/04/2022 3:37:00PM

Note:

SW6020B TCLP

SW6020B

SM21 2540G

Sample Summary										
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>						
S4 A	1221265001	03/18/2022	03/29/2022	Solid/Soil (Wet Weight)						
S4 B	1221265002	03/18/2022	03/29/2022	Solid/Soil (Wet Weight)						
S4 C	1221265003	03/18/2022	03/29/2022	Solid/Soil (Wet Weight)						
S4 D	1221265004	03/18/2022	03/29/2022	Solid/Soil (Wet Weight)						
S4 E	1221265005	03/18/2022	03/29/2022	Solid/Soil (Wet Weight)						
S4 F	1221265006	03/18/2022	03/29/2022	Solid/Soil (Wet Weight)						
Method Description										

Metals by ICP-MS

Metals by ICP-MS (S) Percent Solids SM2540G

	Detectable Results Summary		
Client Sample ID: S4 A			
Lab Sample ID: 1221265001	Parameter	Result	Units
TCLP Constituents Metals	Barium	0.473	mg/L
	Lead	1.87	mg/L
Client Sample ID: S4 B			
Lab Sample ID: 1221265002	Parameter	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.378	mg/L
	Lead	0.276	mg/L
Client Sample ID: S4 C			
Lab Sample ID: 1221265003	<u>Parameter</u>	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.373	mg/L
	Lead	0.355	mg/L
Client Sample ID: S4 D			
Lab Sample ID: 1221265004	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	1.18	mg/kg
-	Barium	78.8	mg/kg
	Cadmium	1.32	mg/kg
	Chromium	5.31	mg/kg
	Lead	879	mg/kg
	Mercury	0.528	mg/kg
	Silver	0.785	mg/kg
Client Sample ID: S4 E			
Lab Sample ID: 1221265005	Parameter	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Arsenic	2.97	mg/kg
	Barium	127	mg/kg
	Cadmium	2.32	mg/kg
	Chromium	7.29	mg/kg
	Lead	1500	mg/kg
	Mercury	0.904	mg/kg
	Silver	1.29	mg/kg
Client Sample ID: S4 F			
Lab Sample ID: 1221265006	Parameter	Result	Units
Metals by ICP/MS	Arsenic	1.76	mg/kg
	Barium	136	mg/kg
	Cadmium	1.91	mg/kg
	Chromium	7.29	mg/kg
	Lead	1330	mg/kg
	Mercury	0.810	mg/kg
	Silver	1.18	mg/kg

Print Date: 04/04/2022 3:37:03PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: S4 A Client Project ID: Skagwa Lab Sample ID: 1221265 Lab Project ID: 1221265	ny Ore Dock Sediment Rem 001	Ri M So	ollection Dat eceived Date atrix: Solid/S olids (%): ocation:	e: 03/29/2	22 15:4	5		
Results by TCLP Constitu	ients Metals)					
						Allowable		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed	
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:33	
Barium	0.473	0.150	0.0470	mg/L	25	(<100)	04/04/22 10:33	
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/04/22 10:33	
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:33	
Lead	1.87	0.0500	0.0155	mg/L	25	(<5)	04/04/22 10:33	
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/04/22 10:33	
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	04/04/22 10:33	
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	04/04/22 10:33	

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 10:33 Container ID: 1221265001-A Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S4 B							
Client Sample ID: S4 B Client Project ID: Skagwa Lab Sample ID: 12212650 Lab Project ID: 1221265	y Ore Dock Sediment Rem 002	Ri M Se	ollection Dat eceived Date atrix: Solid/S olids (%): ocation:	e: 03/29/2	22 15:4	5	
Results by TCLP Constitu	ents Metals						
						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:36
Barium	0.378	0.150	0.0470	mg/L	25	(<100)	04/04/22 10:36
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/04/22 10:36
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:36
Lead	0.276	0.0500	0.0155	mg/L	25	(<5)	04/04/22 11:38
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/04/22 10:36
A I I	1.00 U	1.00	0.310	mg/L	25	(<1)	04/04/22 10:36
Selenium	1.00 0	1.00		J.		()	

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 10:36 Container ID: 1221265002-A

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 11:38 Container ID: 1221265002-A Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S4 C							
Client Sample ID: S4 C Client Project ID: Skagwa Lab Sample ID: 12212650 Lab Project ID: 1221265	y Ore Dock Sediment Rem 03	Ri M Se	ollection Dat eceived Date atrix: Solid/S olids (%): ocation:	e: 03/29/2	22 15:4	5	
Results by TCLP Constitu	ents Metals)				
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:47
Barium	0.373	0.150	0.0470	mg/L	25	(<100)	04/04/22 10:47
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/04/22 10:47
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:47
Lead	0.355	0.0500	0.0155	mg/L	25	(<5)	04/04/22 11:41
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/04/22 10:47
0 J	1.00 U	1.00	0.310	mg/L	25	(<1)	04/04/22 10:47
Selenium	1.00 0						

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 10:47 Container ID: 1221265003-A

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 11:41 Container ID: 1221265003-A Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S4 D

Client Sample ID: **S4 D** Client Project ID: **Skagway Ore Dock Sediment Rem** Lab Sample ID: 1221265004 Lab Project ID: 1221265 Collection Date: 03/18/22 07:45 Received Date: 03/29/22 15:45 Matrix: Solid/Soil (Wet Weight) Solids (%):80.4 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	1.18	1.00	0.310	mg/kg	10		03/31/22 10:42
Barium	78.8	0.300	0.0940	mg/kg	10		03/31/22 10:42
Cadmium	1.32	0.200	0.0620	mg/kg	10		03/31/22 10:42
Chromium	5.31	1.00	0.310	mg/kg	10		03/31/22 10:42
Lead	879	2.00	0.620	mg/kg	100		03/31/22 12:20
Mercury	0.528	0.300	0.100	mg/kg	10		03/31/22 10:42
Selenium	2.00 U	2.00	0.620	mg/kg	10		03/31/22 10:42
Silver	0.785	0.500	0.150	mg/kg	10		03/31/22 10:42

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/31/22 10:42 Container ID: 1221265004-A

Analytical Batch: MMS11508 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/31/22 12:20 Container ID: 1221265004-A Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Results of S4 E
Client Sample ID: S4 E
Client Project ID: Skagway Ore Dock Sediment Rem
Lab Sample ID: 1221265005
Lab Project ID: 1221265

Collection Date: 03/18/22 07:50 Received Date: 03/29/22 15:45 Matrix: Solid/Soil (Wet Weight) Solids (%):84.9 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	2.97	0.941	0.292	mg/kg	10		03/31/22 10:56
Barium	127	0.282	0.0884	mg/kg	10		03/31/22 10:56
Cadmium	2.32	0.188	0.0583	mg/kg	10		03/31/22 10:56
Chromium	7.29	0.941	0.292	mg/kg	10		03/31/22 10:56
Lead	1500	1.88	0.583	mg/kg	100		03/31/22 12:41
Mercury	0.904	0.282	0.0941	mg/kg	10		03/31/22 10:56
Selenium	1.88 U	1.88	0.583	mg/kg	10		03/31/22 10:56
Silver	1.29	0.470	0.141	mg/kg	10		03/31/22 10:56

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/31/22 10:56 Container ID: 1221265005-A

Analytical Batch: MMS11508 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/31/22 12:41 Container ID: 1221265005-A Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.063 g Prep Extract Vol: 50 mL

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.063 g Prep Extract Vol: 50 mL

Results of S4 F

SG

Client Sample ID: S4 F Client Project ID: Skagway Ore Dock Sediment Rem Lab Sample ID: 1221265006 Lab Project ID: 1221265

Collection Date: 03/18/22 07:55 Received Date: 03/29/22 15:45 Matrix: Solid/Soil (Wet Weight) Solids (%):82.5 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	1.76	0.955	0.296	mg/kg	10		03/31/22 10:59
Barium	136	0.287	0.0898	mg/kg	10		03/31/22 10:59
Cadmium	1.91	0.191	0.0592	mg/kg	10		03/31/22 10:59
Chromium	7.29	0.955	0.296	mg/kg	10		03/31/22 10:59
Lead	1330	1.91	0.592	mg/kg	100		03/31/22 12:45
Mercury	0.810	0.287	0.0955	mg/kg	10		03/31/22 10:59
Selenium	1.91 U	1.91	0.592	mg/kg	10		03/31/22 10:59
Silver	1.18	0.478	0.143	mg/kg	10		03/31/22 10:59

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/31/22 10:59 Container ID: 1221265006-A

Analytical Batch: MMS11508 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/31/22 12:45 Container ID: 1221265006-A

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.047 g Prep Extract Vol: 50 mL

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.047 g Prep Extract Vol: 50 mL

SGS

Method Blank

Blank ID: LB1 for HBN 1833547 [TCLP/1169 Blank Lab ID: 1658713

QC for Samples: 1221265001, 1221265002, 1221265003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.100U	0.200	0.0620	mg/L
Barium	0.0274J	0.0600	0.0188	mg/L
Cadmium	0.0200U	0.0400	0.0120	mg/L
Chromium	0.100U	0.200	0.0620	mg/L
Lead	0.0100U	0.0200	0.00620	mg/L
Mercury	0.00500U	0.0100	0.00360	mg/L
Selenium	0.200U	0.400	0.124	mg/L
Silver	0.0200U	0.0400	0.0124	mg/L

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/4/2022 10:19:15AM Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 4/1/2022 7:25:22AM Prep Initial Wt./Vol.: 6.25 mL Prep Extract Vol: 25 mL

Matrix: Solid/Soil (Wet Weight)

Method Blank

Blank ID: MB for HBN 1833648 [MXT/6215] Blank Lab ID: 1658851

QC for Samples: 1221265001, 1221265002, 1221265003

Results by SW6020B TCLP

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.0250U	0.0500	0.0155	mg/L
Barium	0.00750U	0.0150	0.00470	mg/L
Cadmium	0.00500U	0.0100	0.00300	mg/L
Chromium	0.0250U	0.0500	0.0155	mg/L
Lead	0.00250U	0.00500	0.00155	mg/L
Mercury	0.00125U	0.00250	0.000900	mg/L
Selenium	0.0500U	0.100	0.0310	mg/L
Silver	0.00500U	0.0100	0.00310	mg/L

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/4/2022 10:13:34AM Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 4/1/2022 7:25:22AM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Matrix: Water (Surface, Eff., Ground)

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221265 [MXT6215] Blank Spike Lab ID: 1658852 Date Analyzed: 04/04/2022 10:16

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1221265001, 1221265002, 1221265003

Results by SW6020B TCLP

	E	Blank Spike	(mg/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Arsenic	1	0.965	97	(84-116)
Barium	1	0.967	97	(86-114)
Cadmium	0.1	0.0971	97	(87-115)
Chromium	0.4	0.380	95	(85-116)
Lead	1	0.986	99	(88-115)
Mercury	0.01	0.00990	99	(70-124)
Selenium	1	0.975	98	(80-120)
Silver	0.1	0.0978	98	(85-116)

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/2022 07:25 Spike Init Wt./Vol.: 1 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1658850 MS Sample ID: 1658853 MS MSD Sample ID: 1658854 MSD

QC for Samples: 1221265001, 1221265002, 1221265003

Results by SW6020B TCLP

Analysis Date: 04/04/2022 10:22 Analysis Date: 04/04/2022 10:24 Analysis Date: 04/04/2022 10:27 Matrix: Solid/Soil (Wet Weight)

		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	0.250U	10.0	9.7	97	10.0	9.69	97	84-116	0.08	(< 20)
Barium	0.110J	10.0	9.73	96	10.0	9.67	96	86-114	0.67	(< 20)
Cadmium	0.0500U	1.00	.997	100	1.00	0.979	98	87-115	1.79	(< 20)
Chromium	0.250U	4.00	3.8	95	4.00	3.73	93	85-116	1.85	(< 20)
Lead	1.22	10.0	11.2	100	10.0	11.1	99	88-115	0.96	(< 20)
Mercury	0.0125U	0.100	.1	100	0.100	0.101	101	70-124	0.24	(< 20)
Selenium	0.500U	10.0	9.48	95	10.0	9.71	97	80-120	2.43	(< 20)
Silver	0.0500U	1.00	.962	96	1.00	0.953	95	85-116	1.03	(< 20)

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/4/2022 10:24:56AM Prep Batch: MXT6215

Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 4/1/2022 7:25:22AM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 25.00mL

SGS

Method Blank

Blank ID: MB for HBN 1833276 [MXX/35041] Blank Lab ID: 1658480 Matrix: Soil/Solid (dry weight)

QC for Samples: 1221265004, 1221265005, 1221265006

Results by SW6020B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/kg
Barium	0.150U	0.300	0.0940	mg/kg
Cadmium	0.100U	0.200	0.0620	mg/kg
Chromium	0.500U	1.00	0.310	mg/kg
Lead	0.100U	0.200	0.0620	mg/kg
Mercury	0.150U	0.300	0.100	mg/kg
Selenium	1.00U	2.00	0.620	mg/kg
Silver	0.250U	0.500	0.150	mg/kg

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/31/2022 10:36:00AM Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 3/30/2022 8:27:30AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

SGS

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221265 [MXX35041] Blank Spike Lab ID: 1658481 Date Analyzed: 03/31/2022 10:39

Matrix: Soil/Solid (dry weight)

QC for Samples: 1221265004, 1221265005, 1221265006

Results by SW6020B

	Ŀ	Blank Spike ((mg/kg)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
rsenic	50	50.9	102	(82-118)
Barium	50	52.1	104	(86-116)
Cadmium	5	5.14	103	(84-116)
Chromium	20	20.8	104	(83-119)
ead	50	51.9	104	(84-118)
Mercury	0.5	0.505	101	(74-126)
Selenium	50	50.3	101	(80-119)
Silver	5	5.26	105	(83-118)

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/2022 08:27 Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1658479 MS Sample ID: 1658482 MS MSD Sample ID: 1658483 MSD Analysis Date: 03/31/2022 12:20 Analysis Date: 03/31/2022 12:24 Analysis Date: 03/31/2022 12:28 Matrix: Soil/Solid (dry weight)

QC for Samples: 1221265004, 1221265005, 1221265006

Results by SW6020B

		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Lead	879	46.8	1300	901 *	45.9	1510	1380 *	84-118	15.00	(< 20)
Arsenic	1.18	46.8	49.1	102	45.9	48.0	102	82-118	2.33	(< 20)
Barium	78.8	46.8	178	212 *	45.9	207	279 *	86-116	14.90	(< 20)
Cadmium	1.32	4.68	6.75	116	4.59	6.84	120 *	84-116	1.21	(< 20)
Chromium	5.31	18.7	26.2	112	18.3	28.7	127 *	83-119	8.91	(< 20)
Selenium	1.00U	46.8	46.3	99	45.9	44.2	96	80-119	4.58	(< 20)
Silver	0.785	4.68	5.82	108	4.59	5.98	113	83-118	2.72	(< 20)

Batch Information

Analytical Batch: MMS11508 Analytical Method: SW6020B Instrument: Perkin Elmer NexIon P5 Analyst: DMM Analytical Date/Time: 3/31/2022 12:24:00PM

Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/31/2022 10:44:00AM Prep Batch: MXX35041 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/30/2022 8:27:30AM Prep Initial Wt./Vol.: 1.07g Prep Extract Vol: 50.00mL

Prep Batch: MXX35041 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/30/2022 8:27:30AM Prep Initial Wt./Vol.: 1.07g Prep Extract Vol: 50.00mL

Print Date: 04/04/2022 3:37:14PM

SGS North America Inc.

Bench Spike Summary

Original Sample ID: 1658479 MS Sample ID: 1658484 BND MSD Sample ID: Analysis Date: 03/31/2022 12:20 Analysis Date: 03/31/2022 12:32 Analysis Date: Matrix: Soil/Solid (dry weight)

QC for Samples: 1221265004, 1221265005, 1221265006

		ivicit	rix Spike (r		opino	Duplicate	(
<u>⊃arameter</u> _ead	<u>Sample</u> 879	<u>Spike</u> 1250	<u>Result</u> 2180	<u>Rec (%)</u> 104	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 75-125	<u>RPD (%)</u>	RPD CI
Barium	78.8	250	281	81				75-125		
Cadmium	1.32	125	141	112				75-125		
Chromium	5.31	125	143	110				75-125		
Analytical Method: SW6020B Instrument: Perkin Elmer NexIon P5 Analyst: DMM Analytical Date/Time: 3/31/2022 12:32:00PM Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800				Prep Prep Prep Prep Prep	Batch: Method: Date/Tim	./Vol.: 1.0 /ol: 50.000 /XX35041 Soils/Soli ne: 3/30/2	ds Digest fo 022 8:27:3	or Metals b	y ICP-MS	
Analyst: DSD Analytical Date/Time: 3/3	31/2022 10:50:0	0AM				./Vol.: 1.0 /ol: 50.00	0			

Method Blank				
Blank ID: MB for HBN Blank Lab ID: 165868	l 1833540 [SPT/11492]	Matri	x: Soil/Solid (dry weight)
DIATIK LAD ID: 105808				
QC for Samples: 1221265004, 12212650				
QC for Samples:	05, 1221265006			
QC for Samples: 1221265004, 12212650	05, 1221265006	LOQ/CL	DL	Units
QC for Samples: 1221265004, 12212650 Results by SM21 254	05, 1221265006 0G	LOQ/CL	DL	<u>Units</u> %

Print Date: 04/04/2022 3:37:15PM

Analyst: DBR

Analytical Date/Time: 3/30/2022 5:05:00PM

_

Duplicate Sample Summ Original Sample ID: 122 Duplicate Sample ID: 16 QC for Samples: 1221265004, 122126500	1265005 58686		-	03/30/2022 17:05 oil (Wet Weight)	
Results by SM21 2540G	Original	Durliante	1 In ite		
NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Solids	84.9	84.3	%	0.79	(< 15)
Batch Information Analytical Batch: SPT114 Analytical Method: SM21 Instrument: Analyst: DBR					

SGS North America Inc. CHAIN OF CUSTODY RECORD

																www	v.us.sgs	s.com																			
	CLIENT:	Turnagain Marine Constructio	on					Reference (or		Sectionary de																											
	CONTACT:	PH0 Chris Nielsen	ONE #: 907·	-891-5499	Section 3				Preservative								Page1_ of1																				
ection '	PROJECT NAME:	Skagway Ore Dock PWS	JECT/ SID/ MIT#:	22-00	1	# C O																															
	KEPOKIS I	Chris Nielsen Profile #:			Chris Nielsen Profile #:			Chris Nielsen Profile #:		Chris Nielsen Profile #:			Chris Nielsen Profile #:		Chris Nielsen Profile #:		Chris Nielsen Profile #:			Chris Nielsen Profile #:		Chris Nielsen Profile #:		chris Nielsen Profile #:		s Nielsen Profile #:		N T	N Comp T Grab	-142C		1221265					NOTE: *The following analyses
	INVOICE TO: QUOTE #: 378573 Turnagain Marine Construction P.O. #: 22-001					I N E	MI (Multi- incre-	Han	RCRA 21									require specific method and/or compound list: BTEX, Metals, PFAS																			
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX MATRIX CODE	R	mentai)	TCLP	Total F						1			REMARKS/LOC ID																			
	(IA)	S4 A	3/18/2022	7:30AM		1	Grab	х	x																												
	ZA	S4 B	3/18/2022	7:35AM		1	Grab	x	x																												
	(3A)	S4 C	3/18/2022	7:40AM		1	Grab	x	x																												
n 2	(HA)	S4 D	3/18/2022	7:45AM		1	Grab	x	x		•																										
Section 2	(5A)	S4 E	3/18/2022	7:50AM		1	Grab	x	x																												
ő	(10A)	S4 F	3/18/2022	7:55AM		1	Grab	x	x																												
	Relinguishe	ed By: (1)	Date	Time	Received By:					Secti	on 4	DOD) Proje	ct? Ye	s No	Data	a Delive	erable Requirements:																			
		Chris Nielsen	3/29/2022	3:30PM														Level 2																			
	Relinquishe	d Bv: (2)	Date	Time	Received By:				-	Coole Reques		urnarou	und Tin	ne and	/or Spe	l cial Ins	tructio	ns:																			
5							\searrow								-																						
Section 5	Relinguishe	d Pyr (2)	Date	Time	Received By	•		$\overline{}$							RUS	Н																					
Se	Reiniquistie	G Dy. (0)				. —					1	ſemp B	lank °C	:		Cha	in of C	ustody Seal: (Circle)																			
	Relinquishe	d By: (4)	Date	Time	Received For	r Labo	natory By:	Rī	с ¹			or Aml		$\overline{}$				BROKEN ABSENT																			
		<u> </u>	J/29/22	15:45	an	Va	ur	1			Deli	ivery M	ethod:	Hand [Delivery	y <mark>N C</mark> or	nmeric	al Delivery []																			

http://www.sgs.com/terms-and-conditions

Characterization of TCLP Samples for LIMS Login

Date Characterized: <u>3</u> 12

Analyst: NBV

Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:				
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No /(NA) If biphasic, was there only one layer with sufficient sample				
S4A-	Water- mi scible (Middle layer = matrix 6)		Yes / No	Yes / No NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Iop-layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
S4B	Water <u>miseible</u> (Midd le layer = matrix 6)		Yes / No	Yes / No / MA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100)		**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top l ayer * = matrix 3 **)	-		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
54C	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 9F2 if % solids required)	100		**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
-	Water miscible (Middle layer = matrix 6)	•	Yes / No	Yes / No / NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top layer * = matrix 3 **)	`		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
	Water miscible (Middle layer = matrix 6)		Yes / No	? Yes / No / NA Sample description/other observations:				
Borromher	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? I yes schedule TCLP Metals matrix 6 acode.				

* = Chlorinated oils will be heavier than water and present as the bottom later. ** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.

*** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

e-Sam<u>ple Receipt Form</u>

CC	2
20	

SGS Workorder #:

1221265

1221265

Review Criteria	Condition (Yes,	es, No, N/A Exceptions Noted below					
Chain of Custody / Temperature Requi	irements	Ye	Exemption permitted if sample	er hand carries/delivers.			
Were Custody Seals intact? Note # &	location N/A						
COC accompanied sa	amples? Yes						
DOD: Were samples received in COC corresponding	coolers? N/A						
N/A **Exemption permitted if	f chilled & colle	cted <8 hou	rs ago, or for samples where chil				
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)? N/A	Cooler ID:	@ <mark>Ambi</mark>				
		Cooler ID:	@	°C Therm. ID:			
If samples received without a temperature blank, the "cooler temperature" wil documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch		Cooler ID:	@	°C Therm. ID:			
be noted if neither is available.		Cooler ID:	@	°C Therm. ID:			
		Cooler ID:	@	°C Therm. ID:			
*If >6°C, were samples collected <8 hours	s ago? N/A						
K 600							
If <0°C, were sample containers ice	e free? N/A						
Noto: Identify containers received at non-compliant temps	roturo						
Note: Identify containers received at non-compliant tempe Use form FS-0029 if more space is n							
Holding Time / Documentation / Sample Condition R	equirements	Note: Refer to	o form F-083 "Sample Guide" for spec	ific holding times.			
Were samples received within holding	g time? Yes						
Do samples match COC ** (i.e.,sample IDs,dates/times colle							
**Note: If times differ <1hr, record details & login per C							
***Note: If sample information on containers differs from COC, SGS will default to							
Were analytical requests clear? (i.e., method is specified for an	laryses		ot clearly stated on CoC for ea Continued with loggin per PM				
with multiple option for analysis (Ex: BTEX,	wetais)		55 P				
				atala (a. r. 200, 0/0020D)			
Were proper containers (type/mass/volume/preservative***		Ye	es ***Exemption permitted for m	elais (e.y,200.0/0020B).			
	Juseu						
Volatile / LL-Hg Rec	uirements						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa							
Were all water VOA vials free of headspace (i.e., bubbles ≤							
Were all soil VOAs field extracted with MeOH	I+BFB? N/A						
Note to Client: Any "No", answer above indicates no	on-compliance	with standar	d procedures and may impact da	ata quality.			
Additiona	<mark>al notes (if a</mark>	pplicaple)					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1221265001-A 1221265002-A 1221265003-A 1221265004-A 1221265005-A 1221265006-A	No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required	ок ок ок ок ок			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Laboratory Report of Analysis

To: Turnagain Marine Construction 9330 Vanguard, Suite 100 Anchorage, AK 99507 907-201-1043

Report Number: 1221267

Client Project: Skagway Ore Dock Sediment Rem

Dear Josh Janssen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Cameron at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Cameron Murphy Project Manager Cameron.Murphy@sgs.com Date

Print Date: 04/04/2022 3:39:17PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Turnagain Marine Construction SGS Project: 1221267 Project Name/Site: Skagway Ore Dock Sediment Rem Project Contact: Josh Janssen

Refer to sample receipt form for information on sample condition.

1221265004(1658479MS) (1658482) MS

6020B - Metals MS recoveries for several analytes do not meet QC criteria. The post digestion spike was successful.

1221265004(1658479MSD) (1658483) MSD

6020B - Metals MSD recoveries for several analytes do not meet QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/04/2022 3:39:18PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i	include a result for "Total Solids" have already been adjusted for moisture content.
All DRO/RRO analyses are	· · ·

Print Date: 04/04/2022 3:39:19PM

Note:

SW6020B

SM21 2540G

	Sample Summary										
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>							
S5 A	1221267001	03/20/2022	03/29/2022	Solid/Soil (Wet Weight)							
S5 B	1221267002	03/20/2022	03/29/2022	Solid/Soil (Wet Weight)							
S5 C	1221267003	03/20/2022	03/29/2022	Solid/Soil (Wet Weight)							
S5 D	1221267004	03/20/2022	03/29/2022	Solid/Soil (Wet Weight)							
S5 E	1221267005	03/20/2022	03/29/2022	Solid/Soil (Wet Weight)							
S5 F	1221267006	03/20/2022	03/29/2022	Solid/Soil (Wet Weight)							
Method	Method Des	scription									
SW6020B TCLP	Metals by IC	CP-MS									

Metals by ICP-MS (S) Percent Solids SM2540G

Detectable Results Summary Client Sample ID: S5 A Lab Sample ID: 1221267001 Parameter Result Units 0.163 mg/L **TCLP Constituents Metals** Lead Client Sample ID: S5 B Lab Sample ID: 1221267002 Result Units Parameter 0.430 mg/L **TCLP Constituents Metals** Barium 0.753 Lead mg/L Client Sample ID: S5 C Lab Sample ID: 1221267003 **Parameter** Result <u>Units</u> **TCLP Constituents Metals** Barium 0.409 mg/L 0.415 Lead mg/L Client Sample ID: S5 D Lab Sample ID: 1221267004 Parameter Result Units Metals by ICP/MS Arsenic 0.203 mg/kg Barium 12.5 mg/kg Cadmium 0.243 mg/kg 0.683 Chromium mg/kg Lead 1680 mg/kg Mercury 0.0983 mg/kg Silver 0.142 mg/kg Client Sample ID: S5 E Lab Sample ID: 1221267005 Parameter Result Units Arsenic 0.211 Metals by ICP/MS mg/kg Barium 13.3 mg/kg Cadmium 0.207 mg/kg Chromium 0.771 mg/kg Lead 1320 mg/kg Mercury 0.0841 mg/kg Silver 0.115 mg/kg Client Sample ID: S5 F Lab Sample ID: 1221267006 Parameter Result <u>Units</u> 0.156 Arsenic mg/kg Metals by ICP/MS Barium 11.8 mg/kg Cadmium 0.157 mg/kg Chromium 0.699 mg/kg 972 Lead mg/kg Mercury 0.0631 mg/kg Silver 0.0910 mg/kg

Print Date: 04/04/2022 3:39:22PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of S5 A							
Client Sample ID: S5 A Client Project ID: Skagway Lab Sample ID: 122126700 ⁻⁷ Lab Project ID: 1221267		C R M Si Lo					
Results by TCLP Constituen	its Metals						
						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:50
Barium	0.150 U	0.150	0.0470	mg/L	25	(<100)	04/04/22 10:50
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/04/22 10:50
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:50
Lead	0.163	0.0500	0.0155	mg/L	25	(<5)	04/04/22 11:44
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/04/22 10:50
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	04/04/22 10:50
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	04/04/22 10:50

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 10:50 Container ID: 1221267001-A

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 11:44 Container ID: 1221267001-A Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results by TCLP Constituents Metals

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:53
Barium	0.430	0.150	0.0470	mg/L	25	(<100)	04/04/22 10:53
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/04/22 10:53
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:53
Lead	0.753	0.0500	0.0155	mg/L	25	(<5)	04/04/22 10:53
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/04/22 10:53
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	04/04/22 10:53
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	04/04/22 10:53

Location:

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 10:53 Container ID: 1221267002-A

Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

SGS	
Results of S5 C Client Sample ID: S5 C	Collection Date: 03/20/22 14:10
Client Project ID: Skagway Ore Dock Sediment Rem Lab Sample ID: 1221267003	Received Date: 03/29/22 16:33 Matrix: Solid/Soil (Wet Weight)
Lab Project ID: 1221267	Solids (%): Location:
Results by TCLP Constituents Metals	

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:56
Barium	0.409	0.150	0.0470	mg/L	25	(<100)	04/04/22 10:56
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/04/22 10:56
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/04/22 10:56
Lead	0.415	0.0500	0.0155	mg/L	25	(<5)	04/04/22 10:56
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/04/22 10:56
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	04/04/22 10:56
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	04/04/22 10:56

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/04/22 10:56 Container ID: 1221267003-A Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/22 07:25 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Results of S5 D							
Client Sample ID: S5 D Client Project ID: Skagway Or Lab Sample ID: 1221267004 Lab Project ID: 1221267	e Dock Sediment Rem	R M S	ollection Dat eceived Date latrix: Solid/S olids (%):81. ocation:				
Results by Metals by ICP/MS							
						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	0.203	0.0932	0.0289	mg/kg	1		03/31/22 11:10
Barium	12.5	0.0280	0.00876	mg/kg	1		03/31/22 11:10
Cadmium	0.243	0.0186	0.00578	mg/kg	1		03/31/22 11:10
Chromium	0.683	0.0932	0.0289	mg/kg	1		03/31/22 11:10
Lead	1680	1.86	0.578	mg/kg	100		03/31/22 12:49

mg/kg 0.0983 Mercury 0.0280 0.00932 mg/kg 1 Selenium 0.186 U 0.186 0.0578 mg/kg 1 Silver 0.142 0.0466 0.0140 mg/kg 1

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/31/22 11:10 Container ID: 1221267004-A

Analytical Batch: MMS11508 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/31/22 12:49 Container ID: 1221267004-A Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.073 g Prep Extract Vol: 50 mL

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.073 g Prep Extract Vol: 50 mL

Print Date: 04/04/2022 3:39:23PM

03/31/22 11:10

03/31/22 11:10

03/31/22 11:10

Analyst: DMM

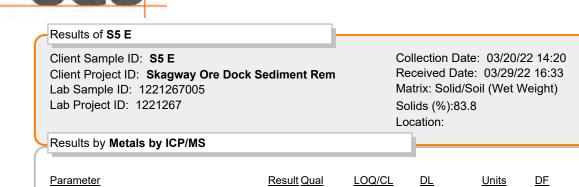
Analytical Batch: MMS11510

Analytical Method: SW6020B

Container ID: 1221267005-A

Analytical Batch: MMS11508

Batch Information


Analyst: DSD

Analytical Date/Time: 03/31/22 12:53 Container ID: 1221267005-A

Analytical Date/Time: 03/31/22 11:13

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.025 g Prep Extract Vol: 50 mL

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.025 g Prep Extract Vol: 50 mL

Results by Metals by ICP/MS			<u> </u>				
						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.211	0.0976	0.0302	mg/kg	1		03/31/22 11:13
Barium	13.3	0.0293	0.00917	mg/kg	1		03/31/22 11:13
Cadmium	0.207	0.0195	0.00605	mg/kg	1		03/31/22 11:13
Chromium	0.771	0.0976	0.0302	mg/kg	1		03/31/22 11:13
Lead	1320	1.95	0.605	mg/kg	100		03/31/22 12:53
Mercury	0.0841	0.0293	0.00976	mg/kg	1		03/31/22 11:13
Selenium	0.195 U	0.195	0.0605	mg/kg	1		03/31/22 11:13
Silver	0.115	0.0488	0.0146	mg/kg	1		03/31/22 11:13

Results of S5 F							
Client Sample ID: S5 F Client Project ID: Skagway Ore Lab Sample ID: 1221267006 Lab Project ID: 1221267	R M S	ollection Dat eceived Date latrix: Solid/S olids (%):83. ocation:	e: 03/29/2 Soil (Wet V	2 16:33			
Results by Metals by ICP/MS			_				
						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.156	0.0943	0.0292	mg/kg	1		03/31/22 11:16
Barium	11.8	0.0283	0.00886	mg/kg	1		03/31/22 11:16
Cadmium	0.157	0.0189	0.00584	mg/kg	1		03/31/22 11:16
Chromium	0.699	0.0943	0.0292	mg/kg	1		03/31/22 11:16
Lead	972	1.89	0.584	mg/kg	100		03/31/22 13:10
Mercury	0.0631	0.0283	0.00943	mg/kg	1		03/31/22 11:16
4							

0.189

0.0471

0.189 U

0.0910

Batch Information

Selenium

Silver

Analytical Batch: MMS11510 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 03/31/22 11:16 Container ID: 1221267006-A

Analytical Batch: MMS11508 Analytical Method: SW6020B Analyst: DMM Analytical Date/Time: 03/31/22 13:10 Container ID: 1221267006-A Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.061 g Prep Extract Vol: 50 mL

mg/kg

mg/kg

1

1

0.0584

0.0141

Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/22 08:27 Prep Initial Wt./Vol.: 1.061 g Prep Extract Vol: 50 mL

Print Date: 04/04/2022 3:39:23PM

03/31/22 11:16

03/31/22 11:16

SGS

Method Blank

Blank ID: LB1 for HBN 1833547 [TCLP/1169 Blank Lab ID: 1658713

QC for Samples: 1221267001, 1221267002, 1221267003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.100U	0.200	0.0620	mg/L
Barium	0.0274J	0.0600	0.0188	mg/L
Cadmium	0.0200U	0.0400	0.0120	mg/L
Chromium	0.100U	0.200	0.0620	mg/L
Lead	0.0100U	0.0200	0.00620	mg/L
Mercury	0.00500U	0.0100	0.00360	mg/L
Selenium	0.200U	0.400	0.124	mg/L
Silver	0.0200U	0.0400	0.0124	mg/L

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/4/2022 10:19:15AM Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 4/1/2022 7:25:22AM Prep Initial Wt./Vol.: 6.25 mL Prep Extract Vol: 25 mL

Matrix: Solid/Soil (Wet Weight)

Method Blank

Blank ID: MB for HBN 1833648 [MXT/6215] Blank Lab ID: 1658851

QC for Samples: 1221267001, 1221267003

Results by SW6020B TCLP

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.0250U	0.0500	0.0155	mg/L
Barium	0.00750U	0.0150	0.00470	mg/L
Cadmium	0.00500U	0.0100	0.00300	mg/L
Chromium	0.0250U	0.0500	0.0155	mg/L
Lead	0.00250U	0.00500	0.00155	mg/L
Mercury	0.00125U	0.00250	0.000900	mg/L
Selenium	0.0500U	0.100	0.0310	mg/L
Silver	0.00500U	0.0100	0.00310	mg/L

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/4/2022 10:13:34AM Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 4/1/2022 7:25:22AM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Matrix: Water (Surface, Eff., Ground)

Member of SGS Group

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221267 [MXT6215] Blank Spike Lab ID: 1658852 Date Analyzed: 04/04/2022 10:16

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1221267001, 1221267002, 1221267003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL
Arsenic	1	0.965	97	(84-116)
Barium	1	0.967	97	(86-114)
Cadmium	0.1	0.0971	97	(87-115)
Chromium	0.4	0.380	95	(85-116)
Lead	1	0.986	99	(88-115)
Mercury	0.01	0.00990	99	(70-124)
Selenium	1	0.975	98	(80-120)
Silver	0.1	0.0978	98	(85-116)

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD

Prep Batch: MXT6215 Prep Method: SW3010A Prep Date/Time: 04/01/2022 07:25 Spike Init Wt./Vol.: 1 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1658850 MS Sample ID: 1658853 MS MSD Sample ID: 1658854 MSD

QC for Samples: 1221267001, 1221267002, 1221267003

Results by SW6020B TCLP

Analysis Date: 04/04/2022 10:22 Analysis Date: 04/04/2022 10:24 Analysis Date: 04/04/2022 10:27 Matrix: Solid/Soil (Wet Weight)

		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	0.250U	10.0	9.7	97	10.0	9.69	97	84-116	0.08	(< 20)
Barium	0.110J	10.0	9.73	96	10.0	9.67	96	86-114	0.67	(< 20)
Cadmium	0.0500U	1.00	.997	100	1.00	0.979	98	87-115	1.79	(< 20)
Chromium	0.250U	4.00	3.8	95	4.00	3.73	93	85-116	1.85	(< 20)
Lead	1.22	10.0	11.2	100	10.0	11.1	99	88-115	0.96	(< 20)
Mercury	0.0125U	0.100	.1	100	0.100	0.101	101	70-124	0.24	(< 20)
Selenium	0.500U	10.0	9.48	95	10.0	9.71	97	80-120	2.43	(< 20)
Silver	0.0500U	1.00	.962	96	1.00	0.953	95	85-116	1.03	(< 20)

Batch Information

Analytical Batch: MMS11513 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/4/2022 10:24:56AM Prep Batch: MXT6215

Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 4/1/2022 7:25:22AM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 25.00mL

SGS

Method Blank

Blank ID: MB for HBN 1833276 [MXX/35041] Blank Lab ID: 1658480 Matrix: Soil/Solid (dry weight)

QC for Samples: 1221267004, 1221267005, 1221267006

Results by SW6020B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/kg
Barium	0.150U	0.300	0.0940	mg/kg
Cadmium	0.100U	0.200	0.0620	mg/kg
Chromium	0.500U	1.00	0.310	mg/kg
Lead	0.100U	0.200	0.0620	mg/kg
Mercury	0.150U	0.300	0.100	mg/kg
Selenium	1.00U	2.00	0.620	mg/kg
Silver	0.250U	0.500	0.150	mg/kg

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/31/2022 10:36:00AM Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 3/30/2022 8:27:30AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

SGS

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221267 [MXX35041] Blank Spike Lab ID: 1658481 Date Analyzed: 03/31/2022 10:39

Matrix: Soil/Solid (dry weight)

QC for Samples: 1221267004, 1221267005, 1221267006

Results by SW6020B

	E	lank Spike (mg/kg)	
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL
Arsenic	50	50.9	102	(82-118)
arium	50	52.1	104	(86-116)
admium	5	5.14	103	(84-116)
hromium	20	20.8	104	(83-119)
ad	50	51.9	104	(84-118)
rcury	0.5	0.505	101	(74-126)
enium	50	50.3	101	(80-119)
ver	5	5.26	105	(83-118)

Batch Information

Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Prep Batch: MXX35041 Prep Method: SW3050B Prep Date/Time: 03/30/2022 08:27 Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1658479 MS Sample ID: 1658482 MS MSD Sample ID: 1658483 MSD Analysis Date: 03/31/2022 12:20 Analysis Date: 03/31/2022 12:24 Analysis Date: 03/31/2022 12:28 Matrix: Soil/Solid (dry weight)

QC for Samples: 1221267004, 1221267005, 1221267006

Results by SW6020B

		Mat	Matrix Spike (mg/kg)		Spike Duplicate (mg/kg)					
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Lead	879	46.8	1300	901 *	45.9	1510	1380 *	84-118	15.00	(< 20)
Arsenic	1.18	46.8	49.1	102	45.9	48.0	102	82-118	2.33	(< 20)
Barium	78.8	46.8	178	212 *	45.9	207	279 *	86-116	14.90	(< 20)
Cadmium	1.32	4.68	6.75	116	4.59	6.84	120 *	84-116	1.21	(< 20)
Chromium	5.31	18.7	26.2	112	18.3	28.7	127 *	83-119	8.91	(< 20)
Selenium	1.00U	46.8	46.3	99	45.9	44.2	96	80-119	4.58	(< 20)
Silver	0.785	4.68	5.82	108	4.59	5.98	113	83-118	2.72	(< 20)

Batch Information

Analytical Batch: MMS11508 Analytical Method: SW6020B Instrument: Perkin Elmer Nexlon P5 Analyst: DMM Analytical Date/Time: 3/31/2022 12:24:00PM

Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/31/2022 10:44:00AM Prep Batch: MXX35041 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/30/2022 8:27:30AM Prep Initial Wt./Vol.: 1.07g Prep Extract Vol: 50.00mL

Prep Batch: MXX35041 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/30/2022 8:27:30AM Prep Initial Wt./Vol.: 1.07g Prep Extract Vol: 50.00mL

Print Date: 04/04/2022 3:39:32PM

SGS North America Inc.

Bench Spike Summary

Original Sample ID: 1658479 MS Sample ID: 1658484 BND MSD Sample ID: Analysis Date: 03/31/2022 12:20 Analysis Date: 03/31/2022 12:32 Analysis Date: Matrix: Soil/Solid (dry weight)

QC for Samples: 1221267004, 1221267005, 1221267006

		Iviat	rix Spike (r	···9/···9/	Opike	Duplicate	(ing/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Lead	879	1250	2180	104				75-125		
Barium	78.8	250	281	81				75-125		
Cadmium	1.32	125	141	112				75-125		
Chromium	5.31	125	143	110				75-125		
Batch Information Analytical Batch: MMS1 Analytical Method: SW6 Instrument: Perkin Elme Analyst: DMM Analytical Date/Time: 3/		Prep Prep Prep	Method: Date/Tim Initial Wt		ids Digest fo 022 8:27:3 00g		y ICP-MS			
Analytical Batch: MMS11510 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 3/31/2022 10:50:00AM				Prep Batch: MXX35041 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 3/30/2022 8:27:30AM Prep Initial Wt./Vol.: 1.00g Prep Extract Vol: 50.00mL						

Method Blank		1				
Blank ID: MB for HBN 1833540 [SPT/11492] Blank Lab ID: 1658685		Matrix: Soil/Solid (dry weight)				
QC for Samples: 1221267004, 122126700 Results by SM21 2540		1				
Parameter	Results	LOQ/CL	DL	<u>Units</u>		

SGS

Duplicate Sample Summ	nary								
Original Sample ID: 122 Duplicate Sample ID: 16			Analysis Date: 03/30/2022 17:05 Matrix: Solid/Soil (Wet Weight)						
QC for Samples:									
1221267004, 122126700	5, 1221267006								
Results by SM21 2540G									
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL				
Total Solids	84.9	84.3	%	0.79	(< 15)				
Batch Information Analytical Batch: SPT114 Analytical Method: SM21 Instrument:									
Analyst: DBR									

SGS North America Inc. CHAIN OF CUSTODY RECORD

-

											·	-	· · · - · ·			<u></u>	us.sg:/	s.com
	CLIENT:	Turnagain Marine Constructi	on								ions 1 Ielay t							
	CONTACT:	PH Chris Nielsen	ONE #: 907	-891-5499		Sec	ction 3					Pre	eservat	tive				Page of1
Section 1	PROJECT NAME:	Skagway Ore Dock PWS	DJECT/ SID/ MIT#:	22-00	1	# C									i			
S	REPORTS T	O: E-N	AIL:	cnielsen@tur	nagain.us	O N	Comp		2			Ana	lysis*					NOTE:
		Chris Nielsen Pro	file #:			т	Grab		4-he									*The following analyses
	INVOICE TO	: QU	OTE #:	3/03/	3	A	мі	tas	24									require specific method
	Turnagai	n Marine Construction P.C	. #: 22-001		MATRIX/	N E	(Multi- incre-	3-6	RCRA									and/or compound list: BTEX, Metals, PFAS
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX MATRIX CODE	R	mental)	TCLP	Total F									REMARKS/LOC ID
		S5 A	3/20/2022	2:00PM		1	Grab	x	x									
		S5 B	3/20/2022	2:05PM		1	Grab	x	x		+			+· ·				
	3A	S5 C	3/20/2022			1	Grab	x	x					1	. — Ì			
2	(4A)	S5 D	3/20/2022	2:15PM	·	1	Grab	x	x		Т		1					
ection	(5A)	S5 E	3/20/2022			1	Grab	x	x									
မွ	(DA)	S5 F	3/20/2022	2:25PM		1	Grab	x	x									
										1								
		· · · · · · · · · · · · · · · · · · ·																
	Relinquishe	ed By: (1) Chris Nielsen	Date 3/29/2022	Time 3:30PM	Received By	· · · · · · · · · · · · · · · · · · ·			<u> </u>		tion 4	DOI) Proje	ct? Ye	s No	Data	Delive	erable Requirements: Level 2
	Relinquishe	d By: (2)	Date	Time	Received By	<i>'</i> :					ested T	urnaro	und Tir	ne and	/or Spe	ial Inst	tructio	ns:
Section 5	•									Requested Turnaround Time and/or Special Instructions: RUSH								
Sec	Relinquishe	d By: (3)	Date	Time	Received By	/:						ſemp E	Blank °C	D: 1		Cha	in of C	ustody Seal: (Circle)
	Relinquishe	d By: (4)	Date	Time	Received Fo	or Labo	ratory By:					or Am	bient	1		INTA		BROKEN ABSENT
											Deli	ivery M	ethod:	Hand	Delivery	/[]Con	nmeric	al Delivery []

http://www.sgs.com/terms-and-conditions

Characterization of TCLP Samples for LIMS Login

Date Characterized: 0329 22

٩,

Analyst: DBR

Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
S5A	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No NA Sample description/other observations:
	Solid (Bottom layer = matrix 7 or 2 1f % solids required)	100		**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.
	Xylene miseible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
S5B	Water miscible (Midgle layer = matrix 6)		Yes / No	? Yes / No / NA Sample description/other observations:
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100)		**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer* = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
S5C	Water miscible (Middle layer = matrix 6)		Yes/ No	Yes / No NA Sample description/other observations:
	Solid (Bottom layer = matrix 7 sr.2 if % solids required)	100)		**Are samples Giveol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
	Water miscible (Middle layer = matrix 6)	•	Yes / No	Yes / No / NA Sample description/other observations:
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			**Are samples Glycol or Solvent in appearance or odor? It yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer * = matrix 3 **)	,		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample
	Water miscible (Middle layer = matrix 6)		Yes / No	? Yes / No / NA Sample description/other observations:
	Solid (Bottom layer = matrix 7 or 2 if % solids required) c *= Chlorinated oils will be be			**Are samples Glycol or Solvent in appearance or odor? yes schedule TCLP Metals matrix 6 acode.

* = Chlorinated oils will be heavier than water and present as the bottom later.

** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.

*** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

000	e-Samp	le Receipt	Form					
202	SGS Workorder #:	1	221267		122	12	267	
Revie	w Criteria	Condition (Yes,	No, N/A	Exceptions	Noted b	elo	w	
<u>Chain of C</u>	ustody / Temperature Requir	ements	Yes Ex	emption permitted if	sampler har	nd ca	arries/deli	vers
V	Vere Custody Seals intact? Note # & lo	ocation N/A						
	COC accompanied sar	mples? Yes						
DOD: Were sam	ples received in COC corresponding co	oolers? N/A						
	N/A **Exemption permitted if c	chilled & colle	cted <8 hours ago	o, or for samples whe	ere chilling is	not	required	
Temperature	blank compliant* (i.e., 0-6 °C after	r CF)? N/A	Cooler ID:	@	Ambient	°CT	Гherm. ID	:
			Cooler ID:	@		°CT	Гherm. ID	·:
	perature blank, the "cooler temperature" will l		Cooler ID:	@		°CT	Гherm. ID	:
	" will be noted to the right. "ambient" or "chil if neither is available.		Cooler ID:	@		°CT	Гherm. ID	:
			Cooler ID:	@		°CT	Гherm. ID	:
*lf >6°C,	were samples collected <8 hours	ago? N/A						_
lf -	<0°C, were sample containers ice	free? N/A						
	received at non-compliant tempera e form FS-0029 if more space is ne							
Holding Time / Docu	umentation / Sample Condition Re	quirements	Note: Refer to form	F-083 "Sample Guide" f	or specific hol	ding	times.	
Wer	e samples received within holding	time? Yes						
Do samples match COC**	(i.e.,sample IDs,dates/times colle	cted)? Yes						
**Note: If times differ	<1hr, record details & login per CC	DC.						
***Note: If sample information on contai	iners differs from COC, SGS will default to C	OC information						
	r? (i.e., method is specified for and le option for analysis (Ex: BTEX, M	aryses	-	arly stated on CoC inued with loggin p		ntai	ner. Clier	nt

Yes

Were proper containers (type/mass/volume/preservative***)used? Yes

Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples? N/A Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)? N/A

Were all soil VOAs field extracted with MeOH+BFB? N/A

Volatile / LL-Hg Requirements

Note to Client: Any "No", answer above indicates non-compliance with standard procedures and may impact data quality.

Additional notes (if applicable):

***Exemption permitted for metals (e.g,200.8/6020B).

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1221267001-A 1221267002-A 1221267003-A 1221267004-A 1221267005-A 1221267006-A	No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required	ОК ОК ОК ОК ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Laboratory Report of Analysis

To: Turnagain Marine Construction 9330 Vanguard, Suite 100 Anchorage, AK 99507 907-201-1043

Report Number: 1221371

Client Project: Skagway Ore Dock Sediment Rem

Dear Josh Janssen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Cameron at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Cameron Murphy Project Manager Cameron.Murphy@sgs.com Date

Print Date: 04/08/2022 10:15:53AM

SGS North America Inc.

Case Narrative

SGS Client: Turnagain Marine Construction SGS Project: 1221371 Project Name/Site: Skagway Ore Dock Sediment Rem Project Contact: Josh Janssen

Refer to sample receipt form for information on sample condition.

1221370002(1659325DUP) (1659329) DUP

6020B - Metals DUP for several analytes does not meet QC criteria. The sample is non-homogeneous.

LB1 for HBN 1834041 [TCLP/1171 (1659333) LB1

6020B - Metals analyte Lead is detected in the LB above the LOQ. The associated sample concentrations are less than the regulatory limit.

1221370002(1659325MS) (1659326) MS

6020B - Metals MS recoveries for several analytes do not meet QC criteria. The post digestion spike was successful.

1221370002(1659325MSD) (1659327) MSD

6020B - Metals MSD recoveries for several analytes do not meet QC criteria. The post digestion spike was successful. 6020B - Metals MS/MSD RPD for several analytes do not meet QC criteria.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/08/2022 10:15:54AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which in All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 04/08/2022 10:15:57AM

Note:

Sample Summary										
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	Matrix						
S6 A	1221371001	04/01/2022	04/04/2022	Solid/Soil (Wet Weight)						
S6 B	1221371002	04/01/2022	04/04/2022	Solid/Soil (Wet Weight)						
S6 C	1221371003	04/01/2022	04/04/2022	Solid/Soil (Wet Weight)						
S6 D	1221371004	04/01/2022	04/04/2022	Soil/Solid (dry weight)						
S6 E	1221371005	04/01/2022	04/04/2022	Soil/Solid (dry weight)						
S6 F	1221371006	04/01/2022	04/04/2022	Soil/Solid (dry weight)						
<u>Method</u>	Method Des	cription								

SW6020B TCLP SW6020B SM21 2540G

Method Description Metals by ICP-MS

Metals by ICP-MS (S) Percent Solids SM2540G

	Detectable Results Summary		
Client Sample ID: S6 A			
Lab Sample ID: 1221371001	<u>Parameter</u>	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.378	mg/L
	Lead	0.182	mg/L
Client Sample ID: S6 B			
Lab Sample ID: 1221371002	Parameter	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.453	mg/L
	Lead	1.06	mg/L
Client Sample ID: S6 C			
Lab Sample ID: 1221371003	Parameter	Result	<u>Units</u>
TCLP Constituents Metals	Barium	0.466	mg/L
	Lead	2.02	mg/L
Client Sample ID: S6 D			
Lab Sample ID: 1221371004	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	2.48	mg/kg
-	Barium	137	mg/kg
	Cadmium	2.74	mg/kg
	Chromium	8.47	mg/kg
	Lead	1600	mg/kg
	Mercury	1.08	mg/kg
	Silver	1.40	mg/kg
Client Sample ID: S6 E			
Lab Sample ID: 1221371005	Parameter	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Arsenic	2.13	mg/kg
	Barium	132	mg/kg
	Cadmium	2.36	mg/kg
	Chromium	8.23	mg/kg
	Lead	1530	mg/kg
	Mercury	0.898	mg/kg
	Silver	1.27	mg/kg
Client Sample ID: S6 F			
Lab Sample ID: 1221371006	Parameter	Result	Units
Metals by ICP/MS	Arsenic	2.26	mg/kg
	Barium	158	mg/kg
	Cadmium	2.68	mg/kg
	Chromium	8.45	mg/kg
	Lead	1460	mg/kg
	Mercury	0.995	mg/kg
	Silver	1.26	mg/kg

Print Date: 04/08/2022 10:15:59AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS	
Results of S6 A Client Sample ID: S6 A Client Project ID: Skagway Ore Dock Sediment Rem	Collection Date: 04/01/22 09:00 Received Date: 04/04/22 17:00
Lab Sample ID: 1221371001	Matrix: Solid/Soil (Wet Weight)
Lab Project ID: 1221371	Solids (%): Location:
Results by TCLP Constituents Metals	

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/07/22 13:11
Barium	0.378	0.150	0.0470	mg/L	25	(<100)	04/07/22 13:11
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/07/22 13:11
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/07/22 13:11
Lead	0.182	0.0500	0.0155	mg/L	25	(<5)	04/07/22 13:11
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/07/22 13:11
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	04/07/22 13:11
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	04/07/22 13:11

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/07/22 13:11 Container ID: 1221371001-A Prep Batch: MXT6218 Prep Method: SW3010A Prep Date/Time: 04/06/22 13:53 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

SGS	
Results of S6 B	
Client Sample ID: S6 B Client Project ID: Skagway Ore Dock Sediment Rem Lab Sample ID: 1221371002 Lab Project ID: 1221371	Collection Date: 04/01/22 09:05 Received Date: 04/04/22 17:00 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:
Results by TCLP Constituents Metals	

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	0.500 U	0.500	0.155	mg/L	25	(<5)	04/07/22 13:14
Barium	0.453	0.150	0.0470	mg/L	25	(<100)	04/07/22 13:14
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/07/22 13:14
Chromium	0.500 U	0.500	0.155	mg/L	25	(<5)	04/07/22 13:14
Lead	1.06	0.0500	0.0155	mg/L	25	(<5)	04/07/22 13:14
Mercury	0.0250 U	0.0250	0.00900	mg/L	25	(<0.2)	04/07/22 13:14
Selenium	1.00 U	1.00	0.310	mg/L	25	(<1)	04/07/22 13:14
Silver	0.100 U	0.100	0.0310	mg/L	25	(<5)	04/07/22 13:14

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B TCLP Analyst: DSD Analytical Date/Time: 04/07/22 13:14 Container ID: 1221371002-A Prep Batch: MXT6218 Prep Method: SW3010A Prep Date/Time: 04/06/22 13:53 Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

SGS							
Results of S6 C		C	alloction Do	to: 01/01/	22 00.1	0	
Client Sample ID: S6 C Client Project ID: Skagway Ore Dock Sediment Rem Lab Sample ID: 1221371003 Lab Project ID: 1221371		Collection Date: 04/01/22 09:10 Received Date: 04/04/22 17:00 Matrix: Solid/Soil (Wet Weight) Solids (%): Location:					
Results by TCLP Constituents N	letals						
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Arsenic	0.500 U	0.500	<u>0.1</u> 0.155	mg/L	25	(<5)	04/07/22 13:17
Barium	0.466	0.150	0.0470	mg/L	25	(<100)	04/07/22 13:17
Cadmium	0.100 U	0.100	0.0300	mg/L	25	(<1)	04/07/22 13:17

0.500

0.0500

0.0250

1.00

0.100

0.155

0.0155

0.00900

0.310

0.0310

Prep Batch: MXT6218

Prep Method: SW3010A

Prep Extract Vol: 25 mL

Prep Initial Wt./Vol.: 2.5 mL

Prep Date/Time: 04/06/22 13:53

mg/L

mg/L

mg/L

mg/L

mg/L

(<5)

(<5)

(<0.2)

(<1)

(<5)

04/07/22 13:17

04/07/22 13:17

04/07/22 13:17

04/07/22 13:17

04/07/22 13:17

25

25

25

25

25

0.500 U

2.02

0.0250 U

1.00 U

0.100 U

Print Date: 04/08/2022 10:16:00AM

Chromium

Lead

Mercury

Selenium

Batch Information

Analyst: DSD

Analytical Batch: MMS11516

Container ID: 1221371003-A

Analytical Method: SW6020B TCLP

Analytical Date/Time: 04/07/22 13:17

Silver

Results of S6 D

Client Sample ID: **S6 D** Client Project ID: **Skagway Ore Dock Sediment Rem** Lab Sample ID: 1221371004 Lab Project ID: 1221371 Collection Date: 04/01/22 09:15 Received Date: 04/04/22 17:00 Matrix: Soil/Solid (dry weight) Solids (%):85.0 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Arsenic	2.48	1.14	0.353	mg/kg	10		04/06/22 15:44
Barium	137	0.342	0.107	mg/kg	10		04/06/22 15:44
Cadmium	2.74	0.228	0.0707	mg/kg	10		04/06/22 15:44
Chromium	8.47	1.14	0.353	mg/kg	10		04/06/22 15:44
Lead	1600	2.28	0.707	mg/kg	100		04/07/22 14:00
Mercury	1.08	0.342	0.114	mg/kg	10		04/06/22 15:44
Selenium	2.28 U	2.28	0.707	mg/kg	10		04/06/22 15:44
Silver	1.40	0.570	0.171	mg/kg	10		04/06/22 15:44

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 04/07/22 14:00 Container ID: 1221371004-A

Analytical Batch: MMS11515 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 04/06/22 15:44 Container ID: 1221371004-A Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 04/06/22 10:48 Prep Initial Wt./Vol.: 1.032 g Prep Extract Vol: 50 mL

Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 04/06/22 10:48 Prep Initial Wt./Vol.: 1.032 g Prep Extract Vol: 50 mL

Results	of	S6	Е
---------	----	----	---

Client Sample ID: **S6 E** Client Project ID: **Skagway Ore Dock Sediment Rem** Lab Sample ID: 1221371005 Lab Project ID: 1221371 Collection Date: 04/01/22 09:20 Received Date: 04/04/22 17:00 Matrix: Soil/Solid (dry weight) Solids (%):87.0 Location:

Results by Metals by ICP/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	2.13	1.07	0.333	mg/kg	10		04/06/22 15:47
Barium	132	0.322	0.101	mg/kg	10		04/06/22 15:47
Cadmium	2.36	0.215	0.0666	mg/kg	10		04/06/22 15:47
Chromium	8.23	1.07	0.333	mg/kg	10		04/06/22 15:47
Lead	1530	2.15	0.666	mg/kg	100		04/07/22 14:02
Mercury	0.898	0.322	0.107	mg/kg	10		04/06/22 15:47
Selenium	2.15 U	2.15	0.666	mg/kg	10		04/06/22 15:47
Silver	1.27	0.537	0.161	mg/kg	10		04/06/22 15:47

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 04/07/22 14:02 Container ID: 1221371005-A

Analytical Batch: MMS11515 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 04/06/22 15:47 Container ID: 1221371005-A Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 04/06/22 10:48 Prep Initial Wt./Vol.: 1.071 g Prep Extract Vol: 50 mL

Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 04/06/22 10:48 Prep Initial Wt./Vol.: 1.071 g Prep Extract Vol: 50 mL

SG

Results of S6 F

Client Sample ID: S6 F

Lab Project ID: 1221371

Lab Sample ID: 1221371006

Results by Metals by ICP/MS

Client Project ID: Skagway Ore Dock Sediment Rem

<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Arsenic	2.26	1.26	0.390	mg/kg	10		04/06/22 15:50
Barium	158	0.377	0.118	mg/kg	10		04/06/22 15:50
Cadmium	2.68	0.251	0.0780	mg/kg	10		04/06/22 15:50
Chromium	8.45	1.26	0.390	mg/kg	10		04/06/22 15:50
Lead	1460	2.51	0.780	mg/kg	100		04/07/22 14:05
Mercury	0.995	0.377	0.126	mg/kg	10		04/06/22 15:50
Selenium	2.51 U	2.51	0.780	mg/kg	10		04/06/22 15:50
Silver	1.26	0.629	0.189	mg/kg	10		04/06/22 15:50

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 04/07/22 14:05 Container ID: 1221371006-A

Analytical Batch: MMS11515 Analytical Method: SW6020B Analyst: DSD Analytical Date/Time: 04/06/22 15:50 Container ID: 1221371006-A

Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 04/06/22 10:48 Prep Initial Wt./Vol.: 1.003 g Prep Extract Vol: 50 mL

Collection Date: 04/01/22 09:25

Received Date: 04/04/22 17:00

Allowable

Matrix: Soil/Solid (dry weight)

Solids (%):79.3 Location:

Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 04/06/22 10:48 Prep Initial Wt./Vol.: 1.003 g Prep Extract Vol: 50 mL

Method Blank

Blank ID: LB1 for HBN 1834041 [TCLP/1171 Blank Lab ID: 1659333 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1221371001, 1221371002, 1221371003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.250U	0.500	0.155	mg/L
Barium	0.0750U	0.150	0.0470	mg/L
Cadmium	0.0500U	0.100	0.0300	mg/L
Chromium	0.250U	0.500	0.155	mg/L
Lead	0.0631*	0.0500	0.0155	mg/L
Mercury	0.0125U	0.0250	0.00900	mg/L
Selenium	0.500U	1.00	0.310	mg/L
Silver	0.0500U	0.100	0.0310	mg/L

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/7/2022 12:37:00PM Prep Batch: MXT6218 Prep Method: SW3010A Prep Date/Time: 4/6/2022 1:53:27PM Prep Initial Wt./Vol.: 2.5 mL Prep Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1834051 [MXT/6218] Blank Lab ID: 1659352

QC for Samples: 1221371001, 1221371002, 1221371003

Results by SW6020B TCLP

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	Un
Arsenic	0.0250U	0.0500	0.0155	mg
Barium	0.00750U	0.0150	0.00470	mg
Cadmium	0.00500U	0.0100	0.00300	mg
Chromium	0.0250U	0.0500	0.0155	mg
Lead	0.00250U	0.00500	0.00155	mg
Mercury	0.00125U	0.00250	0.000900	mg
Selenium	0.0500U	0.100	0.0310	mg
Silver	0.00500U	0.0100	0.00310	mg/

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/7/2022 12:31:59PM Prep Batch: MXT6218 Prep Method: SW3010A Prep Date/Time: 4/6/2022 1:53:27PM Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Matrix: Water (Surface, Eff., Ground)

Page 14 of 27

Print Date: 04/08/2022 10:16:04AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221371 [MXT6218] Blank Spike Lab ID: 1659353 Date Analyzed: 04/07/2022 12:34

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1221371001, 1221371002, 1221371003

Results by SW6020B TCLP

	Blank Spike (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	
Arsenic	1	0.969	97	
Barium	1	0.977	98	
Cadmium	0.1	0.0985	99	
Chromium	0.4	0.386	97	(
Lead	1	0.985	99	(8
Mercury	0.01	0.0100	100	(70-
Selenium	1	0.975	98	(80-1
Silver	0.1	0.0974	97	(85-1

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Prep Batch: MXT6218 Prep Method: SW3010A Prep Date/Time: 04/06/2022 13:53 Spike Init Wt./Vol.: 1 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1659360 MS Sample ID: 1659362 MS MSD Sample ID: 1659363 MSD

QC for Samples: 1221371001, 1221371002, 1221371003

Results by SW6020B TCLP

Analysis Date: 04/07/2022 12:40 Analysis Date: 04/07/2022 12:43 Analysis Date: 04/07/2022 12:46 Matrix: Solid/Soil (Wet Weight)

		Matrix Spike (mg/L)		Snike	Spike Duplicate (mg/L)					
_ /				0 /	•	•	(0)			
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Arsenic	0.250U	10.0	9.88	99	10.0	9.75	98	84-116	1.30	(< 20)
Barium	0.423	10.0	10.2	98	10.0	10.4	100	86-114	1.73	(< 20)
Cadmium	0.0500U	1.00	.991	99	1.00	1.00	100	87-115	1.13	(< 20)
Chromium	0.250U	4.00	3.83	96	4.00	3.90	97	85-116	1.67	(< 20)
Lead	15.6	10.0	25.4	99	10.0	25.7	101	88-115	1.09	(< 20)
Mercury	0.0125U	0.100	.0986	99	0.100	0.100	100	70-124	1.38	(< 20)
Selenium	0.500U	10.0	9.82	98	10.0	9.82	98	80-120	0.01	(< 20)
Silver	0.0500U	1.00	.992	99	1.00	0.986	99	85-116	0.58	(< 20)

Batch Information

Analytical Batch: MMS11516 Analytical Method: SW6020B TCLP Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/7/2022 12:43:00PM Prep Batch: MXT6218

Prep Method: Waters Digest for Metals by ICP-MS(TCLP) Prep Date/Time: 4/6/2022 1:53:27PM Prep Initial Wt./Vol.: 2.50mL Prep Extract Vol: 25.00mL

Print Date: 04/08/2022 10:16:05AM

SGS

Method Blank

Blank ID: MB for HBN 1834037 [MXX/35049] Blank Lab ID: 1659320 Matrix: Soil/Solid (dry weight)

QC for Samples: 1221371004, 1221371005, 1221371006

Results by SW6020B

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/kg
Barium	0.150U	0.300	0.0940	mg/kg
Cadmium	0.100U	0.200	0.0620	mg/kg
Chromium	0.500U	1.00	0.310	mg/kg
Lead	0.100U	0.200	0.0620	mg/kg
Mercury	0.150U	0.300	0.100	mg/kg
Selenium	1.00U	2.00	0.620	mg/kg
Silver	0.250U	0.500	0.150	mg/kg

Batch Information

Analytical Batch: MMS11515 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/6/2022 2:58:49PM Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 4/6/2022 10:48:58AM Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Print Date: 04/08/2022 10:16:06AM

Duplicate Sample Summary

Original Sample ID: 1659325 Duplicate Sample ID: 1659329

QC for Samples:

1221371004, 1221371005, 1221371006

Analysis Date: 04/06/2022 15:15 Matrix: Solid/Soil (Wet Weight)

Results by SW6020B					
NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Barium	400	257	mg/kg	43.50*	(< 20)
Cadmium	3.97	3.14	mg/kg	23.30*	(< 20)
Chromium	39.2	26.8	mg/kg	37.60*	(< 20)

Batch Information

Analytical Batch: MMS11515 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD

Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 4/6/2022 10:48:58AM

Print Date: 04/08/2022 10:16:08AM

Duplicate Sample Summary										
Original Sample ID: 1659325 Duplicate Sample ID: 1659329 QC for Samples: 1221371004, 1221371005, 122	Analysis Date: 04/07/2022 13:57 Matrix: Solid/Soil (Wet Weight)									
Results by SW6020B										
NAME	<u>Original</u>	Duplicate	Units	<u>RPD (%)</u>	RPD CL					
Lead	253	474	mg/kg	61.00*	(< 20)					
Batch Information Analytical Batch: MMS11516 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD			Prep Batch: MXX35049 Prep Method: SW3050B Prep Date/Time: 4/6/2022	10:48:58AM						
Print Date: 04/08/2022 10:16:08AM										

Analytical Batch: MMS11515 Analytical Method: SW6020B Instrument: P7 Agilent 7800

Blank Spike Summary

Blank Spike ID: LCS for HBN 1221371 [MXX35049] Blank Spike Lab ID: 1659321 Date Analyzed: 04/06/2022 15:01

Matrix: Soil/Solid (dry weight)

Prep Batch: MXX35049

Prep Method: SW3050B

Prep Date/Time: 04/06/2022 10:48

Dupe Init Wt./Vol.: Extract Vol:

Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL

QC for Samples: 1221371004, 1221371005, 1221371006

Results by SW6020B

	E	Blank Spike	(mg/kg)	
arameter	Spike	Result	<u>Rec (%)</u>	CL
rsenic	50	47.5	95	(82-118)
arium	50	47.8	96	(86-116)
ıdmium	5	4.92	99	(84-116)
iromium	20	18.6	93	(83-119)
d	50	48.3	97	(84-118)
cury	0.5	0.473	95	(74-126)
enium	50	46.0	92	(80-119)
ver	5	4.89	98	(83-118)

Batch Information

Analyst: DSD

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Print Date: 04/08/2022 10:16:09AM

Matrix Spike Summary

Original Sample ID: 1659325 MS Sample ID: 1659326 MS MSD Sample ID: 1659327 MSD

QC for Samples: 1221371004, 1221371005, 1221371006

Results by SW6020B

		Matrix Spike (mg/kg)		Spike	Spike Duplicate (mg/kg)				
<u>Parameter</u>	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	RPD (%) RPD CL
Arsenic	10.4	47.8	78.4	142 *	48.3	56.0	95	82-118	33.30 * (< 20)
Barium	400	47.8	242	-331 *	48.3	318	-171 *	86-116	27.00 * (< 20)
Cadmium	3.97	4.78	13.9	209 *	4.83	7.81	79 *	84-116	56.40 * (< 20)
Chromium	39.2	19.1	45.2	31 *	19.3	65.8	138 *	83-119	37.20 * (< 20)
Mercury	0.119J	0.478	.55	90	0.483	0.550	89	74-126	0.04 (< 20)
Selenium	0.925U	47.8	42.4	89	48.3	43.4	90	80-119	2.34 (< 20)
Silver	0.358J	4.78	4.62	89	4.83	4.62	88	83-118	0.05 (< 20)
Lead	253	47.8	247	-12 *	48.3	348	198 *	84-118	34.00 * (< 20)

Batch Information

Analytical Batch: MMS11515 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/6/2022 3:07:00PM

Analytical Batch: MMS11516 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/7/2022 1:48:46PM Prep Batch: MXX35049 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 4/6/2022 10:48:58AM Prep Initial Wt./Vol.: 1.05g Prep Extract Vol: 50.00mL

Analysis Date: 04/06/2022 15:04

Analysis Date: 04/06/2022 15:07

Analysis Date: 04/06/2022 15:10 Matrix: Solid/Soil (Wet Weight)

Prep Batch: MXX35049 Prep Method: Soils/Solids Digest for Metals by ICP-MS Prep Date/Time: 4/6/2022 10:48:58AM Prep Initial Wt./Vol.: 1.05g Prep Extract Vol: 50.00mL

Print Date: 04/08/2022 10:16:10AM

SGS North America Inc.

Bench Spike Summary

Original Sample ID: 1659325 MS Sample ID: 1659328 BND MSD Sample ID: Analysis Date: 04/06/2022 15:04 Analysis Date: 04/06/2022 15:13 Analysis Date: Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1221371004, 1221371005, 1221371006

		Iviat	rix Spike (r	iig/kg/	Эріке	Duplicate	(119/19)					
Parameter	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CI		
Barium	400	231	625	97				75-125				
Cadmium	3.97	116	114	95				75-125				
Chromium	39.2	116	148	94				75-125				
Lead	253	578	845	103				75-125				
Instrument: P7 Agilent 7800 Analyst: DSD Analytical Date/Time: 4/6/202 Analytical Batch: MMS11516 Analytical Method: SW6020B Instrument: P7 Agilent 7800		Μ		Prep Prep Prep Prep Prep	Batch: Method:	./Vol.: 1.0 /ol: 50.00 /IXX35049 Soils/Soli	mL ds Digest fo 22 10:48:50	or Metals b	y ICP-MS			
Analyst: DSD		Μ			Extract \	1-1- 50.00						

Print Date: 04/08/2022 10:16:10AM

SGS North America Inc.

SGS	
the second of the second of the second of the	

- Method Bl	ank	·							
Blank ID: N	иВ for HBN 1834148 [SPT/11497] ID: 1659465	Matrix: Soil/Solid (dry weight)							
QC for Sam 1221371004	ples: 4, 1221371005, 1221371006								
Results by	SM21 2540G	1							
Parameter Total Solids	Results	LOQ/CL	<u>DL</u>	<u>Units</u> %					
Batch Infor	mation								
Analytica Analytica Instrume Analyst:	al Batch: SPT11497 al Method: SM21 2540G ent:								

Print Date: 04/08/2022 10:16:11AM

SGS

Results by SM21 2540GNAMEOriginalDuplicateUnitsRPD (%)RPD CLTotal Solids85.084.4%0.67(< 15)Batch InformationAnalytical Batch: SPT11497Analytical Method: SM21 2540GInstrument:Analyst: DBR
Total Solids 85.0 84.4 % 0.67 (< 15)
Analytical Batch: SPT11497 Analytical Method: SM21 2540G Instrument:

Print Date: 04/08/2022 10:16:12AM

SGS North America Inc.

				Q	#2789	573	cph								www.us.s	sgs.com		
	CLIENT:	Turnagain Marine Constructio	on -	l			Inst			Section					t.			
	CONTACT:	PH Chris Nielsen	ONE #: 907	-891-5499		Se	ction 3				F	Preserva	tive			Page	1_ of1	
Section 1	PROJECT NAME:	Skagway Ore Dock PWS	DJECT/ SID/ MIT#:	22-00	1	# C												
••	REPORTS T	0.	IAIL: file #:	cnielsen@tur	nagain.us	O N T	Comp Grab		- Pa		Ar	nalysis*	I			NOTE:	analyses	
	INVOICE TO Turnagai									require specifi	*The following analyses require specific method and/or compound list: BTEX, Metals PEAS							
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	mental)	TCLP	Total R(S/LOC ID	
	TA	S6 A	4/1/2022	9:00AM		1	Grab	x										
	(AP)	S6 B	4/1/2022	9:05AM		1	Grab	x			1		-					
	GA	S6 C	4/1/2022	9:10AM		1	Grab	x				122	13	/1				
2	AA	S6 D	4/1/2022	9:15AM		1	Grab		x		1 1 1.0 101 1							
Section 2	(3A)	S6 E	4/1/2022	9:20AM		1	Grab		x									
S	(GA)	S6 F	4/1/2022	9:25AM		1	Grab		x									
							-											
	OOOO						1							<u> </u>				
	Relinquishe	uished By: (1) Chris Nielsen Date Time Received E 4/4/2022 4:55PM		Received By	ed By: Cooler ID:						Data De	Data Deliverable Requirement						
	Relinquishe	d By: (2)	Date	Time	Received By	1:						round Ti	me and	/or Spec	cial Instruc	tions:		
Section 5														RUS	н			
Sec	Relinquishe	od By: (3)	Date	Time	Received By	/ :				Temp Bla	ank °C•		Chain of Custody Seal:			al: (Circle)		
	Relinquishe	ed By: (4)	Date 4/4/22	Time	Received Fo	or Labo	ratory By					mbient	H'		INTACT	BROKEN	ABSENT	
				1/100	un	2	h	- 00	3	1 <i>57</i> 7,	Delivery	Method	Hand	Delivery		erical Delivery	[]	

http://www.sgs.com/terms-and-conditions

Characterization of TCLP Samples for LIMS Login

Date Characterized: ____

Analyst: DBR

Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:				
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
SLe A-	Water miscible (Middle layer = matrix 6)		Yes / No	Yes / No (NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	100%		**Are samples Glycol or Solvent in appearance or odor yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top jayer* = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No /(NA) If biphasic, was there only one layer with sufficient sample				
SLB	Water miscible (Middle layer = matrix 6)		Ves / No	Yes / No NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	10090		**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
SLC	Water miscible (Middle Jayer = matrix 6)	-	Yes / No	Yes / No NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	10070		**Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
	Water miscible (Middle layer = matrix 6)		Yes No	Yes / No NA Sample description/other observations:				
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	(Bottom layer = matrix 7		SD c) **Are samples Glycol or Solvent in appearance or odor? If yes schedule TCLP Metals matrix 6 acode.				
	Xylene miscible (Top layer * = matrix 3 **)	· · · · · · · · · · · · · · · · · · ·		If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample				
	Water miscible (Middle layer = matrix 6)		Yes / No	? Yes / No / NA Sample description/other observations:				
Remember:	Solid (Bottom layer = matrix 7 or 2 if % solids required) * = Chlorinated oils will be bee			**Are samples Glycol or Solvent in appearance or odor? I yes schedule TCLP Metals matrix 6 acode.				

avier than water and present as the bottom later. : whi be he

** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7. *** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficient volume/mass.

.

e-Sam<u>ple Receipt Form</u>

SGS	V

SG

Norkorder #:

1221	371
	J / I

1221371

Review Criteria	Condition (Yes	Yes, No, N/A Exceptions Noted below			
Chain of Custody / Temperature Require	ements	Y	Exemption permitted if sampler	hand carries/delivers.	
Were Custody Seals intact? Note # & lo	cation N/A				
COC accompanied san	nples? Yes				
DOD: Were samples received in COC corresponding co	olers? N/A				
N/A **Exemption permitted if c	hilled & coll	ected <8 hou	rs ago, or for samples where chilling	g is not required	
Temperature blank compliant* (i.e., 0-6 °C after	CF)? Yes	Cooler ID:	1 @ Ambient	t °O Therm. ID:	
		Cooler ID:	@	°C Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will b		Cooler ID:	@	°C Therm. ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chill be noted if neither is available.		Cooler ID:	@	°C Therm. ID:	
		Cooler ID:	@	°C Therm. ID:	
*If >6°C, were samples collected <8 hours a	ago? N/A				
If <0°C, were sample containers ice t	free? N/A	<u> </u>			
Note: Identify containers received at non-compliant tempera Use form FS-0029 if more space is ne					
Use form FS-0029 if more space is ne	eueu.				
Holding Time / Documentation / Sample Condition Rec	uirements	Note: Refer to	o form F-083 "Sample Guide" for specific	holding times.	
Were samples received within holding					
		1			
Do samples match COC** (i.e.,sample IDs,dates/times collect	ted)? Yes				
**Note: If times differ <1hr, record details & login per CO	C.				
***Note: If sample information on containers differs from COC, SGS will default to CO	DC information	ו			
Were analytical requests clear? (i.e., method is specified for ana	lyses Yes				
with multiple option for analysis (Ex: BTEX, M	etals)				
			A ***Exemption permitted for meta	als (e.g,200.8/6020B).	
Were proper containers (type/mass/volume/preservative***)	used? Yes	Į			
 Volatile / LL-Hg Requ	iremente	-			
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sam					
Were all water VOA vials free of headspace (i.e., bubbles ≤ 61					
Were all soil VOAs field extracted with MeOH+					
Note to Client: Any "No", answer above indicates non-			d procedures and may impact data	quality.	
				. ,	
Additional	notes (If a	applicable)			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1221371001-A 1221371002-A 1221371003-A 1221371004-A 1221371005-A 1221371006-A	No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required No Preservative Required	ок ок ок ок ок			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided. Appendix B Disposal Facility Documentation

Displacement Survey Report

Date: 4/13/2022 Trip: Skagway_001

Vessel: Eglon

Cargo: 2 cy Supersacks

Trip: Skagway_001

Owner: Turnagain Marine Construction

Shipper: Boyer

Port From & To: Skagway to DRF

Profile #: 137422OR

Place and Date Of Survey	Initial : 3/3	Initial : 3/30/2022 @ DRF Final 4/13/2022 @ DRF					
Density of Water	1.0020	1.0030	1.0035	1.0005	1.0010	1.0010	1.003 1.001
Conditions		nitial: Overcast inal: Mostly Cloudy					

	Initial S	urvey(A)	Final Survey(B)			
	FT-IN	Decimal Feet	FT-IN	Decimal Feet		
Port Bow	11' 2"	11.1667	3' 5"	3.4167		
Starboard Bow	11'6"	11.5000	3' 4"	3.3333		
Port Stern	12' 4"	12.3333	3' 4"	3.3333		
Starboard Stern	12' 8"	12.6667	3' 5"	3.4167		
Mean		11.917		3.375		
Displacement Table Tonnage		3502.00		93.50		
Brackish Conversion		A 3426.84		B 91.31		

Total Tons Offloaded (A)-(B)= 333

3335.53

Name:	WM NameZ	ach Jenkins
Signature:	WM Signat : Zau	ch Jenkins
Date:	Date:4	/13/2022

Displacement Survey Report

Date: 5/23/2022	Trip: Skagway_002
Vessel: Klamath	Owner: Turnagain Marine Construction
Cargo: 2 cy Supersacks	Shipper: Boyer
Port From & To: Skagway to DRF	Profile #: 137422OR

Place and Date Of Survey	Initial : 5/5	nitial : 5/5/2022 @ DRF Final 5/18/2022 @ DRF					
Density of Water	1.0010	1.0015	1.0015	1.0010	1.0015	N/A	1.001 1.001
Conditions	Initial: Ove Final: Clea	nitial: Overcast					

	Initial S	urvey(A)	Final Survey(B)			
	FT-IN	Decimal Feet	FT-IN	Decimal Feet		
Port Bow	6' 6"	6.5000	3' 5"	3.4167		
Starboard Bow	6' 0"	6.0000	3' 3"	3.2500		
Port Stern	8' 7"	8.5833	3' 6"	3.5000		
Starboard Stern	8' 0"	8.0000	3' 5"	3.4167		
Mean		7.271		3.396		
Displacement Table Tonnage		2886.25		104.25		
Brackish Conversion		A 2818.67		B 101.81		

Total Tons Offloaded (A)-(B)= 2716.86

Name:	WM Name Zach Jenkins
Signature:	WM Signal: Zach Jenkins
Date:	Date: 5/23/2022

Appendix C Sand Cover Material Chemistry Documentation Skagway RMC Sand Lab Analysis Comparison with Regulatory Standards

Appendix B Clean Sand Cover Chemistry Requirements			SGS Static Testing Lab Resuls_ Jan 29 19				SGS Analysis Report March 08 22		
Chemical	Required Reporting Limits	Maximum Level	BE-Haines 4 Mile-CR1	BE-Haines 4 Mile-CR2	BE-Haines 4 Mile-CR3	BE-Haines 4 Mile-CR4	Detection Limits	Results	Detection Limits
Conventional Sediment Parameters									
Grain size (%)	1% 0.1% (wet	N/A							
Total solids (%)	weight)	N/A							
Total organic carbon (%)	1%	N/A							
Metals (mg/kg dw)									
Arsenic	0.2	57	1	<1	1	<1	1		
Cadmium	0.2	5.1	0.05	0.05	0.05	0.05	0.01		
Chromium	0.5	260	96	83	68	85	1		
Copper	0.5	390	120	135	169	145	0.5		
Lead	1.0	450	0.2	0.6	<0.2	0.4	0.2		
Mercury	0.05	0.41	<0.01	<0.01	<0.01	<0.01	0.01		
Silver	0.2	6.1	0.04	0.04	0.05	0.05	0.01		
Zinc	4.0	410	54	49	54	47	1		
PCBs (μg/kg dw)									
Total PCBs (Aroclors)	10	130						ND	49.4
Polycyclic Aromatic Hydrocarbons (μg/kg)								
Naphthalene	20	2,100						ND	25
Acenaphthylene	20	1,300						ND	25
Acenaphthene	20	500						ND	25
Fluorene	20	540						ND	25
Phenanthrene	20	1,500						ND	25
Anthracene	20	960						ND	25

Appendix B Clean Sand Cover Chemistry Requirements				SGS Static Te	SGS Analysis Report March 08 22				
Chemical	Required Reporting Limits	Maximum Level	BE-Haines 4 Mile-CR1	BE-Haines 4 Mile-CR2	BE-Haines 4 Mile-CR3	BE-Haines 4 Mile-CR4	Detection Limits	Results	Detection Limits
2-Methylnaphthalene	20	670						ND	25
Total LPAH	N/A	5,200						ND	
Fluoranthene	20	1,700						ND	25
Pyrene	20	2,600						ND	25
Benzo(a)anthracene	20	1,300						ND	25
Chrysene	20	1,400						ND	25
Benzo(a)pyrene	20	1,600						ND	25
Indeno(1,2,3-Cd)pyrene	20	600						ND	25
Dibenzo(a,h)anthracene	20	230						ND	25
Benzo(g,h,i)perylene	20	670						ND	25
Total benzofluoranthenes	20	3,200						ND	25
Total HPAH	N/A	12,000						ND	

Notes:

µg/kg – micrograms per kilogram

dw – dry weight

HPAH – high-molecular-weight polycyclic aromatic hydrocarbon

LPAH – low-molecular-weight polycyclic aromatic hydrocarbon

mg/kg – milligrams per kilogram

N/A – not applicable

ng/kg – nanograms per kilogram

TEQ – toxic equivalence quotient

Screening values taken from Washington State Department of Ecology Sediment Cleanup User's Manual II, Table 8-1 - Marine and freshwater sediment chemical criteria for protection of the benthic community, Marine Sediment Apparent Effects Thresholds, Sediment Cleanup Objectives.

ND: Non- Detect

--: No Result Provided

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Southeast Road Builders
SGS Project #	: 08123
TEST	: Acid-Base Accounting with Siderite Correction
Date	: May 8, 2014

Sample ID	Paste	S(T)	S(SO4)	S(S-2)	AP	NP	Net	Fizz Test
	рН	%	%	%			NP	
Method Code	Sobek	CSA06V	CSA07V	Calc.	Calc.	Siderite Corr.	Calc.	Sobek
LOD	0.20	0.005	0.01	#N/A	#N/A	0.5	#N/A	#N/A
SERB_4-Mile Haines_01_04112014_GC	9.11	0.008	<0.01	0.008	0.3	18.6	18.4	Slight
Duplicate								
SERB_4-Mile Haines_01_04112014_GC	9.01	0.008	<0.01			18.7		Slight
QC								
GTS-2A		0.33						
PD-1			4.75					
NBM-1						52.1		Slight
Certified Values		0.35	4.79			57.1		Slight
Tolerance +/-		0.03	0.3			5.2		-

Note:

AP = Acid potential in tonnes CaCO3 equivalent per 1000 tonnes of material. AP is determined from the calculated sulphide sulphur content: S(T) - S(SO4).

NP = Neutralization potential in tonnes CaCO3 equivalent per 1000 tonnes of material.

NET NP = NP - AP

Sulphate Sulphur is determined by Sodium Carbonate Leach with S by ICP Finish

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Southeast Road Builders
SGS Project #	: 08123
Test	: Metals by Aqua Regia Digestion with ICP-MS Finish
Date	: May 8, 2014

Sample ID	Ag	Al	В	Ва	Са	Cr	Cu	Fe	K
	ppm	%	ppm	ppm	%	ppm	ppm	%	%
Method Code	ICM14B								
LOD	0.01	0.01	10	5	0.01	1	0.5	0.01	0.01
SERB_4-Mile Haines_01_04112014_GC	0.11	1.65	30	24	1.24	104	195	3.38	0.03
Duplicate									
SERB_4-Mile Haines_01_04112014_GC	0.14	1.69	30	26	1.28	118	195	3.43	0.04
QC									
CH4	2.38	1.83	30	290	0.6	97	1940	4.57	1.43
Certified Values	2.13	1.85	#N/A	293	0.61	103.8	2000	4.79	1.43
Tolerance (%)	10.9	11.35	#N/A	14.3	14.1	12.4	10.1	10.52	11.74

Sample ID	Li	Mg	Mn	Na	Ni	Р	S	Sr	Ti
	ppm	%	ppm	%	ppm	%	%	ppm	%
Method Code	ICM14B								
LOD	1	0.01	2	0.01	0.5	0.005	0.01	0.5	0.01
SERB_4-Mile Haines_01_04112014_GC	5	1.23	424	0.06	25.7	0.069	<0.01	20	0.3
Duplicate									
SERB_4-Mile Haines_01_04112014_GC	5	1.25	435	0.06	31.5	0.068	<0.01	20.6	0.32
QC									
CH4	12	1.16	306	0.07	44.9	0.061	0.6	9.7	0.2
Certified Values	12.6	1.18	324	0.06	49.57	0.072	0.73	9.38	0.21
Tolerance (%)	29.84	12.3	11.5	50.3	12.52	27.4	13.4	23.3	23.3

Sample ID	V	Zn	Zr	As	Be	Bi	Cd	Ce	Со
	ppm								
Method Code	ICM14B								
LOD	1	1	0.5	1	0.1	0.02	0.01	0.05	0.1
SERB_4-Mile Haines_01_04112014_GC	92	43	3	<1	0.2	<0.02	0.05	4.27	20.3
Duplicate									
SERB_4-Mile Haines_01_04112014_GC	96	46	3.7	<1	0.1	<0.02	0.05	4.37	20.7
QC									
CH4	73	186	12.2	7	<0.1	0.45	1.13	27.2	24.2
Certified Values	79.27	189.4	9	8.14	0.11	0.51	1.17	28.18	22.8
Tolerance (%)	13.2	11.3	17.7	13.1	241.3	19.7	12.1	10.4	11.1

Sample ID	Cs	Ga	Ge	Hf	Hg	In	La	Lu	Мо
	ppm								
Method Code	ICM14B								
LOD	0.05	0.1	0.1	0.05	0.01	0.02	0.1	0.01	0.05
SERB_4-Mile Haines_01_04112014_GC	0.08	4.7	<0.1	0.14	0.01	<0.02	1.7	0.11	2.63
Duplicate									
SERB_4-Mile Haines_01_04112014_GC	0.09	4.8	<0.1	0.14	<0.01	<0.02	1.7	0.11	3.53
QC									
CH4	2.75	9.2	0.2	0.33	<0.01	0.1	14.4	0.06	3.42
Certified Values	2.6	8.72	0.21	0.29	#N/A	0.1	14	#N/A	3.05
Tolerance (%)	14.8	12.9	127.4	52.8	#N/A	62.1	11.8	#N/A	14.1

Sample ID	Nb	Pb	Rb	Sb	Sc	Se	Sn	Та	Tb
	ppm								
Method Code	ICM14B								
LOD	0.05	0.2	0.2	0.05	0.1	1	0.3	0.05	0.02
SERB_4-Mile Haines_01_04112014_GC	0.96	1.7	1.2	0.17	6.2	<1	<0.3	<0.05	0.24
Duplicate									
SERB_4-Mile Haines_01_04112014_GC	0.96	1.7	1.2	0.16	6.5	<1	0.3	<0.05	0.24
QC									
CH4	0.6	8.5	63.9	0.4	9	2	0.7	<0.05	0.29
Certified Values	0.19	8.24	67	0.34	7.99	1.57	0.6	0.3	0.27
Tolerance (%)	75	16.1	10.7	47.3	13.1	169.6	134.5	51.7	28.4

Sample ID	Те	Th	TI	U	W	Y	Yb
	ppm						
Method Code	ICM14B						
LOD	0.05	0.1	0.02	0.05	0.1	0.05	0.1
SERB_4-Mile Haines_01_04112014_GC	<0.05	0.1	<0.02	0.06	0.2	7.67	0.8
Duplicate							
SERB_4-Mile Haines_01_04112014_GC	<0.05	0.1	<0.02	0.06	0.1	7.74	0.8
QC							
CH4	0.48	2.2	0.41	0.3	2.8	5.54	0.4
Certified Values	0.42	2.2	0.4	0.29	2.15	5.66	#N/A
Tolerance (%)	39.6	21.2	22.6	52.9	21.6	12.2	#N/A

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Southeast Road Builders
SGS Project #	: 08123
Test	: Whole Rock Analysis
Date	: May 8, 2014

Sample ID	AI2O3	Ва	CaO	Cr2O3	Fe2O3	K2O	MgO	MnO	Na2O
	%	%	%	%	%	%	%	%	%
Method Code	ICP95A								
LOD	0.01	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01
SERB_4-Mile Haines_01_04112014_GC	14.4	0.006	11.6	0.03	13.9	0.31	6.29	0.19	2.11
Duplicate									
SERB_4-Mile Haines_01_04112014_GC	14.3	0.006	11.5	0.04	13.8	0.31	6.24	0.2	2.1
QC									
SY-4	20.2	0.032	7.9	<0.01	6.16	1.56	0.51	0.1	6.97
TILL-4									
Recommended Values	20.69	0.034	8.05	<0.01	6.21	1.66	0.54	0.108	7.1

Sample ID	Nb	P2O5	SiO2	Sr	TiO2	Y	Zn	Zr	LOI
	%	%	%	%	%	%	ppm	%	%
Method Code	ICP95A	PHY01K							
LOD	0.001	0.01	0.01	0.001	0.01	0.001	5	0.001	0.01
SERB_4-Mile Haines_01_04112014_GC	0.003	0.15	51.2	0.02	1.8	0.003	107	0.011	1.99
Duplicate									
SERB_4-Mile Haines_01_04112014_GC	0.003	0.16	50.9	0.02	1.82	0.003	93	0.011	2.25
QC									
SY-4	0.001	0.12	48.4	0.114	0.28	0.011	95	0.05	-
TILL-4									5.61
Recommended Values	0.0013	0.131	49.9	0.1191	0.287	0.012	93	0.052	5.7

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Southeast Road Builders
SGS Project #	: 08123
	: Synthetic Precipitation Leaching Procedure (EPA Method 1312)
Test	at 20:1 Liquid to Solids Ratio
Date	: April 28, 2014

<u>Leachate Analysis</u> Extractant pH = 5.00

Sample:			SERB_4-Mile Haines 01_04112014_GC	Blank
Parameter	Method	Units		
Volume Extractant		mL	2000	1000
Sample Weight		g	100	-
pH (18 Hr)	meter		9.26	5.00
pH (Titrator)	meter		8.39	-
Redox	meter	mV	399	-
Conductivity	meter	uS/cm	26	2
Acidity (to pH 4.5)	titration	mg CaCO3/L	#N/A	-
Total Acidity (to pH 8.3)	titration	mg CaCO3/L	#N/A	-
Alkalinity	titration	mg CaCO3/L	16.7	-
Sulphate	Turbidity	mg/L	4	-
Ion Balance				
Major Anions	Calc	meq/L	0.42	#N/A
Major Cations	Calc	meq/L	0.41	#N/A
Difference	Calc	meq/L	0.01	#N/A
Balance (%)	Calc	%	0.8%	#N/A
Dissolved Metals				
Hardness CaCO3		mg/L	15.1	-
Aluminum Al	ICP-MS	mg/L	0.727	-
Antimony Sb	ICP-MS	mg/L	< 0.0002	-
Arsenic As	ICP-MS	mg/L	0.0007	-
Barium Ba	ICP-MS	mg/L	0.00082	-
Beryllium Be	ICP-MS	mg/L	0.00008	-
Bismuth Bi	ICP-MS	mg/L	0.000039	-
Boron B	ICP-MS	mg/L	0.0010	-
Cadmium Cd	ICP-MS	mg/L	< 0.000004	-
Calcium Ca	ICP-MS	mg/L	5.43	-
Chromium Cr	ICP-MS	mg/L	0.00016	-
Cobalt Co	ICP-MS	mg/L	0.000066	-
Copper Cu	ICP-MS	mg/L	0.00220	-
Iron Fe	ICP-MS	mg/L	0.095	-
Lead Pb	ICP-MS	mg/L	0.00020	-
Lithium Li	ICP-MS	mg/L	0.000057	-
Magnesium Mg	ICP-MS	mg/L	0.382	-
Manganese Mn	ICP-MS	mg/L	0.0021	-
Mercury Hg	CVAA	ug/L	< 0.01	-
Molybdenum Mo	ICP-MS	mg/L	0.00013	-
Nickel Ni	ICP-MS	mg/L	0.0002	-
Phosphorus P	ICP-MS	mg/L	0.017	-

Potassium K	ICP-MS	mg/L	0.245	-
Selenium Se	ICP-MS	mg/L	< 0.00004	-
Silicon Si	ICP-MS	mg/L	1.55	-
Silver Ag	ICP-MS	mg/L	0.00008	-
Sodium Na	ICP-MS	mg/L	0.38	-
Strontium Sr	ICP-MS	mg/L	0.0045	-
Sulphur (S)	ICP-MS	mg/L	0.07	-
Thallium Tl	ICP-MS	mg/L	< 0.000005	-
Tin Sn	ICP-MS	mg/L	0.00003	-
Titanium Ti	ICP-MS	mg/L	0.00375	-
Uranium U	ICP-MS	mg/L	< 0.000002	-
Vanadium V	ICP-MS	mg/L	0.00387	-
Zinc Zn	ICP-MS	mg/L	< 0.001	-
Zirconium Zr	ICP-MS	mg/L	< 0.002	-

QUANTITATIVE PHASE ANALYSIS OF ONE POWDER SAMPLE USING THE RIETVELD METHOD AND X-RAY POWDER DIFFRACTION DATA.

Project: 08123 HGCMC - PO# 42761

Rik Vos – Carolyn Jones SGS Canada Inc. 3260 Production Way, Suite F Burnaby, BC V5A 4W4

Mati Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Edith Czech, M.Sc. Lan Kato, A.Sc.

Dept. of Earth, Ocean & Atmospheric Sciences The University of British Columbia 6339 Stores Road Vancouver, BC V6T 1Z4

May 6, 2014

EXPERIMENTAL METHOD

The sample of **Project 08123 HGCMC** was reduced to the optimum grain-size range for quantitative X-ray analysis (<10 μ m) by grinding under ethanol in a vibratory McCrone Micronizing Mill for 7 minutes. Continuous-scan X-ray powder-diffraction data were collected over a range 3-80°20 with CoK α radiation on a Bruker D8 Advance Bragg-Brentano diffractometer equipped with an Fe monochromator foil, 0.6 mm (0.3°) divergence slit, incident-and diffracted-beam Soller slits and a LynxEye-XE detector. The long fine-focus Co X-ray tube was operated at 35 kV and 40 mA, using a take-off angle of 6°.

RESULTS

The X-ray diffractogram was analyzed using the International Centre for Diffraction Database PDF-4 and Search-Match software by Bruker. X-ray powder-diffraction data of the sample were refined with Rietveld program Topas 4.2 (Bruker AXS). The results of quantitative phase analysis by Rietveld refinements are given in Table 1. These amounts represent the relative amounts of crystalline phases normalized to 100%. The Rietveld refinement plot is shown in Figure 1.

Mineral	Ideal Formula	SERB 4 Mile Haines 01_04112014_GC
Quartz	SiO ₂	10.3
Clinochlore	$(Mg,Fe^{2+})_5 Al(Si_3Al)O_{10}(OH)_8$	8.0
Epidote	Ca ₂ (Fe ³⁺ ,Al) ₃ (SiO ₄) ₃ (OH)	24.0
Plagioclase	NaAlSi ₃ O ₈	16.8
Diopside	CaMgSi ₂ O ₆	2.8
K-feldspar	KAlSi ₃ O ₈	2.1
Calcite ?	CaCO ₃	0.4
Illite/Muscovite	$\frac{K_{0.65}Al_{2.0}Al_{0.65}Si_{3.35}O_{10}(OH)_2}{KAl_2AlSi_3O_{10}(OH)_2}$	2.1
Actinolite	$Ca_2(Mg,Fe^{2+})_5Si_8O_{22}(OH)_2$	32.8
Ilmenite	Fe ²⁺ TiO ₃	0.8
Total		100.0

Table 1. Results of quantitative phase analysis (wt.%)

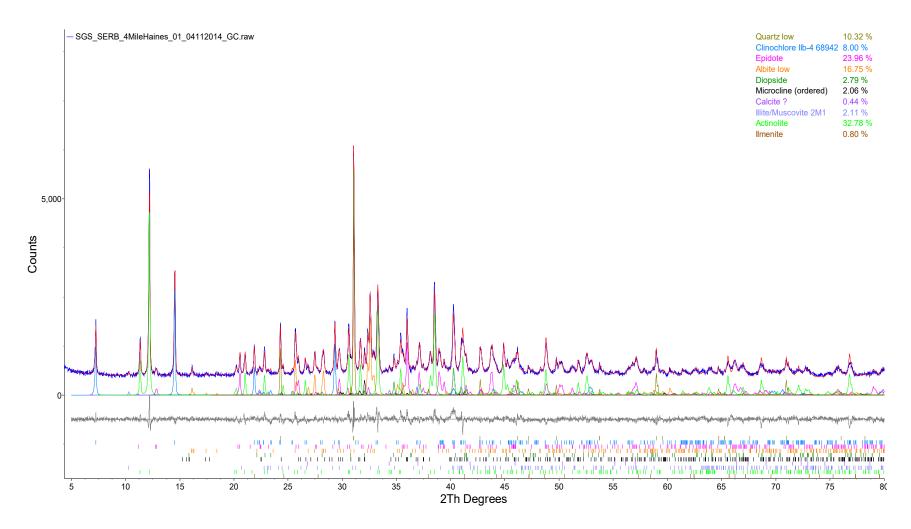


Figure 1. Rietveld refinement plot of sample SGS Canada SERB 4 Mile Haines 01_04112014_GC (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below - difference between observed and calculated intensities; vertical bars - positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for:	SGS Canada Inc			
Project Number/ LIMS No.	14094-01B/MI4522-DEC18			
Batch No.	08123 HGCMC-Haines 4-Mile			
Sample Receipt:	December 28, 2018			
Sample Analysis:	January 7, 2019			
Reporting Date:	January 9, 2019			
Instrument:	BRUKER AXS D8 Advance Diffractometer			
Test Conditions:	Co radiation, 40 kV, 35 mA Regular Scanning: Step: 0.02°, Step time: 1s, 2θ range: 3-80°			
Interpretations :	PDF2/PDF4 powder diffraction databases issued by the International Cen for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.			
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.			
Contents:	1) Method Summary 2) Quantitative XRD Results 3) XRD Pattern(s)			

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

Hayma

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada - Minerals Services - Lakefield: http://palcan.scc.ca/SpecsSearch/GLSearchForm.do.

erals P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA)

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Minerals Services is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

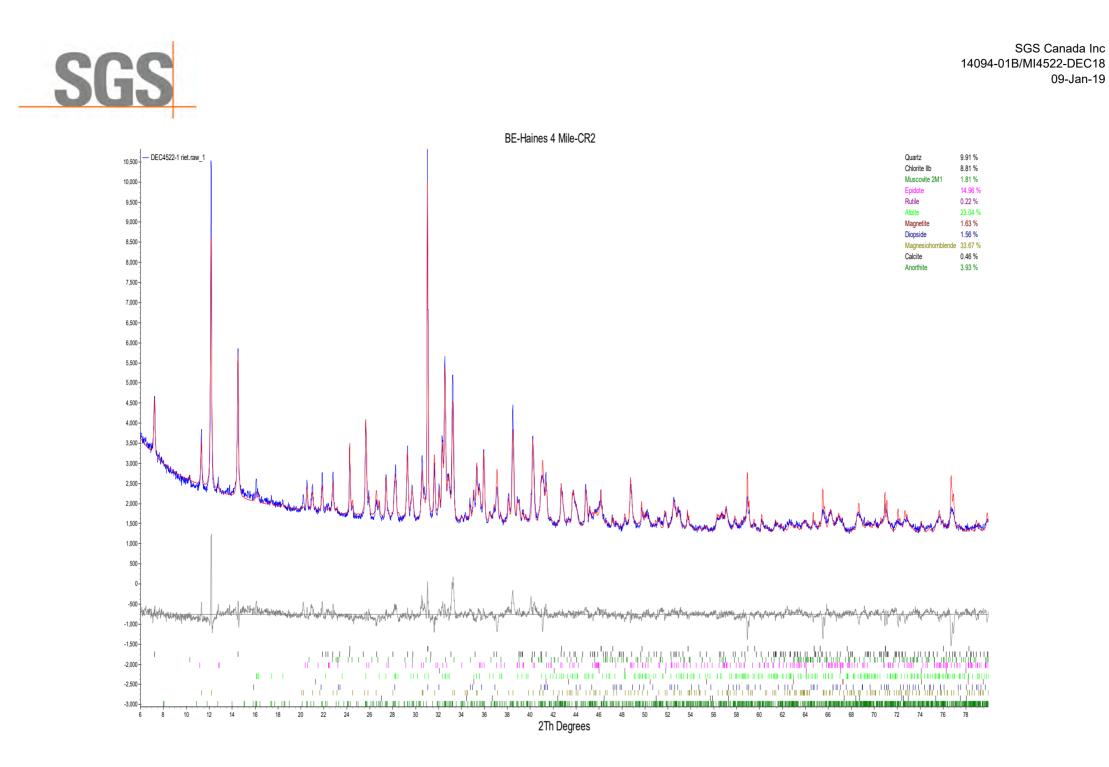
Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

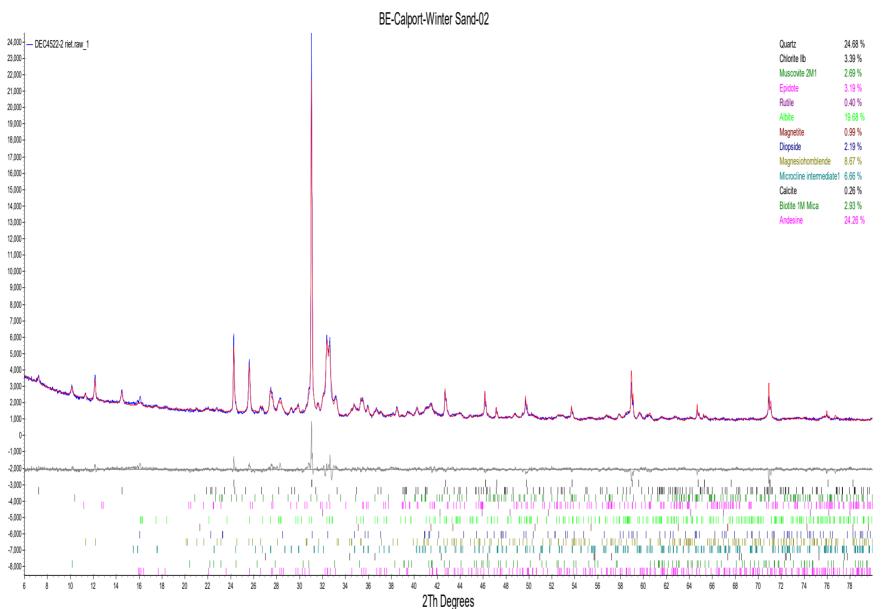
WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

SGS Minerals	P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0
a division of SGS Canada Inc.	Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgs.com www.sgs.com/met
	Member of the SGS Group (SGS SA)

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

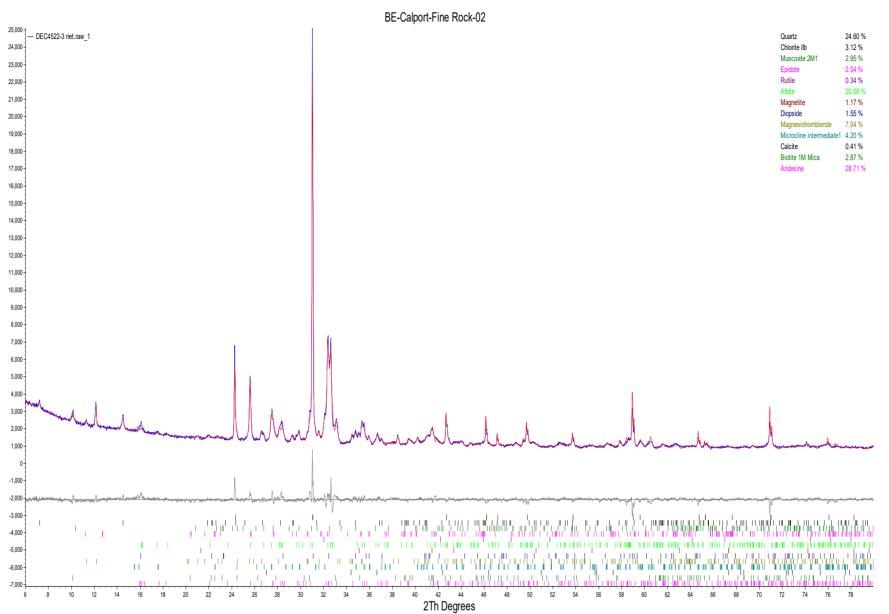

Mineral/Compound	BE-Haines 4 Mile-CR2 DEC4522-01	BE-Calport-Winter Sand-02 DEC4522-02	BE-Calport-Fine Rock- 02 DEC4522-03	BE-Kensington-04 DEC4522-04
	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	9.9	24.7	24.6	11.1
Chlorite	8.8	3.4	3.1	5.8
Muscovite	1.8	2.7	3.0	17.0
Epidote	15.0	3.2	2.5	3.7
Rutile	0.2	0.4	0.3	0.3
Albite	23.0	19.7	20.5	48.3
Magnetite	1.6	1.0	1.2	1.2
Diopside	1.6	2.2	1.6	4.6
Magnesiohornblende	33.7	8.7	7.0	2.4
Calcite	0.5	0.3	0.4	4.3
Anorthite	3.9	-	-	-
Microcline	-	6.7	4.2	1.4
Biotite	-	2.9	2.9	-
Andesine	-	24.3	28.7	-
TOTAL	100	100	100	100

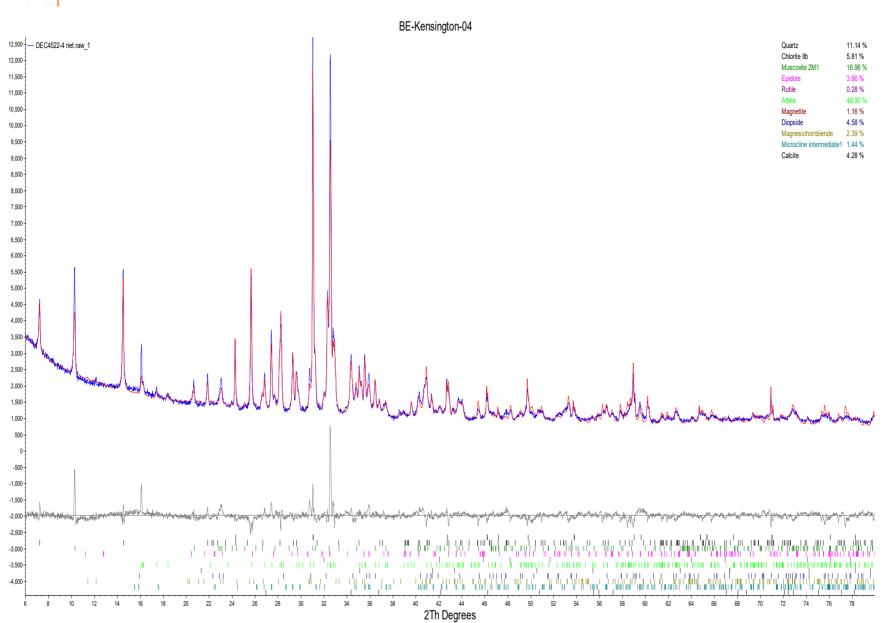
Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.


Dashes indicate that the mineral was not identifed by the analyst and not included in the refinement calculation for the sample.

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Muscovite	KAI ₂ (AISi ₃ O ₁₀)(OH) ₂
Epidote	Ca ₂ (Al,Fe)Al ₂ O(SiO ₄)(Si ₂ O ₇)(OH)
Rutile	TiO ₂
Albite	NaAlSi ₃ O ₈
Magnetite	Fe ₃ O ₄
Diopside	CaMgSi ₂ O ₆
Magnesiohornblende	Ca ₂ (Mg,Fe) ₄ Al(Si ₇ Al)O ₂₂ (OH,F) ₂
Calcite	CaCO ₃
Anorthite	CaAl ₂ Si ₂ O ₈
Microcline	KAISi ₃ O ₈
Biotite	$K(Mg,Fe)_3(AISi_3O_{10})(OH)_2$
Andesine	Na _{0.622} Ca _{0.368} Al _{1.29} Si _{2.71} O ₈





SGS Minerals Services, P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Haines 4-Mile Rock
SGS Project #	: 08123
Test	: Acid-Base Accounting with Siderite Correction
Date	: January 29, 2019
	-

Sample ID	Paste	TIC	CaCO3	S(T)	S(SO4)	S(S-2)	Insoluble S	AP	NP	Net	Fizz Test
-	рН	%	NP	%	%	%	%			NP	
Method Code	Sobek	CSB02V	Calc.	CSA06V	CSA07V	CSA08D	Calc.	Calc.	Siderite Corr.	Calc.	Sobek
LOD	0.20	0.01	#N/A	0.005	0.01	0.01	#N/A	#N/A	0.5	#N/A	#N/A
BE-Haines 4 Mile-CR1	9.31	0.15	12.5	0.006	<0.01	<0.01	<0.01	<0.3	30.8	30.8	Slight
BE-Haines 4 Mile-CR2	9.48	0.06	5.0	0.006	<0.01	<0.01	<0.01	<0.3	22.4	22.4	Slight
BE-Haines 4 Mile-CR3	9.35	0.19	15.8	0.007	<0.01	<0.01	<0.01	<0.3	31.8	31.8	Slight
BE-Haines 4 Mile-CR4	9.33	0.13	10.8	0.007	<0.01	<0.01	<0.01	<0.3	29.4	29.4	Slight
Duplicates											
BE-Haines 4 Mile-CR2					<0.01						
BE-Haines 4 Mile-CR3				0.009							
QC											
GTS-2A				0.328							
RTS-3A					0.96	2.42					
SY-4		0.91									
NBM-1									54.3		Slight
Certified Values		0.91		0.341	0.98	2.46			57.1		Slight
Tolerance +/-		0.07		0.03	0.12	0.25			5.2		

Note:

AP = Acid potential in tonnes CaCO3 equivalent per 1000 tonnes of material. AP is determined from the measured sulphide sulphur.

NP = Neutralization potential in tonnes CaCO3 equivalent per 1000 tonnes of material.

NET NP = NP - AP

Carbonate NP is calculated from TIC originating from carbonate minerals and is expressed in kg CaCO3/tonne.

Sulphate Sulphur determined by 25% HCl Leach with S by ICP Finish

Sulphide Sulphur determined by Sobek 1:7 Nitric Acid Leach with S by ICP Finish

Insoluble S is acid insoluble S (Total S - (Sulphate S + Sulphide S)).

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Haines 4-Mile Rock
SGS Project #	: 08123
Test	: Metals by Aqua Regia Digestion with ICP-MS Finish
Date	: January 29, 2019

Sample ID	Ag	Al	Ва	Ca	Cr	Cu	Fe	K	Li	Mg	Mn
	ppm	%	ppm	%	ppm	ppm	%	%	ppm	%	ppm
Method Code	ICM14B										
LOD	0.01	0.01	5	0.01	1	0.5	0.01	0.01	1	0.01	2
BE-CalPort-Fine Rock-01	0.03	1.69	75	0.89	93	27.1	2.82	0.23	12	0.87	395
BE-CalPort-Fine Rock-02	0.03	1.67	73	0.94	88	22.6	2.74	0.22	11	0.71	385
BE-CalPort-Winter Sand-01	0.03	1.89	64	0.98	70	36.3	2.99	0.21	12	0.73	414
BE-CalPort-Winter Sand-02	0.04	1.85	67	0.92	72	24.4	3	0.2	12	0.72	408
BE-Haines 4 Mile-CR1	0.04	1.76	<5	1.44	96	120	4.15	0.02	7	1.68	505
BE-Haines 4 Mile-CR2	0.04	1.61	<5	1.11	83	135	4.34	0.04	7	1.5	530
BE-Haines 4 Mile-CR3	0.05	1.89	<5	1.5	68	169	4.43	0.05	7	1.63	576
BE-Haines 4 Mile-CR4	0.05	1.78	<5	1.46	85	145	3.75	0.03	6	1.64	503
BE-Kensington-01	0.16	1.14	40	2.91	36	105	3.41	0.2	8	1.08	1090
BE-Kensington-02	0.15	1.09	39	3.05	28	96.7	3.61	0.21	7	1.2	1140
BE-Kensington-03	0.17	1.18	74	3.75	26	93.6	3.59	0.17	9	1.23	1390
BE-Kensington-04	0.34	1.28	43	3.17	24	84.3	4.09	0.21	10	1.31	1260
Duplicate											
BE-CalPort-Fine Rock-02	0.02	1.69	69	0.89	91	21.3	2.82	0.21	11	0.71	398
QC											
OREAS 263	0.31	1.2	167	1.05	52	94.4	3.76	0.32	22	0.61	502
Expected Values	0.285	1.29	175	1.03	48.0	87	3.68	0.288	20.1	0.593	490
Tolerance (%)	21.36	12.35	18.75	13.47	16.46	12.13	11.19	22.39	25.27	15.05	11.66

Sample ID	Na	Ni	Р	S	Sr	Ti	V	Zn	Zr	As	Be
	%	ppm	%	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Method Code	ICM14B										
LOD	0.01	0.5	0.01	0.01	0.5	0.01	1	1	0.5	1	0.1
BE-CalPort-Fine Rock-01	0.16	44.3	0.06	0.03	54.2	0.2	68	42	9.9	4	0.3
BE-CalPort-Fine Rock-02	0.2	25.3	0.06	0.02	59	0.22	66	38	11.9	6	0.3
BE-CalPort-Winter Sand-01	0.2	19.4	0.06	0.05	62.3	0.22	65	43	9.5	7	0.3
BE-CalPort-Winter Sand-02	0.18	19.8	0.07	0.03	64.2	0.23	63	44	10.3	5	0.3
BE-Haines 4 Mile-CR1	0.06	34.3	0.08	<0.01	25.7	0.39	117	54	3.7	1	0.1
BE-Haines 4 Mile-CR2	0.06	29.5	0.08	<0.01	19.2	0.37	106	49	3.9	<1	0.2
BE-Haines 4 Mile-CR3	0.05	33.7	0.08	<0.01	20.9	0.37	114	54	4.1	1	0.1
BE-Haines 4 Mile-CR4	0.05	37.1	0.07	<0.01	25.8	0.38	107	47	4.3	<1	0.2
BE-Kensington-01	0.04	2.1	0.16	0.34	143	0.1	63	76	1.8	5	0.2
BE-Kensington-02	0.04	2.4	0.17	0.26	132	0.1	72	69	1.8	3	0.2
BE-Kensington-03	0.04	2.1	0.17	0.19	205	0.09	71	84	1.9	2	0.2
BE-Kensington-04	0.04	1.9	0.19	0.32	174	0.07	62	77	1.8	3	0.2
Duplicate											
BE-CalPort-Fine Rock-02	0.2	23.7	0.07	0.02	58.4	0.21	62	38	11.2	6	0.3
QC											
OREAS 263	0.09	78.5	0.04	0.13	16.6	<0.01	21	124	15.6	32	1.2
Expected Values	0.079	72	0.041	0.126	16.9	BDL	22.8	127	12.0	30.8	1.22
Tolerance (%)	44.96	12.47	68.85	33.33	19.05	BDL	23.42	12.73	#N/A	19.92	35.75

Sample ID	Bi	Cd	Ce	Со	Cs	Ga	Ge	Hf	Hg	In	La
	ppm										
Method Code	ICM14B										
LOD	0.02	0.01	0.05	0.1	0.05	0.1	0.1	0.05	0.01	0.02	0.1
BE-CalPort-Fine Rock-01	0.07	0.09	14.02	10.5	0.91	6.7	0.2	0.31	<0.01	0.02	7.1
BE-CalPort-Fine Rock-02	0.06	0.06	16.97	8.6	0.91	6.9	0.1	0.38	<0.01	0.02	8.2
BE-CalPort-Winter Sand-01	0.09	0.09	14.64	9.9	0.96	7.3	0.2	0.32	<0.01	0.02	7.3
BE-CalPort-Winter Sand-02	0.11	0.08	14.77	9.9	0.84	7.1	0.2	0.35	<0.01	0.02	7.6
BE-Haines 4 Mile-CR1	<0.02	0.05	4.4	24.9	<0.05	6.2	0.1	0.14	<0.01	<0.02	1.7
BE-Haines 4 Mile-CR2	<0.02	0.05	3.69	22.1	0.07	5	0.1	0.14	<0.01	<0.02	1.5
BE-Haines 4 Mile-CR3	<0.02	0.05	4.94	24.9	0.06	5.9	<0.1	0.12	<0.01	<0.02	1.9
BE-Haines 4 Mile-CR4	<0.02	0.05	4.28	24.3	<0.05	5.1	0.1	0.12	<0.01	<0.02	1.8
BE-Kensington-01	0.03	0.18	14.25	14.3	0.16	4.7	<0.1	0.05	<0.01	<0.02	6.6
BE-Kensington-02	0.02	0.11	14.56	15	0.2	4.9	<0.1	<0.05	0.02	<0.02	6.8
BE-Kensington-03	0.02	0.3	15.03	14	0.17	5.3	<0.1	0.05	0.07	0.03	6.9
BE-Kensington-04	0.06	0.15	17.07	16.3	0.15	5.2	<0.1	0.05	<0.01	0.02	7.7
Duplicate											
BE-CalPort-Fine Rock-02	0.06	0.07	16.27	8.8	0.93	6.7	0.1	0.38	<0.01	0.02	8
QC											
OREAS 263	0.59	0.29	58.49	32.2	2.8	4.9	<0.1	0.34	0.15	0.03	28.6
Expected Values	0.57	0.27	49.7	31.0	3.02	4.92	BDL	0.30	0.17	0.029	24.3
Tolerance (%)	21.36	20.41	#N/A	11.42	#N/A	16.26	BDL	#N/A	26.67	69.66	#N/A

Sample ID	Lu	Мо	Nb	Pb	Rb	Sb	Sc	Se	Sn	Та	Tb
	ppm										
Method Code	ICM14B										
LOD	0.01	0.05	0.05	0.2	0.2	0.05	0.1	1	0.3	0.05	0.02
BE-CalPort-Fine Rock-01	0.11	1.42	0.5	3.2	11.8	0.33	5.9	<1	0.7	<0.05	0.3
BE-CalPort-Fine Rock-02	0.12	1.94	0.58	3.2	11	0.39	6.3	<1	0.6	<0.05	0.34
BE-CalPort-Winter Sand-01	0.12	1.56	0.5	4	10.5	0.38	6	<1	0.7	<0.05	0.33
BE-CalPort-Winter Sand-02	0.12	1.54	0.53	3.8	9.3	0.37	5.5	<1	0.6	<0.05	0.32
BE-Haines 4 Mile-CR1	0.11	1.35	0.5	0.2	0.7	0.11	6.6	<1	<0.3	<0.05	0.22
BE-Haines 4 Mile-CR2	0.12	1.1	0.54	0.6	1.2	0.12	5.6	<1	<0.3	<0.05	0.23
BE-Haines 4 Mile-CR3	0.13	0.91	0.49	<0.2	1.6	0.06	5.6	<1	<0.3	<0.05	0.26
BE-Haines 4 Mile-CR4	0.12	0.86	0.64	0.4	0.9	0.09	6.1	<1	<0.3	<0.05	0.22
BE-Kensington-01	0.14	1.9	0.29	16.2	5.3	0.22	2.8	<1	<0.3	<0.05	0.3
BE-Kensington-02	0.15	2.09	0.38	2.9	5.7	0.24	2.9	<1	<0.3	<0.05	0.33
BE-Kensington-03	0.16	2.18	0.29	9	4.7	0.38	3.6	<1	<0.3	<0.05	0.34
BE-Kensington-04	0.17	3.62	0.21	3.6	4.9	0.23	3.4	<1	<0.3	<0.05	0.37
Duplicate											
BE-CalPort-Fine Rock-02	0.12	1.89	0.62	3.3	11.1	0.39	6	<1	0.6	<0.05	0.33
QC											
OREAS 263	0.15	0.6	<0.05	35.8	21.7	7.04	3.6	<1	0.4	<0.05	0.54
Expected Values	0.14	0.57	BDL	34.0	21.3	7.37	3.52	BDL	0.62	BDL	0.5
Tolerance (%)	#N/A	37.5	BDL	12.17	#N/A	12.39	18.63	BDL	#N/A	BDL	22.22

Sample ID	Те	Th	TI	U	W	Y	Yb
	ppm						
Method Code	ICM14B						
LOD	0.05	0.1	0.02	0.05	0.1	0.05	0.1
BE-CalPort-Fine Rock-01	<0.05	2.1	0.1	0.43	0.2	8.86	0.8
BE-CalPort-Fine Rock-02	<0.05	2.2	0.1	0.42	0.2	10.38	0.9
BE-CalPort-Winter Sand-01	<0.05	2.1	0.11	0.4	0.2	9.96	0.9
BE-CalPort-Winter Sand-02	<0.05	2.3	0.09	0.45	0.1	9.54	0.9
BE-Haines 4 Mile-CR1	<0.05	0.2	<0.02	<0.05	<0.1	8.16	0.8
BE-Haines 4 Mile-CR2	<0.05	0.2	<0.02	<0.05	0.1	8.31	0.9
BE-Haines 4 Mile-CR3	<0.05	0.2	<0.02	<0.05	<0.1	8.97	1
BE-Haines 4 Mile-CR4	<0.05	0.3	<0.02	<0.05	<0.1	8.03	0.9
BE-Kensington-01	0.41	1.3	0.03	0.41	1.2	9.02	0.9
BE-Kensington-02	0.52	1.4	0.03	0.44	3	9.87	1
BE-Kensington-03	1.24	1.8	0.03	0.57	10.4	10.21	1.1
BE-Kensington-04	0.65	2.6	0.03	0.62	2.3	10.54	1.1
Duplicate							
BE-CalPort-Fine Rock-02	<0.05	2.2	0.1	0.42	0.2	10.25	0.9
QC							
OREAS 263	0.17	10.8	0.6	1.32	0.1	12.77	1.1
Expected Values	0.21	10.6	0.53	1.28	0.17	12	0.99
Tolerance (%)	111.11	13.17	20.83	21.65	#N/A	11.73	42.94

Sample ID	AI2O3	Ва	CaO	Cr2O3	Fe2O3	K2O	MgO	MnO	Na2O	Nb
	%	%	%	%	%	%	%	%	%	%
Method Code	ICP95A									
LOD	0.01	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001
BE-CalPort-Fine Rock-02	14.9	0.052	4.4	0.02	5.84	1.65	2.46	0.1	3.71	0.002
BE-CalPort-Winter Sand-02	14.9	0.05	4.67	0.02	6.38	1.55	2.54	0.11	3.43	0.003
BE-Haines 4 Mile-CR2	13.9	0.008	10.2	0.03	13.6	0.31	6.3	0.21	2.63	0.006
BE-Kensington-04	17.4	0.05	5.96	<0.01	7.05	2.69	2.58	0.16	4.67	0.003
Duplicate										
BE-Haines 4 Mile-CR2	13.9	0.008	10.2	0.03	13.7	0.29	6.07	0.21	2.63	0.006
QC										
SY-4	20.2	0.035	7.96	<0.01	6.22	1.66	0.51	0.11	7.3	0.002
OREAS 70B	-	-	-	-	-	-	-	-	-	-
Recommended Values	20.69	340	8.05	<0.01	6.21	1.66	0.54	0.108	7.1	0.001

CLIENT PROJECT SGS Project # Test Date

Sample ID	P2O5	SiO2	Sr	TiO2	Y	Zn	Zr	LOI
-	%	%	%	%	%	ppm	%	%
Method Code	ICP95A	PHY01K						
LOD	0.01	0.01	0.001	0.01	0.001	5	0.001	0.01
BE-CalPort-Fine Rock-02	0.16	64.4	0.027	0.67	0.002	56	0.016	1.48
BE-CalPort-Winter Sand-02	0.15	64.8	0.025	0.71	0.002	65	0.016	1.59
BE-Haines 4 Mile-CR2	0.18	49.5	0.015	1.56	0.003	102	0.01	1.94
BE-Kensington-04	0.4	53.1	0.055	0.62	0.002	87	0.006	5.59
Duplicate								
BE-Haines 4 Mile-CR2	0.17	49.4	0.012	1.61	0.003	100	0.01	1.85
QC								
SY-4	0.12	49.6	0.12	0.27	0.012	95	0.056	-
OREAS 70B	-	-	-	-	-	-	-	6.9
Recommended Values	0.131	49.9	0.119	0.287	0.012	93	0.052	6.69

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Haines 4-Mile Rock
SGS Project #	: 08123
Test	: Synthetic Precipitation Leaching Procedure (EPA Method 1312) at 20:1 Liquid to Solids Ratio
Date	: January 29, 2019

<u>Leachate Analysis</u> Extractant pH = 5.00

Sample ID			BE-CalPort	BE-CalPort	BE-Haines 4	BE-Ken-	Blank
			Fine Rock-02	Winter Sand- 02	Mile-CR2	sington-04	
Parameter	Method	Units				Sington 04	
Volume Extractant		mL	2000	2000	2000	2000	1000
Sample Weight		g	100	100	100	100	-
pH (18 Hr)	meter	-	8.07	7.95	8.85	8.78	4.94
pH (Titrator)	meter		7.67	7.74	8.61	8.51	-
Redox	meter	mV	401	400	375	378	-
Conductivity	meter	uS/cm	17	17	33	81	1
Acidity (to pH 4.5)	titration	mg CaCO3/L	#N/A	#N/A	#N/A	#N/A	-
Total Acidity (to pH 8.3)	titration	mg CaCO3/L	2.9	2.8	#N/A	#N/A	-
Alkalinity	titration	mg CaCO3/L	6.5	6.2	16.1	16.5	-
Sulphate	Turbidity	mg/L	5	4	4	17	-
Ion Balance							
Major Anions	Calc	meq/L	0.24	0.21	0.41	0.68	#N/A
Major Cations	Calc	meq/L	0.20	0.21	0.45	0.86	#N/A
Difference	Calc	meq/L	0.04	0.00	-0.04	-0.18	#N/A
Balance (%)	Calc	%	8.7%	0.7%	-5.2%	-11.4%	#N/A
Dissolved Metals							
Hardness CaCO3		mg/L	4.4	2.1	16.7	34.1	-
Aluminum Al	ICP-MS	mg/L	0.256	0.321	0.764	0.686	-
Antimony Sb	ICP-MS	mg/L	0.0002	0.0004	0.0002	0.0006	-
Arsenic As	ICP-MS	mg/L	0.0016	0.0012	0.0003	0.0006	-
Barium Ba	ICP-MS	mg/L	0.00095	0.00045	0.00053	0.00580	-
Beryllium Be	ICP-MS	mg/L	< 0.000007	< 0.000007	< 0.000007	< 0.000007	-
Bismuth Bi	ICP-MS	mg/L	< 0.000007	< 0.000007	< 0.000007	< 0.000007	-

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Haines 4-Mile Rock
SGS Project #	: 08123
Test	: Synthetic Precipitation Leaching Procedure (EPA Method 1312) at 20:1 Liquid to Solids Ratio
Date	: January 29, 2019

<u>Leachate Analysis</u> Extractant pH = 5.00

Sample ID			BE-CalPort	BE-CalPort	BE-Haines 4	BE-Ken-	Blank
			Fine Rock-02	Winter Sand- 02	Mile-CR2	sington-04	
Parameter	Method	Units					
Boron B	ICP-MS	mg/L	< 0.002	< 0.002	< 0.002	0.005	-
Cadmium Cd	ICP-MS	mg/L	< 0.000003	0.000004	< 0.000003	< 0.000003	-
Calcium Ca	ICP-MS	mg/L	1.02	0.48	5.92	12.6	-
Chromium Cr	ICP-MS	mg/L	0.00004	< 0.00003	0.00005	0.00009	-
Cobalt Co	ICP-MS	mg/L	< 0.000004	< 0.000004	< 0.000004	< 0.000004	-
Copper Cu	ICP-MS	mg/L	0.00024	0.00018	0.00029	0.00023	-
Iron Fe	ICP-MS	mg/L	0.009	< 0.007	< 0.007	< 0.007	-
Lead Pb	ICP-MS	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Lithium Li	ICP-MS	mg/L	0.0003	0.0004	< 0.0001	0.0002	-
Magnesium Mg	ICP-MS	mg/L	0.437	0.216	0.475	0.664	-
Manganese Mn	ICP-MS	mg/L	0.00103	0.00044	0.00010	0.00098	-
Mercury Hg	CVAA	ug/L	< 0.01	< 0.01	< 0.01	< 0.01	-
Molybdenum Mo	ICP-MS	mg/L	0.00034	0.00016	0.00055	0.00204	-
Nickel Ni	ICP-MS	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-
Phosphorus P	ICP-MS	mg/L	0.016	0.015	< 0.003	< 0.003	-
Potassium K	ICP-MS	mg/L	0.911	0.745	0.189	1.82	-
Selenium Se	ICP-MS	mg/L	< 0.00004	0.00023	0.00004	0.00006	-
Silicon Si	ICP-MS	mg/L	1.56	1.24	1.79	1.72	-
Silver Ag	ICP-MS	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-
Sodium Na	ICP-MS	mg/L	1.36	2.53	0.60	1.17	-
Strontium Sr	ICP-MS	mg/L	0.00575	0.00296	0.00534	0.197	-
Sulphur (S)	ICP-MS	mg/L	0.5	0.3	< 0.1	6.3	-
Thallium TI	ICP-MS	mg/L	< 0.000005	< 0.000005	< 0.000005	< 0.000005	-

CLIENT	: Hecla Greens Creek Mining Company
PROJECT	: HGCMC - Haines 4-Mile Rock
SGS Project #	: 08123
Test	: Synthetic Precipitation Leaching Procedure (EPA Method 1312) at 20:1 Liquid to Solids Ratio
Date	: January 29, 2019

<u>Leachate Analysis</u> Extractant pH = 5.00

Sample ID			BE-CalPort Fine Rock-02	BE-CalPort Winter Sand- 02	BE-Haines 4 Mile-CR2	BE-Ken- sington-04	Blank
Parameter	Method	Units					
Tin Sn	ICP-MS	mg/L	0.00003	0.00010	0.00005	0.00004	-
Titanium Ti	ICP-MS	mg/L	0.00057	0.00041	0.00021	< 0.00005	-
Uranium U	ICP-MS	mg/L	0.000003	0.000003	< 0.000002	0.000017	-
Vanadium V	ICP-MS	mg/L	0.00142	0.00121	0.00436	0.00247	-
Zinc Zn	ICP-MS	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	-
Zirconium Zr	ICP-MS	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	-

Buck Rockafellow Turnagain Marine Construction 9330 Vanguard, Suite 100 Anchorage, AK 99507

Work Order:	1220711
	Skagway
Client:	Turnagain Marine Construction
Report Date:	March 08, 2022

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry (Provisionally Certified as of 2/15/2022 for 200.8 metals) & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO 17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

SGS Ref.#	1220711001		
Client Name	Turnagain Marine Construction	Printed Date/Time	03/08/2022 17:20
Project Name/#	Skagway	Collected Date/Time	02/18/2022 9:30
Client Sample ID	PAH/PCB	Received Date/Time	02/21/2022 12:01
Matrix	Solid/Soil (Wet Weight)	Technical Director	Stephen C. Ede

Sample Remarks:

Parameter	Results	LOQ	Units	Method C	Container ID	Allowable Limits	Prep Date	Analysis Date	Init
Polychlorinated Biphen	yls								
Aroclor-1016	ND	49.4	ug/kg	SW8082A	А		02/24/22	03/03/22	TMN
Aroclor-1221	ND	98.9	ug/kg	SW8082A	А			03/03/22	
Aroclor-1232	ND	49.4	ug/kg	SW8082A	А		02/24/22	03/03/22	TMM
Aroclor-1242	ND	49.4	ug/kg	SW8082A	А			03/03/22	
Aroclor-1248	ND	49.4	ug/kg	SW8082A	А			03/03/22	
Aroclor-1254	ND	49.4	ug/kg	SW8082A	А		02/24/22	03/03/22	TMM
Aroclor-1260	ND	49.4	ug/kg	SW8082A	А		02/24/22	03/03/22	TMM
Surrogates									
Decachlorobiphenyl (surr)	110		%	SW8082A	А	60-125	02/24/22	03/03/22	TMN
1-Methylnaphthalene	ND	25.0	ug/kg	8270D SIM (PAH	/			03/02/22	
2-Methylnaphthalene	ND	25.0	ug/kg	8270D SIM (PAH	H) A		03/01/22	03/02/22	IVN
2-Methylnaphthalene Acenaphthene	ND ND	25.0 25.0	ug/kg ug/kg	8270D SIM (PAH 8270D SIM (PAH	H) A H) A		03/01/22 03/01/22	03/02/22 03/02/22	IVN IVN
2-Methylnaphthalene Acenaphthene Acenaphthylene	ND ND ND	25.0 25.0 25.0	ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF	H) A H) A H) A		03/01/22 03/01/22 03/01/22	 03/02/22 03/02/22 03/02/22 	IVN IVN IVN
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	ND ND ND ND	25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF	H) A H) A H) A H) A		03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 03/02/22 03/02/22 03/02/22 	IVN IVN IVN IVN
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene	ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF	 H) A H) A H) A H) A H) A H) A 		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 	IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene	ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF	 H) A 		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 	IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene	ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF	 A A<		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 03/02/22 	IVM IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene Benzo[g,h,i]perylene	ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF	 H) A 		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 	IVM IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene	ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF 8270D SIM (PAF	 H) A 		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 2 03/02/22 	IVM IVM IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene	ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF	 A A<		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 	IVM IVM IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene	ND ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF	 A A<		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 2 03/02/22 	IVM IVM IVM IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene	ND ND ND ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF	 A A<		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 	IVM IVM IVM IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene	ND ND ND ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF	H) A		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 2 03/02/22 	IVM IVM IVM IVM IVM IVM IVM IVM IVM
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)Anthracene Benzo[a]pyrene Benzo[b]Fluoranthene Benzo[g,h,i]perylene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene	ND ND ND ND ND ND ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	8270D SIM (PAF 8270D SIM (PAF	H) A		03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22 03/01/22	 03/02/22 	IVM IVM IVM IVM IVM IVM IVM IVM IVM

SGS Ref.#	1220711001		
Client Name	Turnagain Marine Construction	Printed Date/Time	03/08/2022 17:20
Project Name/#	Skagway	Collected Date/Time	02/18/2022 9:30
Client Sample ID	PAH/PCB	Received Date/Time	02/21/2022 12:01
Matrix	Solid/Soil (Wet Weight)	Technical Director	Stephen C. Ede

Parameter	Results	LOQ	Units	Method	Container ID	Allowable Limits	Prep Date	Analysis Date	Init
Polynuclear Aromatics GC/	'MS								
Phenanthrene	ND	25.0	ug/kg	8270D SIM (P.	AH) A		03/01/2	2 03/02/22	IVM
Pyrene	ND	25.0	ug/kg	8270D SIM (P.	AH) A		03/01/2	2 03/02/22	IVM
Surrogates									
2-Methylnaphthalene-d10 (surr)	89.8		%	8270D SIM (P.	AH) A	58-103	03/01/2	2 03/02/22	IVM
Fluoranthene-d10 (surr)	93.3		%	8270D SIM (P.	AH) A	54-113	03/01/2	2 03/02/22	IVM

SGS North America Inc. CHAIN OF CUSTODY RECORD

•									P	# 330	(02)	con	۱	www.u	is.sgs.com
	CLIENT:	NAGAIN MA	RINE	LON	ST.					Sections 1 nay delay t				t.	Page of
	JOSIA	JANSSEN	90)7-2'	01-1043	Sec	tion 3				Pre	servative			
Section	SF	3AGWAY PERI	MIT#:			# C 0									
		D: E-M DANSSEN Pro QUI	file #: OTE #:	issenan)RNAGMIN.()	T A I N	Comp Grab MI (Multi-	PAtr	ACB		Analy	/SIS*			NOTE: *The following analyses require specific method and/or compound list:
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	incre- mental)	HS S	BS						BTEX, Metals, PFAS REMARKS/LOC ID
	(¥A')	PAHs PCBS	2/13 2/18	9:30 AM 9:30 AM								12	 207	11	
Section 2															
S															
	Relinquishe	d By: (1)	Date	Time	Received By	:				Section 4	DOD	Project?	Yes No	Data D	Deliverable Requirements:
Sectioň 5	Relinquished	V	Date	Time	Received By					Requested T	urnarou	nd Time ar	nd/or Spe	cial Instru	ictions:
Sect	Relinquished	і Ву: (3)	Date	Time	Received By			<u> </u>	$\mathbf{\mathcal{G}}$	Temp Blank	°C:			Chain	of Custody Seal: (Circle)
	Relinquished		Date \$/21/21		Received Fo	r Laboi	ratory By:	/	Rte	Del	or Amb	- \	d Deliver		CT BROKEN ABSENT

http://www.sgs.com/terms-and-conditions

e-Sam<u>ple Receipt Form</u>

COC	
203	

SGS Workorder #:

1220711

1	$\cap \cap$	\sim		1	1
	-) -)	()	- 1		- I
	22	U	1	1	

Review Criteria	dition (Yes,	No, N/A	Exceptio	ns Noted below	
Chain of Custody / Temperature Requireme			Exemption permittee	d if sampler hand carries/del	ivers.
Were Custody Seals intact? Note # & location	on N/A	ABSENT			
COC accompanied samples	s? Yes				
DOD: Were samples received in COC corresponding coolers	s? N/A				
N/A **Exemption permitted if chille	d & colle	cted <8 hou	rs ago, or for samples w	vhere chilling is not required	
Temperature blank compliant* (i.e., 0-6 °C after CF)? N/A	Cooler ID:	1	@ ambient °C Therm. ID): N/A
		Cooler ID:		@ °C Therm. ID):
If samples received without a temperature blank, the "cooler temperature" will be		Cooler ID:		@ °C Therm. ID):
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" v be noted if neither is available.		Cooler ID:		@ °C Therm. ID):
		Cooler ID:		@ °C Therm. ID):
*If >6°C, were samples collected <8 hours ago	? N/A				-
If <0°C, were sample containers ice free	? N/A				
		l			
Note: Identify containers received at non-compliant temperature).				
Use form FS-0029 if more space is neede					
Holding Time / Documentation / Sample Condition Require		Note: Refer to	o form F-083 "Sample Guid	e" for specific holding times.	
Were samples received within holding time	? Yes				
Do samples match COC** (i.e.,sample IDs,dates/times collected)? Yes				
**Note: If times differ <1hr, record details & login per COC.					
***Note: If sample information on containers differs from COC, SGS will default to COC in	formation				
Were analytical requests clear? (i.e., method is specified for analyse					
with multiple option for analysis (Ex: BTEX, Metal	s)				
		N		ted for metals (e.g,200.8/60	
Were proper containers (type/mass/volume/preservative***)used	l? No		ceived in 5 gallon bucl	ket. Sub sampled into an 8	oz
		container.			
Volatile / LL-Hg Require					
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples					
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm					
Were all soil VOAs field extracted with MeOH+BFE					
Note to Client: Any "No", answer above indicates non-com	pliance	with standar	d procedures and may i	impact data quality.	
Additional not	es (if a	pplicable)	:		
		/			

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1220711001-A	No Preservative Required	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

 $\ensuremath{\mathsf{FR}}\xspace$ - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided. Appendix D Turnagain Marine Construction Letter Regarding Sand Placement Quantities

Thursday, April 7, 2022

White Pass & Yukon Route Attn: Tyler Rose 231 Second Avenue PO Box 535 Skagway, AK 99840

RE: Ore Basin Remediation

Mr. Rose,

On 4-4-2022 Turnagain Marine began placing the specified sand cap material at the Ore dock in Skagway. Before placement, survey of the area was reviewed to confirm the dredge depths and final basin elevations were acceptable to White Pass and were in general conformance with the project plan set. Starting at section DU1, Turnagain began placing cap material at the top of the slope adjacent to the dock face. Once the clam bucket was positioned adjacent to the dock, it would be slightly opened to allow sand to escape in a controlled manner without clumping.

Using the GPS boom tip location system on the crane to log the position of the clam bucket when deposition began and ended, the operator lowered the full bucket of sand to within two feet of the design dredge elevation and spread sand evenly slightly overlapping each pass to ensure complete coverage. Turnagain placed 200 CY of material during the first day of capping operations. After capping was halted for the day, the area was surveyed in an effort to document the sand cap placement.

On 4-5-2022 Turnagain continued sand cap placement but ended the day early due to weather. On 4-6-2022 Turnagain continued on the sand cover operation. Working south following the same methodology described above, Turnagain finished the cap placement at the south end of DU3.

Turnagain confirms and attests that 753.36 tons of sand capping material was purchased, delivered to the site, and spread evenly over the dredge area identified in the project plans.

I trust that this letter will serve as final confirmation that the sand cap material was placed in general conformance with the contract documents and that both Turnagain and White Pass & Yukon Route have successfully completed the scope of work described in the project work plan.

Sincerely,

Pat Joens Turnagain Marine Construction

Appendix E Water Quality Monitoring Daily Reports

Remedial Dredging Water Quality Monitoring Form

DAY 1 INTENSIVE MONITORING

Date: 3	14		Monitoring Start Tim	10: 3:30PM	Monitoring Pers	onnel: JOSHU	A JAN	SSEN	
Dredging St	art Time:	3:	25 PM			ations: OUERC			N. WINDY
		Water	Coord	linates		Turbidity Reading (NT	ru)	Exceed	N, NINOT
Station ID	Time	Depth (feet)	Northing Latitude	Easting Longitude	Surface	Middle	Bottom	Yes/No*	Notes
BASE	3:30	\$7	69° 2655"N	135°19'49"W	.56	.56	.49	N/A	BASE
300	335	MID	59°26' 57"N	135° (9'45 W	.62	. 73	. 65	N	DASC
150'	340		59°26'58"N			1.91	2.31	N	
BASE	5:50	3	"	11	. 62	.63	.57	NIA	
300'	5:55	M	11	11	. 76	. 73	.69	N	
150'	6:00	3	11	1/	5.2	.3.6	3.7	N	
									X
*Water Qualit 150EW = 150'	ty Standar	rd: Turbic	ity shall be < 10.0 NTI	Labove BG	COULDE	s perfe	BCT SPO	T TO T	TIONED WELL. TAKE WATER SAMPLES
High: 18	3		16.4	3 30 PM	5.9	5:50PM			Page _ (of)

	Date: 31	1512	2	Monitoring Start Tir	me: 3:06PM	Monitoring Pers	onnel: Josh	UD TANS	SENI	
	Dredging St	tart Time:	2:5	DOPM		Weather Observ	ations: VERY	WINDY	LATSOF	CHOP DUERCAST
1		the the	Water	Coor	dinates	y here	Turbidity Reading (NTU)	Exceed	CICI, OUCECIIOI
	Station ID	Time	Depth (feet)	Northing Latitude	Easting Longitude	Surface	Middle	Bottom	Yes/No*	Notes
	BASE		8	59.4468	-135.33057	0.43	0.50	0.51	N	BASE
	300'			59.44921	-135.32967	2.58	0.54	1.01	N	01050
	150'	3:09	3	55.44946	-135.32915	.67	-53	.79	N	3
-	300	5:56	•	59.44970	-135.32863	1.99	3.68	1.12	N	
		6:01			-135.32875		1.05	3.17	2	
ł										
ŀ										
F										
ł										
F										
r	Notes:		R			<u></u>				
F										
*:	50EW = 150	O' Early Wa	arning Stat	dity shall be < 10.0 NT tion; 300C = 300' Com	U above BG. npliance Station; BG =	Background Statio	n (1,000 feet up-cun	rent of in-water work	location); NTU =	Nephelometric Turbidity Unit
H		Elevation:	s	Elevation	Time	Elevation	Time			
	High: 18	3.2		17.(3:06 PM	8.1	6:01			Page of

	517122 Monitoring Start Time: 9:32AM ng Start Time: 8:30AM		Monitoring Perso	Monitoring Personnel: JOSH JANSSEN						
Dredging St	tart Time:	8:3			Weather Observation	ations: WINI	DY. PART	LY SUL	NNY, CHOPPY WATER	
	1. 1.	Water	Coord	linates		Turbidity Reading (NTU)	Exceed		
Station ID	Time	Depth (feet)	Northing Latitude	Easting Longitude	Surface	Middle	Bottom	Yes/No*	Notes	
BASE	9:32		59.44864	-135.33063	.50	. 62	.62	NIA	BASE	
300' 150'	9:36		59.44941		. 62	2.33	. 81	N		
150'	9:47	3	59.44973			4.71	1.10	N		
300' 150'	4:09)							AIGH TIDE	
300'	4:02		59.44972	-135.52843	0.88		3.69	N	SKIPPED MIDDLE	
150	4.02		59.44942	-135 32919	1.10		1.56	N	SKIPPED MIDOL	
					~	M	-		HIGH TIDE	
-		-						-	2 AML TUGS	
									MOVING IN HARBOR	
	-								COULD HAVE CAUSED	
								1	THE NTU'S, DREDGING	
		-							STOPPED AT 2PM	
Notes: V	IAS I	DRE	DEEKLY (CONSTRUC	TION N	EETING	COULONT	TAKE	SAMPLES AS SOON	
*Water Qua			ity shall be < 10.0 NT							
150EW = 150)' Early War	ming Stat	tion; 300C = 300' Com	pliance Station; BG =	Background Statio	n (1,000 feet up-curr	ent of in-water work I	ocation); NTL	J = Nephelometric Turbidity Unit	
Tidal	Elevations		Elevation	Time	Elevation	Time	-			
	6.9	-	0.9	9:31	14.3	4:09	1		Page of	
Low: C	.5						1		rage or	

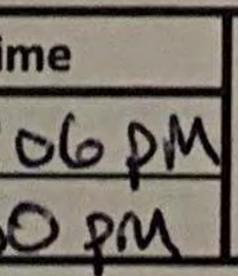
	art Time:	11.	20AM		Weather Observa		NOY R	ANSSEN	
	Sec. 2	10 (10 - 10) - 11 (10 - 10)		dinates		Furbidity Reading (NTU)	Exceed	D
Station ID	Time	Water Depth (feet)	Northing Latitude	Easting Longitude	Surface	Middle	Bottom	Yes/No*	Notes
3ASE	11:14		59.4468	-135.33057	.56	:58	,64	NIA	BASE
300'	11:20		59,44959	-135,32893	.60		1.60	N	
50'	11:24		59.44937	-135.32337	. 68		1.70	N	
300'	5:25		59,44959	-135.32893	.72		2.24	N	
501	5.30		59.44987	-125.32937	,90		3.21	N	
				-					
otes:									
OEW = 150'	ity Standar ' Early Wa Elevations	rning Stat		pliance Station; BG =			rent of in-water work	(location); NTU = Neph	nelometric Turbidity Unit
ligh: 1C	a. 6 7		Elevation	Time 11:24AM	Elevation 2.5	Time 5 30AV			Page of \

2 ANCHOR QEA

Date: 3	- 27 - 2	22	Monitoring Start Tin	ne: 8:45	Monitoring Person	nnel: PAT.	SOGAS		
Dredging St	tart Time:	8:	42		Weather Observa				
		Water	Coord	Coordinates		Furbidity Reading (NT		Exceed	
Station ID	Time	Depth (feet)	Northing Latitude	Easting Longitude	Surface	Middle	Bottom	Yes/No*	Notes
BABE	8:45		59.44867	-135.	- 51		.54	NIA	
300'			59.44953	-135.32896	. 69		.71	2	
150'			59.44988	-135.32823	. 50		. 64	2	
300'			59.44954	-135,52896	. 84		. 50	N	
1501			59.44988	-136.32824	. 86		1.05	2	
Notes:									
*Water Qual	ity Standar	d. Turbid	ity shall be < 10.0 NT	Labovo PG					
					Background Station	n (1,000 feet up-curre	ent of in-water wor	k location); NTU = N	Nephelometric Turbidity Unit
Tidal	Elevations		Elevation	Time	Elevation	Time			
High:			14.8	9.54 km	14.0	11:34 pm			Page lof
Low:			0.7	3:56AM	0.8	4:44 PM			

Remedial Dredging Water Quality Monitoring Form

Time	Elevation	Time
9.54 AM	14.0	11:34 PM
3:56AM	0.8	4:44 PM


2 ANCHOR QEA

Date: 3			Monitoring Start Tin	ne: 11:34	Monitoring Person	nnel: P			
Dredging St	tart Time:	11:4			Weather Observat	ions: C			
		Water	Coord	dinates	Turbid				
Station ID	Time	Depth (feet)	Northing Latitude	Easting Longitude	Surface	Mi			
BASE	11:34		59.44868	-135.33064	- 44				
300'	11140								
200	11:40		59.44934	-135.32735	- 53				
150'	11:46		59.44965	-135.32860	. 49				
300	6:46		59.44994	-135.32831	1.23				
150'	6:51		59.45005	-135.32788	1.45				
Notes:									
			ity shall be < 10.0 NTU ion; 300C = 300' Com		Background Station	(1,000 fee			
Tidal	Elevations		Elevation	Time	Elevation	Tir			
High:			15.4	12:19 AM	16.6	12:0			
Low:			<u>d.4</u>	6:06 AM	-1.1	-6:30			

Remedial Dredging Water Quality Monitoring Form

PAT (JOENS									
sverc	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO	ipim	winds							
Reading (NT	U)	Exceed								
iddle	Bottom	Yes/No*	Notes							
	- 40	NIA								
	E.									
	. 52	N								
	1.23	N								
	2.15									
	1.98	N								
et up-curre	t up-current of in-water work location); NTU = Nephelometric Turbidity Unit									
me										
06pm Opm			Page L of L							
OPM										

16

Appendix F Post-Construction Structural Monitoring Results (TMC/KPFF)

STRUCTURAL MONITORING OF DOCK

A total of 7 PK nails were placed on the existing dock structure along the project limits. Each PK nail was logged for 3 minutes from our GPS base to record it's current position before any onsite dredging occurred. Each day, weather depending, a 30 second shot will be logged on each PK nail to check for excessive movement. PK_BASE was set as control in concrete to help establish any GPS errors for the day. PK7 was set about 200' outside the project area to the NE of the dock, while not in the screen capture, it will still be logged. The target of 3/4" which is 0.0625' may be an unrealistic number as our normal daily check ins can start to approach that value thus the reason for setting PK_Base in concrete as to better determine "real "movement. All PK nail measurements will be done on the dock facing the same direction, meaning the rod bubble will be perpendicular to the dock to best achieve consistent results. When ΔELE is negative, that is a CUT from original.


		PK_Base							PK1 Reset					PK2 Reset						
Name	Easting	Northing	Ele				Name	Easting	Northing	Ele				Name	Easting	Northing	Ele			
PK_Base	2376415.108	2785856.27	29.436	ΔE	ΔN	ΔELE	PK1 Reset	2376617.624	2785782.999	28.976	ΔE	ΔN	ΔELE	PK2 Reset	2376661.344	2785825.949	28.999	ΔE	ΔN	ΔELE
3.03 chk	2376415.131	2785856.240	29.415	-0.023	0.030	0.021	3.03 chk	2376617.643	2785783.018	28.979	-0.020	-0.020	-0.003	3.03 chk	2376661.348	2785825.939	28.983	-0.004	0.010	0.016
3.04 chk	2376415.123	2785856.263	29.395	-0.015	0.007	0.041	3.04 chk	2376617.633	2785783.005	29.007	-0.010	-0.007	-0.031	3.04 chk	2376661.347	2785825.948	29.005	-0.003	0.001	-0.006
chk 3.05b	2376415.117	2785856.267	29.435	-0.009	0.003	0.001	chk 3.04a	2376617.643	2785783.004	28.981	-0.020	-0.006	-0.005	chk 3.04b	2376661.354	2785825.911	28.927	-0.010	0.038	0.072
chk 3.07b	2376415.118	2785856.239	29.418	-0.010	0.031	0.018	chk 3.05c	2376617.630	2785783.008	28.972	-0.007	-0.010	0.004	chk 3.05d	2376661.354	2785825.937	28.996	-0.010	0.012	0.003
chk 3.09i	2376415.147	2785856.273	29.441	-0.039	-0.003	-0.005	chk 3.07d	2376617.664	2785782.997	28.938	-0.041	0.001	0.038	chk 3.07e	2376661.365	2785825.958	28.989	-0.021	-0.010	0.010
chk 3.09r	2376415.171	2785856.243	29.443	-0.063	0.027	-0.007	chk 3.09b	2376617.636	2785783.039	28.989	-0.013	-0.041	-0.013	chk 3.09c	2376661.357	2785825.953	28.987	-0.013	-0.005	0.012
chk 3.11c	2376415.168	2785856.243	29.438	-0.060	0.027	-0.002	chk 3.09q	2376617.674	2785783.007	28.980	-0.051	-0.009	-0.004	chk 3.09p	2376661.395	2785825.975	28.986	-0.051	-0.027	0.013
chk 3.12b	2376415.204	2785856.182	29.423	-0.096	0.088	0.013	chk 3.11d	2376617.659	2785783.010	29.014	-0.036	-0.012	-0.038	chk 3.11e	2376661.373	2785825.955	29.018	-0.029	-0.007	-0.019
chk 3.13b	2376415.142	2785856.239	29.468	-0.034	0.031	-0.032	chk 3.12i	2376617.670	2785783.001	29.014	-0.047	-0.003	-0.038	chk 3.12h	2376661.366	2785825.955	28.986	-0.022	-0.007	0.013
chk 3.14i	2376415.152	2785856.256	29.422	-0.044	0.014	0.014	chk 3.13i	2376617.651	2785783.005	28.991	-0.028	-0.007	-0.015	chk 3.13h	2376661.366	2785825.929	28.999	-0.022	0.019	0.000
chk 3.15b	2376415.146	2785856.214	29.363	-0.038	0.056	0.073	chk 3.14b	2376617.666	2785783.012	28.997	-0.043	-0.014	-0.021	chk 3.14c	2376661.372	2785825.960	28.975	-0.028	-0.012	0.024
chk 3.16i	2376415.150	2785856.226	29.400	-0.042	0.044	0.036	chk 3.15j	2376617.663	2785783.005	28.980	-0.040	-0.007	-0.004	chk 3.15i	2376661.385	2785825.945	28.984	-0.041	0.004	0.015
chk 3.17i	2376415.142	2785856.244	29.422	-0.034	0.026	0.014	chk 3.16b	2376617.642	2785782.988	29.027	-0.019	0.010	-0.051	chk 3.16c	2376661.364	2785825.935	28.975	-0.020	0.013	0.024
chk 3.18h	2376415.146	2785856.240	29.410	-0.038	0.030	0.026	chk 3.17b	2376617.650	2785782.956	28.941	-0.027	0.042	0.035	chk 3.17c	2376661.366	2785825.894	28.940	-0.022	0.055	0.059
chk 3.19b	2376415.148	2785856.229	29.404	-0.040	0.041	0.032	chk 3.18a	2376617.648	2785782.996	28.996	-0.025	0.002	-0.020	chk 3.18b	2376661.370	2785825.931	28.986	-0.026	0.018	0.013
chk 3.20i	2376415.144	2785856.229	29.455	-0.036	0.041	-0.019	chk 3.19c	2376617.649	2785783.001	29.000	-0.026	-0.003	-0.024	chk 3.19d	2376661.366	2785825.948	28.995	-0.022	0.001	0.004
chk 3.21i	2376415.146	2785856.235	29.423	-0.038	0.035	0.013	chk 3.20b	2376617.650	2785782.990	28.990	-0.027	0.008	-0.014	chk 3.20c	2376661.363	2785825.938	29.045	-0.019	0.010	-0.046
chk 3.22h	2376415.160	2785856.225	29.428	-0.052	0.045	0.008	chk 3.21b	2376617.668	2785782.994	29.017	-0.045	0.004	-0.041	chk 3.21c	2376661.366	2785825.930	29.010	-0.022	0.018	-0.011
3.24 pk chk	2376415.155	2785856.226	29.428	-0.047	0.044	0.008	chk 3.22a	2376617.647	2785782.979	29.005	-0.024	0.019	-0.029	chk 3.22b	2376661.354	2785825.923	29.021	-0.010	0.025	-0.022
pk chk 3.25I	2376415.142	2785856.238	29.404	-0.034	0.032	0.032	3.24 pk chk	2376617.652	2785782.988	29.026	-0.029	0.010	-0.050	3.24 pk chk b	2376661.364	2785825.928	29.020	-0.020	0.021	-0.021
3.26 chk pk	2376415.147	2785856.234	29.428	-0.039	0.036	0.008	pk chk 3.25a	2376617.647	2785782.987	28.978	-0.024	0.011	-0.002	pk chk 3.25b	2376661.366	2785825.934	28.973	-0.022	0.015	0.026
3.27 chk pk	2376415.139	2785856.231	29.420	-0.031	0.039	0.016	3.26 chk pk	2376617.652	2785782.999	28.992	-0.029	-0.001	-0.016	3.26 chk pk b	2376661.358	2785825.934	28.999	-0.014	0.015	0.000
3.28 chk pk	2376415.149	2785856.227	29.432	-0.041	0.043	0.004	3.27 chk pk	2376617.648	2785782.991	28.990	-0.025	0.007	-0.014	3.27 chk pk b	2376661.371	2785825.936	29.028	-0.027	0.012	-0.029
3.29 chk pk	2376415.126	2785856.229	29.412	-0.018	0.041	0.024	3.28 chk pk	2376617.656	2785782.999	29.009	-0.033	-0.001	-0.033	3.28 chk pk b	2376661.361	2785825.948	29.003	-0.017	0.001	-0.004
3.30 chk pk	2376415.159	2785856.249	29.413	-0.051	0.021	0.023	3.29 chk pk	2376617.658	2785782.992	28.971	-0.035	0.006	0.005	3.29 chk pk b	2376661.351	2785825.929	28.981	-0.007	0.019	0.018
3.31 chk pk	2376415.148	2785856.226	29.415	-0.040	0.044	0.021	3.30 chk pk	2376617.659	2785782.987	28.999	-0.036	0.011	-0.023	3.30 chk pk b	2376661.356	2785825.954	29.006	-0.012	-0.005	-0.007
chk 4.01a	2376415.132	2785856.234	29.417	-0.024	0.036	0.019	3.31 chk pk	2376617.630	2785782.984	28.973	-0.007	0.014	0.003	3.31 chk pk j	2376661.354	2785825.945	28.971	-0.010	0.004	0.028
chk 4.02i	2376415.145	2785856.242	29.437	-0.037	0.028	-0.001	chk 4.01b	2376617.650	2785782.993	28.975	-0.027	0.005	0.001	chk 4.01c	2376661.358	2785825.948	28.945	-0.014	0.001	0.054
chk 4.03h	2376415.152	2785856.239	29.437	-0.044	0.031	-0.001	chk 4.02h	2376617.643	2785783.007	29.018	-0.020	-0.009	-0.042	chk 4.02g	2376661.370	2785825.955	29.000	-0.026	-0.007	-0.001
							chk 4.03a	2376617.650	2785782.994	29.008	-0.027	0.004	-0.032	chk 4.03b	2376661.363	2785825.939	28.997	-0.019	0.010	0.002

	Av	/erage ∆	-0.040	0.033	0.014		Av	verage ∆	-0.028	-0.001	-0.016		A	/erage ∆	-0.021	0.009	0.009

		PK3 Reset							PK4 Reset							PK5				
Name	Easting	Northing	Ele				Name	Easting	Northing	Ele	Ĩ			Name	Easting	Northing	Ele	1		
PK3 Reset	2376720.981	2785884.911	28.977	ΔE	ΔN	ΔELE	PK4	2376828.075	2785971.821	28.867	ΔE	ΔN	ΔELE	РК5	2376853.919	2786016.935	28.765	ΔE	ΔN	ΔELE
3.03 chk	2376721.005	2785884.910	28.967	-0.024	0.001	0.010	3.02 chk	2376828.135	2785971.863	28.816	-0.060	-0.042	0.051	3.02 chk	2376853.914	2786016.950	28.698	0.005	-0.015	0.066
3.04 chk	2376720.991	2785884.900	28.986	-0.010	0.011	-0.009	3.02 chk	2376828.098	2785971.853	28.870	-0.023	-0.032	-0.003	3.03 chk	2376853.926	2786016.966	28.796	-0.007	-0.031	-0.032
chk 3.05e	2376720.956	2785884.897	28.958	0.025	0.014	0.019	3.03 chk	2376828.007	2785971.883	28.920	0.068	-0.062	-0.053	3.04 chk	2376853.921	2786016.923	28.725	-0.002	0.012	0.039
chk 3.07f	2376720.949	2785884.883	29.015	0.032	0.028	-0.038	3.04 chk	2376828.020	2785971.819	28.814	0.055	0.002	0.053	chk 3.05g	2376853.912	2786016.940	28.719	0.007	-0.005	0.045
chk 3.09d	2376720.987	2785884.843	28.870	-0.006	0.068	0.107	chk 3.05f	2376828.046	2785971.890	28.789	0.029	-0.069	0.078	chk 3.07h	2376853.917	2786016.953	28.799	0.002	-0.018	-0.035
chk 3.090	2376721.015	2785884.900	28.980	-0.034	0.011	-0.003	chk 3.07g	2376828.034	2785971.844	28.835	0.041	-0.023	0.032	chk 3.09g	2376853.919	2786016.970	28.762	-0.001	-0.035	0.002
chk 3.11f	2376720.994	2785884.884	29.024	-0.013	0.027	-0.047	chk 3.09h	2376828.056	2785971.879	28.826		-0.058	0.041	chk 3.09m	2376853.951	2786016.951	28.732	-0.032	-0.016	0.032
chk 3.12g	2376720.998	2785884.915	28.992	-0.017	-0.004	-0.015	chk 3.09n	2376828.066	2785971.857	28.862		-0.036	0.005	chk 3.11h	2376853.954	2786016.937	28.783	-0.035	-0.002	-0.019
chk 3.13g	2376721.006	2785884.948	29.016	-0.025	-0.037	-0.039	chk 3.11g	2376828.078	2785971.840	28.876		-0.019	-0.009	chk 3.12e	2376853.928	2786016.971	28.768	-0.009	-0.036	-0.004
chk 3.14d	2376721.009	2785884.922	28.960	-0.028	-0.011	0.017	chk 3.12f	2376828.054	2785971.851	28.817	0.021	-0.030	0.050	chk 3.13e	2376853.936	2786016.952	28.813	-0.018	-0.017	-0.049
chk 3.15g	2376720.992	2785884.901	28.973	-0.011	0.010	0.004	chk 3.13f	2376828.065	2785971.871	28.863		-0.050	0.004	chk 3.14g	2376853.930	2786016.955	28.760	-0.012	-0.020	0.004
chk 3.16d	2376720.992	2785884.897	28.994	-0.011	0.014	-0.017	chk 3.14h	2376828.051	2785971.856	28.874	0.024	-0.035	-0.007	chk 3.15e	2376853.959	2786016.955	28.737	-0.040	-0.020	0.027
chk 3.17d	2376720.992	2785884.851	28.923	-0.011	0.060	0.054	chk 3.15f	2376828.132	2785971.873	28.902		-0.052	-0.035	chk 3.16f	2376853.941	2786016.948	28.755	-0.022	-0.013	0.009
chk 3.18c	2376720.997	2785884.892	28.995	-0.016	0.019	-0.018	chk 3.16e	2376828.051	2785971.845	28.893	0.024	-0.024	-0.026	chk 3.17f	2376853.928	2786016.920	28.751	-0.009	0.015	0.013
chk 3.19e	2376721.002	2785884.886	28.938	-0.021	0.025	0.039	chk 3.17e	2376828.046	2785971.812	28.826	0.029	0.009	0.041	chk 3.18e	2376853.938	2786016.939	28.759	-0.019	-0.004	0.005
chk 3.20d	2376720.982	2785884.884	29.028	-0.001	0.027	-0.051	chk 3.18d	2376828.085	2785971.846	28.900	-0.010	-0.025	-0.033	chk 3.19g	2376853.937	2786016.935	28.776	-0.018	0.000	-0.012
chk 3.21d	2376720.990	2785884.863	29.043	-0.009	0.048	-0.066	chk 3.19f	2376828.062	2785971.837	28.867	0.013	-0.016	0.000	chk 3.20f	2376853.934	2786016.946	28.811	-0.015	-0.011	-0.047
chk 3.22c	2376721.011	2785884.917	29.010	-0.030	-0.006	-0.033	chk 3.20e	2376828.071	2785971.817	28.862	0.004	0.004	0.005	chk 3.21f	2376853.942	2786016.961	28.752	-0.023	-0.026	0.012
3.24 pk chk	2376720.991	2785884.883	28.984	-0.010	0.028	-0.007	chk 3.21e	2376828.075	2785971.878	28.901	0.000	-0.057	-0.034	chk 3.22e	2376853.951	2786016.935	28.764	-0.032	0.000	0.000
pk chk 3.250	2376720.988	2785884.874	28.979	-0.007	0.037	-0.002	chk 3.22d	2376828.049	2785971.816	28.881	0.026	0.005	-0.014	3.24 pk chk	2376853.936	2786016.931	28.764	-0.018	0.004	0.000
3.26 chk pk	2376720.989	2785884.871	28.984	-0.008	0.040	-0.007	3.24 pk chk	2376828.057	2785971.831	28.871	0.018	-0.010	-0.004	pk chk 3.25e	2376853.930	2786016.940	28.744	-0.012	-0.005	0.020
3.27 chk pk	2376721.000	2785884.895	28.970	-0.019	0.016	0.007	pk chk 3.25	2376828.069	2785971.858	28.892	0.006	-0.037	-0.025	3.26 chk pk	2376853.917	2786016.947	28.77	0.002	-0.012	-0.006
3.28 chk pk	2376720.996	2785884.902	29.002	-0.015	0.009	-0.025	3.26 chk pk	2376828.043	2785971.842	28.84	0.032	-0.021	0.027	3.27 chk pk	2376853.950	2786016.941	28.779	-0.032	-0.006	-0.015
3.29 chk pk	2376720.998	2785884.900	28.995	-0.017	0.011	-0.018	3.28 chk pk	2376828.056	2785971.82	28.846	0.019	0.001	0.021	3.28 chk pk	2376853.942	2786016.928	28.765	-0.023	0.007	-0.001
3.30 chk pk	2376720.993	2785884.926	29.007	-0.012	-0.015	-0.030	3.29 chk pk	2376828.068	2785971.836	28.857	0.007	-0.015	0.010	3.29 chk pk	2376853.941	2786016.937	28.761	-0.022	-0.002	0.003
3.31 chk pk	2376720.993	2785884.900	28.965	-0.012	0.011	0.012	3.30 chk pk	2376828.071	2785971.861	28.876	0.004	-0.040	-0.009	3.30 chk pk	2376853.938	2786016.923	28.765	-0.019	0.012	-0.001
chk 4.01d	2376720.999	2785884.906	28.972	-0.018	0.005	0.005	3.27 chk pk	2376828.057	2785971.839	28.85	0.018	-0.018	0.017	3.31 chk pk	2376853.934	2786016.929	28.781	-0.015	0.006	-0.017
chk 4.02f	2376721.002	2785884.913	28.982	-0.021	-0.002	-0.005	3.31 chk pk	2376828.056	2785971.838	28.911	0.019	-0.017	-0.044	chk 4.01g	2376853.937	2786016.952	28.768	-0.018	-0.017	-0.004
chk 4.03c	2376720.998	2785884.906	28.985	-0.017	0.005	-0.008	chk 4.01h	2376828.065	2785971.859	28.829	0.010	-0.038	0.038	chk 4.02d	2376853.942	2786016.945	28.770	-0.023	-0.010	-0.006
							chk 4.02e	2376828.087	2785971.842	28.869	-0.012	-0.021	-0.002	chk 4.03e	2376853.928	2786016.939	28.781	-0.009	-0.004	-0.017
							chk 4.03d	2376828.054	2785971.846	28.865	0.021	-0.025	0.002							
		Av	/erage ∆	-0.012	0.019	-0.004			Av	/erage ∆	0.011	-0.030	0.005			A	/erage ∆	-0.014	-0.012	0.004

		PK6					PK7								
Name	Easting	Northing	Ele				Name	Easting	Northing	Ele					
PK6	2376923.935	2786084.999	28.888	ΔE	ΔN	ΔELE	PK7	2377006.899	2786166.158	28.805	ΔE	ΔN	ΔELE		
3.02 chk	2376923.940	2786085.051	28.940	-0.005	-0.052	-0.052	3.02 chk	2377006.912	2786166.159	28.800	-0.013	-0.001	0.005		
3.03 chk	2376923.936	2786085.047	28.936	-0.002	-0.048	-0.048	3.03 chk	2377006.864	2786166.154	28.822	0.035	0.004	-0.017		
3.04 chk	2376923.923	2786085.028	28.918	0.012	-0.029	-0.030	3.04 chk	2377006.883	2786166.130	28.759	0.016	0.028	0.046		
chk 3.05h	2376923.921	2786085.055	28.895	0.013	-0.056	-0.007	chk 3.05i	2377006.856	2786166.149	28.775	0.043	0.009	0.030		
chk 3.07i	2376923.939	2786085.036	28.934	-0.004	-0.037	-0.046	chk 3.07j	2377006.860	2786166.142	28.816	0.039	0.016	-0.011		
chk 3.09f	2376923.944	2786085.055	28.921	-0.010	-0.056	-0.033	chk 3.09e	2377006.864	2786166.147	28.782	0.035	0.011	0.023		
chk 3.091	2376923.959	2786085.048	28.904	-0.024	-0.049	-0.016	chk 3.09k	2377006.882	2786166.130	28.790	0.017	0.028	0.015		
chk 3.11i	2376923.973	2786085.062	29.007	-0.039	-0.063	-0.119	chk 3.11j	2377006.885	2786166.150	28.812	0.014	0.008	-0.007		
chk 3.12d	2376923.958	2786085.044	28.942	-0.024	-0.046	-0.054	chk 3.12c	2377006.876	2786166.138	28.826	0.023	0.020	-0.021		
chk 3.13d	2376923.954	2786085.052	28.948	-0.019	-0.053	-0.060	chk 3.13c	2377006.877	2786166.150	28.805	0.022	0.008	0.000		
chk 3.14f	2376923.962	2786085.034	28.922	-0.027	-0.035	-0.034	chk 3.14e	2377006.874	2786166.158	28.816	0.025	0.000	-0.011		

chk 3.15d	2376923.953	2786085.027	28.894	-0.019	-0.028	-0.006	chk 3.15c	2377006.892	2786166.123	28.782	0.007	0.035	0.023
chk 3.16g	2376923.945	2786085.031	28.895	-0.010	-0.032	-0.007	chk 3.16h	2377006.884	2786166.126	28.771	0.015	0.032	0.034
chk 3.17g	2376923.944	2786085.003	28.890	-0.010	-0.004	-0.002	chk 3.17h	2377006.871	2786166.102	28.774	0.028	0.056	0.031
chk 3.18f	2376923.946	2786085.045	28.930	-0.012	-0.046	-0.042	chk 3.18g	2377006.891	2786166.141	28.808	0.008	0.017	-0.003
chk 3.19h	2376923.955	2786085.037	28.951	-0.021	-0.038	-0.063	chk 3.19i	2377006.882	2786166.137	28.824	0.017	0.021	-0.019
chk 3.20g	2376923.946	2786085.019	28.954	-0.012	-0.020	-0.066	chk 3.20h	2377006.868	2786166.123	28.826	0.031	0.035	-0.021
chk 3.21g	2376923.939	2786085.018	28.915	-0.004	-0.019	-0.027	chk 3.21h	2377006.877	2786166.124	28.814	0.022	0.034	-0.009
chk 3.22f	2376923.943	2786085.013	28.928	-0.008	-0.014	-0.040	chk 3.22g	2377006.893	2786166.112	28.767	0.006	0.046	0.038
3.24 pk chk	2376923.957	2786085.006	28.932	-0.022	-0.007	-0.044	3.24 pk chk	2377006.889	2786166.103	28.792	0.010	0.055	0.013
pk chk 3.25f	2376923.937	2786085.037	28.903	-0.002	-0.038	-0.015	pk chk 3.25g	2377006.875	2786166.132	28.783	0.024	0.026	0.022
3.26 chk pk	2376923.944	2786085.011	28.912	-0.010	-0.012	-0.024	3.26 chk pk	2377006.873	2786166.113	28.812	0.026	0.045	-0.007
3.27 chk pk	2376923.952	2786085.033	28.932	-0.018	-0.034	-0.044	3.27 chk pk	2377006.886	2786166.121	28.820	0.013	0.037	-0.015
3.28 chk pk	2376923.949	2786085.031	28.938	-0.015	-0.032	-0.050	3.28 chk pk	2377006.885	2786166.129	28.837	0.014	0.029	-0.032
3.29 chk pk	2376923.955	2786085.031	28.921	-0.021	-0.032	-0.033	3.29 chk pk	2377006.876	2786166.118	28.813	0.023	0.040	-0.008
3.30 chk pk	2376923.954	2786085.032	28.946	-0.019	-0.033	-0.058	3.30 chk pk	2377006.879	2786166.140	28.816	0.020	0.018	-0.011
3.31 chk pk	2376923.945	2786085.020	28.909	-0.010	-0.021	-0.021	3.31 chk pk	2377006.880	2786166.121	28.807	0.019	0.037	-0.002
chk 4.01f	2376923.938	2786085.037	28.942	-0.004	-0.038	-0.054	chk 4.01e	2377006.874	2786166.143	28.820	0.025	0.015	-0.015
chk 4.02c	2376923.954	2786085.037	28.934	-0.019	-0.038	-0.046	chk 4.02b	2377006.883	2786166.140	28.808	0.016	0.018	-0.003
chk 4.03f	2376923.954	2786085.025	28.945	-0.019	-0.026	-0.057	chk 4.03g	2377006.888	2786166.136	28.797	0.011	0.022	0.008
	Average Δ			-0.012	-0.037	-0.039			Av	/erage ∆	0.020	0.023	0.008

- 1. VERTICAL DATUM: MLLW
- 2. HORIZONTAL DATUM: NAD83 ALASKA ZONE 1

1601 5th Avenue, Suite 1300 Seattle, Washington 98101 (206) 382-0600 Fax (206) 382-0500

ORE PENINSULA MAS	ORE PENINSULA MASS REMOVAL PROJECT								
SKAGWAY, ALASKA									
SITE MOVEMENT SURVEY LOCATION MAP									
DATE: 2022-03-10	SCALE: 1" = 100'								
DRAWN BY: KK	SHT 1 OF 2								

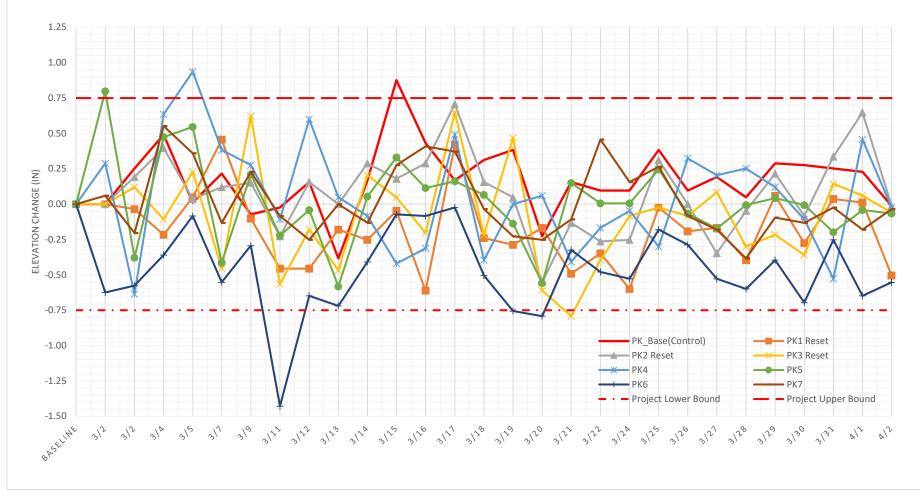


FIGURE 1 - VERTICAL MOVEMENT CHART

Project: Ore Peninsula Mass Removal Project Date: 4/5/2022 By: CE

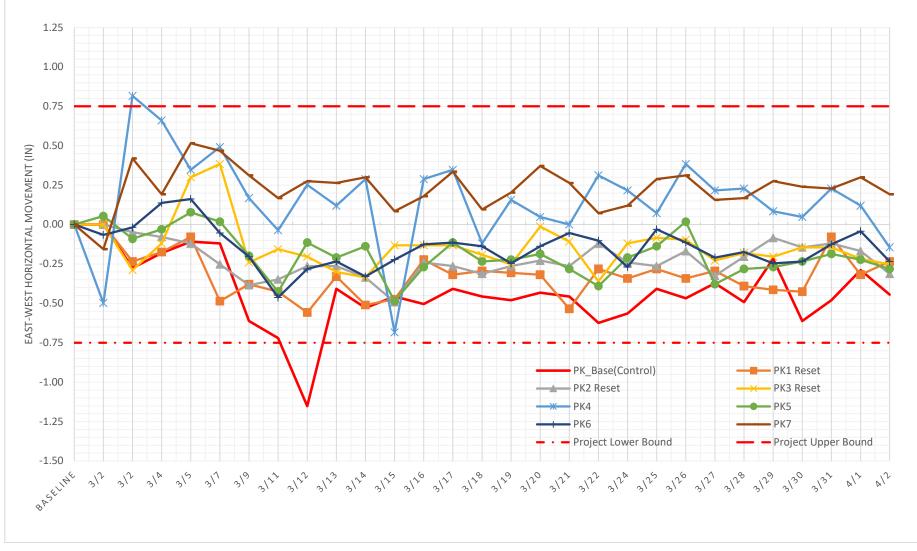


FIGURE 2 - EAST-WEST HORIZONTAL MOVEMENT CHART

Project: Ore Peninsula Mass Removal Project Date: 4/5/2022 By: CE

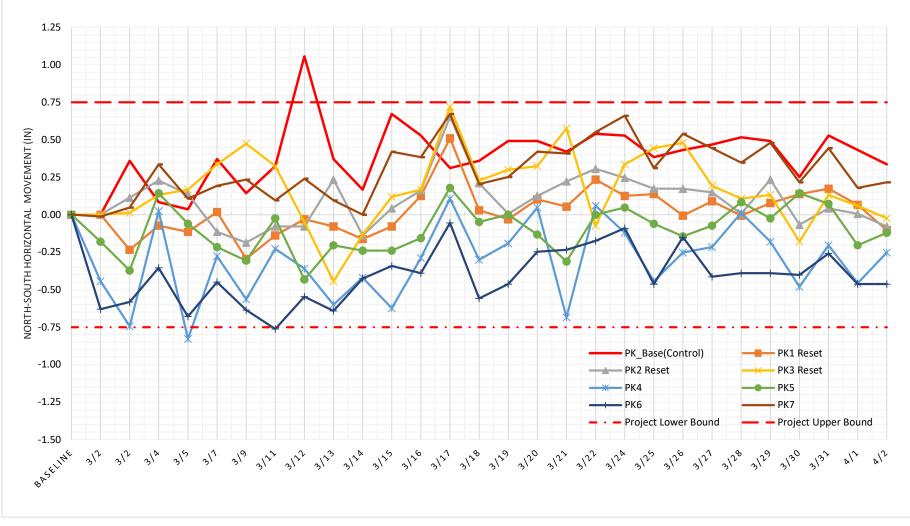


FIGURE 3 - NORTH-SOUTH HORIZONTAL MOVEMENT CHART

Project: Ore Peninsula Mass Removal Project Date: 4/5/2022 By: CE

Appendix G Marine Mammal Monitoring Summary Memorandum

Memorandum

May 6, 2022

To: Sadie Wright, NOAA Fisheries

From: Barbara Bundy and Derek Ormerod, Anchor QEA, LLC

cc: Tyler Rose, White Pass and Yukon Railroad

Re: Skagway Ore Terminal Remediation Project, Marine Mammal Monitoring Summary Report

White Pass & Yukon Route conducted environmental dredging of contaminated sediments in the Skagway Ore Basin (Ore Basin) adjacent to the Skagway Ore Terminal facility (Ore Terminal; collectively, the site) in Skagway, Alaska. The Skagway Ore Terminal Sediment Remediation Project (Project) removed contaminated sediment from the site through mechanical dredging to address legacy contamination associated with spillage from historical ore loading operations.

The National Marine Fisheries Service (NMFS) completed informal consultation under section 7(a)(2) of the Endangered Species Act regarding the proposed dredging. Listed marine mammal species are Steller sea lions and Mexico distinct population segment (DPS) humpback whales. Required mitigation measures for potential impacts on listed species are described in a letter dated July 13, 2020, from NMFS to the U.S. Army Corps of Engineers. Measures included the following (among others):

- Implementation of a 200-meter shutdown zone. If a marine mammal were observed within or approaching the shutdown zone during in-water work, a stop-work order would be issued immediately.
- **Marine mammal monitoring**. A wildlife observer must be positioned to observe the entire shutdown zone during in-water work and must be able to identify the designated marine mammal species.
- **Reporting**. Weekly reports of observations would be submitted to NMFS, and a summary report detailing all observations during in-water work submitted within 30 days of the end of in-water work.

Weekly reporting was conducted during the in-water work and this memorandum is the summary report of marine mammal observations during in-water work for the Project.

In-Water Work

In-water work consisted of dredging and placement of sand cover and occurred on 17 working days over the period between March 3, 2022, and April 6, 2022. There were 7 full days and occasionally

partial days in this overall working period. On partial days, the contractor was not conducting dredging or material placement (in-water work) and the contractor was only conducting activities on the barge (e.g., material stabilization, routine maintenance, and housekeeping). Wildlife observer Rob May monitored in-water work from the Ore Dock, adjacent to the dredge barge, during all in-water work activities.

Marine Mammal Sightings

Table 1 and Figure 1 summarize all of the marine mammal sightings during the full course of the work. As noted in the table, marine mammals were observed both inside and outside of the shutdown zone on five occasions. On all five occasions, in-water work was not underway at the time of the sighting. On three of the occasions, the barge was repositioning, and on two of the occasions, the dredge was idle. The marine mammals exited the shutdown zone before in-water work resumed. Therefore, in-water work did not occur while a marine mammal was within or approaching the shutdown zone.

The only listed species sighting was on March 27, when three or four Steller sea lions were observed 1,200 feet (365 meters) from the in-water work. This is outside the shutdown zone and the mammals were traveling east, away from the shutdown zone. Mexico DPS humpback whales were not observed.

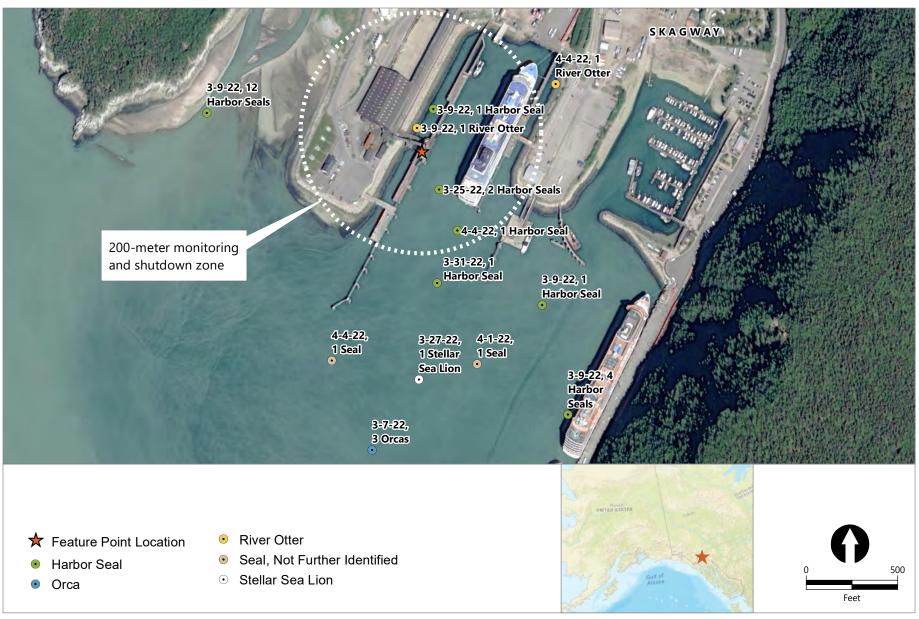

Date	Mammal(s) Sighted	Response/Outcome
3/4/2022	None	None needed
3/5/2022	None	None needed
3/7/2022	 3 orcas (2 adults and 1 juvenile), travelling and foraging, 485 meters from in-water work 	None needed, marine mammals were outside of, and not approaching, the shutdown zone
3/9/2022	 4 harbor seals, foraging and playing, 485 meters from in-water work 1 harbor seal, travelling northeast, 305 meters from in-water work 12 harbor seals, foraging and playing, 395 meters from in-water work 	None needed, marine mammals were outside of, and not approaching, the shutdown zone
	 1 river otter, travelling southwest, through the shutdown zone 1 harbor seal, traveling northwest through the shutdown zone 	None needed, in-water work was not occurring during the time the marine mammals were approaching and within the shutdown zone
3/11/2022	None	None needed
3/12/2022	None	None needed
3/13/2022	None	None needed

Table 1 Marine Mammal Sightings

Date	Mammal(s) Sighted	Response/Outcome
3/16/2022	None	None needed
3/24/2022	None	None needed
3/25/2022	 2 harbor seals, travelling through and foraging in the shutdown zone 	None needed, in-water work was not occurring during the time the marine mammals were approaching and within and shutdown zone
3/27/2022	 6 harbor seals, playing and foraging, 485 meters from in-water work 3 or 4 Steller sea lions, travelling east and foraging, 365 meters from in-water work 	None needed, marine mammals were outside of, and not approaching, the shutdown zone
3/29/2022	None	None needed
3/31/2022	 1 harbor seal, observing work and foraging in the shutdown zone 	None needed, in-water work was not occurring during the time the marine mammals were approaching and within the shutdown zone
4/1/2022	 1 harbor seal, travelling east and foraging, 365 meters from in-water work 	None needed, marine mammals were outside of, and not approaching, the shutdown zone
4/4/2022	 1 river otter, foraging and travelling northeast, 335 meters from in-water work 1 harbor seal, travelling southeast and foraging, 365 meters from in-water work 	None needed, marine mammals were outside of, and not approaching, the shutdown zone
4/4/2022	 1 harbor seal, observing work and foraging in the shutdown zone 	None needed, in-water work was not occurring during the time the marine mammals were approaching and within the shutdown zone
4/5/2022	None	None needed
4/6/2022	None	None needed

Note: Listed species sighting in **bold**

Figure

Publish Date: 2022/04/26, 10:32 PM | User: bbundy

Filepath: Q:\Jobs\KPFF_0159\SkagwayAK_ConceptualRemedialOptions\Maps\MarineMammalMonitoring\Skagway_MMM_2022.mxd

Figure 1 Marine Mammal Sightings Skagway Ore Terminal Remediation Project