MAYFLOWER ISLAND LIMITED MERCURY SOIL REMOVAL ACTION REPORT

FINAL

AUGUST 2020

100 Savikko Road Douglas, Alaska

Contract No. 140L631P0015

Submitted to:

U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

Prepared by:

ADEC Contaminated Sites Database File ID 1538.38.003; Hazard ID 2543

PAGE INTENTIONALLY BLANK

TABLE OF CONTENTS

AC	ACRONYMS AND ABBREVIATIONSii						
EX	EXECUTIVE SUMMARY						
1.	INTI	RODUCTION	4				
	1.1.	Project Location and Description					
	1.2.	Site History					
		Project Objectives and Regulatory Framework					
	1.4.	Summary of Field Activities	5				
2.	FIEL	D WORK	6				
	2.1.	Discharge Pipe and Contaminated Soil Removal	6				
		Non-Hazardous Debris Removal					
3.	WAS	STE CHARACTERIZATION / TRANSPORT AND DISPOSAL	8				
4.	CON	ICEPTUAL SITE MODEL	9				
5.	CONCLUSIONS AND RECOMMENDATIONS10						
6.	REFERENCES11						

TABLE

1: Analytical Results – Mercury Soil Drum

FIGURES

- 1: Site Location Map
- 2: Site Plan

APPENDICES

- A: Photographs
- B: Analytical Laboratory Report
- C: Shipping Manifest and Certificate of Disposal
- D: Conceptual Site Model
- E: ADEC Letter and Response to Comments on Draft Limited Mercury Soil Removal Report

ACRONYMS AND ABBREVIATIONS

AAC Alaska Administrative Code
ADEC Alaska Department of Environmental Conservation
AES Agviq Environmental Services, LLC
BLM Bureau of Land Management
CSM Conceptual Site Model
JRMIC John Rishel Mineral Information Center
mg/Kg milligrams per kilogram
RCRA Resource Conservation and Recovery Act
TCLP Toxicity Characteristic Leaching Procedure
US United States

EXECUTIVE SUMMARY

On behalf of the U.S. Department of the Interior, Bureau of Land Management (BLM), Agviq Environmental Services, LLC. (AES), performed a corrective soil removal action at the former John Rishel Mineral Information Center (JRMIC) on Mayflower Island in Douglas, Alaska. Original ownership of the JRMIC belonged to the U.S. Bureau of Mines before transferring to BLM in the mid-1990s. In 2016, a surface soil sample, collected from beneath the outfall of a drainage pipe originating at the former assay lab, was analyzed for RCRA metals, volatile organic compounds, and semi-volatile organic compounds. Only mercury exceeded Alaska Department of Environmental Conservation cleanup criteria, with a concentration of 5.5 milligrams per kilogram (mg/Kg). Background concentrations of mercury on Mayflower Island were determined to be 0.58 mg/Kg. From analytical results, it was assumed that soils from the outfall of the discharge pipe to an area extending approximately ten feet down slope to the high tide line was contaminated with mercury.

Mercury impacted soils were hand excavated from the outfall of the discharge pipe to above the high tide line. Excavated soils were placed into 5-gallon buckets and hauled up the slope to the staging area via a pulley system. The excavated area, measuring approximately 5-feet wide by 10-feet long was hand excavated to bedrock or weathered bedrock. Bedrock and weathered bedrock are considered refusal, so no confirmation soil samples were collected. All removed soils were placed into two 55-gallon drums and transported to Waste Management in Oregon for final disposal. The exposed section of the discharge pipe (the outfall pipe) was cut off approximately two feet above where it daylighted from the slope, cut into pieces and disposed of accordingly.

1. INTRODUCTION

Agviq Environmental Services, LLC. (AES) was contracted by the Bureau of Land Management (BLM) under Contract Number 140L6318P0015 to provide environmental services pertaining to the removal of mercury contaminated soils at the former John Rishel Mineral Information Center (JRMIC) on Mayflower Island in Douglas, Alaska. All field activities were performed in accordance with the *Mayflower Island Limited Mercury Soil Work Plan* (AES. 2018). Mayflower Island is identified by the Alaska Department of Environmental Conservation (ADEC) as Contaminated Sites Database File Number 1538.38.003; Hazard Number 2543.

1.1. Project Location and Description

Mayflower Island (also referred to as Juneau Island) is located at 100 Savikko Road, Douglas, AK. The JRMIC located on Mayflower Island, was initially property of the United States (US) Bureau of Mines. The facility was transferred to the BLM under the US Department of the Interior in the mid-1990s. Constructed in 1949, the JRMIC consists of a two-story concrete office building and several small wood frame buildings that housed a chemistry lab, ore-processing and assay lab, a shop, and a warehouse (SUNEX Incorporated [SUNEX] 2006). Only the two-story concrete office building remains of the original structures. The US Coast Guard is the current tenant occupying the facility.

Mayflower Island is located in Douglas approximately two miles from Juneau, Alaska (**Figure 1**). Located at 58.275943 north latitude and -134.384839 west longitude, Mayflower Island resides along the western shore of Gastineau Channel. The area is situated between hot and cold temperate climatic zones, being classified as either continental or oceanic depending upon elevation and the proximity to Gastineau Channel and the Pacific Ocean. Temperatures range from an average low of 32° Fahrenheit to an average high of 65° Fahrenheit throughout the year. Juneau receives an average of 62.27 inches of precipitation annually but ranges from 55 to 92 inches within the various micro-climates of the area.

1.2. Site History

The JRMIC was constructed in 1949. Currently, only the two-story concrete building remains after the other wood frame buildings were demolished in 2008. As part of the assay and chemistry labs, a discharge pipe extended east and downslope from the lab facilities and terminated about 10 feet above the highest high tide line (**Figure 2**).

4

In 2016, as part of a Phase I environmental site assessment, a single surface soil sample was collected from the outfall beneath the discharge pipe and analyzed for Resource Conservation and Recovery Act (RCRA) metals, volatile organic compounds, and semi-volatile organic compounds. Analytical results indicated mercury was the only contaminant above ADEC cleanup levels with a concentration of 5.5 milligrams per kilogram (mg/Kg). Background concentrations of mercury on Mayflower Island were determined to be 0.58 mg/Kg. From analytical results, it was assumed that soils from the outfall of the discharge pipe to an area extending approximately ten feet down slope to the high tide line was contaminated with mercury.

1.3. Project Objectives and Regulatory Framework

The project objective was to fully remove mercury contaminated soils below the outfall discharge pipe in order to meet the ADEC cleanup level for mercury in soil (3.1 milligram per kilogram [mg/kg]). ADEC soil cleanup levels are established in Table B1 of 18 Alaska Administrative Code (AAC) 75-*Oil and Other Hazardous Substances Pollution Control* (ADEC. 2018). In addition to the removal of mercury impacted soils, non-hazardous debris was to be collected and disposed of at the Juneau Landfill. The assay lab outfall pipe was included in the debris removal.

The approved work plan and this report were written in accordance with ADEC's *Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites* (ADEC. 2017b). Soil samples for removal confirmation of the contaminated media and waste characterization purposes were collected in accordance with ADEC *Field Sampling Guidance* (ADEC. 2019).

1.4. Summary of Field Activities

Activities performed at Mayflower Island included soil removal from the outfall below the laboratory discharge pipe, removal of non-hazardous debris along the slope leading down to the outfall and around the adjacent parking area, and containment of the removed soil for off-site shipment and disposal. All removed soil was placed into two 55-gallon metal drums for disposal at Chemical Waste Management in Arlington, Oregon. Non-hazardous debris was disposed of in the Juneau Landfill.

5

2. FIELD WORK

During May 2019, AES personnel performed field work pertaining to the soil removal at the pipe outfall. Soil removal activities were performed in conjunction with a separate BLM cleanup effort, also on Mayflower Island. Photographs of the field activities are presented in **Appendix A**. The removal area located downslope from the parking area (**Figure 2**), is in an area of large rock and boulders, with little to no soils. The high tide line is below the outfall of the discharge pipe, below the soil removal area.

2.1. Discharge Pipe and Contaminated Soil Removal

The plastic discharge pipe emanating from the demolished mineral assay lab and ran below ground, down slope from the parking area, until it daylighted approximately 20 feet above the outfall area. The pipe was cut approximately two feet above where it daylighted, in an area that had sufficient overburden soils so erosion would not uncover the cut end. The pipe and associated cribbing were hauled to the surface, cut into sections, and the pipe containerized and disposed with the excavated soils. Associated pipe cribbing was disposed as non-hazardous debris at the Juneau Landfill.

A pathway was chosen for the pulley system, with clearing and grubbing performed to establish unimpeded operation. The pulley system was utilized for the hauling of buckets containing soil up the slope from the work area to parking area. The pulley system was constructed of 1/8" steel cable with two pulleys, one anchored at the top around a tree near the parking area and one anchored down slope near the removal area. The pulleys were placed high enough off the ground for the soil buckets to avoid vegetation and scraping on the ground when pulled up slope to the staging area.

Excavation commenced at the discharge point of the outfall and proceeded down slope to above the mean high tide line. Hand tools such as picks, trowels, brushes, and dust pans were utilized. Rocks and boulders that could be moved by hand or leveraging tools were placed aside to gain access to soils below or in crevices. Bedrock and rocks too large to move were considered refusal and allowed to remain in place. Excavation ceased at bedrock, considered refusal, and at the point near the high tide line where no soils were left to remove.

Hand brushes were used to clean off rocks of soils and detritus. Soils were collected into 5-gallon buckets. After several buckets were filled, each bucket was hooked onto the pulley system and transferred upslope to the parking lot area. At the staging area, buckets were taken off the pulley system and soils placed into 55-gallon open top steel drums for transportation and disposal. Excavation proceeded both horizontally and vertically (**Appendix A**) from the outfall of the discharge pipe and down slope to above the high tide line. Removed soils depths were shallow and contained in a small area by bedrock and large rocks. As removal continued, it was noted that soils were being replaced with friable weathered bedrock typical of Mayflower Island. Once bedrock was reached in the removal area, and contaminated soil was removed to the fullest extent possible, AES and the onsite BLM project manager agreed that refusal had been reached and no further soil removal was warranted. The ADEC Project Manager was contacted and informed of site conditions, sent site photos via email, and was invited to the site to view conditions. From the site photos and conversation with the onsite BLM representative, ADEC granted approval that refusal had been reached in the removal area measured approximately five feet at its widest and approximately ten feet long downslope. The width of the excavation narrowed proceeding down slope and terminated above the high tide water line.

Since the soil removal proceeded to refusal (bedrock), it was determined by AES, BLM, and ADEC that final confirmation soil sampling within the removal area was not necessary. Due to this, no soil samples were collected from the removal area. However, a single soil sample was collected from the soil drums for waste characterization purposes.

2.2. Non-Hazardous Debris Removal

Non-hazardous debris was collected from various areas near the soil removal area and around the island. Debris included wooden pipe cribbing, a metal bed frame, plastic flowerpots, cable spool, metal vent covers, and a deteriorating picnic table. All non-hazardous debris was loaded into a pickup truck and brought to the Juneau Landfill for disposal.

7

3. WASTE CHARACTERIZATION / TRANSPORTATION AND DISPOSAL

All mercury contaminated waste was placed into two 55-gallon open top steel drums. A sample of the impacted soil was collected for waste characterization purposes and analyzed for total mercury and toxicity characteristic leaching procedure (TCLP) mercury. The analytical laboratory report (Report Number 1192683) is presented in **Appendix B**, results are summarized in **Table 1**. Within the report, only sample 5001-501 pertains to the removal of the mercury impacted soil. The sample titled Sublanding, was collected for another removal action being performed at Mayflower Island during the same timeframe.

Waste characterization analytical results indicated that the total mercury result of 2.22 mg/kg classified the material as hazardous waste (Waste Code D009). TCLP results indicated that mercury was not detected in the sample (Table 1). Drums were palletized, labeled, covered, and placed into an existing temporary staging area at the site. Based upon the soil analytical results, a waste profile was created for the material (Profile Number OR342794), and upon subsequent approval from the permitted disposal facility, the drums were loaded into a shipping van for transport and disposal under Uniform Hazardous Waste Manifest 013781412FLE, to Chemical Waste Management, Inc. in Arlington, Oregon. A copy of the manifest is provided in Appendix C. Also included on the manifest is waste generated and disposed of pertaining to a separate removal action performed in conjunction with the mercury soil removal at Mayflower Island. Information regarding the profiling and shipping of the two 55-gallon drums containing mercury impacted soil can be found on Line 3 of Uniform Hazardous Waste Manifest (Appendix C).

The two drums containing mercury impacted soil were disposed of at Chemical Waste Management of the Northwest on February 4, 2020, under Certificate of Disposal 250533. A copy of the disposal certificate is provided in **Appendix C**.

4. CONCEPTUAL SITE MODEL

This Conceptual Site Model (CSM) describes the information presented in the ADEC CSM scoping form and graphic form provided in **Appendix D**, which have been updated using information from this report.

As detailed in the report, mercury in surface soil is the only impacted media at the site. Mercury at Mayflower Island was sourced from the mineral ore assay lab that was operational when the site was under ownership of the US Bureau of Mines, and released to the soil via discharge from an outfall pipe starting at the assay lab and terminating downslope above the high tide line. Impacted media at the site is limited to surface soils due to very shallow depths to bedrock and limited soil cover on the island.

Potential receptors at the site include site visitors and site workers, however, the risk for exposure to both visitors and workers is low. The island is a secure site, requiring permission from in command Coast Guard personnel to pass the security gate at the causeway leading to the island. The location of the mercury contamination is limited to a very small area located down a steep and highly vegetated slope from the parking area to above the high tide line. Chances for any visitors or site workers to even be near the area in which mercury was released from the outfall pipe is low and unlikely.

Potential exposure pathways at the site include incidental soil ingestion, dermal absorption of contaminants from soil, and inhalation of fugitive dust due to mercury present in the surface soils. Ingestion and dermal pathways are not considered complete and inhalation of fugitive dust is considered an insignificant pathway. There is no potential for mercury to migrate to subsurface soil or groundwater, due to very shallow depths to bedrock. Groundwater was not encountered during excavation activities. No impacted sediment or surface water is suspected at the site.

Conversations between the BLM representative onsite and the ADEC project manager responsible for the site at the time of the removal, determined that the mercury impacted soil was removed to the fullest extent possible. Soils within the discharge zone of the outfall pipe were excavated to bedrock resulting in refusal. Due to the removal of the mercury impacted media, all associated risks and potential exposure hazards have been eliminated.

9

5. CONCLUSIONS AND RECOMMENDATIONS

Mercury impacted soils, located at the outfall of a discharge pipe emanating from a demolished mineral assay lab on Mayflower Island, were removed from an area approximately 5-feet at the widest by 10-feet. The removal area terminated above the mean high tide water line, where no soils remained. Soils were excavated to bedrock (refusal) to the largest extent possible. Due to the removal area reaching bedrock, no confirmation samples were taken. Via emails and conversations between the BLM representative onsite and the ADEC Project Manager (at the time), an agreement was reached that the limits of soil removal had been reached and the mercury impacted soil sufficiently removed. It is recommended that this site be considered for closure by ADEC.

6. REFERENCES

- Agviq Environmental Services (AES). 2018. Mayflower Island Limited Mercury Soil Removal Work Plan. July 2018.
- Alaska Department of Environmental Conservation (ADEC). 2019. *Field Sampling Guidance*. October 2019.
- ADEC. 2018. Alaska Administrative Code (AAC) 75, Oil and Other Hazardous Substances Pollution Control. October 2018.
- ADEC. 2017a. Guidance on Developing Conceptual Site Models. January 2017.
- ADEC. 2017b. Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites. March 2017.

PAGE INTENTIONALLY BLANK

TABLE

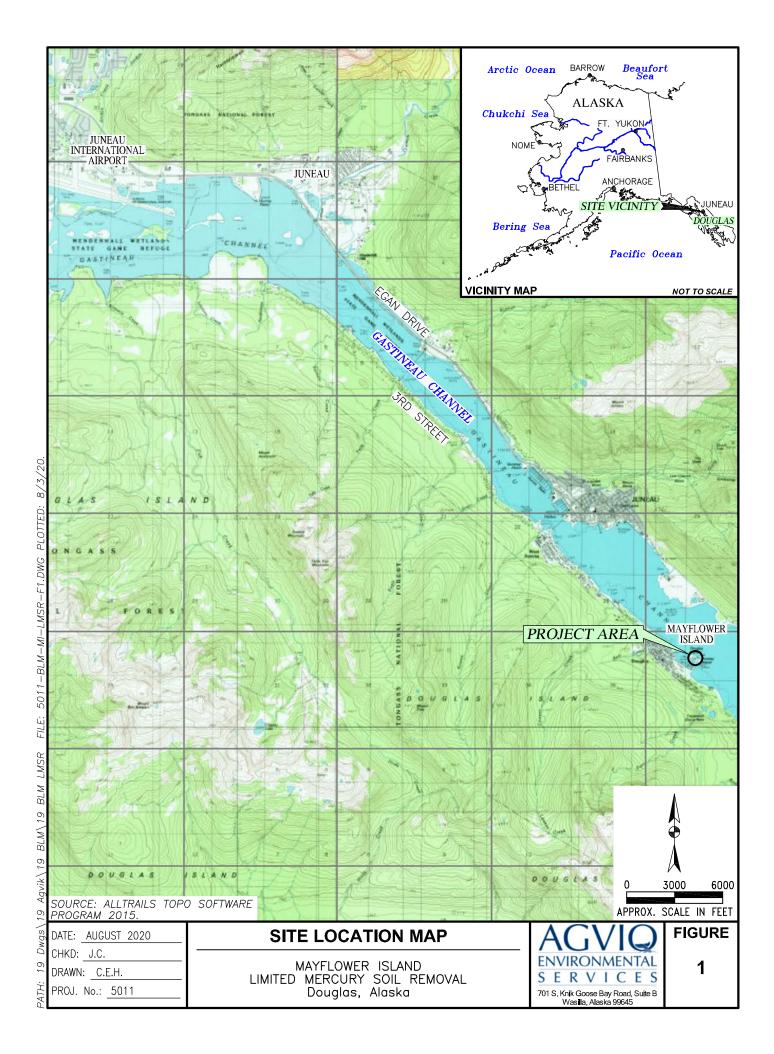
TABLE 1 SOIL ANALYTICAL RESULTS - MAY 2019 BUREAU OF LAND MANAGEMENT MAYFLOWER ISLAND, ALASKA MAYFLOWER ISLAND LIMITED MERCURY SOIL REMOVAL ACTION REPORT

		Client Sample Id:	5011-501		5011-501	
		Lab Sample Id:	1192683001		1192683002	
		Matrix:	Soil		Soil	
		Location:	Soil Drum		Soil Drum	
		Date Sampled:	5/17/2019		5/17/2019	
Analysis	Analyte	Unit	Result	IQ	Result	IQ
SM21 2540G	Total Solids	%	85.9		-	
SW6020A	Mercury	mg/Kg	2.22		-	
SW6020A TCLP	Mercury	mg/L	-		0.00500	U

Notes:

TCLP = toxicity characteristic leaching procedure

mg/Kg = milligrams per kilogram


mg/L = milligrams per liter


U = the analyte was analyzed for but not detected

FIGURES

5011-BLM-MI-LMSR-F2.DWG PLOTTED: 8/3/20. FILE: Aqvik\19 BLM\19 BLM\C 19 Dwas 19 PATH:

APPENDIX A: PHOTOGRAPHS

Appendix A Photographs

Photograph 1: June 6, 2018 Access down slope to outfall pipe from parking area

Photograph 2: June 6, 2018 Looking up slope from soil removal area to parking lot

BLM - Mayflower Island Soil Removal Action

Appendix A Photographs

Photograph 3: May 10, 2019 Assay lab outfall discharge pipe

Photograph 4: May 10, 2019 Cable system used to haul soil buckets from removal area to parking area

Photograph 5: May 10, 2019 Outfall pipe terminating above the high tide line

Photograph 6: May 10, 2019 Soil removal at discharge zone of removed pipe

BLM - Mayflower Island Soil Removal Action

Appendix A Photographs

Photograph 7: May 10, 2019 Weathered friable bedrock below removed soil

Photograph 8: May 10, 2019 All soil removed down to bedrock

APPENDIX B: ANALYTICAL LABORATORY REPORT

Laboratory Report of Analysis

To: AGVIQ Environmental Services (AES) 701 S. Knik Goodse Bay Rd., B Wasilla, AK 99654

Report Number: **1192683**

Client Project: Mayflower Island BLM

Dear Bill Loskutoff,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Chuck at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Chuck Homestead Project Manager Charles.Homestead@sgs.com Date

Print Date: 06/07/2019 4:42:20PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: AGVIQ Environmental Services (AES) SGS Project: 1192683 Project Name/Site: Mayflower Island BLM Project Contact: Bill Loskutoff

Refer to sample receipt form for information on sample condition.

LB1 for HBN 1794523 [TCLP/1006 (1510902) LB1

6020A - Metals analyte lead is detected in the LB at a concentration greater than half of the LOQ but less than the LOQ. The associated sample concentrations are less than the LOQ.

1192729006(1510842MS) (1510843) MS

6020A - Metals MS recoveries for barium and lead does not meet QC criteria. The post digestion spike was successful.

1192729006(1510842MSD) (1510844) MSD

6020A - Metals MSD recovery for lead does not meet QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 06/07/2019 4:42:21PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Report of Manual Integrations									
Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason					
SW8082A	SW8082A								
1510448	LCS for HBN 1794435 [XXX/41507	XGC10429	Aroclor-1016	SP					
1510453	1192729006MS	XGC10429	Aroclor-1016	SP					
1510454	1192729006MSD	XGC10429	Aroclor-1016	SP					
1510454	1192729006MSD	XGC10429	Aroclor-1260	SP					

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 06/07/2019 4:42:22PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 06/07/2019 4:42:23PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary								
<u>Client Sample ID</u> 5011-501	<u>Lab Sample ID</u> 1192683001	<u>Collected</u> 05/17/2019	<u>Received</u> 05/31/2019	<u>Matrix</u> Soil/Solid (dry weight)				
5011-501 Sublanding	1192683002 1192683003	05/17/2019 05/17/2019	05/31/2019 05/30/2019	Solid/Soil (Wet Weight) Soil/Solid (dry weight)				
Method Method Description SW6020A TCLP Metals by ICP-MS								
SW6020A SM21 2540G		Metals by ICP-MS (S) Percent Solids SM2540G						
SW8082A SW8082 PCB's								

Print Date: 06/07/2019 4:42:24PM

	Detectable Results Summ	ary		
Client Sample ID: 5011-501 Lab Sample ID: 1192683001 Metals by ICP/MS	<u>Parameter</u> Mercury	<u>Result</u> 2.22	<u>Units</u> mg/Kg	
Client Sample ID: Sublanding Lab Sample ID: 1192683003 Polychlorinated Biphenyls	<u>Parameter</u> Aroclor-1254	<u>Result</u> 390	<u>Units</u> ug/Kg	

Print Date: 06/07/2019 4:42:24PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of 5011-501							
Client Sample ID: 5011-501 Client Project ID: Mayflower Island B Lab Sample ID: 1192683001 Lab Project ID: 1192683	R M Se	ollection Da eceived Dat atrix: Soil/S olids (%):85 ocation:	e: 05/31/1 olid (dry we	9 12:32			
Results by Metals by ICP/MS Parameter Mercury	<u>Result Qual</u> 2.22	<u>LOQ/CL</u> 0.0873	<u>DL</u> 0.0218	<u>Units</u> mg/Kg	<u>DF</u> 10	<u>Allowable</u> Limits	Date Analyzed 06/04/19 16:35
Batch Information Analytical Batch: MMS10527 Analytical Method: SW6020A Analyst: DSH Analytical Date/Time: 06/04/19 16:35 Container ID: 1192683001-A		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW3050B ne: 06/04/19 t./Vol.: 1.06			

Print Date: 06/07/2019 4:42:25PM

J flagging is activated

Results of 5011-501							
Client Sample ID: 5011-501 Client Project ID: Mayflower Island E Lab Sample ID: 1192683002 Lab Project ID: 1192683	R M S	ollection Date ceived Date latrix: Solid/Solids (%): sociation:	e: 05/31/	19 12:32	2		
Results by TCLP Constituents Metals	s Result Qual	1.00/01		Unito	DE	Allowable	Date Analyzed
Mercury	0.00500 U	<u>LOQ/CL</u> 0.0100	<u>DL</u> 0.00310	<u>Units</u> mg/L	<u>DF</u> 25	<u>Limits</u> (<0.2)	06/06/19 16:38
Batch Information Analytical Batch: MMS10529 Analytical Method: SW6020A TCLP Analyst: DSH Analytical Date/Time: 06/06/19 16:38		I	Prep Batch: M Prep Method: Prep Date/Tin Prep Initial Wi	SW3010A ne: 06/05/1	19 07:30		

Print Date: 06/07/2019 4:42:25PM

J flagging is activated

Results of Sublanding

Client Sample ID: Sublanding Client Project ID: Mayflower Island B Lab Sample ID: 1192683003 Lab Project ID: 1192683	LM	Collection Date: 05/17/19 08:00 Received Date: 05/30/19 12:32 Matrix: Soil/Solid (dry weight) Solids (%):30.1 Location:								
Results by Polychlorinated Biphenyls										
						Allowable				
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed			
Aroclor-1016	82.0 U	164	41.0	ug/Kg	1		06/05/19 11:07			
Aroclor-1221	164 U	328	82.0	ug/Kg	1		06/05/19 11:07			
Aroclor-1232	82.0 U	164	41.0	ug/Kg	1		06/05/19 11:07			
Aroclor-1242	82.0 U	164	41.0	ug/Kg	1		06/05/19 11:07			
Aroclor-1248	82.0 U	164	41.0	ug/Kg	1		06/05/19 11:07			
Aroclor-1254	390	164	41.0	ug/Kg	1		06/05/19 11:07			
Aroclor-1260	82.0 U	164	41.0	ug/Kg	1		06/05/19 11:07			
Surrogates										
Decachlorobiphenyl (surr)	102	60-125		%	1		06/05/19 11:07			
Batch Information										
Analytical Batch: XGC10429 Analytical Method: SW8082A Analyst: CMC		F	Prep Method	XXX41507 d: SW3550C						
Analytical Date/Time: 06/05/19 11:07		Prep Date/Time: 06/03/19 11:45 Prep Initial Wt./Vol.: 22.774 g								
Container ID: 1192683003-A					5	Prep Extract Vol: 5 mL				

Print Date: 06/07/2019 4:42:25PM

J flagging is activated

SGS

I		l			
Method Blank					
Blank ID: LB1 for HBN 1794523 [TCLP/1006 Blank Lab ID: 1510902		Matrix	k: Solid/Soil (We	et Weight)	
QC for Samples: 1192683002					
Results by SW6020A TCLF)				
<u>Parameter</u> Mercury	<u>Results</u> 0.00200U	<u>LOQ/CL</u> 0.00400	<u>DL</u> 0.00124	<u>Units</u> mg/L	
Batch Information					
Analytical Batch: MMS105 Analytical Method: SW602 Instrument: Perkin Elmer N Analyst: DSH Analytical Date/Time: 6/6/2	IOA TCLP Nexlon P5	0200U 0.00400 0.00124 mg/L Prep Batch: MXT5813 Prep Method: SW3010A 5 Prep Date/Time: 6/5/2019 7:30:38 Prep Initial Wt./Vol.: 6.25 mL			

Print Date: 06/07/2019 4:42:26PM

SGS					
	Method Blank Blank ID: MB for HBN 1794541 [MXT/5813] Blank Lab ID: 1510974		k: Water (Surfac	e, Eff., Ground)	
QC for Samples: 1192683002					
Results by SW6020A T	CLP				
Parameter Mercury	<u>Results</u> 0.000500U	<u>LOQ/CL</u> 0.00100	<u>DL</u> 0.000310	<u>Units</u> mg/L	
Batch Information					
Analytical Batch: MMS10529 Analytical Method: SW6020A TCLP Instrument: Perkin Elmer Nexlon P5 Analyst: DSH Analytical Date/Time: 6/6/2019 3:23:33PM		Prep Me Prep Da Prep Ini	tch: MXT5813 ethod: SW3010A te/Time: 6/5/2019 tial Wt./Vol.: 25 m tract Vol: 25 mL		

Print Date: 06/07/2019 4:42:26PM

ank Spike Summary ank Spike ID: LCS fo ank Spike Lab ID: 13 ate Analyzed: 06/00	or HBN 1192683 510975	[MXT5813]						
	192683002			Matrix: Water (Surface, Eff., Ground)				
esults by SW6020A [·]	TCLP							
arameter ercury	<u>Spike</u> 0.01	Blank Spike <u>Result</u> 0.0104	(mg/L) <u>Rec (%)</u> 104	<u>CL</u> (70-124)				
Analytical Batch: MMS Analytical Method: SM Instrument: Perkin Elr Analyst: DSH	/6020A TCLP			Prep Batch: MXT5813 Prep Method: SW3010A Prep Date/Time: 06/05/2019 07:30 Spike Init Wt./Vol.: 0.01 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:				

-

Original Sample ID: 1510 MS Sample ID: 1510978 MSD Sample ID: 151097 QC for Samples: 119268	8 MS 79 MSD				Analysis Analysis	Date: 06 Date: 06	6/06/2019 6/06/2019 6/06/2019 (Wet Weig	15:37 15:42		
Results by SW6020A TC	LP	Mat	rix Spike (I	ma/L)	Spike	Duplicate	e (ma/L)			
<u>arameter</u> lercury	<u>Sample</u> 0.00200U	<u>Spike</u> 0.0400	<u>Result</u> .0379	<u>Rec (%)</u> 95	<u>Spike</u> 0.0400	Result	<u>Rec (%)</u> 102	<u>CL</u> 70-124	<u>RPD (%)</u> 7.44	<u>RPD CL</u> (< 20)
Batch Information Analytical Batch: MMS1(Analytical Method: SW6(Instrument: Perkin Elme Analyst: DSH Analytical Date/Time: 6/6	020A TCLP r Nexlon P5	M		Prep Prep Prep	Date/Tim Initial Wt	Waters D	19 7:30:38 5mL		P-MS(TCLF)

Print Date: 06/07/2019 4:42:29PM

	Method Blank			0-11/0-11-1-(-1-		
	Blank ID: MB for HBN 1794463 Blank Lab ID: 1510628	3 [MXX/32457]	Matrix	: Soil/Solid (dry	weight)	
	QC for Samples: 1192683001					
	1192003001					
_	Results by SW6020A					
	Parameter Mercury	<u>Results</u> 0.0400U	<u>LOQ/CL</u> 0.0800	<u>DL</u> 0.0200	<u>Units</u> mg/Kg	
-[Batch Information					
	Analytical Batch: MMS10527 Analytical Method: SW6020A Instrument: Perkin Elmer NexI Analyst: DSH Analytical Date/Time: 6/4/2019		Prep Met Prep Dat Prep Initi	ch: MXX32457 hod: SW3050B e/Time: 6/4/2019 al Wt./Vol.: 1 g ract Vol: 50 mL	9 7:45:57AM	

Print Date: 06/07/2019 4:42:30PM

SGS	

•				
Blank Spike Summary				
Blank Spike ID: LCS for HBt Blank Spike Lab ID: 151062 Date Analyzed: 06/04/2019	9	MXX3245	7]	Matrix: Soil/Solid (dry weight)
QC for Samples: 1192683	3001			
Results by SW6020A				
	BI	ank Spike	(mg/Kg)	
Parameter	Spike	<u>Result</u>	<u>Rec (%)</u>	CL
Mercury	0.5	0.500	100	(74-126)
Batch Information				
Analytical Batch: MMS10527 Analytical Method: SW6020A Instrument: Perkin Elmer Net Analyst: DSH	L.			Prep Batch: MXX32457 Prep Method: SW3050B Prep Date/Time: 06/04/2019 07:45 Spike Init Wt./Vol.: 0.5 mg/Kg Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:
Print Date: 06/07/2019 4:42:31PM				

-

Driginal Sample ID: 1510 AS Sample ID: 1510843 ASD Sample ID: 151084 ASD Sample ID: 151084 QC for Samples: 119268	3 MS 44 MSD		_		Analysis Analysis	Date: 06 Date: 06	6/04/2019 6/04/2019 6/04/2019 (Wet Weig	14:00 14:04		
Results by SW6020A		Mat	riv Spike (p		Caika	Duplicato	(ma/Ka)			
<u>arameter</u> ercury	<u>Sample</u> 0.0658J	<u>Spike</u> 0.482	rix Spike (n <u>Result</u> .499	<u>Rec (%)</u> 90	<u>Spike</u> 0.483	Duplicate Result 0.506	<u>Rec (%)</u>	<u>CL</u> 74-126	<u>RPD (%)</u> 1.33	<u>RPD CL</u> (< 20)
Batch Information Analytical Batch: MMS10 Analytical Method: SW60 Instrument: Perkin Elme Analyst: DSH Analytical Date/Time: 6/4	020A r Nexlon P5	M		Prep Prep Prep	Method: Date/Tim Initial Wt		ds Digest fo 19 7:45:57 4g		y ICP-MS	

Print Date: 06/07/2019 4:42:32PM

- Method Blank									
Blank ID: MB for HBN Blank Lab ID: 151064	1794469 [SPT/10783] 5	Matri	Matrix: Soil/Solid (dry weight)						
QC for Samples: 1192683001, 119268300	03	_							
Results by SM21 2540	G								
Parameter Total Solids	<u>Results</u> 100	LOQ/CL	<u>DL</u>	<u>Units</u> %					
Batch Information									
Analytical Batch: SP Analytical Method: S Instrument: Analyst: A.A Analytical Date/Time:	T10783 M21 2540G 6/3/2019 4:59:00PM								

Duplicate Sample Summa	ary								
Driginal Sample ID: 1192 Duplicate Sample ID: 151	664003 0646		Analysis Date: 06/03/2019 16:59 Matrix: Soil/Solid (dry weight)						
C for Samples:									
192683001, 1192683003	3								
Results by SM21 2540G									
NAME_	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL				
Fotal Solids	79.7	80.8	%	1.30	(< 15)				
Batch Information									
Analytical Batch: SPT1078 Analytical Method: SM212 Instrument: Analyst: A.A	3 2540G								

Print Date: 06/07/2019 4:42:33PM

uplicate Sample Summa	ary							
riginal Sample ID: 1192 uplicate Sample ID: 151			Analysis Date: 06/03/2019 16:59 Matrix: Soil/Solid (dry weight)					
C for Samples:								
192683001, 1192683003	3							
esults by SM21 2540G								
AME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL			
otal Solids	69.2	70.3	%	1.60	(< 15)			
atch Information								
Analytical Batch: SPT1078 Analytical Method: SM212 Instrument: Analyst: A.A	3 2540G							

Method Blank

Blank ID: MB for HBN 1794435 [XXX/41507] Blank Lab ID: 1510447

QC for Samples: 1192683003

Results by SW8082A

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	
Aroclor-1016	25.0U	50.0	12.5	ug/Kg	
Aroclor-1221	50.0U	100	25.0	ug/Kg	
Aroclor-1232	25.0U	50.0	12.5	ug/Kg	
Aroclor-1242	25.0U	50.0	12.5	ug/Kg	
Aroclor-1248	25.0U	50.0	12.5	ug/Kg	
Aroclor-1254	25.0U	50.0	12.5	ug/Kg	
Aroclor-1260	25.0U	50.0	12.5	ug/Kg	
Surrogates					
Decachlorobiphenyl (surr)	114	60-125		%	

Analytical Batch: XGC10429 Analytical Method: SW8082A Instrument: HP 6890 Series II ECD SV H F Analyst: CMC Analytical Date/Time: 6/4/2019 7:11:00PM Prep Batch: XXX41507 Prep Method: SW3550C Prep Date/Time: 6/3/2019 11:45:41AM Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Matrix: Soil/Solid (dry weight)

Print Date: 06/07/2019 4:42:35PM

Blank Spike ID: LCS for HBN 1192683 [XXX41507] Blank Spike Lab ID: 1510448 Date Analyzed: 06/04/2019 19:26 Matrix: Soil/Solid (dry weight) QC for Samples: 1192683003 Results by SW8082A Blank Spike (ug/Kg) Parameter Spike Result Aroclor-1016 222 189 85 (47-134) Aroclor-1260 222 209 94 (53-140) urrogates Decachlorobiphenyl (surr) 222 112 112 (60-125)					
Blank Spike Lab ID: 1510448 Date Analyzed: 06/04/2019 19:26 Matrix: Soil/Solid (dry weight) QC for Samples: 1192683003 Results by SW8082A Blank Spike (ug/Kg) Parameter Spike Aroclor-1016 222 222 209 94 Aroclor-1260 222 209 94 urrogates Decachlorobiphenyl (surr) 222 112 112 (60-125) Batch Information Analytical Batch: XGC10429 Prep Batch: XXX41507 Analytical Method: SW8082A Prep Method: SW30530C Prep Date/Time: 06/03/2019 11:45 Analytical Method: SW8082A Prep Date/Time: 06/03/2019 11:45 Spike Init Wt.Vol.: 222 ug/Kg Extract Vol: 5 mL	Blank Spike Summary				
QC for Samples: 1192683003 Results by SW8082A Blank Spike (ug/Kg) Parameter Spike Result Rec (%) CL Aroclor-1016 222 189 85 (47-134.) Aroclor-1260 222 209 94 (53-140.) urrogates Decachlorobiphenyl (surr) 222 112 112 (60-125.) Batch Information Analytical Batch: XGC10429 Prep Batch: XXX41507 Analytical Method: SW8082A Prep Method: SW3550C Instrument: HP 6890 Series II ECD SV H F Prep Date/Time: 06/03/2019 11:45 Analyst: CMC Spike Init Wt./Vol.: 222 ug/Kg Extract Vol: 5 mL	Blank Spike Lab ID: 151044	18	[XXX4150	7]	
Blank Spike (ug/Kg) Parameter Spike Result Rec (%) CL Aroclor-1016 222 189 85 (47-134) Aroclor-1260 222 209 94 (53-140) urrogates Decachlorobiphenyl (surr) 222 112 112 (60-125) Batch Information Prep Batch: XXX41507 Prep Method: SW3550C Instrument: HP 6690 Series II ECD SV H F Prep Date/Time: 06/03/2019 11:45 Analyst: CMC Spike Init Wt./Vol.: 222 ug/Kg Extract Vol: 5 mL	QC for Samples: 119268	3003			Matrix: Soil/Solid (dry weight)
Blank Spike (ug/Kg) Parameter Spike Result Rec (%) CL Aroclor-1016 222 189 85 (47-134) Aroclor-1260 222 209 94 (53-140) urrogates Use of the system of the syste					
Parameter Spike Result Rec (%) CL Aroclor-1016 222 189 85 (47-134) Aroclor-1260 222 209 94 (53-140) urrogates	Results by SW8082A				
Aroclor-1016 222 189 85 (47-134) Aroclor-1260 222 209 94 (53-140) urrogates					
Aroclor-1260 222 209 94 (53-140) urrogates Decachlorobiphenyl (surr) 222 112 112 (60-125) Batch Information Analytical Batch: XGC10429 Analytical Method: SW8082A Instrument: HP 6890 Series II ECD SV H F Analyst: CMC Prep Batch: XXX41507 Prep Date/Time: 06/03/2019 11:45 Spike Init Wt./Vol.: 222 ug/Kg Prex tract Vol: 5 mL					
urrogates Decachlorobiphenyl (surr) 22 112 (60-125) Batch Information Analytical Batch: XGC10429 Prep Batch: XXX41507 Analytical Method: SW8082A Prep Method: SW3550C Instrument: HP 6890 Series II ECD SV H F Prep Date/Time: 06/03/2019 11:45 Analyst: CMC Spike Init Wt./Vol.: 222 ug/Kg Extract Vol: 5 mL					
Decachlorobiphenyl (surr) 22 112 (60-125) Batch Information Prep Batch: XXX41507 Analytical Batch: XGC10429 Prep Batch: XXX41507 Analytical Method: SW8082A Prep Method: SW3550C Instrument: HP 6890 Series II ECD SV H F Prep Date/Time: 06/03/2019 11:45 Analyst: CMC Spike Init Wt./Vol.: 222 ug/Kg Extract Vol: 5 mL			203	54	(35-140)
Batch Information Analytical Batch: XGC10429 Analytical Method: SW8082A Instrument: HP 6890 Series II ECD SV H F Analyst: CMC Prep Date/Time: 06/03/2019 11:45 Spike Init Wt./Vol.: 222 ug/Kg Extract Vol: 5 mL		222	110	110	(00.405.)
Analytical Batch: XGC10429Prep Batch: XXX41507Analytical Method: SW8082APrep Method: SW3550CInstrument: HP 6890 Series II ECD SV H FPrep Date/Time: 06/03/2019 11:45Analyst: CMCSpike Init Wt./Vol.: 222 ug/Kg	Decachioropiphenyl (surr)		∠	112	(521-00)
Analytical Method:SW8082APrep Method:SW3550CInstrument:HP 6890 Series II ECD SV H FPrep Date/Time:06/03/201911:45Analyst:CMCSpike Init Wt./Vol.:222 ug/KgExtract Vol:5 mL	Batch Information				
	Analytical Method: SW8082/ Instrument: HP 6890 Series	4	F		Prep Method: SW3550C Prep Date/Time: 06/03/2019 11:45 Spike Init Wt./Vol.: 222 ug/Kg Extract Vol: 5 mL

Print Date: 06/07/2019 4:42:36PM

SG:

Matrix Spike Summary

Original Sample ID: 1192729006 MS Sample ID: 1510453 MS MSD Sample ID: 1510454 MSD

Analysis Date: 06/04/2019 19:41 Analysis Date: 06/04/2019 19:56 Analysis Date: 06/04/2019 20:11 Matrix: Soil/Solid (dry weight)

QC for Samples: 1192683003

Results by SW8082A										
-		Mat	rix Spike (ι	ug/Kg)	Spike	e Duplicate	(ug/Kg)			
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Aroclor-1016	38.8U	346	318	92	346	344	100	47-134	8.03	(< 30)
Aroclor-1260	38.8U	346	296	86	346	299	86	53-140	0.69	(< 30)
Surrogates										
Decachlorobiphenyl (surr)		346	366	106	346	380	110	60-125	3.59	

Batch Information

Analytical Batch: XGC10429 Analytical Method: SW8082A Instrument: HP 6890 Series II ECD SV H F Analyst: CMC Analytical Date/Time: 6/4/2019 7:56:00PM Prep Batch: XXX41507

Prep Method: Sonication Extraction Soil SW8080 PCB Prep Date/Time: 6/3/2019 11:45:41AM Prep Initial Wt./Vol.: 22.53g Prep Extract Vol: 5.00mL

Print Date: 06/07/2019 4:42:37PM

Locations Nationwide ka Maryland Jersey New York h Carolina Indiana t Virgina Kentucky <u>www.us.sgs.com</u>	t. Pare					REMARKS/ LOC ID						Data Deliverable Requirements:		I Instructions:		Chain of Custody Seal: (Circle)	INTACT BROKEN ABSENT (See attached Sample Receipt Form)		F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24
Locations Alaska New Jersey North Carolina West Virgina <u>www</u>	structions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	Preservative				D9			· · ·			Section 4 DOD Project? Yes No	Cooler ID:	Requested Turnaround Time and/or Special Instructions:		Temp Blank °C:	Ambient (L) Sample Receipt Form)	http://www.sgs.com/terms-and-conditions	F083-Kt
SGS North America Inc. CHAIN OF CUSTODY RECORD	Instructions: { Omissions m	Section 3	# U	0 Type C= ComP		s R Incre- mental Solis	そくべん										Received For Laboratory By:	5301 -1557	
92683 SGS NG SGS NG CHAIN OF	Hell	PHONE NO'ELT-489- 4036	1011 1 #1	E-MAIL: Drodule Firing , Wr	1 D X	DATE TIME MATRIX/ mm/dd/yy HH:MM CODE	V'	5/17/9 2830 521				Date Time Received By:	5/20/10 ()	Date Time Received By:	Date Time Received By:		Date Time Received Fo し、うっぱ)232	8 Tel: (907) 562-2343 Fax: (907) 561- 105 Tel: (910) 350-1903 Fax: (910) 350	
SGS 1192	CLIENT: A gyra BAVISAMENTE	CONTACT: DUMITIN Redu PHONI	B PROJECT May flaw of Island Projection 2010	REPORTS TO: Winited Acade		RESERVED SAMPLE IDENTIFICATION r	1424 5011- 3501 3	3.4 sublanding 2				Relinquished By: (1)		Relinquished By. (2)	Cior Relinquished By: (3)		De Relinquished By: (4)	 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557 	

Characterization of TCLP Samples for LIMS Login

Date Characterized: 05.31,19

Analyst: ELIE TOREWO

Sample Container ID:	Matrix	%	ls sufficient volume/mass available?	Notes:
2(83-24	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ? Yes / No / NA
	Water miscible (Middle layer = matrix 6)		Yes / No	Sample description/other observations: Soic and k
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	7/100%		yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ? Yes / No / NA
	Water miscible (Middle layer = matrix 6)		Yes / No	Sample description/other observations: **Are samples Glycol or Solvent in appearance or odor? If
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			yes schedule TCLP Metals matrix 6 acode.
f	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ? Yes / No / NA
	Water miscible (Middle layer = matrix 6)		Yes / No	Sample description/other observations: **Are samples Glycol or Solvent in appearance or odor? If
	Solid (Bottom layer = matrix 7 or 2 if % solids required)	• • • • • • • • • • • • • • • • • • •	-	yes schedule TCLP Metals matrix 6 acode.
	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ? Yes / No / NA
	Water miscible (Middle layer = matrix 6)		Yes / No	Sample description/other observations: **Are samples Glycol or Solvent in appearance or odor? If
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			yes schedule TCLP Metals matrix 6 acode.
<u></u>	Xylene miscible (Top layer * = matrix 3 **)			If multiple jars were received, were they consistent? Yes / No / NA If biphasic, was there only one layer with sufficient sample ? Yes / No / NA
	Water miscible (Middle layer = matrix 6)		Yes / No	Sample description/other observations: **Are samples Glycol or Solvent in appearance or odor? If
	Solid (Bottom layer = matrix 7 or 2 if % solids required)			yes schedule TCLP Metals matrix 6 acode.

Remember:

* = Chlorinated oils will be heavier than water and present as the bottom later.

** = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7. *** = Refer to F078 'Characterization of TCLP Samples for LIMS' to determine if there's sufficent volume/mass.

> Page 24 of 26 F079_Characterization_of_TCLP_Samples_for_LIMS_Login_20190404.xls

000	e-Samp	le Receipt	pt Form						
SGS	SGS Workorder #:	1	1926	83		9268			
	Review Criteria	Condition (Yes,	No, N/A	Exc	eptions Note				
Chai	n of Custody / Temperature Requir	ements	Y			er hand carries/delive	ers.		
	Were Custody Seals intact? Note # & I	ocation N/A	HD						
	COC accompanied sa	mples? Yes							
DOD: W	ere samples received in COC corresponding co	oolers?							
	Yes **Exemption permitted if c		-	rs ago, or for sam	ples where chilli	ng is not required			
Temp	perature blank compliant* (i.e., 0-6 °C afte	r CF)? N/A	Cooler ID:	1	@ <mark>Ambi</mark>	ent °C Therm. ID:			
			Cooler ID:		@	°C Therm. ID:			
	out a temperature blank, the "cooler temperature" will DLER TEMP" will be noted to the right. "ambient" or "c		Cooler ID:		@	°C Therm. ID:			
	ill be noted if neither is available.		Cooler ID:		@	°C Therm. ID:			
*	If >6°C, were samples collected <8 hours	ago? N/A	no chilling	g required					
	If <0°C, were sample containers ice	free? N/A							
		Line							
Note: Identity containe	rs received at non-compliant temperature form FS-0029 if more space is ne								
Holding Time	e / Documentation / Sample Condition Re	<u>quirements</u>	Note: Refe	r to form F-083 "S	Sample Guide" fo	or specific holding tin	nes.		
	Were samples received within holding	time? Yes							
			-						
-	COC** (i.e.,sample IDs,dates/times colle								
	s differ <1hr, record details & login per CC								
	n on containers differs from COC, SGS will default to								
	ests clear? (i.e., method is specified for an								
with	h multiple option for analysis (Ex: BTEX, M	/letals)							
				***Exemption	permitted for me	etals (e.g,200.8/6020	<u>)A).</u>		
vvere proper conta	ainers (type/mass/volume/preservative***)	used? Yes							
	Volatile / LL-Hg Requ	uirements							
Were Trip Bla	anks (i.e., VOAs, LL-Hg) in cooler with san								
	A vials free of headspace (i.e., bubbles ≤ 6								
	e all soil VOAs field extracted with MeOH+								
	o Client: Any "No", answer above indicates nor		with standa	rd procedures and	d may impact da	ta quality			
Note to					a may impaol da	a quanty.			
	Additional	<mark>l notes (if</mark> a	pplicable):					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> Condition	Container Id	<u>Preservative</u>	<u>Container</u> Condition
1192683001-A 1192683002-A 1192683003-A	No Preservative Required No Preservative Required No Preservative Required	ОК ОК ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized
- container and therefore was not suitable for analysis.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

APPENDIX C: SHIPPING MANIFEST AND CERTIFICATE OF DISPOSAL

									CWM
Please print or type.		474957) n Approved.	OMB No.	2050-00
UNIFORM HAZARDOUS	1. Generator ID Number VSQG	2. Page 1 of 3. Emer 3	rgency Response	Phone 24-9300	4. Manifest	Tracking N			
			1 /		an mailing addres		UI4.		
100 SAVIK									
DOUGLAS Generator's Phone:	AK 99824 (907)864-6162								
6. Transporter 1 Company Na	MARINE TRUCKING				U.S. EPAID I		000200	105	<u>,</u>
7. Transporter 2 Company Na					U.S. EPAID N		000260	100	
	MARINE LINES				1		0991281	809	
8. Designated Facility Name a		VASTE MANAGEMEN	T, INC.		U.S. EPAID /	Number			
(541)454 Facility's Phone:	17629 CEDAI -2643 ARLINGTON	R SPRINGS LANE OR 97812-9709				ORE)089452	353	
9a. 9b. U.S. DOT Descrip HM and Packing Group (ii	otion (including Proper Shipping Name, Hazard Clas If any))	ss, ID Number,	10. Contai No.	ners Type	11. Total Quantity	12. Unit Wt./Vol.	13.1	Vaste Code	15
1. UN3432. F	OLYCHLORINATED BIPHEN	VYLS, SOLID,		DM		K	X002		
	Q (MARINE POLLUTANT)	OR341907		CNA1	478	n	7.002	n.	
X X 2 ² UN2315, F 9, PGIL R	OLYCHLORINATED BIPHEN Q (MARINE POLLUTANT)	IYLS, LIQUID,	2	DM	052	ĸ	X002		
		OR341908			952				
	IAZARDOUS WASTE SOLID	, N.O.S.,	2	DM		 -	D009		
	1), 6, 1 Olli, 102	OR342794			362	K			
	OLYCHLORINATED BIPHEN Q (MARINE POLLUTANT)	VYLS, SOLID,	- 3	BA	1428	к	X002		-
	ч <i>р</i>	OR341908	2	AID					
15. GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the	COR'S CERTIFICATION: I hereby declare that the arded, and are in all respects in proper condition fo e contents of this consignment conform to the terms inimization statement identified in 40 CFR 262.27(a	contents of this consignment are fully a or transport according to applicable inter s of the attached EPA Acknowledgment	nd accurately de mational and nati of Consent.	scribed above onal governm	a by the proper sh nental regulations.	ipping nam	e, and are clas	sified, pack un the Prim	aged,
+ Lawrence	126		ZA.	N			11	04	29
16. International Shipments Transporter signature (for exp	Import to U.S.	Export from U.S.	Port of en Date leavi		0	_			
the second se	ent of Receipt of Materials		Date leave	19.0.	1	-	-		
Transporter 1 Printed/Typed N:	ame	Signature	2,11/	MAL	IM	r	Moni	h Day	Year
17. Transporter Acknowledgme Transporter 1 Printed/Typed N A MAT Transporter 2 Printed/Typed N	ame 11/1	7 Signature	roll	71	ton	_	Mon	th Day	Year
	uly Utthe	hh		A	ngen	_	1	45	219
18. Discrepancy 18a. Discrepancy Indication Sp	pace V Quantily	Туре	Residue	0	Partial Rej			Full Reje	ation
Page 20t	3 Line 27g. Pro	File OR341926 50	JM anifest Reference	Number:			-		ecuori
18b. Alternate Facility (or General Changed weights) Changed weights) WH Changed to 2 Facility's Phone:	to match Canadium manifest Per Bog as only 2 were shipp	r Domitru Radu/Gnuiron	Environmentel Pro	fessinal	US EPAID N	lumber		-	
Facility's Phone:	Boy as only Zwere shipp	,ex. (er bongitter			1	ULP- 1	01120		
18c. Signature of Alternate Fac 19. Hazardous Waste Report & 1.	allity (or Generator)						Mor	ith Day	/ Year
19. Hazardous Waste Report N	Management Method Codes (i.e., codes for hazardo	ous waste treatment, disposal, and recy 3.	ycling systems)		L4			_	
14132	HOYO	1. 1+110			HI	52			
20. Designated Facility Owner	or Operator: Certification of receipt of hazardous m	naterials covered by the manifest excep	ot as noted in Ilen	1 18	1000			11. 0	M
Rhinted/Typed Name		Signature		/			Mon	th Day	Year
	Y XII P		- /					124	178

se print or type.	4749	57			Form	Approved.	. OMB No. 2050-00
NIFORM HAZARDOUS WASTE MANIFEST (Continuation Sheet)	21. Generator ID Number VSQG	22. Page ∠ of 3	23. Manif 01	$\frac{378}{378}$	mber 14/1.	2 F	PLE
4. Generator's Name BUREAU OF LAND) MANAGEMENT						
25. Transporter 3 Company Name T	NC			U.S. EPAID	Number)980835	5664
6. Transporter Company Name UNIC	N PACIFIC RAILROAD			U.S. EPAID	Number	001792	910
 7a. 27b. U.S. DOT Description (including Proper Shi and Packing Group (if any)) 	pping Name, Hazard Class, ID Number,	28. Contai No.	iners Type	29. Total Quantity	30. Unit Wt./Vol.	31.1	Waste Codes
UN3432, POLYCHLORINATE	D BIPHENYLS, SOLID, JTANT) OR3419	MA 15 %	DM	2856	к	<u>x002</u>	
			<u> </u>				
					<u> </u>		
	3						
2. Special Handling Instructions and Additional Informa & & 5. PROFILE OR341906: PC	CB01 - PCB CONTAMINATED CC	NCRETE: E	 ERG # =	= 171: RQ) = 1 LE		<u></u>
)ut of service date:	CHEMTREC CCN: 24117	/					
3. Transporter Acknowledgment of Receipt of rinted/Typed Name	Materials Signat		4			Mo	onth Day Yea
I. Transporter 4 Acknowledgment of Receipt of		angr	nc	m			114/20 onth Day Yea
ninted Typed Name Malo	Signat	14.	Ma	le			onth Day Yea
Profile OR 341906	6 DM (Line 27a) section 25. KF 2/7/20	3					
	des (i.e., codes for hazardous waste treatment, disposal, au						
5 H132							
					.		

EPA Form 8700-22A (Rev. 12-17) Previous editions are obsolete.

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM

T - F

ł

Î	UN	FORM HAZARDOUS WASTE MANUF		4749	22. Page 2	23. 16	Hest Tracking He	unber	m Approve	
I	24.6				E lo	01	378	141	21	<u>-LE</u>
		Senerator's Name BUREAU OF L				۱	114/20 15 K	f 2/11	120	
	25. 1	Transporter Company Name	rinc Alexi	s Cardena.	s Allini	+ C 1	VILS. EPA ID	WAT	99083	
	26. T	ransporter Company Naroe	NION PACIFIC RA	ALROAD			U.S. EPA ID	NURED	001792	29:10
	HM	and Packing Group (if any))			28. Cointai No.	Type.	29. Total Quantity	30. Unit WL/Vii	. 31.	Waste Code
	X	N3432, POLYCHLORIN PGII, RQ (MARINE PO	ATED BIPHENYLS LLUTANT)	SOLID, ORMAN	61	DM	2856	к	<u>x602</u>	
	_									
5				<u> </u>					ſ	
OLIVERAL UN						-				
5										
ľ										
	+									
									10 - 24 -	- NARAN Rahi
						—––				1.1
┝										
3	2 Spe	cal Handling Instructions and Additional Info	malion					F		
1	18	5. PROFILE OR341906 F	CB01 - PCB CON	TAMINATED CON REC CCN, 24117	CRETE, E	₹G # =	171;: RQ -	= 1 LB;		
		donter Acknowledgment of Receipt	of Materials	Street-						
		PAT 2	3 S	122	angon	10	m	<u> </u>	Mont	n Day /113
3	S Dist	male		Signature	A. 1	m	la		Mont	
-	Pro	FIL OR 341906	5 DM	(Line 27a)	~ 1					
K And W	5. Hars	tious Waste Report Management Method C	odes (i.e., codes los hazairdous)	waste treament, disposal, and re	cycling systems)					
-	ł	T				9	388 - 		1	

22. Page 3 <u>of 3</u> 28. Conta No.	iners	U.S. EPA ID	Number ORD	9871734	
	iners	U.S. EPA ID	Number ORD		
			ORD	9871734	1 = 7
		U.S. EPA ID	Number		101
	Туре	29. Total Quantity	30. Unit Wt./Vol.	31. W	aste Codes
			1 1		
		1.1.1.1			
		h			
-					
	11	Imx	U	U3	03
/					<u> </u>
N/h	1-	m		Mon 17	
m		<u>/// </u>			<u> </u>
Far	PC	Jahb	in	Mon	th Day Y
	0		/	10	
ecycling systems)			1		
	ecycling systems)	Anne C	Jaw Gans	Frank Ganber	Frank Gahber 1

EPA Form 8700-22A (Rev. 12-17) Previous editions are obsolete.

CWM OF THE NORTHWEST Federal EPA ID: ORD089452353 17629 CEDAR SPRINGS LANE ARLINGTON, OR 97812

BUREAU OF LAND MANAGEMENT ATTN: MANIFEST SECTION AKZ000011109 100 SAVIKKO RD DOUGLAS AK 99824

CERTIFICATE OF DISPOSAL

CWM OF THE NORTHWEST, EPA ID: ORD089452353, has received waste material from BUREAU OF LAND MANAGEMENT on 01/23/20 as described on Shipping Document number 013781412FLE.

Profile Number: OR342794 CWM Tracking ID: 47495703 CWM Unit #: 1*0 thru 2*0 Disposal Date: 02/04/20

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above-described waste was managed in compliance with all applicable laws, regulations, permits and licenses on the date listed above.

te.

CWMNW RECORDS DEPARTMENT Certificate # 250533 08/07/20

APPENDIX D: CONCEPTUAL SITE MODEL

Human Health Conceptual Site Model Scoping Form

Site Name:	
File Number:	
Completed by:	

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, a CSM graphic and text must be submitted with the site characterization work plan.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

USTs	Vehicles									
ASTs	Landfills									
Dispensers/fuel loading racks	Transformers									
Drums	Other:									
Release Mechanisms (check potential release mechanisms at the site)										
	Direct discharge									
Leaks	Burning									
	Other:									
Impacted Media (check potentially-impacted medi	ia at the site)									
Surface soil (0-2 feet bgs [*])	Groundwater									
Subsurface Soil (>2 feet bgs)	Surface water									
Air	Other:									
Receptors (check receptors that could be affected b	by contamination at the site)									
Residents (adult or child)	Site visitor									
Commercial or industrial worker	Trespasser									
Construction worker	Recreational user									
Subsistence harvester (i.e., gathers wild foods)	Farmer									
Subsistence consumer (i.e., eats wild foods)	Other:									

2. **Exposure Pathways:** (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)

a)	Direct Contact – 1 Incidental Soil Ingestion									
	Is soil contaminated anywhere between 0 and 15 feet bgs?									
	Do people use the site or is there a chance they will use the site in the future?									
	If both boxes are checked, label this pathy	vay complete:								
	2 Dermal Absorption of Contaminant	s from Soil								
	Is soil contaminated anywhere between 0 and 15 feet bgs?									
	Do people use the site or is there a chance they will use the site in the future?									
	Can the soil contaminants permeate the skin? (Contaminants listed below, or within the groups listed below, should be evaluated for dermal absorption).									
	Arsenic	Lindane								
	Cadmium	PAHs								
	Chlordane	Pentachlorophenol								
	2,4-dichlorophenoxyacetic acid	PCBs								
	Dioxins	SVOCs								
	DDT									
	If all of the boxes are checked, label this p	pathway complete:								
b)	Ingestion – 1 Ingestion of Groundwater									
	Have contaminants been detected or are they expected to be detected in the groundwater, OR are contaminants expected to migrate to groundwater in the future?									

Could the potentially affected groundwater be used as a current or future drinking water source? *Please note, only leave the box unchecked if ADEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.*

If both the boxes are checked, label this pathway complete:

2 Ingestion of Surface Water

	Have contaminants been detected or are they expected to be detected in surface water OR are contaminants expected to migrate to surface water in the future?	
	Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? <i>Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).</i>	
	If both boxes are checked, label this pathway complete:	
	3 Ingestion of Wild Foods	
	Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild food?	
	Do the site contaminants have the potential to bioaccumulate (<i>see</i> Appendix A)?	
	Are site contaminants located where they would have the potential to be taken up into biota? (i.e. the top 6 feet of soil, in groundwater that could be connected to surface water, etc.)	
	If all of the boxes are checked, label this pathway complete:	_
c)	Inhalation 1 Inhalation of Outdoor Air	
	Is soil contaminated anywhere between 0 and 15 feet bgs?	
	Do people use the site or is there a chance they will use the site in the future?	
	Are the contaminants in soil volatile (See Appendix B)?	
	If all of the boxes are checked, label this pathway complete:	_
	2 Inhalation of Indoor Air	
	Are occupied buildings on the site or reasonably expected to be placed on the site in an area that could be affected by contaminant vapors? (i.e., within 100 feet, horizontally or vertically, of the contaminated soil or groundwater, <u>or</u> subject to "preferential pathways" that promote easy airflow, like utility conduits or rock fractures)	
	Are volatile compounds present in soil or groundwater (<i>See Appendix C</i>)? <i>If both boxes are checked, label this pathway complete:</i>	

3

3. Additional Exposure Pathways: (Although there are no definitive

questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- o Climate permits recreational use of waters for swimming,
- Climate permits exposure to groundwater during activities, such as construction, without protective clothing, or
- o Groundwater or surface water is used for household purposes.

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Volatile Compounds in Household Water

Exposure from this pathway may need to be assessed only in cases where DEC waterquality or drinking-water standards are not being applied as cleanup levels. Examples of conditions that may warrant further investigation include:

- The contaminated water is used for household purposes such as showering, laundering, and dish washing, and
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix B)

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Fugitive Dust

Generally DEC soil ingestion cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway, although this is not true in the case of chromium. Examples of conditions that may warrant further investigation include:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers. This size can be inhaled and would be of concern for determining if this pathway is complete.

Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during recreational or some types of subsistence activities. People then incidentally **ingest** sediment from normal hand-to-mouth activities. In addition, **dermal absorption of contaminants** may be of concern if people come in contact with sediment and the contaminants are able to permeate the skin (see dermal exposure to soil section). This type of exposure is rare but it should be investigated if:

- Climate permits recreational activities around sediment, and/or
- Community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

ADEC soil ingestion cleanup levels are protective of direct contact with sediment. If they are determined to be over-protective for sediment exposure at a particular site, other screening levels could be adopted or developed.

Check the box if further evaluation of this pathway is needed:

Comments:

4. Other Comments (Provide other comments as necessary to support the information provided in this form.)

APPENDIX A

BIOACCUMULATIVE COMPOUNDS

Table A-1: List of Compounds of Potential Concern for Bioaccumulation

Organic compounds are identified as bioaccumulative if they have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5. Inorganic compounds are identified as bioaccumulative if they are listed as such by EPA (2000). Those compounds in Table X of 18 AAC 75.345 that are bioaccumulative, based on the definition above, are listed below.

Aldrin	DDT	Lead
Arsenic	Dibenzo(a,h)anthracene	Mercury
Benzo(a)anthracene	Dieldrin	Methoxychlor
Benzo(a)pyrene	Dioxin	Nickel
Benzo(b)fluoranthene	Endrin	PCBs
Benzo(k)fluoranthene	Fluoranthene	
Cadmium	Heptachlor	Pyrene
Chlordane	Heptachlor epoxide	Selenium
Chrysene	Hexachlorobenzene	Silver
Copper	Hexachlorocyclopentadiene	Toxaphene
DDD	Indeno(1,2,3-c,d)pyrene	Zinc
DDE		

Because BCF values can relatively easily be measured or estimated, the BCF is frequently used to determine the potential for a chemical to bioaccumulate. A compound with a BCF greater than 1,000 is considered to bioaccumulate in tissue (EPA 2004b).

For inorganic compounds, the BCF approach has not been shown to be effective in estimating the compound's ability to bioaccumulate. Information available, either through scientific literature or site-specific data, regarding the bioaccumulative potential of an inorganic site contaminant should be used to determine if the pathway is complete.

The list was developed by including organic compounds that either have a BCF equal to or greater than 1,000 or a log K_{ow} greater than 3.5 and inorganic compounds that are

listed by the United States Environmental Protection Agency (EPA) as being bioaccumulative (EPA 2000). The BCF can also be estimated from a chemical's physical and chemical properties. A chemical's octanol-water partitioning coefficient (K_{ow}) along with defined regression equations can be used to estimate the BCF. EPA's Persistent, Bioaccumulative, and Toxic (PBT) Profiler (EPA 2004) can be used to estimate the BCF

using the K_{ow} and linear regressions presented by Meylan et al. (1996). The PBT Profiler is located at http://www.pbtprofiler.net/. For compounds not found in the PBT Profiler,

DEC recommends using a log K_{ow} greater than 3.5 to determine if a compound is bioaccumulative.

APPENDIX B

VOLATILE COMPOUNDS

Table B-1: List of Volatile Compounds of Potential Concern

Common volatile contaminants of concern at contaminated sites. A chemical is defined as volatile if the Henry's Law constant is 1×10^{-5} atm-m³/mol or greater and the molecular weight less than 200 g/mole (g/mole; EPA 2004a). Those compounds in Table X of 18 AAC 75.345 that are volatile, based on the definition above, are listed below.

Acenaphthene	1,4-dichlorobenzene	Pyrene
Acetone	1,1-dichloroethane	Styrene
Anthracene	1,2-dichloroethane	1,1,2,2-tetrachloroethane
Benzene	1,1-dichloroethylene	Tetrachloroethylene
Bis(2-chlorethyl)ether	Cis-1,2-dichloroethylene	Toluene
Bromodichloromethane	Trans-1,2-dichloroethylene	1,2,4-trichlorobenzene
Carbon disulfide	1,2-dichloropropane	1,1,1-trichloroethane
Carbon tetrachloride	1,3-dichloropropane	1,1,2-trichloroethane
Chlorobenzene	Ethylbenzene	Trichloroethylene
Chlorodibromomethane	Fluorene	Vinyl acetate
Chloroform	Methyl bromide	Vinyl chloride
2-chlorophenol	Methylene chloride	Xylenes
Cyanide	Naphthalene	GRO
1,2-dichlorobenzene	Nitrobenzene	DRO

APPENDIX C

COMPOUNDS OF CONCERN FOR VAPOR MIGRATION

Table C-1: List of Compounds of Potential Concern for the Vapor Migration

A chemical is considered sufficiently toxic if the vapor concentration of the pure component poses an incremental lifetime cancer risk greater than 10-6 or a non-cancer hazard index greater than 1. A chemical is considered sufficiently volatile if it's Henry's Law constant is $1 \ge 10^{-5}$ atm-m³/mol or greater.

	e if it's Henry's Law constant is 1 x 10			
Acenaphthene	Dibenzofuran	Hexachlorobenzene		
Acetaldehyde	1,2-Dibromo-3-chloropropane	Hexachlorocyclopentadiene		
Acetone	1,2-Dibromoethane (EDB)	Hexachloroethane		
Acetonitrile	1,3-Dichlorobenzene	Hexane		
Acetophenone	1,2-Dichlorobenzene	Hydrogen cyanide		
Acrolein	1,4-Dichlorobenzene	Isobutanol		
Acrylonitrile	2-Nitropropane	Mercury (elemental)		
Aldrin	N-Nitroso-di-n-butylamine	Methacrylonitrile		
alpha-HCH (alpha-BHC)	n-Propylbenzene	Methoxychlor		
Benzaldehyde	o-Nitrotoluene	Methyl acetate		
Benzene	o-Xylene	Methyl acrylate		
Benzo(b)fluoranthene	p-Xylene	Methyl bromide		
Benzylchloride	Pyrene	Methyl chloride chloromethane)		
beta-Chloronaphthalene	sec-Butylbenzene	Methylcyclohexane		
Biphenyl	Styrene	Methylene bromide		
Bis(2-chloroethyl)ether	tert-Butylbenzene	Methylene chloride		
Bis(2-chloroisopropyl)ether	1,1,1,2-Tetrachloroethane	Methylethylketone (2-butanone)		
Bis(chloromethyl)ether	1,1,2,2-Tetrachloroethane	Methylisobutylketone		
Bromodichloromethane	Tetrachloroethylene	Methylmethacrylate		
Bromoform	Dichlorodifluoromethane	2-Methylnaphthalene		
1,3-Butadiene	1,1-Dichloroethane	MTBE		
Carbon disulfide	1,2-Dichloroethane	m-Xylene		
Carbon tetrachloride	1,1-Dichloroethylene	Naphthalene		
Chlordane	1,2-Dichloropropane	n-Butylbenzene		
2-Chloro-1,3-butadiene	1,3-Dichloropropene	Nitrobenzene		
(chloroprene)				
Chlorobenzene	Dieldrin	Toluene		
1-Chlorobutane	Endosulfan	trans-1,2-Dichloroethylene		
Chlorodibromomethane	Epichlorohydrin	1,1,2-Trichloro-1,2,2-		
		trifluoroethane		
Chlorodifluoromethane	Ethyl ether	1,2,4-Trichlorobenzene		
Chloroethane (ethyl	Ethylacetate	1,1,2-Trichloroethane		
chloride)				
Chloroform	Ethylbenzene	1,1,1-Trichloroethane		
2-Chlorophenol	Ethylene oxide	Trichloroethylene		
2-Chloropropane	Ethylmethacrylate	Trichlorofluoromethane		
Chrysene	Fluorene	1,2,3-Trichloropropane		
cis-1,2-Dichloroethylene	Furan	1,2,4-Trimethylbenzene		
Crotonaldehyde (2-butenal)	Gamma-HCH (Lindane)	1,3,5-Trimethylbenzene		
Cumene	Heptachlor	Vinyl acetate		
DDE	Hexachloro-1,3-butadiene	Vinyl chloride (chloroethene)		
	•	· · · · /		

Source: EPA 2002.

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: Mayflower Island, Douglas, AK File No: 1538.38.003		<u>Instructions</u> : Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.							
Completed By: AES	ſ	use controls when describing path	iways.				permission and a second second	1923	-
(1) (2) Check the media that could be directly affected by the release. For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.	expos "F" fo future C	ify the reception of the reception of the receptors, a re	otors poi ay: Enter optors, " or "I" fo & Fu	er "C" for "C/F" for or insigni I ture	currer both c ficant e	nt recepto current ar exposure eptor	ors nd
Media Transport Mechanisms	Exposure Media	Exposure Pathway/Route	/	ren)	l user	vorke, bsiste	Oner	Incur	/
Direct release to surface soil check soil Surface Migration to subsurface check soil Soil Migration to groundwater check groundwater (0-2 ft bgs) Volatilization check arr			Residents (adults ons	Commercial or industrial workers Site visitors, the	Construction	Farmers or subsistence	Subsistence consin	Other	
Runoff or erosion check surface water		idental Soil Ingestion							
Uptake by plants or animals <u>check biota</u> Other (list):	soil Der	rmal Absorption of Contaminants from Soil							
		alation of Fugitive Dust		1			I		
Direct release to subsurface soil Check soil Subsurface Migration to groundwater Check groundwater Soil Volatilization Check arr (2-15 ft bgs) Uptake by plants or animals Check biota Other (list): Check list)	groundwater Der	estion of Groundwater rmal Absorption of Contaminants in Groundwater alation of Volatile Compounds in Tap Water							
Ground- water Flow to surface water body check surface water Check surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):		alation of Outdoor Air alation of Indoor Air alation of Fugitive Dust							
Direct release to surface water check surface water Surface Volatilization check air Water Sedimentation check sediment Uptake by plants or animals check biota	surface water Der	estion of Surface Water mal Absorption of Contaminants in Surface Water alation of Volatile Compounds in Tap Water							
Other (list): Direct release to sediment Check sediment Check sediment Check surface water		ect Contact with Sediment							
Uptake by plants or animals	biota Inge	estion of Wild or Farmed Foods							

Revised, 10/01/2010

APPENDIX E: ADEC LETTER AND RESPONSE TO COMMENTS ON DRAFT LIMITED MERCURY SOIL REMOVAL REPORT

DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites Program

> 555 Cordova Street Anchorage, AK 99501 Main: 907-269-7520 Fax: 907-269-7687 www.dec.alaska.gov

File No: 1525.38.026

June 16, 2020

Kyle Kraynak Bureau of Land Management 4700 BLM Road Anchorage, AK 99507

Re: ADEC Comments on "Mayflower Island Limited Soil Removal Remedial Action Report 100 Savikko Road Douglas, Alaska" Dated December 2019

Dear Mr. Kraynak:

The Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program received the above referenced document on May 14, 2020 via email. ADEC has reviewed the draft remedial action report and comments are summarized in the attached table. The report summarizes mercury contaminated soil excavation activities.

Please contact Rachael Petraeus at (907) 269-7520 or rachael.petraeus@alaska.gov with questions.

Sincerely,

Pachaelletracus

Rachael Petraeus Project Manager

Enclosure: ADEC Comments Table

END OF DOCUMENT