

SECOR INTERNATIONAL INCORPORATED www.secor.com

3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670 916-861-0400 TEL 916-861-0430 FAX

December 31, 2003

P . D . H .

MEULIVEL

Mr. Robert Weimer Alaska Department of Environmental Conservation 555 Cordova Street Anchorage, Alaska 99501

JAN 16 2004

DEPT. OF ENVIRONMENTAL CONSERVATIO

RE: Well Installation Report

Chevron Service Station 9-1252 11836 Old Glenn Highway Eagle River, Alaska

SECOR Project No.: 77CH.91252.00.0270

ADEC File # L1018

Dear Mr. Weimer:

SECOR International Incorporated (SECOR), on behalf of Chevron Environmental Management Company (Chevron), has prepared this letter to present recent monitoring well installation activities at the above referenced site (Figure 1). The wells were installed based on analytical data collected during a recent baseline assessment at the site. The work was performed in accordance with SECOR's *Work Plan for Well Installation*, dated August 15, 2003.

Site Description

Chevron Service Station 9-1252 is currently an active Chevron branded service station located at 11836 Old Glenn Highway in Eagle River, Alaska (Figure 2). Current station facilities include three 100,000-gallon single-walled fiberglass underground storage tanks (USTs), four dispenser islands and associated product and vent lines. The area surrounding the site consists of mixed residential and commercial land uses. A summary of previous investigations at the site is included as Attachment 1.

Site Assessment Activities

From September 2 to September 4, 2003, a SECOR representative supervised Discovery Drilling of Anchorage, Alaska, as they advanced the soil borings for monitoring wells MW-1 through MW-4 to approximately 23 to 45 feet below ground surface (bgs) at the general locations shown on Figure 2. Following drilling, the borings were converted to groundwater monitoring wells. Field and laboratory procedures are included in Attachment 2. Boring logs are presented as Attachment 3. Laboratory analytical reports are presented as Attachment 4.

Subsurface Conditions

The stratigraphy encountered during drilling consisted of gravely, silty and clayey sands, with silt and gravel. The stratigraphy encountered in the borings was generally consistent with the soils previously encountered. Groundwater was observed at approximately 18 to 37 feet bgs.

Soil Sampling Activities

One depth discrete soil sample was collected fro analysis from each boring near the capillary fringe which was approximately 16 to 36 feet. Diesel range organics (DRO) were detected at a concentration of 5.7 milligrams per kilogram (mg/kg) in well MW-4. Gasoline range organics (GRO)

SECOR

Mr. Robert Weimer December 31, 2003 Page 2

were detected in MW-1 at a concentration of 0.8 mg/kg. Toluene was detected in MW-1 at a concentration of 0.070 mg/kg. Total xylenes were detected in MW-1 at a concentration of 0.054 mg/kg. Benzene, ethyl-benzene and Methyl tertiary-butyl-ether (MtBE) constituents were reported below laboratory reporting limits in soil samples submitted for chemical analysis. A summary of soil analytical data is presented in Table 1.

The newly installed monitoring wells will be sampled during the second semi-annual monitoring and sampling event of 2003.

Should you have any questions or comments regarding this report, please feel free to contact Brian Silva at (916) 861-0400, extension 240.

Sincerely,

SECOR International Incorporated

Brian A. Silva Project Manager Roger K. Hoffmore Portfolio Manager

Enclosures:

Figure 1

Site Location Map

Figure 2

Site Plan

Table 1

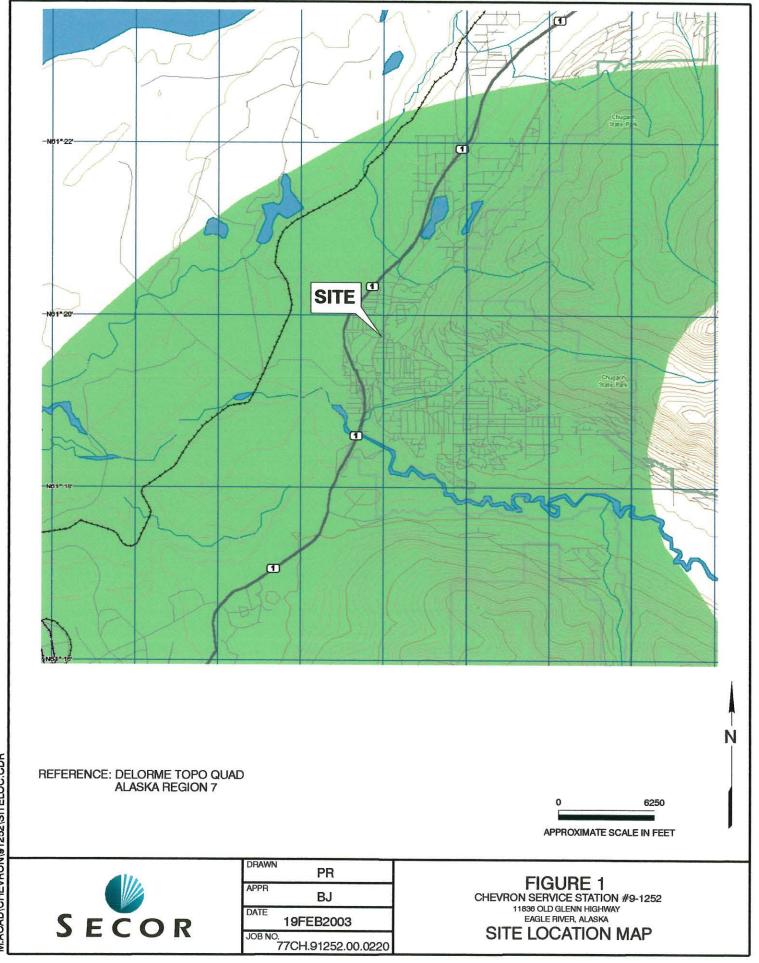
cc:

Soil Analytical Data

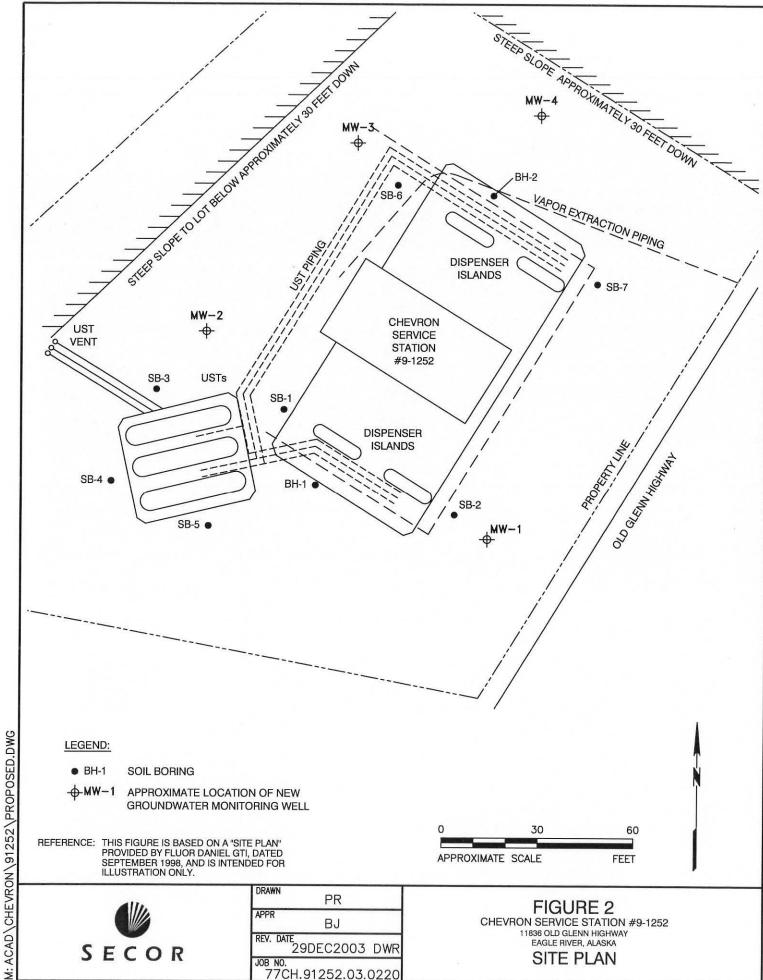
Attachment 1

Summary of Previous Investigations Field and Laboratory Procedures

Attachment 2 Attachment 3


Boring Logs

Attachment 4


Laboratory Analytical Results and Chain-of-Custody Documents

Robert J. Cochran, Chevron Environmental Management Company, San Ramon, CA

FIGURES

M:ACAD\CHEVRON\91252\SITELOC.CDR

SECOR

REV. DATE 29DEC2003 DWR JOB NO. 77CH.91252.03.0220

SITE PLAN

TABLES

Table 1 Soil Analytical Data

Chevron Service Station 9-1252 11836 Old Glenn Highway Eagle River, Alaska

Sample Location	Date	Depth (ft bgs)	DRO (mg/kg)	GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl Benzene (mg/kg)	Total Xylenes (mg/kg)	MtBE (mg/kg)
MW-1	9/2/03	16	<4.0	0.8	<0.031	0.070	<0.031	0.054	<0.031
MW-2	9/2/03	31	<4.0	<0.2	<0.025	<0.025	<0.025	< 0.025	<0.025
MW-3	9/4/03	35.5	<4.0	<0.3	< 0.027	<0.027	<0.027	<0.027	< 0.027
MW-4	9/3/03	36	5.7	<0.3	<0.028	<0.028	<0.028	<0.028	<0.028

Definitions:

ft bgs

DRO GRO MtBE = Diesel range organics = Gasoline range organics = Methyl tertiary butyl ether = Milligrams per kilogram = Feet below ground surface mg/kg

ATTACHMENT 1 SUMMARY OF PREVIOUS INVESTIGATIONS

Well Installation Report Chevron Service Station 9-1252 11836 Old Glenn Highway Eagle River, Alaska SECOR Project No.: 77CH.91252.00.0270

December 31, 2003

SUMMARY OF PREVIOUS INVESTIGATIONS

Chevron 9-1252, 11836 Old Glenn Highway, Eagle River, Alaska

Between August 29 and September 2, 1995, Groundwater Technology Incorporated (GTI) supervised the removal of three gasoline USTs, product lines and dispenser islands from the subject site. No detections of petroleum hydrocarbons were reported in soil samples collected beneath the USTs. Soil samples collected beneath the dispenser islands contained benzene and gasoline range organics (GRO) at concentrations above Alaska Department of Environmental Conservation soil cleanup levels. Maximum concentrations were reported as 0.72 and 1,100 milligrams per kilogram (mg/kg) benzene and GRO, respectively. Tables and figures summarizing the findings are located in GTI's report entitled *Underground Storage Tank Removal Assessment* dated November 3, 1995. Soil vapor extraction lines were installed in the vicinity of areas impacted with petroleum hydrocarbons. A high density polyethylene (HDPE) vapor extraction line was installed at approximately 2-1/2 feet below ground surface (bgs) along the area of the UST excavation.

On August 17, 1998, Fluor Daniel GTI (FDGTI) supervised the advancement of two soil borings (BH-1 and BH-2) at the subject site. Two soil samples were collected from each boring at depths ranging from approximately 15 to 40 feet bgs near the southwestern and northwestern dispenser islands. No detections of petroleum hydrocarbons were reported in submitted soil samples. Tables and figures summarizing the findings are located in FDGTI's report entitled *Release Investigation Report*, dated September 21, 1998.

Between February 28 and March 4, 2003, SECOR supervised the advancement of seven soil borings to a maximum depth of 30 feet bgs. Three to four soil samples and a grab groundwater sample were collected from each boring and submitted for analysis. GRO was reported in five samples at concentrations ranging from 0.78 mg/kg (SB-1 at 30 feet bgs) to 150 mg/kg (SB-1 at 20 feet bgs). Diesel range organics (DRO) were reported in seven samples at concentrations ranging from 5.6 mg/kg (SB-2 at 25 feet bgs) to 2,300 mg/kg (SB-2 at 20 feet bgs). Benzene was reported in two samples at concentrations of 0.002 mg/kg (SB-1 at 20 feet bgs) and 0.30 mg/kg (SB-2 at 20 feet bgs). Toluene was reported in three samples at concentrations of 0.001 mg/kg (SB-1 at 20 feet bgs and SB-7 at 17 feet bgs) and 0.003 mg/kg (SB-1 at 15 feet bgs). Ethylbenzene was reported in two samples at concentrations of 0.003 mg/kg (SB-2 at 15-1/2 feet bgs) and 0.15 mg/kg (SB-1 at 20 feet bgs). Ethylbenzene was reported in three samples at concentrations ranging from 0.005 mg/kg (SB-1 at 15 feet bgs and SB-2 at 15-1/2 feet bgs) and 0.21 mg/kg (SB-1 at 20 feet bgs). Total xylenes were reported in three samples at concentrations of 0.005 mg/kg (SB-1 at 15 feet bgs and SB-2 at 15 ½ feet bgs) to 0.21 mg/kg (SB-1 at 20 feet bgs). Methyl tertiary butyl ether (MtBE) was not detected in any of the soil samples submitted.

ATTACHMENT 2 FIELD AND LABORATORY PROCEDURES

Well Installation Report Chevron Service Station 9-1252 11836 Old Glenn Highway Eagle River, Alaska SECOR Project No.: 77CH.91252.00.0270

December 31, 2003

FIELD AND LABORATORY PROCEDURES

Chevron 9-1252, 11836 Old Glenn Highway, Eagle River, Alaska

Site Safety Plan

Prior to fieldwork, a Site Health and Safety Plan (SHSP) was prepared. The SHSP was prepared as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120) and the Alaska Department of Labor's General Safety Code, Section 01.0102 (8 AAC 61.010). The project manager, field staff and contractors reviewed the SHSP prior to beginning field operations.

Groundwater Monitoring Well Drilling

The soil borings for the monitoring wells were advanced using 8-inch hollow-stem auger drilling equipment to approximately 23 to 45 feet below ground surface (bgs). Soil samples were collected using a modified split spoon sampler. The sampler was driven ahead of the auger flights a maximum of 18 inches using a 340-pound hammer with a 30-inch drop. Soil samples for chemical analysis were collected in accordance with ADEC guidelines and shipped to an Alaska certified laboratory accompanied by chain-of-custody documentation. Down-hole drilling equipment was pressure-washed prior to and following the completion of the soil borings. Down-hole sampling equipment was washed in an AlconoxTM, or similar solution between samples.

Organic Vapor Monitoring Procedures

Soil samples collected at approximate 5-foot depth intervals during drilling were analyzed in the field for ionizable organic compounds using a photo-ionization detector (PID) with a 10.2 eV lamp. The test procedure involved measuring approximately 30 grams from an undisturbed soil sample and placing this sub-sample in a sealed container (either zip-lock bag or Mason jar). The container was warmed for no less than ten minutes in the sun, then the head-space within was tested for total organic vapor, measured in parts per million as benzene (ppm; volume/volume). The instrument was calibrated prior to drilling using a 100-ppm isobutylene standard (in air) and a sensitivity factor of 55, which relates the photo-ionization potential of benzene to that of isobutylene at 100 ppm. The results of the field screening were noted on boring logs. PID readings are useful for indicating relative levels of contamination, but cannot be used to evaluate hydrocarbon levels with the confidence of laboratory analyses.

Groundwater Monitoring Well Installation

The borings were converted to monitoring wells by installing a 2-inch diameter, flush-threaded, Schedule 40 PVC casing with 0.010 inch factory-slotted screen in each boring. Approximately 8 feet of screen was placed in the bottom of the boring. Graded sand, appropriate to the screen size, was placed in the annular space across the entire screened interval, and does not extend more than 1 foot above the top of the screened interval of the well. A bentonite seal extends from the sand pack to the well box. The well casing will be topped with a locking cap and the wellhead contained in a flush mount, traffic rated, watertight well box.

Laboratory Procedures

Selected soil samples and groundwater samples collected were analyzed for GRO (Gasoline Range Organics) by Alaska method AK 101, DRO (Diesel Range Organics) by Alaska method AK 102, BTEX (Benzene, Toluene, Ethylene, and total Xylenes), and Methyl tertiary Butyl Ether (MtBE) by EPA method 8260.

FIELD AND LABORATORY PROCEDURES

Chevron 9-1252, 11836 Old Glenn Highway, Eagle River, Alaska

Soil Cuttings and Rinsate Water

Soil cuttings generated during drilling operations were temporarily stored onsite at the Chevron facility location on and covered with Visqueen pending characterization and disposal. Soil cuttings were transported to an appropriate offsite disposal facility. Rinsate and purge water was temporarily stored onsite in 55-gallon drums pending characterization and disposal.

ATTACHMENT 3 BORING LOGS

Well Installation Report Chevron Service Station 9-1252 11836 Old Glenn Highway Eagle River, Alaska SECOR Project No.: 77CH.91252.00.0270 December 31, 2003

	Date Drilled:	1	ling Con	ry		Project Name: hevron #9-1252	I	Method/Equipr Hollow Stem A	Auger	00000	ll Number:
See "Legend to I sampling method classifications are testing methods		Bo Diar	Drillin oring n.(in.):	S	Uld Gleni urface ev.(ft.):	Hwy Eagle River, AK Groundwater Depth (ft.) ▼ 18 First Encountered ▼ 18.26 Static		Total Depth (ft.):	Drive wt.(lbs.)		Drop Dist.(in.):
Well Comple Details	Depth, (ft.)	Sample Recovery	Blows/6"			PID Readings (PPM)	Sample Time				
#10/20 Hydrate Bentoni Chips 2'' Diar Schedul PVC	d te 5- neter e 40 10-		10 12 28		Location woon 8/27/200 Gravelly Sa GRAVELI Tines; fine to	as vacuum cleared to 8' bg 03. and material observed during 0 coarse-grained sand; sub 10.25'' to 1'' in diameter; erial; dry to damp; medium	gs with ng util yish bro angula ; abunc	i use of pressur ity clearance a own (2.5Y 4/2) ar to subrounded	ctivities); trace ed; s andstone	0.0	955
2'' Dian 0.020'' Slotted Scyclule PVC	9		16 20 23 22 37 38	S to s	GRAVELLY SAND (SG): Dark yellowish brown (2.5Y 4/2); non plastic fines; fine to coarse-grained sand; subangular; gravel to 1'' in diameter; subangular; abundant broken up sandstone material; damp to moist; medium dense; no hydrocarbon odor; (40,50,10,0) SILTY SAND (SM): Olive gray (5Y 4/2); non plastic fines; fine to coarse-grained sand; subangular; gravels to 1'' in diameter; subrounded; wet; dense; slight possible product odor; (30,40,30,0) SANDY CLAY (CL): Very dark gray (5Y 3/1); low plasticity fines; fine to coarse-grained sand; subangular; gravels to 1.5'' in diameter; subrounded; broken-up massive near shoe; damp to moist; stiff; no hydrocarbon odor; (30,30,0,40)						1013

	Project No.	77CH.91252.00.0250Date	September	2003
--	-------------	------------------------	-----------	------

Log of Well

#9-1252.GPJ LOG OF BOREHOLE

Approved by

Figure MW-1 (sheet 1 of 1)

S. Coyle	Date Dri 9/2/0)3		lling Con Discove Drillin	ry	Chevron #9-1252 Hollow Stem A Old Glenn Hwy Eagle River, AK CME-75				er		Il Number				
See "Legend to l sampling method classifications are testing methods	d.		Diar	oring m.(in.): 8		Surface Elev.(ft.): ☐ Groundwater Depth (ft.): ☐ 36 First Encountered ☐ 32.23 Static ☐ Total ☐ Depth (ft.): ☐ 40.0					Elev.(ft.): ∇ 36 First Encountered Depth (ft.): wt.(lbs.		Drive vt.(lbs.):		Drop Dist.(in.):	
Well Comple Details	etion	Depth, (ft.)	Sample Recovery	Blows/6"		Description					Sample Name	Sample Time				
#10/20 Hydrate Bentoni Chips 2'' Diar Schedul PVC	ed ite	5—		2 4 6 5 18 15 13 16 18		Location values and the color of the color o	was vacuum cleared to 8' bg 8/27/2003. Sand material observed during the service of the service	brown (2.5Y 3/3) d sand; subangular to oken-up rock matedium dense; no 10YR 3/3) to dark s; fine to rounded; gravel to unded; medium odor; (15,50,0,35) brown (2.5Y 3/3); subangular to lant broken up use; no hydrocarbo (4/2); low to medium d; subangular to c; stiff; moist; no 10 (5Y 3/1); low to sand; suba	to rial;	0.0		1255 1316				

Project No.	77CH.91	1252.00.	0250 Date	September 2	2003

Log of Well

Approved by

#9-1252.GPJ LOG OF BOREHOLE

Figure MW-2 (sheet 1 of 2)

Logged By: S. Coyle	9/2/03		illing Cor Discove Drillin	ry	Project Name: Chevron #9-1252 Old Glenn Hwy Eagle River, AK Method/Equipme Hollow Stem At CME-75					121.1 422	Il Number: 1W-2
See "Legend to sampling meth classifications testing method	iod, and laborate	Dia	Boring am.(in.):		Surface Elev.(ft.): □ Groundwater Depth (ft.): □ 36 First Encountered 32.23 Static □ Total Depth (ft.): wt.(lbs. 40.0 340			Drop Dist.(in.):			
Well Comp Details	letion	Depth, (ft.) Sample Recovery	Blows/6"			Description			PID Readings (PPM)	Sample Name	Sample Time
	ameter d d ale 40	30	10 18 16 10 11 11 14 12 12 12 18		SILTY SA plastic fine coarse-grai in diameter odor; (15,7)	AND (SM): Dark olive brity fines; fine to coarse-gided; gravels to 1.25" in terial at 30.5"; moist; med on odor; (25,65,0,10) AND (SM): Very dark grapes; fine to coarse-grained ined; subangular to subror; subrounded; medium d	own (2 grained diamete dium de	3/1); non to low oredominantly gravels to 0.75"	0.0	MW-2 -31'	1350 1410 1450

Project No.	77CH.9	1252.00	.0250 Date	September	r 2003

Log of Well

#9-1252.GPJ LOG OF BOREHOLE Approved by

Figure MW-2 (sheet 2 of 2)

9/3 S. Coyle 9/4	Drilled: 6/03 6/03	I	ling Con Discove Drillin	ry		Project Name: Chevron #9-1252 In Hwy Eagle River, AK		ethod/Equipa llow Stem A CME-75	Auger		ll Number:
See "Legend to Logs" sampling method, classifications and lab- testing methods		Dian	oring n.(in.): 8		urface ev.(ft.):	Groundwater Depth (ft.) ✓ 33 First Encountered ✓ 34.28 Static): d I	Total Depth (ft.): 38.0	Drive wt.(lbs.)	: 1	Drop Dist.(in.):
Well Completion Details	Depth, (ft.)	Sample Recovery	Blows/6"		Description Description						Sample Time
Hydrated Bentonite Chips 2'' Diameter Schedule 40 PVC	10—		2 1 4 9 12 7 24 51		Note: Mini Of samplers Gravelly S Note: Mini Of samplers Gravelly S CLAYEY Fines; fine to subangular subrounded near shoe of (15,50,0,35) Note: Tought boulder subrounder subr	and material observed during a mal recovery in 10' to 11.5; small amount of and (SG): dark grayish browned sand; subangular to subounded; damp; loose; no hysto medium-grained sand; transcript to subrounded; gravels 0.2; broken up sandstone cobif sampler; medium dense;	gs with using utility 3' sample 5' sample 5' sample 6' sy 4/3 6' ace coars 6' to 1.5' 6' ble and p 6' damp; no 6' sy 3/2) 6' ar to subrect of the subrect of the subrect of the subrect of the system of t	clearance a ; large cobb y 4/2); fine t; gravels to on odor; (30 grained; '' in diame ieces of qua o hydrocarbo untered a lar ; non plastic ounded; gra ots; trace ar noist; mediu 0) 5 Y 3/3); no ubangular te	ole in shoe to 1'' in 0,70,0,0) ticity ter; artzite on odor; rge cobble c fines; avels to 1' eas of um dense	0.0	1050 1105

Project No. 77CH.91252.00.0250 Date September 20	Project No.	77CH.9	1252.00	.0250 Date	September	200
--	-------------	--------	---------	------------	-----------	-----

Log of Well

#9-1252.GPJ LOG OF BOREHOLE

Approved by	- to remove de los

Logged By: Dates I 9/3/ S. Coyle 9/4/	03	Drilling Cor Discove Drillin	ery		hevi	oject Name: ron #9-1252 wy Eagle River, AK		Method/Equipm Hollow Stem A CME-75			Il Number:
See "Legend to Logs" f sampling method, classifications and labo testing methods	1.3	Boring Diam.(in.):	S	urface ev.(ft.):		Groundwater Depth (fit 33 First Encountered)	t.):	Total Depth (ft.): 38.0	Drive wt.(lbs.)		Drop Dist.(in.):
Well Completion Details	Depth, (ft.)	Sample Recovery Blows/6"				Descriptio	n	\$		PID Readings (PPM)	Sample Time
#10/20 Sand 2'' Diameter 0.020'' Slotted Schdule 40 PVC *** *** *** *** *** *** ***	30— 35— 40— 45— -	8 11 16 24 28 23 97		SILTY SA fines; fine t gravels to 1 damp; medis SANDY GENERAL SILTY SA to coarse-gravels to 1 hydrocarbo. Note: Had t with augers	ND o co .5" ium RAV	(SM): Dark gray (2.5 parse-grained sand; su in diameter; subroun dense; no hydrocarbo VEL (GS): Same as a (SM): Dark gray (2.5 ed sand; subangular to in diameter; subroulor; (20,55,25,0) se air hammer to get to approximately 38' bgs.	by 4/1) bangu ded; non odo at 25' for y 4/1) by subro nded; no 39' to	o; non to low pla lar to subrounde on to low plastic r; (20,60,20,0) eet	es; fine stic fines; se; no	0.0	1200

Project No	77CH 9	1252 00	0250 Date	September	2003
FIGICALING.	1/011.7	1434.00	UZSUDAIC	Schreinber	4000

Log of Well

#9-1252.GPJ LOG OF BOREHOLE

Approved by

Figure MW-3 (sheet 2 of 2)

SECOR International Incorporated

S. Coyle 9/3	Drilled: 6/03 6/03	1	ling Cor Discove Drillin	ry	Project Name: Chevron #9-1252 Old Glenn Hwy Eagle River, AK Urrface ev.(ft.): Groundwater Depth (ft.): Groundwater Depth (ft.): 37 First Encountered 35.13 Static Method/Equipment: Hollow Stem Auger CME-75 Total Depth (ft.): wt.(lbs.) 44.5 340					Well Number: MW-4	
See "Legend to Logs" sampling method, classifications and lab esting methods		Diar	oring n.(in.): 8					Drop Dist.(in.):			
Well Completion Details	Depth, (ft.)	Sample Recovery	Blows/6"		Description				Sample Name	Sample Time	
#10/20 Sand Hydrated Bentonite Chips 2'' Diameter Schedule 40 PVC	10-		10 21 22 3 11 15		GRAVELI gravels to 1 30,5,65,0) GRAVELI gravels to 1 30,5,65,0) SILTY SA blastic fines diameter; de	and material with fines obsectivities. Dark gray (2.5Y 4/1); ce; trace sand; dry; stiff; no e; trace sand; dry; stiff; no solution of the same of the	gs with use of presserved during utility and the served during utility are the served during utility are the served during utility a	y		907	

The substrata descriptions above are generalized representations and based upon visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

Desired M.	TTCITC	11252 00 (1250D	September	2002
Project No.	//(1 454.00.0	1250Date	Seniember	ZUULO

Log of Well

#9-1252.GPJ LOG OF BOREHOLE

Approved by

Figure MW-4 (sheet 1 of 2)

SECOR International Incorporated

Logged By: S. Coyle	Dates Di 9/3/0 9/4/0)3		lling Con Discove Drillin	ry	C Old Glen	Project Name: Chevron #9-1252 n Hwy Eagle River, AK	Method/Equipment: Hollow Stem Auger CME-75		250300	Well Number:				
See "Legend to sampling meth classifications testing method	od, and labor	atory	Dia	oring m.(in.):		Groundwater Depth (ft.): Very 37 First Encountered 35.13 Static Groundwater Depth (ft.): Total Depth (ft.): wt.(lbs		Encountered Depth (ft.):			Drop Dist.(in.):				
Well Comp Details		Depth, (ft.)	Sample Recovery	Blows/6"		PID Readings				PID Readings (PPM)				Sample Name	Sample Time
				17 28 50		to low plas to subround	ND (SM): Dark grayish br tic fines; fine to coarse-gra ded; trace broken-up coal n lium dense; no hydrocarbor	0.0		1145					
		30-		35 100		(2.5Y 4/4); sand; subar staining; gr black coal;	ND (SM): Dark gray (2.5Y) non to low plastic fines; fingular to subrounded; trace ravels to 1'' in diameter; subroken-up cobble in shoe onse to dense; no hydrocarb	ne to coarse-grained strong brown oxide brounded; pockets of of sampler; moist;	0.0		1210				
#10/20 ▼		35—	X	37 100		SILTY SAND (SM): Dark gray (GLEY1 4/1); non plastic fines well mottled; fine to coarse-grained sand; subangular to subrounded; gravels to 1'' in diameter; subrounded to rounded; damp to moist; dense to very dense; no hydrocarbon odor; (15,50,35,0)				MW-4 -36'	1250				
Slottec Schdu PVC	1	40		100 for 2''	1	cobble in stocing carry Note: Drille	oler returned with minimal noe of sampler; small amou down material resembling er reports very tough drillin used to break through to 44	nt of sample possibly soil at 35' bgs g at 40' bgs; air			1310				
		45—			I	Boring Terr	minated at 44.5 feet bgs.								

The substrata descriptions above are generalized representations and based upon visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

Project No. 77CH.91252.00.0250Date September 2003

Log of Well

#9-1252.GPJ LOG OF BOREHOLE Approved by

Figure MW-4 (sheet 2 of 2)

ATTACHMENT 4 LABORATORY ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTS

Well Installation Report Chevron Service Station 9-1252 11836 Old Glenn Highway Eagle River, Alaska

SECOR Project No.: 77CH.91252.00.0270

December 31, 2003

Analysis Report

91252 ENTERED SEP 2 5 2003

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco 6001 Bollinger Canyon Rd L4310

> San Ramon CA 94583 925-842-8582

> > Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 866063. Samples arrived at the laboratory on Saturday, September 06, 2003. The PO# for this group is 99011184 and the release number is COCHRAN.

Client Description	Lancaster Labs Number
MW-1-16' Grab Soil Sample	4116968
MW-2-31' Grab Soil Sample	4116969
MW-3-35.5' Grab Soil Sample	4116970
MW-4-36' Grab Soil Sample	4116971
Trip Blank Methanol Sample	4116972

1 COPY TO

Secor International, Inc.

Attn: Mr. Brian Silva

Questions? Contact your Client Services Representative Teresa L Cunningham at (717) 656-2300.

Respectfully Submitted,

RECEIVED SEP 2 4 7003

S. Chemist/Coordinator

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. SW 4116968

Collected: 09/02/2003 10:13 by SC Account Number: 10869

Submitted: 09/06/2003 11:00 ChevronTexaco

Reported: 09/22/2003 at 14:55 6001 Bollinger Canyon Rd L4310

Discard: 10/23/2003

MW-1-16' Grab Soil Sample San Ramon CA 94583

Facility# 91252

11836 Old Glenn Highway; Eagle River, AK

OGH16

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01450	Alaska AK101 GRO (soils)	n.a.	0.8	0.3	mg/kg	15
	Site-specific MS/MSD samples was performed to demonstrate p					
01742	TPH-DRO (AK) in soil	n.a.	N.D.	4.0	mg/kg	1
07360	BTEX+MTBE by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.031	mg/kg	31.38
05460	Benzene	71-43-2	N.D.	0.031	mg/kg	31.38
05466	Toluene	108-88-3	0.070	0.031	mg/kg	31.38
05474	Ethylbenzene	100-41-4	N.D.	0.031	mg/kg	31.38
06301	Xylene (Total)	1330-20-7	0.054	0.031	mg/kg	31.38
	The analysis for volatiles was in methanol. The reporting li					

Site-specific MS/MSD samples were not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

State of Alaska Lab Certification No. UST-061

Laboratory Chronicle

		. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
CAT				Analysis		Dilution
No.	Analysis Name	Method	Frial#	Date and Time	Analyst	Factor
01450	Alaska AK101 GRO (soils)	AK101 GRO	1	09/09/2003 18:45	Steven A Skiles	15
01742	TPH-DRO (AK) in soil	Alaska 102/103 Version 4/8/02	1	09/21/2003 21:48	Robert Brown	1
07360	BTEX+MTBE by 8260B	SW-846 8260B	1	09/09/2003 00:13	Parker D Lindstrom	31.38
04833	Extraction / Fuel TPH (Soils)	Alaska 102/103 Version 4/8/02	1	09/13/2003 06:10	Kenneth A Yingst	1

Lancaster Laboratories Sample No. SW 4116969

Collected: 09/02/2003 14:10 by SC

Account Number: 10869

6001 Bollinger Canyon Rd L4310

Submitted: 09/06/2003 11:00

Reported: 09/22/2003 at 14:55

Discard: 10/23/2003

MW-2-31' Grab Soil Sample

Facility# 91252

11836 Old Glenn Highway; Eagle River, AK

San Ramon CA 94583

ChevronTexaco

OGH31

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01450	Alaska AK101 GRO (soils)	n.a.	N.D.	0.2	mg/kg	11.5
	Site-specific MS/MSD samples		* -			
	was performed to demonstrate	precision and ac	ccuracy at a bato	ch level.		
01742	TPH-DRO (AK) in soil	n.a.	N.D.	4.0	mg/kg	1
07360	BTEX+MTBE by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.025	mg/kg	25.36
05460	Benzene	71-43-2	N.D.	0.025	mg/kg	25.36
05466	Toluene	108-88-3	N.D.	0.025	mg/kg	25.36
05474	Ethylbenzene	100-41-4	N.D.	0.025	mg/kg	25.36
06301	Xylene (Total)	1330-20-7	N.D.	0.025	mg/kg	25.36
	The analysis for volatiles wa in methanol. The reporting 1					

Site-specific MS/MSD samples were not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

State of Alaska Lab Certification No. UST-061

- 1	~1 1
Ishorstori	7 (hroniclo
Laborator 1	/ Chronicle

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01450	Alaska AK101 GRO (soils)	AK101 GRO	1	09/09/2003 19:22	Steven A Skiles	11.5
01742	TPH-DRO (AK) in soil	Alaska 102/103 Version 4/8/02	n 1	09/21/2003 22:18	Robert Brown	1
07360	BTEX+MTBE by 8260B	SW-846 8260B	1	09/09/2003 00:39	Parker D Lindstrom	25.36
04833	Extraction / Fuel TPH (Soils)	Alaska 102/103 Version 4/8/02	n 1	09/13/2003 06:10	Kenneth A Yingst	1

Lancaster Laboratories Sample No. SW 4116970

Collected: 09/04/2003 12:45

by SC

Account Number: 10869

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

ChevronTexaco

Submitted: 09/06/2003 11:00

Reported: 09/22/2003 at 14:55

Discard: 10/23/2003

MW-3-35.5' Grab Soil Sample

Facility# 91252

11836 Old Glenn Highway; Eagle River, AK

OGH35 As Received

CAT As Received Method Dilution CAS Number Detection Units Factor Analysis Name Result No. Limit 01450 Alaska AK101 GRO (soils) N.D. 13.3 0.3 mg/kg n.a. Site-specific MS/MSD samples were not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level. 01742 TPH-DRO (AK) in soil N.D. mg/kg 1 n.a. 07360 BTEX+MTBE by 8260B 1634-04-4 0.027 26.57 02016 Methyl Tertiary Butyl Ether N.D. mg/kg 71-43-2 0.027 05460 Benzene N.D. mg/kg 26.57 108-88-3 0.027 05466 Toluene N.D. mg/kg 26.57 100-41-4 0.027 26.57 05474 Ethylbenzene N.D. mg/kg 06301 Xylene (Total) 1330-20-7 N.D. mg/kg 26.57 The analysis for volatiles was performed on a sample which was preserved in methanol. The reporting limits were adjusted appropriately.

Site-specific MS/MSD samples were not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

State of Alaska Lab Certification No. UST-061

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01450	Alaska AK101 GRO (soils)	AK101 GRO	1	09/09/2003 20:00	Steven A Skiles	13.3
01742	TPH-DRO (AK) in soil	Alaska 102/103 Version 4/8/02	1	09/21/2003 22:48	Robert Brown	1
07360	BTEX+MTBE by 8260B	SW-846 8260B	1	09/09/2003 01:05	Parker D Lindstrom	26.57
04833	Extraction / Fuel TPH (Soils)	Alaska 102/103 Version 4/8/02	1	09/13/2003 06:10	Kenneth A Yingst	1

Lancaster Laboratories Sample No. 4116971

Collected: 09/03/2003 12:50

by SC

Account Number: 10869

6001 Bollinger Canyon Rd L4310

Submitted: 09/06/2003 11:00

Reported: 09/22/2003 at 14:55

Discard: 10/23/2003

MW-4-36' Grab Soil Sample

Facility# 91252

11836 Old Glenn Highway; Eagle River, AK

San Ramon CA 94583

ChevronTexaco

OGH36

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01450	Alaska AK101 GRO (soils)	n.a.	N.D.	0.3	mg/kg	13
	Site-specific MS/MSD samples					
	was performed to demonstrate	precision and ac	ccuracy at a bato	ch level.		
01742	TPH-DRO (AK) in soil	n.a.	5.7	4.0	mg/kg	1
07360	BTEX+MTBE by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.028	mg/kg	27.91
05460	Benzene	71-43-2	N.D.	0.028	mg/kg	27.91
05466	Toluene	108-88-3	N.D.	0.028	mg/kg	27.91
05474	Ethylbenzene	100-41-4	N.D.	0.028	mg/kg	27.91
06301	Xylene (Total)	1330-20-7	N.D.	0.028	mg/kg	27.91
	The analysis for volatiles was					
	in methanol. The reporting 1:	imits were adjus	sted appropriatel	у.		

Site-specific MS/MSD samples were not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

State of Alaska Lab Certification No. UST-061

T 1	~1 7
Lahoratori	/ Chronicle
Haboratori	

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Crial#	Date and Time	Analyst	Factor
01450	Alaska AK101 GRO (soils)	AK101 GRO	1	09/09/2003 20:37	Steven A Skiles	13
01742	TPH-DRO (AK) in soil	Alaska 102/103 Version 4/8/02	1	09/22/2003 00:18	Robert Brown	1
07360	BTEX+MTBE by 8260B	SW-846 8260B	1	09/09/2003 01:30	Parker D Lindstrom	27.91
04833	Extraction / Fuel TPH (Soils)	Alaska 102/103 Version 4/8/02	1	09/13/2003 06:10	Kenneth A Yingst	1

Lancaster Laboratories Sample No. G5 4116972

Collected: n.a.

Account Number: 10869

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

ChevronTexaco

Submitted: 09/06/2003 11:00

Reported: 09/22/2003 at 14:56

Discard: 10/23/2003

Trip Blank Methanol Sample

Facility# 91252

11836 Old Glenn Highway; Eagle River, AK

OGHTB

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01450	Alaska AK101 GRO (soils)	n.a.	N.D.	0.5	mg/kg	25
07360	Site-specific MS/MSD samples was performed to demonstrate parts. BTEX+MTBE by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.050	mg/kg	50
05460	Benzene	71-43-2	N.D.	0.050	mg/kg	50
05466	Toluene	108-88-3	N.D.	0.050	mg/kg	50
05474	Ethylbenzene	100-41-4	N.D.	0.050	mg/kg	50
06301	Xylene (Total)	1330-20-7	N.D.	0.050	mg/kg	50
	The analysis for volatiles was	performed on a	a sample which wa	as preserved		

Site-specific MS/MSD samples were not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

in methanol. The reporting limits were adjusted appropriately.

State of Alaska Lab Certification No. UST-061

Laboratory Chronicle

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01450	Alaska AK101 GRO (soils)	AK101 GRO	1	09/09/2003 15:00	Steven A Skiles	25
07360	BTEX+MTBE by 8260B	SW-846 8260B	1	09/09/2003 01:56	Parker D Lindstrom	50

Quality Control Summary

Client Name: ChevronTexaco Group Number: 866063

Reported: 09/22/03 at 02:56 PM

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 03246A33C	Sample n	umber(s):	4116968-41	16972				
Alaska AK101 GRO (soils)	N.D.	0.5	mg/kg	100	99	60-120	0	20
Batch number: 032550013A	Sample n	umber(s):	4116968-41	16971				
TPH-DRO (AK) in soil	N.D.	4.0	mg/kg	87	97	75-125	11	50
Batch number: Q032512AA	Sample n	umber(s):	4116968-41	16972				
Methyl Tertiary Butyl Ether	N.D.	50.	ug/kg	105	106	75-125	1	30
Benzene	N.D.	50.	ug/kg	105	107	83-118	2	30
Toluene	N.D.	50.	ug/kg	112	114	81-116	2	30
Ethylbenzene	N.D.	50.	ug/kg	112	114	82-115	1	30
Xylene (Total)	N.D.	50.	ug/kg	112	114	82-117	2	30

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup
									RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max

Batch number: 032550013A

TPH-DRO (AK) in soil

Sample number(s): 4116968-4116971 90 99 60-140 9 50

Surrogate Quality Control

Analysis Name: Alaska AK101 GRO (soils)

Batch number: 03246A33C

Trifluorotoluene-F

	60-120			
CSD	104			
CS	106			
Blank	103			
1116972	107			
4116971	95			
1116970	85			
4116969	90			
4116968	100			

Analysis Name: TPH-DRO (AK) in soil

Batch number: 032550013A Orthoterphenyl

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 2 of 2

Quality Control Summary

Client Name: ChevronTexaco

Group Number: 866063

Reported: 09/22/03 at 02:56 PM

Surrogate Quality Control

Martin Company of the		
4116968	96	
4116969	89	
4116970	97	
4116971	93	
Blank	99	
LCS	90	
LCSD	97	
MS	90	
MSD	91	
Limits:	50-150	

Analysis Name: BTEX+MTBE by 8260B

Batch number: Q032512AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4116968	89	92	93	93
4116969	98	101	103	102
4116970	94	97	99	101
4116971	99	104	106	98
4116972	90	92	95	94
Blank	84	88	89	87
LCS	85	91	95	96
LCSD	84	88	96	96
Limits:	70-129	70-121	70-130	70-128

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

Chevron Generic Analysis Request/Chain of Custody

Acct. #: 10809 For Lancaster Laboratories use only Sample #: 4110968-72 SCR#: 1/8/402

						Analyses Requested								K * 866063							
Facility #: 9-1252			».*		Matrix					Р	rese	rvati	on (Code	-		_		Preserv	ative Cod	
	Eagle Riv	v, AK											1		Ö		0	\dashv	H = HCI N = HNO₃	T = Thio B = NaC	Н
Site Address: 11836 Old Glen Hwy Eash Rive, Ak Chevron PM: Bob Cochon Lead Consultant: SECR						2	Naph										07		S = H ₂ SO ₄	O = Othe	
Consultant/Office: 3017 Kilsone RJ. Sunk	#100 Rancho	Cordonal	A		☐ Potable ☐ NPDES	Containers	8260 🗆 Naphth				Extended Rng. Silica Gel Cleanup	☐ Method _		cation		-1	3240		☐ J value repo ☐ Must meet lo		
Consultant Prj. Mgr.: Brian Bilua					Z Z	Son] 826				ded R Gel C	□ Me		antifi	0	20	4	`	possible for		
Consultant Phone #: 916 - 81 - 0400 + 24	⁰ Fax #:9	la-861-0	436			of	8021				Exten Silica	SS.			AKIOI	AK102	15 July 1		8021 MTBE Co		זע כ
Sampler: Sea Cayle				1		Total Number		E	Oxygenates					\circ	ha	1,4	MABIE		☐ Confirm MTI ☐ Confirm high		
	on SAR:		sod		7 2	2	Ĭ¥	SS III	Oxyg	TPH G	TPH D	Fotal	표	主	0		ابحا		☐ Confirm all h		
Sample Identification	Date Collected	Time Collected	Grab Composite	Soil	Water	Total	BTEX + MTBE	8260 full scan				Lead Total	VPH/EPH	NWTP	6R	ORO	BATEK		□ Run o>		
MW-1-16	9-2-03	1013		X		3	Π								X	X	X		Comments /	Remarks	
MW-2-31	9-2-03	1410		X		3								_	X	X	X		Bottle In		
MW-3-35.5	9-4-03	1245		ĮΧ		3									X	X	X		MW-1 3260	034645	
MW-4-36	9-3-03	1250		ΙX		3									X	X	X				
Tolank	~	~		-		9	_								X		X		MW-2 AKING	034663	
·				+		-	-						-	-					MW-3 4200	034975	
				╁		1	\vdash						-	+						(7.5)	
																			MW-4 Alux	034651	
				-		-	-							-				1-1	Holone Aku	6034066	
				\vdash			-	2											1		
Turnaround Time Requested (TAT) (please circ		Relinqui	shed by:	07	YV	Yut	1	3	3 20	Date	3 /	Time	R	eceiv	ved i	ру:	1		_	Date 8-25-8	Time
72 hour 48 hour 44 hour 4 day 5 day		Relinqui	shed by:	/	1/					Date	1	Time	R	eceiv	ved t	ру:	. , ,	_		Date	Time
24 hour 4 day 5 day			10-	-	y					-4-05	-	800		85			d	EX	C	9-4-03	79230
Data Package Options (please circle if required)		Relinqui	shed by:		9				+-	Date	- -	Time	R	eceiv	ved b	oy:	****			Date	Time
QC Summary Type I - Full Relinquished by Co						arrier: Other							Re	eceiv	Ali		Our	U.	nallen	Date 91615	Time
WIP (RWQCB) Standard Format Disk — Other.		Tempera	ature Upo	on R	eceipt	5:5	<u></u>	C°					Cı	ustod	dy S		Intac		Yes No	1 " -12	

