

March 31, 2021

Ms. Lisa Krebs-Barsis Alaska Department of Environmental Conservation 555 Cordova Street Anchorage, Alaska 99501

RE: SITE CHARACTERIZATION ACTIVITIES, FORMER MARKAIR FACILITY, KING SALMON, ALASKA, *ADEC FILE NO. 2569.38.009*

This letter report presents the results of Shannon & Wilson, Inc.'s (Shannon & Wilson) site characterization activities conducted at the former MarkAir facility located in King Salmon, Alaska. A vicinity map of the area is included as Figure 1 and a site plan is included as Figure 2.

Authorization to proceed with the project was provided by the Alaska Department of Environmental Conservation (ADEC) in the form of Notice to Proceed Number 200000683 dated May 5, 2020. The work was conducted in accordance with our *Site Characterization Work Plan, Former MarkAir Facility, King Salmon, Alaska*, dated March 2020. The work plan was approved by Mr. Joshua Barsis of the ADEC in the form of an email dated March 23, 2020.

BACKGROUND

The former MarkAir facility is located on Lot 2, Block 1 of the King Salmon Airport. The facility is located on the western side of the runway apron, near the northwest end of the airport's northwest/southeast runway as shown on Figure 1. A building formerly utilized by MarkAir as a cargo and terminal facility is located at the site. A fuel tank farm was previously located on the unpaved southeastern portion of the property. A former fuel cabinet was present northeast of the building and a decommissioned buried fuel pipeline extends towards the former fuel storage area. Additional aboveground storage tanks (ASTs) and underground storage tanks (USTs) were located south and east of the terminal building. An approximately 1,000-gallon heating oil AST is present near the north corner of the terminal building. A site plan showing relevant site features and monitoring well locations is included as Figure 2.

Impacted soil and groundwater has been documented at the former MarkAir facility and extends off-property towards the west/southwest. Between 2004 and 2009, Shannon &

Wilson installed 21 groundwater monitoring wells (B1MW through B21MW) on- and off-property. Free-phase petroleum product has been observed in on-property Monitoring Wells B4MW, B5MW, and B9MW, and in off-property Monitoring Wells B10MW and B11MW.

In January 2008, Shannon & Wilson installed passive product collection bailers in Monitoring Wells B4MW and B5MW and a passive skimmer in Monitoring Well B9MW. During product monitoring and recovery efforts conducted between 2008 and 2014, approximately 200 gallons of petroleum product were recovered from Monitoring Wells B4MW, B5MW, and B9MW, with most of the product generated from Monitoring Well B9MW. Through 2016, Shannon & Wilson continued to conduct ongoing groundwater monitoring and free-product activities at the site.

FIELD ACTIVITIES

The field effort included groundwater sampling and analysis, surveying, and investigation-derived waste (IDW) disposal. SGS North America Inc. (SGS) performed analytical testing of the groundwater samples. NRC Alaska, LLC (NRC) treated/disposed of the impacted purge water generated during the sampling activities. Field notes are included in Attachment 1.

Groundwater Sampling and Analysis

Groundwater sampling was conducted between September 21 through 24, 2020. Sampling activities were initiated by measuring groundwater and total well depths from Monitoring Wells B1MW through B5MW, B7MW, B9MW through B13MW, and B16MW through B21MW. Monitoring Well B6MW could not be sampled due to a vehicle located over the well and B14MW and B15MW could not be located. A down-hole dual-phase probe was used to measure depth to water and free-phase product thickness, if present. The probe was decontaminated using an alconox/water mixture and a water rinse prior to insertion in each well. Product was measured in Wells B4MW, B5MW, B9MW, B10MW and B11MW; therefore, these wells were not sampled. The depths to groundwater and product in the monitoring wells are listed on Table 1.

The monitoring wells were sampled from least to most contaminated, based on historical results. Wells B12MW, B13MW, B16MW, B19MW, B20MW, and B21MW have contained the least contamination and were sampled first. Next, groundwater samples were collected from Wells B3MW and B17MW. Wells B1MW, B2MW, B7MW, and B18MW have contained the highest contaminant concentrations and were sampled last. The wells were purged and

sampled using a low-flow technique, with a submersible pump with disposable vinyl tubing. Sampling was initiated by purging each well to reduce the effect of stagnant well casing water on chemical concentrations and to obtain groundwater samples that are representative of the surrounding water-bearing formation. A submersible pump was placed between 1 and 2 feet below the groundwater interface to avoid sediment disturbance. The pump rate was set at 0.1 to 0.5 liter per minute (L/min) with a goal of limiting the sustained water drawdown to a maximum of 4 inches. The drawdown was determined using an electronic water probe that was checked regularly throughout the purging/sampling process.

During the purging process, field personnel monitored water quality parameters (pH, conductivity, dissolved oxygen (DO), temperature, oxidation reduction potential (ORP), and turbidity) and purge volume at 3 to 5 minute intervals. When water quality parameters stabilized over three successive readings (pH within 0.1 unit, conductivity within 3 percent, temperature within 3 percent [minimum 0.2 degree Celsius], and turbidity within 10 percent or three consecutive readings of less than 10 Nephelometric Turbidity Units [NTUs]) groundwater samples were collected. Water quality parameters stabilized in all wells prior to collecting groundwater samples.

Analytical samples were collected in decreasing order of volatility by transferring water directly from the pump tubing into laboratory-supplied containers. The pump was decontaminated in between each well. Approximately 30 gallons of purge water and decontamination water were generated and stored in a 55-gallon drum on site. Final water quality parameters are listed on Table 1.

Level-Loop Well Survey

The vertical elevations of the groundwater monitoring wells were measured using a level loop vertical survey. Survey readings of the monitoring wells were taken relative to an arbitrary onsite benchmark to assess groundwater flow direction. Due to accuracy issues, the elevation survey of the monitoring wells could not be closed within 0.01 foot. In our opinion, the survey data is consistent with previous survey results and can still be used to determine estimated groundwater elevations. The vertical top of well casing and groundwater elevations are shown on Table 1.

The calculated groundwater elevations, and horizontal measurements, which were previously recorded by a professional land surveyor, were incorporated into Golden Software Surfer12, to develop the groundwater elevation contours shown on Figure 3. The

coordinates which were input into the software is included in Attachment 1. Similar to past sampling events, the overall groundwater flow direction is to the west/northwest, which is consistent with topography and the flow direction of the Naknek River.

Although, groundwater in the vicinity of the former MarkAir property appears to converge on a depression located in the vicinity of Well B2MW and a former drinking water well, with a gradient of approximately 0.05 to 0.06 foot per feet. In addition, groundwater mounding is observed south of the former PenAir terminal, generally located between Wells B7MW and B18MW. Groundwater west of Well B18MW generally flows to the west with a gradient of approximately 0.03 foot per feet.

Investigation Derived Waste

One 55-gallon drum containing purge water was transported to Anchorage on September 24, 2020 by Ace Air Cargo. The drum and contents were disposed/treated by NRC. A copy of the purge water disposal receipt is included as Attachment 2.

Work Plan Deviations

Monitoring wells B14MW and B15MW could not be located and a vehicle was parked over Well B6MW. Therefore, these three wells were not sampled during the October 2020 sampling event. The work plan stated that we would sample B3MW, B7MW, B15MW, and B20MW for per- and polyfluoroalkyl substances (PFAS). Well B15MW was not located, therefore, a PFAS sample could not be collected from the well. With ADEC approval, the sample collected from Well B13MW was analyzed for PFAS instead.

Our ADEC-approved work plan stated that swing tie measurements would be collected from the wells to fixed locations to verify the horizontal locations of the wells. The recording of swing tie measurements was inadvertently not conducted. Although, it is noted that the horizontal locations of the wells were previously documented by a professional land surveyor. These surveyed coordinates were used to plot the locations of the wells shown on Figures 2 and 3. Based on the previous professional survey, and the level-loop survey conducted during this project, groundwater elevation contours were developed and are presented on Figure 3. Therefore, it is our professional opinion that this deviation did not impact the usability of the presented groundwater contours.

LABORATORY ANALYSIS

Twelve groundwater samples and one duplicate sample were submitted to SGS North America Inc. (SGS) of Anchorage, Alaska using chain-of-custody procedures. Each groundwater sample was analyzed for diesel range organics (DRO) by Alaska Method (AK) 102, volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) Method 8060D. Wells B3MW, B7MW, B13MW, and B20MW were also analyzed for PFAS by EPA Method 537. For quality control purposes a trip blank was submitted with the volatile samples and was analyzed for VOCs by EPA Method 8260D.

DISCUSSION OF ANALYTICAL RESULTS

The reported contaminant concentrations in the groundwater samples were compared to the ADEC's groundwater cleanup levels listed in Table C of 18 AAC 75.345 (November 2020). Groundwater in King Salmon is a known drinking water source, therefore, the PFAS results were compared to the EPA Lifetime Hazard Advisory (LHA) action level presented in the ADEC's October 2019 Technical Memorandum of 70 nanograms per liter (ng/L) for the sum of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS).

The 2020 groundwater analytical results and cleanup levels are provided in Tables 2 and 3. A summary of the historical groundwater results is included in Table 4. DRO; benzene, toluene, ethylbenzene, and xylenes (BTEX), and PFAS results are provided on Figure 2. The laboratory report and the ADEC Laboratory Data Review Checklist are provided in Attachment 3.

Groundwater Sample Results - Petroleum Constituents

Groundwater samples collected from Wells B1MW (2.90 mg/L), B2MW (30.5 mg/L), B17MW (10.6 mg/L), and B18MW (5.57 mg/L) contained DRO concentrations which exceed the applicable ADEC Table C cleanup level of 1.5 mg/L. Benzene (0.0438 mg/L) and naphthalene (0.0884 mg/L) were also detected in the sample collected from Well B2MW in excess of the applicable ADEC cleanup levels of 0.0046 mg/L and 0.0017 mg/L, respectively. The remaining contaminant concentrations were either not detected or were detected at concentrations less than the applicable ADEC cleanup levels.

The analytical groundwater sample results are used to evaluate potential source areas, delineate plume boundaries, and track changes in hydrocarbon distribution throughout the plume. The following observations were noted regarding the extents and trends observed for the plume:

- Samples from Well B2MW have generally contained the highest DRO and benzene concentrations. As shown on Table 4, benzene has exhibited a general long-term decreasing trend over the last 16 years.
- DRO in samples from Wells B1MW and B3MW have exhibited general long-term decreasing trends over the last 16 years.
- Sample results from Wells B12MW and B13MW continue to exhibit non-detect or trace DRO and BTEX concentrations less than the ADEC cleanup levels, and bound the plume to the south. Although Well B15MW could not be located during the current sampling event, previous sample results from this well, also bound the plume to the south.
- Historical results indicate that the plume's leading edge is between Wells B17MW/B18MW and B19MW/B21MW. Samples from Wells B19MW and B21MW continue to exhibit non-detect or trace DRO concentrations less than the ADEC cleanup level, and bound the plume to the west and northwest, respectively.
- DRO in samples from Wells B3MW and B6MW have not been detected above the ADEC cleanup level since 2006. A sample was collected from B3MW in 2020 and contained DRO below the ADEC cleanup and continues to bound the plume to the east. A sample was not collected from Well B6MW during the current sampling event.
- Wells B10MW and B11MW have continued to exhibit trace amounts of product and have not been sampled since 2006.
- Wells B4MW, B5MW, and B9MW have historically contained product and have not been sampled.

Groundwater Sample Results - PFAS Constituents

The groundwater samples collected from Wells B3MW, B7MW, B13MW, and B20MW and analyzed for PFAS constituents. PFAS were detected in on-site Wells B3MW (248.4 ng/L) and B7MW (135.1 ng/L) at concentrations greater than the 70 ng/L EPA LHA action level. PFAS were also detected in off-site Wells B13MW (3.5 J ng/L) and B20MW (55 ng/L), however, at concentrations less than EPA LHA action level.

Quality Assurance Summary

The project laboratory implements on-going quality assurance/quality control procedures to evaluate conformance to ADEC data quality objectives (DQOs). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spike/matrix spike duplicates (MS/MSD), and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to assess precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a brief narrative concerning the problem in the case narrative of their laboratory reports (See Attachment 3).

Field quality control samples included trip blanks and a field duplicate groundwater sample set. A laboratory-prepared trip blank samples accompanied the project sample jars from the laboratory to the site during sampling activities and back again to SGS. The trip blanks did not contain detectable concentrations of VOCs.

One duplicate groundwater sample set (B18MW/B28MW) was collected to assess precision of the sampling and analysis processes using the calculated relative percent difference (RPD). All of the RPDs are within the ADEC recommended DQO of 30 percent for groundwater.

An estimated concentration of DRO was detected in the method blank associated with all of the groundwater samples. Samples are flagged "B" in Table 2 when the reported sample concentration is within 10 times the reported method blank concentration. Estimated concentrations of DRO were detected in Samples B12MW, B13MW, and B19MW at levels less than the LOQ; therefore, the sample concentrations are reported as non-detect at the LOQ. The concentrations of DRO detected in Samples B16MW, B20MW, and B21MW are greater than the LOQ but less than 5 times the blank concentration, therefore the results are flagged "B", and reported as non-detect at the detected concentration. The concentrations of DRO detected in Samples B3MW and B7MW are within 5 times the method blank detection. These results are consistent with historical sample results. Therefore, based on professional judgment the results are flagged "B" and reported at the detected concentration. The remaining DRO concentrations are greater than 10 times the blank concentration, therefore the results are reported at the detected concentration.

The MSD RPD for perfluorooctanesulfonic acid is outside the control limits for PFAS Samples B3MW, B7MW, and B13MW. However, the sample used as the parent was collected from another work order. Therefore, the data remains unaffected. In addition, PFAS Samples B3MW and B20MW have Isotope Dilution Analysis (IDA) recoveries for

Perfluorooctanesulfonamide (PFOSA) and perfluorotetradecanoic acid outside QC criteria, respectively. The non-detected results were flagged "J" in Table 3.

Shannon & Wilson reviewed the SGS data deliverables and completed an ADEC Laboratory Data Review Checklist for the project work orders. The laboratory report and data review checklist are included in Attachment 3. In our opinion, with the exceptions noted above, no non-conformances that would adversely impact data usability for the objectives of this project were noted.

CONCLUSIONS AND RECOMMENDATIONS

The historical groundwater sample results for multiple wells appear to indicate long term decreasing trends. The petroleum plume appears stable and is not currently expanding further downgradient, based on the continued non-detect contaminant concentrations downgradient of the source area at Well B9MW. The petroleum plume appears bound to the east, south, and west.

Measurable free-product was documented in Monitoring Wells B4MW, B5MW, B9MW, B10MW, and B11MW. Product thickness ranged from 0.07 feet in B5MW to 4.54 feet in B9MW. We recommend continuing to monitor the wells that have historically contained product and conduct product recovery efforts on Well B9MW.

The samples collected from on-site Wells B3MW and B7MW contained concentrations of PFAS exceeding the EPA LHA action level. The samples collected from off-site Wells B13MW and B20MW did not contain PFAS exceeding the EPA LHA action level. The source of the PFAS contamination is unknown. Therefore, we recommend conducting additional PFAS testing to evaluate the horizontal extent and source of the PFAS contamination.

CLOSURE/LIMITATIONS

This report was prepared for the exclusive use of our clients and their representatives in the study of this site. The findings we have presented within this report are based on the limited sampling and analyses that we conducted. They should not be construed as a definite conclusion regarding the site's groundwater conditions. It is possible that our tests missed higher levels, although our intention was to sample in accordance with our ADEC-approved work plan. Therefore, the sampling and analyses performed can provide you with only our professional judgment as to the environmental characteristics of this site, and in no way guarantees that an agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. The data presented in this report should be considered representative of the

time of our sampling activities. Changes in site conditions can occur over time, due to natural forces or human activity. In addition, changes in government codes, regulations, or laws may occur. Because of such changes beyond our control, our observations and interpretations may need to be revised.

Shannon & Wilson has prepared the documents in Attachment 4, "Important Information About Your Geotechnical/Environmental Report", to assist you and others in understanding the use and limitations of our reports. You are advised that various state and federal agencies (ADEC, EPA, etc.) may require the reporting of this information. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study except with your permission or as required by law.

We appreciate the opportunity to be of service. Please call the undersigned at (907) 561-2120 with questions or comments concerning this report.

Sincerely,

SHANNON & WILSON

Prepared by:

Alec J. Rizzo

Environmental Staff

Reviewed by:

Dan P. McMahon, PMP

Senior Associate

Enc. Tables 1 through 4; Figures 1, 2, and 3; and Attachments 1 through 4

TABLE 1
GROUNDWATER SAMPLING LOG

			Mon	nitoring Well Nu	mber		
	B1MW	B2MW	B3MW	B4MW	B5MW	B6MW	B7MW
Water Level Measurement Data							
Date Water Level Measured	9/22/2020	9/22/2020	9/22/2020	9/22/2020	9/22/2020	-	9/22/2020
Time Water Level Measured	11:15	11:07	9:20	11:33	14:40	-	11:00
Depth to Product Below TOC, Feet	-	-	-	15.81	14.50	-	-
Depth to Water Below TOC, Feet	20.02	27.52	12.34	15.99	14.57	-	16.75
Surveyed TOC Elevation, Feet	99.66	100.30	99.21	98.92	99.47	-	99.46
Water Elevation, Feet	79.64	72.78	86.87	82.93	84.90	-	82.71
Purging/Sampling Data							
Date Sampled	9/23/2020	9/23/2020	9/23/2020	NS	NS	NS	9/23/2020
Time Sampled	10:05	11:15	9:50	NS	NS	NS	11:00
Depth to Water Below TOC, Feet	20.02	27.52	12.34	-	-	-	16.75
Total Depth of Well Below TOC, Feet	31.22	31.51	21.84	25.68	24.35	24.67	19.68
Water Column in Well, Feet	11.20	3.99	9.50	9.69	9.78	-	2.93
Gallons per Foot	0.16	0.16	0.16	0.16	0.16	-	0.16
Gallons in Well	1.79	0.64	1.52	1.55	1.56	-	0.47
Total Gallons Purged	0.7	0.65	0.9	-	-	-	0.6
Purging/Sampling Method	Submersible	Submersible	Submersible	-	-	-	Submersible
	Pump	Pump	Pump	-	-	-	Pump
Diameter of Well Casing	2-inch	2-inch	2-inch	2-inch	2-inch	2-inch	2-inch
Water Quality Data at Time of Sampling							
Temperature, °C	10.98	9.98	9.86	-	-	-	8.71
Specific Conductance, μS/cm	415	1,281	220	-	-	-	191
Dissolved Oxygen, mg/L	1.35	3.33	1.73	-	-	-	4.05
pH, standard units	6.70	6.80	5.26	-	-	-	5.96
Oxidation Reduction Potential, mV	43.6	39.5	290	-	-	-	18
Turbidity, NTU	6.99	50.80	2.65	-		-	8.14
Remarks		Hydrocarbon		0.18' product	0.07' product	Vehicle parked	
		odor				over well	

Water quality parameters were measured with Horiba, YSI-556, and MicroTPW turbidimeter field meters.

°C = degrees Celsius mg/L = milligrams per liter

 μ S/cm = microsiemens per centimeter mV = millivolts

NTU = Nephelometric Turbidity Unit - = not applicable or not measured

TOC = top of casing NS = not sampled

TABLE 1
GROUNDWATER SAMPLING LOG

			Mon	itoring Well Nu	mber		
	B8MW	B9MW	B10MW	B11MW	B12MW	B13MW	B14MW
Water Level Measurement Data							
Date Water Level Measured	-	9/22/2020	9/22/2020	9/22/2020	9/22/2020	9/22/2020	-
Time Water Level Measured	-	11:50	12:05	12:00	9:36	9:44	-
Depth to Product Below TOC, Feet	-	25.46	16.02	13.46	-	-	-
Depth to Water Below TOC, Feet	-	30.00	16.21	13.60	8.58	8.67	-
Surveyed TOC Elevation, Feet	-	99.61	97.49	95.72	93.46	88.69	-
Water Elevation, Feet	-	69.61	81.28	82.12	84.88	80.02	-
Purging/Sampling Data							
Date Sampled	NS	NS	NS	NS	9/22/2020	9/22/2020	NS
Time Sampled	NS	NS	NS	NS	14:30	15:25	NS
Depth to Water Below TOC, Feet	-	-	-	-	8.58	8.67	-
Total Depth of Well Below TOC, Feet	-	31.80	24.24	24.95	19.45	14.98	19.15
Water Column in Well, Feet	-	1.80	8.03	11.35	10.87	6.31	-
Gallons per Foot	-	0.16	0.16	0.16	0.16	0.16	-
Gallons in Well	-	0.29	1.28	1.82	1.74	1.01	-
Total Gallons Pumped	-	-	-	-	0.85	0.9	-
Purging/Sampling Method	-	-	-	-	Submersible	Submersible	-
					Pump	Pump	
Diameter of Well Casing	-	2-inch	2-inch	2-inch	2-inch	2-inch	2-inch
Water Quality Data at Time of Sampling							
Temperature, °C	-	-	-	-	10.58	9.44	-
Specific Conductance, μS/cm	-	-	-	-	104	172	-
Dissolved Oxygen, mg/L	-	-	-	-	7.79	8.97	
pH, standard units	-	-	-	-	5.18	5.91	-
Oxidation Reduction Potential, mV	-	-	-	-	301	28.3	
Turbidity, NTU	-	-	-	-	7.50	8.13	-
Remarks	Assumed	4.54' product	0.19' product	0.14' product			Could not locate
	destroyed	_					

Water quality parameters were measured with Horiba, YSI-556, and MicroTPW turbidimeter field meters.

 $^{\circ}$ C = degrees Celsius mg/L = milligrams per liter

 μ S/cm = microsiemens per centimeter mV = millivolts

NTU = Nephelometric Turbidity Unit - = not applicable or not measured

TOC = top of casing NS = not sampled

TABLE 1
GROUNDWATER SAMPLING LOG

			Mon	itoring Well Nu	mber		
	B15MW	B16MW	B17MW	B18MW	B19MW	B20MW	B21MW
Water Level Measurement Data							
Date Water Level Measured	-	9/22/2020	9/22/2020	9/22/2020	9/22/2020	9/22/2020	9/22/2020
Time Water Level Measured	-	9:54	10:44	11:23	10:08	10:18	10:26
Depth to Product Below TOC, Feet	-	-	-	-	-	-	-
Depth to Water Below TOC, Feet	-	14.02	11.54	13.34	15.09	9.76	10.03
Surveyed TOC Elevation, Feet	-	98.45	94.84	97.13	93.89	92.89	88.69
Water Elevation, Feet	-	84.43	83.30	83.79	78.80	83.13	78.66
Purging/Sampling Data							
Date Sampled	NS	9/22/2020	9/22/2020	9/23/2020	9/22/2020	9/22/2020	9/22/2020
Time Sampled	NS	15:40	18:05	13:55	16:50	16:45	18:30
Depth to Water Below TOC, Feet	-	14.02	11.54	13.34	15.09	9.76	10.03
Total Depth of Well Below TOC, Feet	19.94	20.04	19.08	20.10	20.22	19.98	14.91
Water Column in Well, Feet	-	6.02	7.54	6.76	5.13	10.22	4.88
Gallons per Foot	-	0.16	0.16	0.16	0.16	0.16	0.16
Gallons in Well	-	0.96	1.21	1.08	0.82	1.64	0.78
Total Gallons Pumped	-	0.55	0.55	0.6	1.0	0.8	1.4
Purging/Sampling Method	Submersible	Submersible	Submersible	Submersible	Submersible	Submersible	Submersible
	Pump	Pump	Pump	Pump	Pump	Pump	Pump
Diameter of Well Casing	2-inch	2-inch	2-inch	2-inch	2-inch	2-inch	2-inch
Water Quality Data at Time of Sampling							
Temperature, °C	-	11.71	11.40	10.15	11.64	12.94	13.07
Specific Conductance, μS/cm	-	193	251	425	315	675	251
Dissolved Oxygen, mg/L		4.60	8.17	2.06	2.81	3.29	3.47
pH, standard units	-	4.82	4.94	6.27	6.15	3.87	6.02
Oxidation Reduction Potential, mV		319	291	92	205	21.9	34.7
Turbidity, NTU	-	13.28	7.83	5.55	27.20	2.05	67.89
Remarks	Could not locate			Duplicate			
				Sample			
				B28MW			

Water quality parameters were measured with Horiba, YSI-556, and MicroTPW turbidimeter field meters.

 $^{\circ}$ C = degrees Celsius mg/L = milligrams per liter

 μ S/cm = microsiemens per centimeter mV = millivolts

NTU = Nephelometric Turbidity Unit - = not applicable or not measured

TOC = top of casing NS = not sampled

TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

			Sample 1	ID Number^ a (See T	nd Water Dep able 1 and Fig		low TOC
		Cleanup		M	Ionitoring We	lls	
		Level	B1MW	B2MW	B3MW	B7MW	B12MW
Parameter Tested	Method*	(mg/L)**	20.02	27.52	12.34	16.75	8.58
Diesel Range Organics (DRO) - mg/L	AK 102	1.5	2.90	30.5	1.24 B	1.27 B	<0.571 B
Volatile Organic Compounds (VOCs)							
Benzene - mg/L	EPA 8260D	0.0046	0.000202 J	0.0438	< 0.000200	< 0.000200	< 0.000200
Toluene - mg/L	EPA 8260D	1.1	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Ethylbenzene - mg/L	EPA 8260D	0.015	< 0.000500	0.0119	< 0.000500	< 0.000500	< 0.000500
Xylenes - mg/L	EPA 8260D	0.190	< 0.00150	0.00636	< 0.00150	< 0.00150	< 0.00150
1,2,4-Trimethylbenzene - mg/L	EPA 8260D	0.056	< 0.000500	0.000797 J	< 0.000500	< 0.000500	< 0.000500
1,2-Dichloroethane - mg/L	EPA 8260D	0.0017	< 0.000250	0.000486 J	< 0.000250	< 0.000250	< 0.000250
Dichlorodifluoromethane - mg/L	EPA 8260D	0.200	0.000875 J	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Isopropylbenzene (Cumene) - mg/L	EPA 8260D	0.450	0.00314	0.00368	< 0.000500	< 0.000500	< 0.000500
Naphthalene - mg/L	EPA 8260D	0.0017	< 0.000500	0.0884	< 0.000500	< 0.000500	< 0.000500
n-Propylbenzene - mg/L	EPA 8260D	-	< 0.000500	0.00196	< 0.000500	< 0.000500	< 0.000500
sec-Butylbenzene - mg/L	EPA 8260D	2	0.00205	0.00124	< 0.000500	< 0.000500	< 0.000500
tert-Butylbenzene - mg/L	EPA 8260D	0.690	0.00108	0.000356 J	< 0.000500	< 0.000500	< 0.000500
Tetrachloroethene - mg/L	EPA 8260D	0.041	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Trichlorofluoromethane - mg/L	EPA 8260D	5.200	< 0.000500	< 0.000500	0.000435 J	< 0.000500	< 0.000500
Other VOC analytes - mg/L	EPA 8260D	Various	ND	ND	ND	ND	ND

* = see Attachment 3 for compounds tested, methods, and laboratory reporting limits

** = groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (November 2020)

^ = sample ID number preceded by "104675-" on the chain of custody form

mg/L = milligrams per liter

< 0.000250 = analyte not detected; laboratory limit of detection of 0.000250 mg/L

0.000202 = analyte detected

= reported concentration exceeds the applicable ADEC cleanup level

J = reported concentration is an estimate below the limit of quantitation. See laboratory report for more details.

B = Analyte concentration potentially affected by method blank contamination.

See the ADEC Laboratory Data Review Checklist (LDRC) for details.

TOC = top of casing

- = not applicable or sample not analyzed

TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

			Sample 1	ID Number^ a (See T	nd Water Dep able 1 and Fig		low TOC
		Cleanup		M	lonitoring We	lls	
		Level	B13MW	B16MW	B17MW	B18MW	B28MW~
Parameter Tested	Method*	(mg/L)**	8.67	14.02	11.54	13.34	13.34
Diesel Range Organics (DRO) - mg/L	AK 102	1.5	<0.577 B	<0.688 B	10.6	5.27	5.57
Volatile Organic Compounds (VOCs)							
Benzene - mg/L	EPA 8260D	0.0046	< 0.000200	< 0.000200	< 0.000200	0.000170 J	0.000157 J
Toluene - mg/L	EPA 8260D	1.1	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Ethylbenzene - mg/L	EPA 8260D	0.015	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Xylenes - mg/L	EPA 8260D	0.190	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150
1,2,4-Trimethylbenzene - mg/L	EPA 8260D	0.056	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
1,2-Dichloroethane - mg/L	EPA 8260D	0.002	< 0.000250	< 0.000250	< 0.000250	< 0.000250	< 0.000250
Dichlorodifluoromethane - mg/L	EPA 8260D	0.200	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Isopropylbenzene (Cumene) - mg/L	EPA 8260D	0.450	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Naphthalene - mg/L	EPA 8260D	0.0017	< 0.000500	< 0.000500	< 0.000500	0.00706	0.00665
n-Propylbenzene - mg/L	EPA 8260D	-	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
sec-Butylbenzene - mg/L	EPA 8260D	2.0	< 0.000500	< 0.000500	< 0.000500	0.000496 J	0.000489 J
tert-Butylbenzene - mg/L	EPA 8260D	0.690	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Tetrachloroethene - mg/L	EPA 8260D	0.041	< 0.000500	< 0.000500	< 0.000500	< 0.000500	0.000315 J
Trichlorofluoromethane - mg/L	EPA 8260D	5.200	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Other VOC analytes - mg/L	EPA 8260D	Various	ND	ND	ND	ND	ND

* = see Attachment 3 for compounds tested, methods, and laboratory reporting limits

** = groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (November 2020)

^ = sample ID number preceded by "104675-" on the chain of custody form

mg/L = milligrams per liter

< 0.000250 = analyte not detected; laboratory limit of detection of 0.000250 mg/L

0.000170 = analyte detected

= reported concentration exceeds the applicable ADEC cleanup level

J = reported concentration is an estimate below the limit of quantitation. See laboratory report for more details.

B = Analyte concentration potentially affected by method blank contamination.

See the ADEC Laboratory Data Review Checklist (LDRC) for details.

TOC = top of casing

- = not applicable or sample not analyzed

TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

			_	umber^ and V OC (See Table	_	n Feet Below 2)
		Cleanup	M	Ionitoring We	lls	Trip Blank
Parameter Tested	Method*	Level (mg/L)**	B19MW 15.09	B20MW 9.76	B21MW 10.03	WTB -
Diesel Range Organics (DRO) - mg/L	AK 102	1.5	<0.588 B	<0.667 B	<0.641 B	-
Volatile Organic Compounds (VOCs)						
Benzene - mg/L	EPA 8260D	0.0046	< 0.000200	< 0.000200	< 0.000200	< 0.000200
Toluene - mg/L	EPA 8260D	1.1	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Ethylbenzene - mg/L	EPA 8260D	0.015	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Xylenes - mg/L	EPA 8260D	0.190	< 0.00150	< 0.00150	< 0.00150	< 0.00150
1,2,4-Trimethylbenzene - mg/L	EPA 8260D	0.056	< 0.000500	< 0.000500	< 0.000500	< 0.000500
1,2-Dichloroethane - mg/L	EPA 8260D	0.0017	< 0.000250	< 0.000250	< 0.000250	< 0.000250
Dichlorodifluoromethane - mg/L	EPA 8260D	0.200	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Isopropylbenzene (Cumene) - mg/L	EPA 8260D	0.450	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Naphthalene - mg/L	EPA 8260D	0.0017	< 0.000500	< 0.000500	< 0.000500	< 0.000500
n-Propylbenzene - mg/L	EPA 8260D	-	< 0.000500	< 0.000500	< 0.000500	< 0.000500
sec-Butylbenzene - mg/L	EPA 8260D	2.0	< 0.000500	< 0.000500	< 0.000500	< 0.000500
tert-Butylbenzene - mg/L	EPA 8260D	0.690	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Tetrachloroethene - mg/L	EPA 8260D	0.041	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Trichlorofluoromethane - mg/L	EPA 8260D	5.2	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Other VOC analytes - mg/L	EPA 8260D	Various	ND	ND	ND	ND

* = see Attachment 3 for compounds tested, methods, and laboratory reporting limits

** = groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (October 2018)

^ = sample ID number preceded by "104675-" on the chain of custody form

mg/L = milligrams per liter

< 0.000250 = analyte not detected; laboratory limit of detection of 0.000250 mg/L

B = Analyte concentration potentially affected by method blank contamination.

See the ADEC Laboratory Data Review Checklist (LDRC) for details.

TOC = top of casing

- = not applicable or sample not analyzed

TABLE 3
SUMMARY OF PFAS GROUNDWATER ANALYTICAL RESULTS

					Water Depth i	
				Monitor	ing Wells	
		EPA LHA	B3MW	B7MW	B13MW	B20MW
Parameter Tested	Method*	(ng/L)	12.34	16.75	8.67	9.76
Perfluorobutanoic acid - ng/L	EPA 537M	-	80.1	15.1 J	<8.0	40.2
Perfluoropentanoic acid - ng/L	EPA 537M	-	229	34.6	<4.0	149
Perfluorohexanoic acid - ng/L	EPA 537M	-	289	27.8	<4.0	109
Perfluoroheptanoic acid - ng/L	EPA 537M	-	137	18.1	<4.0	26.9
Perfluorononanoic acid - ng/L	EPA 537M	-	19.0	4.8 J	<4.0	4.2 J
Perfluorodecanoic acid - ng/L	EPA 537M	-	<4.0	4.4 J	<4.0	2.0 J
Perfluoroundecanoic acid - ng/L	EPA 537M	-	<4.0	<4.0	<4.0	<3.8
Perfluorododecanoic acid - ng/L	EPA 537M	-	<4.0	<4.0	<4.0	<3.8
Perfluorotridecanoic acid - ng/L	EPA 537M	-	<4.0	<4.0	<4.0	<3.8
Perfluorotetradecanoic acid - ng/L	EPA 537M	-	<4.0	<4.0	<4.0	<3.8 J
Perfluorobutanesulfonic acid - ng/L	EPA 537M	-	319	2.5 J	<4.0	3.2 J
Perfluoropentanesulfonic acid - ng/L	EPA 537M	-	501	2.5 J	<4.0	<3.8
Perfluorohexanesulfonic acid - ng/L	EPA 537M	-	1,460	77.6	3.8 J	14.9
Perfluoroheptanesulfonic acid - ng/L	EPA 537M	-	29.9	<4.0	<4.0	<3.8
Perfluorononanesulfonic acid - ng/L	EPA 537M	-	<4.0	<4.0	<4.0	<3.8
Perfluorodecanesulfonic acid - ng/L	EPA 537M	-	<4.0	<4.0	<4.0	<3.8
PFOSA - ng/L	EPA 537M	-	<20.0 J	<4.0	<4.0	<3.8
MeFOSAA - ng/L	EPA 537M	-	<8.0	<8.0	<8.0	<7.7
EtFOSAA - ng/L	EPA 537M	-	5.5 J	<8.0	<8.0	<7.7
4:2 Fluorotelomer sulfonate - ng/L	EPA 537M	-	<8.0	<8.0	<8.0	<7.7
6:2 Fluorotelomer sulfonate - ng/L	EPA 537M	-	<8.0	<8.0	<8.0	<7.7
8:2 Fluorotelomer sulfonate - ng/L	EPA 537M	-	<8.0	<8.0	<8.0	<7.7
Perfluorooctanesulfonic acid (PFOS) - ng/L	EPA 537M	0.070†	78.4	26.1	3.5 J	16.3
Perfluorooctanoic acid (PFOA) - ng/L	EPA 537M	0.070†	170	109	<4.0	38.7
LHA Combined (PFOS + PFOA) - ng/L	EPA 537M	0.070†	248.4	135.1	3.5 J	55

EPA LHA = Environmental Protection Agency Lifetime Health Advisory

† = EPA LHA Level of 70 ng/L for PFOS and PFOA combined

* = see Attachment 3 for laboratory reporting limits

^ = sample ID number preceded by "104675-" on the chain of custody form

ng/L = nanograms per liter

< 4.0 = analyte not detected; laboratory limit of detection of 4.0 ng/L

80.1 = analyte detected

= reported concentration exceeds the applicable EPA LHA

J = reported concentration is an estimate below the limit of quantitation. See laboratory report for more details.

TOC = top of casing

- = not applicable

TABLE 4
HISTORICAL GROUNDWATER ANALYTICAL RESULTS

			Pa	rameter Teste	d* and Cleanu _l	p Level** in mg	g/L
Monitoring		Depth to	DRO	Benzene	Toluene	Ethylbenzene	Xylenes
Well	Date	Water, ft	1.5	0.0046	1.1	0.015	0.19
B1MW	3/17/2004	21.19	9.85	0.00246	< 0.00200	< 0.00200	0.00331
	6/9/2004	22.06	15.2	0.000748	< 0.00200	< 0.00200	< 0.00200
	5/18/2005	20.82	9.88	< 0.00500	< 0.0200	< 0.0200	< 0.0200
	10/6/2005	19.78	4.35	0.00271	< 0.00200	< 0.00200	< 0.00200
	6/16/2006	21.25	7.09	0.00208	< 0.00200	0.00287	< 0.00200
	10/2/2006	20.83	9.70	0.00202	< 0.00200	< 0.00200	< 0.00200
	8/19/2007	21.43	6.76	0.00292	< 0.00200	< 0.00200	< 0.00200
	5/3/2016	19.23	1.81	0.000550	0.000508 J	< 0.000500	< 0.00150
	9/23/2020	20.02	2.90	0.00202 J	< 0.000500	< 0.000500	< 0.00150
B2MW	3/19/2004	28.15	19.9	0.155	< 0.00200	0.00798	0.0111
	6/9/2004	28.34	32.3	0.229	0.00205	0.0518	0.0860
	5/17/2005	28.12	61.0	0.189	< 0.0200	0.0322	0.0246
	10/6/2005	26.84	19.0	0.220	< 0.00200	0.0351	0.0312
	6/16/2006	28.50	23.2	0.223	< 0.0200	0.0398	0.0280
	10/2/2006	27.55	62.5	0.218	< 0.00200	0.0439	0.0545
	8/15/2007	28.01	31.6	0.170	< 0.0200	0.0393	0.0245
	5/4/2016	27.22	14.1	0.081	0.000690 J	0.0224	0.0134
	9/23/2020	27.52	30.5	0.0438	< 0.000500	0.0119	0.0636
B3MW	3/19/2004	14.72	1.02	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/9/2004	14.81	1.37	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	5/17/2005	13.39	0.836	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	10/6/2005	10.20	0.840	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/17/2006	13.20	0.817	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	10/2/2006	11.00	1.85	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/17/2007	12.89	0.942	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	5/4/2016	12.30	0.599	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/23/2020	12.34	1.24 B	<0.000200	< 0.000500	< 0.000500	< 0.00150
B6MW	3/20/2004	14.03	0.569	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/9/2004	13.43	0.471	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	5/17/2005	11.97	0.380	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	10/6/2005	8.02	< 0.330	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/16/2006	11.69	2.22	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	10/2/2006	9.30	< 0.312	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/17/2007	11.42	< 0.300	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	5/3/2016	8.87	0.205 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020		nple due to vehi				
B7MW	6/16/2006	17.25	6.43	0.00201	< 0.00200	< 0.00200	0.00807
	10/2/2006	16.53	19.5	0.00132	< 0.00200	< 0.00200	0.00417
	8/15/2007	17.60	9.24	0.000505	< 0.00200	< 0.00200	< 0.00200
	5/3/2016	16.40	10	0.000270 J	< 0.000500	0.000780 J	< 0.00150
	9/23/2020	16.75	1.27 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150

* = Higher result of field duplicate samples is listed

** = groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (November 2020)

DRO = diesel range organics

ft = feet

mg/L = milligrams per liter

<0.00200 = analyte not detected; laboratory limit of detection of 0.00200 mg/L

1.02 = analyte detected

9.85 = Concentration exceeds ADEC cleanup level

J = Analyte detected at an estimated concentration less than the limit of quantitation

TABLE 4
HISTORICAL GROUNDWATER ANALYTICAL RESULTS

			Pa	rameter Tested	l* and Cleanu	p Level** in mg	/L
Monitoring	<u>.</u>	Depth to	DRO	Benzene	Toluene	Ethylbenzene	Xylenes
Well	Date	Water, ft	1.5	0.0046	1.1	0.015	0.19
B8MW	6/16/2006	16.70	5.66	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	10/2/2006	Could not loc					
	5/4/2016	Could not loc					
	9/22/2020	Could not loc	ate				
B10MW	6/16/2006	16.79	21.0	0.0186	< 0.00200	0.00749	0.00511
	10/2/2006	15.33	30.2	0.0116	< 0.00200	0.0335	0.00273
	5/4/2016	15.6		Did not sample			
	9/22/2020	16.21	Product in well.	Did not sample	9		
B11MW	6/16/2006	13.29	1.10	0.0275	< 0.00200	0.00936	0.00755
	10/2/2006	11.60	4.71	0.00536	< 0.00200	0.0798	0.0628
	5/4/2016	12.71		Did not sample			
	9/22/2020	13.60	Product in well.	Did not sample	e		
B12MW	8/18/2007	9.63	< 0.300	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/18/2011	9.26	< 0.376	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/12/2014	10.41	<0.625 B	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	5/2/2016	8.28	0.205 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	8.58	<0.571 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150
B13MW	8/18/2007	9.11	< 0.317	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/18/2011	7.65	0.639	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/12/2014	8.85	<0.612 B	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	5/2/2016	7.71	0.330 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	8.67	<0.577 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	8.67	<0.577 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150
B14MW	8/18/2007	10.84	1.58	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/19/2009	12.05	< 0.800	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/19/2011	9.33	0.743	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/12/2014	11.12	<1.01 B	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	Could not loc	ate				
B15MW	8/18/2007	11.31	0.351	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/18/2009	11.04	< 0.800	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/18/2011	10.59	0.477 J	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/12/2014	11.00	<0.612 B	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	5/2/2016	9.41	0.197 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	Could not loc	ate				

= Higher result of field duplicate samples is listed

** = groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (November 2020)

DRO = diesel range organics

ft = feet

mg/L = milligrams per liter

<0.00200 = analyte not detected; laboratory limit of detection of 0.00200 mg/L

0.351 = analyte detected

1.58 = Concentration exceeds ADEC cleanup level

J = Analyte detected at an estimated concentration less than the limit of quantitation

B = Analyte concentration potentially affected by method blank contamination.

- = not tested for this analyte

TABLE 4
HISTORICAL GROUNDWATER ANALYTICAL RESULTS

			Pa	rameter Teste	d* and Cleanuj	Level** in mg	:/L
Monitoring		Depth to	DRO	Benzene	Toluene	Ethylbenzene	Xylenes
Well	Date	Water, ft	1.5	0.0046	1.1	0.015	0.19
B16MW	8/19/2007	14.51	0.484	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/18/2009	14.88	< 0.800	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/18/2011	13.64	-	-	-	-	-
	6/13/2014	14.05	< 0.310	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	5/2/2016	13.5	0.538 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	14.02	<0.688 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150
B17MW	8/19/2007	11.54	1.00	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	6/18/2009	12.69	2.89	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/19/2011	10.18	0.585 J	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/13/2014	11.35	1.36	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	5/3/2016	10.35	2.37	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	11.54	10.6	< 0.000200	< 0.000500	< 0.000500	< 0.00150
B18MW	8/19/2007	14.01	12.8	0.0103	< 0.00200	< 0.00200	0.00419
	6/19/2009	15.02	13.8	0.00526	< 0.00200	< 0.00200	< 0.00200
	8/19/2011	13.12	11.9	0.00252	< 0.000620	0.000840 J	0.00164 J
	6/13/2014	13.55	14.9	0.00116	0.000340 J	0.000510 J	0.00106 J
	5/3/2016	12.83	1.66	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/23/2020*	13.34	5.57	0.000170 J	< 0.000500	< 0.000500	< 0.00150
B19MW	6/19/2009	17.90	< 0.833	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/18/2011	13.47	0.237 J	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/13/2014	16.85	< 0.313	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	5/3/2016		nple due to vehi				
	9/22/2020	15.09	<0.588 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150
B20MW	6/19/2009	17.30	< 0.800	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/18/2011	9.80	0.219 J	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/13/2014	13.98	0.412 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	5/2/2016	11.10	0.358 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	9.76	<0.667 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150
B21MW	6/20/2009	11.35	< 0.769	< 0.000500	< 0.00200	< 0.00200	< 0.00200
	8/18/2011	7.92	0.302 J	< 0.000300	< 0.000620	< 0.000620	< 0.00186
	6/12/2014	10.33	< 0.390	< 0.000250	0.000350 J	< 0.000500	< 0.00150
	5/2/2016	8.22	0.242 J	< 0.000250	< 0.000500	< 0.000500	< 0.00150
	9/22/2020	10.03	<0.641 B	< 0.000200	< 0.000500	< 0.000500	< 0.00150

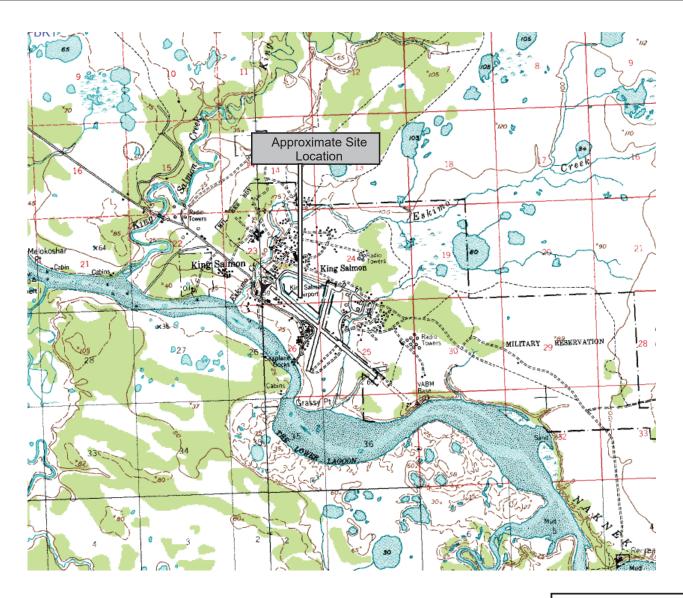
* = Higher result of field duplicate samples is listed

** = groundwater cleanup levels are listed in Table C, 18 AAC 75.345 (November 2020)

DRO = diesel range organics

ft = feet

mg/L = milligrams per liter


< 0.00200 = analyte not detected; laboratory limit of detection of 0.00200 mg/L

0.00252 = analyte detected

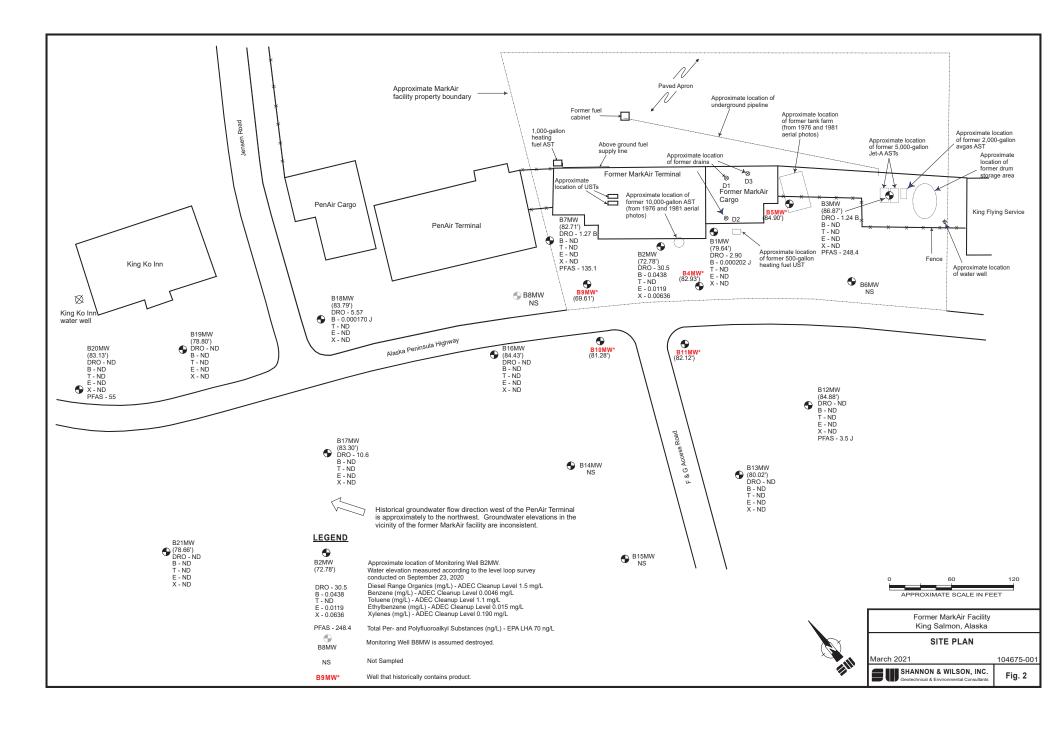
= Concentration exceeds ADEC cleanup level

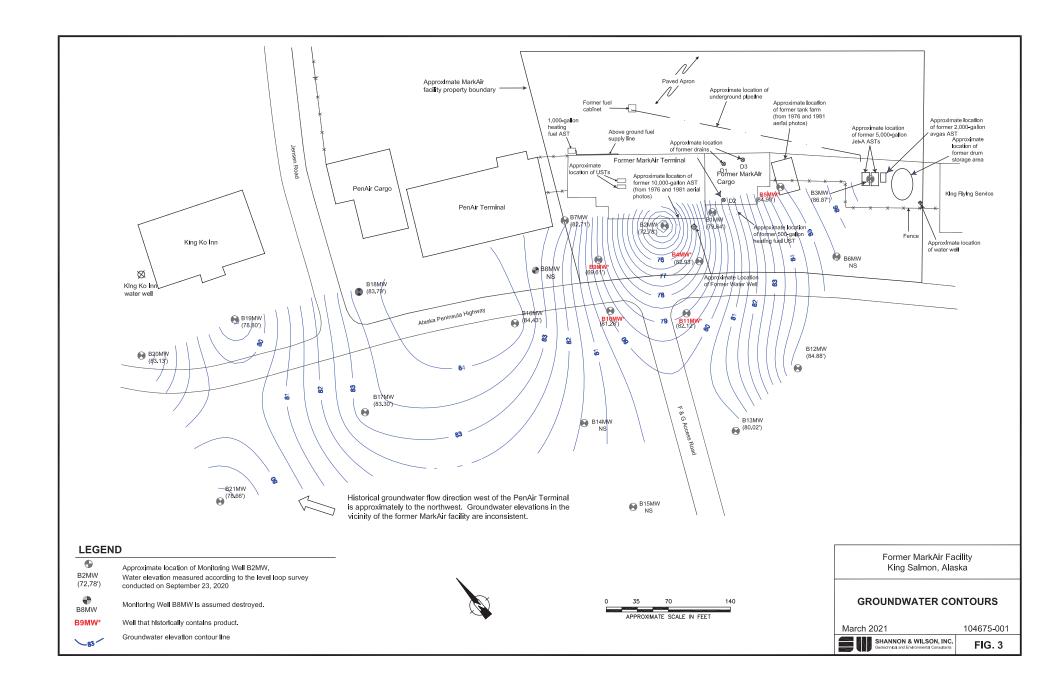
J = Analyte detected at an estimated concentration less than the limit of quantitation

- = not tested for this analyte

Taken from Naknek C-2 and C-3 U.S. Geological Survey Quadrangles 50 Foot Contour Interval

Former MarkAir Facility King Salmon, Alaska


VICINITY MAP


March 2021

104675-001

Fig. 1

SHANNON & WILSON, INC.

ATTACHMENT 1

FIELD NOTES

0/21/	
0945	Arrive at Anhrage Airport
1100	upart Anchorage for King Jalmon
1215	Arrive in King Salmen - Await brigging + get rental car
1240	Arrive in King Salmon - Await briggage + get rental car Arrive @ King Salmon ground to get his cargo. No one is there >
	Will Check back later Head to get rooms @ King Colman Lodge
1330	Will thick back later, Head to get rooms a king Salman Lody Dupart king Salmon Lodge for King Salman ground. Horond No one is the turns at they are closed today
	the and is true - towns is it then are closed today
1 .1	for a mouse hunt- Heed to site to find wells.
1430	Having issues finding some wells - herd to
1100	to borrow Shihastadt/ metal defector. from King Salmon Washewater.
1800	Could not find RIGHOW RZI MIN BILLMIN BISMING WILL TON COCK
1 800	Could not find BITHW BZIMW BITMW BISMW. WILL My again with swing his in worm when equipment armves. A truck
	Biomand of Biomand of Language and the state of the state
	15 provided on previous and was not moved all day (in long
1831	is partial on Biemw. and has not moved all dy (in long term parkey). Head to hodge
10 20	Eno w Day
	V
-	
_	
1	
Scale: 1	Rite in the Rain

King Salmon - MarkAir Lodge to get cargo from king Salmon Ground. head to site to get And remaining Netts Get Cargo -Found BIAMW + BZOMER BZIMW. Could not locate 0915 BIHMW and BISMW. Begin allecting DTW/DTP/DTB in all wells that were located 0920 Finish collect gw data 1254 Calibrate Horiba + YSI 1330 @ BIZMW (ZJT) 1350 @ BIBMW (FOR 1440 PINIS @ BIZMW 1445 Blemw (TOT) 1500 FINGHA BISMW 1550 Finish a Blumw 1600 Blomw (A)R 1103 1319mw (75)7 11205 1702 TIMISH @ Blomw 1710 FINUL @ BIGMW @BITMW (ZUT) BZIMW (AJD and 1818 FINNI @ BITMW Finish @ B2/mw 1855 1935 Finish @ site clean up Frash 431 2000

alm	16	King S	almin - Markett	AIK	1/2/1
	nitoring Well	DTP	DTW	DTB	
0920	B3MW		12.34	21.84	
0936	BIZMW : :		8.58	19.45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0944	BI3 MW		8.67	14.98	1 1 4 1 1 4
0954	BIGHW		14.02	20.04	· · · · · · · · · · · · · · · · · · ·
1008	BIGMW		15.09	20.22	1 1 0
(018	B20MW		9.76	19.98	
1026	321 MW		10.03	14.91	
-	BOMW	CAPPE Park		, , , , , , , , , , , , , , , , , , ,	
~	BI4MW	unable -	to locate		t 1 1 1 1 b t
1044	BITMW:	· · · · · · · · · · · · · · · · · · ·	11.54	19.08	
1115	BIMW		20.02	31.22	
1107	B2MW		27.52	31.51	
1100	BAMW		16.75	19.68	
1205	BIOMW	16.02	16.21	24.24	
1200	BILMW	13.46	13.60	24.95	
1123	BISMW		13.34	20.10	
	BIMW		20.02	31.22	me
1133	B4MW	15.81	15.99	25 68	
19427 M	LBSMW.	14.50	MRDRY 14.57	M43.70	24,35
1150	39 mw	as. 46	30.00	31.80	7
1120	1-111				
1150	BISMW		to: Jocate:		1 1 1
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable			
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		
4 00	BISMW	unable	to jocate		

9/23/20 King Salmon - Mark Air	AKIZIT
0800 PREP for Sampling	
1830 Arnve onsite - contact Alaska air	for access to
B3MW	
	50 12)
0920 @ BIMW (ZJT)	
1015 Finish @ B3MW	
1070 FINISH @ BIMW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1030 @ B7mw (Ask) and B2mw (Z)T)	
1120 FINGS @ PTMW	
135 FINION @ B2MW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1315 @ BI8MW (ZJT)	
1445 to Finish Q Blomw Collected Dup.	Sample Balmy
1500 Begin Surreyny wells	,
1900 Finish surreyd wells	
1915 Depart site for ludge for sample ma	nagement t
Notes - !!!	0
2200 End of day	
Scale: 1 square =	Rite in the Rain

King Salmon - Murcher Apparare - pack field equipment air eargo.

ment off at Ace. Head to six to egnipment of 0930 King salmon for Incharage
Ancharage, go to the to get equipment 1200 1300 1800 1700

	Shannon & V	Wilson, Inc.	110	THE T	TIAL BAR DA	ALVAL BALVO	200			
	Job No: 10 Well No.:	4675	Loca	tion: Kin	g Salm	w W	eather: 3	390 clou	dy	
	Date: 9/		Time	Started:	9:20	Т	ime Compl	eted:):20	
	Develop Date	The second secon		lop End Time:			24 hour bre		=0	
			INIT	AL GROU	NDWATE	R LEVEL	DATA			
	Time of Depth	h Measuremer	nt:	:15	Date o	f Depth Mea	surement:	9/2	2/20	
	Measuring Po		of PVC Cash	ng / Top of Ste						
	Diameter of C			31.Z2		Screen Interva		_		
	Total Depth of			20.02	Produc	ct Thickness,	if noted:			
	Depth-to-Water Water Column		ow MP:	11.20	(Total	Depth of We	II Below M	P - DTW Be	low MP)	
	Gallons per fo		-	0.16	(10tai	Dopui of Wo	II DOLOW IVI	DINDO	1011 1111)	
	Gallons in We		A		79 (Water	Column in V	Well x Gallo	ons per foot)		
				PIII	RGING DA	ТА	122			
	Date Purged:	9/23/2	7.0 Ti	me Started:	The state of the s		ne Comple	ted: _ 10 : 1	5	
	Three Well Vo		5.4	1000000	s in Well x 3)		ne Comple	ied		-
	Gallons Purge			Depth	of Pump (gen	erally 2 ft fro	m bottom):	22.0'		
	Max. Drawdov	wn (generally	0.3 ft):	1.87	Pump	Rate:	0,1			
	Well Purged D	ry:	Yes D	No ☑	(If yes,	use Well Pur	ged Dry Lo	og)		
Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO: (mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTU)
9:32	0.1	0.1	21.53	1.51	9.10	421	1.10	6.44	57.8	9.00
9:37	0.2	0.1	21.85	1.83	9.39	422	1.03	6.50	55.3	8.37
9:42	0.3	0.1	21.79	1.77	9.90	415	0.96	6.59	51.6	9.72
9:47	0.4	0.1	21.78	1.76	10.31	414	50.1	6.65	47.5	9,43
9152	0.5	0.1	21.89	1.87	10.54	413	1.17	6.69	45.0	8.85
9155	0,55	0.1	21.88	1.86	10.71	414	1.25	6.69	45.2	8.04
		V	*	SAM	PLING DA	-				
1727.)dor:	Mone		· · · ·	Color: _		lear	01-01		
	ample Designa		10016	5-B1M1		Date: 1	0:05	9/23/	20	_
	C Sample Des A Sample Des			,	Time / I Time / I					-
			"11 D /6	w D 1	Tr 15 A					
	vacuation Met ampling Metho									
W	ater Quality In	nstruments Us	ed/Manufactu	rer/Model Nu	mber YS	I + T	urbidio	meter		
C	alibration Info	(Time, Range	es, etc)9	100 91	23/20				4	
R	emarks:					1				
5										40
Sa	impling Person			OLIB CO. (C.)	I (DOD) 144	0.04 0"	16 49	0.65		
				OLUMES (GA CE VOLUME						

Shannon & Wilson, Inc.

Continued from previous page

Job No:	104675	Location: King Salmon Site: Mark Air
Well No.:	B1MW	
Date:	9/23/20	

Time:	Gallons:	Pump Rate (L/min):	(ft BMP):	Drawdown (ft):	(°C)	Sp. Cond (uS/cm) 414	(mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTU)
9:58	.65	0.1	21.80 21.84 21.82	1.78 1.82 1.80	10,84 10,95 10,98	414	1.31 1.35	6.70 6.70	44.3	7.68 8.63 6.99
	-				-					
					V	-			***************************************	
-	-	-	-	1	<u> </u>		-			
	**************************************	1	/ 2	\\			ST-031 11-00			
				-	-					
	-		/				1000		-	
			7 		(-			-	8
				3	()					
				-	-		-			
		-								
								<u> </u>		
					-					
						-		-		
				-						
Camera no accessor a										
				\ <u>\</u>		<u> </u>		·	4-11	
		S		-						
					-					
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO (mg/L)		ORP: (mV)	Tur (NT	
ADEC 1ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10°	%
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <	<5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

	Shannon & V	Wilson, Inc.								
	Job No: 10	04675 BZM.W	Locat	tion: Ku	g Salm	700 W	eather:	40° c	lowdy	-1.rain
	Date: 9			Started:	0:30	T	ime Comple	eted:	:35	750-18
	Develop Date			lop End Time:			24 hour brea			
			INITI	AL GROU	NDWATE	R LEVEL	DATA			
	Time of Depti	h Measuremen	it:	07	Date of	of Depth Mea	surement:	9/22	120	
			The state of the s	ng / Top of Ste		*	2000		(
	Diameter of C	-		2"		Screen Interva	100	in the second		
	Total Depth o	f Well Below	MP:	31.51	Produ	ct Thickness,	if noted:	_		
	Depth-to-Wat	er (DTW) Belo	ow MP:	27.52						
	Water Column	n in Well:		3.99	(Total	Depth of We	ell Below MI	P - DTW Be	low MP)	13
	Gallons per fo	ot:	-	0.16						
	Gallons in We	:11:	0.64	0.63 B	Water	r Column in V	Well x Gallo	ns per foot)		
	BM:	27.4		PUI	RGING DA	ATA				
	Date Purged:	9/23/	70 Ti	me Started:	10:41	Ti	me Complet	ed: 11:	25	
	Three Well Vo	-	The state of the state of the state of	(Gallon			me complet	· · · · ·		
	Gallons Purge				,	erally 2 ft fro	m bottom):	29.5		
	Max. Drawdov			0.14						
	Well Purged D		Yes D			use Well Pur				
	-	· 1			-	Sp. Cond.:		pH:	ORP:	Turb:
Ime.		Pumn Rate	DTW	Drawdown	Temn:	Sn. Cond.:				
Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp: (°C)	(uS/cm)	(mg/L)	(S.U.)	(mV)	(NTU)
				(ft):			(mg/L)			(NTU)
10:41	0.1	(L/min):	(ft BMP):		(°C)	(uS/cm)		(S.U.)	(mV)	(NTU)
10:41	0.1	(L/min):	(ft BMP): 27,54	(ft): 0,14 0,11	(°C) 8.33	(uS/cm)	(mg/L) 6.3 5.81	(S.U.) 6.50	(mV) 53.3	(NTU) 142.0 170.8
10:50	0.2	(L/min):	(ft BMP): 27.54 27.51 27.52	(ff): 0.14 0.11	8.33 8.64 8.76	(uS/cm) 12.81 12.85	(mg/L)	(ŝ.U.) 6,50 6,59	(mV) 53.3 47.7 44.0	(NTU) 142.0 170.8 161.6
10:50	0.2	(L/min):	(ft BMP): 27.54 27.51 27.52 27.52	(ff): 0.14 0.11 0.12	8.33 8.64 8.76 9.26	(uS/cm) 12.81 12.85	(mg/L) 6.3 5.81 5.05 4.18	(s.u.) 6,50 6,59 6,67 6,74	(mV) 53.3 47.7 44.0 41.3	(NTU) 142.0 170.8 161.6 114.1
10:41 10:5 10:5 11:01	0.1	(L/min): 0, \ 0, \ 0, \ 0, \	(ft BMP): 27.54 27.51 27.52 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47	(us/cm) 12.81 12.85 12.86 12.86 12.84	(mg/L) 6.8 5.81 5.05 4.78 3.93	(ŝ.u.) 6,50 6,59 6,67	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:50	0.1	(L/min):	(ft BMP): 27.54 27.51 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12	8.33 8.64 8.76 9.26 9.47	(uS/cm) 12.81 12.85 12.86 12.86 12.84 12.82	(mg/L) 6.3 5.81 5.05 4.18	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3	(NTU) 142.0 170.8 161.6 114.1
10:41 10:5 10:50 11:01 11:04	0.4	(L/min): 0 , \ 0 , \ 0 , \ 0 , \ 0 , \	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69	(us/cm) 12.81 12.85 12.86 12.86 12.84 12.82	(mg/L) 6.8 5.81 5.05 4.78 3.93 3.64	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41	0.1 0.2 0.3 0.4 0.45 0.50	(L/min): 0,1 0,1 0,1 0,1 0,1 drocarbo	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA	(us/cm) 12.81 12.85 12.86 12.86 12.84 12.82 ATA Clea	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41	0.1 0.2 0.3 0.4 0.45 0.50 Odor: Hy	(L/min): O, 1 drocarbo ation:	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA	(uS/cm) 28 1285 1286 1286 1284 1282 ATA	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41 10:5 10:5 11:01 11:04	0.2 0.3 0.4 0.45 0.50 Odor: Hy	(L/min): O, 1 O, 1 O, 1 O, 1 O, 1 o, 1 drocarbo ation: signation:	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time/I	(uS/cm) 281 1285 1286 1284 1282 ATA Clea	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41	o.2 o.3 o.4 o.45 o.50 Odor: Handle Design OC Sample Design OA Sample Design	(L/min): O, 1 signation: signation:	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12 0.12 SAM	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time / I Time / I	(uS/cm) 281 285 286 286 284 282 ATA Clea Date:	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41 10:5 10:5 11:01 11:04	o . 2 o . 2 o . 4 o . 45 o . 50 Odor: Hydrample Design OC Sample Design OC Sample Design OC Sample Design	(L/min): O, 1 Signation: signation: signation: signation: signation:	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.12 0.12 0.12 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time/I Time/I	(uS/cm) 281 1285 1286 1284 1282 ATA	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41 10:5 10:5 11:01 11:04	o . 2 o . 2 o . 4 o . 45 o . 50 Odor: Hydrample Design OC Sample Design OC Sample Design OC Sample Design	(L/min): O, 1 Signation: signation: signation: signation: signation:	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.11 0.12 0.12 0.12 0.12 SAM	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time/I Time/I	(uS/cm) 281 1285 1286 1284 1282 ATA	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.u.) 6.50 6.59 6.67 6.74	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41 10:5 11:01 11:04 11:07	o.2 o.3 o.4 o.45 o.50 Odor: Handle Design of Sample Desi	(L/min): O, 1 O,	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52	(ff): 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time / I Time / I Time / I When the When	(us/cm) 281 1285 1286 1286 1284 1282 ATA	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.v.) 6.50 6.59 6.67 6.74 6.76 6.73	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41 10:5 11:01 11:04 11:07	o.2 o.3 o.4 o.45 o.50 Odor: Handle Design of Sample Desi	(L/min): O, 1 O,	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52 27.52 which is a single state of the pump of	(ff): 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time / I Time / I	(us/cm) 281 1285 1286 1286 1284 1282 ATA	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.v.) 6.50 6.59 6.67 6.74 6.76 6.73	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41 10:50 11:01 11:04 11:07	o.2 o.3 o.4 o.45 o.50 Odor: Handle Design of Sample Desi	(L/min): O, 1 O,	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52 27.52 which is a single state of the pump of	(ff): 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time / I Time / I Time / I When the When	(us/cm) 281 1285 1286 1286 1284 1282 ATA	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.v.) 6.50 6.59 6.67 6.74 6.76 6.73	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16
10:41 10:5 11:01 11:04 11:07	o	(L/min): O, 1 O,	(ft BMP): 27.54 27.51 27.52 27.52 27.52 27.52 27.52 27.52 esible Pump / Other Pump	(ff): 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	(°C) 8.33 8.64 8.76 9.26 9.47 9.69 PLING DA Color: Time / I Time / I Time / I When the When	(us/cm) 281 1285 1286 1286 1284 1282 ATA	(mg/L) 6.8 5.81 5.05 4.18 3.93 3.64	(s.v.) 6.50 6.59 6.67 6.74 6.76 6.73	(mV) 53.3 47.7 44.0 41.3 41.5	(NTU) 142.0 170.8 161.6 114.1 85.16

ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

Shannon & Wilson, Inc.

ADEC

EPA

an. 2010)

Tay 2010)

3 to 5

5

100 to 150

50

< 0.0328

< 0.3

Continued from previous page

7	fob No: _ Well No.: _ Date: _	104675 BZMW 9/231	720	Location: _ Ki	ng Salm	Site:	Mark	Air		
Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp:	Sp. Cond (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTU)
11:10	0.55	0.1	27.51	0.11	9.83-	1281-	3.49	6.80	41.6	64.40
11:13	0,60	0.1	27.51	0./1	9,93~	1281-	3.33	6.80 -	40,8	52.93
11:16	0.65	0.1	27.51	0.11	9.98 -	1281	3,33	6.80-	39.5	50.80

	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Tur (NT	
-					-			-		
							-	s :====================================		
										-
		1								
							(=			-
					-		-			
			Y 	-		9 			3 -31-3 3	·] /
						·				
		1-A				\ <u></u>	-			

±3%

±3%

±10%

±10%

 ± 0.1

±0.1

±10

±10

±10%

±10% or <5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

±3% or ±0.2

±3%

Shannon & Wilson, Inc.			1		
Job No: 104175	Location: Mnh	almon	Weather:	390 110	con w/ n
Well No.: B3mW					
Date: 9(23/20	Time Started: 60	00	Time Comple	eted: 1015	
Develop Date:	Develop End Time:		(24 hour brea		
	INITIAL GROUN	DWATER LEV	EL DATA		
Time of Depth Measurement:	0920			9/22/20	
Measuring Point (MP): Top of PV					
Diameter of Casing:	2"		terval:	_	
Total Depth of Well Below MP:	21.94		ess, if noted:	~	
Depth-to-Water (DTW) Below MI					
Water Column in Well:	9.5	(Total Depth of	Well Below M	P - DTW Below M	P) .
Gallons per foot:	0.10				
Gallons in Well:	1,52	(Water Column	in Well x Gallo	ns per foot)	
0 1 10 14	PURC	GING DATA			
Benchmar 12.24 Date Purged: 9/23/20	Time Started: 00		Time Complet	ed: 956	5
Three Well Volumes: 46			Time Complet	ed. 100	
Gallons Purged: 0.90	Denth of	Pump (generally 2 f	ft from bottom):	14	
Max. Drawdown (generally 0.3 ft):		Pump Rate:	0.1		
Well Purged Dry:	Yes D No 🔀	(If yes, use Wel		,	
Time: Gallons: Pump Rate D	TW Drawdown	Temp: Sp. Co	nd.: DO:	pH: OI	RP: Turb:
- 4 4	BMP): (ft):	(°C) (uS/cr			(NTU)
		10.64 22		5.26 29	
		10.44 22		5.27 20	
	100			5.27 29	
	38 0.14	1.98 220		5.25 20	12 3.85
		9,86 220	-	5.26 3	70 2.65
2944 0.90 0.1 12	1.38 0.14	9,86 220	1175		2.40
× 1	SAMPI	ING DATA			
Odor: None		Color:	lear		
Sample Designation:	675-133MW	Time / Date:	9/23/20	950	
QC Sample Designation:		Time / Date:			
QA Sample Designation:		Time / Date:	~		
Evacuation Method: Submersible F		e Whale			
Sampling Method: Submersible Pu		11.	6 L M	hero TPW	
Water Quality Instruments Used/Ma	/	er	K 7 V	II LYD II	
Calibration Info (Time, Ranges, etc)	6 0900	con o	1/23/4	9	
Remarks:		. ,			
	ANY				
Sampling Personnel:	SING VOLUMES (GAL/	FT): 1" = 0.04 2)" = 0.16 A" =	0.65	
	AR SPACE VOLUME (GAL/				

	Shannon & V	Wilson, Inc.	===							4
	Job No:(Loca	tion: King	Salmo	We We	eather:	390	cloud	J. w/r
	Date: 9/2			Started: \	130	T	ime Comple	eted: \\	10	
	Develop Date			lop End Time:			4 hour brea			
			INIT	AL GROU	NDWATE	R LEVEL	DATA			
	Time of Depth	n Measuremer	it:	00	Date o	f Depth Meas	surement: _	9/2	2/20	
	Measuring Po	int (MP): Top	of PVC Casin	Top of Ste	el Protective	Casing / Othe	r:	•		
	Diameter of C	asing:		3"	Well S	creen Interva	1:			
	Total Depth of		MP:	19.68	Produc	t Thickness,	if noted:			
]	Depth-to-Wate	er (DTW) Bel	ow MP:	16.75						
. ,	Water Column	in Well:		2.93	(Total	Depth of We	l Below MI	P - DTW Be	low MP)	
	Gallons per fo			0.10						
(Gallons in We	11:		0.47	(Water	Column in V	Vell x Gallo	ns per foot)		
	Benchmar	·// - //	108	PUF	RGING DA	TA				
T	Date Purged		Ti	ne Started:	10:37	Tir	ne Complet	ed: 1108		
7	Three Well Vo	olumes:	1.41	(Gallons			T			
(Gallons Purge	d: 0	6		of Pump (gene		m bottom):	~18		
	Max. Drawdov			4	Pump	Rate:				
	Well Purged D		Yes D			use Well Pur				
Time:	Gallons:	Pump Rate	DTW	Drawdown	Temp:	Sp. Cond.:	DO:	pH:	ORP:	Turb:
- 1100		(L/min):	(ft BMP):	(ft):	(°C)	(uS/cm)	(mg/L)	(S.U.)	(mV)	(NTU)
1047	0.3	0.1	17.23	0.55	8.53	189	5.08	5.96	21	5.48
050	0.4	0.1	17.69	0156	8.61	189	4.47	5.46	19	6.87
153	2,5	011	14.44	0.56	8.64	190	4.18	5.45	19	6:53
056	0.6	0 ,	17.25	0.57	8.71	191	4.05	5.96	18	8-14
								-		***
				SAMI	PLING DA	TA				
0	dor:	Nov	u		Color:		clean			
	ample Designa	ation:	104675-	BAMW	Time / I	Date: \1	00	01/23/	20	
	C Sample Des		~		Time / I	Date:	_		,	
Q.	A Sample Des	signation:			Time / D	Pate:				
Ex	vacuation Met	hod: Sabmer	sible Pump / C	other:	hk who	ч				
	mpling Metho			-	she wh	ell				
W	ater Quality I	nstruments Us	ed/Manufactu	rer/Model Nur	mber A	mbo	+ Mu	w Tru	/	
	libration Info			0900	on	9/231	20			-
	marks:	,				/				•
100		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	_			-
Sa	mpling Persor	nnel:	AND							_
24			L CASING V	OLUMES (GA	L/FT): 1"=	0.04 2"=(.16 4"=	0.65		_
		AN	NULAR SPA	CE VOLUME	(GAL/FT): 4	" casing and	2" well = 0 .	23		

		***	LOT	THOW	Y Z K II II JIK 192	DYLLE LIKE	HOO.			
	Shannon & V			• (0)						
	ob No: 10	the state of the s	Locat	ion: King	Solmon	W	eather:	51 par	tly cloud	4
		BIZMU	S	•						,
D	Date:9/	22120	Time	Started:	B50	T	ime Compl	eted: /c	1:45	
D	Develop Date:	_	Devel	op End Time:			24 hour bre			
			INITI	AL GROU	NDWATE	R LEVEL	DATA			
Т	ime of Depth	Measuremen	t: 91	36	Date o	f Depth Mea	surement:	9/21	120	
				g / Top of Stee	el Protective	Casing / Othe	er:			
	iameter of C			2"		creen Interva				
T	otal Depth of	Well Below	MP: 231	RN.0814 19	.45 Produc	ct Thickness,	if noted:	~		
D	epth-to-Wate	er (DTW) Belo	ow MP:	8.58						
W	ater Column	in Well:		10.87	(Total	Depth of We	ll Below M	P - DTW Be	elow MP)	*
	allons per fo			0.16						
G	allons in We	11:	()	1.73	(Water	Column in V	Well x Gallo	ons per foot)	i s	
				PUR	GING DA	TA		33		
De	ate Durged:	9/22/2	n Tir	ne Started:			ne Comple	ted: 14:	36	
	ree Well Vo		5.21	(Gallons			ne comple	.cu. 1		_
				Depth o			m bottom).	10.51		
		n (generally 0		0.04		Rate: O				
	ell Purged D		Yes [use Well Pur				
	-	-				-	30.00	-	ODD	Tur
Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO: (mg/L)	pH: (S.U.)	ORP: (mV)	(NT)
14:00	0.1	0.1	8.62	0.04	11.41	130	7.34	5.12	262	21.5
14105	0.25	0.1	8.56	+ 6.02	10.82	119	7,73	5.10	279	21.7
14:10	0.4	0.1	8.60	0.02	10.57	112	8.00	5.29	284	18.3
14:15	0.65	0.1	8.59	0.01	10.55	109	7.72	5.22	292	11.41
14:18	0.75	0.1	8.60	0.02	10.52	107	7.41	5,17	299	9.10
14:21	0.85	0.1	8.60	0.02	10.56	106	7.66	5.18	300	7.5
1-1.00	0.00	0-1	0.00		10.36	_100_	7766	2110	200	
				SAMI	PLING DA					
9	or: No			(4)		Clear				_
	nple Designa		104675.	BIZMW						_
	Sample Des	100 Table 100 Ta). 	Time / I	Date:				
	Sample Des	_			Ime/L	Date:				_
				ther: Dowb						
San	npling Metho	od: Submersib	le Pump / Oth	er: Doubl	e Whale	د				
War	ter Quality Ir	struments Us	ed/Manufactu	rer/Model Nun		ba +	Turbid	imeter.		
Cali	ibration Info	(Time, Range	s, etc)/:3	30 9/2	22/20				<i>y</i>	
Ren	narks:	1			0-17	7	100000			-
<u> </u>										
Sam	pling Person	nel: ZJ1	CASING VO	OLUMES (GA	I /FT): 1"=	0.04 2"=0) 16 4" =	0.65		tic.

WELL CASING VOLUMES (GAL/FT): 1" = 0.04 2" = 0.16 4" = 0.65ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

Shannon & Wilson, Inc.

Continued from previous page 104675 Location: Kng Salmon Site: Mark Air Job No:

Well No .: 9/22/20 Date:

Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP): 8.60	Drawdown (ft):	Temp: (°C)	Sp. Cond (uS/cm)	DO (mg/L) 7.74	pH: (S.U.) 5.18	ORP: (mV)	Turb: (NTU)
14:24	0.15	0.1	0.00	0.02	10.30	109.0	4.11	0/10	301	
-					-		1 (-
							A	-		-
		- Ar	-		see and a second					
		4	-			-				
-	-		-				-			_
			-) / 	-	-
				V-100						
										-
	-				-		_		-	
										-
				-	· 					
-		-		-						
										
		-								
	14									
			2	-				-		
	Interval	Pump Rate	Drawdown	Temp:	Sp. Cond.:	DO	pH:	ORP:	Turl	
	(minutes)	(mL/min):	(ft):	(°C)	(uS/cm)	(mg/L)		(mV)	(NTC	
ADEC 1ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10%	/6
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <	5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

Inc.

	Snannon & v	viison, inc.		1/	C				. 1	
	Job No: (14	1075	Loca	tion: Un	1 Jalmon	1 w	eather: 5	50,1	budy	
	Well No.:		<i></i>)				0	
	Date:			Started:	1440	Т	ime Comple	eted: \5°	50	
	Develop Date:	·	Deve	lop End Time	:		24 hour brea			
			INIT	IAL GROU	INDWATE	R LEVEL	DATA			
	Time of Depth	Measuremen				f Depth Mea		9/2	1/20	
	Measuring Poi			-						-
	Diameter of C			Du ,		creen Interva				
	Total Depth of	f Well Below	MP:	14.98	Produc	ct Thickness,	if noted:			
	Depth-to-Wate	er (DTW) Belo	ow MP:	8.67						
	Water Column	in Well:		6.31		Depth of We	ll Below MI	P - DTW Be	low MP)	
	Gallons per fo	ot:	0.14	-totax	1					
	Gallons in We	11:	R-11-11-11	101	(Water	Column in V	Well x Gallo	ns per foot)		
	Benchmark	8.69	7	PU	RGING DA	TA				
	Date Purged:			me Started:	1452	Ti	me Complet	ed: 153	4	
	Three Well Vo				is in Well x 3)					
	Gallons Purgeo	d: 0.9	0		of Pump (gen		m bottom):	~11		
	Max. Drawdov			0.5	Pump	Rate:	0.1			*
	Well Purged D	ry:	Yes I	□ No ⊠	(If yes,	use Well Pur	rged Dry Lo	g)		
Time:	Gallons:	Pump Rate	DTW	Drawdown	Temp:	Sp. Cond.:	DO:	pH:	ORP:	Turb:
	2 0.3	(L/min):	(ft BMP):	AL (ft):	(°C)	(uS/cm)	(mg/L) 9,59	(s.u.) 9.43	(mV) ≤2.0	(NTU)
1502	A Record		9.15	90.5	2.56	171	9.67		40.0	17.9
1507		0.1	9.15	0.5	9.70	171	9.35	5.85	33.1	12.19
1512	0.60	0.1	9.15	0.5	7.38	171	9.16	5.89	31.2	9.83
1515	0.80	0.1	9.15	0.5	9.41	171	8.98	5.91	Z9.7	9,00
1518	0.00		9.15	0.5	9,44	172	8.97	5.91	28.3	
1721		_0.1		_015	7,44	176	0,11	2.11	20.3	8.13
				SAM	PLING DA	TA		5		
71.0	Odor:	Non	e.e		Color:	15	elear			_
	Sample Designa	2000 MM 전	104475	- BIZMI	The state of the s	Date:15	1.0.4.0.0.0.0	9/2	.7/20	
	QC Sample Des	_				Date:				_
	QA Sample Des					Date:	UNICLE STREET, SALES			-
	Evacuation Met Sampling Metho			174-						
	1 0	-		-				F. W. 2.1	La Como	
'	Water Quality In	nstruments Us	ed/Manufact	urer/Model Nu	imber 45	1 + 1	VICED	luvao -	13 016	~)
(Calibration Info	(Time, Range	es, etc)	1330	on a	22/20				
R	Remarks:								=	·
_			D	1)						2
S	ampling Person	nnel:	CASING V	OLUMES (G.	ΔΙ/FT\· 1" =	0.04 2"=	0.16 4"=	0.65		1.1
				CE VOLUMI						

	Shannon & V	Vilson, Inc.	LOV	V-FLOW V	VALERSA	TAIL ITHAG	LUG			
	Job No: 10		Locati	on: Kina	Salmon	We	eather:	53° par	thy cloud	dy.
	Well No.:	AV)			7		—
	Date: 9/			Started:	15:00	T	ime Comple	eted: 16	00:	
	Develop Date	:	Devel	op End Time:		(2	24 hour brea	k)		
			INITI	AL GROU	NDWATE	R LEVEL	DATA			
	Time of Depth	n Measuremen	t: 091	54	Date of	f Depth Mea	surement:	9/21/	120	
	Measuring Poliameter of C	int (MP): Cop	of PVC Casin	g / Top of Ste	el Protective (Casing / Othe	er:			
	Diameter of C	asing:			Well S	creen Interva	ıl:			
	Total Depth of			20.04	Produc	t Thickness,	if noted:			
	Depth-to-Wate					D 0 00000			22222	
	Water Column			6.02	(Total)	Depth of We	ll Below M	P - DTW Bel	ow MP)	
	Gallons per fo		-	0.16		G 1 ' T	V. II. O. II.	C ()		
	Gallons in We	11:		0.96	(Water	Column in V	vell x Gallo	ns per 100t)		
				PUE	RGING DA	TA			725	
	Date Purged:	9/22/2	Tin	ne Started:	15:08	Tir	ne Complet	ed: _/5 :	50	_
	Three Well Vo	11	2.89		s in Well x 3)					
	Gallons Purgeo	d: 0.5			of Pump (gene					
	Max. Drawdov	vn (generally ().3 ft):	0.39	The second secon	Rate:				
	Well Purged D	ry:	Yes	No 🔽	(If yes,	use Well Pur	ged Dry Lo	g)		
Time:	Gallons:	Pump Rate	DTW	Drawdown	Temp:	Sp. Cond.:	DO:	pH:	ORP:	Turb:
15:1:	2 2 1	(L/min):	(ft BMP):	(ft): _0.(8_	(°C)	(uS/cm) 185	(mg/L) -5.81	(S.U.) 4. 8 1	(mV) 319	(NTU) 19,49
	_	0.1	14.30	0.78	1000		5.17	4.78	318	19.62
15:18	0.2	0.1	14.34	0.32	10.70	187	4.89	4.77	318	23.05
15:23		0.1	14.39	0.34	11.22	190	4.83	4.78	3/8	19.14
15:26		0.1	14.39	0.35	11.34	191	4.72	4.79	318	19.63
15:29		0.1		0.36	11.57		466	4.84~		13.21 ~
15:32	0.45	0.1	14.40	0.50	11.9 1	1120	766	7.090	310	13.61
				SAM	PLING DA	TA	#,			
(Odor:	None		25/21/2	Color: _	Clea	r wit	an tint	73	
5	Sample Designa	ation:	104675	BIGMW	Time / I	Date:	:40	9/22/2	0	<u>unu</u>
(QC Sample Des	signation:			Time / D	Date:				
(A Sample Des	signation:	/		Time / I	Date:				_
E	Evacuation Met	hod: Submers	sible Pump / O	ther: Dow	ble What	4				•
S	ampling Metho	od: Submersil	ole Pump / Oth	er: Doub	ole Whal	e				
V	Vater Quality I	nstruments Us	ed/Manufactu	rer/Model Nu	mber Hor	iba + -	Turbidi	meter		Į.
C	Calibration Info	(Time, Range	es, etc)13	100 9	22/20					
R	emarks:	-		***************************************		ž				-
_							THE STATE OF THE S			21
S	ampling Person		L CASING VO	OLUMES (GA	\L/FT): 1"=	0.04 2"=	0.16 4"=	0.65		-

Page 1

ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

Shannon & Wilson, Inc.

Continue	d from previous page						
Job No: Well No.:	104675 BILDAW	Location: k	ng Sulmon	Site: _	Mak	An	

Date: 9/22/20

Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	(°C)	Sp. Cond (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTU)
15:35 15:38	0.55	0.1	14.41	0.39	11.64	193-	4.60			12,54
	-	-					-			
							1 1			
		-				-				-
		-	-	£	-		E	-		
			-	2	-			-		-
View of the second										
	-	-		-	\$2 <u></u>	-				
	-	-	:		(·		
				1	2 	***************************************				· · · · · · · · · · · · · · · · · · ·
-					·		<u> </u>			
				-	7					
		-		4	-					
				-	·		-			
	-		·	***********	3 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
-						-				
	-	-		-						
-					-			-		
					·					
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO (mg/L)		ORP: (mV)	Tur (NT	
ADEC 1ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10°	%
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <	<5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

	Shannon & V	Wilson, Inc.	-	*	10 20					
	Job No: 10 Well No.:	4675 BITMW	_ Locat	ion: Kine	Salmon	w	eather:5	6° part	ly clou	dy
		122120		Started:	7:30		Time Compl	eted: 18	:15	
	Develop Date			op End Time:			24 hour brea			
			INITI	AL GROU	Marine Ma					
		h Measuremen		44		of Depth Mea				
		int (MP): Top	of PVC Casin	Top of Ste						
	Diameter of C			211		Screen Interva	10/2010			
	-	f Well Below		19.08	Produc	ct Thickness,	if noted:			
	Depth-to-Wat	A DATE OF THE PARTY OF THE PART	ow MP:	11.54		D 4 CYY	HD 1 16	D. D. D. WILD	1.50	
	Water Column			7.54	(Total	Depth of We	all Below M	P - DTW Bel	low MP)	130
	Gallons per for Gallons in We		AR	1.20 1,	11 (Water	Column in V	Wall w Calle	na nar faat)		
	Ganons in we	т.	171.	1.20 11	U (Water	Column	well x Gallo	ns per 100t)		
		-1.1			RGING DA					
	Date Purged:		20 Tir	ne Started:			me Complet	ed: 8:	10	_
	Three Well Vo			(Gallon	s in Well x 3)					
	Gallons Purge			T	of Pump (gene	0.7		13.50		
	Max. Drawdov				Pump					
	Well Purged D	ry:	Yes [No 🖪	` ' '	use Well Pur	rged Dry Lo	g) _		_
Time:	Gallons:	Pump Rate	DTW	Drawdown	Temp:	Sp. Cond.:		pH:	ORP:	Turb:
17441	0.2	(L/min):	(ft BMP):	(ft):	(°C)	(uS/cm)	(mg/L)	(S.U.)	(mV)	(NTU)
17:44		0.	11.70	0.16	11.00	25	7.62	4.92	291	17.2
		0.1	11.74	0.20	11.09	252	7.41	4.93	290	18.08
17:54		0.1	11.76	0.22	11.35-	251-	8.17	4.91-	292-	14.26
17:57		0.1	11.77	0.23	11.43	252 -	8.15	4.97-	289 -	11.85
18:00	0.50	0.1	11.78	0.24	11.46	25 -	8.13	4.95	291 -	9,25
18:03	6.55	0.1	11.80	0.26	11.40	25) -	8.17	4.94 -	291-	7.83
		VEC		SAM	PLING DA	TA				
C	Odor:	None			Color: _	c	lear t	an tint		_
S	ample Design	ation:	104675	- BITMV	U Time/I	Date:	05	9/22/2	0	
Ç	C Sample Des				Time / I	Date:				_
Ç	A Sample De	signation:			Time / I	Date:			Œ	-
Е	vacuation Met	thod: Submers	ible Pump/O	ther: Douk	ste Whal	e				
S	ampling Meth	od: Submersib	le Pump / Oth	er: Doub	le whale	e				
	ater Quality I						Turbid	imeter		
	alibration Info				2/20	377				
	emarks:		- 10 10 10 10 10 10 10 10 10 10 10 10 10	,	•	×.				
K	omarks									
Sa	ampling Person	nnel: 2+4	-						<u> </u>	
50		WEII	CASING VO	OLUMES (GA	I/FT)· 1"=	0.04 2"=	0.16 4" =	0.65		

ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

	Shannon & V	Wilson, Inc.	201	1 1 10 11 11	I I I I I I I I I I I I I I I I I I I	THE BALLO	200			
	Job No: 10 Well No.:		Locati	ion: King	Salmo	∽ We	ather: 4	7º dou	dy	
	Date: 9	23/20	Time	Started:	35077775		ime Comple		:45	
	Develop Date	:	Devel	op End Time:	_	(2	4 hour brea	k)		
				AL GROUN				- 1 1		
	Time of Depth							9/21/		
			of PVC Casin	g / Top of Stee						
	Diameter of C			2"	The state of the s	creen Interva		_		
	Total Depth of			20.10	Product	Thickness, i	if noted:			
	Depth-to-Wate		ow MP:	13.34						
	Water Column		-	6.76	(Total I	Depth of Wel	l Below Mi	P - DTW Bel	ow MP)	
	Gallons per fo		1	0.16						
	Gallons in We		-	1.08	(Water o	Column in W	ell x Gallo	ns per foot)		
	BM:	13.45		PUR	GING DA				77	
	Date Purged: _	9/23/20	_ Tin	ne Started:	3:23	Tin	ne Complet	ed: 14:	30	_ 1
	Three Well Vo	00.00	3.24		in Well x 3)					
	Gallons Purge	d: 6.6	5	Depth of	f Pump (gener	rally 2 ft from	n bottom):	15.5		
	Max. Drawdov	wn (generally (0.3 ft):	0.36		Rate: 0				
	Well Purged D	ry:	Yes □	No 🗗	(If yes, 1	use Well Pur	ged Dry Lo	g)		
Time:	Gallons:	Pump Rate	DTW	Drawdown	Temp:	Sp. Cond.:	DO:	pH:	ORP:	Turb
		(L/min):	(ft BMP):	(ft):	(°C)	(uS/cm)	(mg/L)	(S.U.)	(mV)	(NTU
13:28	0.1	0.1	13.62	0.17	9.22	434	3.37	6.19	83	6.2
13:33	0.25	0.1	1364	0.19	9.33	433	2.75	6.20	85	6.8
13:38	0.4	0.1	13.70	0.25	9.71	426	2.10	6.21	89	7.19
13:43		0.1	13.78	6.33	10.01~	424~	2.07	6.25	90	6.7
13:46	7.5	0.1	13.80	0.35	10.13 -	424~	2.08	6.27	91	6.12
13:49	To the same of the	0.1	13.81	0.36	10.15		2.06	6.27-	92	5.5
				SAMP	LING DA	TA				
(odor: Prod	133 E	sint odor		Color:	Cleo				
	Sample Design			5-B18MW		ate: 13:		1/23/20		
	C Sample Design	and the same of th		5-B28MW	in and was to a manage of	ate: 14:		1/23/20		
	A Sample Des		10-101	-		ate:		100100		
			11. D /O	n		and the second second				
				ther: Doubler: Doub						
	2.1		1573	rer/Model Num			Turbod	imeter	-	
C	alibration Info	(Time, Range	es, etc)	100 9/2	3/20					
R	emarks:					×				-
-										-
Sa	ampling Person	nnel: 257	CACINICA	OLIMES (CA)	/ET). 122 - 4	0.04 2" - 0	16 12 -	0.65		-

WELL CASING VOLUMES (GAL/FT): 1"=0.04 2"=0.16 4"=0.65 ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

	Shannon & V	Wilson, Inc.								
	Job No: 1	04675	Locat	ion: Kin	a Salmo	n_ We	eather:	56° s	unny	
		BIGMN	J		0				- A	
	Date: 9	122/20	Time	Started:	16:05	T	ime Comple	eted: 17	:10	
	Develop Date	:	Deve	lop End Time:		(2	4 hour brea	ık)		
			INITI	AL GROU	NDWATE	R LEVEL	DATA			
	Time of Deptl	h Measuremer	nt: 10:	08	Date o	of Depth Meas	surement: _	9/21	05	
	Measuring Po				el Protective	Casing / Othe	r:			
	Diameter of C	Casing:		Z"	and the control of th	Screen Interva		-		
	Total Depth o	f Well Below	MP:	20.22	Produc	ct Thickness,	if noted:	_		
	Depth-to-Wat	0.000	ow MP:	15.09						
	Water Column		1	5.13	(Total	Depth of We	ll Below MI	P - DTW Be	low MP)	40
	Gallons per fo		-	0.16	(777.	01 ' "	V. II C. II .	C . A		
	Gallons in We	ell:		0.82	(Water	Column in V	Vell x Gallo	ns per foot)		
				PUI	RGING DA	ATA				
	Date Purged:	9/22/	20 Ti	me Started:	6:15	Tir	ne Complet	ed: 17:	00	_
	Three Well Vo			(Gallon	s in Well x 3)					
	Gallons Purge	d: [.0		Depth	of Pump (gen	erally 2 ft fro	m bottom):	17.0'		
	Max. Drawdov				Pump					6
	Well Purged D	Dry:	Yes D	No D	(If yes,	use Well Pur	ged Dry Lo	g)		
Time:	Gallons:	Pump Rate (L/min):	DTW (ft BMP):	Drawdown (ft):	Temp:	Sp. Cond.: (uS/cm)	DO: (mg/L)	pH: (S.U.)	ORP: (mV)	Turb: (NTU)
16:20	0.3	0.1	15.60	0.51	9.84	289	4.67	5.79	277	46.62
16:25	0.4	0.1	15.60	0.51	10.32	295	4.02	5.96	267	38.65
16:30		0.1	15.60	0.51	10.69	300	3.67	6.01	258	31.03
16:35	0.6	0.1	15.59	0.50	11.11	303	3.19	6.08	241	30.85
16:38	0.7	0.1	15.57	0.48	11.34	309	2.98	6.12	227	28.41
16:41	0.8	0.1	15.56	0.47	11.48	312	2.81	6.13	220	28.15
			15	SAM	PLING DA	ATA				
(Odor:	Jone			Color: _	CI	ear		H	
	Sample Design	ation:	104675	- B19MW	J Time / I	Date: 16:	50 9/3	22/20		_
(QC Sample De	signation:		,	Time / I	Date:				
(A Sample De	signation:			Time / I	Date:			- 1	
	Evacuation Me			1000						
	ampling Meth			75-22-7	25.7					
	Vater Quality I						lurbic	dineter		
C	alibration Info	(Time, Range	es, etc)	1:30	9/22/30				-	
R	emarks:					2				-7
_	li		_							7,5
S	ampling Perso	mnei: WFI	L CASING V	OLUMES (GA	AL/FT): 1" =	= 0.04 2" = 0	0.16 4"=	0.65		-

ANNULAR SPACE VOLUME (GAL/FT): 4" casing and 2" well = 0.23

Shannon & Wilson, Inc.

C	ontinued f	rom previou	us page							
W	ob No: /ell No.:	104675 BI9MW 9/22	<u> </u>	Location:	ing Salmo	Site	:_Ma	Ne Air		
Time: 16:44 16:47		Pump Rate (L/min):	DTW (ft BMP): 15.56	Drawdown (ft): 6.47 0.47	Temp: (°C) 11.56		DO (mg/L) 2.69 2.8 (pH: (S.U.) (6.14-		Turb: (NTU) 30.75
								-		
		-						-		
-		-			-					
-			-	1		-	-			
		-					(0.0		
				-						-
				-			-		-	
-	-		-				-			422
	/				-					
	2 		-					-		
<u> </u>					722000000000000000000000000000000000000				-	
				-	-					
						-				
	-		-	-						
										-
				(1 <u>000000000000000000000000000000000000</u>					-	
-	-			-	N					V
				v 	-					
-				2	·					
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO (mg/L)	pH: (S.U.)	ORP: (mV)	Tur (NT	
ADEC 1ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10°	%
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <	5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

Shannon & Wilson, Inc.					
Job No: 104675	Location: WWW	Silman	Weather: _ §	to cloudy,	
Well No.: BLOWW	Eccation. Kitty			5° Cloudy sted: 1702	
Date: 9/22/20	Time Started: 16	03	Time Comple	ted: 1702	
Develop Date:	Develop End Time:		(24 hour brea		
Supposed Process Supposed Supp					
· · · · · · · · · · · · · · · · · · ·	INITIAL GROUP	15-14 8397	7 SA 17569	m la n 120	
Time of Depth Measurement:	1018		epth Measurement:		
Measuring Point (MP): Top of PV	Casing / Top of Stee		en Interval:		
Diameter of Casing: Total Depth of Well Below MP:	10.98		nickness, if noted:	-	
Depth-to-Water (DTW) Below MP		Hoddet H	nekness, n noted.		
Water Column in Well:	10.22	(Total Dep	th of Well Below MI	P - DTW Below MP)	
Gallons per foot:	0.16	(10111120)		,	
Gallons in Well:	1.64	(Water Col	lumn in Well x Gallor	ns per foot)	
			22	* · · · · · · · · · · · · · · · · · · ·	
Benchmarn 9.75		GING DATA		1/2/	
Date Purged: 4 22/20	Time Started:	1614	_ Time Complete	ed: 165	-
Three Well Volumes: 4.9		in Well x 3)		4.11	
Gallons Purged: U , CO			ly 2 ft from bottom):	1011	
Max. Drawdown (generally 0.3 ft):		Pump Rate			†o
Well Purged Dry:	Yes D No D	(If yes, use	Well Purged Dry Lo	g)	
	TW Drawdown		p. Cond.: DO:	pH: ORP:	Turb:
	MP): (ft): 49 0.74		(uS/cm) (mg/L) 007 4.32	(S.U.) (mV) 3,93 ZO.4	(NTU) 2.70
	w2 0.87		649 3.84	3.91 22.3	3-12
	79 [.04		067 3.61	3.89 17.6	1.88
1637 0.75 0.1 10.	82 1.00 m	12.84	075 3.46	3.88 21.9	2.42
1440 0.80 0.1 10.	82 1.07	313	074 3.29	3.87 21.9	2.05
1440 0.00 0 10.	(1.0)	10	0.01		_ 210 -5
		3 			
	SAME	LING DATA	<u>\</u>		
Odor: None		Color:	Clear		_
Sample Designation: 10467	5-1320MW	Time / Date		a/11/20	
QC Sample Designation:		Time / Date		approximation and the second s	_
QA Sample Designation:		Time / Date:			
Evacuation Method: Submersible P	ump/Other: Dea	ble what	e		
Sampling Method: Submersible Pur	np / Other:	what	Q		
Water Quality Instruments Used/Ma	nufacturer/Model Nun	nber YSI	+ Mrin	TPW	
Calibration Info (Time, Ranges, etc)	a calleration	6/22/20	a 1330		
Remarks:		1-10	C		
ACCAMANA			1		
Sampling Personnel: A. V	-			387	
WELL CAS	ING VOLUMES (GA				H.
ANNULA	R SPACE VOLUME	(GAL/FT): 4" ca	asing and 2" well $= 0$.	23	

Shannon & Wilson, Inc.	Α.	C:		. 1	
Job No: 104475	Location: WW	Jalmon v	Veather: 55°	Cloudy	<u></u>
Well No.: BZIMW	J			0	
Date: 0/12/10	Time Started:\7	30	Time Completed: \	855	
Develop Date:	Develop End Time:		(24 hour break)		
	INITIAL GROUN	DWATER LEVE	L DATA		
Time of Depth Measurement:	15,240	Date of Depth Me	asurement: 4/127	1/20	
Measuring Point (MP): Top of I Diameter of Casing:	PVC Casing / Top of Steel	Protective Casing / Oth	ner:		
Diameter of Casing:	2"	Well Screen Interv	val:		
Total Depth of Well Below MP	: 14.41	Product Thickness	, if noted:		
Depth-to-Water (DTW) Below	MP: (0.03				
Water Column in Well:	4.88	(Total Depth of W	ell Below MP - DTW B	elow MP)	
Gallons per foot:	0.16				
Gallons in Well:	9F.0	(Water Column in	Well x Gallons per foot	:)	
Burkmark - 9.96	PURG	GING DATA			
Date Purged: 4/22/10	Time Started:		ime Completed: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	38	
Three Well Volumes:	Gallons in		mie Compieted. 10	.,	-
Gallons Purged: 1.4			om bottom): 211.5		
Max. Drawdown (generally 0.3				-	
Well Purged Dry:	Yes D No D	(If yes, use Well P	·		
Time: Gallons: Pump Rate	DTW Drawdown	Temp: Sp. Cond.	: DO: pH:	ORP:	Turb:
(L/min): (1	ft BMP): (ft):	(°C) (uS/cm)	(mg/L) (S.U.)	(mV)	(NTU)
	10.01 0.65	10.74 236			207.8
AS2 64 p.1 1		11.39 236	7.68 5.92	31.0	F.101
757 0.6 0.1	0.65 0.69	11.96 237			132.3
802 0.75 0.1	0.70	11.45 262	3.56 6.05	32.9	133,
407 0.90 0.1	0.72 4,76	12.34 269			107.1
812 1.0 0.1 1	0.81 0.85	12.69 259	3.25 6.04	29.9	94.25
1	SAMPI	LING DATA			
Odor: None		Color: Light	Drown - Clear		_
Sample Designation:	075 - BZIMW	Time / Date:\	&30 a	12/10	_
QC Sample Designation:	-	Time / Date:			_
QA Sample Designation:		Time / Date:			_
Evacuation Method: Submersible	e Pump / Other: Doyb	il whele			,
Sampling Method: Submersible l	Pump / Other: Dv43	sie wha If			
Water Quality Instruments Used/	Manufacturer/Model Numb	per 751 +	MICH TPW		
Calibration Info (Time, Ranges, e	etc) 1970 bn				
Remarks:		-1			
					•
Sampling Personnel:	R				
	ASTNG VOLUMES (GAL				
ANNU.	LAR SPACE VOLUME (C	IALIFIJ: 4 casing in	1.4 Wall =- 0.23		

Shannon & Wilson, Inc.

Continued from previous page

V	ob No: Vell No.:	104675 B21m 9122/1		Location:	ing Salna	6 / Site	:\	Nark Hiv	<i></i>	
Time: 1817 1822 1825	Gallons:	Pump Rate (L/min):	DTW (ft BMP): [V.85] 10.87	Drawdown (ft): 0.89 0.91 0.91	Temp: (°C) 12.81 13.06 13.10	Sp. Cond (uS/cm) 153 251 251	DO (mg/L) 3.43 3.47 3.48	pH: (S.U.) 6.05 6.07 6.07	ORP: (mV) 28.3 37.4 33.8 34.7	Turb: (NTU) 77.29 71.47 69.38
									193	
				P <u></u> 2		<u> </u>				<u> </u>
	· -	-	·	*	7 -1-1-3 7		<u>v</u>		(1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
			S			1			8	:
***************************************	: : 						-		-	-
	Name of the second	(1000000000000000000000000000000000000	1000		-				-	
		1								
				<u> </u>						-
-			-				-			
-	-	-						:		
	Interval (minutes)	Pump Rate (mL/min):	Drawdown (ft):	Temp: (°C)	Sp. Cond.: (uS/cm)	DO (mg/L)		ORP: (mV)	Turk (NTU	
ADEC 1ay 2010)	3 to 5	100 to 150	<0.0328	±3% or ±0.2	±3%	±10%	±0.1	±10	±10%	6
EPA an. 2010)	5	50	<0.3	±3%	±3%	±10%	±0.1	±10	±10% or <	5 NTU

EPA guidance requires all parameters to stabilize for 3 consecutive readings before sampling. If not stable within 2 hours, collect sample.

ADEC guidance requires 3 parameters (4 if using temperature) to stabilize for 3 consecutive readings before sampling.

AJR/ZJT

Station or	Rackejoht	Height of	Foresight		
Survey Point ID	(BS) (+)	(HI)	(FS) (-)	Elevation	Comments
TBM	4.45	104.45		100.00	TBM- Southeast corner of former markair terminal
BSMW			4.98	99.47	
B3MW			5.24	99.21	
B12MW			10.99	93.46	
B1MW			4.79	99'66	
B2MW			4.15	100.30	
B4MW			5.53	26:86	
B10MW			96.9	97.49	
B11MW			8.73	95.72	
TP1 (B11MW)	2.52	93.79	5.10		
B13MW			5.10	69.88	
TP2 (B2MW)	5.22	105.52	5.91		Instrument moved
B9MW			5.91	99.61	
вумм			80.9	99.46	
B16MW			7.07	98.45	
B18MW			8.39	97.13	
TP3 (B18MW)	2.84	99.97	5.13		Instrument moved
B21MW			11.28	69'88	
B20MW			7.08	92.89	
B17MW			5.13	94.84	
B19MW			6.08	93.89	
TP4 (B18MW)	4.01	104.45	4.45		Instrument moved

Surfer Input

Well No.	Northing	Easting	Z
B1MW	15071.42	82286.96	79.64
B2MW	15094.64	82235.63	72.78
B3MW	14985.86	82447.44	86.87
B4MW	15038. 73	82240.25	82.93
B5MW	15044.49	82363.80	84.90
B6MW	14943.53	82361.82	Well Blocked
B7MW	15171.00	82153.67	82.71
B8MW			Assumed Destroyed
B9MW	15112. 79	82154.27	69.61 - product
B10MW	15059.61	82127.64	81.28 - product
B11MW	15003.15	82191.61	82.12 - product
B12MW	14875.23	82248.08	84.88
B13MW	14865.68	82149.11	80.02
B14MW	14981.90	82023. 71	Could Not Locate
B15MW	14873.94	82005.46	Could Not Locate
B16MW	15118.16	82035.94	84.43
B17MW	15149.15	81841.62	83.30
B18MW	15257.34	81923.92	83.79
B19MW	15324.28	81797.37	78.80
B20MW	15360.66	81690.7	83.13
B21MW	15177.72	81652.99	78.66

Krebs-Barsis, Lisa K (DEC)

Page inserted by LKB re: what wells used for flow direction modelling

From: Dan McMahon < DXM@shanwil.com>
Sent: Wednesday, May 5, 2021 1:37 PM

To: Krebs-Barsis, Lisa K (DEC)
Cc: Kusche, Kara C (DEC)

Subject: RE: File No. 2569.38.009- Draft Report Comments 12-17-2020

Lisa – Please see Page 48 of the pdf for the surfer input parameters. Under the "z" column, the wells with only elevations presented were used. Therefore, if it is noted that a well was blocked, destroyed, not located, or contained product, the well was not used in the groundwater flow direction calculations. I apologize if this was unclear.

Dan P. McMahon 907-433-3223

From: Krebs-Barsis, Lisa K (DEC) < lisa.krebs-barsis@alaska.gov>

Sent: Wednesday, May 5, 2021 1:26 PM **To:** Dan McMahon < DXM@shanwil.com>

Cc: Kusche, Kara C (DEC) <kara.kusche@alaska.gov>

Subject: RE: File No. 2569.38.009- Draft Report Comments 12-17-2020

Good Afternoon Dan,

Thank you for including the PFAS exceedances in the figure.

In my email on January 14th, I asked for additional information about how the groundwater flow direction was determined, <u>including what wells were included in the model</u>. Did you use all of the wells? Including those with free product? Are there any other assumptions that I should know?

Lisa Krebs-Barsis Contaminated Sites Program Alaska Department of Environmental Conservation 269-7691

From: Dan McMahon [mailto:DXM@shanwil.com]

Sent: Thursday, April 1, 2021 9:10 AM

To: Krebs-Barsis, Lisa K (DEC) < lisa.krebs-barsis@alaska.gov>

Cc: Kusche, Kara C (DEC) < kara.kusche@alaska.gov >; DEC CS.Submittals (DEC sponsored) < CS.Submittals@alaska.gov >

Subject: RE: File No. 2569.38.009- Draft Report Comments 12-17-2020

Lisa - Attached is our final report for the former MarkAir facility located in King Salmon. Sorry for the delay. We had a issue receiving the final disposal receipt for the drum of purge water. The final report includes an expanded discussion of deviations, a discussion of groundwater flow direction/gradient, a figure (Figure 3) presenting groundwater contours, and PFAS results have been added to Figure 2.

Dan P. McMahon 907-433-3223

SHANNON & WILSON, INC.

ATTACHMENT 2

DISPOSAL RECEIPTS

Former MarkAir Facility, King Salmon, Alaska

Project No. 104675-001

*** IN CASE OF EMERGENCY CALL 800-899-4672 *** NON-HAZARDOUS WASTE MANIFEST

Plea	60 prin	l er lype (Form designed for use on elite (1	2 pitch) typewriter)						
		NON-HAZARDOUS WASTE MANIFEST	1. Generater's US EPA ID No. VSCQ VSQL	-	Manifest Document No.	HASSA PUCKER	2, Page 1 of 1		
	543 AN0	Generator's Name and Mailing Address ANNON & WILSON, INC. O FAIRBANKS STREET CHORAGE, AK 99518-1263 Generator's Phone (907-561-2120	9613 163938-MK						
	NORTHERN AIR CARGO A C. A. r. 6. USEPA ID Number A. State Transporter's ID B. Transporter 1 Phone A. State Transporter 1 Phone								
	7. Transporter 2 Company Name 8. US EPA ID Number C. State Transporter's ID D. Transporter 2 Phone Got 258/658 9. Designated Facility Name and Site Address 10. US EPA ID Number E. State Facility's ID								
	202	C ALASKA LLC 0 VIKING DRIVE CHORAGE, AK 99501	AKR000004184		F. Facility's Phone	907-258-1558	18		
	11.	WASTE DESCRIPTION		Co	ntalners	13. Total	14. Unit		
	HM			No.	Туре	Quantity	Wt./Vol.		
	a.	MATERIAL NOT REGULATED	BY D.O.T.	1	DM	220	Р		
GEZE	- b.								
ERATOR	c.								
R	d.					5			
		dditional Descriptions for Materials Listed Above	(2) (2)		H. Handling Code	s for Wastes Listed Above			
		10302 IDW-DECON-WATER 10325 PFUS WATER	(DM55)						
	15. S	Special Handling Instructions and Additional Infor	mation o certify that the above-named materials are	prope	rlv classified	. described.			
	pa		and are in proper condition for transportation				ions		
	16.	GENERATOR'S CERTIFICATION: I hereby certification	y that the contents of this shipment are fully and accurately described a	and are in	all respects				
		in proper condition for transport. The materials de	scribed on this manifest are not subject to federal hazardous waste regi	ulations.		<u> </u>	120000		
120	Prin	ted/Typed Name	Signature		71	Month	Date Day Year		
_		lec Hilld	age			9	24 20 Date		
TRANSPORTER		Transporter 1 Acknowledgement of Receipt of Med Typed Name	Signature			Month	Day, Year 24 20		
PO	18.	Transporter 2 Acknowledgement of Receipt of Mo	aterials				Date		
THE	Ja	ted/Typed Name	Signature			Month 3	Day Year		
FAC	19.	Discrepancy Indication Space		West	19				
Ľ	20.	Facility Owner or Operator: Certification objection	rof the waste materials covered by this manifest, except as noted in iter	m 19,	-		Date		
‡	Prin	ted/lyped Name -	Stratujo /	11)	Month	Day Year		
Ý	1	atrico LB	easley fattina	大	easl	ey 03	19191		
		The second secon	19			PRINTED ON PRECYC	LEO PAPER (A) TYPINTES WITH		

CERTIFICATE OF DISPOSAL/RECYCLE

A US Ecology subsidiary company

GENERATOR:

ADEC - MARK AIR

1 KING SALMON AIRPORT ROAD

KING SALMON, AK 99613

DISPOSAL FACILITY:

NRC ALASKA LLC

2020 VIKING DRIVE

ANCHORAGE, AK 99501

EPA ID NUMBER:

VSQG

MANIFEST/DOCUMENT #:

163938A

DATE OF DISPOSAL/RECYCLE: MAR-19-2021

LINE

WASTE DESCRIPTION

CONTAINERS

QUANTITY

UOM

TYPE PFOS/PFOA CONTAMINATED WASTEWATER DM (DM55)

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above described waste was managed in compliance with all applicable laws, regulations, permits and licenses on the date listed above.

PREPARED BY

SIGNATURE:

MAR 1 9 2021

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE

Contaminated Sites and Prevention Preparedness and Response Programs

Contaminated Media Transport and Treatment or Disposal Approval Form

DEC HAZARD/SPILL ID #	NAME OF CON	ΓΑΜΙΝ	NATED SITE OR SPILI						
1879	1879 MarkAir - King Salmon								
CONTAMINATED SITE OR S	SPILL LOCATION	N – AD	DRESS OR OTHER AF	PROPRIATE	DESCRIPTION				
Lot 2, Block 1, King Salmon Airport									
CURRENT PHYSICAL LOCA	ATION OF MEDIA	SOURCE OF THE CO (DAY TANK, WASH		ION RAINING PIT, LUST, ETC.)					
in-situ fuel storage and distribution									
CONTAMINANTS OF CONCERN ESTIMATED VOLUME DATE(S) GENERATED									
DRO/VOCs			<55-gallons	Week	of September 21, 2020				
POST TREATMENT ANALY	SIS REQUIRED (S	such as	GRO, DRO, RRO, VOCs,	metals, PFAS,	and/or Chlorinated Solvents)				
COMMENTS OR OTHER IM	PORTANT INFO	RMATI	ION						
oil will be processed in oil will be managed under Anchorage, AK 99501)			•		e recycled and recovered y (2020 Viking Drive,				
TREATMENT FACILITY, LAND/OR FINAL DESTINATION		PHYS	SICAL ADDRESS/PHO	NE NUMBER					
NRC Alaska, I	nc.		2020 Viking Drive	e, Anchorage	e, AK/907-258-1558				
RESPONSIBLE PARTY		ADDI	RESS/PHONE NUMBE	R					
ADEC			555 Cordova	Street, Anc	horage, Alaska				
WASTE MANAGEMENT CO	. / ORGANIZER	ADDI	RESS/PHONE NUMBE	R					
NRC Alaska, li					e, AK/907-258-1558				
Dan P. McMaho	n	es prior	Senior	Associat	nd ADEC Solid Waste Program. e/Shannon & Wilson				
Name of the Person Requesting A			Title/Assoc	iation					
Dan P. McMahon	tally signed by Dan P. McMahon cn=Dan P. McMahon, o=Shanno email=dxm@shanwil.com, c=US e: 2020.09.11 10:06:30 -08'00'	n & Wilson,	9/11/2	2020	907-561-2120				
Signature			Date		Phone Number				
		DE	C USE ONLY						
Based on the information pro Party or their consultant mus and a post treatment analytic transported as a covered load	t submit to the Dalareport, if dispo	EC Prosed of	oject Manager a copy of at an approved treatm	of weight rece					
Lisa Krebs-Bars			EPS I						
DEC Project Manager Name (pri	nted)		•	Project Manager Title					
Lísa Krebs-Barsís			<u> </u>	-2020	907-269-7691				
Signature			Date		Phone Number				

ATTACHMENT 3

RESULTS OF ANALYTICAL TESTING BY

SGS NORTH AMERICA INC. OF ANCHORAGE, ALASKA

AND

ADEC LABORATORY DATA REVIEW CHECKLIST

Former MarkAir Facility, King Salmon, Alaska

Project No. 104675-001

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907)433-3223

Report Number: 1205226

Client Project: 104675 King Salmon-MarkAir

Dear Dan McMahon,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Justin Nelson 2020.10.22

14:12:18 -08'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/22/2020 8:44:44AM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson, Inc.**SGS Project: **1205226**

Project Name/Site: 104675 King Salmon-MarkAir

Project Contact: Dan McMahon

Refer to sample receipt form for information on sample condition.

104675-B3MW (1205226001) PS

EPA 537 PFAS were analyzed by SGS of Orlando, FL.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/22/2020 8:44:45AM

Sam	ple Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
104675-B3MW	1205226001	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
104675-B7MW	1205226002	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
104675-B13MW	1205226003	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
104675-B20MW	1205226004	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)

Method Description

Print Date: 10/22/2020 8:44:48AM

1205226

	Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 (907) 561-2120 Fax (206) 695-6777	Date Time Sample ID Containers	0 9:50	(A) 9/23/2020 11:00 104675-B7MW 2 X	9/22/2020 15:25 104675-B13MW 2 X	(1) 9/22/2020 16:45 104675-B20MW 2 X	Relinquished By:	Signature: 775 Date: 9/25/20	Print Name: Zore Time: 10:15	Company: Shannon & Wilson, Inc.	Received By:	Signature: Date:	Print Name; Time:	Company:	ned By:	Signature: Date:	Print Name:	Company: Shannon & Wilson, Inc.	35	Signature: Mr. 16. 01. 1 Date: 9/25/70	Print Name: Alichalle Allowmon, Time: 10/2	
CHAIN OF CUSTODY		ш													Project Information	Project Number: 104675	Project Name: King Salmon- MarkAir	Special Instructions:	Sample Receipt	Temp Blank: 0.6 DS 3	Cooler Temperature Upon Arrival:	
																Contact: Dan McMahon	Sampler: AJR/ZJT			Sample Matrix: Water		

OH 365300 AD

e-Sample Receipt Form

SGS Workorder #:

1205226

1205226

	<u></u>						
Review Criteria	Condition (Yes	No, N/A		Exce	eptions No	ted below	
Chain of Custody / Temperature Requi	rements	Y	/es	Exemption per	mitted if sam	pler hand carries/deli	vers.
Were Custody Seals intact? Note # &	location N/A						
COC accompanied sa	amples? Yes						
DOD: Were samples received in COC corresponding							
N/A **Exemption permitted if			urs a	ago or for sam	ples where ch	nilling is not required	
Temperature blank compliant* (i.e., 0-6 °C afte		Cooler ID	_	1	@	0.6 °C Therm. ID:	D53
Temperature blank compilant (i.e., 0-0 °C and	CI OI): Tes	Cooler ID	_	•	@	°C Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" wil	l he	Cooler ID	_			°C Therm. ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "cl			-		@		
be noted if neither is available.		Cooler ID	_		@	°C Therm. ID:	
		Cooler ID	:		@	°C Therm. ID:	
*If >6°C, were samples collected <8 hours	s ago? N/A	J					
If <0°C, were sample containers ice	e free? N/A						
Note: Identify containers received at non-compliant tempe							
Use form FS-0029 if more space is n	needed.						
Holding Time / Documentation / Sample Condition R	equirements	Note: Refer	to for	rm F-083 "Sampl	e Guide" for spe	ecific holding times.	
Were samples received within holding	g time? Yes						
		Ĭ					
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes						
**Note: If times differ <1hr, record details & login per C							
***Note: If sample information on containers differs from COC, SGS will default to							
Were analytical requests clear? (i.e., method is specified for ar with multiple option for analysis (Ex: BTEX,							
with multiple option for analysis (Ex. BTEX,	wictais)						
			N/A	***Exemption	permitted for i	metals (e.g,200.8/602	20A).
Were proper containers (type/mass/volume/preservative***	')used? Yes						
		l					
Volatile / LL-Hg Rec							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa	mples? N/A						
Were all water VOA vials free of headspace (i.e., bubbles ≤	6mm)? N/A						
Were all soil VOAs field extracted with MeOH	I+BFB? N/A						
Note to Client: Any "No", answer above indicates no	n-compliance	with standa	ard p	rocedures and	may impact of	data quality.	
Additiona	al notes (if a	pplicable	:):				

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1205226001-A	No Preservative Required	OK			
1205226001-B	No Preservative Required	OK			
1205226002-A	No Preservative Required	OK			
1205226002-B	No Preservative Required	OK			
1205226003-A	No Preservative Required	OK			
1205226003-B	No Preservative Required	OK			
1205226004-A	No Preservative Required	OK			
1205226004-B	No Preservative Required	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Orlando, FL 10/15/20

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

SGS North America, Inc

1205226

SGS Job Number: FA79315

Sampling Date: 09/23/20

Report to:

justin.nelson@sgs.com

ATTN: Distribution6

Total number of pages in report: 49

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer **Technical Director**

Now Fun

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-070

1 of 49

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	
Section 4: Sample Results	7
4.1: FA79315-1: 104675-B3MW	
4.2: FA79315-2: 104675-B7MW	10
4.3: FA79315-3: 104675-B13MW	12
4.4: FA79315-4: 104675-B20MW	14
Section 5: Misc. Forms	16
5.1: Chain of Custody	17
5.2: QC Evaluation: DOD QSM5.x Limits	
Section 6: MS Semi-volatiles - QC Data Summaries	23
6.1: Method Blank Summary	24
6.2: Blank Spike Summary	
6.3: Matrix Spike Summary	
6.4: Duplicate Summary	

Sample Summary

SGS North America, Inc

1205226

Job No: FA79315

Sample Number	Collected Date	Time By	Received	Matr: Code		Client Sample ID
FA79315-1	09/23/20	09:50	09/30/20	AQ	Water	104675-B3MW
FA79315-2	09/23/20	11:00	09/30/20	AQ	Water	104675-B7MW
FA79315-3	09/23/20	15:25	09/30/20	AQ	Water	104675-B13MW
FA79315-4	09/23/20	16:45	09/30/20	AQ	Water	104675-B20MW

N

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS North America, Inc Job No: FA79315

Site: 1205226 Report Date 10/15/2020 10:57:42

4 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 09/23/2020 and were received at SGS North America Inc - Orlando on 09/30/2020 properly preserved, at 4.4 Deg. C and intact. These Samples received an SGS Orlando job number of FA79315. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section. Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

MS Semi-volatiles By Method EPA 537M QSM5.3 B-15

Matrix: AQ Batch ID: OP82375

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

Sample(s) FA79486-2MS, FA79486-3DUP were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

RPD(s) for Duplicate for Perfluorooctanesulfonic acid are outside control limits for sample OP82375-DUP. Probable cause is due to sample non-homogeneity.

Sample(s) FA79315-1, FA79315-2, FA79315-4 have surrogates outside control limits.

FA79315-1 for 13C8-FOSA: Outside control limits.

FA79315-1 for PFOSA: Associated ID Standard outside control limits due to matrix interference. Confirmed by reanalysis.

FA79315-1: Dilution required due to matrix interference (ID recovery standard failure).

FA79315-2 for 13C2-PFTeDA: Outside control limits in associated MS/MSD.

FA79315-4: Confirmation run.

Matrix: AQ Batch ID: OP82458

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA79381-100MS, FA79381-111DUP were used as the QC samples indicated.

Sample(s) FA79315-4 have surrogates outside control limits.

FA79315-4 for Perfluorotetradecanoic acid: Associated ID Standard outside DoD QSM 5.3 control limits due to matrix interference. Confirmed by re-extraction and reanalysis.

FA79315-4 for Perfluorotridecanoic acid: Associated ID Standard outside DoD QSM 5.3 control limits due to matrix interference. Confirmed by re-extraction and reanalysis.

FA79315-4 for 13C2-PFTeDA: Outside control limits due to matrix interference. Confirmed by re-extraction and reanalysis.

SGS Orlando certifies that this report meets the project requirements for analytical data produced for the samples as received at SGS Orlando and as stated on the COC. SGS Orlando certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the SGS Orlando Quality Manual except as noted above. This report is to be used in its entirety. SGS Orlando is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:	
Ariel Hartney, Client Se	ervices (Signature on File)

Summary of Hits Job Number: FA79315

Account: SGS North America, Inc

Project: Collected: 1205226 09/23/20

Lab Sample ID Client Sa Analyte	mple ID Result/ Qual	LOQ	LOD	Units	Method
FA79315-1 104675-B	3MW				
Perfluorobutanoic acid	0.0801	0.016	0.0080	ug/l	EPA 537M QSM5.3 B-15
Perfluoropentanoic acid	0.229	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorohexanoic acid	0.289	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluoroheptanoic acid	0.137	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorooctanoic acid	0.170	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorononanoic acid	0.0190	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorobutanesulfonic acid		0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluoropentanesulfonic ac		0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorohexanesulfonic aci		0.040	0.020	ug/l	EPA 537M QSM5.3 B-15
Perfluoroheptanesulfonic ac		0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorooctanesulfonic acid	d 0.0784	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
EtFOSAA	0.0055 J	0.016	0.0080	ug/l	EPA 537M QSM5.3 B-15
FA79315-2 104675-B	7 MW				
Perfluorobutanoic acid	0.0151 J	0.016	0.0080	ug/l	EPA 537M QSM5.3 B-15
Perfluoropentanoic acid	0.0346	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorohexanoic acid	0.0278	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluoroheptanoic acid	0.0181	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorooctanoic acid	0.109	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorononanoic acid	0.0048 J	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorodecanoic acid	0.0044 J	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorobutanesulfonic acid	d 0.0025 J	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluoropentanesulfonic ac	eid 0.0025 J	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorohexanesulfonic aci		0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorooctanesulfonic acid	d 0.0261	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
FA79315-3 104675-B	13MW				
Perfluorohexanesulfonic aci	d 0.0038 J	0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
Perfluorooctanesulfonic acid		0.0080	0.0040	ug/l	EPA 537M QSM5.3 B-15
FA79315-4 104675-B	20MW				
Perfluorobutanoic acid	0.0402	0.015	0.0077	ug/l	EPA 537M QSM5.3 B-15
Perfluoropentanoic acid	0.149	0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
Perfluorohexanoic acid	0.109	0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
Perfluoroheptanoic acid	0.0269	0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
Perfluorooctanoic acid	0.0387	0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
Perfluorononanoic acid	0.0042 J	0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
Perfluorodecanoic acid	0.0020 J	0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
Perfluorobutanesulfonic acid		0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
Perfluorohexanesulfonic aci		0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15
		2.30,,			2220000 2010

Summary of Hits Job Number: FA79315

Account: SGS North America, Inc

Project: 1205226 **Collected:** 09/23/20

Lab Sample ID Client Sample ID Analyte	Result/ Qual	LOQ	LOD	Units	Method
Perfluorooctanesulfonic acid	0.0163	0.0077	0.0038	ug/l	EPA 537M QSM5.3 B-15

(a) Dilution required due to matrix interference (ID recovery standard failure).

Orlando, FL

Section 4

Page 1 of 2

Date Sampled: 09/23/20

Date Received: 09/30/20

Percent Solids: n/a

 Client Sample ID:
 104675-B3MW

 Lab Sample ID:
 FA79315-1

 Matrix:
 AQ - Water

Method: EPA 537M QSM5.3 B-15 EPA 537 MOD

Project: 1205226

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2Q55880.D	1	10/09/20 16:36	NG	10/08/20 07:50	OP82375	S2Q827
Run #2 a	2Q55950.D	5	10/11/20 14:16	NAF	10/08/20 07:50	OP82375	S2Q828

	Initial Volume	Final Volume
Run #1	125 ml	1.0 ml
Run #2	125 ml	1.0 ml

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS					
375-22-4	Perfluorobutanoic acid	0.0801	0.016	0.0080	0.0040	ug/l	
2706-90-3	Perfluoropentanoic acid	0.229	0.0080	0.0040	0.0020	ug/l	
307-24-4	Perfluorohexanoic acid	0.289	0.0080	0.0040	0.0020	ug/l	
375-85-9	Perfluoroheptanoic acid	0.137	0.0080	0.0040	0.0020	ug/l	
335-67-1	Perfluorooctanoic acid	0.170	0.0080	0.0040	0.0020	ug/l	
375-95-1	Perfluorononanoic acid	0.0190	0.0080	0.0040	0.0020	ug/l	
335-76-2	Perfluorodecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
2058-94-8	Perfluoroundecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
307-55-1	Perfluorododecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
72629-94-8	Perfluorotridecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
376-06-7	Perfluorotetradecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
PERFLUOI	ROALKYLSULFONATES						
375-73-5	Perfluorobutanesulfonic acid	0.319	0.0080	0.0040	0.0020	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	0.501	0.0080	0.0040	0.0020	ug/l	
355-46-4	Perfluorohexanesulfonic acid	1.46 b	0.040	0.020	0.010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	0.0299	0.0080	0.0040	0.0020	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	0.0784	0.0080	0.0040	0.0020	ug/l	
68259-12-1	Perfluorononanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
335-77-3	Perfluorodecanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
PERFLUOI	ROOCTANESULFONAMIDE						
754-91-6	PFOSA ^c	0.020 U ^b	0.040	0.020	0.010	ug/l	
DEDEL HOL		A CIETTIC A	CIDC				
	ROOCTANESULFONAMIDO			0.0000	0.0040	/1	
2355-31-9	MeFOSAA	0.0080 U	0.016	0.0080	0.0040	ug/l	T
2991-50-6	EtFOSAA	0.0055	0.016	0.0080	0.0040	ug/l	J
FLUOROT	ELOMER SULFONATES						
757124-72-4	4:2 Fluorotelomer sulfonate	0.0080 U	0.016	0.0080	0.0040	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	0.0080 U	0.016	0.0080	0.0040	ug/l	
	LOD IN TO						

U = Not detected LOD = Limit of Detection J = Indicates an estimated value

 $LOQ = \ Limit \ of \ Quantitation \qquad DL = \ Detection \ Limit \qquad \quad B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample ID: 104675-B3MW

Lab Sample ID: FA79315-1 **Date Sampled:** 09/23/20 Matrix: Date Received: 09/30/20 AQ - Water Method: EPA 537M QSM5.3 B-15 EPA 537 MOD Percent Solids: n/a

Project: 1205226

CAS No.	Compound	Result	LOQ	LOD)	DL	Units	Q
39108-34-4	8:2 Fluorotelomer sulfonate	0.0080 U	0.016	0.00	80	0.0040	ug/l	
CAS No.	ID Standard Recoveries	Run# 1	Run# 2	L	imits	s		
	13C4-PFBA 13C5-PFPeA 13C5-PFHxA 13C4-PFHpA 13C8-PFOA 13C9-PFNA 13C6-PFDA 13C7-PFUnDA 13C2-PFDoDA 13C3-PFBS 13C3-PFHxS 13C8-PFOS 13C8-FOSA	79% 81% 82% 78% 92% 91% 82% 79% 76% 72% 82% 85% 79% 38% 6	98% 98% 98% 94% 98% 96% 91% 85% 80% 77% 102% 89% 48% d	50 50 50 50 50 50 50 50 50 50 50 50	0-150 0-150 0-150 0-150 0-150 0-150 0-150 0-150 0-150 0-150 0-150 0-150	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%		
	d3-MeFOSAA d5-EtFOSAA 13C2-4:2FTS 13C2-6:2FTS 13C2-8:2FTS	89% 88% 81% 90% 79%	89% 90% 91% 93% 85%	50 50	0-150 0-150 0-150 0-150 0-150)%)%)%		

- (a) Dilution required due to matrix interference (ID recovery standard failure).
- (b) Result is from Run# 2
- (c) Associated ID Standard outside control limits due to matrix interference. Confirmed by reanalysis.
- (d) Outside control limits due to matrix interference. Confirmed by reanalysis.
- (e) Outside control limits.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation

DL = Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Page 1 of 2

Client Sample ID: 104675-B7MW

 Lab Sample ID:
 FA79315-2
 Date Sampled:
 09/23/20

 Matrix:
 AQ - Water
 Date Received:
 09/30/20

 Method:
 EPA 537M QSM5.3 B-15
 EPA 537 MOD
 Percent Solids:
 n/a

Project: 1205226

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2Q55951.D	1	10/11/20 14:31	NAF	10/08/20 07:50	OP82375	S2Q828
Run #2	2Q55881.D	1	10/09/20 16:51	NG	10/08/20 07:50	OP82375	S2Q827

	Initial Volume	Final Volume
Run #1	125 ml	1.0 ml
Run #2	125 ml	1.0 ml

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS					
375-22-4	Perfluorobutanoic acid	0.0151	0.016	0.0080	0.0040	ug/l	J
2706-90-3	Perfluoropentanoic acid	0.0346	0.0080	0.0040	0.0020	ug/l	
307-24-4	Perfluorohexanoic acid	0.0278	0.0080	0.0040	0.0020	ug/l	
375-85-9	Perfluoroheptanoic acid	0.0181	0.0080	0.0040	0.0020	ug/l	
335-67-1	Perfluorooctanoic acid	0.109	0.0080	0.0040	0.0020	ug/l	
375-95-1	Perfluorononanoic acid	0.0048	0.0080	0.0040	0.0020	ug/l	J
335-76-2	Perfluorodecanoic acid	0.0044	0.0080	0.0040	0.0020	ug/l	J
2058-94-8	Perfluoroundecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
307-55-1	Perfluorododecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
72629-94-8	Perfluorotridecanoic acid	$0.0040~\mathrm{U}^{\mathrm{a}}$	0.0080	0.0040	0.0020	ug/l	
376-06-7	Perfluorotetradecanoic acid	$0.0040~\mathrm{U}^{\mathrm{a}}$	0.0080	0.0040	0.0020	ug/l	
PERFLUOI	ROALKYLSULFONATES						
375-73-5	Perfluorobutanesulfonic acid	0.0025	0.0080	0.0040	0.0020	ug/l	J
2706-91-4	Perfluoropentanesulfonic acid	0.0025	0.0080	0.0040	0.0020	ug/l	J
355-46-4	Perfluorohexanesulfonic acid	0.0776	0.0080	0.0040	0.0020	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	0.0261	0.0080	0.0040	0.0020	ug/l	
68259-12-1	Perfluorononanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
335-77-3	Perfluorodecanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
PERFLUOI	ROOCTANESULFONAMIDE	S					
754-91-6	PFOSA	0.0040 U	0.0080	0.0040	0.0020	ug/l	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS				
2355-31-9	MeFOSAA	0.0080 U	0.016	0.0080	0.0040	ug/l	
2991-50-6	EtFOSAA	0.0080 U	0.016	0.0080	0.0040	ug/l	
FLUOROT	ELOMER SULFONATES						
757124-72-4	4:2 Fluorotelomer sulfonate	0.0080 U	0.016	0.0080	0.0040	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	0.0080 U	0.016	0.0080	0.0040	ug/l	

U = Not detected LOD = Limit of Detection J = Indicates an estimated value

LOQ = Limit of Quantitation DL = Detection Limit B = Indicates analyte found in associated method blank E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Page 2 of 2

Date Sampled: 09/23/20

Client Sample ID: 104675-B7MW Lab Sample ID: FA79315-2

Matrix: Date Received: 09/30/20 AQ - Water Method: EPA 537M QSM5.3 B-15 EPA 537 MOD Percent Solids: n/a

Project: 1205226

LOQ LOD DL CAS No. Compound Result Units

0.0080 U 0.016 $0.0080 \quad 0.0040 \quad ug/l$ 39108-34-4 8:2 Fluorotelomer sulfonate

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	85%	77%	50-150%
	13C5-PFPeA	86%	78%	50-150%
	13C5-PFHxA	83%	77%	50-150%
	13C4-PFHpA	77%	72%	50-150%
	13C8-PFOA	82%	81%	50-150%
	13C9-PFNA	85%	82%	50-150%
	13C6-PFDA	78%	74%	50-150%
	13C7-PFUnDA	64%	63%	50-150%
	13C2-PFDoDA	56%	57%	50-150%
	13C2-PFTeDA	45% b	50%	50-150%
	13C3-PFBS	85%	79%	50-150%
	13C3-PFHxS	84%	80%	50-150%
	13C8-PFOS	76%	72%	50-150%
	13C8-FOSA	53%	54%	50-150%
	d3-MeFOSAA	63%	74%	50-150%
	d5-EtFOSAA	60%	71%	50-150%
	13C2-4:2FTS	80%	78%	50-150%
	13C2-6:2FTS	81%	83%	50-150%
	13C2-8:2FTS	73%	73%	50-150%

⁽a) Result is from Run# 2

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation

DL = Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

⁽b) Outside control limits in associated MS/MSD.

Page 1 of 2

Client Sample ID: 104675-B13MW

 Lab Sample ID:
 FA79315-3
 Date Sampled:
 09/23/20

 Matrix:
 AQ - Water
 Date Received:
 09/30/20

 Method:
 EPA 537M QSM5.3 B-15
 EPA 537 MOD
 Percent Solids:
 n/a

Project: 1205226

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 2Q55882.D
 1
 10/09/20 17:06
 NG
 10/08/20 07:50
 OP82375
 S2Q827

Run #2

	Initial Volume	Final Volume
Run #1	125 ml	1.0 ml
Run #2		

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
PERFLUO	ROALKYLCARBOXYLIC AC	CIDS					
375-22-4	Perfluorobutanoic acid	0.0080 U	0.016	0.0080	0.0040	ug/l	
2706-90-3	Perfluoropentanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
307-24-4	Perfluorohexanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
375-85-9	Perfluoroheptanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
335-67-1	Perfluorooctanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
375-95-1	Perfluorononanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
335-76-2	Perfluorodecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
2058-94-8	Perfluoroundecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
307-55-1	Perfluorododecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
72629-94-8	Perfluorotridecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
376-06-7	Perfluorotetradecanoic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
PERFLUO	ROALKYLSULFONATES						
375-73-5	Perfluorobutanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
355-46-4	Perfluorohexanesulfonic acid	0.0038	0.0080	0.0040	0.0020	ug/l	J
375-92-8	Perfluoroheptanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	0.0035	0.0080	0.0040	0.0020	ug/l	J
68259-12-1	Perfluorononanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
335-77-3	Perfluorodecanesulfonic acid	0.0040 U	0.0080	0.0040	0.0020	ug/l	
PERFLUO	ROOCTANESULFONAMIDE	S					
754-91-6	PFOSA	0.0040 U	0.0080	0.0040	0.0020	ug/l	
PERFLUO	ROOCTANESULFONAMIDO	ACETIC A	CIDS				
2355-31-9	MeFOSAA	0.0080 U	0.016	0.0080	0.0040	ug/l	
2991-50-6	EtFOSAA	0.0080 U	0.016	0.0080	0.0040	ug/l	
FLUOROT	ELOMER SULFONATES						
757124-72-4	4:2 Fluorotelomer sulfonate	0.0080 U	0.016	0.0080	0.0040	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	0.0080 U	0.016	0.0080	0.0040	ug/l	

U = Not detected LOD = Limit of Detection J = Indicates an estimated value

LOQ = Limit of Quantitation DL = Detection Limit B = Indicates analyte found in associated method blank E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID: 104675-B13MW

Lab Sample ID: FA79315-3 **Date Sampled:** 09/23/20 Matrix: Date Received: 09/30/20 AQ - Water Method: EPA 537M QSM5.3 B-15 EPA 537 MOD Percent Solids: n/a

Project: 1205226

CAS No.	Compound	Result	LOO	LOD	DL	Units	0
0120 1101	Compound	1100111	200	202		C	~

 $39108-34-4 \quad 8:2 \; Fluorotelomer \; sulfonate \\ \quad 0.0080 \; U \\ \quad 0.016 \quad 0.0080 \quad 0.0040 \quad ug/l \\ \quad 0.0080 \; U \\ \quad 0.0080 \; U$

37100-34-4	6.2 I luoroteforner surionate	0.0000 C	0.010	0.0000 0.0040	ug/1
CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits	
	13C4-PFBA	85%		50-150%	
	13C5-PFPeA	86%		50-150%	
	13C5-PFHxA	89%		50-150%	
	13C4-PFHpA	84%		50-150%	
	13C8-PFOA	94%		50-150%	
	13C9-PFNA	92%		50-150%	
	13C6-PFDA	89%		50-150%	
	13C7-PFUnDA	82%		50-150%	
	13C2-PFDoDA	71%		50-150%	
	13C2-PFTeDA	73%		50-150%	
	13C3-PFBS	87%		50-150%	
	13C3-PFHxS	91%		50-150%	
	13C8-PFOS	88%		50-150%	
	13C8-FOSA	78%		50-150%	
	d3-MeFOSAA	92%		50-150%	
	d5-EtFOSAA	81%		50-150%	
	13C2-4:2FTS	81%		50-150%	
	13C2-6:2FTS	87%		50-150%	
	13C2-8:2FTS	82%		50-150%	

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: 104675-B20MW

 Lab Sample ID:
 FA79315-4
 Date Sampled:
 09/23/20

 Matrix:
 AQ - Water
 Date Received:
 09/30/20

 Method:
 EPA 537M QSM5.3 B-15
 EPA 537 MOD
 Percent Solids:
 n/a

Project: 1205226

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3Q28056.D	1	10/14/20 23:54	NG	10/13/20 08:30	OP82458	S3Q422
Run #2 a	2Q55885.D	1	10/09/20 17:50	NG	10/08/20 07:50	OP82375	S2Q827

	Initial Volume	Final Volume
Run #1	130 ml	1.0 ml
Run #2	125 ml	1.0 ml

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
PERFLUO	ROALKYLCARBOXYLIC AC	CIDS					
375-22-4	Perfluorobutanoic acid	0.0402	0.015	0.0077	0.0038	ug/l	
2706-90-3	Perfluoropentanoic acid	0.149	0.0077	0.0038	0.0019	ug/l	
307-24-4	Perfluorohexanoic acid	0.109	0.0077	0.0038	0.0019	ug/l	
375-85-9	Perfluoroheptanoic acid	0.0269	0.0077	0.0038	0.0019	ug/l	
335-67-1	Perfluorooctanoic acid	0.0387	0.0077	0.0038	0.0019	ug/l	
375-95-1	Perfluorononanoic acid	0.0042	0.0077	0.0038	0.0019	ug/l	J
335-76-2	Perfluorodecanoic acid	0.0020	0.0077	0.0038	0.0019	ug/l	J
2058-94-8	Perfluoroundecanoic acid	0.0038 U	0.0077	0.0038	0.0019	ug/l	
307-55-1	Perfluorododecanoic acid	0.0038 U	0.0077	0.0038	0.0019	ug/l	
72629-94-8	Perfluorotridecanoic acid b	0.0038 U	0.0077	0.0038	0.0019	ug/l	
376-06-7	Perfluorotetradecanoic acid ^b	0.0038 U	0.0077	0.0038	0.0019	ug/l	
PERFLUO	ROALKYLSULFONATES						
375-73-5	Perfluorobutanesulfonic acid	0.0032	0.0077	0.0038	0.0019	ug/l	J
2706-91-4	Perfluoropentanesulfonic acid	0.0038 U	0.0077	0.0038	0.0019	ug/l	
355-46-4	Perfluorohexanesulfonic acid	0.0149	0.0077	0.0038	0.0019	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	0.0038 U	0.0077	0.0038	0.0019	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	0.0163	0.0077	0.0038	0.0019	ug/l	
68259-12-1	Perfluorononanesulfonic acid	0.0038 U	0.0077	0.0038	0.0019	ug/l	
335-77-3	Perfluorodecanesulfonic acid	0.0038 U	0.0077	0.0038	0.0019	ug/l	
PERFLUO	ROOCTANESULFONAMIDE	s					
754-91-6	PFOSA	0.0038 U	0.0077	0.0038	0.0019	ug/l	
			,			5	
PERFLUO	ROOCTANESULFONAMIDO	ACETIC A	CIDS				
2355-31-9	MeFOSAA	0.0077 U	0.015	0.0077	0.0038	ug/l	
2991-50-6	EtFOSAA	0.0077 U	0.015	0.0077	0.0038	ug/l	
FI HOROT	ELOMER SULFONATES						
	4:2 Fluorotelomer sulfonate	0.0077 U	0.015	0.0077	0.0038	ug/l	
	6:2 Fluorotelomer sulfonate	0.0077 U	0.015	0.0077	0.0038	ug/1 ug/l	
2,017-77-2	0.2 1 Idolotelomer summide	0.00770	0.013	0.0077	0.0056	ug/1	

U = Not detected LOD = Limit of Detection J = Indicates an estimated value

LOQ = Limit of Quantitation DL = Detection Limit B = Indicates analyte found in associated method blank E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID: 104675-B20MW Lab Sample ID: FA79315-4

Date Sampled: 09/23/20 Matrix: Date Received: 09/30/20 AQ - Water Method: EPA 537M QSM5.3 B-15 EPA 537 MOD Percent Solids: n/a

Project: 1205226

CAS No.	Compound	Result	LOQ	L	OD	DL	Units	Q
39108-34-4	8:2 Fluorotelomer sulfonate	0.0077 U	0.015	0.	0077	0.0038	ug/l	
CAS No.	ID Standard Recoveries	Run# 1	Run# 2		Limi	its		
	13C4-PFBA	76%	79%		50-1	50%		
	13C5-PFPeA	77%	81%		50-1	50%		
	13C5-PFHxA	76%	83%		50-1	50%		
	13C4-PFHpA	79%	80%		50-1	50%		
	13C8-PFOA	81%	86%		50-1	50%		
	13C9-PFNA	81%	76%		50-1	50%		
	13C6-PFDA	78%	51%		50-1	50%		
	13C7-PFUnDA	71%	32% ^c		50-1	50%		
	13C2-PFDoDA	68%	25% ^c		50-1	50%		
	13C2-PFTeDA	48% d	26% ^c		50-1	50%		
	13C3-PFBS	79%	85%		50-1	50%		
	13C3-PFHxS	78%	86%		50-1	50%		
	13C8-PFOS	79%	62%		50-1	50%		
	13C8-FOSA	58%	34% ^c		50-1	50%		
	d3-MeFOSAA	68%	30% ^c		50-1	50%		
	d5-EtFOSAA	66%	28% ^c		50-1	50%		
	13C2-4:2FTS	73%	62%		50-1	50%		
	13C2-6:2FTS	80%	74%		50-1	50%		
	13C2-8:2FTS	76%	47% ^c		50-1	50%		

- (a) Confirmation run.
- (b) Associated ID Standard outside DoD QSM 5.3 control limits due to matrix interference. Confirmed by reextraction and reanalysis.
- (c) Outside control limits.
- (d) Outside control limits due to matrix interference. Confirmed by re-extraction and reanalysis.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit

B = Indicates analyte found in associated method blank

J = Indicates an estimated value

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Orlando, FL

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- QC Evaluation: DOD QSM5.x Limits

SGS North America Inc. **CHAIN OF CUSTODY RECORD**

Locations Nationwide

Alaska Florida New Jersey

Texas

Colorado North Carolina

Virginia Louisiana www.us.sgs.com

CLIENT:	SGS North Ame	erica (nc Ala:	ska Division		SG	S Refere	nce:			S	GS	Orla	ndo, FL		Page 1 of 1
CONTACT:	Julie Shumway	PHONE NO:	(907) 56	2-2343	Addi	itional	Comn	ents	: All	soils	repo	rt ou	t in dry weig	ht unless	Page 1 or 1
PROJECT NAME:	1205226	PWSID#: NPDL#:			# c	Preserve ative Used:	NOWE								
REPORTS TO	: Julie Shumway	E-MAIL:	Julie.Shumwa RefLabTeam@			TYPE C = COMP									
INVOICE TO:	SGS - Alaska	QUOTE #: P.O. #:	1205		A - N	G = GRAB MI = Multi	PFAS*								
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HHMM	MATRIX/ MATRIX CODE	E R S	Incre- mental Solls	EPA 537				MS	MSD	SGS lab #	.	ocation ID
	104675-B3MW	09/23/2020	09:50:00	Water	2		Х						1205226001		
2	104675-B7MW	09/23/2020	11:00:00	Water	2		Х						1205226002		
3	104675-B13MW	09/23/2020	15:25:00	Water	2		Х						1205226003		
4	104675-B20MW	09/23/2020	16:45:00	Water	2		Х						1205226004		
														IAITIIA	ASESSMENT D
															MEDICIPECION!
Relinquished I	By: (1)	Date	Time	Received	Ву:				DOD F	roject	?		YES	Data Delive	rable Requirements:
PSA	ucorusos	9/24/20	1013	Fel	les				Repor	t to DI	_ (J FI	ags)? /LOQ.	YES	Level	2 w/ SGS EDD
Relinquished Fell	By: (2) /	9/30/70	Time 930	Received	By: Rl	ñ			Coole		ed T	urnar	ound Time a	nd-or Spec	ial Instructions:
Relinquished l	By: (3)	Date	Time	Received	Ву:				Co	mpoi	und l	ist wi	Il be sent in t	follow up e	mail JN 9/29/20
									Temp	Blank	°C:		7.4	Chain of C	ustody Seal: (Circle
Relinquished I	By: (4)	Date	Time	Received	For La	boratory	Ву:		ľ		ог Аг	nbient	[]	INTACT	BROKEN ABSENT

[[] X 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

FA79315

http://www.sgs.com/terms and conditions.htm

F088_COC_REF_LAB_20190411

FA79315: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number: FA793	15	Client	t: SGS NORTH AMI	ERICA, INC ALASKA DI	Project: 1205226			
Date / Time Received: 9/30/2	020 9:30:00 /	AM	Delivery Method	: FEDEX	Airbill #'s: 14834801	0148		
Therm ID:			Therm CF:		# of Coole	s: N/A		
Cooler Temps (Raw Measu	red) °C:							
Cooler Temps (Correc	ted) °C:							
Cooler Information	Y or	N_		Sample Information		Y or	NN/A	<u> </u>
1. Custody Seals Present	✓			Sample labels present	on bottles	✓		
2. Custody Seals Intact	✓			2. Samples preserved pre	operly	✓		
3. Temp criteria achieved				3. Sufficient volume/conta	ainers recvd for analysis:	✓		
4. Cooler temp verification	N/A			4. Condition of sample		<u>Intact</u>		
5. Cooler media	N/A			5. Sample recvd within H	Т	✓		
				6. Dates/Times/IDs on C	OC match Sample Label	✓		
Trip Blank Information	Y or	N_	N/A	7. VOCs have headspace	е]
1. Trip Blank present / cooler			✓	8. Bottles received for un	specified tests		✓	
2. Trip Blank listed on COC			\checkmark	Compositing instruction	ns clear]
	W o	s	N/A	10. Voa Soil Kits/Jars red	ceived past 48hrs?]
O. Time Of TD Described				11. % Solids Jar received	d?]
3. Type Of TB Received		Ш	\checkmark	12. Residual Chlorine Pre	esent?			.]
Misc. Information								
Number of Encores: 25-Gra	am	5-Gram	n Nu	ımber of 5035 Field Kits:	Number of La	ab Filtered Met	als:	_
Test Strip Lot #s:	pH 0-3	2303		pH 10-12 219813A		cify)		
Residual Chlorine Test Strip L	.ot #:							
Comments								
SM001 Tochnic	ian: BRYANO	<u>.</u>	Date: 9/30/202	00 0:30:00 AM	Reviewer:	L	ate:	
Rev. Date 05/24/17	an. DRIANC	,	Date. 9/30/202	20 3.30.00 AW	IVEAICMEI.		aic	

FA79315: Chain of Custody Page 2 of 2

QC Evaluation: DOD QSM5.x Limits

Job Number: FA79315

Account: SGS North America, Inc

Project: 1205226 **Collected:** 09/23/20

QC Sample ID	CAS#	Analyte	Sampl Type	e Result Type	Result	Unit	ts Limits
OD02275	EDA 527M O	OCME 2 D 15					
OP82375	EPA 537M Q	28M3.3 B-13					
OP82375-BS	375-22-4	Perfluorobutanoic acid	BSP	REC	91	%	73-129
OP82375-BS	375-22-4	Perfluorobutanoic acid	BSP	REC	89	%	73-129
OP82375-BS	2706-90-3	Perfluoropentanoic acid	BSP	REC	87	%	72-129
OP82375-BS	2706-90-3	Perfluoropentanoic acid	BSP	REC	89	%	72-129
OP82375-BS	307-24-4	Perfluorohexanoic acid	BSP	REC	85	%	72-129
OP82375-BS	307-24-4	Perfluorohexanoic acid	BSP	REC	85	%	72-129
OP82375-BS	375-85-9	Perfluoroheptanoic acid	BSP	REC	91	%	72-130
OP82375-BS	375-85-9	Perfluoroheptanoic acid	BSP	REC	91	%	72-130
OP82375-BS	335-67-1	Perfluorooctanoic acid	BSP	REC	87	%	71-133
OP82375-BS	335-67-1	Perfluorooctanoic acid	BSP	REC	87	%	71-133
OP82375-BS	375-95-1	Perfluorononanoic acid	BSP	REC	83	%	69-130
OP82375-BS	375-95-1	Perfluorononanoic acid	BSP	REC	86	%	69-130
OP82375-BS	335-76-2	Perfluorodecanoic acid	BSP	REC	85	%	71-129
OP82375-BS	335-76-2	Perfluorodecanoic acid	BSP	REC	83	%	71-129
OP82375-BS	2058-94-8	Perfluoroundecanoic acid	BSP	REC	87	%	69-133
OP82375-BS	2058-94-8	Perfluoroundecanoic acid	BSP	REC	87	%	69-133
OP82375-BS	307-55-1	Perfluorododecanoic acid	BSP	REC	89	%	72-134
OP82375-BS	307-55-1	Perfluorododecanoic acid	BSP	REC	89	%	72-134
OP82375-BS	72629-94-8	Perfluorotridecanoic acid	BSP	REC	92	%	65-144
OP82375-BS	72629-94-8	Perfluorotridecanoic acid	BSP	REC	93	%	65-144
OP82375-BS	376-06-7	Perfluorotetradecanoic acid	BSP	REC	89	%	71-132
OP82375-BS	376-06-7	Perfluorotetradecanoic acid	BSP	REC	86	%	71-132
OP82375-BS	375-73-5	Perfluorobutanesulfonic acid	BSP	REC	89	%	73-130
OP82375-BS	375-73-5	Perfluorobutanesulfonic acid	BSP	REC	87	%	73-130
OP82375-BS	2706-91-4	Perfluoropentanesulfonic acid	BSP	REC	88	%	71-127
OP82375-BS	2706-91-4	Perfluoropentanesulfonic acid	BSP	REC	83	%	71-127
OP82375-BS	355-46-4	Perfluorohexanesulfonic acid	BSP	REC	89	%	68-131
OP82375-BS	355-46-4	Perfluorohexanesulfonic acid	BSP	REC	90	%	68-131
OP82375-BS	375-92-8	Perfluoroheptanesulfonic acid	BSP	REC	88	%	69-134
OP82375-BS	375-92-8	Perfluoroheptanesulfonic acid	BSP	REC	89	%	69-134
OP82375-BS	1763-23-1	Perfluorooctanesulfonic acid	BSP	REC	88	%	65-140
OP82375-BS	1763-23-1	Perfluorooctanesulfonic acid	BSP	REC	88	%	65-140
OP82375-BS	68259-12-1	Perfluorononanesulfonic acid	BSP	REC	74	%	69-127
OP82375-BS	68259-12-1	Perfluorononanesulfonic acid	BSP	REC	73	%	69-127
OP82375-BS	335-77-3	Perfluorodecanesulfonic acid	BSP	REC	61	%	53-142
OP82375-BS	335-77-3	Perfluorodecanesulfonic acid	BSP	REC	63	%	53-142
OP82375-BS	754-91-6	PFOSA	BSP	REC	85	%	67-137
OP82375-BS	754-91-6	PFOSA	BSP	REC	85	%	67-137
OP82375-BS	2355-31-9	MeFOSAA	BSP	REC	89	%	65-136
OP82375-BS	2355-31-9	MeFOSAA	BSP	REC	87	%	65-136
OP82375-BS	2991-50-6	EtFOSAA	BSP	REC	89	%	61-135
OP82375-BS	2991-50-6	EtFOSAA EtFOSAA	BSP	REC	89	%	61-135
O1 023 / J-DO	2771-30-0	Lu Osmi	DSI	RLC	0)	70	01-133

^{*} Sample used for QC is not from job FA79315

QC Evaluation: DOD QSM5.x Limits Job Number: FA79315

Account: SGS North America, Inc

Project: 1205226 **Collected:** 09/23/20

QC Sample ID	CAS#	Analyte	Sampl Type	e Result Type	Result	Unit	ts Limits
			- 7 P C	- J P c			
OP82375-BS	757124-72-4	4:2 Fluorotelomer sulfonate	BSP	REC	86	%	63-143
OP82375-BS	757124-72-4	4:2 Fluorotelomer sulfonate	BSP	REC	87	%	63-143
OP82375-BS	27619-97-2	6:2 Fluorotelomer sulfonate	BSP	REC	86	%	64-140
OP82375-BS	27619-97-2	6:2 Fluorotelomer sulfonate	BSP	REC	86	%	64-140
OP82375-BS	39108-34-4	8:2 Fluorotelomer sulfonate	BSP	REC	87	%	67-138
OP82375-BS	39108-34-4	8:2 Fluorotelomer sulfonate	BSP	REC	89	%	67-138
OP82375-MS*	375-22-4	Perfluorobutanoic acid	MS	REC	102	%	73-129
OP82375-MS*	2706-90-3	Perfluoropentanoic acid	MS	REC	100	%	72-129
OP82375-MS*	307-24-4	Perfluorohexanoic acid	MS	REC	96	%	72-129
OP82375-MS*	375-85-9	Perfluoroheptanoic acid	MS	REC	102	%	72-130
OP82375-MS*	335-67-1	Perfluorooctanoic acid	MS	REC	101	%	71-133
OP82375-MS*	375-95-1	Perfluorononanoic acid	MS	REC	96	%	69-130
OP82375-MS*	335-76-2	Perfluorodecanoic acid	MS	REC	96	%	71-129
OP82375-MS*	2058-94-8	Perfluoroundecanoic acid	MS	REC	96	%	69-133
OP82375-MS*	307-55-1	Perfluorododecanoic acid	MS	REC	98	%	72-134
OP82375-MS*	72629-94-8	Perfluorotridecanoic acid	MS	REC	114	%	65-144
OP82375-MS*	376-06-7	Perfluorotetradecanoic acid	MS	REC	99	%	71-132
OP82375-MS*	375-73-5	Perfluorobutanesulfonic acid	MS	REC	101	%	73-130
OP82375-MS*	2706-91-4	Perfluoropentanesulfonic acid	MS	REC	97	%	71-127
OP82375-MS*	355-46-4	Perfluorohexanesulfonic acid	MS	REC	98	%	68-131
OP82375-MS*	375-92-8	Perfluoroheptanesulfonic acid	MS	REC	98	%	69-134
OP82375-MS*	1763-23-1	Perfluorooctanesulfonic acid	MS	REC	96	%	65-140
OP82375-MS*	68259-12-1	Perfluorononanesulfonic acid	MS	REC	89	%	69-127
OP82375-MS*	335-77-3	Perfluorodecanesulfonic acid	MS	REC	86	%	53-142
OP82375-MS*	754-91-6	PFOSA	MS	REC	98	%	67-137
OP82375-MS*	2355-31-9	MeFOSAA	MS	REC	98	%	65-136
OP82375-MS*	2991-50-6	EtFOSAA	MS	REC	98	%	61-135
OP82375-MS*	757124-72-4	4:2 Fluorotelomer sulfonate	MS	REC	98	%	63-143
OP82375-MS*	27619-97-2	6:2 Fluorotelomer sulfonate	MS	REC	98	%	64-140
OP82375-MS*	39108-34-4	8:2 Fluorotelomer sulfonate	MS	REC	100	%	67-138
OP82375-DUP*	375-22-4	Perfluorobutanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	2706-90-3	Perfluoropentanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	307-24-4	Perfluorohexanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	375-85-9	Perfluoroheptanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	335-67-1	Perfluorooctanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	375-95-1	Perfluorononanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	335-76-2	Perfluorodecanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	2058-94-8	Perfluoroundecanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	307-55-1	Perfluorododecanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	72629-94-8	Perfluorotridecanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	376-06-7	Perfluorotetradecanoic acid	DUP	RPD	0	%	30
OP82375-DUP*	375-73-5	Perfluorobutanesulfonic acid	DUP	RPD	0	%	30
OP82375-DUP*	2706-91-4	Perfluoropentanesulfonic acid	DUP	RPD	0	%	30
OP82375-DUP*	355-46-4	Perfluorohexanesulfonic acid	DUP	RPD	0	%	30
OP82375-DUP*	375-92-8	Perfluoroheptanesulfonic acid	DUP	RPD	0	%	30
O1 023 / 3-DO1	313-72-0	1 erridoronoptanesunome acid	וטע	MD	J	/0	50

^{*} Sample used for QC is not from job FA79315

Page 3 of 4

QC Evaluation: DOD QSM5.x Limits Job Number: FA79315

Account: SGS North America, Inc

Project: 1205226 **Collected:** 09/23/20

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Units	Limits
OP82375-DUP*	1763-23-1	Perfluorooctanesulfonic acid	DUP	RPD	200	%	30
OP82375-DUP*	68259-12-1	Perfluorononanesulfonic acid	DUP	RPD	0	%	30
OP82375-DUP*	335-77-3	Perfluorodecanesulfonic acid	DUP	RPD	0	%	30
OP82375-DUP*	754-91-6	PFOSA	DUP	RPD	0	%	30
OP82375-DUP*	2355-31-9	MeFOSAA	DUP	RPD	0	%	30
OP82375-DUP*	2991-50-6	EtFOSAA	DUP	RPD	0	%	30
OP82375-DUP*	757124-72-4	4:2 Fluorotelomer sulfonate	DUP	RPD	0	%	30
OP82375-DUP*	27619-97-2	6:2 Fluorotelomer sulfonate	DUP	RPD	0	%	30
OP82375-DUP*	39108-34-4	8:2 Fluorotelomer sulfonate	DUP	RPD	0	%	30
OP82458	EPA 537M Q	SM5.3 B-15					
OP82458-BS	375-22-4	Perfluorobutanoic acid	BSP	REC	92	%	73-129
OP82458-BS	2706-90-3	Perfluoropentanoic acid	BSP	REC	95	%	72-129
OP82458-BS	307-24-4	Perfluorohexanoic acid	BSP	REC	92	%	72-129
OP82458-BS	375-85-9	Perfluoroheptanoic acid	BSP	REC	91	%	72-130
OP82458-BS	335-67-1	Perfluorooctanoic acid	BSP	REC	93	%	71-133
OP82458-BS	375-95-1	Perfluorononanoic acid	BSP	REC	93	%	69-130
OP82458-BS	335-76-2	Perfluorodecanoic acid	BSP	REC	92	%	71-129
OP82458-BS	2058-94-8	Perfluoroundecanoic acid	BSP	REC	93	%	69-133
OP82458-BS	307-55-1	Perfluorododecanoic acid	BSP	REC	91	%	72-134
OP82458-BS	72629-94-8	Perfluorotridecanoic acid	BSP	REC	93	%	65-144
OP82458-BS	376-06-7	Perfluorotetradecanoic acid	BSP	REC	93	%	71-132
OP82458-BS	375-73-5	Perfluorobutanesulfonic acid	BSP	REC	94	%	73-130
OP82458-BS	2706-91-4	Perfluoropentanesulfonic acid	BSP	REC	94	%	71-127
OP82458-BS	355-46-4	Perfluorohexanesulfonic acid	BSP	REC	95	%	68-131
OP82458-BS	375-92-8	Perfluoroheptanesulfonic acid	BSP	REC	95	%	69-134
OP82458-BS	1763-23-1	Perfluorooctanesulfonic acid	BSP	REC	93	%	65-140
OP82458-BS	68259-12-1	Perfluorononanesulfonic acid	BSP	REC	89	%	69-127
OP82458-BS	335-77-3	Perfluorodecanesulfonic acid	BSP	REC	80	%	53-142
OP82458-BS	754-91-6	PFOSA	BSP	REC	93	%	67-137
OP82458-BS	2355-31-9	MeFOSAA	BSP	REC	90	%	65-136
OP82458-BS	2991-50-6	EtFOSAA	BSP	REC	89	%	61-135
OP82458-BS	757124-72-4	4:2 Fluorotelomer sulfonate	BSP	REC	93	%	63-143
OP82458-BS	27619-97-2	6:2 Fluorotelomer sulfonate	BSP	REC	94	%	64-140
OP82458-BS	39108-34-4	8:2 Fluorotelomer sulfonate	BSP	REC	93	%	67-138
OP82458-MS*	375-22-4	Perfluorobutanoic acid	MS	REC	93	%	73-129
OP82458-MS*	2706-90-3	Perfluoropentanoic acid	MS	REC	99	%	72-129
OP82458-MS*	307-24-4	Perfluorohexanoic acid	MS	REC	96	%	72-129
OP82458-MS*	375-85-9	Perfluoroheptanoic acid	MS	REC	95	%	72-130
OP82458-MS*	335-67-1	Perfluorooctanoic acid	MS	REC	96	%	71-133
OP82458-MS*	375-95-1	Perfluorononanoic acid	MS	REC	95	%	69-130
OP82458-MS*	335-76-2	Perfluorodecanoic acid	MS	REC	94	%	71-129
OP82458-MS*	2058-94-8	Perfluoroundecanoic acid	MS	REC	96	%	69-133
OP82458-MS*	307-55-1	Perfluorododecanoic acid	MS	REC	94	%	72-134

^{*} Sample used for QC is not from job FA79315

Page 4 of 4

QC Evaluation: DOD QSM5.x Limits Job Number: FA79315

Account: SGS North America, Inc

Project: 1205226 **Collected:** 09/23/20

OP82458-MS* 72629-94-8 Perfluorotridecanoic acid MS REC 96 % 65-144 OP82458-MS* 376-06-7 Perfluorotetradecanoic acid MS REC 96 % 71-133 OP82458-MS* 375-73-5 Perfluorobutanesulfonic acid MS REC 96 % 73-130 OP82458-MS* 2706-91-4 Perfluoropentanesulfonic acid MS REC 96 % 71-122 OP82458-MS* 355-46-4 Perfluorohexanesulfonic acid MS REC 97 % 68-13 OP82458-MS* 375-92-8 Perfluorohexanesulfonic acid MS REC 95 % 69-13-22 OP82458-MS* 1763-23-1 Perfluoroctanesulfonic acid MS REC 95 % 65-140 OP82458-MS* 68259-12-1 Perfluorodecanesulfonic acid MS REC 86 % 69-122 OP82458-MS* 754-91-6 PFOSA MS REC 86 % 67-13 OP82458-MS* <td< th=""></td<>
OP82458-MS* 375-73-5 Perfluorobutanesulfonic acid MS REC 96 % 73-130 OP82458-MS* 2706-91-4 Perfluoropentanesulfonic acid MS REC 96 % 71-12' OP82458-MS* 355-46-4 Perfluorohexanesulfonic acid MS REC 97 % 68-13 OP82458-MS* 375-92-8 Perfluorohexanesulfonic acid MS REC 95 % 69-13-14 OP82458-MS* 1763-23-1 Perfluorooctanesulfonic acid MS REC 92 % 65-140 OP82458-MS* 68259-12-1 Perfluorodecanesulfonic acid MS REC 86 % 69-12' OP82458-MS* 335-77-3 Perfluorodecanesulfonic acid MS REC 80 % 53-14' OP82458-MS* 754-91-6 PFOSA MS REC 96 % 67-13' OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 65-130' OP82458-MS* 757124-72-4
OP82458-MS* 2706-91-4 Perfluoropentanesulfonic acid MS REC 96 % 71-12 OP82458-MS* 355-46-4 Perfluorohexanesulfonic acid MS REC 97 % 68-13 OP82458-MS* 375-92-8 Perfluorohexanesulfonic acid MS REC 95 % 69-13-20 OP82458-MS* 1763-23-1 Perfluorooctanesulfonic acid MS REC 92 % 65-140 OP82458-MS* 68259-12-1 Perfluorononanesulfonic acid MS REC 86 % 69-122 OP82458-MS* 335-77-3 Perfluorodecanesulfonic acid MS REC 80 % 53-142 OP82458-MS* 754-91-6 PFOSA MS REC 96 % 67-132 OP82458-MS* 2355-31-9 MeFOSAA MS REC 96 % 65-136 OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 63-142 OP82458-MS* 757124-72-4 4:2 Flu
OP82458-MS* 355-46-4 Perfluorohexanesulfonic acid MS REC 97 % 68-13 OP82458-MS* 375-92-8 Perfluoroheptanesulfonic acid MS REC 95 % 69-13-14 OP82458-MS* 1763-23-1 Perfluorooctanesulfonic acid MS REC 92 % 65-140 OP82458-MS* 68259-12-1 Perfluorononanesulfonic acid MS REC 86 % 69-120 OP82458-MS* 335-77-3 Perfluorodecanesulfonic acid MS REC 80 % 53-140 OP82458-MS* 754-91-6 PFOSA MS REC 96 % 67-130 OP82458-MS* 2355-31-9 MeFOSAA MS REC 96 % 65-130 OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 61-133 OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-144 OP82458-DUP* 375-22-4 Perfluo
OP82458-MS* 375-92-8 Perfluoroheptanesulfonic acid MS REC 95 % 69-13-14-12-13-13-13-13-14-14-12-14-12-14-12-14-13-13-13-13-13-13-13-13-13-13-13-13-13-
OP82458-MS* 1763-23-1 Perfluorooctanesulfonic acid MS REC 92 % 65-140 OP82458-MS* 68259-12-1 Perfluorononanesulfonic acid MS REC 86 % 69-127 OP82458-MS* 335-77-3 Perfluorodecanesulfonic acid MS REC 80 % 53-147 OP82458-MS* 754-91-6 PFOSA MS REC 96 % 67-137 OP82458-MS* 2355-31-9 MeFOSAA MS REC 96 % 65-130 OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 61-133 OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-144 OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 96 % 64-140 OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoi
OP82458-MS* 68259-12-1 Perfluorononanesulfonic acid MS REC 86 % 69-12' OP82458-MS* 335-77-3 Perfluorodecanesulfonic acid MS REC 80 % 53-14' OP82458-MS* 754-91-6 PFOSA MS REC 96 % 67-13' OP82458-MS* 2355-31-9 MeFOSAA MS REC 96 % 65-130' OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 61-13' OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-14' OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 96 % 64-14' OP82458-DUP* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-13' OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 307-24-4 Perfluorohexan
OP82458-MS* 335-77-3 Perfluorodecanesulfonic acid MS REC 80 % 53-14/2 OP82458-MS* 754-91-6 PFOSA MS REC 96 % 67-13/2 OP82458-MS* 2355-31-9 MeFOSAA MS REC 96 % 65-13/2 OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 61-13/2 OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-14/2 OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 94 % 64-14/2 OP82458-DUP* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-13/2 OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-MS* 754-91-6 PFOSA MS REC 96 % 67-13' OP82458-MS* 2355-31-9 MeFOSAA MS REC 96 % 65-130' OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 61-13' OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-14' OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 94 % 64-14' OP82458-MS* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-13' OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluorohexanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-MS* 2355-31-9 MeFOSAA MS REC 96 % 65-130 OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 61-133 OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-143 OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 94 % 64-140 OP82458-MS* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-133 OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluorohexanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-MS* 2991-50-6 EtFOSAA MS REC 96 % 61-13: OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-14: OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 94 % 64-14: OP82458-MS* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-13: OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluoropentanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-MS* 757124-72-4 4:2 Fluorotelomer sulfonate MS REC 96 % 63-14: OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 94 % 64-14: OP82458-MS* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-13: OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluoropentanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-MS* 27619-97-2 6:2 Fluorotelomer sulfonate MS REC 94 % 64-140 OP82458-MS* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-138 OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluoropentanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-MS* 39108-34-4 8:2 Fluorotelomer sulfonate MS REC 95 % 67-138 OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluoropentanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-DUP* 375-22-4 Perfluorobutanoic acid DUP RPD 10 % 30 OP82458-DUP* 2706-90-3 Perfluoropentanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-DUP* 2706-90-3 Perfluoropentanoic acid DUP RPD 15 % 30 OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-DUP* 307-24-4 Perfluorohexanoic acid DUP RPD 0 % 30
OP82458-DUP* 375-85-9 Perfluoroheptanoic acid DUP RPD 0 % 30
OP82458-DUP* 335-67-1 Perfluorooctanoic acid DUP RPD 0 % 30
OP82458-DUP* 375-95-1 Perfluorononanoic acid DUP RPD 0 % 30
OP82458-DUP* 335-76-2 Perfluorodecanoic acid DUP RPD 0 % 30
OP82458-DUP* 2058-94-8 Perfluoroundecanoic acid DUP RPD 0 % 30
OP82458-DUP* 307-55-1 Perfluorododecanoic acid DUP RPD 0 % 30
OP82458-DUP* 72629-94-8 Perfluorotridecanoic acid DUP RPD 0 % 30
OP82458-DUP* 376-06-7 Perfluorotetradecanoic acid DUP RPD 0 % 30
OP82458-DUP* 375-73-5 Perfluorobutanesulfonic acid DUP RPD 0 % 30
OP82458-DUP* 2706-91-4 Perfluoropentanesulfonic acid DUP RPD 0 % 30
OP82458-DUP* 355-46-4 Perfluorohexanesulfonic acid DUP RPD 0 % 30
OP82458-DUP* 375-92-8 Perfluoroheptanesulfonic acid DUP RPD 0 % 30
OP82458-DUP* 1763-23-1 Perfluorooctanesulfonic acid DUP RPD 0 % 30
OP82458-DUP* 68259-12-1 Perfluorononanesulfonic acid DUP RPD 0 % 30
OP82458-DUP* 335-77-3 Perfluorodecanesulfonic acid DUP RPD 0 % 30
OP82458-DUP* 754-91-6 PFOSA DUP RPD 0 % 30
OP82458-DUP* 2355-31-9 MeFOSAA DUP RPD 0 % 30
OP82458-DUP* 2991-50-6 EtFOSAA DUP RPD 0 % 30
OP82458-DUP* 757124-72-4 4:2 Fluorotelomer sulfonate DUP RPD 0 % 30
OP82458-DUP* 27619-97-2 6:2 Fluorotelomer sulfonate DUP RPD 0 % 30
OP82458-DUP* 39108-34-4 8:2 Fluorotelomer sulfonate DUP RPD 0 % 30

^{*} Sample used for QC is not from job FA79315

Orlando, FL

Section 6

MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Instrument Blank Page 1 of 2

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample S2Q827-IBLK	File ID 2Q55870.D	DF 1	Analyzed 10/09/20	By NG	Prep Date n/a	Prep Batch n/a	Analytical Batch S2Q827

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0040	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0040	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/l	
757124-72-	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No.	ID Standard Recoveries	Limits	
	13C4-PFBA	94%	50-150%
	13C5-PFPeA	95%	50-150%
	13C5-PFHxA	97%	50-150%
	13C4-PFHpA	93%	50-150%
	13C8-PFOA	103%	50-150%
	13C9-PFNA	100%	50-150%
	13C6-PFDA	100%	50-150%
	13C7-PFUnDA	103%	50-150%

Method: EPA 537M QSM5.3 B-15

Instrument Blank

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample S2Q827-IBLK	File ID 2O55870.D	DF	Analyzed 10/09/20	By NG	Prep Date	Prep Batch	Analytical Batch S2O827
52Q627-IBLK	2Q33670.D	1	10/09/20	NO	II/ a	11/ a	32Q621

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	Limits	
	13C2-PFDoDA	102%	50-150%
	13C2-PFTeDA	105%	50-150%
	13C3-PFBS	95%	50-150%
	13C3-PFHxS	97%	50-150%
	13C8-PFOS	98%	50-150%
	13C8-FOSA	104%	50-150%
	d3-MeFOSAA	121%	50-150%
	d5-EtFOSAA	121%	50-150%
	13C2-4:2FTS	94%	50-150%
	13C2-6:2FTS	96%	50-150%
	13C2-8:2FTS	95%	50-150%

Instrument Blank

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample S2Q828-IBLK	File ID 2Q55940.D	DF 1	Analyzed 10/11/20	By NAF	Prep Date n/a	Prep Batch n/a	Analytical Batch S2Q828

The QC reported here applies to the following samples:

FA79315-1, FA79315-2

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/l	
757124-72-4	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No.	ID Standard Recoveries	Limits		
	13C4-PFBA	105%	50-150%	
	13C5-PFPeA	105%	50-150%	
	13C5-PFHxA	106%	50-150%	
	13C4-PFHpA	107%	50-150%	
	13C8-PFOA	107%	50-150%	
	13C9-PFNA	107%	50-150%	
	13C6-PFDA	109%	50-150%	
	13C7-PFUnDA	106%	50-150%	
	13C2-PFDoDA	105%	50-150%	
	13C2-PFTeDA	105%	50-150%	

Instrument Blank

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
S2Q828-IBLK	2Q55940.D	1	10/11/20	NAF	n/a	n/a	S2Q828

The QC reported here applies to the following samples:

FA79315-1, FA79315-2

CAS No.	ID Standard Recoveries	Limits		
	13C3-PFBS	105%	50-150%	
	13C3-PFHxS	105%	50-150%	
	13C8-PFOS	105%	50-150%	
	13C8-FOSA	110%	50-150%	
	d3-MeFOSAA	105%	50-150%	
	d5-EtFOSAA	109%	50-150%	
	13C2-4:2FTS	100%	50-150%	
	13C2-6:2FTS	101%	50-150%	
	13C2-8:2FTS	100%	50-150%	

Instrument Blank

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample S3Q422-IBLK	File ID 3Q28041.D	DF 1	Analyzed 10/14/20	By NG	Prep Date n/a	Prep Batch n/a	Analytical Batch S3Q422

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0040	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0040	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/l	
757124-72-4	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No.	ID Standard Recoveries	Limits	
	13C4-PFBA	92%	50-150%
	13C5-PFPeA	93%	50-150%
	13C5-PFHxA	93%	50-150%
	13C4-PFHpA	93%	50-150%
	13C8-PFOA	94%	50-150%
	13C9-PFNA	95%	50-150%
	13C6-PFDA	94%	50-150%
	13C7-PFUnDA	94%	50-150%

Instrument Blank Page 2 of 2

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample S3Q422-IBLK	File ID 3Q28041.D	DF 1	Analyzed 10/14/20	By NG	Prep Date n/a	Prep Batch n/a	Analytical Batch S3Q422

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	Limits	
	13C2-PFDoDA	92%	50-150%
	13C2-PFTeDA	91%	50-150%
	13C3-PFBS	93%	50-150%
	13C3-PFHxS	93%	50-150%
	13C8-PFOS	95%	50-150%
	13C8-FOSA	99%	50-150%
	d3-MeFOSAA	94%	50-150%
	d5-EtFOSAA	92%	50-150%
	13C2-4:2FTS	87%	50-150%
	13C2-6:2FTS	89%	50-150%
	13C2-8:2FTS	90%	50-150%
	13C3-HFPO-DA	88%	50-150%

Method: EPA 537M QSM5.3 B-15

Method Blank Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF	Analyzed 10/09/20	By	Prep Date	Prep Batch	Analytical Batch
OP82375-MB	2Q55849.D	1		NG	10/08/20	OP82375	S2Q826

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0040	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0040	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/l	
757124-72-4	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No.	ID Standard Recoveries	Limits	
	13C4-PFBA	87%	50-150%
	13C5-PFPeA	84%	50-150%
	13C5-PFHxA	85%	50-150%
	13C4-PFHpA	82%	50-150%
	13C8-PFOA	83%	50-150%
	13C9-PFNA	74%	50-150%
	13C6-PFDA	67%	50-150%
	13C7-PFUnDA	57%	50-150%

Method Blank Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82375-MB	File ID 2Q55849.D	DF 1	Analyzed 10/09/20	By NG	Prep Date 10/08/20	Prep Batch OP82375	Analytical Batch S2Q826

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	Limits	
	13C2-PFDoDA	51%	50-150%
	13C2-PFTeDA	50%	50-150%
	13C3-PFBS	85%	50-150%
	13C3-PFHxS	83%	50-150%
	13C8-PFOS	68%	50-150%
	13C8-FOSA	62%	50-150%
	d3-MeFOSAA	59%	50-150%
	d5-EtFOSAA	51%	50-150%
	13C2-4:2FTS	86%	50-150%
	13C2-6:2FTS	78%	50-150%
	13C2-8:2FTS	59%	50-150%

Method: EPA 537M QSM5.3 B-15

Method Blank Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82375-MB	File ID 2Q55874.D	DF 1	Analyzed 10/09/20	By NG	Prep Date 10/08/20	Prep Batch OP82375	Analytical Batch S2Q827

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0040	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0040	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/l	
757124-72-4	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No.	ID Standard Recoveries		Limits		
	13C4-PFBA	85%	50-150%		
	13C5-PFPeA	86%	50-150%		
	13C5-PFHxA	87%	50-150%		
	13C4-PFHpA	83%	50-150%		
	13C8-PFOA	84%	50-150%		
	13C9-PFNA	76%	50-150%		
	13C6-PFDA	67%	50-150%		
	13C7-PFUnDA	57%	50-150%		

Method: EPA 537M QSM5.3 B-15

Method Blank Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82375-MB	File ID 2Q55874.D	DF 1	Analyzed 10/09/20	By NG	Prep Date 10/08/20	Prep Batch OP82375	Analytical Batch S2Q827

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	Limits	
	13C2-PFDoDA	51%	50-150%
	13C2-PFTeDA	53%	50-150%
	13C3-PFBS	88%	50-150%
	13C3-PFHxS	85%	50-150%
	13C8-PFOS	70%	50-150%
	13C8-FOSA	64%	50-150%
	d3-MeFOSAA	59%	50-150%
	d5-EtFOSAA	52%	50-150%
	13C2-4:2FTS	85%	50-150%
	13C2-6:2FTS	79%	50-150%
	13C2-8:2FTS	58%	50-150%

Method: EPA 537M QSM5.3 B-15

Method Blank Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82458-MB	File ID 3Q28054.D	DF 1	Analyzed 10/14/20	By NG	Prep Date 10/13/20	Prep Batch OP82458	Analytical Batch S3Q422

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0071	0.0018	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0036	0.00089	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0036	0.00089	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0036	0.00089	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0036	0.00089	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0036	0.00089	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0036	0.00089	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0036	0.00089	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0036	0.00089	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0036	0.00089	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0036	0.00089	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0036	0.00089	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0036	0.00089	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0036	0.00089		
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0036	0.00089		
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0036	0.00089		
68259-12-1	Perfluorononanesulfonic acid	ND	0.0036	0.00089		
335-77-3	Perfluorodecanesulfonic acid	ND	0.0036	0.00089	ug/l	
754-91-6	PFOSA	ND	0.0036	0.00089	ug/l	
2355-31-9	MeFOSAA	ND	0.0071	0.0018	ug/l	
2991-50-6	EtFOSAA	ND	0.0071	0.0018	ug/l	
757124-72-4	44:2 Fluorotelomer sulfonate	ND	0.0071	0.0018	ug/l	
	6:2 Fluorotelomer sulfonate	ND	0.0071	0.0018	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0071	0.0018	ug/l	

13C4-PFBA 81% 50-150%)
13C5-PFPeA 80% 50-150%	,
13C5-PFHxA 80% 50-150%)
13C4-PFHpA 81% 50-150%	,
13C8-PFOA 82% 50-150%	,
13C9-PFNA 82% 50-150%)
13C6-PFDA 81% 50-150%	,
13C7-PFUnDA 76% 50-150%	1

Method: EPA 537M QSM5.3 B-15

Method Blank Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82458-MB	File ID 3Q28054.D	DF 1	Analyzed 10/14/20	By NG	Prep Date 10/13/20	Prep Batch OP82458	Analytical Batch S3Q422

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	Limits	
	13C2-PFDoDA	72%	50-150%
	13C2-PFTeDA	64%	50-150%
	13C3-PFBS	81%	50-150%
	13C3-PFHxS	82%	50-150%
	13C8-PFOS	82%	50-150%
	13C8-FOSA	85%	50-150%
	d3-MeFOSAA	80%	50-150%
	d5-EtFOSAA	76%	50-150%
	13C2-4:2FTS	76%	50-150%
	13C2-6:2FTS	78%	50-150%
	13C2-8:2FTS	77%	50-150%

Instrument Blank

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample S2Q826-IBLK	File ID 2Q55774.D	DF 1	Analyzed 10/08/20	By NG	Prep Date n/a	Prep Batch n/a	Analytical Batch S2Q826

The QC reported here applies to the following samples:

OP82375-BS, OP82375-DUP, OP82375-MS

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0040	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0040	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/l	
757124-72-4	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No.	ID Standard Recoveries		Limits
	13C4-PFBA	95%	50-150%
	13C5-PFPeA	96%	50-150%
	13C5-PFHxA	99%	50-150%
	13C4-PFHpA	95%	50-150%
	13C8-PFOA	103%	50-150%
	13C9-PFNA	99%	50-150%
	13C6-PFDA	101%	50-150%
	13C7-PFUnDA	104%	50-150%

Method: EPA 537M QSM5.3 B-15

Instrument Blank

Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample S2Q826-IBLK	File ID 2Q55774.D	DF 1	Analyzed 10/08/20	By NG	Prep Date n/a	Prep Batch n/a	Analytical Batch S2Q826

The QC reported here applies to the following samples:

OP82375-BS, OP82375-DUP, OP82375-MS

ID Standard Recoveries		Limits		
13C2-PFDoDA 13C2-PFTeDA 13C3-PFBS 13C3-PFHxS 13C8-PFOS 13C8-FOSA d3-MeFOSAA d5-EtFOSAA	102% 105% 97% 101% 95% 105% 117%	50-150% 50-150% 50-150% 50-150% 50-150% 50-150% 50-150% 50-150%		
13C2-4:2FTS 13C2-6:2FTS 13C2-8:2FTS	95% 97% 95%	50-150% 50-150% 50-150%		
	13C2-PFDoDA 13C2-PFTeDA 13C3-PFBS 13C3-PFHxS 13C8-PFOS 13C8-FOSA d3-MeFOSAA d5-EtFOSAA 13C2-4:2FTS 13C2-6:2FTS	13C2-PFDoDA 102% 13C2-PFTeDA 105% 13C3-PFBS 97% 13C3-PFHxS 101% 13C8-PFOS 95% 13C8-FOSA 105% d3-MeFOSAA 117% d5-EtFOSAA 118% 13C2-4:2FTS 95% 13C2-6:2FTS 97%		

Method: EPA 537M QSM5.3 B-15

Blank Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82375-BS	File ID 2Q55848.D	DF 1	Analyzed 10/09/20	By NG	Prep Date 10/08/20	Prep Batch OP82375	Analytical Batch S2Q826

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
375-22-4	Perfluorobutanoic acid	0.08	0.0711	89	73-129
2706-90-3	Perfluoropentanoic acid	0.08	0.0714	89	72-129
307-24-4	Perfluorohexanoic acid	0.08	0.0682	85	72-129
375-85-9	Perfluoroheptanoic acid	0.08	0.0730	91	72-130
335-67-1	Perfluorooctanoic acid	0.08	0.0698	87	71-133
375-95-1	Perfluorononanoic acid	0.08	0.0684	86	69-130
335-76-2	Perfluorodecanoic acid	0.08	0.0665	83	71-129
2058-94-8	Perfluoroundecanoic acid	0.08	0.0695	87	69-133
307-55-1	Perfluorododecanoic acid	0.08	0.0709	89	72-134
72629-94-8	Perfluorotridecanoic acid	0.08	0.0740	93	65-144
376-06-7	Perfluorotetradecanoic acid	0.08	0.0714	89	71-132
375-73-5	Perfluorobutanesulfonic acid	0.08	0.0696	87	73-130
2706-91-4	Perfluoropentanesulfonic acid	0.08	0.0666	83	71-127
355-46-4	Perfluorohexanesulfonic acid	0.08	0.0713	89	68-131
375-92-8	Perfluoroheptanesulfonic acid	0.08	0.0707	88	69-134
1763-23-1	Perfluorooctanesulfonic acid	0.08	0.0705	88	65-140
68259-12-1	Perfluorononanesulfonic acid	0.08	0.0594	74	69-127
335-77-3	Perfluorodecanesulfonic acid	0.08	0.0486	61	53-142
754-91-6	PFOSA	0.08	0.0680	85	67-137
2355-31-9	MeFOSAA	0.08	0.0710	89	65-136
2991-50-6	EtFOSAA	0.08	0.0711	89	61-135
757124-72-4	44:2 Fluorotelomer sulfonate	0.08	0.0694	87	63-143
27619-97-2	6:2 Fluorotelomer sulfonate	0.08	0.0686	86	64-140
39108-34-4	8:2 Fluorotelomer sulfonate	0.08	0.0697	87	67-138

CAS No.	ID Standard Recoveries	BSP	Limits
	13C4-PFBA	94%	50-150%
	13C5-PFPeA	91%	50-150%
	13C5-PFHxA	92%	50-150%
	13C4-PFHpA	88%	50-150%
	13C8-PFOA	94%	50-150%
	13C9-PFNA	89%	50-150%
	13C6-PFDA	83%	50-150%
	13C7-PFUnDA	69%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Blank Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82375-BS	File ID 2Q55848.D	DF 1	Analyzed 10/09/20	By NG	Prep Date 10/08/20	Prep Batch OP82375	Analytical Batch S2Q826

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	BSP	Limits
	13C2-PFDoDA	57%	50-150%
	13C2-PFTeDA	50%	50-150%
	13C3-PFBS	93%	50-150%
	13C3-PFHxS	91%	50-150%
	13C8-PFOS	85%	50-150%
	13C8-FOSA	87%	50-150%
	d3-MeFOSAA	75%	50-150%
	d5-EtFOSAA	66%	50-150%
	13C2-4:2FTS	95%	50-150%
	13C2-6:2FTS	96%	50-150%
	13C2-8:2FTS	81%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Blank Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82375-BS	File ID 2Q55873.D	DF 1	Analyzed 10/09/20	By NG	Prep Date 10/08/20	Prep Batch OP82375	Analytical Batch S2Q827

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
375-22-4	Perfluorobutanoic acid	0.08	0.0728	91	73-129
2706-90-3	Perfluoropentanoic acid	0.08	0.0698	87	72-129
307-24-4	Perfluorohexanoic acid	0.08	0.0676	85	72-129
375-85-9	Perfluoroheptanoic acid	0.08	0.0724	91	72-130
335-67-1	Perfluorooctanoic acid	0.08	0.0698	87	71-133
375-95-1	Perfluorononanoic acid	0.08	0.0664	83	69-130
335-76-2	Perfluorodecanoic acid	0.08	0.0678	85	71-129
2058-94-8	Perfluoroundecanoic acid	0.08	0.0694	87	69-133
307-55-1	Perfluorododecanoic acid	0.08	0.0713	89	72-134
72629-94-8	Perfluorotridecanoic acid	0.08	0.0737	92	65-144
376-06-7	Perfluorotetradecanoic acid	0.08	0.0687	86	71-132
375-73-5	Perfluorobutanesulfonic acid	0.08	0.0713	89	73-130
2706-91-4	Perfluoropentanesulfonic acid	0.08	0.0700	88	71-127
355-46-4	Perfluorohexanesulfonic acid	0.08	0.0723	90	68-131
375-92-8	Perfluoroheptanesulfonic acid	0.08	0.0711	89	69-134
1763-23-1	Perfluorooctanesulfonic acid	0.08	0.0704	88	65-140
68259-12-1	Perfluorononanesulfonic acid	0.08	0.0585	73	69-127
335-77-3	Perfluorodecanesulfonic acid	0.08	0.0503	63	53-142
754-91-6	PFOSA	0.08	0.0683	85	67-137
2355-31-9	MeFOSAA	0.08	0.0696	87	65-136
2991-50-6	EtFOSAA	0.08	0.0708	89	61-135
757124-72-	44:2 Fluorotelomer sulfonate	0.08	0.0691	86	63-143
27619-97-2	6:2 Fluorotelomer sulfonate	0.08	0.0690	86	64-140
39108-34-4	8:2 Fluorotelomer sulfonate	0.08	0.0713	89	67-138

CAS No.	ID Standard Recoveries	BSP	Limits
	13C4-PFBA	92%	50-150%
	13C5-PFPeA	92%	50-150%
	13C5-PFHxA	94%	50-150%
	13C4-PFHpA	90%	50-150%
	13C8-PFOA	97%	50-150%
	13C9-PFNA	93%	50-150%
	13C6-PFDA	83%	50-150%
	13C7-PFUnDA	70%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Blank Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP82375-BS	2Q55873.D	1	10/09/20	NG	10/08/20	OP82375	S2Q827

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	BSP	Limits
	13C2-PFDoDA	58%	50-150%
	13C2-PFTeDA	53%	50-150%
	13C3-PFBS	92%	50-150%
	13C3-PFHxS	95%	50-150%
	13C8-PFOS	86%	50-150%
	13C8-FOSA	88%	50-150%
	d3-MeFOSAA	78%	50-150%
	d5-EtFOSAA	68%	50-150%
	13C2-4:2FTS	95%	50-150%
	13C2-6:2FTS	95%	50-150%
	13C2-8:2FTS	80%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Blank Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82458-BS	File ID 3Q28053.D	DF 1	Analyzed 10/14/20	By NG	Prep Date 10/13/20	Prep Batch OP82458	Analytical Batch S3Q422

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
375-22-4	Perfluorobutanoic acid	0.0714	0.0659	92	73-129
2706-90-3	Perfluoropentanoic acid	0.0714	0.0676	95	72-129
307-24-4	Perfluorohexanoic acid	0.0714	0.0658	92	72-129
375-85-9	Perfluoroheptanoic acid	0.0714	0.0649	91	72-130
335-67-1	Perfluorooctanoic acid	0.0714	0.0665	93	71-133
375-95-1	Perfluorononanoic acid	0.0714	0.0667	93	69-130
335-76-2	Perfluorodecanoic acid	0.0714	0.0658	92	71-129
2058-94-8	Perfluoroundecanoic acid	0.0714	0.0661	93	69-133
307-55-1	Perfluorododecanoic acid	0.0714	0.0653	91	72-134
72629-94-8	Perfluorotridecanoic acid	0.0714	0.0666	93	65-144
376-06-7	Perfluorotetradecanoic acid	0.0714	0.0667	93	71-132
375-73-5	Perfluorobutanesulfonic acid	0.0714	0.0672	94	73-130
2706-91-4	Perfluoropentanesulfonic acid	0.0714	0.0669	94	71-127
355-46-4	Perfluorohexanesulfonic acid	0.0714	0.0677	95	68-131
375-92-8	Perfluoroheptanesulfonic acid	0.0714	0.0677	95	69-134
1763-23-1	Perfluorooctanesulfonic acid	0.0714	0.0667	93	65-140
68259-12-1	Perfluorononanesulfonic acid	0.0714	0.0637	89	69-127
335-77-3	Perfluorodecanesulfonic acid	0.0714	0.0571	80	53-142
754-91-6	PFOSA	0.0714	0.0663	93	67-137
2355-31-9	MeFOSAA	0.0714	0.0643	90	65-136
2991-50-6	EtFOSAA	0.0714	0.0638	89	61-135
757124-72-	44:2 Fluorotelomer sulfonate	0.0714	0.0666	93	63-143
27619-97-2	6:2 Fluorotelomer sulfonate	0.0714	0.0673	94	64-140
39108-34-4	8:2 Fluorotelomer sulfonate	0.0714	0.0665	93	67-138

CAS No.	ID Standard Recoveries	BSP	Limits
	13C4-PFBA	97%	50-150%
	13C5-PFPeA	95%	50-150%
	13C5-PFHxA	95%	50-150%
	13C4-PFHpA	96%	50-150%
	13C8-PFOA	96%	50-150%
	13C9-PFNA	96%	50-150%
	13C6-PFDA	94%	50-150%
	13C7-PFUnDA	87%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Blank Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample OP82458-BS	File ID 3Q28053.D	DF 1	Analyzed 10/14/20	By NG	Prep Date 10/13/20	Prep Batch OP82458	Analytical Batch S3Q422

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	BSP	Limits
	13C2-PFDoDA	84%	50-150%
	13C2-PFTeDA	77%	50-150%
	13C3-PFBS	96%	50-150%
	13C3-PFHxS	95%	50-150%
	13C8-PFOS	94%	50-150%
	13C8-FOSA	92%	50-150%
	d3-MeFOSAA	90%	50-150%
	d5-EtFOSAA	86%	50-150%
	13C2-4:2FTS	95%	50-150%
	13C2-6:2FTS	96%	50-150%
	13C2-8:2FTS	95%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Matrix Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF 1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP82375-MS	2Q55852.D		10/09/20	NG	10/08/20	OP82375	S2Q826
FA79486-2	2Q55851.D		10/09/20	NG	10/08/20	OP82375	S2Q826

The QC reported here applies to the following samples:

		FA79486-2	Spike	MS	MS	
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	Limits
255 22 4	D 0 1 1 1 11	0.015.11	0.16	0.162	100	50 100
375-22-4	Perfluorobutanoic acid	0.015 U	0.16	0.163	102	73-129
2706-90-3	Perfluoropentanoic acid	0.0077 U	0.16	0.160	100	72-129
307-24-4	Perfluorohexanoic acid	0.0077 U	0.16	0.154	96	72-129
375-85-9	Perfluoroheptanoic acid	0.0077 U	0.16	0.163	102	72-130
335-67-1	Perfluorooctanoic acid	0.0077 U	0.16	0.161	101	71-133
375-95-1	Perfluorononanoic acid	0.0077 U	0.16	0.153	96	69-130
335-76-2	Perfluorodecanoic acid	0.0077 U	0.16	0.153	96	71-129
2058-94-8	Perfluoroundecanoic acid	0.0077 U	0.16	0.154	96	69-133
307-55-1	Perfluorododecanoic acid	0.0077 U	0.16	0.156	98	72-134
72629-94-8	Perfluorotridecanoic acid	0.0077 U	0.16	0.182	114	65-144
376-06-7	Perfluorotetradecanoic acid	0.0077 U	0.16	0.159	99	71-132
375-73-5	Perfluorobutanesulfonic acid	0.0077 U	0.16	0.162	101	73-130
2706-91-4	Perfluoropentanesulfonic acid	0.0077 U	0.16	0.155	97	71-127
355-46-4	Perfluorohexanesulfonic acid	0.0077 U	0.16	0.157	98	68-131
375-92-8	Perfluoroheptanesulfonic acid	0.0077 U	0.16	0.157	98	69-134
1763-23-1	Perfluorooctanesulfonic acid	0.0077 U	0.16	0.154	96	65-140
68259-12-1	Perfluorononanesulfonic acid	0.0077 U	0.16	0.142	89	69-127
335-77-3	Perfluorodecanesulfonic acid	0.0077 U	0.16	0.138	86	53-142
754-91-6	PFOSA	0.0077 U	0.16	0.156	98	67-137
2355-31-9	MeFOSAA	0.015 U	0.16	0.156	98	65-136
2991-50-6	EtFOSAA	0.015 U	0.16	0.156	98	61-135
757124-72-4	14:2 Fluorotelomer sulfonate	0.015 U	0.16	0.157	98	63-143
27619-97-2	6:2 Fluorotelomer sulfonate	0.015 U	0.16	0.156	98	64-140
39108-34-4	8:2 Fluorotelomer sulfonate	0.015 U	0.16	0.160	100	67-138

CAS No.	ID Standard Recoveries	MS	FA79486-2	Limits
	13C8-PFOA	84%	95%	50-150%
	13C3-PFBS	81%	90%	50-150%
	13C8-PFOS	79%	78%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Matrix Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP82458-MS	3Q28070.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422
FA79381-100	3Q28069.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422

The QC reported here applies to the following samples:

		FA7938	FA79381-100Spike			MS	
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	Limits
375-22-4	Perfluorobutanoic acid	0.0591		0.154	0.202	93	73-129
2706-90-3	Perfluoropentanoic acid	0.0077 U		0.154	0.153	99	72-129
307-24-4	Perfluorohexanoic acid	0.0077 U	J	0.154	0.148	96	72-129
375-85-9	Perfluoroheptanoic acid	0.0077 U	J	0.154	0.146	95	72-130
335-67-1	Perfluorooctanoic acid	$0.0077 \mathrm{U}$	J	0.154	0.148	96	71-133
375-95-1	Perfluorononanoic acid	$0.0077 \mathrm{U}$	J	0.154	0.146	95	69-130
335-76-2	Perfluorodecanoic acid	$0.0077 \mathrm{U}$	J	0.154	0.145	94	71-129
2058-94-8	Perfluoroundecanoic acid	0.0077 U	J	0.154	0.147	96	69-133
307-55-1	Perfluorododecanoic acid	0.0077 U	J	0.154	0.145	94	72-134
72629-94-8	Perfluorotridecanoic acid	0.0077 U	J	0.154	0.147	96	65-144
376-06-7	Perfluorotetradecanoic acid	0.0077 U	J	0.154	0.148	96	71-132
375-73-5	Perfluorobutanesulfonic acid	0.0077 U	J	0.154	0.148	96	73-130
2706-91-4	Perfluoropentanesulfonic acid	0.0077 U	J	0.154	0.147	96	71-127
355-46-4	Perfluorohexanesulfonic acid	0.0077 U	J	0.154	0.149	97	68-131
375-92-8	Perfluoroheptanesulfonic acid	0.0077 U	J	0.154	0.146	95	69-134
1763-23-1	Perfluorooctanesulfonic acid	0.0077 U	J	0.154	0.142	92	65-140
68259-12-1	Perfluorononanesulfonic acid	0.0077 U	J	0.154	0.133	86	69-127
335-77-3	Perfluorodecanesulfonic acid	0.0077 U	J	0.154	0.123	80	53-142
754-91-6	PFOSA	0.0077 U	J	0.154	0.147	96	67-137
2355-31-9	MeFOSAA	0.015 U		0.154	0.147	96	65-136
2991-50-6	EtFOSAA	0.015 U		0.154	0.147	96	61-135
757124-72-4	44:2 Fluorotelomer sulfonate	0.015 U		0.154	0.147	96	63-143
27619-97-2	6:2 Fluorotelomer sulfonate	0.015 U		0.154	0.145	94	64-140
39108-34-4	8:2 Fluorotelomer sulfonate	0.015 U		0.154	0.146	95	67-138

CAS No.	ID Standard Recoveries	MS	FA79381	-100Limits
	13C4-PFBA	87%	73%	50-150%
	13C5-PFPeA	84%	72%	50-150%
	13C5-PFHxA	84%	72%	50-150%
	13C4-PFHpA	85%	74%	50-150%
	13C8-PFOA	85%	76%	50-150%
	13C9-PFNA	87%	77%	50-150%
	13C6-PFDA	84%	75%	50-150%
	13C7-PFUnDA	78%	71%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Matrix Spike Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP82458-MS	3Q28070.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422
FA79381-100	3Q28069.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422

The QC reported here applies to the following samples:

CAS No.	ID Standard Recoveries	MS	FA79381	FA79381-100Limits	
	13C2-PFDoDA 13C2-PFTeDA 13C3-PFBS 13C3-PFHxS 13C8-PFOS 13C8-FOSA	77% 71% 86% 87% 86% 85%	71% 64% 80% 79% 79% 75%	50-150% 50-150% 50-150% 50-150% 50-150%	
	d3-MeFOSAA d5-EtFOSAA 13C2-4:2FTS 13C2-6:2FTS 13C2-8:2FTS	80% 77% 85% 88% 84%	76% 71%	50-150% 50-150% 50-150% 50-150% 50-150%	

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Duplicate Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP82375-DUP	2Q55854.D	1	10/09/20	NG	10/08/20	OP82375	S2Q826
FA79486-3	2Q55853.D	1	10/09/20	NG	10/08/20	OP82375	S2Q826

The QC reported here applies to the following samples:

		FA79486-3	DUP		
CAS No.	Compound	ug/l Q	ug/l Q	RPD	Limits
		0.04.7.7			
375-22-4	Perfluorobutanoic acid	0.015 U	ND	nc	30
2706-90-3	Perfluoropentanoic acid	0.0077 U	ND	nc	30
307-24-4	Perfluorohexanoic acid	0.0077 U	ND	nc	30
375-85-9	Perfluoroheptanoic acid	0.0077 U	ND	nc	30
335-67-1	Perfluorooctanoic acid	0.0077 U	ND	nc	30
375-95-1	Perfluorononanoic acid	0.0077 U	ND	nc	30
335-76-2	Perfluorodecanoic acid	0.0077 U	ND	nc	30
2058-94-8	Perfluoroundecanoic acid	0.0077 U	ND	nc	30
307-55-1	Perfluorododecanoic acid	0.0077 U	ND	nc	30
72629-94-8	Perfluorotridecanoic acid	0.0077 U	ND	nc	30
376-06-7	Perfluorotetradecanoic acid	0.0077 U	ND	nc	30
375-73-5	Perfluorobutanesulfonic acid	0.0077 U	ND	nc	30
2706-91-4	Perfluoropentanesulfonic acid	0.0077 U	ND	nc	30
355-46-4	Perfluorohexanesulfonic acid	0.0077 U	ND	nc	30
375-92-8	Perfluoroheptanesulfonic acid	0.0077 U	ND	nc	30
1763-23-1	Perfluorooctanesulfonic acid	0.0077 U	0.0035 J	200*	30
68259-12-1	Perfluorononanesulfonic acid	0.0077 U	ND	nc	30
335-77-3	Perfluorodecanesulfonic acid	0.0077 U	ND	nc	30
754-91-6	PFOSA	0.0077 U	ND	nc	30
2355-31-9	MeFOSAA	0.015 U	ND	nc	30
2991-50-6	EtFOSAA	0.015 U	ND	nc	30
757124-72-	44:2 Fluorotelomer sulfonate	0.015 U	ND	nc	30
27619-97-2	6:2 Fluorotelomer sulfonate	0.015 U	ND	nc	30
39108-34-4	8:2 Fluorotelomer sulfonate	0.015 U	ND	nc	30

CAS No.	ID Standard Recoveries	DUP	FA79486-3	Limits
	13C8-PFOA	78%	87%	50-150%
	13C3-PFBS	75%	85%	50-150%
	13C8-PFOS	55%	58%	50-150%

^{* =} Outside of Control Limits.

Method: EPA 537M QSM5.3 B-15

Duplicate Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

Project: 1205226

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP82458-DUP	3Q28073.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422
FA79381-111	3Q28072.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422

The QC reported here applies to the following samples:

		FA79381-111DUP					
CAS No.	Compound	ug/l	Q	ug/l	Q	RPD	Limits
375-22-4	Perfluorobutanoic acid	0.0493		0.0448		10	30
2706-90-3	Perfluoropentanoic acid	0.0029	J	0.0025	J	15	30
307-24-4	Perfluorohexanoic acid	0.0027 0.0077 U	-	ND	3	nc	30
375-85-9	Perfluoroheptanoic acid	0.0077 U		ND		nc	30
335-67-1	Perfluorooctanoic acid	0.0077 U		ND		nc	30
375-95-1	Perfluorononanoic acid	0.0077 U		ND		nc	30
335-76-2	Perfluorodecanoic acid	0.0077 U		ND		nc	30
2058-94-8	Perfluoroundecanoic acid	0.0077 U		ND		nc	30
307-55-1	Perfluorododecanoic acid	0.0077 U		ND		nc	30
72629-94-8	Perfluorotridecanoic acid	0.0077 U		ND		nc	30
376-06-7	Perfluorotetradecanoic acid	0.0077 U		ND		nc	30
375-73-5	Perfluorobutanesulfonic acid	0.0077 U		ND		nc	30
2706-91-4	Perfluoropentanesulfonic acid	0.0077 U		ND		nc	30
355-46-4	Perfluorohexanesulfonic acid	0.0077 U		ND		nc	30
375-92-8	Perfluoroheptanesulfonic acid	0.0077 U	_	ND		nc	30
1763-23-1	Perfluorooctanesulfonic acid	0.0077 U		ND		nc	30
68259-12-1	Perfluorononanesulfonic acid	0.0077 U		ND		nc	30
335-77-3	Perfluorodecanesulfonic acid	0.0077 U		ND		nc	30
754-91-6	PFOSA	0.0077 U	_	ND		nc	30
2355-31-9	MeFOSAA	0.015 U		ND		nc	30
2991-50-6	EtFOSAA	0.015 U		ND		nc	30
	44:2 Fluorotelomer sulfonate	0.015 U		ND		nc	30
	6:2 Fluorotelomer sulfonate	0.015 U		ND		nc	30
	8:2 Fluorotelomer sulfonate	0.015 U		ND		nc	30
				-		-	

CAS No.	ID Standard Recoveries	DUP	FA79381	FA79381-111Limits			
	13C4-PFBA	83%	77%	50-150%			
	13C5-PFPeA	82%	75%	50-150%			
	13C5-PFHxA	81%	75%	50-150%			
	13C4-PFHpA	83%	77%	50-150%			
	13C8-PFOA	83%	78%	50-150%			
	13C9-PFNA	84%	78%	50-150%			
	13C6-PFDA	81%	74%	50-150%			
	13C7-PFUnDA	78%	68%	50-150%			

^{* =} Outside of Control Limits.

Page 2 of 2

Method: EPA 537M QSM5.3 B-15

Duplicate Summary Job Number: FA79315

Account: SGSAKA SGS North America, Inc

1205226 **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP82458-DUP	3Q28073.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422
FA79381-111	3Q28072.D	1	10/15/20	NG	10/13/20	OP82458	S3Q422

The QC reported here applies to the following samples:

FA79315-4

CAS No.	ID Standard Recoveries	DUP	FA79381	FA79381-111Limits		
	13C2-PFDoDA 13C2-PFTeDA 13C3-PFBS 13C3-PFHxS 13C8-PFOS 13C8-FOSA d3-MeFOSAA d5-EtFOSAA 13C2-4:2FTS	76% 68% 83% 83% 84% 82% 78% 77%	68% 61% 76% 76% 75% 78% 69% 67%	50-150% 50-150% 50-150% 50-150% 50-150% 50-150% 50-150% 50-150%		
	13C2-6:2FTS 13C2-8:2FTS	80% 78%		50-150% 50-150%		

^{* =} Outside of Control Limits.

LABORATORY DATA REVIEW CHECKLIST

Completed by: Alec Rizzo Title: Former Markair Facility

Date: March 2021

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America Inc. **Laboratory Report Number:** 1205226 **Laboratory Report Date:** 10/15/2020

Contaminated Site Name: MarkAir King Salmon

ADEC File Number: 2569.38.009 **Hazard Identification Number:** 1879

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes/ No / NA
 Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? **Yes**/**No**/**NA**

Comments: Analyses were performed by SGS of Orlando, Florida.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?
 Yes/No/NA
 Comments:

b. Correct analyses requested? Yes / No / NA Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? **Yes/ No / NA**

Comments: The cooler temperature was 0.6° C upon receipt at SGS in Anchorage, Alaska and 4.4°C at SGS in Orlando, Florida.

b. Sample preservation acceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, VOCs, etc.)? **Yes / No /NA**

Comments: *The method does not require a preservative.*

c. Sample condition documented - broken, leaking (MeOH), zero headspace (VOC vials)?
Yes/ No / NA

Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes / No (NA)

Comments: No discrepancies were noted.

e. Data quality or usability affected?

Comments: Data quality/usability are considered unaffected; see above.

4. Case Narrative

- a. Present and understandable? Yes/ No / NA Comments:
- **b.** Discrepancies, errors or QC failures noted by the lab? Yes / No / NA Comments: The case narrative noted the following:
- *RPD(s) for Duplicate for Perfluorooctanesulfonic acid are outside control limits for sample OP82375-DUP. Probable cause is due to sample non-homogeneity.*
- Samples B3MW, B7MW, and B20MW have surrogates outside control limits.
- Sample B3MW for 13C8-FOSA: Outside control limits.
- Sample B3MW for PFOSA: Associated ID Standard outside control limits due to matrix interference. Confirmed by reanalysis.
- Sample B3MW: Dilution required due to matrix interference (ID recovery standard failure).
- Sample B7MW for 13C2-PFTeDA: Outside control limits in associated MS/MSD.
- Sample B20MW have surrogates outside control limits.
- Sample B20MW for Perfluorotetradecanoic acid: Associated ID Standard outside DoD QSM 5.3 control limits due to matrix interference. Confirmed by re-extraction and reanalysis.
- Sample B20MW for Perfluorotridecanoic acid: Associated ID Standard outside DoD QSM 5.3 control limits due to matrix interference. Confirmed by re-extraction and reanalysis.
- Sample B20MW for 13C2-PFTeDA: Outside control limits due to matrix interference. Confirmed by re-extraction and reanalysis.
- c. Were all corrective actions documented? Yes / No / NA Comments: See above.

d. What is the effect on data quality/usability, according to the case narrative? Comments: *See above*.

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Ves/No/NA Comments:
- **b.** All applicable holding times met? **Yes** / **No** / **NA** Comments:
- c. All soils reported on a dry weight basis? Yes / No / NA Comments:
- d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? Yes / No / NA Comments:
- **e.** Data quality or usability affected? Comments: *Data quality/usability are unaffected.*

6. QC Samples

a. Method Blank

- i. One method blank reported per matrix, analysis, and 20 samples?
 Yes/ No / NA
 Comments:
- ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes / No / NA Comments:

- **iii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?Yes / No NAComments:
- v. Data quality or usability affected? Comments: *See above*

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/No/NA Comments:
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No / NA Comments: Only organic analyses were requested with this work order.
- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes / No / NA Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from LCS/LCSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No / NA Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes / No NA Comments:
- **vii.** Data quality or usability affected? Comments: *See above*
- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis, and 20 samples?
 Yes/ No / NA
 Comments:
 - ii. Metals/Inorganics One MS and one MSD reported per matrix, analysis and 20 samples? Yes / No NA Comments: Only organic analyses were requested with this work order.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes / No / NA Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from MS/MSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No/ NA
 Comments: The MSD RPD for perfluorooctanesulfonic acid is outside the control limits for Samples B3MW, B7MW, and B13MW.
- **v.** If %R or RPD is outside of acceptable limits, what samples are affected? Comments: *See above*.
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes No/NA

 Comments: The sample used as the parent is from another work order. Therefore, flagging is not required.
- **vii.** Data quality or usability affected? Comments: *See above*.

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

- i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples? Yes/No/NA
 Comments:
- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes No/NA Comments: Samples B3MW, B7MW, and B20MW have IDA recoveries outside control limits.
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes / No / NA

 Comments: Samples B3MW and B20MW have IDA recoveries for PFOSA and perfluorotetradecanoic acid outside QC criteria, respectively. The non-detected results were flagged "J" in Table 3. Sample B7MW also has an IDA recovery failure for perfluorotetradecanoic acid below QC criteria, however, a second confirmation run was performed and the IDA recovery was in the QC limit. Therefore, the reported laboratory results are unaffected

iv. Data quality or usability affected? Comments: *See above*.

- e. Trip Blank Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? Yes / No / NA

Comments: Volatile analyses were not requested with this work order.

- ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? Yes / No / NA Comments:
- iii. All results less than LOQ and project specified objectives? Yes / No NA Comments:
- iv. If above LOQ or project specified DQOs, what samples are affected? Comments:
- v. Data quality or usability affected? Comments:

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes No/NA

Comments: A duplicate sample was not included in our ADEC-approved work plan.

- ii. Were the field duplicates submitted blind to the lab? Yes / No NA Comments:
- iii. Precision All relative percent differences (RPDs) less than specified project objectives? (Recommended: 30% for water, 50% for soil) **Yes / No NA**Comments:
- iv. Data quality or usability affected? Comments:
- **g. Decontamination or Equipment Blank** (if not applicable, a comment stating why must be entered below).

Yes (No)/ NA

Comments: A decontamination or equipment blank was not included in our ADEC-approved work plan.

- All results less than LOQ and project specified objectives?
 Yes / No NA
 Comments:
- **ii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- **iii.** Data quality or usability affected? Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate? Yes / No / NA Comments: A key is provided on page 6 and on the bottom of pages 14-21, 25-28, and 44-55.

Laboratory Report of Analysis

To: Shannon & Wilson, Inc.

5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907)433-3223

Report Number: 1205227

Client Project: 104675 King Salmon-MarkAir

Dear Dan McMahon,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc. Justin Nelson 2020.10.15

17:07:19 -08'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/15/2020 4:30:53PM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson, Inc.**SGS Project: **1205227**

Project Name/Site: 104675 King Salmon-MarkAir
Project Contact: Dan McMahon

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/15/2020 4:30:55PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICVInitial Calibration VerificationJThe quantitation is an estimation.LCS(D)Laboratory Control Spike (Duplicate)LLQC/LLIQCLow Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 10/15/2020 4:30:57PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sampl	le Summary
-------	------------

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
1046785-B1MW	1205227001	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B2MW	1205227002	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B3MW	1205227003	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B7MW	1205227004	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B12MW	1205227005	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B13MW	1205227006	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B16MW	1205227007	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B17MW	1205227008	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B18MW	1205227009	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B19MW	1205227010	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B20MW	1205227011	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B21MW	1205227012	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-B28MW	1205227013	09/23/2020	09/25/2020	Water (Surface, Eff., Ground)
1046785-WTB	1205227014	09/22/2020	09/25/2020	Water (Surface, Eff., Ground)

MethodMethod DescriptionAK102DRO Low Volume (W)

SW8260D Volatile Organic Compounds (W) FULL

Detectable Results Summary

Client Sample ID: 1046785-B1MW			
Lab Sample ID: 1205227001	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	2.90	mg/L
Volatile GC/MS	Benzene	0.202J	ug/L
	Dichlorodifluoromethane	0.875J	ug/L
	Isopropylbenzene (Cumene)	3.14	ug/L
	sec-Butylbenzene	2.05	ug/L
	tert-Butylbenzene	1.08	ug/L
Client Sample ID: 1046785-B2MW			
Lab Sample ID: 1205227002	D	Danish	1.1
·	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 30.5	<u>Units</u>
Semivolatile Organic Fuels		0.797J	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene 1,2-Dichloroethane	0.7973 0.486J	ug/L
	Benzene		ug/L
		43.8	ug/L
	Ethylbenzene	11.9	ug/L
	Isopropylbenzene (Cumene)	3.68	ug/L
	Naphthalene	88.4	ug/L
	n-Propylbenzene	1.96	ug/L
	P & M -Xylene	6.36	ug/L
	sec-Butylbenzene	1.24	ug/L
	tert-Butylbenzene	0.356J	ug/L
	Xylenes (total)	6.36	ug/L
Client Sample ID: 1046785-B3MW			
Lab Sample ID: 1205227003	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	1.24	mg/L
Volatile GC/MS	Trichlorofluoromethane	0.435J	ug/L
Client Sample ID: 1046785-B7MW			
Lab Sample ID: 1205227004	Darameter	Popult	Linita
	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 1.27	<u>Units</u> mg/L
Semivolatile Organic Fuels	Dieser Kange Organics	1.27	IIIg/L
Client Sample ID: 1046785-B12MW			
Lab Sample ID: 1205227005	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.411J	mg/L
Client Sample ID: 1046785-B13MW			
Lab Sample ID: 1205227006	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.367J	mg/L
_	5 5		Ü
Client Sample ID: 1046785-B16MW			
Lab Sample ID: 1205227007	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.688	mg/L
Client Sample ID: 1046785-B17MW			
Lab Sample ID: 1205227008	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	10.6	mg/L
	5 5		-

Print Date: 10/15/2020 4:31:00PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: 1046785-B18MW			
Lab Sample ID: 1205227009	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	5.27	mg/L
Volatile GC/MS	Benzene	0.170J	ug/L
	Naphthalene	7.06	ug/L
	sec-Butylbenzene	0.496J	ug/L
Client Sample ID: 1046785-B19MW			
Lab Sample ID: 1205227010	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.535J	mg/L
Client Sample ID: 1046785-B20MW			
Lab Sample ID: 1205227011	Parameter Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.667	mg/L
Client Sample ID: 1046785-B21MW			
Lab Sample ID: 1205227012	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.641	mg/L
Client Sample ID: 1046785-B28MW			
Lab Sample ID: 1205227013	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	5.57	mg/L
Volatile GC/MS	Benzene	0.157J	ug/L
	Naphthalene	6.65	ug/L
	sec-Butylbenzene	0.489J	ug/L
	Tetrachloroethene	0.315J	ug/L
			-

Print Date: 10/15/2020 4:31:00PM

Client Sample ID: 1046785-B1MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227001 Lab Project ID: 1205227 Collection Date: 09/23/20 10:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Diesel Range Organics	2.90	0.588	0.176	mg/L	1		10/07/20 19:24
Surrogates							
5a Androstane (surr)	99.9	50-150		%	1		10/07/20 19:24

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 19:24 Container ID: 1205227001-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B1MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227001 Lab Project ID: 1205227 Collection Date: 09/23/20 10:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>		ate Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09	/28/20 00:00
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09	/28/20 00:00
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09	/28/20 00:00
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09	/28/20 00:00
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09	/28/20 00:00
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:00
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09	/28/20 00:0
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09	/28/20 00:0
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09	/28/20 00:0
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09	/28/20 00:0
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09	/28/20 00:0
1-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
1-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09	/28/20 00:0
Benzene	0.202 J	0.400	0.120	ug/L	1	09	/28/20 00:0
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09	/28/20 00:0
Bromoform	0.500 U	1.00	0.310	ug/L	1	09	/28/20 00:0
Bromomethane	2.50 U	5.00	2.00	ug/L	1		/28/20 00:0
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		/28/20 00:0
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		/28/20 00:0
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		/28/20 00:0
Chloroethane	0.500 U	1.00	0.310	ug/L	1		/28/20 00:0

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B1MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227001 Lab Project ID: 1205227 Collection Date: 09/23/20 10:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:00
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:00
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Dichlorodifluoromethane	0.875 J	1.00	0.310	ug/L	1		09/28/20 00:00
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:00
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Isopropylbenzene (Cumene)	3.14	1.00	0.310	ug/L	1		09/28/20 00:00
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:00
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:00
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 00:00
sec-Butylbenzene	2.05	1.00	0.310	ug/L	1		09/28/20 00:00
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
tert-Butylbenzene	1.08	1.00	0.310	ug/L	1		09/28/20 00:00
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:00
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:00
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 00:00
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 00:00
urrogates							
1,2-Dichloroethane-D4 (surr)				%	1		00/20/20 00:00
	102	81-118		70	1		09/28/20 00:00
4-Bromofluorobenzene (surr)	102 94.4	81-118 85-114		%	1		09/28/20 00:00

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B1MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227001 Lab Project ID: 1205227 Collection Date: 09/23/20 10:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 00:00 Container ID: 1205227001-C

Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B2MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227002 Lab Project ID: 1205227 Collection Date: 09/23/20 11:15 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	30.5	0.577	0.173	mg/L	1		10/07/20 19:34
Surrogates							
5a Androstane (surr)	112	50-150		%	1		10/07/20 19:34

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 19:34 Container ID: 1205227002-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B2MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227002 Lab Project ID: 1205227 Collection Date: 09/23/20 11:15 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:57
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:57
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/28/20 02:57
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
1,2,4-Trimethylbenzene	0.797 J	1.00	0.310	ug/L	1		09/28/20 02:57
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:57
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/28/20 02:57
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
1,2-Dichloroethane	0.486 J	0.500	0.150	ug/L	1		09/28/20 02:5
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:5
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:5
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:5
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:5
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:5
Benzene	43.8	0.400	0.120	ug/L	1		09/28/20 02:5
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:5
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/28/20 02:5
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:5
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:5
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:5
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B2MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227002 Lab Project ID: 1205227 Collection Date: 09/23/20 11:15 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	LIIIIII	09/28/20 02:57
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:57
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:57
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
Ethylbenzene	11.9	1.00	0.310	ug/L	1		09/28/20 02:57
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:57
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
Isopropylbenzene (Cumene)	3.68	1.00	0.310	ug/L	1		09/28/20 02:57
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:57
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:57
Naphthalene	88.4	1.00	0.310	ug/L	1		09/28/20 02:57
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
n-Propylbenzene	1.96	1.00	0.310	ug/L	1		09/28/20 02:57
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
P & M -Xylene	6.36	2.00	0.620	ug/L	1		09/28/20 02:57
sec-Butylbenzene	1.24	1.00	0.310	ug/L	1		09/28/20 02:57
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
tert-Butylbenzene	0.356 J	1.00	0.310	ug/L	1		09/28/20 02:57
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:57
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:57
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 02:57
Xylenes (total)	6.36	3.00	1.00	ug/L	1		09/28/20 02:57
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.4	81-118		%	1		09/28/20 02:57
4-Bromofluorobenzene (surr)	94.5	85-114		%	1		09/28/20 02:57
Toluene-d8 (surr)	92.4	89-112		%	1		09/28/20 02:57

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B2MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227002 Lab Project ID: 1205227 Collection Date: 09/23/20 11:15 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 02:57 Container ID: 1205227002-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B3MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227003 Lab Project ID: 1205227 Collection Date: 09/23/20 09:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	1.24	0.588	0.176	mg/L	1		10/07/20 19:43
Surrogates							
5a Androstane (surr)	103	50-150		%	1		10/07/20 19:43

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 19:43 Container ID: 1205227003-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B3MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227003 Lab Project ID: 1205227 Collection Date: 09/23/20 09:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/28/20 00:15
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/28/20 00:15
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
Benzene	0.200 U	0.400	0.120	ug/L	1		09/28/20 00:15
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/28/20 00:15
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B3MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227003 Lab Project ID: 1205227 Collection Date: 09/23/20 09:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Danamatan	Describ Occal	1.00/01	DI	l laita	DE	Allowable	Data Analysis d
<u>Parameter</u> Chloroform	Result Qual 0.500 U	LOQ/CL	<u>DL</u> 0.310	<u>Units</u>	<u>DF</u> 1	<u>Limits</u>	Date Analyzed
		1.00		ug/L			09/28/20 00:15
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:15
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 00:15
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:15
Trichlorofluoromethane	0.435 J	1.00	0.310	ug/L	1		09/28/20 00:15
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:15
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 00:15
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 00:15
urrogates							
1,2-Dichloroethane-D4 (surr)	99.8	81-118		%	1		09/28/20 00:15
4-Bromofluorobenzene (surr)	93.6	85-114		%	1		09/28/20 00:15
Toluene-d8 (surr)	93.4	89-112		%	1		09/28/20 00:15

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B3MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227003 Lab Project ID: 1205227 Collection Date: 09/23/20 09:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 00:15 Container ID: 1205227003-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B7MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227004 Lab Project ID: 1205227

Collection Date: 09/23/20 11:00 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	1.27	0.588	0.176	mg/L	1	<u>Limits</u>	10/07/20 19:53
Surrogates 5a Androstane (surr)	97.4	50-150		%	1		10/07/20 19:53

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102 Analyst: CDM

Analytical Date/Time: 10/07/20 19:53 Container ID: 1205227004-A

Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B7MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227004 Lab Project ID: 1205227 Collection Date: 09/23/20 11:00 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 00:30
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 00:30
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/28/20 00:30
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/28/20 00:30
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/28/20 00:30
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 00:30
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/28/20 00:30
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 00:30
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 00:30
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/28/20 00:30
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 00:30
Benzene	0.200 U	0.400	0.120	ug/L	1	09/28/20 00:30
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 00:30
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/28/20 00:30
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/28/20 00:30
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 00:30
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 00:30

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B7MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227004 Lab Project ID: 1205227 Collection Date: 09/23/20 11:00 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-			Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:30
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:30
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:30
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:30
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:30
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 00:30
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:30
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:30
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 00:30
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 00:30
urrogates							
1,2-Dichloroethane-D4 (surr)				0/	1		00/00/00 00:00
	99.7	81-118		%	1		09/28/20 00:30
4-Bromofluorobenzene (surr)	99.7 95.1	81-118 85-114		%	1		09/28/20 00:30

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B7MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227004 Lab Project ID: 1205227 Collection Date: 09/23/20 11:00 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 00:30 Container ID: 1205227004-C

Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B12MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227005 Lab Project ID: 1205227 Collection Date: 09/22/20 14:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.411 J	0.577	0.173	mg/L	1	Limits	10/07/20 20:03
Surrogates 5a Androstane (surr)	91.7	50-150		%	1		10/07/20 20:03

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 20:03 Container ID: 1205227005-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B12MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227005 Lab Project ID: 1205227 Collection Date: 09/22/20 14:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/28/20 00:45
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/28/20 00:45
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
Benzene	0.200 U	0.400	0.120	ug/L	1		09/28/20 00:45
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/28/20 00:45
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B12MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227005 Lab Project ID: 1205227 Collection Date: 09/22/20 14:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:45
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 00:45
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:45
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:45
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 00:45
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 00:45
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		09/28/20 00:45
4-Bromofluorobenzene (surr)	94.5	85-114		%	1		09/28/20 00:45
Toluene-d8 (surr)	92.4	89-112		%	1		09/28/20 00:45

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B12MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227005 Lab Project ID: 1205227 Collection Date: 09/22/20 14:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 00:45 Container ID: 1205227005-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B13MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227006 Lab Project ID: 1205227 Collection Date: 09/22/20 15:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	0.367 J	0.577	0.173	mg/L	1	Limits	10/07/20 20:14
Surrogates 5a Androstane (surr)	97.8	50-150		%	1		10/07/20 20:14

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 20:14 Container ID: 1205227006-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B13MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227006 Lab Project ID: 1205227 Collection Date: 09/22/20 15:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

D	Describ Oct	1.00/01	DI	1.1	DE	<u>Allowable</u>	Data Assah
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:59
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:59
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/28/20 00:59
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:59
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/28/20 00:59
,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:59
l,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:59
,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:59
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:5
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:5
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:5
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:5
1-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
1-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:59
Benzene	0.200 U	0.400	0.120	ug/L	1		09/28/20 00:59
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:5
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/28/20 00:5
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:5
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:5
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:5
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B13MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227006 Lab Project ID: 1205227 Collection Date: 09/22/20 15:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:59
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 00:59
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:59
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:59
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:59
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 00:59
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 00:59
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 00:59
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 00:59
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 00:59
Surrogates							
1,2-Dichloroethane-D4 (surr)	100	81-118		%	1		09/28/20 00:59
4-Bromofluorobenzene (surr)	95.2	85-114		%	1		09/28/20 00:59
Toluene-d8 (surr)	92.5	89-112		%	1		09/28/20 00:59

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B13MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227006 Lab Project ID: 1205227 Collection Date: 09/22/20 15:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 00:59 Container ID: 1205227006-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B16MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227007 Lab Project ID: 1205227

Collection Date: 09/22/20 15:40 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.688	0.600	0.180	mg/L	1	Limits	10/07/20 20:24
Surrogates 5a Androstane (surr)	97.1	50-150		%	1		10/07/20 20:24

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102 Analyst: CDM

Analytical Date/Time: 10/07/20 20:24 Container ID: 1205227007-A

Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B16MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227007 Lab Project ID: 1205227 Collection Date: 09/22/20 15:40 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:14
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:14
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/28/20 01:14
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:14
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/28/20 01:14
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:14
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:14
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:14
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:14
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:14
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:14
Benzene	0.200 U	0.400	0.120	ug/L	1		09/28/20 01:14
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:14
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/28/20 01:14
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:14
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:14
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:14
				-			

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B16MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227007 Lab Project ID: 1205227 Collection Date: 09/22/20 15:40 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	Allowable Limits Date A	nalyze
<u>Chloroform</u>	0.500 U	1.00	0.310	ug/L	1		20 01:1
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		20 01.1 20 01:1
	0.500 U	1.00	0.310	Ū	1		20 01.1 20 01:1
cis-1,2-Dichloroethene	0.300 U 0.250 U	0.500	0.310	ug/L ug/L	1		20 01.1 20 01:1
cis-1,3-Dichloropropene Dibromochloromethane	0.250 U	0.500	0.150	•	1		20 01.1 20 01:1
				ug/L			
Dibromomethane	0.500 U	1.00 1.00	0.310	ug/L	1		20 01:1
Dichlorodifluoromethane	0.500 U		0.310	ug/L	1		20 01:1
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/	
Freon-113	5.00 U	10.0	3.10	ug/L	1	09/28/	
lexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	09/28/	
sopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	09/28/	
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	09/28/	
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	09/28/	20 01:
laphthalene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
p-Xylene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	09/28/	20 01:
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
Styrene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
ert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
oluene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
rans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
rans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
Frichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
Frichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	09/28/	20 01:
/inyl acetate	5.00 U	10.0	3.10	ug/L	1	09/28/	20 01:
/inyl chloride	0.0750 U	0.150	0.0500	ug/L	1	09/28/	20 01:
(ylenes (total)	1.50 U	3.00	1.00	ug/L	1	09/28/	20 01:
ırrogates							
I,2-Dichloroethane-D4 (surr)	101	81-118		%	1	09/28/	20 01:
I-Bromofluorobenzene (surr)	93.7	85-114		%	1	09/28/	20 01:
Foluene-d8 (surr)	90.7	89-112		%	1	09/28/	

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B16MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227007 Lab Project ID: 1205227 Collection Date: 09/22/20 15:40 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 01:14 Container ID: 1205227007-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B17MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227008 Lab Project ID: 1205227 Collection Date: 09/22/20 18:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	10.6	0.600	0.180	mg/L	1		10/07/20 20:53
Surrogates							
5a Androstane (surr)	118	50-150		%	1		10/07/20 20:53

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102 Analyst: CDM

Analytical Date/Time: 10/07/20 20:53 Container ID: 1205227008-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B17MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227008 Lab Project ID: 1205227 Collection Date: 09/22/20 18:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:29
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:29
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/28/20 01:29
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:29
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/28/20 01:29
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:29
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:29
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:29
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:29
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:29
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:29
Benzene	0.200 U	0.400	0.120	ug/L	1	09/28/20 01:29
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:29
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/28/20 01:29
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:29
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:29
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:29

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B17MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227008 Lab Project ID: 1205227 Collection Date: 09/22/20 18:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:29
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:29
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:29
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:29
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:29
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 01:29
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:29
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:29
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 01:29
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 01:29
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.8	81-118		%	1		09/28/20 01:29
4-Bromofluorobenzene (surr)	95	85-114		%	1		09/28/20 01:29
Toluene-d8 (surr)	92.4	89-112		%	1		09/28/20 01:29

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B17MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227008 Lab Project ID: 1205227 Collection Date: 09/22/20 18:05 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 01:29 Container ID: 1205227008-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B18MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227009 Lab Project ID: 1205227 Collection Date: 09/23/20 13:55 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Diesel Range Organics	5.27	0.600	0.180	mg/L	1		10/07/20 21:03
Surrogates							
5a Androstane (surr)	101	50-150		%	1		10/07/20 21:03

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 21:03 Container ID: 1205227009-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B18MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227009 Lab Project ID: 1205227 Collection Date: 09/23/20 13:55 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:43
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:43
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/28/20 01:43
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:43
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/28/20 01:43
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:43
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:43
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:43
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:43
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:43
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:43
Benzene	0.170 J	0.400	0.120	ug/L	1	09/28/20 01:43
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:43
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/28/20 01:43
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:43
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:43
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:43

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B18MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227009 Lab Project ID: 1205227 Collection Date: 09/23/20 13:55 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	Lillito	09/28/20 01:43
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:43
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:43
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:43
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:43
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:43
Naphthalene	7.06	1.00	0.310	ug/L	1		09/28/20 01:43
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 01:43
sec-Butylbenzene	0.496 J	1.00	0.310	ug/L	1		09/28/20 01:43
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:43
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:43
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 01:43
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 01:43
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.4	81-118		%	1		09/28/20 01:43
4-Bromofluorobenzene (surr)	94.6	85-114		%	1		09/28/20 01:43
Toluene-d8 (surr)	91.4	89-112		%	1		09/28/20 01:43

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B18MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227009 Lab Project ID: 1205227 Collection Date: 09/23/20 13:55 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 01:43 Container ID: 1205227009-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B19MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227010 Lab Project ID: 1205227 Collection Date: 09/22/20 16:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.535 J	0.588	0.176	mg/L	1	<u>Limits</u>	10/07/20 21:13
Surrogates 5a Androstane (surr)	103	50-150		%	1		10/07/20 21:13

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 21:13 Container ID: 1205227010-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B19MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227010 Lab Project ID: 1205227 Collection Date: 09/22/20 16:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:58
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:58
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/28/20 01:58
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:58
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/28/20 01:58
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:58
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:58
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:58
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:58
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:58
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:58
Benzene	0.200 U	0.400	0.120	ug/L	1	09/28/20 01:58
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:58
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/28/20 01:58
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/28/20 01:58
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 01:58
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 01:58

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B19MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227010 Lab Project ID: 1205227 Collection Date: 09/22/20 16:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-			Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:58
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 01:58
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:58
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:58
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:58
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 01:58
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 01:58
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 01:58
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 01:58
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 01:58
urrogates							
1,2-Dichloroethane-D4 (surr)				%	1		00/20/20 04.50
	100	81-118		70	ı		09/28/20 01:58
4-Bromofluorobenzene (surr)	100 94.3	81-118 85-114		%	1		09/28/20 01:58

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B19MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227010 Lab Project ID: 1205227 Collection Date: 09/22/20 16:50 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 01:58 Container ID: 1205227010-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B20MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227011 Lab Project ID: 1205227 Collection Date: 09/22/20 16:45 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 0.667	LOQ/CL 0.577	<u>DL</u> 0.173	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/07/20 21:23
Surrogates							
5a Androstane (surr)	102	50-150		%	1		10/07/20 21:23

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 21:23 Container ID: 1205227011-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B20MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227011 Lab Project ID: 1205227 Collection Date: 09/22/20 16:45 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/28/20 02:13
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/28/20 02:13
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
Benzene	0.200 U	0.400	0.120	ug/L	1		09/28/20 02:13
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/28/20 02:13
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B20MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227011 Lab Project ID: 1205227 Collection Date: 09/22/20 16:45 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:13
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 02:13
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:13
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:13
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 02:13
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 02:13
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/28/20 02:13
4-Bromofluorobenzene (surr)	92.8	85-114		%	1		09/28/20 02:13
Toluene-d8 (surr)	93.3	89-112		%	1		09/28/20 02:13

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B20MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227011 Lab Project ID: 1205227 Collection Date: 09/22/20 16:45 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 02:13 Container ID: 1205227011-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B21MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227012 Lab Project ID: 1205227 Collection Date: 09/22/20 18:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	0.641	0.577	0.173	mg/L	1		10/07/20 21:33
Surrogates							
5a Androstane (surr)	98.3	50-150		%	1		10/07/20 21:33

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 21:33 Container ID: 1205227012-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B21MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227012 Lab Project ID: 1205227 Collection Date: 09/22/20 18:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:27
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:27
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/28/20 02:27
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:27
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/28/20 02:27
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:27
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:27
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:27
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:27
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:27
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:27
Benzene	0.200 U	0.400	0.120	ug/L	1	09/28/20 02:27
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:27
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/28/20 02:27
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:27
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:27
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:27

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B21MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227012 Lab Project ID: 1205227 Collection Date: 09/22/20 18:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	LIIIIII	09/28/20 02:27
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:27
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:27
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:27
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:27
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:27
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 02:27
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:27
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:27
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 02:27
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 02:27
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/28/20 02:27
4-Bromofluorobenzene (surr)	93.7	85-114		%	1		09/28/20 02:27
Toluene-d8 (surr)	93.3	89-112		%	1		09/28/20 02:27

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B21MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227012 Lab Project ID: 1205227 Collection Date: 09/22/20 18:30 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 02:27 Container ID: 1205227012-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 1046785-B28MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227013 Lab Project ID: 1205227 Collection Date: 09/23/20 14:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	5.57	0.600	0.180	mg/L	1	Limits	10/07/20 21:43
Surrogates 5a Androstane (surr)	107	50-150		%	1		10/07/20 21:43

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 10/07/20 21:43 Container ID: 1205227013-A Prep Batch: XXX43997 Prep Method: SW3520C Prep Date/Time: 10/05/20 14:56 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 1046785-B28MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227013 Lab Project ID: 1205227 Collection Date: 09/23/20 14:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:42
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:42
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/28/20 02:42
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:42
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/28/20 02:42
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:42
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:42
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:42
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:42
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:42
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:42
Benzene	0.157 J	0.400	0.120	ug/L	1	09/28/20 02:42
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:42
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/28/20 02:42
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/28/20 02:42
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/28/20 02:42
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/28/20 02:42

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B28MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227013 Lab Project ID: 1205227 Collection Date: 09/23/20 14:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	LIIIIII	09/28/20 02:42
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:42
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/28/20 02:42
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:42
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:42
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:42
Naphthalene	6.65	1.00	0.310	ug/L	1		09/28/20 02:42
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/28/20 02:42
sec-Butylbenzene	0.489 J	1.00	0.310	ug/L	1		09/28/20 02:42
Styrene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Tetrachloroethene	0.315 J	1.00	0.310	ug/L	1		09/28/20 02:42
Toluene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/28/20 02:42
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/28/20 02:42
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/28/20 02:42
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/28/20 02:42
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/28/20 02:42
4-Bromofluorobenzene (surr)	94.3	85-114		%	1		09/28/20 02:42
Toluene-d8 (surr)	94.2	89-112		%	1		09/28/20 02:42

Print Date: 10/15/2020 4:31:02PM

Client Sample ID: 1046785-B28MW

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227013 Lab Project ID: 1205227 Collection Date: 09/23/20 14:25 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/28/20 02:42 Container ID: 1205227013-C Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of 1046785-WTB

Client Sample ID: 1046785-WTB

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227014 Lab Project ID: 1205227 Collection Date: 09/22/20 14:00 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/27/20 21:04
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/27/20 21:04
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/27/20 21:04
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/27/20 21:04
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/27/20 21:04
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/27/20 21:04
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/27/20 21:04
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/27/20 21:04
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/27/20 21:04
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/27/20 21:04
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/27/20 21:04
Benzene	0.200 U	0.400	0.120	ug/L	1	09/27/20 21:04
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/27/20 21:04
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/27/20 21:04
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/27/20 21:04
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/27/20 21:04
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/27/20 21:04

Print Date: 10/15/2020 4:31:02PM

Results of 1046785-WTB

Client Sample ID: 1046785-WTB

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227014 Lab Project ID: 1205227 Collection Date: 09/22/20 14:00 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable <u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	LIIIIII	09/27/20 21:04
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/27/20 21:04
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/27/20 21:04
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/27/20 21:04
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/27/20 21:04
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/27/20 21:04
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/27/20 21:04
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Styrene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Toluene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/27/20 21:04
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/27/20 21:04
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/27/20 21:04
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/27/20 21:04
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/27/20 21:04
4-Bromofluorobenzene (surr)	95.2	85-114		%	1		09/27/20 21:04
Toluene-d8 (surr)	92.4	89-112		%	1		09/27/20 21:04

Print Date: 10/15/2020 4:31:02PM

Results of 1046785-WTB

Client Sample ID: 1046785-WTB

Client Project ID: 104675 King Salmon-MarkAir

Lab Sample ID: 1205227014 Lab Project ID: 1205227 Collection Date: 09/22/20 14:00 Received Date: 09/25/20 10:12 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/27/20 21:04 Container ID: 1205227014-A Prep Batch: VXX36425 Prep Method: SW5030B Prep Date/Time: 09/27/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1812236 [VXX/36425]

Blank Lab ID: 1583948

QC for Samples:

1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007, 1205227008, 1205227009,

Matrix: Water (Surface, Eff., Ground)

1205227010, 1205227011, 1205227012, 1205227013, 1205227014

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 10/15/2020 4:31:06PM

Method Blank

Blank ID: MB for HBN 1812236 [VXX/36425]

Blank Lab ID: 1583948

QC for Samples:

1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007, 1205227008, 1205227009,

Matrix: Water (Surface, Eff., Ground)

1205227010, 1205227011, 1205227012, 1205227013, 1205227014

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	81-118		%
4-Bromofluorobenzene (surr)	97.4	85-114		%
Toluene-d8 (surr)	93.1	89-112		%

Print Date: 10/15/2020 4:31:06PM

Method Blank

Blank ID: MB for HBN 1812236 [VXX/36425]

Blank Lab ID: 1583948

QC for Samples:

1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007, 1205227008, 1205227009,

1205227010, 1205227011, 1205227012, 1205227013, 1205227014

Results by SW8260D

<u>Parameter</u> LOQ/CL Results DL <u>Units</u>

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 9/27/2020 6:07:00PM

Prep Batch: VXX36425 Prep Method: SW5030B

Prep Date/Time: 9/27/2020 6:00:00PM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/15/2020 4:31:06PM

Blank Spike ID: LCS for HBN 1205227 [VXX36425]

Blank Spike Lab ID: 1583949 Date Analyzed: 09/27/2020 18:36 Spike Duplicate ID: LCSD for HBN 1205227

[VXX36425]

Spike Duplicate Lab ID: 1583950 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007,

 $1205227008,\, 1205227009,\, 1205227010,\, 1205227011,\, 1205227012,\, 1205227013,\, 1205227014$

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	28.9	96	30	29.6	99	(78-124)	2.40	(< 20)
1,1,1-Trichloroethane	30	29.4	98	30	30.4	101	(74-131)	3.50	(< 20)
1,1,2,2-Tetrachloroethane	30	28.2	94	30	28.6	96	(71-121)	1.40	(< 20)
1,1,2-Trichloroethane	30	27.5	92	30	27.5	92	(80-119)	0.13	(< 20)
1,1-Dichloroethane	30	28.3	94	30	29.4	98	(77-125)	3.90	(< 20)
1,1-Dichloroethene	30	28.5	95	30	30.2	101	(71-131)	5.60	(< 20)
1,1-Dichloropropene	30	28.9	96	30	30.0	100	(79-125)	3.60	(< 20)
1,2,3-Trichlorobenzene	30	31.9	106	30	32.3	108	(69-129)	1.20	(< 20)
1,2,3-Trichloropropane	30	29.5	99	30	30.0	100	(73-122)	1.70	(< 20)
1,2,4-Trichlorobenzene	30	30.5	102	30	30.8	103	(69-130)	0.74	(< 20)
1,2,4-Trimethylbenzene	30	28.9	97	30	30.8	103	(79-124)	6.20	(< 20)
1,2-Dibromo-3-chloropropane	30	29.1	97	30	29.2	98	(62-128)	0.35	(< 20)
1,2-Dibromoethane	30	28.4	95	30	28.3	94	(77-121)	0.33	(< 20)
1,2-Dichlorobenzene	30	29.2	97	30	30.0	100	(80-119)	2.80	(< 20)
1,2-Dichloroethane	30	28.5	95	30	28.6	95	(73-128)	0.60	(< 20)
1,2-Dichloropropane	30	28.9	97	30	29.7	99	(78-122)	2.50	(< 20)
1,3,5-Trimethylbenzene	30	28.5	95	30	30.4	101	(75-124)	6.60	(< 20)
1,3-Dichlorobenzene	30	28.9	97	30	30.5	102	(80-119)	5.30	(< 20)
1,3-Dichloropropane	30	27.6	92	30	27.8	93	(80-119)	0.40	(< 20)
1,4-Dichlorobenzene	30	28.9	96	30	30.1	100	(79-118)	4.10	(< 20)
2,2-Dichloropropane	30	30.1	100	30	31.5	105	(60-139)	4.70	(< 20)
2-Butanone (MEK)	90	89.0	99	90	84.5	94	(56-143)	5.10	(< 20)
2-Chlorotoluene	30	29.2	98	30	30.9	103	(79-122)	5.40	(< 20)
2-Hexanone	90	77.7	86	90	75.5	84	(57-139)	2.90	(< 20)
4-Chlorotoluene	30	29.2	98	30	30.6	102	(78-122)	4.60	(< 20)
4-Isopropyltoluene	30	30.0	100	30	31.2	104	(77-127)	4.20	(< 20)
4-Methyl-2-pentanone (MIBK)	90	87.3	97	90	85.1	95	(67-130)	2.60	(< 20)
Benzene	30	28.4	95	30	29.3	98	(79-120)	3.20	(< 20)
Bromobenzene	30	29.3	98	30	30.8	103	(80-120)	4.90	(< 20)
Bromochloromethane	30	29.4	98	30	30.0	100	(78-123)	1.90	(< 20)
Bromodichloromethane	30	29.5	98	30	30.1	100	(79-125)	1.80	(< 20)
Bromoform	30	29.0	97	30	29.0	97	(66-130)	0.15	(< 20)
Bromomethane	30	28.1	94	30	28.8	96	(53-141)	2.30	(< 20)
Carbon disulfide	45	37.4	83	45	40.5	90	(64-133)	8.10	(< 20)

Print Date: 10/15/2020 4:31:09PM

Blank Spike ID: LCS for HBN 1205227 [VXX36425]

Blank Spike Lab ID: 1583949 Date Analyzed: 09/27/2020 18:36 Spike Duplicate ID: LCSD for HBN 1205227

[VXX36425]

Spike Duplicate Lab ID: 1583950 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007,

 $1205227008,\, 1205227009,\, 1205227010,\, 1205227011,\, 1205227012,\, 1205227013,\, 1205227014$

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	29.7	99	30	30.9	103	(72-136)	3.80	(< 20)
Chlorobenzene	30	26.5	88	30	27.5	92	(82-118)	3.50	(< 20)
Chloroethane	30	24.3	81	30	24.5	82	(60-138)	0.76	(< 20)
Chloroform	30	27.5	92	30	28.3	94	(79-124)	3.10	(< 20)
Chloromethane	30	26.2	87	30	27.1	90	(50-139)	3.40	(< 20)
cis-1,2-Dichloroethene	30	29.1	97	30	30.2	101	(78-123)	3.70	(< 20)
cis-1,3-Dichloropropene	30	29.1	97	30	29.8	99	(75-124)	2.40	(< 20)
Dibromochloromethane	30	28.7	96	30	28.7	96	(74-126)	0.02	(< 20)
Dibromomethane	30	29.5	98	30	29.5	98	(79-123)	0.12	(< 20)
Dichlorodifluoromethane	30	29.4	98	30	30.0	100	(32-152)	2.10	(< 20)
Ethylbenzene	30	29.3	98	30	30.3	101	(79-121)	3.60	(< 20)
Freon-113	45	40.4	90	45	42.2	94	(70-136)	4.40	(< 20)
Hexachlorobutadiene	30	34.1	114	30	36.0	120	(66-134)	5.50	(< 20)
Isopropylbenzene (Cumene)	30	29.0	97	30	30.3	101	(72-131)	4.20	(< 20)
Methylene chloride	30	28.4	95	30	29.4	98	(74-124)	3.20	(< 20)
Methyl-t-butyl ether	45	44.2	98	45	44.3	99	(71-124)	0.32	(< 20)
Naphthalene	30	28.1	94	30	28.7	96	(61-128)	2.40	(< 20)
n-Butylbenzene	30	32.7	109	30	33.1	110	(75-128)	1.30	(< 20)
n-Propylbenzene	30	30.2	101	30	32.0	107	(76-126)	5.80	(< 20)
o-Xylene	30	30.2	101	30	31.2	104	(78-122)	3.20	(< 20)
P & M -Xylene	60	60.6	101	60	62.7	105	(80-121)	3.50	(< 20)
sec-Butylbenzene	30	31.2	104	30	32.6	109	(77-126)	4.20	(< 20)
Styrene	30	27.8	93	30	29.4	98	(78-123)	5.30	(< 20)
tert-Butylbenzene	30	30.6	102	30	31.9	106	(78-124)	4.00	(< 20)
Tetrachloroethene	30	28.4	95	30	29.2	97	(74-129)	3.00	(< 20)
Toluene	30	26.8	89	30	27.5	92	(80-121)	2.80	(< 20)
trans-1,2-Dichloroethene	30	29.0	97	30	30.4	101	(75-124)	4.90	(< 20)
trans-1,3-Dichloropropene	30	29.3	98	30	29.5	98	(73-127)	0.78	(< 20)
Trichloroethene	30	29.5	99	30	30.7	102	(79-123)	4.00	(< 20)
Trichlorofluoromethane	30	29.9	100	30	30.7	102	(65-141)	2.50	(< 20)
Vinyl acetate	30	33.2	111	30	33.5	112	(54-146)	0.79	(< 20)
Vinyl chloride	30	25.4	85	30	26.6	89	(58-137)	4.70	(< 20)
Xylenes (total)	90	90.8	101	90	93.9	104	(79-121)	3.40	(< 20)

Print Date: 10/15/2020 4:31:09PM

Blank Spike ID: LCS for HBN 1205227 [VXX36425]

Blank Spike Lab ID: 1583949 Date Analyzed: 09/27/2020 18:36 Spike Duplicate ID: LCSD for HBN 1205227

[VXX36425]

Spike Duplicate Lab ID: 1583950 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007,

 $1205227008,\, 1205227009,\, 1205227010,\, 1205227011,\, 1205227012,\, 1205227013,\, 1205227014$

Results by SW8260D

		Blank Spik	(e (%)		Spike Dup	licate (%)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	97.1	97	30	97.1	97	(81-118)	0.02	
4-Bromofluorobenzene (surr)	30	94.8	95	30	96	96	(85-114)	1.30	
Toluene-d8 (surr)	30	92.9	93	30	92.5	93	(89-112)	0.47	

Batch Information

Analytical Batch: VMS20358 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX36425
Prep Method: SW5030B

Prep Date/Time: 09/27/2020 18:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 10/15/2020 4:31:09PM

Method Blank

Blank ID: MB for HBN 1812583 [XXX/43997]

Blank Lab ID: 1585635

QC for Samples:

1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007, 1205227008, 1205227009,

Matrix: Water (Surface, Eff., Ground)

1205227010, 1205227011, 1205227012, 1205227013

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.267J
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 102 60-120 %

Batch Information

Analytical Batch: XFC15764 Prep Batch: XXX43997
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 10/5/2020 2:56:49PM

Analyst: CDM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 10/7/2020 6:54:00PM Prep Extract Vol: 1 mL

Print Date: 10/15/2020 4:31:11PM

Blank Spike ID: LCS for HBN 1205227 [XXX43997]

Blank Spike Lab ID: 1585636 Date Analyzed: 10/07/2020 19:04 Spike Duplicate ID: LCSD for HBN 1205227

[XXX43997]

Spike Duplicate Lab ID: 1585637

Matrix: Water (Surface, Eff., Ground)

1205227001, 1205227002, 1205227003, 1205227004, 1205227005, 1205227006, 1205227007, QC for Samples:

 $1205227008,\, 1205227009,\, 1205227010,\, 1205227011,\, 1205227012,\, 1205227013$

Results by AK102

		Blank Spike	(mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	22.0	110	20	21.8	109	(75-125)	0.69	(< 20)
Surrogates									
5a Androstane (surr)	0.4	115	115	0.4	117	117	(60-120)	1.60	

Batch Information

Analytical Batch: XFC15764 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: CDM

Prep Batch: XXX43997 Prep Method: SW3520C

Prep Date/Time: 10/05/2020 14:56

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/15/2020 4:31:14PM

OF 285300 AP

70 of 73

					CHAIN	OF CISTON		14001
*					11			
Shanno 5430 Fairb Anchora (90 Fax (Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 (907) 561-2120 Fax (206) 695-6777	Inc. Suite 3 9518	AOCs- EPA Method 8260D	DKO- AK102				
Date Time	Sample ID	Total Containers	VOA Vials HCI Pres.	Amber Glass HCI Pres.				
00	104675-BIMW	2	×	×				(A)
9/23/2020 11:15	104675-B2MW	5	×	×				2AE
9/23/2020 9:50	104675-B3MW	5	×	×				345
9/23/2020 11:00	104675-B7MW	s	×	×				THE
9/22/2020 14:30	104675-B12MW	2	×	×				SIE
1	104675-B13MW	S	×	×				CAE
4	104675-B16MW	5	×	×				TARE.
9/22/2020 18:05	104675-B17MW	v	×	×				00 PE
9/23/2020 13:55	104675-B18MW	v	×	×				19 PE
_	104675-B19MW	8	×	×				P
9/22/2020 16:45	104675-B20MW	s	×	×				
9/22/2020 18:30	10467S-B21MW	S	×	×				Trafe
9/23/2020 14:25	104675-B28MW	က	×	×				(13AE
9/22/2020 14:00	104675-WTB	1 Box	×		**			TUAC
Relinquished By:)_
Signature:	JR.	Date: 9/2	5/20					
Print Name:	+3	Time: /b;	B					
Company: Shannon & Wilson, Inc.	Wilson, Inc.							
Received By:								
Signature:		Date:						
Print Name:	}	Time:						
Company:								
Relinquished By:			\	Project Information	mation			
Signature:		Date		Project Number: 104675	er: 104675		Contact: Dan McMahon	
Print Name:		Time:		Project Name	Project Name: King Salmon- MarkAir		Sampler: AJR/ZJT	
Company: Shannon &	on & Wilson, Inc.			Special Instructions:	ctions:			
Received By:		0/00	2/2	Sample Receipt				
Signature: Mruele	the June	Date: 07/20/20	07/2	Temp Blank			Sample Matrix: Water	
	c Albonon	Time: 10/2	1	Cooler Tem	Cooler Temperature Upon Arrival:			
Company: Ser S		H	HD WOSEN	Standard TAT	AT			

e-Sample Receipt Form

SGS Workorder #:

1205227

	_			1 2		2 (
Review Criteria	Condition (Yes,			ceptions Not		
Chain of Custody / Temperature Requi	<u>irements</u>	1	es Exemption p	ermitted if samp	ler hand carries/o	delivers.
Were Custody Seals intact? Note # &	location N/A	Absent	•			
COC accompanied s	amples? Yes					
· ·						
DOD: Were samples received in COC corresponding						
N/A **Exemption permitted if		cted <8 ho	urs ago, or for sa	mples where chi		
Temperature blank compliant* (i.e., 0-6 °C after	er CF)? Yes	Cooler ID	1	@	0.3 °C Therm.	ID: D21
		Cooler ID	:	@	°C Therm.	ID:
If samples received without a temperature blank, the "cooler temperature" wil	Il be	Cooler ID		@	°C Therm.	ID:
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "cl	hilled" will	Cooler ID			°C Therm.	
be noted if neither is available.				@		
		Cooler ID		@	°C Therm.	ID:
*If >6°C, were samples collected <8 hours	s ago? N/A					
		l				
If <0°C, were sample containers ice	e free? N/A					
, '						
Note: Identify containers received at your county to the	ratura					
Note: Identify containers received at non-compliant tempe Use form FS-0029 if more space is r						
Ose form F3-0029 if more space is t	leeded.					
Holding Time / Documentation / Sample Condition R	eguirements	Note: Refer	to form F-083 "Sam	ple Guide" for spec	cific holding times.	
Were samples received within holdin						
	9					
Do samples match COC** (i.e.,sample IDs,dates/times coll	ected)? Yes					
**Note: If times differ <1hr, record details & login per C	COC.					
***Note: If sample information on containers differs from COC, SGS will default to	COC information					
Were analytical requests clear? (i.e., method is specified for a	nalyses Yes					
with multiple option for analysis (Ex: BTEX,						
		1	I/A ***Exemption	n permitted for m	etals (e.g,200.8/	6020B).
Were proper containers (type/mass/volume/preservative***	*)used? Yes					
		1				
Volatile / LL-Hg Red	quirements					
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa						
, , , , , , , , , , , , , , , , , , , ,						
Were all water VOA vials free of headspace (i.e., bubbles ≤	1					
Were all soil VOAs field extracted with MeOF	I+BFB? N/A					
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd procedures ar	nd may impact da	ata quality.	
			,			
Additiona	al notes (if a	pplicable):			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1205227001-A	HCL to pH < 2	OK	1205227011-A	HCL to pH < 2	OK
1205227001-B	HCL to pH < 2	OK	1205227011-B	HCL to pH < 2	OK
1205227001-C	HCL to pH < 2	OK	1205227011-C	HCL to pH < 2	OK
1205227001-D	HCL to pH < 2	OK	1205227011-D	HCL to pH < 2	OK
1205227001-E	HCL to pH < 2	OK	1205227011-E	HCL to pH < 2	OK
1205227002-A	HCL to pH < 2	OK	1205227012-A	HCL to pH < 2	OK
1205227002-В	HCL to pH < 2	OK	1205227012-B	HCL to pH < 2	OK
1205227002-C	HCL to pH < 2	OK	1205227012-C	HCL to pH < 2	OK
1205227002-D	HCL to pH < 2	OK	1205227012-D	HCL to pH < 2	OK
1205227002-E	HCL to pH < 2	OK	1205227012-E	HCL to pH < 2	OK
1205227003-A	HCL to pH < 2	OK	1205227013-A	HCL to pH < 2	OK
1205227003-B	HCL to pH < 2	OK	1205227013-B	HCL to pH < 2	OK
1205227003-C	HCL to pH < 2	OK	1205227013-C	HCL to pH < 2	OK
1205227003-D	HCL to pH < 2	OK	1205227013-D	HCL to pH < 2	OK
1205227003-E	HCL to pH < 2	OK	1205227013-E	HCL to pH < 2	OK
1205227004-A	HCL to pH < 2	OK	1205227014-A	HCL to pH < 2	OK
1205227004-B	HCL to pH < 2	OK	1205227014-B	HCL to pH < 2	OK
1205227004-C	HCL to pH < 2	OK	1205227014-C	HCL to pH < 2	OK
1205227004-D	HCL to pH < 2	OK		·	
1205227004-E	HCL to pH < 2	OK			
1205227005-A	HCL to pH < 2	OK			
1205227005-B	HCL to pH < 2	OK			
1205227005-C	HCL to pH < 2	OK			
1205227005-D	HCL to pH < 2	OK			
1205227005-E	HCL to pH < 2	OK			
1205227006-A	HCL to pH < 2	OK			
1205227006-B	HCL to pH < 2	OK			
1205227006-C	HCL to pH < 2	OK			
1205227006-D	HCL to pH < 2	OK			
1205227006-E	HCL to pH < 2	OK			
1205227007-A	HCL to pH < 2	OK			
1205227007-B	HCL to pH < 2	OK			
1205227007-C	HCL to pH < 2	OK			
1205227007-D	HCL to pH < 2	OK			
1205227007-E	HCL to pH < 2	OK			
1205227008-A	HCL to pH < 2	OK			
1205227008-B	HCL to pH < 2	OK			
1205227008-C	HCL to pH < 2	OK			
1205227008-D	HCL to pH < 2	OK			
1205227008-E	HCL to pH < 2	OK			
1205227009-A	HCL to pH < 2	OK			
1205227009-B	HCL to pH < 2	OK			
1205227009-C	HCL to pH < 2	OK			
1205227009-D	HCL to pH < 2	OK			
1205227009-E	HCL to pH < 2	OK			
1205227010-A	HCL to pH < 2	OK			
1205227010 A	HCL to pH < 2	OK			
1205227010 B	HCL to pH < 2	OK			
1205227010 C	HCL to pH < 2	OK			
1205227010 B	HCL to pH < 2	OK			
	·				72 of 73

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Container Id
 Preservative
 Container

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

LABORATORY DATA REVIEW CHECKLIST

Completed by: Alec Rizzo Title: Former Markair Facility

Date: March 2021

Consultant Firm: Shannon & Wilson, Inc.

Laboratory Name: SGS North America Inc. **Laboratory Report Number:** 1205227 **Laboratory Report Date:** 10/15/2020

Contaminated Site Name: MarkAir King Salmon

ADEC File Number: 2569.38.009 **Hazard Identification Number:** 1879

(**NOTE**: *NA* = not applicable; Text in *italics* added by Shannon & Wilson, Inc.)

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes/ No / NA
 Comments:

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? **Yes / No (NA)**

Comments: The samples were not transferred to another "network" laboratory or subcontracted to an alternate laboratory.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?
 Yes/ No / NA
 Comments:

b. Correct analyses requested? Yes / No / NA Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)? Yes/ No / NA

Comments: *The cooler temperature blank was 0.3° Celsius.*

b. Sample preservation acceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, VOCs, etc.)? Yes/ No / NA Comments:

c. Sample condition documented - broken, leaking (MeOH), zero headspace (VOC vials)?
Yes/ No / NA

Comments:

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? **Yes / No /NA**

Comments: No discrepancies were noted.

e. Data quality or usability affected?

Comments: Data quality/usability are considered unaffected; see above.

4. Case Narrative

- a. Present and understandable? Yes/ No / NA Comments:
- **b.** Discrepancies, errors or QC failures noted by the lab? Yes No/ NA Comments:
- c. Were all corrective actions documented? Yes / No / NA Comments:
- **d.** What is the effect on data quality/usability, according to the case narrative? Comments: *Data quality/usability are unaffected*.

5. Sample Results

- a. Correct analyses performed/reported as requested on COC? Ves/No/NA Comments:
- **b.** All applicable holding times met? Yes / No / NA Comments:
- c. All soils reported on a dry weight basis? Yes / No /NA Comments:
- d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project? Yes No NA Comments: The LOQ for 1,2,3-trichloropropane is greater than the ADEC cleanup level.

e. Data quality or usability affected?

Comments: There is a potential that this target analyte is present at a concentration in the associated samples greater than the ADEC cleanup level, but less than the LOQ; however, this analyte was not detected at estimated concentrations in the project samples.

6. QC Samples

a. Method Blank

i. One method blank reported per matrix, analysis, and 20 samples?
 Yes/ No / NA
 Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes (No)/ NA

Comments: The method blank for Samples B1MW, B2MW, B3MW, B7MW, B12MW, B13MW, B16MW, B17MW, B18MW, B19MW, B20MW, B21MW, B28MW contained an estimated concentration of DRO (0.267 J mg/kg) less than the LOQ.

- **iii.** If above LOQ or project specified objectives, what samples are affected? Comments: *See above*
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

 Yes / No / NA

Comments: Although less than the LOQ, samples are flagged "B" in Table 2 when the reported sample concentration is within 10x the reported method blank concentration. Estimated concentrations of DRO were detected in Samples B12MW, B13MW, and B19MW at levels less than the LOQ; therefore, the sample concentrations are reported as non-detect at the LOQ. The concentrations of DRO detected in Samples B16MW, B20MW, and B21MW are greater than the LOQ but less than 5 times the blank concentration, therefore the results are flagged "B", and reported as non-detect at the detected concentration. The concentrations of DRO detected in Samples B3MW and B7MW are within 5x the method blank detection. These results are consistent with historical sample results. Therefore, based on professional judgment the results are flagged "B" and reported at the detected concentration. The remaining DRO concentrations are greater than 10 times the blank concentration, therefore the results are reported at the detected concentration.

v. Data quality or usability affected? Comments: *See above*.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis, and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes/No/NA Comments:
- ii. Metals/Inorganics One LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes / No NA Comments: Only organic analyses were requested with this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) (Yes) / No / NA

Comments:

- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from LCS/LCSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) (ves) No / NA Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes / No NA Comments:
- vii. Data quality or usability affected?

Comments: See above

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 Note: Leave blank if not required for project
 - i. Organics One MS/MSD reported per matrix, analysis, and 20 samples?
 Yes/ No / NA
 Comments:
 - ii. Metals/Inorganics One MS and one MSD reported per matrix, analysis and 20 samples? Yes / No NA

Comments: *Only organic analyses were requested with this work order.*

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK petroleum methods: AK 101 60%-120%, AK 102 75%-125%, AK 103 60%-120%; all other analyses see the laboratory QC pages) Yes / No / NA Comments:
- iv. Precision All relative percent differences (RPDs) reported and less than method or laboratory limits and project specified objectives, if applicable. RPD reported from MS/MSD, and/or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes / No / NA Comments:
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected samples(s) have data flags? If so, are the data flags clearly defined? Yes / No NA Comments:
- **vii.** Data quality or usability affected? Comments: *See above*.
- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples? Yes/No/NA
 Comments:
 - ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) Yes / No / NA Comments:
 - iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes / No NA Comments:
 - **iv.** Data quality or usability affected? Comments: *See above*.

- e. Trip Blank Volatile analyses only (GRO, BTEX, VOCs, etc.)
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? Yes/No/NA

Comments: One water trip blank (WTB) was submitted to the laboratory with the project samples.

ii. Is the cooler used to transport the trip blank and volatile samples clearly indicated on the COC? Yes (No) NA

Comments: *Only one cooler was used to transport the samples.*

- iii. All results less than LOQ and project specified objectives? Yes / No / NA Comments:
- iv. If above LOQ or project specified DQOs, what samples are affected? Comments:
- v. Data quality or usability affected? Comments: *See above*.

f. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes / No / NA

Comments: Duplicate sample B28MW (duplicate of B18MW) was submitted to the laboratory.

- ii. Were the field duplicates submitted blind to the lab? Yes / No / NA Comments:
- iii. Precision All relative percent differences (RPDs) less than specified project objectives? (Recommended: 30% for water, 50% for soil) Yes / No / NA Comments: The RPDs were within the specified DQOs.
- iv. Data quality or usability affected?

Comments: See above.

g. Decontamination or Equipment Blank (if not applicable, a comment stating why must be entered below).

Yes /No NA

Comments: A decontamination or equipment blank was not included in our ADEC-approved work plan.

i. All results less than LOQ and project specified objectives?

Yes / No NA

Comments:

- **ii.** If above LOQ or project specified objectives, what samples are affected? Comments:
- **iii.** Data quality or usability affected? Comments:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate? Yes / No / NA
Comments: A key is provided on Page 3 of the SGS Laboratory Report.

SHANNON & WILSON, INC.

ATTACHMENT 4

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Former MarkAir Facility, King Salmon, Alaska

Project No. 104675-001

Attachment to and part of Report 104675-001

 Date:
 March 2021

 To:
 ADEC

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2016

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2016