SHIP ESCORT / RESPONSE VESSEL SYSTEM (SERVS)

SERVS Response Base Investigation Report

Prepared for:

Alyeska Pipeline Service Company

SLR Ref: 105.01288.22015

ADEC File Number: 1200.38.052

November 2022

SERVS Response Base Investigation Report

Prepared for:
Alyeska Pipeline Service Company
P.O. Box 196660
3700 Centerpoint Drive
Anchorage, Alaska 99519-6660

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the undersigned.

Brett Woelber, P.G. Associate Scientist

Carl Benson
Principal Scientist

Cell Beusn

CONTENTS

ACR	ONYMS	S	iii
SUN	/IMARY	,	1
1.	INTRO	ODUCTION	2
	1.1	Investigation Background	2
	1.2	Physical Setting	3
	1.3	Objectives	3
2.	REGU	JLATORY CRITERIA	4
3.	FIELD	ACTIVITIES	5
	3.1	Drilling and Soil Sampling	5
		3.1.1 Site Preparation	5
		3.1.2 Drilling Activities	5
		3.1.3 Soil Boring Sampling	
		3.1.4 Analytical Methods	
	3.2	Sample Handling, Documentation, and Chain of Custody	6
	3.3	Quality Assurance and Quality Control	7
	3.4	Equipment Decontamination	7
	3.5	Waste Management	7
	3.6	Work Plan Deviations	7
4.	RESU	ILTS	9
	4.1	Analytical Data Quality	9
	4.2	Screening and Analytical Results	10
5.	CONC	CLUSIONS	12
6.	RFFFI	RENCES	13

FIGURES

Figure 1 Site Location Map

Figure 2 Soil Boring Locations and Analytical Soil Sample Results

TABLES

Table 1 Soil Analytical Results

APPENDICES

Appendix A Photograph Log

Appendix B Field Logbook and Field Forms

Appendix C Boring Logs

Appendix D Quality Assurance Review, ADEC Laboratory Data Review Checklists, and Laboratory

Analytical Results

ACRONYMS

plus or minusdegrees Celsius

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska Method

Alyeska Pipeline Service Company

AMSL above mean sea level

ASTM American Society for Testing and Materials

bgs below ground surface

Discovery Drilling, Incorporated

DRO diesel range organics

ft feet or foot

GRO gasoline range organics

LOD limit of detection

LOQ limit of quantitation

mg/kg milligrams per kilogram

MS matrix spike

MSD matrix spike duplicate

NAVD North American Vertical Datum

ND non-detect

PAH polynuclear aromatic hydrocarbon

PID photoionization detector

ppm parts per million

PVOC petroleum-related volatile organic compound

QA quality assurance

QAR quality assurance review

QC quality control

RPD relative percent difference
RRO residual range organics

SERVS Ship Escort/Response Vessel System

SGS SGS North America, Inc.

Site VEOC Building/project area

SLR SLR International Corporation

USEPA United States Environmental Protection Agency

VEOC Valdez Emergency Operations Center

VMT Valdez Marine Terminal

Work Plan SERVS Response Base Well Installation Work Plan

SUMMARY

SLR International Corporation (SLR) was contracted by Alyeska Pipeline Service Company (Alyeska) to investigate potential petroleum hydrocarbon impacts discovered during construction of the Valdez Emergency Operations Center (VEOC) Building at the Ship Escort/Response Vessel system facility (Site) in 1995. Field activities consisted of advancing two borings with a drill rig equipped with direct-push tooling, logging soil type, screening soil, and collecting soil samples at discrete depths. A total of five primary analytical samples were collected for analysis of petroleum hydrocarbons. Soil types encountered during drilling consisted of dry pad gravel overlying a thick silt aquitard. No sampleable groundwater was present above the silt aquitard, and no groundwater wells were installed.

Soil sample results did not indicate the presence of petroleum contamination exceeding cleanup levels in the vicinity of the VEOC Building except for a single exceedance of benzo(a)anthracene in primary sample SB2-7-11, which was not replicated in the corresponding duplicate. Petroleum hydrocarbon concentrations did not exceed their respective cleanup levels in other samples collected from either boring. Additionally, photoionization detector screening measurements were 0.0 parts per million at all measured locations, including at primary sample SB2-7-11.

Due to the absence of groundwater above the aquitard, and limited petroleum hydrocarbon impacts in soil samples as indicated by a single ADEC cleanup level exceedance of a single PAH compound not replicated in the duplicate sample, SLR recommends that no further work be completed at the Site and that the status of the site be changed to "closed" in the ADEC contaminated sites database.

1. INTRODUCTION

At the request of Alyeska Pipeline Service Company (Alyeska), SLR International Corporation (SLR) has prepared this report documenting soil sampling at the Ship Escort/Response Vessel System (SERVS) Valdez Emergency Operations Center (VEOC) Building (Site; Figure 1 and Figure 2). The investigation is in response to the Alaska Department of Environmental Conservation's (ADEC) request for soil and groundwater sampling to delineate potential petroleum hydrocarbon impacts documented south of the VEOC during construction in 1995. This site is managed by the ADEC Contaminated Sites Program under File Number 1200.38.052.

This report summarizes the site investigation activities conducted in May 2022, which consisted of advancing two soil borings and collecting soil samples. No groundwater wells were installed and no groundwater samples were collected due to a silt aquitard that was discovered in both borings. Activities described in this report were conducted according to the SERVS Response Base Well Installation Work Plan (Work Plan; SLR, 2022). Further discussion in this report includes sampling methodology and analytical results.

1.1 INVESTIGATION BACKGROUND

SERVS was created in 1989 to prevent oil spills and to provide oil spill response and preparedness capabilities for Alyeska and the marine shipping companies that operate the tankers that call at the Valdez Marine Terminal (VMT). From 1989 to 1995, SERVS operated on a leased property located at the corner of Fidalgo Drive and Breakwater Avenue in Valdez.

In 1993, Alyeska conducted a Phase II environmental site assessment of the property that now contains the current SERVS response base. Soil samples were collected from eight surface locations and from two borings. Diesel-range organic (DRO) concentrations were below 1,000 milligrams per kilogram (mg/kg) in all soil samples collected, but the exact concentrations are not known. According to ADEC's Contaminated Sites Database, neither Alyeska nor ADEC possess the 1993 Phase II report.

During excavation for the installation of a water line at the Site, discolored soil was observed and a single soil sample was collected and analyzed for DRO, metals, and halogenated organic compounds (Alyeska, 1995; Figure 2). DRO exceeded the ADEC Method Two cleanup level of 1,000 mg/kg applicable at the time. The excavation was backfilled, and no additional actions were taken. The property was owned by the City of Valdez when the impact was discovered.

Alyeska purchased the property in 1995. The SERVS response base has operated at its current location from 1995 to the present without any additional documented history of fuel spills or releases.

1.2 PHYSICAL SETTING

The SERVS response base is located on an isthmus comprised of imported fill and is separated from Valdez Arm by a seawall comprised of rip rap. The elevation of the SERVS response base is approximately 20 feet (ft) above sea level in the North American Vertical Datum (NAVD).

1.3 OBJECTIVES

The objectives of the SERVS investigation were as follows:

- Delineate the vertical and horizontal extent of potential residual petroleum hydrocarbon contamination at the Site related to a potential spill identified in 1995; and
- Evaluate groundwater for potential petroleum hydrocarbon impacts.

2. REGULATORY CRITERIA

The relevant ADEC regulatory criteria are found in Tables B1 and B2 of 18 of the Alaska Administrative Code (AAC), Chapter 75 (18 AAC 75), *Oil and Other Hazardous Substances Pollution Control* (ADEC, 2021). Valdez is in the Over 40-Inch Zone, for which the most stringent of the Human Health or Migration to Groundwater cleanup levels apply. Soil cleanup levels applicable to the Site are summarized below:

- Gasoline range organics (GRO), 260 mg/kg;
- DRO, 230 mg/kg;
- Residual range organics (RRO), 8,300 mg/kg;
- Polynuclear aromatic hydrocarbons (PAHs), as listed individually in Tables B1 and B2 of 18 AAC
 75; and
- Petroleum-related volatile organic compounds (PVOCs), including:
 - Benzene, 0.022 mg/kg;
 - Toluene, 6.7 mg/kg;
 - Ethylbenzene, 0.13 mg/kg;
 - Xylenes (total), 1.5 mg/kg;
 - 1,2,4-Trimethylbenzene, 0.61 mg/kg;
 - 1,3,5-Trimethylbenzene, 0.66 mg/kg;
 - Isopropylbenzene (Cumene), 5.6 mg/kg;
 - Methyl-t-butyl ether, 0.4 mg/kg;
 - Naphthalene, 0.038 mg/kg;
 - n-Butylbenzene, 23 mg/kg;
 - n-Propylbenzene, 9.1 mg/kg;
 - sec-Butylbenzene, 42 mg/kg;
 - Styrene, 10 mg/kg; and
 - tert-Butylbenzene, 11 mg/kg.

3. FIELD ACTIVITIES

Field activities performed in May 2022 included advancing and sampling two soil borings. Investigation activities were conducted in accordance with Alyeska's procedural requirements as outlined in the *Trans-Alaska Pipeline Maintenance Repair Manual, MR-48* (Alyeska, 2020), SLR's Work Plan, and consistent with ADEC's *Field Sampling Guidance* (ADEC, 2022), unless otherwise specified in Section 3.6. Field activities were documented in a photograph log (Appendix A) and the field logbook/field forms (Appendix B). Boring lithology is presented in boring logs (Appendix C). Field activities are summarized in the following sections.

3.1 DRILLING AND SOIL SAMPLING

The following sections describe drilling of borings and soil sample collection from drill cores. Appropriate information, including the physical location of each soil boring and observed lithology, was documented in the field logbook and in boring logs presented in Appendices B and C, respectively.

3.1.1 SITE PREPARATION

Drilling and soil sampling were conducted on May 27, 2021. Prior to any earthwork, underground utilities owned by Alyeska were located within and around the project area by Alyeska's survey contractor. Utilities were also cleared with General Communications, Inc., Copper Valley Electric Association, and Copper Valley Telephone Cooperative. A drilling standoff distance of 5 ft from any marked utility was established in consultation with Alyeska and adhered to while drilling.

The initial 5 ft of each borehole was advanced using a mud dog. Drill core advanced by Discovery Drilling, Incorporated (Discovery) began at 5 ft below ground surface (bgs) in both boreholes.

3.1.2 DRILLING ACTIVITIES

Discovery advanced soil borings using a GeoProbe® Model 7822DT drill rig equipped with direct push tooling. Drilling activities included advancing two soil borings within the project area.

Borings were advanced using the direct push method, using MC5 (2.25-inch core) tooling. Direct push MC5 tooling allowed for the recovery of a continuous soil core from the surface to the base of each boring. Soil cores were screened in situ with a photoionization detector (PID) at 1 ft increments. Soil from recovered direct push cores was logged in accordance with the *Standard Practice for Classification of Soils* (ASTM International, 2018) using the Unified Soil Classification System. Geological data observed in soil cores or inferred from drilling action was recorded on field logs and used to generate digital boring logs, included as Appendix C.

Both borings were advanced from a ground surface elevation of approximately 20 ft above mean sea level (AMSL). While drilling SB01, water was initially encountered at 19.25 ft bgs at approximately 12:30 PM after penetrating an 11.25-ft thick aquitard consisting primarily of gravelly silt. After the water level was allowed to stabilize, depth to water was measured at approximately 7.5 ft bgs or approximately 12.5 ft

AMSL. According to NOAA tide predictions, the high tide on May 27, 2022 occurred at 12:41 PM at an elevation of 9.56 ft AMSL. Given the lack of water above the silt aquitard and water upwelling into the borehole to approximately the same elevation as the high tide level, the upwelling water encountered at SB01 was interpreted to be seawater. Because the borehole was dry above the aquitard and the water encountered below the aquitard was seawater, no monitoring well was installed.

A second boring, SB02, was advanced and logged to confirm the occurrence of the same soil types and lack of water above the aquitard. After confirming the same soil types at approximately the same depths, and lack of water above the aquitard in both boreholes, starch-coated bentonite pellets were poured into each borehole to re-seal the aquitard. The final 2 ft of boring was backfilled with cuttings.

3.1.3 SOIL BORING SAMPLING

Soil samples were collected directly from the soil core liners into laboratory-supplied containers using new stainless-steel spoons from intervals identified by in situ PID screening. All in situ PID readings throughout each boring were non-detect (ND), therefore the sample intervals were chosen at the discretion of the field sampler. Each analytical sample interval was also screened using the heated headspace PID screening method.

A total of five primary soil samples and one duplicate sample were collected from soil cores for laboratory analysis. Three soil samples were collected from the first soil boring SB01 and two soil samples (one upper and one lower) were collected from the second soil boring SB02. While the Work Plan called for the collection of two soil samples from each boring, an additional soil sample was collected from SB01 at 25 ft bgs to characterize saturated soil encountered beneath the silt aquitard. Due to an abundance of gravel too large to include in the sample material submitted to the laboratory in boring SB02, sample intervals were larger in boring SB02 than in SB01. A duplicate sample was also collected in the deeper sample collected from SB02, requiring a 4-ft long sample interval from 7 to 11 ft bgs.

3.1.4 ANALYTICAL METHODS

Soil samples were analyzed by the following methods:

- GRO by Alaska Method (AK) 101;
- DRO by AK102;
- RRO by AK103;
- PAH by United States Environmental Protection Agency (USEPA) Method 8270D-selective ion monitoring; and
- PVOCs by USEPA Method SW8260D.

3.2 SAMPLE HANDLING, DOCUMENTATION, AND CHAIN OF CUSTODY

Soil samples were collected directly into laboratory-supplied containers appropriate for the required analyses. New nitrile gloves were donned before collecting each sample. The samples were labeled and placed into a pre-chilled cooler with gel ice as soon as possible following collection. Sample and cooler

temperatures were maintained at approximately 4 degrees Celsius (°C), plus or minus (±) 2°C, throughout transport to the laboratory. Each sample and any accompanying trip blank(s) were documented on the project chain of custody form.

The samples were shipped directly to SGS North America, Incorporated (SGS) in Anchorage, Alaska, an ADEC-approved laboratory, while maintaining proper sample custody. Samples were analyzed within the respective laboratory hold times for each analysis requested.

3.3 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance (QA) and quality control (QC) procedures were maintained throughout the sampling activities. QA procedures included the analysis of field duplicates and trip blanks and a laboratory data QA review (QAR) by qualified SLR staff. The QAR included the completion of an ADEC Laboratory Data Review Checklist for each analytical report. QC procedures included adherence to appropriate sample collection methodology as described in the Work Plan (SLR, 2022). The QAR and the completed ADEC Laboratory Data Review Checklists are presented in Appendix D.

3.4 EQUIPMENT DECONTAMINATION

All non-disposable or dedicated sampling equipment that contacted potentially contaminated soil was decontaminated. Sampling equipment was decontaminated using a stiff brush and a solution of a non-ionic detergent (e.g., Alconox® or Liquinox®) followed by rinses using potable water and distilled water.

3.5 WASTE MANAGEMENT

Waste generated during project activities included soil cuttings and disposable field equipment. Disposal of wastes was coordinated with the Alyeska VMT environmental leads. No hazardous waste was generated during this project.

Soil cuttings generated during drilling were placed back into the boring of origin in the portion of the boring generated by the mud dog (i.e., the upper 5 ft of each boring). Disposable sampling equipment was used for the collection of all samples. All disposable sampling equipment was placed in Alyeska-approved garbage bags and disposed of in a construction debris dumpster.

3.6 WORK PLAN DEVIATIONS

Work Plan deviations during site activities in 2022 were as follows:

• A silt layer was encountered at 8 ft bgs in SB01 and at 11.5 ft bgs in SB02. This silt layer was overlain by dry gravel, and no water was present above the silt layer. Because the purpose of well installation and groundwater sampling was to evaluate possible petroleum hydrocarbon impacts to groundwater from stained soil observed near the ground surface, installing wells with screens below the silt layer would not have been consistent with the goals of the investigation. There was insufficient water to install well screens above the silt layer. Penetration of the aquitard resulted

in inundation by seawater to a depth of 7.5 ft bgs. The soil encountered beneath the silt aquitard was interpreted to be intermittently saturated by tides and not representative of groundwater recharged from the ground surface at SERVS. Therefore, no wells were installed, and no groundwater samples were collected.

• Section 4.1.4 of the Work Plan indicates that two soil samples would be collected from each boring. To adequately characterize near-surface soils at the Site, three soil samples were collected from boring SB01 and two soil samples were collected from SB02.

4. RESULTS

The following sections discuss analytical data quality and sample results. Field screening and analytical results did not indicate substantial petroleum hydrocarbon impacts, with exceedances limited to a single PAH analyte in a primary sample in one borehole which was not replicated in the corresponding duplicate.

4.1 ANALYTICAL DATA QUALITY

The project analytical data were deemed acceptable for use with minor issues as summarized below and presented in detail in the QAR. The QAR, ADEC Laboratory Data Review Checklists, and complete laboratory analytical reports are included in Appendix D.

- Reporting Limits: Limits of detection (LODs) were compared to 18 AAC 75, Tables B1 and B2, Method Two cleanup levels for the Over 40-Inch Zone and Migration to Groundwater. For fuels, the lowest of ingestion or inhalation for the Over 40-Inch Zone, and the Migration to Groundwater for the Over 40-Inch Zone cleanup levels were used (ADEC, 2021). Results of ND with the LOD not meeting applicable cleanup levels were limited to those noted below.
 - For all samples and the trip blank, the LOD for 1,2-dibromoethane by Method SW8260D ranged from 0.000575 mg/kg to 0.00108 mg/kg, above the Migration to Groundwater cleanup level of 0.00024 mg/kg. This was due to typical laboratory methodology limitations. It is not possible to state with certainty the absence of 1,2-dibromoethane below the reported LOD, but above the Migration to Groundwater cleanup level. This data is limited in usability for that purpose. Data usability was considered minimally impacted, and all data were considered usable without qualification.
- Surrogate Recovery Results: Surrogate recoveries outside analytical methods and SGS acceptable limits were limited to those discussed below. Surrogate analysis was performed at the required frequencies. Surrogates were not evaluated when samples were analyzed at dilutions greater than five-fold because the quantitation was not considered accurate.
 - The case narrative noted a surrogate recovery exceedance for SW8270D
 2-methylnaphthalene-d10. This was likely due to a ten-fold dilution and matrix interference.
 The parent sample was not associated with this project. No project data were affected.
- Matrix Spike and Matrix Spike Duplicate Samples: Matrix spike (MS) and matrix spike duplicate (MSD) recovery and relative percent difference (RPD) exceedances are limited to those discussed below. MS/MSDs were analyzed at the appropriate frequencies. MS/MSDs were not evaluated when samples were analyzed at dilutions of greater than five-fold because the quantitation was not considered accurate.
 - For Method SW870D, MS/MSD recoveries and RPDs for several analytes did not meet laboratory criteria. The parent sample was not associated with this project, and the exceedances were likely due to analysis at a ten-fold dilution. Since the laboratory control

sample recovered within acceptable limits for all analytes establishing batch accuracy, no project data was affected. It should be noted that for the analytes with RPD exceedances (fluoranthene, phenanthrene, and pyrene), there was no acceptable measure of laboratory precision for the batch. Refer to the Field Duplicates bullet point below for further discussion.

• **Field Duplicates:** The RPDs for the field duplicate pair SB2-7-11/SB92-7-11 exceeded the recommended ADEC limit of 50 percent for soils. Chronologically associated samples are considered impacted. Parent samples and field duplicates were qualified, and impacted analytes for chronologically associated samples were qualified "Q" in the data tables to indicate an estimated values with unknown bias. Data already "J" flagged as estimated with indeterminate bias (i.e., below the LOQ) were not additionally qualified. In addition, ND results were considered not impacted by field precision error and were not qualified because precision would impact the quantity of analyte detected, not the presence or absence.

For all analytes except fluoranthene, phenanthrene, and pyrene, laboratory batch precision was established by an MS/MSD pair with RPDs within acceptable limits; therefore, the impact to data was considered minimal. All impacted fluoranthene, phenanthrene, and pyrene results were over 100-fold below the applicable regulatory criteria; therefore, data usability was not impacted.

In all cases, the higher of the primary sample/duplicate value should be used for reporting purposes. Except for benzo(a)anthracene in primary sample SB2-7-11, all impacted data were well below cleanup levels; therefore, data usability was not affected. For benzo(a)anthracene, data for duplicate pair SB2-7-11/SB92-7-11 should be considered an exceedance of ADEC criteria and data is usable. All data are usable as qualified.

Additionally, "J" flags were applied to multiple soil analytes and were considered "tentatively identified" or "presumptive" laboratory detections at estimated concentrations with indeterminate bias. These detections were above the laboratory LOD but below the laboratory limit of quantitation (LOQ).

4.2 SCREENING AND ANALYTICAL RESULTS

Soil analytical results are included in Table 1 and discussed below.

PID screening measurements, both in situ and heated headspace, indicated no petroleum hydrocarbon impacts in either boring. All in situ and heated headspace PID screening measurements were 0.0 parts per million (ppm).

Analytical results from both borings do not indicate petroleum hydrocarbon impacts except for an exceedance of benzo(a)anthracene in a primary sample that was not replicated in the duplicate sample. Benzo(a)anthracene was detected at a concentration of 0.981 mg/kg in sample SB2-7-11, which was collected as a composite from 7 to 11 ft bgs in boring SB02. The benzo(a)anthracene concentration of 0.981 mg/kg in sample SB2-7-11 exceeds the ADEC Migration to Groundwater cleanup level of 0.7 mg/kg. However, the benzo(a)anthracene concentration of 0.11 mg/kg in the duplicate sample SB92-7-11 did not exceed the ADEC Migration to Groundwater cleanup level. All other petroleum hydrocarbon constituents

analyzed in all other soil samples were ND, detected at J-flagged (low level, estimated) concentrations below the LOQ, or detected at concentrations well below the most stringent ADEC cleanup levels.

5. **CONCLUSIONS**

Analytical results from samples collected in 2022 do not indicate petroleum hydrocarbon impacts to soil at the Site with the exception of a single exceedance of benzo(a)anthracene in a primary sample, that was not replicated in the corresponding duplicate sample. All other petroleum hydrocarbons were either detected at low-level, estimated concentrations well below the laboratory LOQ or were ND for all other analytes. All borings terminated in soil that was visually clean and was screened using a PID at 0.0 ppm at all measurement locations.

The presence of a thick silt aquitard overlain by dry pad gravel indicated conditions unconducive to the installation and sampling of groundwater wells. Groundwater at the site exists only in a soil zone consisting of tidally inundated native beach sand and gravel that is overlain by an aquitard consisting of silty fill. No wells were installed, and no groundwater samples were collected.

Due to the absence of groundwater above the aquitard, and limited petroleum hydrocarbon impacts in soil samples as indicated by a single ADEC cleanup level exceedance of a single PAH compound not replicated in the duplicate sample, SLR recommends that no further work be completed at the Site and that the status of the site be changed to "closed" in the ADEC contaminated sites database.

6. REFERENCES

Alaska Department of Environmental Conservation (ADEC). 2022. Field Sampling Guidance. January.

- ------. 2021. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control, as amended through November 18, 2021.
- Alyeska Pipeline Service Company (Alyeska). 2020. Trans-Alaska Pipeline Maintenance and Repair Manual, MR-48. March.
- -----. 1995. Soil Characterization During Construction, SERVS VEOC Facility, Valdez, Alaska. May.
- ASTM International. 2018. ASTM D2487 17, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
- SLR International Corporation (SLR). 2022. SERVS Response Base Well Installation Work Plan, Valdez Marine Terminal. March.

LIMITATIONS

The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

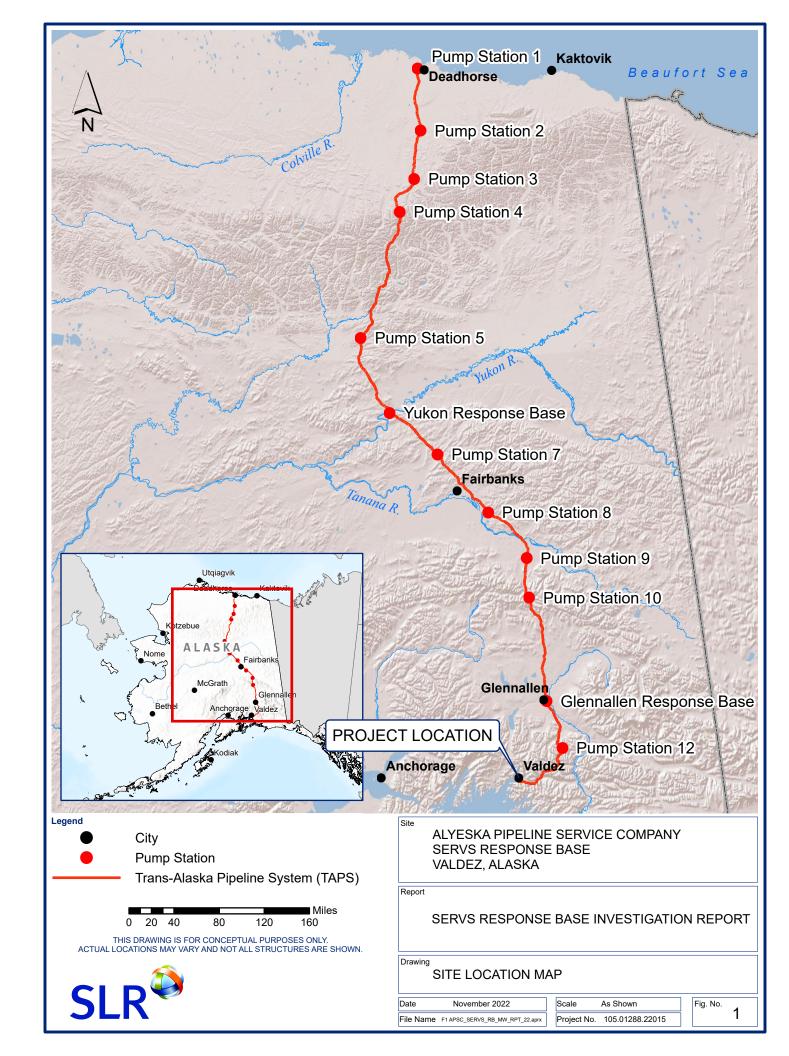
Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the Site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.

Environmental conditions that are not apparent may exist at the Site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall Site environmental conditions.

The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the Site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.


This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

FIGURES

Figure 1 Site Location Map

Figure 2 Soil Boring Locations and Analytical Soil Sample Results

Approximate Buried Water Line

Approximate Buried Electric Line

Property Boundary

Elevation Contour (Feet NAVD 88)

Analytes are only shown if either the primary or duplicate exceeded the most stringent ADEC cleanup level. Exceedances are shown in **bold**. Results shown in milligrams per kilogram (mg/kg).

"Q" indicates estimated value with unknown bias due to one or more QC exceedances.

VALDEZ, ALASKA

Report

SERVS RESPONSE BASE INVESTIGATION REPORT

Drawing SOIL BORING LOCATIONS AND ANALYTICAL SOIL SAMPLE RESULTS

November 2022 File Name F2 APSC_SERVS_RB_MW_RPT_22.aprx

1" = 75 feet Scale Project No. 105.01288.22015 Fig. No.

2

TABLES

Table 1 Soil Analytical Results

Table 1 - Soil Analytical Results **SERVS Response Base Investigation Report**

	Screen	ing Criteria			Sample L	ocation ^{3, 4}			Trip Blank	
Compound in milligrams per kilogram (mg/kg)	18 AAC 75, Over 40 Inch Zone ¹	18 AAC 75, Migration to Groundwater ²	SB1-5 27-May-22 1222655003	SB1-8 27-May-22 1222655001	SB1-20 27-May-22 1222655002	SB2-5-7 27-May-22 1222655004	Primary: SB2-7-11 27-May-22 1222655005	Duplicate: \$B92-7-11 27-May-22 1222655006	Trip Blank 27-May-22 1222655007	
Fuels (AK101, 102, and 103)										
Gasoline Range Organics	1400	260	1.14 J	1.26 J	1.77 J	1.62 J	1.14 J	1.3 J	1.33 J	
Diesel Range Organics	8250	230	11.3 J	13.5 J	13.5 J	11.7 J	13.3 J	13.1 J	-	
Residual Range Organics	8300	9700	[51.5] ND	[51] ND	[61] ND	[51.5] ND	[51.5] ND	[51.5] ND	-	
PVOCs (SW8260D)										
1,2,4-Trimethylbenzene	43	0.61	[0.0422] ND	[0.0385] ND	[0.0715] ND	[0.063] ND	[0.0463] ND	[0.0535] ND	[0.0505] ND	
1,2-Dibromoethane	0.31	0.00024	[0.000635] ND	[0.000575] ND	[0.00108] ND	[0.000945] ND	[0.000695] ND	[0.0008] ND	[0.000755] ND	
1,2-Dichloroethane	3.9	0.0055	[0.000845] ND	[0.00077] ND	[0.00143] ND	[0.00126] ND	[0.000925] ND	[0.00107] ND	[0.00101] ND	
1,3,5-Trimethylbenzene	37	0.66	[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
Benzene	8.1	0.022	[0.00525] ND	[0.0048] ND	[0.00895] ND	[0.00785] ND	[0.0058] ND	[0.0067] ND	[0.0063] ND	
Ethylbenzene	35	0.13	[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
Isopropylbenzene (Cumene)	54	5.6	[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
Methyl-t-butyl ether	480	0.4	[0.0422] ND	[0.0385] ND	[0.0715] ND	[0.063] ND	[0.0463] ND	[0.0535] ND	[0.0505] ND	
Naphthalene	20	0.038	0.0109 J	0.0122 J	[0.0179] ND	0.0114 J	[0.0116] ND	0.0199 J	[0.0126] ND	
n-Butylbenzene	20	23	[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
o-Xylene			[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
P & M -Xylene			[0.0211] ND	[0.0192] ND	[0.0358] ND	[0.0314] ND	[0.0231] ND	[0.0268] ND	[0.0252] ND	
sec-Butylbenzene	28	42	[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
tert-Butylbenzene	36	11	[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
Toluene	200	6.7	[0.0106] ND	[0.0096] ND	[0.0179] ND	[0.0157] ND	[0.0116] ND	[0.0134] ND	[0.0126] ND	
Xylenes (total)	57	1.5	[0.0211] ND	[0.0192] ND	[0.0358] ND	[0.0314] ND	[0.0231] ND	[0.0268] ND	[0.0252] ND	
PAH SIM (SW8270D)										
1-Methylnaphthalene	68	0.41	[0.0129] ND	[0.0129] ND	[0.0153] ND	[0.0129] ND	[0.258] ND	[0.0129] ND		
2-Methylnaphthalene	250	1.3	0.0085 J	[0.0129] ND	[0.0153] ND	[0.0129] ND	[0.258] ND	[0.0129] ND		
Acenaphthene	3800	37	[0.0129] ND	[0.0129] ND	[0.0153] ND	[0.0129] ND	[0.258] ND	[0.0129] ND		
Acenaphthylene	1900	18	0.00945 J	0.00687 J	[0.0153] ND	0.015 J	[0.258] ND	0.0257 J		
Anthracene	19000	390	0.052 Q	0.0123 J	[0.0153] ND	0.0342 Q	3.02 Q	0.0485 Q		
Benzo(a)Anthracene	12	0.7	0.174 Q	0.0345 Q	[0.0153] ND	0.0896 Q	0.981 Q	0.11 Q		
Benzo[a]pyrene	1.2	1.9	0.073	0.034	[0.0153] ND	0.0827	0.485 J	0.124		
Benzo[b]Fluoranthene	12	20	0.136 Q	0.0787 Q	[0.0153] ND	0.165 Q	0.881 Q	0.236 Q	-	
Benzo[g,h,i]perylene	1900	15000	0.0227 J	0.0148 J	[0.0153] ND	0.0374	0.164 J	0.0549		
Benzo[k]fluoranthene	120	190	0.051	0.0185 J	[0.0153] ND	0.0424	0.295 J	0.0683		
Chrysene	1200	600	0.232 Q	0.0449 Q	[0.0153] ND	0.117 Q	2.96 Q	0.177 Q		
Dibenzo[a,h]anthracene	1.2	6.3	0.00694 J	[0.0129] ND	[0.0153] ND	0.0107 J	[0.258] ND	0.0147 J		
Fluoranthene	2500	590	0.0614 Q	0.0535 Q	[0.0153] ND	0.0882 Q	1.03 Q	0.254 Q		
Fluorene	2500	36	0.0195 J	[0.0129] ND	[0.0153] ND	0.00913 J	0.203 J	0.0102 J		
Indeno[1,2,3-c,d] pyrene	12	65	0.0245 J	0.0162 J	[0.0153] ND	0.0398	0.183 J	0.0579	-	
Naphthalene	20	0.038	0.00829 J	[0.0103] ND	[0.0123] ND	[0.0104] ND	[0.207] ND	[0.0103] ND		
Phenanthrene	1900	39	0.082 Q	0.0226 J	[0.0153] ND	0.054 Q	0.571 Q	0.0659 Q		
Pyrene	1900	87	0.0329 Q	0.0273 Q	[0.0153] ND	0.0588 Q	0.749 Q	0.174 Q		
Percent Solids (SM21 2540G)										
Total Solids			96.4	97.2	80.6	96.6	96.2	96.1	-	

 $\textbf{Bold} \ \text{indicates sample result exceeding the ADEC Over 40-Inch Zone criteria}.$

Shaded indicates sample result exceeding the ADEC Migration to Groundwater criteria.

The LOD did not meet project cleanup levels.

- 1 The cleanup levels correspond to those listed in 18 AAC 75.341, Method Two, Tables B1 and B2, for the Over 40 Inch Zone (ADEC, November 18, 2021). For fuels, applicable cleanup levels are the lowest of ingestion or inhalation for the Over 40-Inch Zone.
- 2 The cleanup levels correspond to those listed in 18 AAC 75.341, Method Two, Tables B1 and B2, Migration to Groundwater (ADEC, November 18, 2021). For fuels, applicable cleanup levels listed are Migration to Groundwater for the Over 40-Inch Zone.
- 3 The sample type, field sample identification number, date collected, and laboratory sample identification number are provided.
- 4 For detected results, the sample result is listed in this column. For undetectable results, the Limit of Detection (LOD) is listed in brackets
- in this column. Associated flag(s) are shown to the right.
- $5 Total\ values\ were\ the\ summation\ of\ detected\ compounds\ only.\ If\ compounds\ were\ not\ detected,\ then\ the\ highest\ LOD\ was\ listed.$

Data Flags:

Estimated concentration between the LOQ and DL.

ND Nondetect, LOD is shown in brackets. Q

Estimated value with unknown bias due to one or more QC exceedances.

Abbreviations

	Not applicable or screening criteria does not exist for this compound	LOQ	limit of quantitation
AAC	Alaska Administrative Code	mg/kg	milligrams per kilogram
ADEC	Alaska Department of Environmental Conservation	PAH	polycyclic aromatic hydrocarbons
AK	Alaska Method	PVOCs	petroleum volatile organic compounds
DL	detection limit	SIM	selective ion monitoring
LOD	limit of detection	SM	Standard Method

APPENDIX A

PHOTOGRAPH LOG

SERVS Response Base Investigation Report

Alyeska Pipeline Service Company
P.O. Box 196660
3700 Centerpoint Drive
Anchorage, Alaska 99519-6660

November 2022

Photo 1: Advancing borehole SB1 south of the Valdez Emergency Operations Center (VEOC) Building using direct push tooling. View to the north (5/27/2022).

Photo 2: Direct push soil cores from SB1. A dry sandy gravel overlies over 10 ft of silt with intermixed gravel interpreted to be dredged backfill from the harbor. Wet gravelly sand was present at the bottom of the borehole interpreted to be native beach material (5/27/2022).

SLR	SERVS Investigation Valdez Marine Terminal
SITE PHOTOGRAPHS May 27, 2022	Job No: 105.01288.22015

Photo 3: Ziplock bags containing soil collected for heated headspace measurements. Heated headspace measurements were collected at each analytical sample location (5/27/2022).

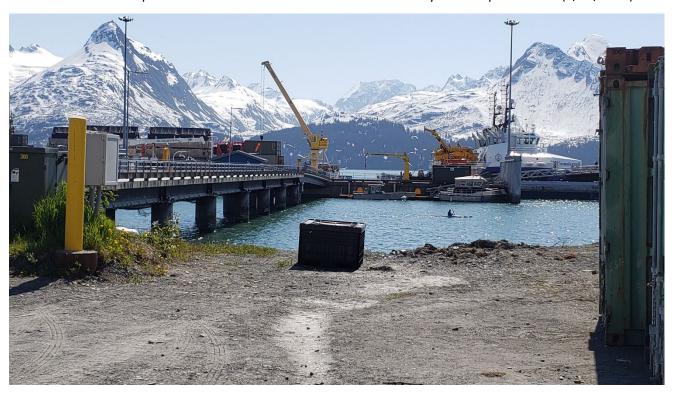
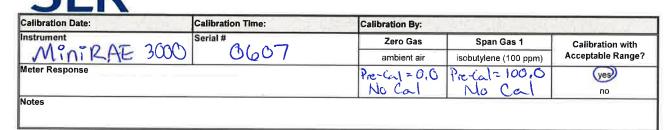


Photo 4: View from the SERVS VEOC Building pad towards Port Valdez at high tide. View to the south (5/27/2022).

SLR	SERVS Investigation Valdez Marine Terminal
SITE PHOTOGRAPHS May 27, 2022	Job No: 105.01288.22015

APPENDIX B

FIELD LOGBOOK AND FIELD FORMS


SERVS Response Base Investigation Report

Alyeska Pipeline Service Company
P.O. Box 196660
3700 Centerpoint Drive
Anchorage, Alaska 99519-6660

November 2022

B. Woelber Sun 5/27/2022 SERVS WELLS E. Tyler sun 3 25/27/2022 SERVS WELLS 1400 First rad in the ground at SBZ. 0600 Depart Valdez 0620 Arrive VMT. Pick up coolers for 1415 Collect sample 5132-7-11 , Dup 5802-7-11 ETF and Pressure Transmitter and 1430 Collect sample 5B2-5-7. Nowell installed, Both wells backfilled 0630 Depart VMT. 0650 Arrive airport. Ship coolers with bentonite (532 16 > 5, 582 15 > 5) 0745 Arrive SERVS. Site walkdown. then the final 5 Feet with drill cuttings and traction sand . Final foot of Obtain permit. Review HSE paperwork. Cal PID. arbandonment done with pad gravel. 1000 First rod in the ground at SBI. 1515 Close permito 1230 Collect sample 3BI-8. 1530 Depart SERVS. 1600 Arrive VDZ to pick up soil 1235 Collect sample SBI-200 1345 Redrill 5'-10' interval to collect test kit. 1630 Arrive VMT. ac samples. Sample 582-5. Sample SB7-5 was collected to complete charactered in 1715 Depart VMT. 1735 Arrive Valdez. End Field day of soil in boring. No water present above silt layer. After drilling through silt layer from 9.25 BW 8 ft to 19:25 ft bgs, water welled into the borehole up to 8 ft. 5/27/2022 Borehole was completed approximately at high tide (1240). Due to lack of saturated conditions above the sit aguitard, no well was installed. 1345 Pack up drill rig and equipments Rite in the Rain.

PID Calibration Log

Calibration Date:	Calibration Time:	Calibration By:				
nstrument	Serial #	Zero Gas	Span Gas 1	Calibration with		
		ambient air	isobutylene (100 ppm)	Acceptable Range		
Meter Response				yes		
				no		

Calibration Date:	Calibration Time:	Calibration By:			
nstrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range?	
		ambient air	isobutylene (100 ppm)		
leter Response				yes	
		1		no	

Calibration Date:	Calibration Time:	Calibration By:			
nstrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range?	
		ambient air	isobutylene (100 ppm)		
Meter Response				yes	
				no	

Calibration Date:	Calibration Time:	Calibration By:				
Instrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range?		
		ambient air	isobutylene (100 ppm)			
Meter Response				yes		
				no		

Calibration Date:	Calibration Time:	Calibration By:				
nstrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range		
		ambient air	isobutylene (100 ppm)			
Meter Response				yes		
				по		

Calibration Date:	Calibration Time:	Calibration By:	SERVICE SERVICE		
nstrument	Serial #	Zero Gas	Span Gas 1	Calibration with Acceptable Range	
		ambient air	isobutylene (100 ppm)		
Meter Response				yes	
				no	

APPENDIX C

BORING LOGS

SERVS Response Base Investigation Report

Alyeska Pipeline Service Company
P.O. Box 196660
3700 Centerpoint Drive
Anchorage, Alaska 99519-6660

November 2022

						BORING NUMBER S		
S	LR		Ancho	orage, Al	St, Suite 200 laska 99507	PAGE	1 C)F 1
CLIE	AT Abres	de Di			07) 227-8387	DDO IFOT NAME. Chir Forost Doorson o Vocasi (CEDVC) Investin	-4:	_
					e Company	PROJECT NAME Ship Escort Response Vessel (SERVS) Investig	alioi	1
	IECT NUN					PROJECT LOCATION Valdez, Alaska		
	STARTE					GROUND ELEVATION 2€ feet AMSL		
					overy Drilling, Inc.	GROUND WATER LEVELS:		
	LING MET					✓ AT TIME OF DRILLING 19.25 feet bgs		
	GED BY _	B. Wo	elber		CHECKED BY E. Tyler	▼ AFTER DRILLING 7.5 feet bgs		
NOTE						<u> </u>		
O DEPTH (ft)	SAMPLE NUMBER AND INTERVAL	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		PID (ppm)
				5.0	Soil absent due to mud-dog remov the soil logged in the interval belov		15.0	
-5	SB1-5		. 7.1	5.0	Sandy Gravel with Silt, dark brown	n, dry, sand is coarse, gravel is angular.	15.0	
├ .	361-3			-	,	, ,,		0
ļ.		GW	.0					0
	CD4 0		. 6	8.0	<u></u>	1	12.0	0
	SB1-8				Silt with Gravel, gray, damp to we	t, gravel is angular. Silt and gravel mix is a dredged fill.		0
<u> </u>	1							0
_ 10		ML						0 0 0 0
	-						Ī	
├ '	-							0
ļ	-							0
ļ.								0
				100	7			
20			*****	19.3 \		nd is coarse, gravel is angular.	0.7	0
<u>-</u> -	SB1-20			:			f	
-	-							0
} -	-	SW		:}				0
ļ	_			:				0
[:]				
25				25.0			-5.0	0
-23	1		*****	,,20.0		Bottom of hole at 25.0 feet.	-5.0	0
GENERAL BH / IF / WELL SERVS GIN 105.0FJ G								

BORING NUMBER SB02 PAGE 1 OF 1

SLR	2700 Gambell St, Suite 200 Anchorage, Alaska 99507 Telephone: (907) 227-8387
	Telephone: (907) 227-8387

GENERAL BH / TP / WELL SERVS GINT LOG.GPJ GINT US.GDT 6/9/22

CLIENT Alyeska Pipeline Service Company				Service	e Company	PROJECT NAME Ship Escort Response Vessel (SERVS) Investigation			
PROJECT NUMBER _105.01288.22015				01288.2	22015	PROJECT LOCATION Valdez, Alaska			
DATE STARTED 5/27/22 COMPLETED 5/27/22					COMPLETED 5/27/22	GROUND ELEVATION 20 feet AMSL			
DRILLING CONTRACTOR Discovery Drilling, Inc.				Disco	very Drilling, Inc.	GROUND WATER LEVELS:			
DRILLING METHOD Direct Push/ ODEX				t Push	/ ODEX	AT TIME OF DRILLING NM			
LOGGED BY B. Woelber CHECKED BY E. Tyler					CHECKED BY E. Tyler	AFTER DRILLING NM			
NOTES									
o DEPTH (ft)	SAMPLE NUMBER AND INTERVAL	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		PID (ppm)	
 5				5.0	the soil logged in the interval below.	of first 5 feet. Soil present within the pothole is visually similar to	15.0		
	SB2-5-7				Sandy Gravel with Silt, dark brown, d	ry, sand is coarse, gravel is angular.		0	
	302-3-1								
_		GW						0 0	
								0	
	SB2-7-11			40.0			40.0	0	
10				10.0	Silt with Gravel , gray, damp, gravel is discontinued at 15 ft bgs to ensure that	angular. Silt and gravel mix is a dredged fill. Borehole at silt aquitard is not perforated by the drill rig.	10.0	0	
	-							0	
	-	ML						0	
	-							0	
15				15.0			5.0		
						Bottom of hole at 15.0 feet.			

APPENDIX D

QUALITY ASSURANCE REVIEW, ADEC LABORATORY DATA REVIEW CHECKLISTS, AND LABORATORY ANALYTICAL RESULTS

SERVS Response Base Investigation Report

P.O. Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

November 2022

REPORT

LABORATORY DATA QUALITY ASSURANCE REVIEW

SHIP ESCORT/RESPONSE VESSEL SYSTEM SOIL SAMPLING VALDEZ MARINE TERMINAL

ALYESKA PIPELINE SERVICE COMPANY

July 2022

Prepared by: Jennifer McLean **Reviewed by:** Brett Woelber, P.G.

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

SLR Project Number: 105.01288.22015

ACRONYMS AND ABBREVIATIONS

% percent

°C degrees Celsius

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska

CCV continuing calibration verification

COC chain of custody
DL detection limit
DRO diesel range orga

DRO diesel range organics
EDD electronic data deliverable
GRO gasoline range organics

ID identifier

LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection
LOQ limit of quantitation
mg/kg milligrams per kilogram

MS matrix spike

MSD matrix spike duplicate

NA not applicable

NFG National Functional Guidelines
PAH polynuclear aromatic hydrocarbons

PARCS precision, accuracy, representativeness, comparability, and sensitivity

PVOCs petroleum volatile organic compounds

QA quality assurance

QAR quality assurance review

QC quality control

RPD relative percent difference RRO residual range organics SDG sample delivery group

SERVS Ship Escort/Response Vessel System

SGS SGS North America, Inc.
SIM selective ion monitoring
SLR SLR International Corporation

SM standard method

USEPA United States Environmental Protection Agency

Introduction

This report summarizes a review of analytical data for soil samples collected on May 27, 2022, at the Valdez Marine Terminal (VMT) Ship Escort/Response Vessel System (SERVS). Samples were collected by SLR International Corporation (SLR) and submitted to SGS North America, Inc. (SGS) in Anchorage. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number 17-021 for the applicable analytical methods. Table 1 provides a summary of work orders, sample receipt, analytical methods, and analytes.

Table 1 Sample Receipt and Matrix Summary

SDG	Date Collected	Date Received by Laboratory	Temperature Blank	Matrix	Method	Analyte
					AK101 ¹	GRO ¹
				ļ	AK102/103	DRO/RRO
1222655	5/27/2022	6/1/2022	4.0°C	Soil	SW8260D ¹	PVOCs ^{1,2}
					SW8270D SIM	PAH
					SM21 2540G	Percent Solids

Note:

- 1 A trip blank was required and analyzed for this method and associated analytes.
- 2 PVOC analytes are: benzene, toluene, ethylbenzene, total xylenes (p & m -xylene and o-xylene), 1,2,4-trimethylbenzene,
- 1,3,5-trimethylbenzene, isopropylbenzene (cumene), 1,2-dibromoethane, 1,2-dichloroethane, methyl-t-butyl ether, naphthalene, n-butylbenzene, sec-butylbenzene, and tert-butylbenzene.

Acronyms:

°C – degrees Celsius AK – Alaska

DRO – diesel range organics GRO – gasoline range organics

PAH – polynuclear aromatic hydrocarbons PVOCs – petroleum volatile organic compounds

RRO – residual range organics SDG – sample delivery group SIM – selective ion monitoring SM – standard methods

The laboratory final report was provided as a Level II deliverable and included documentation of the delivery group chain of custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) for the report was also provided. The laboratory report was provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The select laboratory maintains an internal quality assurance program and standard operating procedures.

The analytical data was reviewed for consistency with any project specific requirements, ADEC Technical Memorandum, *Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data* (ADEC, 2019) requirements, *National Functional Guidelines for Organic Superfund Methods Data Review* (NFG, United States Environmental Protection Agency [USEPA], 2020), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG and was included as Attachment 1 to this Quality Assurance Review (QAR). A review for any anomalies to the project requirements for precision, accuracy, representativeness, comparability, and sensitivity (PARCS) are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e. g., field blanks, equipment blanks, trip blanks, method blanks, etc.) were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did
 not identify any Continuing Calibration Verification (CCV) recoveries or other calibration
 related criteria as being outside applicable acceptance limits;
- Reviewing the case narratives for any discussion of any internal standard recoveries outside
 of acceptance limits. Internal standard performance was not otherwise presented in the
 report or in the electronic data deliverables and was reviewed only from the case narratives;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS), Laboratory Control Sample Duplicates (LCSD), Matrix Spike (MS), and Matrix Spike Duplicates (MSD) recoveries were within acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples, LCS/LCSDs, MS/MSDs, and laboratory duplicates; and
- Providing an overall assessment of laboratory data quality and qualifying sample results as necessary.

Data Qualifications

As part of the quality assurance review, qualifiers (i.e. data flags) were applied to data as determined necessary based on specified criteria, or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Table 2 Data Qualifiers

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2,3}	Definition	
U			The analyte was analyzed for, but was not detected above the detection limit (DL).	
J			The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the DL. This qualifier is appended by the laboratory.	
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria (e.g., LCS recovery, surrogate spike recovery) failed or matrix effect. Where applicable, a "+" or "-" was appended to indicate a high bias, or a low bias respectively.	
	UJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.	
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.	
		В	Blank contamination: The result is an estimated quantity with potential high bias. The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection was greater than the sample detection or both the blank detection and sample detection were below the limit of detection (LOD), and the result is likely a false positive. The greater of the sample detection or LOD was reported as non-detect in brackets.	

Notes:

- 1 Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.
- 2 Only flags in **bold** were applicable and appended to data for this project.
- 3 For historical purposes, ND was used in place of "U."

A discussion of the project data quality relative to PARCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. Issues with regards to the data package were limited to those noted below.

The case narrative noted LCS recoveries for DRO and RRO outside acceptable limits. All LCS's
recovered within acceptable limits for these analytes as reviewed in the PDF laboratory report
and EDD. Data were not impacted.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regards to the receipt of samples.

Preservation (Chemical and Temperature)

Samples were appropriately preserved and were submitted to SGS. No issues were noted with regards to sample preservation.

Holding Times

All sample analysis was conducted within holding time criteria.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Except as shown in Table 3, all method blanks had results of non-detect (ND) below the LOD and DL. Sample detections within five times that of the associated blank and above the LOQ were considered affected and were appropriately qualified. Data already "J" flagged as estimated due to the low level of detection were not additionally qualified, as further qualification of already estimated values was considered unnecessary. This data was not shown in the table. All associated samples had results that were already estimated values below the LOQ; therefore, all data were usable without additional qualification.

Table 3 Method Blank and Trip Blank Detections and Affected Data

Sample ID	Lab ID	Preparatory Batch	Method/Analyte	Result (mg/kg)	LOD (mg/kg)	Flag
Method	1667638	VXX38686	AK101/GRO	1.46 J	1.25	NA
Blank	1667994	VXX38696	AK101/GRO	1.31 J	1.25	NA
Trip Blank	1222655007	VXX38686	AK101/GRO	1.33 J	1.26	NA

All associated samples had results that were already estimated values below the LOQ. No additional qualification was necessary.

Acronyms:

ID - identifier

Trip Blanks

One trip blank was submitted with the SDG and was analyzed for volatile methods (GRO by AK101 and PVOCs by Method SW8260D). Except as shown in Table 3, the trip blank had results of ND below the LOD and DL. All associated samples had results that were already estimated values below the LOQ. No additional qualification of data was necessary

Reporting Limits

Results of non-detect with LODs not meeting applicable cleanup levels were limited to those noted below. LODs were compared to Title 18 of the Alaska Administrative Code (AAC) Chapter 75, Tables B1 and B2, Method Two cleanup levels for the Over 40-Inch Zone and Migration to Groundwater. For fuels, the lowest of ingestion or inhalation for the Over 40-Inch Zone, and the Migration to Groundwater for the Over 40-Inch Zone cleanup levels were used (ADEC, 2021). Results of non-detect with LODs not meeting applicable cleanup levels were limited to those noted below.

• For all samples and the trip blank, the LOD for 1,2-dibromoethane by Method SW8260D ranged from 0.000575 milligrams per kilogram (mg/kg) to 0.00108 mg/kg, above the Migration to Groundwater cleanup level of 0.00024 mg/kg. This was due to typical laboratory methodology limitations. It is not possible to state with certainty the absence of 1,2-dibromoethane below the reported LOD, but above the Migration to Groundwater cleanup level. This data is limited in usability for that purpose. Data usability was considered minimally impacted, and all data was considered usable without qualification.

Continuous Calibration Verifications (CCVs)

All CCV recoveries were within acceptable limits, as reviewed in the EDD. CCV data were included only in the EDD, not in the case narrative. CCVs were analyzed at the appropriate frequencies.

Internal Standards

Internal standard performance criteria were considered met. No internal standards were noted in the case narrative as outside of acceptance limits.

Surrogate Recovery Results

Surrogate recoveries outside analytical methods and SGS acceptable limits were limited to those discussed below. Surrogate analysis was performed at the required frequencies. Surrogates were not evaluated when samples were analyzed at dilutions of greater than five-fold because the quantitation was not considered accurate.

• The case narrative noted an SW8270D 2-methylnaphthalene-d10 surrogate recovery exceedance. This was likely due to a ten-fold dilution and matrix interference. The parent sample was not associated with this project. No project data was affected.

Laboratory Control Samples and Laboratory Control Sample Duplicates

All LCS and LCSD recoveries and RPDs were within analytical method and SGS percent recovery acceptance limits. LCS and LCSDs were analyzed at the appropriate frequencies.

Matrix Spike and Matrix Spike Duplicate Samples

MS and MSD recovery and RPD exceedances are limited to those discussed below. MS and MSDs were analyzed at the appropriate frequencies. MS/MSDs were not evaluated when samples were analyzed at dilutions of greater than five-fold because the quantitation was not considered accurate.

 For Method SW870D, MS/MSD recoveries and RPDs for several analytes did not meet laboratory criteria. The parent sample was not associated with this project and the exceedances were likely due to analysis at a ten-fold dilution. Since the LCS recovered within acceptable limits for all analytes establishing batch accuracy, no project data was affected. It should be noted that for the analytes with RPD exceedances (fluoranthene, phenanthrene, and pyrene) there was no acceptable measure of laboratory precision for the batch. Refer to the Field Duplicates section of this QAR for further discussion.

Field Duplicates

The field duplicate sample frequency is presented in Table 4. The parent sample and field duplicate pair is presented in Table 5. Field duplicate RPD exceedances are listed in Table 6 and discussed below.

The RPDs for the field duplicate pair SB2-7-11/SB92-7-11 exceeded the recommended ADEC limit of 50% for soils, as shown in Table 6. Chronologically associated samples are considered impacted and are listed in the table footnotes. Parent samples and field duplicates were qualified as shown in the table, and impacted analytes for chronologically associated samples were qualified "Q" for to indicate an estimated values with unknown bias. Data already "J" flagged as estimated with indeterminate bias (i.e. below the LOQ) were not additionally qualified. In addition, non-detect results were considered not impacted by field precision error and were not qualified since precision would impact the quantity of analyte detected, not the presence or absence.

For all analytes except fluoranthene, phenanthrene, and pyrene, laboratory batch precision was established by an MS/MSD pair with RPDs within acceptable limits; therefore, the impact to data was considered minimal. All impacted fluoranthene, phenanthrene, and pyrene results were over 100-fold below the applicable regulatory criteria; therefore, data usability was not impacted.

In all cases, the higher of the primary sample/duplicate value should be used for reporting purposes. Except for benzo(a)anthracene in primary sample SB2-7-11, all impacted data, were well below cleanup levels; therefore, data usability was not affected. For benzo(a)anthracene, data for duplicate pair SB2-7-11/SB92-7-11 should be considered an exceedance of ADEC criteria and data is usable. All data were usable as qualified.

The frequency satisfied the requirement of one per 10 samples or less per matrix and analyte, and field duplicates were submitted blind to the laboratory. Samples with both results below the LOQ (J flagged or non-detect) were considered acceptable without qualification.

Table 4 Field Duplicate Frequency, Methods, and Analyses

Matrix	Analytical Method	Analyte	Number of Primary Samples	Number of Field Duplicates
	AK101	GRO	5	1
	AK102/103	DRO/RRO	5	1
Soil	SW8260D	PVOCs	5	1
	SW8270D SIM	PAH	5	1
	SM21 2540G	Percent Solids	5	1

Table 5 Field Duplicate Identification

Parent Sample ID	Duplicate Sample ID	All RPDs acceptable (Yes/No)	
SB2-7-11	SB92-7-11	No	

Table 6 Field Duplicate Precision Exceedances

Method SW8270D	Parent Sample Result (mg/kg) ²	Field Duplicate Result (mg/kg) ²	RPD (%)	Flag (Parent/ Duplicate) ³	Cleanup Level (mg/kg) ¹
Amalusta	SB2-7-11	SB92-7-11			
Analyte	Dilution = 20x	Dilution = 1x			
Anthracene	3.02	0.0485	197	Q/Q	390
Benzo(a)Anthracene	0.981	0.11	160	Q/Q	0.7
Benzo[a]pyrene ⁴	0.485 J	0.124	119	NA/NA	1.9
Benzo[b]Fluoranthene	0.881	0.236	115	Q/Q	12
Benzo[g,h,i]perylene ⁴	0.164 J	0.0549	100	NA/NA	1900
Benzo[k]fluoranthene ⁴	0.295 J	0.0683	125	NA/NA	120
Chrysene	2.96	0.177	177	Q/Q	600
Fluoranthene	1.03	0.254	121	Q/Q	590
Indeno[1,2,3-c,d] pyrene ⁴	0.183 J	0.0579	104	NA/NA	12
Phenanthrene	0.571	0.0659	159	Q/Q	39
Pyrene	0.749	0.174	125	Q/Q	87

Notes:

Bold indicated an exceedance of the applicable cleanup level.

- 1 Lowest of Ingestion, Inhalation, or Migration to Groundwater for the Over 40-Inch Zone is shown.
- 2 Samples chronologically associated with this parent sample/duplicate pair are SB1-5, SB1-8, SB1-20, and SB2-5-7.
- 3 Impacted analytes with results above the LOQ for the parent/duplicate pair and all associated samples were flagged with a 'Q" to indicate estimated values with unknown bias. Flags were not applicable for non-detects since precision would impact the quantity of analyte detected, not the presence or absence. Results already "J" flagged as estimated with unknown bias due to the low level of detection were not additionally qualified.
- 4 Due to sample dilution, the estimated value below the LOQ was greater than the detected value above the LOQ. In this instance the RPD calculation is considered inaccurate. For the impacted analytes there is no measure of field precision. As laboratory precision was acceptable, data were not qualified due to the absence of measured field precision.

Acronyms:

NA – not applicable

Laboratory Duplicate Samples

Laboratory duplicates were analyzed at the appropriate frequency for percent solids. All duplicate RPDs were within acceptable method and SGS limits.

Overall Assessment

Precision, Accuracy, Representativeness, Comparability, and Sensitivity Summary

- Precision: Precision goals were met, except as noted in the MS/MSD and Field Duplicates sections.
- Accuracy: Accuracy goals were met, except as noted in the Surrogate Recovery Results and MS/MSD sections.
- Representativeness: Representativeness goals were met. The samples were collected from planned locations in accordance with applicable requirements and guidance documents.
- Comparability: Comparability goals were met. SGS laboratory in Anchorage provided analytical support for all methods.
- Sensitivity: Sensitivity goals were met except as noted in the Method Blanks, Trip Blanks, and Reporting Limits sections.

This data were considered of good quality and acceptable for use with the limitations and qualifications noted in this QAR. The data were 100% complete with respect to analysis. No data were rejected.

References

Alaska Department of Environmental Conservation (ADEC), 2021. 18 Alaska Administrative Code (AAC) 75, Oil and Other Hazardous Substances Pollution Control. November 18.

------. 2019. ADEC Technical Memorandum, *Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data*. October.

United States Environmental Protection Agency (USEPA), 2020. *National Functional Guidelines for Organic Superfund Methods Data Review*. November.

Attachments

Attachment 1 – ADEC Laboratory Data Review Checklist Attachment 2 – Laboratory Deliverable

Attachment 1

ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed By:				
Jennifer McLean				
Title:				
Associate Scientist				
Date:				
July 14, 2022				
Consultant Firm:				
SLR International Corporation				
Laboratory Name:				
SGS North America Inc., Anchorage	;			
Laboratory Report Number:				
1222655				
Laboratory Report Date:				
June 30, 2022				
CS Site Name:				
Valdez Marine Terminal Ship Escort	t/Response Vessel System			
ADEC File Number:				
NA				
Hazard Identification Number:				
NA				

	1222655
La	boratory Report Date:
	June 30, 2022
CS	Site Name:
	Valdez Marine Terminal Ship Escort/Response Vessel System
	Note: Any N/A or No box checked must have an explanation in the comments box.
1.	<u>Laboratory</u>
	a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	All samples were submitted to, and all analyses were conducted at SGS North America, Inc. (SGS) in Anchorage. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number 17-021 for the applicable analytical methods
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	$Yes \square No \square N/A \boxtimes Comments:$
	No samples were transferred.
2.	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes \boxtimes No \square N/A \square Comments:
	b. Correct analyses requested?
	$Yes \boxtimes No \square N/A \square$ Comments:
3.	<u>Laboratory Sample Receipt Documentation</u>
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes \boxtimes No \square N/A \square Comments:
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	$Yes \boxtimes No \square N/A \square$ Comments:

1222655
Laboratory Report Date:
June 30, 2022
CS Site Name:
Valdez Marine Terminal Ship Escort/Response Vessel System
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
Yes⊠ No□ N/A□ Comments:
No issues were noted.
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
$Yes \square No \square N/A \boxtimes Comments:$
None were noted.
e. Data quality or usability affected?
Comments:
No affect.
4. Case Narrative
a. Present and understandable?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Discrepancies, errors, or QC failures identified by the lab?
Yes \boxtimes No \square N/A \square Comments:
The case narrative noted LCS recoveries for DRO and RRO outside acceptable limits. All LCS's recovered within acceptable limits for these analytes as reviewed in the PDF laboratory report and EDD.
c. Were all corrective actions documented?
Yes \square No \square N/A \boxtimes Comments:
No corrective actions were necessary.
d. What is the effect on data quality/usability according to the case narrative?
Comments:
No impact.

1	222655
Labo	ratory Report Date:
Jı	une 30, 2022
CS S	ite Name:
V	Valdez Marine Terminal Ship Escort/Response Vessel System
5. <u>S</u>	amples Results
	a. Correct analyses performed/reported as requested on COC?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. All applicable holding times met?
	$Yes \boxtimes No \square N/A \square$ Comments:
	c. All soils reported on a dry weight basis?
	Yes \boxtimes No \square N/A \square Comments:
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	Yes□ No⊠ N/A□ Comments:
	Results of non-detect with LODs not meeting applicable cleanup levels were limited to those noted below. LODs were compared to Title 18 of the AAC Chapter 75, Tables B1 and B2, Method Two cleanup levels for the Over 40-Inch Zone and Migration to Groundwater. For fuels, the lowest of ingestion or inhalation for the Over 40-Inch Zone, and the Migration to Groundwater for the Over 40-Inch Zone cleanup levels were used.
	For all samples and the trip blank, the LOD for 1,2-dibromoethane by Method SW8260D ranged from 0.000575 milligrams per kilogram (mg/kg) to 0.00108 mg/kg, above the Migration to Groundwater cleanup level of 0.00024 mg/kg. This was due to typical laboratory methodology limitations.
	e. Data quality or usability affected?

Where LODs were above cleanup levels due to methodology limitations, it is not possible to state with certainty the absence of 1,2-dibromoethane below the reported LOD, but above the Migration to Groundwater cleanup level. This data is limited in usability for that purpose. Data usability was considered minimally impacted, and all data was considered usable without qualification.

1222655
Laboratory Report Date:
June 30, 2022
CS Site Name:
Valdez Marine Terminal Ship Escort/Response Vessel System
6. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□ Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□ Comments:
There were two GRO method blank detections between the LOD and LOQ.
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
Sample detections within five times that of the associated blank and above the LOQ were considered affected. All associated samples had results that were already estimated values below the LOQ, therefore, no data was affected.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
No data was affected. All associated samples had results that were already estimated values below the LOQ. No additional qualification was necessary.
v. Data quality or usability affected? Comments:
No impact.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date: June 30, 2022 CS Site Name: Valdez Marine Terminal Ship Escort/Response Vessel System	1222655	
CS Site Name: Valdez Marine Terminal Ship Escort/Response Vessel System	Laboratory Report Date:	
ii. Metals/Inorganics — one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments: No inorganics were analyzed. iii. Accuracy — All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes□ No□ N/A□ Comments: iv. Precision — All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes□ No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A□ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	June 30, 2022	
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments: No inorganics were analyzed. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes☑ No□ N/A□ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes☑ No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	CS Site Name:	
samples? Yes□ No□ N/A⊠ Comments: No inorganics were analyzed. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes□ No□ N/A□ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes□ No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A□ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	Valdez Marine Terminal Ship Escort/Response Vessel System	
No inorganics were analyzed. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes № No		lysis and 20
iii. Accuracy — All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes No□ N/A□ Comments: iv. Precision — All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A□ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	$Yes \square No \square N/A \boxtimes Comments:$	
project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes No□ N/A□ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A□ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	No inorganics were analyzed.	
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes⊠ No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	project specified objectives, if applicable? (AK Petroleum methods: AK101 60%	%-120%,
limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A□ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	Yes⊠ No□ N/A□ Comments:	
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	limits and project specified objectives, if applicable? RPD reported from LCS/L0 sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the	CSD, and or
Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	Yes⊠ No□ N/A□ Comments:	
Comments: NA vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:		
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	1 1	
Yes□ No□ N/A⊠ Comments: vii. Data quality or usability affected? (Use comment box to explain.) Comments:	NA	
vii. Data quality or usability affected? (Use comment box to explain.) Comments:	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly define	ed?
Comments:	$Yes \square No \square N/A \boxtimes Comments:$	

1222655	
Laboratory Report Date:	
June 30, 2022	
CS Site Name:	
Valdez Marine Terminal Ship Escort/Response Vessel System	
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments: 	
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No□ N/A⊠ Comments:	
No inorganics were analyzed.	
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits a project specified objectives, if applicable? Yes□ No⊠ N/A□ Comments: 	ıd
MS/MSDs were not evaluated when samples were analyzed at dilutions of greater than five-fold because the quantitation was not considered accurate.	
For Method SW870D, MS/MSD recoveries for several analytes did not meet laboratory criteria. The parent sample was not associated with this project and the exceedances were likely due to analysis ten-fold dilution.	
iv. Precision – All relative percent differences (RPD) reported and less than method or labora limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.	
Yes No N/A Comments:	
For Method SW870D, MS/MSD RPDs for fluoranthene, phenanthrene, and pyrene did not meet laboratory criteria. The parent sample was not associated with this project and the exceedances we likely due to analysis at a ten-fold dilution.	e
If 0/D = 0 DDD is	

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Since the LCS recovered within acceptable limits for all analytes establishing batch accuracy, no project data was affected by the recovery exceedances. It should be noted that for the analytes with RPD exceedances (fluoranthene, phenanthrene, and pyrene) there was no acceptable measure of laboratory precision for the batch. Refer to the 6.f.iii and 6.f.iv for further discussion.

1222655	
Laboratory Report Date:	
June 30, 2022	
CS Site Name:	
Valdez Marine Terminal	Ship Escort/Response Vessel System
vi. Do the affecto Yes⊠ No□	ed sample(s) have data flags? If so, are the data flags clearly defined? $N/A\square$ Comments:
	y exceedances, no project data were affected. ceedances, refer to the 6.f.iii and 6.f.iv for further discussion.
vii. Data quality	or usability affected? (Use comment box to explain.) Comments:
All data were usable a	as qualified. Refer to the 6.f.iii and 6.f.iv for further discussion.
d. Surrogates – Orga	nics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
i. Are surrogate samples?	/IDA recoveries reported for organic analyses – field, QC and laboratory
Yes⊠ No□	$N/A\square$ Comments:
project specif samples and 6	all percent recoveries (%R) reported and within method or laboratory limits and fied objectives, if applicable? (AK Petroleum methods 50-150 %R for field 60-120 %R for QC samples; all other analyses see the laboratory report pages) N/A Comments:
All surrogate recovering Surrogates were not e	des analyzed at dilutions of five-fold or less were within acceptable limits. valuated when samples were analyzed at dilutions of greater than five-fold on was not considered accurate.
iii. Do the sampl flags clearly of	e results with failed surrogate/IDA recoveries have data flags? If so, are the data defined?
Yes□ No□	N/A⊠ Comments:
All surrogate recoveri	es were acceptable.
iv. Data quality	or usability affected? Comments:
No impact.	

1222655				
Laboratory Report Date:				
June 30, 2022				
CS Site Name:				
Valdez Marine Terminal Ship Escort/Response Vessel System				
e. Trip Blanks				
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 				
$Yes \boxtimes No \square N/A \square$ Comments:				
 ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) Yes⊠ No□ N/A□ Comments: 				
iii. All results less than LOQ and project specified objectives? Yes⊠ No□ N/A□ Comments:				
There was one GRO detection in the trip blank between the LOD and LOQ.				
iv. If above LOQ or project specified objectives, what samples are affected? Comments:				
All associated samples had results that were already estimated values below the LOQ. No additional qualification was necessary. No data was affected				
v. Data quality or usability affected? Comments:				
No data was affected.				
f. Field Duplicate				
i. One field duplicate submitted per matrix, analysis and 10 project samples?				
Yes⊠ No□ N/A□ Comments:				
SB2-7-11 was a duplicate of SB2-7-11.				
ii. Submitted blind to lab?				
Yes⊠ No□ N/A□ Comments:				

Laboratory Report Date:

June 30, 2022

CS Site Name:

Valdez Marine Terminal Ship Escort/Response Vessel System

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \square No \boxtimes N/A \square Comments:

Primary/duplicate RPDs for the following SW8270D analytes were greater than 50%.

Method SW8270D	Parent Sample Result (mg/kg) ²	Field Duplicate Result (mg/kg) ²	RPD (%)	Flag (Parent/ Duplicate) ³	Cleanup Level (mg/kg) ¹
Analuta	SB2-7-11	SB92-7-11			
Analyte	Dilution = 20x	Dilution = 1x			
Anthracene	3.02	0.0485	197	Q/Q	390
Benzo(a)Anthracene	0.981	0.11	160	Q/Q	0.7
Benzo[a]pyrene ⁴	0.485 J	0.124	119	NA/NA	1.9
Benzo[b]Fluoranthene	0.881	0.236	115	Q/Q	12
Benzo[g,h,i]perylene ⁴	0.164 J	0.0549	100	NA/NA	1900
Benzo[k]fluoranthene ⁴	0.295 J	0.0683	125	NA/NA	120
Chrysene	2.96	0.177	177	Q/Q	600
Fluoranthene	1.03	0.254	121	Q/Q	590
Indeno[1,2,3-c,d] pyrene ⁴	0.183 J	0.0579	104	NA/NA	12
Phenanthrene	0.571	0.0659	159	Q/Q	39
Pyrene	0.749	0.174	125	Q/Q	87

1222655
aboratory Report Date:
June 30, 2022
S Site Name:
Valdez Marine Terminal Ship Escort/Response Vessel System
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
Samples chronologically associated with this parent sample/duplicate pair are SB1-5, SB1-8, SB1-3 and SB2-5-7. Impacted analytes with results above the LOQ for the parent/duplicate pair and all associated samples were flagged with a 'Q' to indicate estimated values with unknown bias. Flags were not applicable for non-detects since precision would impact the quantity of analyte detected, the presence or absence. Results already "J" flagged as estimated with unknown bias due to the low level of detection were not additionally qualified.
For benzo[a]pyrene, benzo[g,h,i]perylene, benzo[k]fluoranthene, and indeno[1,2,3-c,d] pyrene due sample dilution, the estimated value below the LOQ was greater than the detected value above the LOQ. In this instance the RPD calculation is considered inaccurate. For the impacted analytes there no measure of field precision. As laboratory precision was acceptable, data were not qualified due the absence of measured field precision.
For all impacted analytes except fluoranthene, phenanthrene, and pyrene, laboratory batch precision was established by an MS/MSD pair with RPDs within acceptable limits; therefore, the impact to disconsidered minimal. All impacted fluoranthene, phenanthrene, and pyrene results were over 10 fold below the applicable regulatory criteria; therefore, data usability was not impacted.
In all cases, the higher of the primary sample/duplicate value should be used for reporting purposes Except for benzo(a)anthracene in primary sample SB2-7-11, all impacted data, were well below cleanup levels; therefore, data usability was not affected. For benzo(a)anthracene, data for duplicat pair SB2-7-11/SB92-7-11 should be considered an exceedance of ADEC criteria and data is usable All data were usable as qualified.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
$Yes \square No \square N/A \boxtimes Comments:$
Dedicated or disposable equipment was used for the collection of all samples.
i. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
ii. If above LOQ or project specified objectives, what samples are affected? Comments:
NΑ

12	222655					
Labor	atory Report Date:					
Ju	ne 30, 2022					
CS Si	CS Site Name:					
V	aldez Marine Terminal Ship Escort/Response Vessel System					
	iii. Data quality or usability affected? Comments:					
	No impact.					
7. <u>O</u>	ther Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)					
	a. Defined and appropriate?					
	$Yes \boxtimes No \square N/A \square$ Comments:					

Attachment 2

Laboratory Deliverable

(Data package and electronic files)

Laboratory Report of Analysis

To: Alyeska Pipeline Srv Co.

543 3rd Ave Suite 235 Fairbanks, AK 99701 (907)452-2252

Report Number: 1222655

Client Project: Alyeska SERVS

Dear Carl Benson,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc. Justin Nelson 2022.06.30

15:01:42 -08'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 06/30/2022 2:42:04PM Results via Engage

SGS North America Inc.

Case Narrative

SGS Client: Alyeska Pipeline Srv Co. SGS Project: 1222655 Project Name/Site: Alyeska SERVS Project Contact: Carl Benson

Refer to sample receipt form for information on sample condition.

LCS for HBN 1837431 [XXX/46388 (1667337) LCS

AK102/103 - LCS recoveries for DRO and RRO do not meet QC criteria. These analytes were not reported above the LOQ in the associated samples.

1222615019MS (1667450) MS

8270D SIM - PAH MS recoveries for several analytes do not meet QC criteria. See LCS for accuracy requirements. 8270D SIM - PAH surrogate recovery for 2-methylnaphthalene-d10 does not meet QC criteria due to matrix interference.

1222615019MSD (1667451) MSD

8270D SIM - PAH MSD recoveries for several analytes do not meet QC criteria. See LCS for accuracy requirements. 8270D SIM - PAH MS/MSD RPDs for several analytes do not meet QC criteria. These analytes were not reported above the LOQ in the parent sample.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 06/30/2022 2:42:06PM

Report of Manual Integrations

Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason		
8270D SIM (PAH)						
1222655001	SB1-8	XMS13201	Benzo[b]Fluoranthene	SP		
1222655001	SB1-8	XMS13201	Benzo[k]fluoranthene	RP		
1222655003	SB1-5	XMS13201	Benzo[b]Fluoranthene	SP		
1222655003	SB1-5	XMS13201	Benzo[k]fluoranthene	RP		
1222655004	SB2-5-7	XMS13201	Benzo[b]Fluoranthene	SP		
1222655004	SB2-5-7	XMS13201	Benzo[k]fluoranthene	RP		
1222655005	SB2-7-11	XMS13201	Benzo[b]Fluoranthene	SP		
1222655005	SB2-7-11	XMS13201	Benzo[k]fluoranthene	RP		
1222655006	SB92-7-11	XMS13201	Benzo[b]Fluoranthene	SP		
1222655006	SB92-7-11	XMS13201	Benzo[k]fluoranthene	RP		

Manual Integration Reason Code Descriptions

Code	Description
0	Original Chromatogram
M	Modified Chromatogram
SS	Skimmed surrogate
BLG	Closed baseline gap
RP	Reassign peak name
PIR	Pattern integration required
IT	Included tail
SP	Split peak
RSP	Removed split peak
FPS	Forced peak start/stop
BLC	Baseline correction
PNF	Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 06/30/2022 2:42:07PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 05/31/2022 for Nitrate as N by SM 4500NO3-F) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification

J The quantitation is an estimation.

LCS(D) Laboratory Control Spike (Duplicate)

LUQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 06/30/2022 2:42:08PM

SGS North America Inc. | 200 West Potter Drive, Anchorage, AK 99518 | t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Oli t O I - ID	1 - b 0 l - ID	0-1141	Described	NA - 4i.
Client Sample ID	<u>Lab Sample ID</u>	<u>Collected</u>	<u>Received</u>	<u>Matrix</u>
SB1-8	1222655001	05/27/2022	06/01/2022	Soil/Solid (dry weight)
SB1-20	1222655002	05/27/2022	06/01/2022	Soil/Solid (dry weight)
SB1-5	1222655003	05/27/2022	06/01/2022	Soil/Solid (dry weight)
SB2-5-7	1222655004	05/27/2022	06/01/2022	Soil/Solid (dry weight)
SB2-7-11	1222655005	05/27/2022	06/01/2022	Soil/Solid (dry weight)
SB92-7-11	1222655006	05/27/2022	06/01/2022	Soil/Solid (dry weight)
Trip Blank	1222655007	05/27/2022	06/01/2022	Soil/Solid (drv weight)

Method Description

8270 SIM (PAH)

8270 PAH SIM Semi-Volatiles GC/MS

AK102

Diesel/Residual Range Organics

AK103

Diesel/Residual Range Organics

AK101

Gasoline Range Organics (S)

SM21 2540G

Percent Solids SM2540G

SW8260D

VOC 8260 (S) Field Extracted

Print Date: 06/30/2022 2:42:10PM

Detectable Results Summary

Client Sample ID: SB1-8			
Lab Sample ID: 1222655001	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Acenaphthylene	6.87J	ug/kg
	Anthracene	12.3J	ug/kg
	Benzo(a)Anthracene	34.5	ug/kg
	Benzo[a]pyrene	34.0	ug/kg
	Benzo[b]Fluoranthene	78.7	ug/kg
	Benzo[g,h,i]perylene	14.8J	ug/kg
	Benzo[k]fluoranthene	18.5J	ug/kg
	Chrysene	44.9	ug/kg
	Fluoranthene	53.5	ug/kg
	Indeno[1,2,3-c,d] pyrene	16.2J	ug/kg
	Phenanthrene	22.6J	ug/kg
	Pyrene	27.3	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	13.5J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.26J	mg/kg
Volatile GC/MS- Petroleum VOC Group	Naphthalene	12.2J	ug/kg
Client Sample ID: SB1-20			
Lab Sample ID: 1222655002	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	13.5J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.77J	mg/kg
	Cacomic Hange Organics	1.770	mgmg
Client Sample ID: SB1-5			
Lab Sample ID: 1222655003	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	2-Methylnaphthalene	8.50J	ug/kg
	Acenaphthylene	9.45J	ug/kg
	Anthracene	52.0	ug/kg
	Benzo(a)Anthracene	174	ug/kg
	Benzo[a]pyrene	73.0	ug/kg
	Benzo[b]Fluoranthene	136	ug/kg
	Benzo[g,h,i]perylene	22.7J	ug/kg
	Benzo[k]fluoranthene	51.0	ug/kg
	Chrysene	232	ug/kg
	Dibenzo[a,h]anthracene	6.94J	ug/kg
	Fluoranthene	61.4	ug/kg
	Fluorene	19.5J	ug/kg
	Indeno[1,2,3-c,d] pyrene	24.5J	ug/kg
	Naphthalene	8.29J	ug/kg
	Phenanthrene	82.0	ug/kg
	Pyrene	32.9	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	11.3J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.14J	mg/kg
Volatile GC/MS- Petroleum VOC Group	Naphthalene	10.9J	ug/kg

Print Date: 06/30/2022 2:42:11PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: SB2-5-7			
Lab Sample ID: 1222655004	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	Acenaphthylene	15.0J	ug/kg
-	Anthracene	34.2	ug/kg
	Benzo(a)Anthracene	89.6	ug/kg
	Benzo[a]pyrene	82.7	ug/kg
	Benzo[b]Fluoranthene	165	ug/kg
	Benzo[g,h,i]perylene	37.4	ug/kg
	Benzo[k]fluoranthene	42.4	ug/kg
	Chrysene	117	ug/kg
	Dibenzo[a,h]anthracene	10.7J	ug/kg
	Fluoranthene	88.2	ug/kg
	Fluorene	9.13J	ug/kg
	Indeno[1,2,3-c,d] pyrene	39.8	ug/kg
	Phenanthrene	54.0	ug/kg
	Pyrene	58.8	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	11.7J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.62J	mg/kg
Volatile GC/MS- Petroleum VOC Group	Naphthalene	11.4J	ug/kg
Client Sample ID: SB2-7-11			
Lab Sample ID: 1222655005	Parameter	Result	Units
Polynuclear Aromatics GC/MS	Anthracene	3020	ug/kg
,	Benzo(a)Anthracene	981	ug/kg
	Benzo[a]pyrene	485J	ug/kg
	Benzo[b]Fluoranthene	881	ug/kg
	Benzo[g,h,i]perylene	164J	ug/kg
	Benzo[k]fluoranthene	295J	ug/kg
	Chrysene	2960	ug/kg
	Fluoranthene	1030	ug/kg
	Fluorene	203J	ug/kg
	Indeno[1,2,3-c,d] pyrene	183J	ug/kg
	Phenanthrene	571	ug/kg
	Pyrene	749	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	13.3J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.14J	mg/kg

Print Date: 06/30/2022 2:42:11PM

7 of 56

Detectable Results Summary

Client Sample ID: SB92-7-11			
Lab Sample ID: 1222655006	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Acenaphthylene	25.7J	ug/kg
	Anthracene	48.5	ug/kg
	Benzo(a)Anthracene	110	ug/kg
	Benzo[a]pyrene	124	ug/kg
	Benzo[b]Fluoranthene	236	ug/kg
	Benzo[g,h,i]perylene	54.9	ug/kg
	Benzo[k]fluoranthene	68.3	ug/kg
	Chrysene	177	ug/kg
	Dibenzo[a,h]anthracene	14.7J	ug/kg
	Fluoranthene	254	ug/kg
	Fluorene	10.2J	ug/kg
	Indeno[1,2,3-c,d] pyrene	57.9	ug/kg
	Phenanthrene	65.9	ug/kg
	Pyrene	174	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	13.1J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.30J	mg/kg
Volatile GC/MS- Petroleum VOC Group	Naphthalene	19.9J	ug/kg
Client Sample ID: Trip Blank			
Lab Sample ID: 1222655007	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	1.33J	mg/kg

Print Date: 06/30/2022 2:42:11PM

Client Sample ID: SB1-8

Client Project ID: Alyeska SERVS Lab Sample ID: 1222655001 Lab Project ID: 1222655 Collection Date: 05/27/22 12:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):97.2 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	12.9 U	25.7	6.42	ug/kg	1		06/27/22 16:29
2-Methylnaphthalene	12.9 U	25.7	6.42	ug/kg	1		06/27/22 16:29
Acenaphthene	12.9 U	25.7	6.42	ug/kg	1		06/27/22 16:29
Acenaphthylene	6.87 J	25.7	6.42	ug/kg	1		06/27/22 16:29
Anthracene	12.3 J	25.7	6.42	ug/kg	1		06/27/22 16:29
Benzo(a)Anthracene	34.5	25.7	6.42	ug/kg	1		06/27/22 16:29
Benzo[a]pyrene	34.0	25.7	6.42	ug/kg	1		06/27/22 16:29
Benzo[b]Fluoranthene	78.7	25.7	6.42	ug/kg	1		06/27/22 16:29
Benzo[g,h,i]perylene	14.8 J	25.7	6.42	ug/kg	1		06/27/22 16:29
Benzo[k]fluoranthene	18.5 J	25.7	6.42	ug/kg	1		06/27/22 16:29
Chrysene	44.9	25.7	6.42	ug/kg	1		06/27/22 16:29
Dibenzo[a,h]anthracene	12.9 U	25.7	6.42	ug/kg	1		06/27/22 16:29
Fluoranthene	53.5	25.7	6.42	ug/kg	1		06/27/22 16:29
Fluorene	12.9 U	25.7	6.42	ug/kg	1		06/27/22 16:29
Indeno[1,2,3-c,d] pyrene	16.2 J	25.7	6.42	ug/kg	1		06/27/22 16:29
Naphthalene	10.3 U	20.5	5.14	ug/kg	1		06/27/22 16:29
Phenanthrene	22.6 J	25.7	6.42	ug/kg	1		06/27/22 16:29
Pyrene	27.3	25.7	6.42	ug/kg	1		06/27/22 16:29
Surrogates							
2-Methylnaphthalene-d10 (surr)	78.5	58-103		%	1		06/27/22 16:29
Fluoranthene-d10 (surr)	81.7	54-113		%	1		06/27/22 16:29

Batch Information

Analytical Batch: XMS13201 Analytical Method: 8270D SIM (PAH)

Analyst: NRB

Analytical Date/Time: 06/27/22 16:29 Container ID: 1222655001-A Prep Batch: XXX46394
Prep Method: SW3550C
Prep Date/Time: 06/10/22 12:06
Prep Initial Wt./Vol.: 22.536 g
Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM

J flagging is activated

Client Sample ID: SB1-8

Client Project ID: **Alyeska SERVS**Lab Sample ID: 1222655001
Lab Project ID: 1222655

Collection Date: 05/27/22 12:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):97.2 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Diesel Range Organics	13.5 J	20.3	9.15	mg/kg	1		06/23/22 22:55
Surrogates							
5a Androstane (surr)	94.8	50-150		%	1		06/23/22 22:55

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/23/22 22:55 Container ID: 1222655001-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.366 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	51.0 U	102	43.7	mg/kg	1		06/23/22 22:55
Surrogates							
n-Triacontane-d62 (surr)	90.8	50-150		%	1		06/23/22 22:55

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK103

Analyst: MDT

Analytical Date/Time: 06/23/22 22:55 Container ID: 1222655001-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.366 g
Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM J flagging is activated

Client Sample ID: SB1-8

Client Project ID: **Alyeska SERVS**Lab Sample ID: 1222655001
Lab Project ID: 1222655

Collection Date: 05/27/22 12:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):97.2 Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 1.26 J	<u>LOQ/CL</u> 1.92	<u>DL</u> 0.576	<u>Units</u> mg/kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/10/22 20:09
Surrogates							
4-Bromofluorobenzene (surr)	81.4	50-150		%	1		06/10/22 20:09

Batch Information

Analytical Batch: VFC16123 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/10/22 20:09 Container ID: 1222655001-B Prep Batch: VXX38686 Prep Method: SW5035A Prep Date/Time: 05/27/22 12:30 Prep Initial Wt./Vol.: 72.404 g Prep Extract Vol: 27.0385 mL

Print Date: 06/30/2022 2:42:12PM J flagging is activated

Client Sample ID: SB1-8

Client Project ID: Alyeska SERVS Lab Sample ID: 1222655001 Lab Project ID: 1222655

Collection Date: 05/27/22 12:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):97.2 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date A</u>	<u> Analyzed</u>
1,2,4-Trimethylbenzene	38.5 U	76.9	23.1	ug/kg	1	06/03/	22 16:08
1,2-Dibromoethane	0.575 U	1.15	0.576	ug/kg	1	06/03/	22 16:08
1,2-Dichloroethane	0.770 U	1.54	0.538	ug/kg	1	06/03/	22 16:08
1,3,5-Trimethylbenzene	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
Benzene	4.80 U	9.61	3.00	ug/kg	1	06/03/	22 16:08
Ethylbenzene	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
Isopropylbenzene (Cumene)	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
Methyl-t-butyl ether	38.5 U	76.9	23.8	ug/kg	1	06/03/	22 16:08
Naphthalene	12.2 J	19.2	5.99	ug/kg	1	06/03/	22 16:08
n-Butylbenzene	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
o-Xylene	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
P & M -Xylene	19.2 U	38.4	11.5	ug/kg	1	06/03/	22 16:08
sec-Butylbenzene	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
tert-Butylbenzene	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
Toluene	9.60 U	19.2	5.99	ug/kg	1	06/03/	22 16:08
Xylenes (total)	28.8 U	57.6	17.5	ug/kg	1	06/03/	22 16:08
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	71-136		%	1	06/03/	22 16:08
4-Bromofluorobenzene (surr)	81.6	55-151		%	1		22 16:08
Toluene-d8 (surr)	99.1	85-116		%	1		22 16:08
Totalio do (bair)	33.1	00 110		,,	•	00/00/	0.00

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 06/03/22 16:08 Container ID: 1222655001-B

Prep Batch: VXX38653 Prep Method: SW5035A Prep Date/Time: 05/27/22 12:30 Prep Initial Wt./Vol.: 72.404 g Prep Extract Vol: 27.0385 mL

Print Date: 06/30/2022 2:42:12PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: SB1-20

Client Project ID: **Alyeska SERVS**Lab Sample ID: 1222655002
Lab Project ID: 1222655

Collection Date: 05/27/22 12:35 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):80.6 Location:

Results by Polynuclear Aromatics GC/MS

_						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
2-Methylnaphthalene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Acenaphthene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Acenaphthylene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Anthracene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Benzo(a)Anthracene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Benzo[a]pyrene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Benzo[b]Fluoranthene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Benzo[g,h,i]perylene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Benzo[k]fluoranthene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Chrysene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Dibenzo[a,h]anthracene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Fluoranthene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Fluorene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Indeno[1,2,3-c,d] pyrene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Naphthalene	12.3 U	24.5	6.13	ug/kg	1		06/27/22 16:50
Phenanthrene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Pyrene	15.3 U	30.6	7.66	ug/kg	1		06/27/22 16:50
Surrogates							
2-Methylnaphthalene-d10 (surr)	76.5	58-103		%	1		06/27/22 16:50
Fluoranthene-d10 (surr)	78.1	54-113		%	1		06/27/22 16:50

Batch Information

Analytical Batch: XMS13201 Analytical Method: 8270D SIM (PAH)

Analyst: NRB

Analytical Date/Time: 06/27/22 16:50 Container ID: 1222655002-A Prep Batch: XXX46394
Prep Method: SW3550C
Prep Date/Time: 06/10/22 12:06
Prep Initial Wt./Vol.: 22.775 g
Prep Extract Vol: 5 mL

Client Sample ID: SB1-20

Client Project ID: Alyeska SERVS Lab Sample ID: 1222655002 Lab Project ID: 1222655 Collection Date: 05/27/22 12:35 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):80.6 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	13.5 J	24.4	11.0	mg/kg	1		06/23/22 23:05
Surrogates							
5a Androstane (surr)	102	50-150		%	1		06/23/22 23:05

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/23/22 23:05 Container ID: 1222655002-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.461 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	61.0 U	122	52.5	mg/kg	1		06/23/22 23:05
Surrogates							
n-Triacontane-d62 (surr)	98	50-150		%	1		06/23/22 23:05

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK103

Analyst: MDT

Analytical Date/Time: 06/23/22 23:05 Container ID: 1222655002-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.461 g
Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: SB1-20

Client Project ID: Alyeska SERVS Lab Sample ID: 1222655002 Lab Project ID: 1222655 Collection Date: 05/27/22 12:35 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):80.6 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL 3.58	<u>DL</u> 1.07	<u>Units</u> mg/kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/10/22 20:28
Surrogates 4-Bromofluorobenzene (surr)	61	50-150		%	1		06/10/22 20:28

Batch Information

Analytical Batch: VFC16123 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/10/22 20:28 Container ID: 1222655002-B Prep Batch: VXX38686 Prep Method: SW5035A Prep Date/Time: 05/27/22 12:35 Prep Initial Wt./Vol.: 65.224 g Prep Extract Vol: 37.6265 mL

Client Sample ID: SB1-20

Client Project ID: Alyeska SERVS Lab Sample ID: 1222655002 Lab Project ID: 1222655 Collection Date: 05/27/22 12:35 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):80.6 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	71.5 U	143	42.9	ug/kg	1		06/03/22 18:44
1,2-Dibromoethane	1.08 U	2.15	1.07	ug/kg	1		06/03/22 18:44
1,2-Dichloroethane	1.43 U	2.86	1.00	ug/kg	1		06/03/22 18:44
1,3,5-Trimethylbenzene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
Benzene	8.95 U	17.9	5.58	ug/kg	1		06/03/22 18:44
Ethylbenzene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
Isopropylbenzene (Cumene)	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
Methyl-t-butyl ether	71.5 U	143	44.4	ug/kg	1		06/03/22 18:44
Naphthalene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
n-Butylbenzene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
o-Xylene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
P & M -Xylene	35.8 U	71.5	21.5	ug/kg	1		06/03/22 18:44
sec-Butylbenzene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
tert-Butylbenzene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
Toluene	17.9 U	35.8	11.2	ug/kg	1		06/03/22 18:44
Xylenes (total)	53.5 U	107	32.6	ug/kg	1		06/03/22 18:44
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	71-136		%	1		06/03/22 18:44
4-Bromofluorobenzene (surr)	64	55-151		%	1		06/03/22 18:44
Toluene-d8 (surr)	99.5	85-116		%	1		06/03/22 18:44

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 06/03/22 18:44 Container ID: 1222655002-B Prep Batch: VXX38653 Prep Method: SW5035A Prep Date/Time: 05/27/22 12:35 Prep Initial Wt./Vol.: 65.224 g Prep Extract Vol: 37.6265 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: SB1-5

Client Project ID: Alyeska SERVS Lab Sample ID: 1222655003 Lab Project ID: 1222655

Collection Date: 05/27/22 13:45 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.4 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	12.9 U	25.8	6.46	ug/kg	1		06/27/22 17:10
2-Methylnaphthalene	8.50 J	25.8	6.46	ug/kg	1		06/27/22 17:10
Acenaphthene	12.9 U	25.8	6.46	ug/kg	1		06/27/22 17:10
Acenaphthylene	9.45 J	25.8	6.46	ug/kg	1		06/27/22 17:10
Anthracene	52.0	25.8	6.46	ug/kg	1		06/27/22 17:10
Benzo(a)Anthracene	174	25.8	6.46	ug/kg	1		06/27/22 17:10
Benzo[a]pyrene	73.0	25.8	6.46	ug/kg	1		06/27/22 17:10
Benzo[b]Fluoranthene	136	25.8	6.46	ug/kg	1		06/27/22 17:10
Benzo[g,h,i]perylene	22.7 J	25.8	6.46	ug/kg	1		06/27/22 17:10
Benzo[k]fluoranthene	51.0	25.8	6.46	ug/kg	1		06/27/22 17:10
Chrysene	232	25.8	6.46	ug/kg	1		06/27/22 17:10
Dibenzo[a,h]anthracene	6.94 J	25.8	6.46	ug/kg	1		06/27/22 17:10
Fluoranthene	61.4	25.8	6.46	ug/kg	1		06/27/22 17:10
Fluorene	19.5 J	25.8	6.46	ug/kg	1		06/27/22 17:10
Indeno[1,2,3-c,d] pyrene	24.5 J	25.8	6.46	ug/kg	1		06/27/22 17:10
Naphthalene	8.29 J	20.7	5.16	ug/kg	1		06/27/22 17:10
Phenanthrene	82.0	25.8	6.46	ug/kg	1		06/27/22 17:10
Pyrene	32.9	25.8	6.46	ug/kg	1		06/27/22 17:10
Surrogates							
2-Methylnaphthalene-d10 (surr)	81	58-103		%	1		06/27/22 17:10
Fluoranthene-d10 (surr)	80.1	54-113		%	1		06/27/22 17:10

Batch Information

Analytical Batch: XMS13201 Analytical Method: 8270D SIM (PAH)

Analyst: NRB

Analytical Date/Time: 06/27/22 17:10 Container ID: 1222655003-A

Prep Batch: XXX46394 Prep Method: SW3550C Prep Date/Time: 06/10/22 12:06 Prep Initial Wt./Vol.: 22.593 g Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: SB1-5

Client Project ID: Alyeska SERVS Lab Sample ID: 1222655003 Lab Project ID: 1222655 Collection Date: 05/27/22 13:45 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.4 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	11.3 J	20.5	9.23	mg/kg	1		06/23/22 23:15
Surrogates							
5a Androstane (surr)	77.7	50-150		%	1		06/23/22 23:15

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/23/22 23:15 Container ID: 1222655003-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.341 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	51.5 U	103	44.1	mg/kg	1		06/23/22 23:15
Surrogates							
n-Triacontane-d62 (surr)	73.2	50-150		%	1		06/23/22 23:15

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK103

Analyst: MDT

Analytical Date/Time: 06/23/22 23:15 Container ID: 1222655003-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.341 g
Prep Extract Vol: 5 mL

Client Sample ID: SB1-5

Client Project ID: **Alyeska SERVS**Lab Sample ID: 1222655003
Lab Project ID: 1222655

Collection Date: 05/27/22 13:45 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.4 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	1.14 J	2.11	0.633	mg/kg	1		06/10/22 20:46
Surrogates							
4-Bromofluorobenzene (surr)	83.9	50-150		%	1		06/10/22 20:46

Batch Information

Analytical Batch: VFC16123 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/10/22 20:46 Container ID: 1222655003-B Prep Batch: VXX38686 Prep Method: SW5035A Prep Date/Time: 05/27/22 13:45 Prep Initial Wt./Vol.: 67.407 g Prep Extract Vol: 27.4187 mL

Client Sample ID: SB1-5

Client Project ID: **Alyeska SERVS** Lab Sample ID: 1222655003 Lab Project ID: 1222655 Collection Date: 05/27/22 13:45 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.4 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	42.2 U	84.4	25.3	ug/kg	1		06/03/22 19:02
1,2-Dibromoethane	0.635 U	1.27	0.633	ug/kg	1		06/03/22 19:02
1,2-Dichloroethane	0.845 U	1.69	0.591	ug/kg	1		06/03/22 19:02
1,3,5-Trimethylbenzene	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
Benzene	5.25 U	10.5	3.29	ug/kg	1		06/03/22 19:02
Ethylbenzene	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
Isopropylbenzene (Cumene)	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
Methyl-t-butyl ether	42.2 U	84.4	26.2	ug/kg	1		06/03/22 19:02
Naphthalene	10.9 J	21.1	6.58	ug/kg	1		06/03/22 19:02
n-Butylbenzene	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
o-Xylene	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
P & M -Xylene	21.1 U	42.2	12.7	ug/kg	1		06/03/22 19:02
sec-Butylbenzene	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
tert-Butylbenzene	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
Toluene	10.6 U	21.1	6.58	ug/kg	1		06/03/22 19:02
Xylenes (total)	31.6 U	63.3	19.2	ug/kg	1		06/03/22 19:02
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	71-136		%	1		06/03/22 19:02
4-Bromofluorobenzene (surr)	83.5	55-151		%	1		06/03/22 19:02
Toluene-d8 (surr)	100	85-116		%	1		06/03/22 19:02
` <i>'</i>							

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 06/03/22 19:02 Container ID: 1222655003-B Prep Batch: VXX38653 Prep Method: SW5035A Prep Date/Time: 05/27/22 13:45 Prep Initial Wt./Vol.: 67.407 g Prep Extract Vol: 27.4187 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: SB2-5-7 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655004 Lab Project ID: 1222655 Collection Date: 05/27/22 14:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.6 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	12.9 U	25.8	6.46	ug/kg	1		06/27/22 17:31
2-Methylnaphthalene	12.9 U	25.8	6.46	ug/kg	1		06/27/22 17:31
Acenaphthene	12.9 U	25.8	6.46	ug/kg	1		06/27/22 17:31
Acenaphthylene	15.0 J	25.8	6.46	ug/kg	1		06/27/22 17:31
Anthracene	34.2	25.8	6.46	ug/kg	1		06/27/22 17:31
Benzo(a)Anthracene	89.6	25.8	6.46	ug/kg	1		06/27/22 17:31
Benzo[a]pyrene	82.7	25.8	6.46	ug/kg	1		06/27/22 17:31
Benzo[b]Fluoranthene	165	25.8	6.46	ug/kg	1		06/27/22 17:31
Benzo[g,h,i]perylene	37.4	25.8	6.46	ug/kg	1		06/27/22 17:31
Benzo[k]fluoranthene	42.4	25.8	6.46	ug/kg	1		06/27/22 17:31
Chrysene	117	25.8	6.46	ug/kg	1		06/27/22 17:31
Dibenzo[a,h]anthracene	10.7 J	25.8	6.46	ug/kg	1		06/27/22 17:31
Fluoranthene	88.2	25.8	6.46	ug/kg	1		06/27/22 17:31
Fluorene	9.13 J	25.8	6.46	ug/kg	1		06/27/22 17:31
Indeno[1,2,3-c,d] pyrene	39.8	25.8	6.46	ug/kg	1		06/27/22 17:31
Naphthalene	10.4 U	20.7	5.17	ug/kg	1		06/27/22 17:31
Phenanthrene	54.0	25.8	6.46	ug/kg	1		06/27/22 17:31
Pyrene	58.8	25.8	6.46	ug/kg	1		06/27/22 17:31
Surrogates							
2-Methylnaphthalene-d10 (surr)	81.8	58-103		%	1		06/27/22 17:31
Fluoranthene-d10 (surr)	85.7	54-113		%	1		06/27/22 17:31

Batch Information

Analytical Batch: XMS13201 Analytical Method: 8270D SIM (PAH)

Analyst: NRB

Analytical Date/Time: 06/27/22 17:31 Container ID: 1222655004-A

Prep Batch: XXX46394
Prep Method: SW3550C
Prep Date/Time: 06/10/22 12:06
Prep Initial Wt./Vol.: 22.548 g
Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: SB2-5-7 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655004 Lab Project ID: 1222655

Collection Date: 05/27/22 14:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.6 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	11.7 J	20.6	9.26	mg/kg	1		06/23/22 23:25
Surrogates							
5a Androstane (surr)	83.7	50-150		%	1		06/23/22 23:25

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK102 Analyst: MDT

Analytical Date/Time: 06/23/22 23:25 Container ID: 1222655004-A

Prep Batch: XXX46388 Prep Method: SW3550C Prep Date/Time: 06/09/22 15:19 Prep Initial Wt./Vol.: 30.176 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	51.5 U	103	44.3	mg/kg	1		06/23/22 23:25
Surrogates							
n-Triacontane-d62 (surr)	78.1	50-150		%	1		06/23/22 23:25

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK103

Analyst: MDT

Analytical Date/Time: 06/23/22 23:25 Container ID: 1222655004-A

Prep Batch: XXX46388 Prep Method: SW3550C Prep Date/Time: 06/09/22 15:19 Prep Initial Wt./Vol.: 30.176 g Prep Extract Vol: 5 mL

Client Sample ID: SB2-5-7 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655004 Lab Project ID: 1222655 Collection Date: 05/27/22 14:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.6 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 1.62 J	<u>LOQ/CL</u> 3.14	<u>DL</u> 0.943	<u>Units</u> mg/kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/13/22 21:53
Surrogates 4-Bromofluorobenzene (surr)	84.8	50-150		%	1		06/13/22 21:53

Batch Information

Analytical Batch: VFC16125 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/13/22 21:53 Container ID: 1222655004-B Prep Batch: VXX38696 Prep Method: SW5035A Prep Date/Time: 05/27/22 14:30 Prep Initial Wt./Vol.: 43.602 g Prep Extract Vol: 26.4868 mL

Client Sample ID: SB2-5-7 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655004 Lab Project ID: 1222655

Collection Date: 05/27/22 14:30 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.6 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	63.0 U	126	37.7	ug/kg	1		06/03/22 19:19
1,2-Dibromoethane	0.945 U	1.89	0.943	ug/kg	1		06/03/22 19:19
1,2-Dichloroethane	1.26 U	2.52	0.880	ug/kg	1		06/03/22 19:19
1,3,5-Trimethylbenzene	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
Benzene	7.85 U	15.7	4.91	ug/kg	1		06/03/22 19:19
Ethylbenzene	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
Isopropylbenzene (Cumene)	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
Methyl-t-butyl ether	63.0 U	126	39.0	ug/kg	1		06/03/22 19:19
Naphthalene	11.4 J	31.4	9.81	ug/kg	1		06/03/22 19:19
n-Butylbenzene	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
o-Xylene	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
P & M -Xylene	31.4 U	62.9	18.9	ug/kg	1		06/03/22 19:19
sec-Butylbenzene	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
tert-Butylbenzene	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
Toluene	15.7 U	31.4	9.81	ug/kg	1		06/03/22 19:19
Xylenes (total)	47.1 U	94.3	28.7	ug/kg	1		06/03/22 19:19
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	71-136		%	1		06/03/22 19:19
4-Bromofluorobenzene (surr)	84.3	55-151		%	1		06/03/22 19:19
Toluene-d8 (surr)	100	85-116		%	1		06/03/22 19:19

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 06/03/22 19:19 Container ID: 1222655004-B

Prep Batch: VXX38653 Prep Method: SW5035A Prep Date/Time: 05/27/22 14:30 Prep Initial Wt./Vol.: 43.602 g Prep Extract Vol: 26.4868 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: SB2-7-11 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655005 Lab Project ID: 1222655 Collection Date: 05/27/22 14:15 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.2 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	258 U	516	129	ug/kg	20		06/27/22 21:17
2-Methylnaphthalene	258 U	516	129	ug/kg	20		06/27/22 21:17
Acenaphthene	258 U	516	129	ug/kg	20		06/27/22 21:17
Acenaphthylene	258 U	516	129	ug/kg	20		06/27/22 21:17
Anthracene	3020	516	129	ug/kg	20		06/27/22 21:17
Benzo(a)Anthracene	981	516	129	ug/kg	20		06/27/22 21:17
Benzo[a]pyrene	485 J	516	129	ug/kg	20		06/27/22 21:17
Benzo[b]Fluoranthene	881	516	129	ug/kg	20		06/27/22 21:17
Benzo[g,h,i]perylene	164 J	516	129	ug/kg	20		06/27/22 21:17
Benzo[k]fluoranthene	295 J	516	129	ug/kg	20		06/27/22 21:17
Chrysene	2960	516	129	ug/kg	20		06/27/22 21:17
Dibenzo[a,h]anthracene	258 U	516	129	ug/kg	20		06/27/22 21:17
Fluoranthene	1030	516	129	ug/kg	20		06/27/22 21:17
Fluorene	203 J	516	129	ug/kg	20		06/27/22 21:17
Indeno[1,2,3-c,d] pyrene	183 J	516	129	ug/kg	20		06/27/22 21:17
Naphthalene	207 U	413	103	ug/kg	20		06/27/22 21:17
Phenanthrene	571	516	129	ug/kg	20		06/27/22 21:17
Pyrene	749	516	129	ug/kg	20		06/27/22 21:17
Surrogates							
2-Methylnaphthalene-d10 (surr)	69.6	58-103		%	20		06/27/22 21:17
Fluoranthene-d10 (surr)	79.7	54-113		%	20		06/27/22 21:17

Batch Information

Analytical Batch: XMS13201 Analytical Method: 8270D SIM (PAH)

Analyst: NRB

Analytical Date/Time: 06/27/22 21:17 Container ID: 1222655005-A Prep Batch: XXX46394
Prep Method: SW3550C
Prep Date/Time: 06/10/22 12:06
Prep Initial Wt./Vol.: 22.661 g
Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: **SB2-7-11**Client Project ID: **Alyeska SERVS**Lab Sample ID: 1222655005
Lab Project ID: 1222655

Collection Date: 05/27/22 14:15 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.2 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics		20.6	9.27	mg/kg	1	Limits	06/23/22 23:36
Surrogates 5a Androstane (surr)	75.8	50-150		%	1		06/23/22 23:36

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/23/22 23:36 Container ID: 1222655005-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.284 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	51.5 U	103	44.3	mg/kg	1		06/23/22 23:36
Surrogates							
n-Triacontane-d62 (surr)	71.5	50-150		%	1		06/23/22 23:36

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK103

Analyst: MDT

Analytical Date/Time: 06/23/22 23:36 Container ID: 1222655005-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.284 g
Prep Extract Vol: 5 mL

Client Sample ID: SB2-7-11 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655005 Lab Project ID: 1222655 Collection Date: 05/27/22 14:15 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.2 Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual	<u>LOQ/CL</u> 2.31	<u>DL</u> 0.694	<u>Units</u> mg/kg	<u>DF</u>	Allowable <u>Limits</u>	<u>Date Analyzed</u> 06/13/22 22:11
Surrogates	1.143	2.51	0.094	mg/kg	'		00/13/22 22.11
4-Bromofluorobenzene (surr)	86.9	50-150		%	1		06/13/22 22:11

Batch Information

Analytical Batch: VFC16125 Analytical Method: AK101 Analyst: PHK

Analytical Date/Time: 06/13/22 22:11 Container ID: 1222655005-B Prep Batch: VXX38696 Prep Method: SW5035A Prep Date/Time: 05/27/22 14:15 Prep Initial Wt./Vol.: 61.477 g Prep Extract Vol: 27.3469 mL

Client Sample ID: SB2-7-11 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655005 Lab Project ID: 1222655 Collection Date: 05/27/22 14:15 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.2 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	46.3 U	92.5	27.7	ug/kg	1		06/03/22 19:36
1,2-Dibromoethane	0.695 U	1.39	0.694	ug/kg	1		06/03/22 19:36
1,2-Dichloroethane	0.925 U	1.85	0.647	ug/kg	1		06/03/22 19:36
1,3,5-Trimethylbenzene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
Benzene	5.80 U	11.6	3.61	ug/kg	1		06/03/22 19:36
Ethylbenzene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
Isopropylbenzene (Cumene)	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
Methyl-t-butyl ether	46.3 U	92.5	28.7	ug/kg	1		06/03/22 19:36
Naphthalene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
n-Butylbenzene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
o-Xylene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
P & M -Xylene	23.1 U	46.2	13.9	ug/kg	1		06/03/22 19:36
sec-Butylbenzene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
tert-Butylbenzene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
Toluene	11.6 U	23.1	7.21	ug/kg	1		06/03/22 19:36
Xylenes (total)	34.7 U	69.4	21.1	ug/kg	1		06/03/22 19:36
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	71-136		%	1		06/03/22 19:36
4-Bromofluorobenzene (surr)	80.5	55-151		%	1		06/03/22 19:36
Toluene-d8 (surr)	99.2	85-116		%	1		06/03/22 19:36

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 06/03/22 19:36 Container ID: 1222655005-B Prep Batch: VXX38653 Prep Method: SW5035A Prep Date/Time: 05/27/22 14:15 Prep Initial Wt./Vol.: 61.477 g Prep Extract Vol: 27.3469 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: SB92-7-11 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655006 Lab Project ID: 1222655 Collection Date: 05/27/22 18:00 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.1 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	12.9 U	25.8	6.45	ug/kg	1		06/27/22 18:12
2-Methylnaphthalene	12.9 U	25.8	6.45	ug/kg	1		06/27/22 18:12
Acenaphthene	12.9 U	25.8	6.45	ug/kg	1		06/27/22 18:12
Acenaphthylene	25.7 J	25.8	6.45	ug/kg	1		06/27/22 18:12
Anthracene	48.5	25.8	6.45	ug/kg	1		06/27/22 18:12
Benzo(a)Anthracene	110	25.8	6.45	ug/kg	1		06/27/22 18:12
Benzo[a]pyrene	124	25.8	6.45	ug/kg	1		06/27/22 18:12
Benzo[b]Fluoranthene	236	25.8	6.45	ug/kg	1		06/27/22 18:12
Benzo[g,h,i]perylene	54.9	25.8	6.45	ug/kg	1		06/27/22 18:12
Benzo[k]fluoranthene	68.3	25.8	6.45	ug/kg	1		06/27/22 18:12
Chrysene	177	25.8	6.45	ug/kg	1		06/27/22 18:12
Dibenzo[a,h]anthracene	14.7 J	25.8	6.45	ug/kg	1		06/27/22 18:12
Fluoranthene	254	25.8	6.45	ug/kg	1		06/27/22 18:12
Fluorene	10.2 J	25.8	6.45	ug/kg	1		06/27/22 18:12
Indeno[1,2,3-c,d] pyrene	57.9	25.8	6.45	ug/kg	1		06/27/22 18:12
Naphthalene	10.3 U	20.6	5.16	ug/kg	1		06/27/22 18:12
Phenanthrene	65.9	25.8	6.45	ug/kg	1		06/27/22 18:12
Pyrene	174	25.8	6.45	ug/kg	1		06/27/22 18:12
Surrogates							
2-Methylnaphthalene-d10 (surr)	76	58-103		%	1		06/27/22 18:12
Fluoranthene-d10 (surr)	79.2	54-113		%	1		06/27/22 18:12

Batch Information

Analytical Batch: XMS13201 Analytical Method: 8270D SIM (PAH)

Analyst: NRB

Analytical Date/Time: 06/27/22 18:12 Container ID: 1222655006-A Prep Batch: XXX46394
Prep Method: SW3550C
Prep Date/Time: 06/10/22 12:06
Prep Initial Wt./Vol.: 22.689 g
Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM

Client Sample ID: **SB92-7-11** Client Project ID: **Alyeska SERVS** Lab Sample ID: 1222655006 Lab Project ID: 1222655 Collection Date: 05/27/22 18:00 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.1 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	13.1 J	20.7	9.30	mg/kg	1		06/23/22 23:46
Surrogates							
5a Androstane (surr)	84.9	50-150		%	1		06/23/22 23:46

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/23/22 23:46 Container ID: 1222655006-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.196 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	51.5 U	103	44.4	mg/kg	1		06/23/22 23:46
Surrogates							
n-Triacontane-d62 (surr)	78.6	50-150		%	1		06/23/22 23:46

Batch Information

Analytical Batch: XFC16267 Analytical Method: AK103

Analyst: MDT

Analytical Date/Time: 06/23/22 23:46 Container ID: 1222655006-A Prep Batch: XXX46388
Prep Method: SW3550C
Prep Date/Time: 06/09/22 15:19
Prep Initial Wt./Vol.: 30.196 g
Prep Extract Vol: 5 mL

Print Date: 06/30/2022 2:42:12PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: SB92-7-11 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655006 Lab Project ID: 1222655 Collection Date: 05/27/22 18:00 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.1 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	1.30 J	2.67	0.802	mg/kg	1		06/13/22 22:29
Surrogates							
4-Bromofluorobenzene (surr)	82.9	50-150		%	1		06/13/22 22:29

Batch Information

Analytical Batch: VFC16125 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/13/22 22:29 Container ID: 1222655006-B Prep Batch: VXX38696 Prep Method: SW5035A Prep Date/Time: 05/27/22 18:00 Prep Initial Wt./Vol.: 52.594 g Prep Extract Vol: 27.0287 mL

Client Sample ID: SB92-7-11 Client Project ID: Alyeska SERVS Lab Sample ID: 1222655006 Lab Project ID: 1222655 Collection Date: 05/27/22 18:00 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%):96.1 Location:

Results by Volatile GC/MS- Petroleum VOC Group

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	53.5 U	107	32.1	ug/kg	1		06/03/22 19:54
1,2-Dibromoethane	0.800 U	1.60	0.802	ug/kg	1		06/03/22 19:54
1,2-Dichloroethane	1.07 U	2.14	0.748	ug/kg	1		06/03/22 19:54
1,3,5-Trimethylbenzene	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
Benzene	6.70 U	13.4	4.17	ug/kg	1		06/03/22 19:54
Ethylbenzene	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
Isopropylbenzene (Cumene)	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
Methyl-t-butyl ether	53.5 U	107	33.1	ug/kg	1		06/03/22 19:54
Naphthalene	19.9 J	26.7	8.34	ug/kg	1		06/03/22 19:54
n-Butylbenzene	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
o-Xylene	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
P & M -Xylene	26.8 U	53.5	16.0	ug/kg	1		06/03/22 19:54
sec-Butylbenzene	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
tert-Butylbenzene	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
Toluene	13.4 U	26.7	8.34	ug/kg	1		06/03/22 19:54
Xylenes (total)	40.1 U	80.2	24.4	ug/kg	1		06/03/22 19:54
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	71-136		%	1		06/03/22 19:54
4-Bromofluorobenzene (surr)	83	55-151		%	1		06/03/22 19:54
Toluene-d8 (surr)	98.4	85-116		%	1		06/03/22 19:54

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 06/03/22 19:54 Container ID: 1222655006-B Prep Batch: VXX38653 Prep Method: SW5035A Prep Date/Time: 05/27/22 18:00 Prep Initial Wt./Vol.: 52.594 g Prep Extract Vol: 27.0287 mL

Print Date: 06/30/2022 2:42:12PM

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **Alyeska SERVS**Lab Sample ID: 1222655007
Lab Project ID: 1222655

Collection Date: 05/27/22 06:00 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	1.33 J	2.52	0.756	mg/kg	1	Limits	06/10/22 15:47
Surrogates 4-Bromofluorobenzene (surr)	82.1	50-150		%	1		06/10/22 15:47

Batch Information

Analytical Batch: VFC16123 Analytical Method: AK101

Analyst: PHK

Analytical Date/Time: 06/10/22 15:47 Container ID: 1222655007-A Prep Batch: VXX38686 Prep Method: SW5035A Prep Date/Time: 05/27/22 06:00 Prep Initial Wt./Vol.: 49.589 g Prep Extract Vol: 25 mL

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **Alyeska SERVS**Lab Sample ID: 1222655007
Lab Project ID: 1222655

Collection Date: 05/27/22 06:00 Received Date: 06/01/22 14:00 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	50.5 U	101	30.2	ug/kg	1		06/03/22 15:17
1,2-Dibromoethane	0.755 U	1.51	0.756	ug/kg	1		06/03/22 15:17
1,2-Dichloroethane	1.01 U	2.02	0.706	ug/kg	1		06/03/22 15:17
1,3,5-Trimethylbenzene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
Benzene	6.30 U	12.6	3.93	ug/kg	1		06/03/22 15:17
Ethylbenzene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
Isopropylbenzene (Cumene)	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
Methyl-t-butyl ether	50.5 U	101	31.3	ug/kg	1		06/03/22 15:17
Naphthalene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
n-Butylbenzene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
o-Xylene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
P & M -Xylene	25.2 U	50.4	15.1	ug/kg	1		06/03/22 15:17
sec-Butylbenzene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
tert-Butylbenzene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
Toluene	12.6 U	25.2	7.86	ug/kg	1		06/03/22 15:17
Xylenes (total)	37.8 U	75.6	23.0	ug/kg	1		06/03/22 15:17
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	71-136		%	1		06/03/22 15:17
4-Bromofluorobenzene (surr)	82.1	55-151		%	1		06/03/22 15:17
Toluene-d8 (surr)	98.8	85-116		%	1		06/03/22 15:17

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 06/03/22 15:17 Container ID: 1222655007-A

Prep Batch: VXX38653 Prep Method: SW5035A Prep Date/Time: 05/27/22 06:00 Prep Initial Wt./Vol.: 49.589 g Prep Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1837135 [SPT/11535]

Blank Lab ID: 1666714

QC for Samples:

 $1222655001,\,1222655002,\,1222655003,\,1222655004,\,1222655005,\,1222655006$

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Matrix: Soil/Solid (dry weight)

Batch Information

Analytical Batch: SPT11535 Analytical Method: SM21 2540G

Instrument: Analyst: BRP

Analytical Date/Time: 6/4/2022 1:04:00PM

Original Sample ID: 1222616003 Duplicate Sample ID: 1666718

QC for Samples:

Analysis Date: 06/04/2022 13:04 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

 NAME
 Original
 Duplicate
 Units
 RPD (%)
 RPD CL

 Total Solids
 89.1
 88.3
 %
 0.88
 (< 15)</td>

Batch Information

Analytical Batch: SPT11535 Analytical Method: SM21 2540G

Instrument: Analyst: BRP

Original Sample ID: 1222616006 Duplicate Sample ID: 1666719

QC for Samples:

1222655001, 1222655002

Analysis Date: 06/04/2022 13:04 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	91.0	89.2	%	2.00	(< 15)

Batch Information

Analytical Batch: SPT11535 Analytical Method: SM21 2540G

Instrument: Analyst: BRP

Original Sample ID: 1222655002 Analysis Date: 06/04/2022 13:04
Duplicate Sample ID: 1666720 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1222655001,\,1222655002,\,1222655003,\,1222655004,\,1222655005,\,1222655006$

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	80.6	83.8	%	3.80	(< 15)

Batch Information

Analytical Batch: SPT11535 Analytical Method: SM21 2540G

Instrument: Analyst: BRP

Original Sample ID: 1222662007 Duplicate Sample ID: 1666721

QC for Samples:

1222655003, 1222655004, 1222655005, 1222655006

Analysis Date: 06/04/2022 13:04 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	76.5	77.8	%	1.60	(< 15)

Batch Information

Analytical Batch: SPT11535 Analytical Method: SM21 2540G

Instrument: Analyst: BRP

Method Blank

Blank ID: MB for HBN 1837037 [VXX/38653]

Blank Lab ID: 1666677

QC for Samples:

1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006, 1222655007

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,2,4-Trimethylbenzene	50.0U	100	30.0	ug/kg
1,2-Dibromoethane	0.750U	1.50	0.750	ug/kg
1,2-Dichloroethane	1.00U	2.00	0.700	ug/kg
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	ug/kg
Benzene	6.25U	12.5	3.90	ug/kg
Ethylbenzene	12.5U	25.0	7.80	ug/kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/kg
Methyl-t-butyl ether	50.0U	100	31.0	ug/kg
Naphthalene	12.5U	25.0	7.80	ug/kg
n-Butylbenzene	12.5U	25.0	7.80	ug/kg
o-Xylene	12.5U	25.0	7.80	ug/kg
P & M -Xylene	25.0U	50.0	15.0	ug/kg
sec-Butylbenzene	12.5U	25.0	7.80	ug/kg
tert-Butylbenzene	12.5U	25.0	7.80	ug/kg
Toluene	12.5U	25.0	7.80	ug/kg
Xylenes (total)	37.5U	75.0	22.8	ug/kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	107	71-136		%
4-Bromofluorobenzene (surr)	89.5	55-151		%
Toluene-d8 (surr)	100	85-116		%

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 6/3/2022 12:07:00PM

Prep Batch: VXX38653 Prep Method: SW5035A

Prep Date/Time: 6/3/2022 6:00:00AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1222655 [VXX38653]

Blank Spike Lab ID: 1666678 Date Analyzed: 06/03/2022 12:24

Matrix: Soil/Solid (dry weight)

QC for Samples: 1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006, 1222655007

Results by SW8260D

Blank Spike (ug/kg)
Department of the Department o
<u>Parameter</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u>
1,2,4-Trimethylbenzene 750 700 93
1,2-Dibromoethane 750 773 103
1,2-Dichloroethane 750 728 97
1,3,5-Trimethylbenzene 750 697 93
Benzene 750 751 100
Ethylbenzene 750 737 98
Isopropylbenzene (Cumene) 750 765 102
Methyl-t-butyl ether 1130 1180 104
Naphthalene 750 789 105
n-Butylbenzene 750 745 99
o-Xylene 750 767 102
P & M -Xylene 1500 1510 101
sec-Butylbenzene 750 734 98
tert-Butylbenzene 750 756 101
Toluene 750 709 95
Xylenes (total) 2250 2280 101
Surrogates
1,2-Dichloroethane-D4 (surr) 750 95
4-Bromofluorobenzene (surr) 750 90
Toluene-d8 (surr) 750 100

Batch Information

Analytical Batch: VMS21667
Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Prep Batch: VXX38653
Prep Method: SW5035A

Prep Date/Time: 06/03/2022 06:00

Spike Init Wt./Vol.: 750 ug/kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1666679
MS Sample ID: 1666680 MS
MSD Sample ID: 1666681 MSD

Analysis Date: 06/03/2022 16:08 Analysis Date: 06/03/2022 13:52 Analysis Date: 06/03/2022 14:09 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006, 1222655007

Results by SW8260D

		Mat	Matrix Spike (ug/kg)			Spike Duplicate (ug/kg)				
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2,4-Trimethylbenzene	34.5U	518	498	96	518	506	98	75-123	1.70	(< 20)
1,2-Dibromoethane	0.520U	518	551	106	518	558	108	78-122	1.40	(< 20)
1,2-Dichloroethane	0.690U	518	505	98	518	508	98	73-128	0.57	(< 20)
1,3,5-Trimethylbenzene	8.65U	518	499	96	518	511	99	73-124	2.50	(< 20)
Benzene	4.32U	518	542	105	518	541	104	77-121	0.32	(< 20)
Ethylbenzene	8.65U	518	542	105	518	541	104	76-122	0.18	(< 20)
Isopropylbenzene (Cumene)	8.65U	518	559	108	518	567	109	68-134	1.50	(< 20)
Methyl-t-butyl ether	34.5U	777	837	108	777	840	108	73-125	0.36	(< 20)
Naphthalene	11.0J	518	564	107	518	602	114	62-129	6.50	(< 20)
n-Butylbenzene	8.65U	518	533	103	518	548	106	70-128	2.80	(< 20)
o-Xylene	8.65U	518	558	108	518	561	108	77-123	0.69	(< 20)
P & M -Xylene	17.3U	1040	1110	107	1040	1110	108	77-124	0.52	(< 20)
sec-Butylbenzene	8.65U	518	528	102	518	538	104	73-126	1.80	(< 20)
tert-Butylbenzene	8.65U	518	535	103	518	545	105	73-125	1.90	(< 20)
Toluene	8.65U	518	514	99	518	514	99	77-121	0.01	(< 20)
Xylenes (total)	25.9U	1550	1670	107	1550	1680	108	78-124	0.57	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		518	490	95	518	493	95	71-136	0.64	
4-Bromofluorobenzene (surr)		863	588	68	863	599	69	55-151	2.00	
Toluene-d8 (surr)		518	523	101	518	523	101	85-116	0.12	

Batch Information

Analytical Batch: VMS21667 Analytical Method: SW8260D Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 6/3/2022 1:52:00PM

Prep Batch: VXX38653

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 6/3/2022 6:00:00AM

Prep Initial Wt./Vol.: 72.40g Prep Extract Vol: 25.00mL

Method Blank

Blank ID: MB for HBN 1837755 [VXX/38686]

Blank Lab ID: 1667638

QC for Samples:

1222655001, 1222655002, 1222655003, 1222655007

Matrix: Soil/Solid (dry weight)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics1.46J2.500.750mg/kg

Surrogates

4-Bromofluorobenzene (surr) 72.6 50-150 %

Batch Information

Analytical Batch: VFC16123 Prep Batch: VXX38686 Analytical Method: AK101 Prep Method: SW5035A

Instrument: Agilent 7890 PID/FID Prep Date/Time: 6/10/2022 6:00:00AM

Analyst: PHK Prep Initial Wt./Vol.: 50 g
Analytical Date/Time: 6/10/2022 1:35:00PM Prep Extract Vol.: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1222655 [VXX38686]

Blank Spike Lab ID: 1667639 Date Analyzed: 06/10/2022 12:57 Spike Duplicate ID: LCSD for HBN 1222655

[VXX38686]

Spike Duplicate Lab ID: 1667640 Matrix: Soil/Solid (dry weight)

QC for Samples: 1222655001, 1222655002, 1222655003, 1222655007

Results by AK101

	E	Blank Spike (mg/kg)			Spike Duplicate (mg/kg)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Gasoline Range Organics	12.5	13.9	111	12.5	13.4	107	(60-120)	3.90	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25		67	1.25		76	(50-150)	12.50	

Batch Information

Analytical Batch: VFC16123 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: PHK

Prep Batch: VXX38686
Prep Method: SW5035A

Prep Date/Time: 06/10/2022 06:00

Spike Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1837831 [VXX/38696]

Analytical Date/Time: 6/13/2022 1:38:00PM

Blank Lab ID: 1667994

QC for Samples:

1222655004, 1222655005, 1222655006

Matrix: Soil/Solid (dry weight)

Results by AK101

LOQ/CL Results <u>Units</u> <u>Parameter</u> mg/kg Gasoline Range Organics 1.31J 2.50 0.750

Surrogates

4-Bromofluorobenzene (surr) 89.3 50-150

Batch Information

Prep Batch: VXX38696 Analytical Batch: VFC16125 Analytical Method: AK101 Prep Method: SW5035A

Instrument: Agilent 7890A PID/FID Prep Date/Time: 6/13/2022 6:00:00AM Analyst: PHK

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1222655 [VXX38696]

Blank Spike Lab ID: 1667995 Date Analyzed: 06/13/2022 13:01 Spike Duplicate ID: LCSD for HBN 1222655

[VXX38696]

Spike Duplicate Lab ID: 1667996 Matrix: Soil/Solid (dry weight)

QC for Samples: 1222655004, 1222655005, 1222655006

Results by AK101

	E	Blank Spike (mg/kg)			Spike Duplicate (mg/kg)					
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL	
Gasoline Range Organics	12.5	12.5	100	12.5	12.4	99	(60-120)	1.10	(< 20)	
Surrogates										
4-Bromofluorobenzene (surr)	1.25		90	1.25		93	(50-150)	2.60		

Batch Information

Analytical Batch: VFC16125
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: PHK

Prep Batch: VXX38696
Prep Method: SW5035A

Prep Date/Time: 06/13/2022 06:00

Spike Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1837431 [XXX/46388]

Blank Lab ID: 1667336

QC for Samples:

1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.09.00mg/kg

Matrix: Soil/Solid (dry weight)

Surrogates

5a Androstane (surr) 99.1 60-120 %

Batch Information

Analytical Batch: XFC16267 Prep Batch: XXX46388
Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B R Prep Date/Time: 6/9/2022 3:19:52PM

Analyst: MDT Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 6/23/2022 8:09:00PM Prep Extract Vol: 5 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1222655 [XXX46388]

Blank Spike Lab ID: 1667337

Date Analyzed: 06/21/2022 16:25

Spike Duplicate ID: LCSD for HBN 1222655

[XXX46388]

Spike Duplicate Lab ID: 1667338

Matrix: Soil/Solid (dry weight)

QC for Samples: 1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006

Results by AK102

	Blank Spike (mg/kg)								
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	ate (mg/kg) Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	667	714	107	667	693	104	(75-125)	2.90	(< 20)
Surrogates									
5a Androstane (surr)	16.7		96	16.7		93	(60-120)	2.60	

Batch Information

Analytical Batch: XFC16264 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: MDT

Prep Batch: XXX46388
Prep Method: SW3550C

Prep Date/Time: 06/09/2022 15:19

Spike Init Wt./Vol.: 16.7 mg/kg $\,$ Extract Vol: 5 mL $\,$ Dupe Init Wt./Vol.: 16.7 mg/kg $\,$ Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1837431 [XXX/46388]

Blank Lab ID: 1667336

QC for Samples:

1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics50.0U10043.0mg/kg

Matrix: Soil/Solid (dry weight)

Surrogates

n-Triacontane-d62 (surr) 95.1 60-120 %

Batch Information

Analytical Batch: XFC16267 Prep Batch: XXX46388
Analytical Method: AK103 Prep Method: SW3550C

Instrument: Agilent 7890B R Prep Date/Time: 6/9/2022 3:19:52PM

Analyst: MDT Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 6/23/2022 8:09:00PM Prep Extract Vol: 5 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1222655 [XXX46388]

Blank Spike Lab ID: 1667337

Date Analyzed: 06/21/2022 16:25

Spike Duplicate ID: LCSD for HBN 1222655

[XXX46388]

Spike Duplicate Lab ID: 1667338

Matrix: Soil/Solid (dry weight)

QC for Samples: 1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006

Results by AK103

	E	Blank Spike (mg/kg)			pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	667	711	107	667	691	104	(60-120)	2.80	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	16.7		103	16.7		96	(60-120)	6.40	

Batch Information

Analytical Batch: XFC16264 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: MDT

Prep Batch: XXX46388
Prep Method: SW3550C

Prep Date/Time: 06/09/2022 15:19

Spike Init Wt./Vol.: 16.7 mg/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 16.7 mg/kg Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1837551 [XXX/46394]

Blank Lab ID: 1667448

QC for Samples:

1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006

Results by 8270D SIM (PAH)

Parameter	Results	LOQ/CL	<u>DL</u>	Units
1-Methylnaphthalene	12.5U	25.0	6.25	ug/kg
2-Methylnaphthalene	12.5U	25.0	6.25	ug/kg
Acenaphthene	12.5U	25.0	6.25	ug/kg
Acenaphthylene	12.5U	25.0	6.25	ug/kg
Anthracene	12.5U	25.0	6.25	ug/kg
Benzo(a)Anthracene	12.5U	25.0	6.25	ug/kg
Benzo[a]pyrene	12.5U	25.0	6.25	ug/kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	ug/kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	ug/kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	ug/kg
Chrysene	12.5U	25.0	6.25	ug/kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	ug/kg
Fluoranthene	12.5U	25.0	6.25	ug/kg
Fluorene	12.5U	25.0	6.25	ug/kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	ug/kg
Naphthalene	10.0U	20.0	5.00	ug/kg
Phenanthrene	12.5U	25.0	6.25	ug/kg
Pyrene	12.5U	25.0	6.25	ug/kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	84.9	58-103		%
Fluoranthene-d10 (surr)	85.1	54-113		%

Batch Information

Analytical Batch: XMS13201

Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Analytical Date/Time: 6/27/2022 11:00:00AM

Prep Batch: XXX46394 Prep Method: SW3550C

Prep Date/Time: 6/10/2022 12:06:10PM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1222655 [XXX46394]

Blank Spike Lab ID: 1667449 Date Analyzed: 06/27/2022 11:20

Matrix: Soil/Solid (dry weight)

QC for Samples: 1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006

Results by 8270D SIM (PAH)

results by 621 0B Gilli (1 Air)									
Blank Spike (ug/kg)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>					
1-Methylnaphthalene	111	90.6	82	(43-111)					
2-Methylnaphthalene	111	88.9	80	(39-114)					
Acenaphthene	111	91.8	83	(44-111)					
Acenaphthylene	111	91.8	83	(39-116)					
Anthracene	111	95.9	86	(50-114)					
Benzo(a)Anthracene	111	95.3	86	(54-122)					
Benzo[a]pyrene	111	92.3	83	(50-125)					
Benzo[b]Fluoranthene	111	94.4	85	(53-128)					
Benzo[g,h,i]perylene	111	94.2	85	(49-127)					
Benzo[k]fluoranthene	111	99.0	89	(56-123)					
Chrysene	111	97.1	87	(57-118)					
Dibenzo[a,h]anthracene	111	94.8	85	(50-129)					
Fluoranthene	111	96.8	87	(55-119)					
Fluorene	111	94.8	85	(47-114)					
Indeno[1,2,3-c,d] pyrene	111	94.6	85	(49-130)					
Naphthalene	111	88.3	79	(38-111)					
Phenanthrene	111	101	91	(49-113)					
Pyrene	111	96.7	87	(55-117)					
Surrogates									
2-Methylnaphthalene-d10 (surr)	111		76	(58-103)					
Fluoranthene-d10 (surr)	111		81	(54-113)					

Batch Information

Analytical Batch: XMS13201 Analytical Method: 8270D SIM (PAH) Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Prep Batch: XXX46394
Prep Method: SW3550C

Prep Date/Time: 06/10/2022 12:06

Spike Init Wt./Vol.: 111 ug/kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

 Original Sample ID: 1222615019
 Analysis Date: 06/27/2022 13:44

 MS Sample ID: 1667450 MS
 Analysis Date: 06/27/2022 14:05

 MSD Sample ID: 1667451 MSD
 Analysis Date: 06/27/2022 14:25

 Matrix: Soil/Solid (dry weight)

QC for Samples: 1222655001, 1222655002, 1222655003, 1222655004, 1222655005, 1222655006

Results by 8270D SIM (PAH)

results by 62768 Silli (I All)				" >	0 "	D !: .	<i>(</i>			
		Matrix Spike (ug/kg)		Spike	e Duplicate	e (ug/kg)				
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1-Methylnaphthalene	282U	127	187J	147 *	126	194J	154 *	43-111	3.40	(< 20)
2-Methylnaphthalene	282U	127	201J	158 *	126	220J	174 *	39-114	9.10	(< 20)
Acenaphthene	282U	127	119J	94	126	116J	92	44-111	2.70	(< 20)
Acenaphthylene	282U	127	116J	91	126	119J	94	39-116	2.30	(< 20)
Anthracene	282U	127	106J	83	126	99.7J	79	50-114	6.00	(< 20)
Benzo(a)Anthracene	282U	127	119J	93	126	105J	83	54-122	12.50	(< 20)
Benzo[a]pyrene	282U	127	113J	89	126	98.4J	78	50-125	13.40	(< 20)
Benzo[b]Fluoranthene	282U	127	125J	98	126	103J	82	53-128	18.90	(< 20)
Benzo[g,h,i]perylene	282U	127	106J	83	126	104J	83	49-127	1.20	(< 20)
Benzo[k]fluoranthene	282U	127	101J	79	126	103J	82	56-123	2.50	(< 20)
Chrysene	282U	127	127J	100	126	107J	85	57-118	17.20	(< 20)
Dibenzo[a,h]anthracene	282U	127	95.7J	75	126	97.2J	77	50-129	1.50	(< 20)
Fluoranthene	282U	127	157J	123 *	126	112J	89	55-119	33.40	< (< 20)
Fluorene	282U	127	120J	94	126	116J	92	47-114	2.60	(< 20)
Indeno[1,2,3-c,d] pyrene	282U	127	104J	82	126	102J	81	49-130	1.60	(< 20)
Naphthalene	226U	127	166J	130 *	126	173J	137 *	38-111	4.30	(< 20)
Phenanthrene	282U	127	149J	117 *	126	115J	92	49-113	24.70	< (< 20)
Pyrene	282U	127	155J	121 *	126	115J	92	55-117	28.50	< (< 20)
Surrogates										
_		107	151	119 *	126	126	100	58-103	18.00	
2-Methylnaphthalene-d10 (surr)		127 127	151 91.6	72	126	126 93.8	100 74	54-113	2.40	
Fluoranthene-d10 (surr)		12/	91.0	12	120	93.8	74	04-113	2.40	

Batch Information

Analytical Batch: XMS13201

Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Analytical Date/Time: 6/27/2022 2:05:00PM

Prep Batch: XXX46394

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 6/10/2022 12:06:10PM

Prep Initial Wt./Vol.: 22.66g Prep Extract Vol: 5.00mL

SGS North America Inc. CHAIN OF CUSTODY RECORD

1222655

		_
	i Bi Bili	issi
		Ш
, .esist tista itsia iisia iisia siisia 81181 811		Ш

	CLIENT: SI	LR .												e filled out f analysis.	•	1 . [/ 1
	CONTACT:	Benson	NE#: 22211	12		Section 3 Preservative						Page of				
ection	PROJECT PROJECT/ PWSID/ PERMIT#:				# C		/\$		60 (\$ U /						
	TIEL OTTIO, TO	∕:_ E-M	AIL: ile #: <i> 423</i> DTE #:	613 M	7	N T A	Comp Grab MI	Ø				Analy	/sis*			NOTE: *The following analyses require specific method
	A	lyesha P.O	#:SPD 22	300376	MATRIX/	N E	(Multi- incre- mental)	28] /c 2010/	(103 (103	73 73						and/or compound list: BTEX, Metals, PFAS
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX CODE	R S	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	₽ ₹	D&0 102	3						REMARKS/LOC ID
	O AB	SB1-8	5/27/22	1230	Soil	2	Grah	X	×	X						
		5B1-19 5B1-20		1235			(2/0p	X	X	X						
7	3) AB	SB1-5		1345		-	Grab	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 	X	$\frac{1}{2}$						
tion	(4)4B	SBZ-5-7 SBZ-7-11		1430		 	Comp	X	X	X						
Sec	(4) AB (B) AB (B) AB	SBQZ-7-11	1	1890			Comp	\	\	×						
	(1)	Trip blank	5/27/12			ĺ	C) my	X								
		THE BIATIN	0167166	90-7												·
							`.									
												200		10 V (Na)	Data Dal	iverable Requirements:
	Relinquishe	d By: (1)	Date	Time	Received By	/:	,			Sect	ion 4	DOL	Projec	ct? Yes No		
		1 VIII	6/1/22	1499						Cooler ID:					Leve/2	
	Relinquished	By: (2)	Date	Time	Received By	y :				Reque	sted Tu	urnarou	und Tin	ne and/or Spe	cial Instruct	ions:
Section 5										4	5/6	TA	T			
Sect	Relinquished	d By: (3)	Date	Time	Received B	eived By:			7/0 44							
ľ							ì			Temp	Temp Blank ℃: <u>4.0</u> D S 7				Chain o	f Custody Seal: (Circle)
	Relinquished	d By: (4)	Date	Time	Received Fo	or Labo	ratory By]			bient [INTACT	BROKEN ABSENT
		-	6/1122	1400	Rual	L	M	u	4		Deli	ivery M	lethod:	Hand Deliver	y Comme	rical Delivery []

COC	e-Sam <u>p</u>	le Receipt	Form	
<u> 202</u>	SGS Workorder #:	1	222655	1222655
Rev	view Criteria	Condition (Yes,	No, N/A	xceptions Noted below
	y / Temperature Requirements		Note: Temperature and COC se	eal information is found on the chain of custody form
-	mple coolers have a corresponding (
	If <0°C, were sample containers ice			
	Note containers receive	ed with ice:		
	ainers received at non-compliant ter	is needed)		
	-		Note: Refer to form F-083 "Sample	e Guide" for specific holding times and sample containers.
•	es received within analytical holding			
Do sample la	abels match COC? Record discrepa	ricles. res		
	containers differs from COC, default			
information for login. If time	es differ <1hr, record details & login	per COC.		
	Were analytical requests	clear? Yes		
•	analyses with multiple option for me	ethod		
, ,	vs 8260, Metals 6020 vs 200.8)	10 14		
	rs (type/mass/volume/preservative)u			
Note. Exemption for i	metals analysis by 200.8/6020 in wa	ater.		
Volatile Analysis Re	quirements (VOC, GRO, LL-Hg	, etc.)		
Vere all soil VOAs received	with a corresponding % solids conta	ainer? Yes		
Were Trip Blanks (e.	g., VOAs, LL-Hg) in cooler with sam	nples? Yes		
Were all water VOA vials f	ree of headspace (e.g., bubbles ≤ 6	mm)? N/A		
	/OAs field extracted with Methanol+			
Note to Client: Any	"No", answer above indicates non-	compliance	with standard procedu	res and may impact data quality.
	<u>Additional ı</u>	notes (if a	pplicable):	

F102b_SRFpm_20210526 55 of 56

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1222655001-A	No Preservative Required	OK			
1222655001-B	Methanol field pres. 4 C	OK			
1222655002-A	No Preservative Required	OK			
1222655002-B	Methanol field pres. 4 C	OK			
1222655003-A	No Preservative Required	OK			
1222655003-B	Methanol field pres. 4 C	OK			
1222655004-A	No Preservative Required	OK			
1222655004-B	Methanol field pres. 4 C	OK			
1222655005-A	No Preservative Required	OK			
1222655005-B	Methanol field pres. 4 C	OK			
1222655006-A	No Preservative Required	OK			
1222655006-B	Methanol field pres. 4 C	OK			
1222655007-A	Methanol field pres. 4 C	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.