

Pump Station 9 Mainline Turbine Sump

2023 Product Recovery and Groundwater Monitoring Report

Alyeska Pipeline Service Company

P.O. Box 196660 3700 Centerpoint Drive Anchorage, Alaska 99519-6660

Prepared by:

SLR International Corporation

2700 Gambell Street, Suite 200, Anchorage, Alaska, 99503

SLR Project No: 105.01288.23010

ADEC File No: 330.38.065 ADEC Hazard No: 2681

December 5, 2023

Pump Station 9 Mainline Turbine Sump 2023 Product Recovery and Groundwater Monitoring Report

Prepared for:

Alyeska Pipeline Service Company

P.O. Box 196660

3700 Centerpoint Drive Anchorage, Alaska 99519-6660

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the individuals below.

i

Prepared by: Caroline Jennings

Reviewed and Approved by: Robert Klieforth

Executive Summary

SLR International Corporation (SLR) conducted one groundwater sampling event and multiple separate-phase hydrocarbon recovery events at the Pump Station 9 Mainline Turbine Sump site in 2023 on behalf of Alyeska Pipeline Service Company. The work was performed to monitor groundwater quality from wells without free product and remove free product from recovery wells.

Free product recovery was conducted seven times from recovery wells MW-1 and MW-5 in 2023. A total of 0.4 gallon (gal) of product was recovered from MW-1. Initial product thickness for well MW-1 was higher than the previous year, and final product thickness on the last site visit was comparable to the previous year, both below the target final thickness of 0.1 foot (ft) or less. A total of 2.7 gal of product was recovered from MW-5. The initial product thickness measured in MW-5 represents a historic low, but the measured product thickness varied throughout the field season. The final product thickness for MW-5 was lower than the previous year but above the target final thickness of 0.1 ft or less.

It is estimated that a total of approximately 3.1 gal of free product was recovered in 2023 from both product recovery wells. Approximately 1,263 gal of free product has been recovered from this site to date. This total accounts for about 63 percent of the estimated 2,000 gal of free product present at the site; however, only 178 gal of the total volume has been recovered since the shutdown of the active recovery system in 2009. In all years prior to 2019, entrained water in the recovered product mix biased the total product recovery measurements. The recovered product estimates from 2019 through 2023 were adjusted to account for the water fraction present in recovered fluid based on measurements of water and product recovered in sorbent socks in 2020.

Groundwater monitoring was conducted at monitoring wells MW-2, MW-3, MW-7, MW-8, and MW-10. Concentrations of diesel range organics (DRO) above the laboratory limit of detection were detected in the groundwater samples from MW-7, MW-8, and MW-10. At MW-7, the DRO concentration of 3.03 mg/L exceeded the ADEC groundwater cleanup level of 1.5 mg/L. This exceedance is comparable to the concentration of 2.96 mg/L that was detected at MW-7 in 2001. Only trace amounts of benzene were detected at MW-7, measuring 0.00173 mg/L, which is below the ADEC groundwater cleanup threshold of 0.0046 mg/L. Benzene, toluene, ethylbenzene, and xylenes have not exceeded ADEC groundwater cleanup levels at any well since 2011.

SLR will continue to conduct annual product recovery activities in early summer (June) of 2024 and 2025 and biennial groundwater monitoring in 2025 per the 2023-2025 *Groundwater Monitoring and Product Recovery Work Plan* (SLR, 2023).

Table of Contents

⊨xec	utive S	ummary	······	I				
Acro	nyms a	nd Abbr	reviations	v				
1.0	Intro	duction .		1				
	1.1	Physic	al Setting	1				
	1.2	Project	t Background	1				
		1.2.1	1997 and 1998 Soil Investigations	1				
		1.2.2	Free Product Recovery	2				
	1.3	Ground	dwater Monitoring	2				
	1.4	Objecti	ives and Scope of Work	3				
2.0	Regu	ılatory C	riteria	4				
3.0	Field	Activitie	es	5				
	3.1	Ground	dwater Sampling	5				
		3.1.1	Sampling Procedures	5				
		3.1.2	Analytical Methods	5				
	3.2	Quality Assurance and Quality Control						
	3.3	Product Gauging						
	3.4	Free Product Recovery						
		3.4.1	Well Thawing	6				
		3.4.2	Recovery Methods	6				
		3.4.3	Product Volume Measurement	6				
		3.4.4	Heat Trace Emplacement	7				
	3.5	Work F	Plan Deviations	7				
	3.6	Waste	Management	7				
4.0	Prod	uct Reco	overy Results	8				
	4.1	Ground	dwater Elevations	8				
	4.2	Appare	ent Free Product Thickness	8				
	4.3	Free P	Product Recovery	C				
5.0	Grou	ındwater	· Analytical Results	10				
	5.1	,	ical Data Quality					
	5.2		dwater Analytical Results					
6.0	Cond	clusions	and Recommendations	11				
7.0	Refe	rences		12				

Tables

Table 1: Groundwater and Free Product Elevations

Table 2: 1998-2023 MW-1 Summary of Product Gauging and RecoveryTable 3: 1998-2023 MW-5 Summary of Product Gauging and Recovery

Table 4: 1998-2023 Annual Product Recovery Summary

Table 5: 2023 Groundwater Analytical ResultsTable 6: Historic Groundwater Analytical Results

Figures

Figure 1: Site Location Map
Figure 2: Site Vicinity Map

Figure 3: Groundwater Monitoring Well Locations and Analytical Results

Appendices

Appendix A Photograph Log

Appendix B Field Logbook and Field Forms

Appendix C Quality Assurance Review, ADEC Data Review Checklists, and Laboratory

Analytical Results

Acronyms and Abbreviations

AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
Alyeska	Alyeska Pipeline Service Company
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
DRO	diesel range organics
ft	foot/feet
gal	gallons
LOD	limit of detection
LOQ	limit of quantitation
mg/L	milligrams per liter
MLT	Mainline Turbine
MW	monitoring well
ND	non-detect
PAH	polynuclear aromatic hydrocarbon
PS09	Pump Station 9
QA	quality assurance
QAR	quality assurance review
QC	quality control
SGS	SGS North America, Inc.
SLR	SLR International Corporation

1.0 Introduction

SLR International Corporation (SLR) conducted groundwater sampling and recovery of separate-phase hydrocarbons (hereafter referred to as free product) at the Mainline Turbine (MLT) Sump site at Pump Station 9 (PS09) for Alyeska Pipeline Service Company (Alyeska) in 2023. Recovery well product thicknesses were gauged, and product was recovered on seven site visits. This report summarizes the project approach, methodology, groundwater sampling analytical results, and product recovery results.

1.1 Physical Setting

PS09 is located approximately 7 miles south of Delta Junction on the Richardson Highway in the Tanana-Kuskokwim lowlands region of interior Alaska (Figure 1). The pump station is situated in an area of relatively flat topography at an elevation of 1,500 feet (ft) above mean sea level. The pump station is built on a gravel pad and consists of several buildings, pipeline infrastructure, and a tank farm (Figure 2). Monitoring and free product recovery wells are situated around, and hydraulically downgradient, of the former MLT Sump (Figure 3).

Soil and sediments at PS09 consist of glacial outwash and Pleistocene surficial deposits of the Tanana River drainage. During subsurface investigations and monitoring well installations conducted in 1998, the underlying soil at PS09 was predominantly poorly sorted, well-rounded sand and gravel with cobbles and boulders consistent with glacial outwash deposits (EMCON, 1999). The lithology recorded on the PS09 drinking water well log indicates that the pump station is underlain by at least 420 ft of unconsolidated, coarse sediments consisting of sand, cobbles, and boulders also indicative of glacial outwash sediments. During the 1998 investigation, groundwater was encountered at approximately 110 ft below ground surface (bgs). This aquifer appeared to be discontinuous and only a few feet thick and terminated in a dry, dense stratum of gravel and cobbles (EMCON, 1999).

1.2 Project Background

Alyeska encountered petroleum-contaminated soil during the removal of the PS09 MLT Sump in October 1996 (Alyeska spill number 1996130). The site was excavated to the extent practical; however, diesel range organics (DRO)-contaminated soil remained in the subsurface at concentrations greater than the Alaska Department of Environmental Conservation (ADEC) soil cleanup level.

Environmental investigations have been ongoing at this site since 1997, when an Alyeska contractor advanced three soil borings to assess the extent of subsurface contamination underlying the former MLT Sump. The site activities from 1997 to 2016 are described in the 2017 *Groundwater and Product Recovery Report* (SLR, 2018), and relevant details are summarized below.

1.2.1 1997 and 1998 Soil Investigations

A subsurface investigation conducted in July 1997 confirmed the presence of contamination to at least 65 ft bgs near the MLT Sump. During drilling, cobbles and boulders prevented boring advancement beyond 65 ft bgs; an additional boring was advanced through the source area using an air rotary drill rig later in 1997 and was completed as monitoring well MW-1. While drilling monitoring well MW-1, petroleum hydrocarbon-impacted soil was noted to extend to a depth of 110 ft bgs, where groundwater was encountered. A thin layer of free product was measured on the top of the groundwater table and was tentatively identified as weathered

turbine fuel. Beginning in 1998, monitoring well MW-1 was used as a product recovery well (Figure 3; EMCON, 1998). Two additional monitoring wells, MW-2 and MW-3, were installed in 1997 to evaluate the direction of groundwater flow and the hydraulic gradient at the site. Monitoring well MW-2 was installed west of the MLT Sump and monitoring well MW-3 was installed approximately 200 ft southwest of the MLT Sump (Figure 3; EMCON, 1998).

In 1998, eight additional soil borings were advanced, seven of which were converted into monitoring wells (MW-4 through MW-10). Soil and groundwater samples were also collected as part of the 1998 investigation. Monitoring well MW-9 was decommissioned in 1998, and monitoring well MW-4 was destroyed in the winter of 2004-2005, leaving the current total of eight monitoring and recovery wells on site (EMCON, 1999). Product recovery began in 1998 and has continued to the present. Recovery well MW-6 was decommissioned in 2017 and is no longer used for product recovery (SLR, 2018).

1.2.2 Free Product Recovery

Free product recovery was initiated following the installation of MW-1 in 1997 and MW-5 and MW-6 in 1998, and recovery was performed each subsequent summer at all three product recovery wells until MW-6 was decommissioned in 2017. Product recovery events continued at the other two wells through 2022 and are included in the *2022 Product Recovery Report* (SLR, 2022).

Overall, annual recovery from the product recovery system declined steadily until 2013, when the estimated recovery volume increased, likely due to using product-selective sorbent socks (hereafter referred to as sorbent socks) during site visits rather than the product recovery canisters. Recovery volumes then decreased until 2016, when they increased slightly from the previous year. The increased recovery may have occurred due to an increase in product recovery events. Recovery has shown an overall decrease since 2013, culminating in the 2020 recovery event, which saw the lowest recovered volume since 2012. The total volume of product recovered through 2020 was approximately 1,241 gallons (gal).

In 2020, SLR recovered fluid from 2-inch and 4-inch sorbents using a wringer and quantified recovered fuel and water using a graduated cylinder and electronic scale. Reduced product capacity in the sorbents was due to water entrained in the hydrophobic sorbent material. Based on the water and product recovery measurements, correction factors of 0.36 and 0.60 were established for 2-inch and 4-inch sorbent socks, respectively. Using these correction factors, volume recovery estimates for 2019 through 2023 were revised to reflect product-only volumes recovered using sorbent socks. Product volume recovery estimates could not be updated for years up to and including 2018 because product bailers were used in addition to sorbents. Using revised product recovery volumes from 2019 to 2022, 2022 represented the lowest recorded volume at the site.

1.3 Groundwater Monitoring

Groundwater sampling at the site has been conducted at various frequencies (quarterly to biennial) since the initial sampling event in 1997. Analytical results show that for the wells sampled, concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) and DRO have remained below ADEC groundwater cleanup levels in the monitoring wells since 2001, except for samples collected from monitoring wells MW-2 and MW-7. Exceedances were reported for DRO in monitoring well MW-2 in 2010 and for benzene in monitoring well MW-7 from 2004 to 2011 (SLR, 2014).

Only a single polynuclear aromatic hydrocarbon (PAH), naphthalene, has been detected at the site, at a concentration approaching ADEC cleanup levels (EMCON, 1998). Following the 2003 sampling event, analysis for PAHs was discontinued, except for naphthalene. Samples continued to be analyzed for naphthalene through 2009. With no detections of naphthalene since 2006, analysis was discontinued after 2009 with ADEC approval (SLR, 2010).

Groundwater monitoring results for the five wells sampled in 2015 and 2016 found that analyte concentrations were below their respective laboratory detection limits at all wells, except for well MW-7, where DRO and benzene concentrations were detected well below ADEC cleanup levels and 2014 concentrations. Detected analyte concentrations at monitoring well MW-7 generally declined from 2011 to 2016 (SLR, 2016).

Groundwater monitoring results in 2017 indicated that low levels of DRO and benzene, well below applicable ADEC cleanup levels, were present at sampled wells. In 2019, petroleum hydrocarbon impacts were limited to low-level detections of DRO well below applicable cleanup levels. In 2019, for the first time at the site, BTEX was not detected above the laboratory limit of detection (LOD). In 2021, DRO was detected in samples from all wells at estimated concentrations between the LOD and limit of quantitation (LOQ) except at MW-7 and MW-10, which both had non-qualified detections below the ADEC cleanup level. Groundwater samples collected from all groundwater monitoring wells were non-detect (ND) for BTEX congeners for the second time since 2004 (SLR, 2021).

1.4 Objectives and Scope of Work

The following scope was completed in 2023 to satisfy the associated project objectives:

- Groundwater monitoring at all five monitoring wells (MW-2, MW-3, MW-7, MW-8, and MW-10);
- Continued free product recovery from recovery wells MW-1 and MW-5; and
- After product recovery activities, installation of heat trace in recovery wells MW-1 and MW-5 to facilitate well thawing and early resumption of product recovery in early June 2024.

2.0 Regulatory Criteria

The current ADEC groundwater cleanup levels for petroleum hydrocarbons are contained in Title 18 of the Alaska Administrative Code, Chapter 75 (18 AAC 75), *Oil and Other Hazardous Substances Pollution Control* (ADEC, 2023). A summary of the groundwater cleanup levels listed in the regulation for constituents detected at the site is provided below:

- DRO, 1.5 milligrams per liter (mg/L);
- Benzene, 0.0046 mg/L;
- Toluene, 1.1 mg/L;
- Ethylbenzene, 0.015 mg/L; and
- Xylenes (total), 0.19 mg/L.

3.0 Field Activities

This section describes groundwater sampling and product recovery activities conducted during the 2023 field season. Field activities were conducted in accordance with the 2023-2025 Groundwater Monitoring and Product Recovery Work Plan (SLR, 2023) and ADEC Field Sampling Guidance (ADEC, 2019). All field sampling was performed by a qualified environmental professional as defined by 18 AAC 75.333. Field activities were documented in the Photograph Log (Appendix A) and in the Field Logbook and Field Forms (Appendix B).

3.1 Groundwater Sampling

SLR conducted groundwater monitoring on May 22, 2023. The monitoring event included sampling of monitoring wells MW-2, MW-3, MW-7, MW-8, and MW-10. A duplicate sample was collected from monitoring well MW-3 and designated as MW-93. Recovery wells MW-1 and MW-5 were not part of the groundwater monitoring program because they contain free product.

3.1.1 Sampling Procedures

Groundwater sampling was conducted using low-flow sampling methodology. At two wells, drawdown was maintained at less than 0.33 ft (MW-3 and MW-10); and at three wells, drawdown slightly exceeded 0.33 ft (MW-2, MW-7, and MW-8). The wells were purged with disposable polyethylene bailers. A water sample was collected after parameters had stabilized. Water quality parameters were monitored using a YSI® Pro Plus multi-parameter meter. Parameters were recorded at regular intervals during purging and included pH, temperature, specific conductance, dissolved oxygen, and oxidation-reduction potential. Groundwater Sampling Forms and the YSI® calibration log are provided in Appendix B.

Groundwater samples were collected directly into laboratory-supplied containers with volatile samples collected first, followed by non-volatile samples. Samples were stored and transported in chilled coolers under chain of custody to SGS North America, Inc. (SGS) in Fairbanks, Alaska, an ADEC-approved laboratory.

3.1.2 Analytical Methods

Groundwater samples were analyzed by SGS using the following analytical methods, consistent with previous sampling events:

- DRO by Method AK102; and
- BTEX by United States Environmental Protection Agency Method 8021B.

3.2 Quality Assurance and Quality Control

Quality assurance/quality control (QA/QC) procedures were maintained throughout the sampling activities. QA procedures include the analysis of a field duplicate and a trip blank, and a laboratory data QA review (QAR) by qualified SLR staff. The QAR included the completion of an ADEC Laboratory Data Review Checklist. QC procedures included adherence to appropriate sample collection methodology as described in the Work Plan (SLR, 2023).

Any discrepancies associated with the samples collected from the site are identified in the QAR and summarized in Section 5.1. The QAR, the completed ADEC Laboratory Data Review Checklist, and laboratory analytical report are presented in Appendix C.

3.3 Product Gauging

Product recovery activities were performed between June 1 and September 23, 2023, and included the measurement of free product thicknesses and product recovery from wells MW-1 and MW-5. Recovery wells MW-1 and MW-5 were gauged for free product and depth to water using an oil/water interface probe. The apparent product thickness in recovery wells was calculated by subtracting the depth to product from the depth to water. The interface probe was decontaminated using a non-ionic detergent solution following gauging activities. Product recovery activities are documented in the project Field Logbook (Appendix B).

The thickness of free product present in a formation (true thickness) is less than the thickness of product observed floating on top of the water in a monitoring well (apparent thickness). Factors affecting the difference between the true thickness and the apparent thickness include the density of the free product, the density of the groundwater, and the characteristics of the formation. All product thicknesses described in this report are presented in terms of apparent thickness, as measured in the product recovery wells.

3.4 Free Product Recovery

SLR visited the site on seven separate occasions in 2023 to thaw, gauge, and/or conduct product recovery from recovery wells MW-1 and MW-5. Both wells were thawed on May 22, and free product recovery was conducted beginning on May 23 and continued on each subsequent visit. Field measurements of depth to free product, depth to water, and free product thickness before and after recovery were recorded in the Field Logbook.

3.4.1 Well Thawing

Heat trace wire installed the previous fall was used to thaw ice in the upper casing of recovery wells MW-1 and MW-5 during the May 22 site visit. Thawing of ice in recovery wells was necessary to facilitate early product measurement and product recovery. This is a significant improvement over waiting for natural thawing, which occurred as late as August in previous years.

3.4.2 Recovery Methods

Product recovery was accomplished using sorbent socks. The sorbent socks used were DGSI Geo Slope Indicator SoakEase™ 2-inch and 4-inch nominal diameter absorbent socks. The sorbent socks used typically reduce product thickness to less than 0.10 ft after one to six deployments.

Passive recovery using sorbent socks deployed between visits was eliminated in 2018 to improve the accuracy of the initial gauging of product thickness before product recovery during each site visit.

3.4.3 Product Volume Measurement

The volume of free product recovered using the sorbent socks was estimated using the percentage of the sock visually wetted with product, the vendor's published product absorbing capacity for the sorbent sock used, and the assumption that only free product was absorbed. Typically, however, a water and turbine fuel mix has been observed in the oily waste bags containing the spent 4-inch absorbent socks, suggesting that the larger-diameter socks entrain water along with oil within their fibrous filling. Therefore, the calculated volume of free product recovered with sorbent socks has been considered biased high, but that bias was not quantified

until 2020. As discussed in the *Pump Station 9 Mainline Turbine Sump 2020 Product Recovery Report* (SLR, 2020), SLR established product recovery correction factors in 2020 for 2-inch and 4-inch sorbent socks and applied those factors to recovery volumes in 2019 and 2020. These same correction factors were used again in 2023.

3.4.4 Heat Trace Emplacement

SLR placed heat trace in the two recovery wells after the product recovery event on October 1, 2021. The heat trace was first installed following the product recovery event in October 2013 to enable thawing of the shallow ice plugs that typically form between 8 ft and 14 ft bgs in the zone of seasonal frost. The heat traces extend to approximately 20 ft bgs in each well and are powered by a portable gasoline-powered generator placed in a rubber drip containment mat.

3.5 Work Plan Deviations

No Work Plan deviations were noted for the sampling activities conducted in 2023.

3.6 Waste Management

Solid and liquid wastes generated during field activities were managed as follows:

- Single-use sampling and product recovery supplies were disposed of as non-oily waste and placed in the appropriate garbage receptacle at PS09;
- Used sorbent socks were placed in double-bagged oily-waste bags and left in the appropriate oily-waste receptacle at PS09 for offsite disposal; and
- Purge water from groundwater sampling was transferred to a pipeline sump for injection into the pipeline.

Prior to each field event, the disposal of waste materials was discussed with the PS09 Waste Single Point of Contact and/or Operations and Maintenance Supervisor.

4.0 Product Recovery Results

This section describes the results of field activities completed in 2023, which included measurement of groundwater elevations, measurement of free product thickness, and recovery of free product. Measurements of groundwater elevations and product thickness at recovery wells are presented in Table 1. The maximum gauged free product thicknesses from 1998 through 2010 and recovery volumes and product thicknesses from 2011 through 2023 for wells MW-1 and MW-5 are presented in Tables 2 and 3, respectively.

4.1 Groundwater Elevations

Groundwater elevations measured in product recovery wells in 2023 were comparable to typical elevations seen since recovery events began (Table 1). Groundwater elevations measured for groundwater monitoring wells were comparable to recorded elevations dating back to 2001 (MW-8), 2006 (MW-2), 2009 (MW-7), 2011 (MW-11), or since records began in 1997 (MW-3). The elevations collected over the life of the project in monitoring and product recovery wells suggest a general north-northwest flow direction. However, the aquifer is perched and discontinuous; therefore, the assumed gradient is subject to uncertainty (SLR, 2018).

4.2 Apparent Free Product Thickness

Initial product thickness in MW-1 was greater than measured in 2022, but less than measured in 2021. Initial product thickness in MW-5 was the lowest on record but was followed by variable thicknesses throughout the summer. Product thicknesses measured on the final recovery event showed a decrease in thickness from post-thaw thicknesses due to product recovery efforts at MW-1. At MW-5, the product thickness of 0.17 inches measured on the final product recovery event exceeded the product thickness of 0.08 inches measured on the initial product recovery event.

Historical product gauging results for MW-1 and MW-5 are shown on Tables 2 and 3, respectively, and are summarized as follows:

- **MW-1**: The apparent pre-recovery product thickness of 0.50 ft in 2023 was greater than the 0.21 ft measured in 2022. Additionally, the final product thickness of 0.05 ft achieved after seven recovery events was comparable to the final measurement of 0.09 ft in 2022. The final product thickness was also lower than the true product thickness of 0.27 to 0.30 ft determined from the 2015 baildown test.
- **MW-5:** The pre-recovery product thickness of 0.08 ft was less than the 0.13 ft pre-recovery thickness measured in 2022 and is the lowest initial thickness recorded. The final product thickness of 0.17 ft achieved after seven recovery events was less than the final measurement of 0.51 ft in 2022. Additionally, the final product thickness of 0.17 ft was lower than the true thickness of 0.21 to 0.31 ft determined from the 2015 baildown test.

Variations in product thickness between years may result from continued product recovery and seasonal changes in groundwater elevations. Overall, the apparent free product thicknesses have decreased since the gauging of recovery wells began in 1997.

4.3 Free Product Recovery

The total volume of product recovered during seven visits conducted in 2023 increased slightly for MW-1 and decreased for MW-5 as compared to recovery totals from 2022. The results of annual product recovery events completed for wells MW-1 and MW-5 are presented in Tables 2 and 3, respectively, and a comparison of annual product recovery periods is provided in Table 4. Results of 2023 product recovery activities are summarized as follows:

- MW-1: The total free product recovered using sorbent socks was approximately 0.4 gal, consistent with 0.3 gal in 2022. The volume recovered in 2023 accounts for 1 percent of the 34.2 gal of product recovered from this well since 2011.
- MW-5: The total free product recovered using sorbent socks was approximately 2.7 gal, a decrease from the 4.6 gal recovered in 2022. The lower recovery volume is consistent with the lower initial pre-recovery thickness compared to 2022. The measured recovery volume recovered represents 2 percent of the 135.0 gal of product recovered from this well since 2011.

The year-end total product recovery volumes for wells MW-1 and MW-5 are variable and do not correlate directly to the number of recovery events, indicating that the effectiveness of recovery events varies from year to year and may also not correlate to pre-recovery product thicknesses. The total volume of recovered product to date of approximately 1,263 gal represents a substantial portion (63 percent) of the approximately 2,000 gal thought to have been released. The product recovered in 2023 represents only 0.2 percent of the total of approximately 1,263 gal of free product recovered by all methods since discovering the contamination in 1996 (Table 4). Additionally, the 178 gal of product recovered between 2011 and 2023 represents only a small fraction (14 percent) of the total volume recovered since 1996.

5.0 Groundwater Analytical Results

This section describes key findings of groundwater sampling analytical results and SLR's QAR. Groundwater analytical results for the five monitoring wells sampled in 2023 are presented in Table 5, and historical results are shown in Table 6. The laboratory QAR, completed ADEC Laboratory Data Review Checklist, and laboratory analytical report are included in Appendix C.

5.1 Analytical Data Quality

No issues were noted within SLR's QAR with respect to data packages; the data met all precision, accuracy, representativeness, comparability, completeness, and sensitivity goals. The data were deemed acceptable for use without qualification as described in the QAR.

5.2 Groundwater Analytical Results

Analytical results indicate that petroleum hydrocarbon impacts are limited to low-level detections of DRO well below applicable cleanup levels and within historical concentration ranges for all monitoring wells except for MW-7.

At MW-7, the DRO concentration of 3.03 mg/L exceeded the ADEC groundwater cleanup level of 1.5 mg/L. This exceedance for DRO at MW-7 is historically comparable to the concentration of 2.96 mg/L detected in 2001. Estimated concentrations of DRO below the LOQ were reported in samples collected from MW-8 and MW-10. DRO was ND at MW-2 and MW-3.

Additionally, the 2023 sampling results indicate that BTEX congeners were not detected above the laboratory LOD in groundwater samples collected from all sampled wells. Benzene was only detected at 0.00173 mg/L at MW-7, less than the ADEC groundwater cleanup level of 0.0046 mg/L.

6.0 Conclusions and Recommendations

Activities completed in 2023 at the PS09 MLT Sump site included groundwater monitoring at five wells, thawing and product recovery at MW-1 and MW-5, and reinstallation of heat trace in the product recovery wells for the 2024 product recovery season.

At the start of the 2023 product recovery season, initial product thicknesses were consistent with thicknesses recorded in previous years at MW-1 but were the lowest on record at MW-5. Product thickness in both wells varied during the summer but showed an overall decrease by the end of the field season. The total volume of product recovered from wells MW-1 and MW-5 decreased by 1.8 gal from the recovery total documented for 2022.

The results of groundwater monitoring at the PS09 MLT Sump site in 2023 indicate that the remaining quantity of product present in recovery wells does not result in exceedances in nearby groundwater except at downgradient well MW-7. Concentrations of all analytes remain low and well below ADEC cleanup levels for all wells sampled in 2023 except for DRO at MW-7, which exceeded the ADEC cleanup level. At all other wells, DRO was either ND or detected at estimated concentrations between the LOD and LOQ. Only one BTEX compound, benzene, was detected at MW-7 at a concentration well below the ADEC cleanup level. BTEX compounds have not exceeded ADEC groundwater cleanup levels at any well since 2011.

SLR will continue product recovery in 2024 consistent with the approved 2023-2025 Groundwater Monitoring and Product Recovery Work Plan (SLR, 2023).

7.0 References

Limitations

The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.

Environmental conditions that are not apparent may exist at the site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall site environmental conditions.

The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.

This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

Tables

Pump Station 9 Mainline Turbine Sump

2023 Product Recovery and Groundwater Monitoring Report

Alyeska Pipeline Service Company

SLR Project No: 105.01288.23010

December 5, 2023

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above	Depth to Groundwater	Groundwater Elevation ^B	Depth to Free Product (feet)	Free Product Elevation	Apparent Free Product Thickness
		MSL) ^A	(feet)	(feet above MSL)	Floduct (leet)	(feet above MSL)	(feet)
	11/7/1997	1504.98	114.77	1390.21	NM	NM	NM
	4/1/1998	1504.98	114.61	1390.37	NM	NM	NM
	11/22/1998	1504.98	114.73	1390.25	114.54	1390.44	0.19
ŀ	12/1/1998 6/8/1999	1504.98 1504.98	114.78 116.03	1390.20 1388.95	114.59 115.13	1390.39 1389.85	0.19 0.90
	9/16/1999	1504.98	115.93	1389.05	115.13	1389.40	0.35
ŀ	10/7/1999	1504.98	116.71	1388.27	115.48	1389.50	1.23
	11/11/1999	1504.98	116.66	1388.32	115.51	1389.47	1.15
	5/17/2000	1504.98	115.52	1389.46	114.52	1390.46	1.00
	12/28/2000	1504.98	112.00	1392.98	104.80	1400.18	7.20
	7/19/2001	1501.23	106.40	1394.83	101.92	1399.31	4.48
	9/19/2001	1501.23	104.25	1396.98	103.65	1397.58	0.60
ŀ	6/10/2002 10/2/2002	1501.23 1501.23	108.90 109.58	1392.33 1391.65	108.56 109.37	1392.67 1391.86	0.34 0.21
	6/3/2003	1501.23	111.07	1390.16	110.12	1391.00	0.21
ŀ	6/23/2003	1501.23	110.52	1390.71	110.20	1391.03	0.32
	7/24/2003	1501.23	110.88	1390.35	110.41	1390.82	0.47
	8/28/2003	1501.23	111.36	1389.87	110.71	1390.52	0.65
	9/15/2003	1501.23	111.56	1389.67	110.89	1390.34	0.67
	10/3/2003	1501.23	111.37	1389.86	110.72	1390.51	0.65
	6/2/2004	1501.23	111.89	1389.34	110.99	1390.24	0.90
	6/3/2004	1501.23	111.44	1389.79	111.15	1390.08	0.29
-	6/10/2004 7/8/2004	1501.23 1501.23	110.90 110.46	1390.33 1390.77	110.81 110.44	1390.42 1390.79	0.09 0.02
ŀ	7/20/2004	1501.23	110.40	1390.77	110.22	1390.79	0.02
	8/12/2004	1501.23	110.14	1391.09	110.08	1391.15	0.06
	9/2/2004	1501.23	109.83	1391.40	109.82	1391.41	0.01
	10/19/2004	1501.23	109.88	1391.35	109.84	1391.39	0.04
	6/20/2005	1501.23	110.74	1390.49	110.74	1390.49	0.00
	6/28/2005	1501.23	109.52	1391.71	109.52	1391.71	0.00
	10/17/2005	1501.23	109.19	1392.04	109.19	1392.04	0.00
	11/3/2005	1501.23	109.18	1392.05	109.15	1392.08	0.03 0.71
MW-1	5/31/2006 7/13/2006	1501.23 1501.23	111.41 111.02	1389.82 1390.21	110.70 110.79	1390.53 1390.44	0.71
ŀ	10/5/2006	1501.23	108.54	1392.69	108.02	1393.21	0.52
	5/30/2007	1501.23	109.54	1391.69	108.78	1392.45	0.76
	7/18/2007	1501.23	109.74	1391.49	109.32	1391.91	0.42
	8/3/2007	1501.23	110.05	1391.18	109.57	1391.66	0.48
	8/17/2007	1501.23	109.51	1391.72	N/A	N/A	0.00
	9/13/2007	1501.23	109.69	1391.54	109.685	1391.55	0.005
	9/21/2007 10/5/2007	1501.23 1501.23	109.67 109.29	1391.56 1391.94	N/A N/A	N/A N/A	0.00
-	10/12/2007	1501.23	109.29	1391.90	N/A N/A	N/A N/A	0.00
ŀ	11/2/2007	1501.23	109.35	1391.98	N/A	N/A	0.00
	6/2/2008	1501.23	110.22	1391.01	109.80	1391.43	0.42
	7/1/2008	1501.23	110.35	1390.88	N/A	N/A	0.00
	7/18/2008	1501.23	110.43	1390.80	110.38	1390.85	0.05
	7/23/2008	1501.23	110.59	1390.64	110.50	1390.73	0.09
	7/25/2008	1501.23	110.60	1390.63	110.54	1390.69	0.06
	8/12/2008	1501.23	110.41	1390.82	110.40	1390.83	0.01
ŀ	9/3/2008 9/12/2008	1501.23 1501.23	109.70 109.33	1391.53 1391.90	N/A 109.19	N/A 1392.04	0.00 0.14
	10/8/2008	1501.23	107.67	1393.56	106.68	1392.04	0.14
ŀ	7/17/2009	1501.23	108.36	1392.87	104.48	1394.33	3.88
ŀ	8/7/2010	1501.23	110.27	1390.96	109.95	1391.28	0.32
ľ	9/25/2010	1501.23	108.28	1392.95	107.63	1393.60	0.65
	10/8/2010	1501.23	108.25	1392.98	107.43	1393.80	0.82
[10/12/2010	1501.23	107.88	1393.35	107.28	1393.95	0.60
	6/24/2011	1501.23	108.94	1392.29	107.94	1393.29	1.00
	7/18/2011	1501.23	109.02	1392.21	108.34	1392.89	0.68
	7/26/2011 8/8/2011	1501.23 1501.23	108.64 108.75	1392.59 1392.48	108.45 108.69	1392.78 1392.54	0.19 0.06
ŀ	8/8/2011	1501.23	108.75	1392.48	108.69	1392.54	0.06
ŀ	9/9/2011	1501.23	108.86	1392.37	108.84	1392.70	0.01
ł	9/19/2011	1501.23	108.61	1392.62	108.6	1392.63	0.01
	10/6/2011	1501.23	108.52	1392.71	108.51	1392.72	0.01

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above	Depth to Groundwater	Groundwater Elevation ^B	Depth to Free Product (feet)	Free Product Elevation	Apparent Free Product Thickness
		MSL) ^A	(feet)	(feet above MSL)		(feet above MSL)	(feet)
-	10/26/2011	1501.23	108.57	1392.66	108.56	1392.67	0.01
-	6/5/2012 6/20/2012	1501.23 1501.23	NM NM	NM NM	NM NM	NM NM	NM NM
-	7/5/2012	1501.23	NM	NM	NM	NM	NM
-	7/20/2012	1501.23	NM	NM	NM	NM	NM
-	8/3/2012	1501.23	NM	NM	NM	NM	NM
•	8/9/2012	1501.23	110.06	1391.17	109.70	1391.53	0.36
	8/23/2012	1501.23	109.78	1391.45	109.58	1391.65	0.20
-	9/6/2012	1501.23	109.90	1391.33	109.75	1391.48	0.15
 -	9/21/2012	1501.23	109.83	1391.40	109.69	1391.54	0.14
-	10/8/2012	1501.23	109.88	1391.35	109.75 109.78	1391.48	0.13
-	10/22/2012 6/19/2013	1501.23 1501.23	109.89 NM	1391.34 NM	NM	1391.45 NM	0.11 NM
-	6/27/2013	1501.23	NM	NM	NM	NM	NM
-	7/19/2013	1501.23	NM	NM	NM	NM	NM
=	8/2/2013	1501.23	NM	NM	NM	NM	NM
•	8/14/2013	1501.23	NM	NM	NM	NM	NM
	8/29/2013	1501.23	112.62	1388.61	111.41	1389.82	1.21
_	9/12/2013	1501.23	112.39	1388.84	111.60	1389.63	0.79
-	10/4/2013	1501.23	112.43	1388.80	111.69	1389.54	0.74
-	10/17/2013	1501.23	112.01	1389.22	111.68	1389.55	0.33
-	6/3/2014 7/9/2014	1501.23 1501.23	114.28 114.67	1386.95 1386.56	112.57 112.61	1388.66 1388.62	1.71 2.06
-	7/28/2014	1501.23	113.63	1387.60	112.85	1388.38	0.78
-	8/7/2014	1501.23	113.35	1387.88	112.74	1388.49	0.61
-	8/26/2014	1501.23	113.48	1387.75	112.53	1388.70	0.95
-	9/23/2014	1501.23	112.97	1388.26	112.29	1388.94	0.68
	10/9/2014	1501.23	112.43	1388.80	112.00	1389.23	0.43
	7/3/2015	1501.23	111.60	1389.63	111.11	1390.12	0.49
_	7/14/2015	1501.23	112.06	1389.17	111.48	1389.75	0.58
-	7/21/2015	1501.23	112.00	1389.23	111.51	1389.72	0.49
MW-1	8/12/2015	1501.23	112.14	1389.09	111.72	1389.51	0.42 0.29
Continued	8/25/2015 9/13/2015	1501.23 1501.23	112.11 112.09	1389.12 1389.14	111.82 111.86	1389.41 1389.37	0.29
Continueu	10/1/2015	1501.23	112.28	1388.95	112.08	1389.15	0.20
-	6/1/2016	1501.23	NM	NM	NM	NM	NM
-	6/2/2016	1501.23	112.23	1389.00	111.64	1389.59	0.59
	6/7/2016	1501.23	112.54	1388.69	111.78	1389.45	0.76
	6/11/2016	1501.23	112.27	1388.96	111.78	1389.45	0.49
-	6/27/2016	1501.23	112.25	1388.98	111.93	1389.30	0.32
-	7/10/2016	1501.23	112.24	1388.99	112.03	1389.20	0.21
-	8/5/2016	1501.23	112.26	1388.97	112.19	1389.04	0.07
-	8/18/2016 9/5/2016	1501.23 1501.23	112.34 112.29	1388.89 1388.94	112.24 112.18	1388.99 1389.05	0.10 0.11
-	9/16/2016	1501.23	112.33	1388.90	112.10	1389.01	0.11
-	10/3/2016	1501.23	112.59	1388.64	112.33	1388.90	0.26
-	10/13/2016	1501.23	112.42	1388.81	112.25	1388.98	0.17
	5/25/2017	1501.23	NM	NM	NM	NM	NM
	5/26/2017	1501.23	114.03	1387.20	112.78	1388.45	1.25
-	6/7/2017	1501.23	114.17	1387.06	112.76	1388.47	1.41
-	6/27/2017	1501.23	113.33	1387.90	112.99	1388.24	0.34
-	7/24/2017	1501.23	113.43	1387.80	113.14	1388.09	0.29
-	9/14/2017 9/28/2017	1501.23 1501.23	113.61 113.45	1387.62 1387.78	113.20 113.16	1388.03 1388.07	0.41 0.29
-	10/19/2017	1501.23	113.35	1387.88	113.16	1388.07	0.29
ļ	6/4/2018	1501.23	114.97	1386.26	113.31	1387.92	1.66
ļ	6/8/2018	1501.23	113.84	1387.39	113.55	1387.68	0.29
ļ	6/25/2018	1501.23	NM	NM	NM	NM	NM
	7/19/2018	1501.23	113.77	1387.46	113.52	1387.71	0.25
	8/2/2018	1501.23	113.59	1387.64	113.31	1387.92	0.28
<u> </u>	8/16/2018	1501.23	113.71	1387.52	113.21	1388.02	0.50
-	9/4/2018	1501.23	113.90	1387.33	113.22	1388.01	0.68
-	9/18/2018	1501.23	113.31	1387.92	113.10	1388.13	0.21
-	10/1/2018 5/24/2019	1501.23 1501.23	113.14 110.8	1388.09 1390.43	112.82 110.55	1388.41 1390.68	0.32 0.25
-	5/24/2019	1501.23	110.8	1390.43	110.55	1390.68	0.25

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above	Depth to Groundwater	Groundwater Elevation ^B	Depth to Free Product (feet)	Free Product Elevation	Apparent Free Product Thickness
		MSL) ^A	(feet)	(feet above MSL)	Product (feet)	(feet above MSL)	(feet)
	6/14/2019	1501.23	110.67	1390.56	110.55	1390.68	0.12
	6/28/2019	1501.23	110.94	1390.29	110.77	1390.46	0.17
-	7/12/2019 7/31/2019	1501.23 1501.23	110.95 111.1	1390.28 1390.13	110.79 110.94	1390.44 1390.29	0.16 0.16
-	8/9/2019	1501.23	111.2	1390.13	111.04	1390.19	0.16
-	8/30/2019	1501.23	111.35	1389.88	111.19	1390.04	0.16
	9/13/2019	1501.23	111.1	1390.13	110.98	1390.25	0.12
	9/27/2019	1501.23	111.5	1389.73	111.30	1389.93	0.20
	10/14/2019	1501.23	111	1390.23	110.93	1390.30	0.07
	10/30/2019	1501.23	110.81	1390.42	110.77	1390.46	0.04
ŀ	7/1/2020 7/29/2020	1501.23 1501.23	NM 105.52	NM 1395.71	NM 104.91	NM 1396.32	NM 0.61
-	8/11/2020	1501.23	103.32	1396.35	104.58	1396.65	0.30
-	8/24/2020	1501.23	104.28	1396.95	104.04	1397.19	0.24
	9/15/2020	1501.23	103.8	1397.43	103.55	1397.68	0.25
	9/29/2020	1501.23	104.2	1397.03	103.91	1397.32	0.29
	10/14/2020	1501.23	103.97	1397.26	103.68	1397.55	0.29
	11/11/2020	1501.23	103.15	1398.08	103.00	1398.23	0.15
MW-1	6/15/2021	1501.23	105.55	1395.68	104.58	1396.65	0.97
MW-1 Continued	7/9/2021 7/21/2021	1501.23 1501.23	105.2 105.17	1396.03 1396.06	104.97 105.06	1396.26 1396.17	0.23 0.11
Continued	8/12/2021	1501.23	105.17	1395.67	105.06	1395.80	0.11
	8/26/2021	1501.23	105.8	1395.43	105.65	1395.58	0.15
	10/1/2021	1501.23	106.06	1395.17	105.89	1395.34	0.17
-	5/19/2022	1501.23	NM	NM	NM	NM	NM
	6/7/2022	1501.23	108.39	1392.84	108.18	1393.05	0.21
	7/8/2022	1501.23	107.11	1394.12	106.96	1394.27	0.15
	7/26/2022	1501.23	107.02	1394.21	106.92	1394.31	0.10
-	8/16/2022 8/25/2022	1501.23 1501.23	106.38 106.45	1394.85 1394.78	106.28 106.31	1394.95 1394.92	0.10 0.14
-	9/8/2022	1501.23	106.45	1395.08	106.31	1395.13	0.05
-	9/20/2022	1501.23	106.13	1394.73	106.37	1394.86	0.03
-	10/17/2022	1501.23	106.25	1394.98	106.16	1395.07	0.09
-	5/23/2023	1501.23	109.03	1392.20	108.53	1392.70	0.50
	6/1/2023	1501.23	108.66	1392.57	108.53	1392.70	0.13
_	6/22/2023	1501.23	108.38	1392.85	108.32	1392.91	0.06
-	7/11/2023	1501.23	108.29	1392.94	108.24	1392.99	0.05
-	8/4/2023	1501.23	108.12	1393.11	108.06	1393.17	0.06
-	8/29/2023 9/23/2023	1501.23 1501.23	107.90 108.16	1393.33 1393.07	107.89 108.11	1393.34 1393.12	0.01 0.05
	11/7/1997	1504.59	NM	NM	N/A	N/A	N/A
-	4/1/1998	1504.59	114.76	1389.83	N/A	N/A	0.00
	11/22/1998	1504.59	113.90	1390.69	N/A	N/A	0.00
	12/1/1998	1504.59	114.32	1390.27	N/A	N/A	0.00
[6/9/1999	1504.59	115.40	1389.19	N/A	N/A	0.00
	9/17/1999	1504.59	113.28	1391.31	N/A	N/A	0.00
-	11/11/1999 5/17/2000	1504.59 1504.59	114.00 115.31	1390.59 1389.28	N/A	N/A	0.00
-	7/14/2000	1504.59	115.09	1389.50	N/A N/A	N/A N/A	0.00
ŀ	10/13/2000	1504.59	112.16	1392.43	N/A	N/A	0.00
•	3/27/2001	1504.58	105.95	1398.63	N/A	N/A	0.00
	7/12/2001	1504.58	105.49	1399.09	N/A	N/A	0.00
MW-2	9/20/2001	1504.58	106.49	1398.09	N/A	N/A	0.00
17177-2	11/16/2001	1504.58	107.48	1397.10	N/A	N/A	0.00
	6/11/2002	1504.58	111.70	1392.88	N/A	N/A	0.00
	10/4/2002	1504.58	112.26	1392.32	N/A	N/A	0.00
-	6/24/2003 10/1/2003	1504.58 1504.58	115.46 114.38	1389.12 1390.20	N/A N/A	N/A N/A	0.00
-	6/10/2004	1504.58	115.78	1388.80	N/A N/A	N/A N/A	0.00
ŀ	10/18/2004	1504.58	114.87	1389.71	N/A	N/A	0.00
ŀ	6/27/2005	1504.58	113.44	1391.14	N/A	N/A	0.00
ļ	10/16/2005	1504.58	113.98	1390.60	N/A	N/A	0.00
	6/1/2006	1504.58	113.36	1391.22	N/A	N/A	0.00
[10/5/2006	1504.58	103.40	1401.18	N/A	N/A	0.00
	7/17/2006	1504.58	114.44	1390.14	N/A	N/A	0.00
	10/4/2007	1504.58	112.82	1391.76	N/A	N/A	0.00

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above MSL) ^A	Depth to Groundwater (feet)	Groundwater Elevation ^B (feet above MSL)	Depth to Free Product (feet)	Free Product Elevation (feet above MSL)	Apparent Free Product Thickness (feet)
	7/25/2008	1504.58	116.78	1387.80	N/A	N/A	0.00
-	7/18/2009	1504.58	107.60	1396.98	N/A	N/A	0.00
-	8/11/2010	1504.58	111.89	1392.69	N/A	N/A	0.00
	9/8/2011	1504.58	113.22	1391.36	N/A	N/A	0.00
	7/20/2012	1504.58	113.56	1391.02	N/A	N/A	0.00
	8/22/2013	1504.58	116.18	1388.40	N/A	N/A	0.00
MW-2	9/19/2013	1504.58	116.30	1388.28	N/A	N/A	0.00
Continued	6/5/2014 7/15/2015	1504.58 1504.58	116.79 116.51	1387.79 1388.07	N/A N/A	N/A N/A	0.00
-	6/6/2016	1504.58	116.68	1387.90	N/A	N/A N/A	0.00
-	6/7/2017	1504.58	121.90	1382.68	N/A	N/A	0.00
-	5/30/2019	1504.58	116.15	1388.43	N/A	N/A	0.00
	6/1/2021	1504.58	107.24	1397.34	N/A	N/A	0.00
	5/22/2023	1504.58	112.75	1391.83	N/A	N/A	0.00
-	11/7/1997	1508.38	117.94	1390.44	N/A	N/A	0.00
-	4/1/1998	1508.38	117.83	1390.55	N/A	N/A	0.00
-	11/21/1998	1508.38 1508.38	117.89	1390.49 1390.34	N/A	N/A	0.00
-	12/1/1998 6/9/1999	1508.38	118.04 116.49	1390.34	N/A N/A	N/A N/A	0.00
-	9/16/1999	1508.38	116.88	1391.50	N/A N/A	N/A N/A	0.00
-	11/11/1999	1508.38	116.93	1391.45	N/A	N/A	0.00
-	5/16/2000	1508.38	115.90	1392.48	N/A	N/A	0.00
_	7/16/2000	1508.38	115.54	1392.84	N/A	N/A	0.00
-	10/11/2000	1508.38	113.85	1394.53	N/A	N/A	0.00
-	3/27/2001	1506.36	106.30	1400.06	N/A	N/A	0.00
-	7/11/2001	1506.36	107.87	1398.49	N/A	N/A	0.00
-	9/20/2001 11/16/2001	1506.36 1506.36	108.94 110.21	1397.42 1396.15	N/A N/A	N/A N/A	0.00
-	6/10/2002	1506.36	113.63	1392.73	N/A	N/A	0.00
-	10/3/2002	1506.36	114.19	1392.17	N/A	N/A	0.00
=	6/24/2003	1506.36	115.07	1391.29	N/A	N/A	0.00
-	10/2/2003	1506.36	115.73	1390.63	N/A	N/A	0.00
	6/11/2004	1506.36	115.61	1390.75	N/A	N/A	0.00
MW-3	10/19/2004	1506.36	114.64	1391.72	N/A	N/A	0.00
	6/28/2005	1506.36	114.32	1392.04	N/A	N/A	0.00
-	10/17/2005 6/1/2006	1506.36 1506.36	114.04 115.73	1392.32 1390.63	N/A N/A	N/A N/A	0.00
-	10/5/2006	1506.36	112.82	1393.54	N/A N/A	N/A N/A	0.00
-	7/18/2007	1506.36	114.23	1392.13	N/A	N/A	0.00
-	10/4/2007	1506.36	114.42	1391.94	N/A	N/A	0.00
-	7/24/2008	1506.36	115.54	1390.82	N/A	N/A	0.00
	7/18/2009	1506.36	110.21	1396.15	N/A	N/A	0.00
	8/12/2010	1506.36	114.87	1391.49	N/A	N/A	0.00
-	9/8/2011	1506.36	114.04	1392.32	N/A	N/A	0.00
-	7/20/2012	1506.36	114.59	1391.77	N/A	N/A	0.00
-	8/22/2013 9/19/2013	1506.36 1506.36	116.51 116.63	1389.85 1389.73	N/A N/A	N/A N/A	0.00
-	6/3/2014	1506.36	117.82	1388.54	N/A N/A	N/A N/A	0.00
-	7/15/2015	1506.36	112.89	1393.47	N/A	N/A	0.00
	6/7/2016	1506.36	113.16	1393.20	N/A	N/A	0.00
ļ	6/7/2017	1506.36	114.54	1391.82	N/A	N/A	0.00
	5/30/2019	1506.36	111.8	1394.56	N/A	N/A	0.00
	6/1/2021	1506.36	105.95	1400.41	N/A	N/A	0.00
	5/22/2023	1506.36	109.92	1396.44	N/A	N/A	0.00
-	11/21/1998 12/1/1998	1497.70 1497.70	109.38 109.52	1388.32 1388.18	N/A N/A	N/A N/A	0.00
-	6/9/1999	1497.70	1109.52	1388.18	N/A N/A	N/A N/A	0.00
-	9/16/1999	1497.70	111.24	1386.46	N/A	N/A N/A	0.00
ŀ	11/11/1999	1497.70	111.42	1386.28	N/A	N/A	0.00
B41A/ 4	5/16/2000	1497.70	111.66	1386.04	N/A	N/A	0.00
MW-4	7/14/2000	1497.70	111.59	1386.11	N/A	N/A	0.00
	10/13/2000	1497.70	110.10	1387.60	N/A	N/A	0.00
	3/27/2001	1497.69	107.30	1390.39	N/A	N/A	0.00
_	7/12/2001	1497.69	106.58	1391.11	N/A	N/A	0.00
}	9/20/2001	1497.69	105.61	1392.08	N/A	N/A	0.00

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Mall Name	D-4-	Well Elevation (feet above	Depth to	Groundwater	Depth to Free	Free Product	Apparent Free
Well Name	Date	MSL) ^A	Groundwater (feet)	Elevation ^B (feet above MSL)	Product (feet)	Elevation (feet above MSL)	Product Thickness (feet)
	6/10/2002	1497.69	107.48	1390.21	N/A	N/A	0.00
	10/4/2002	1497.69	107.69	1390.00	N/A	N/A	0.00
MW-4	6/24/2003	1497.69	110.74	1386.95	N/A	N/A	0.00
Continued	10/2/2003	1497.69	111.90	1385.79	N/A	N/A	0.00
-	6/11/2004 10/18/2004	1497.69 1497.69	113.15 112.47	1384.54 1385.22	N/A N/A	N/A N/A	0.00
-		oyed in 2005	N/A	N/A	N/A N/A	N/A N/A	N/A
	11/21/1998	1501.22	111.31	1389.91	110.78	1390.44	0.53
	12/1/1998	1501.22	111.62	1389.60	110.83	1390.39	0.79
	9/16/1999	1501.22	113.56	1387.66	111.51	1389.71	2.05
	10/7/1999	1501.22	113.23	1387.99	111.44	1389.78	1.79
	11/11/1999	1501.22	113.52	1387.70	111.55	1389.67	1.97
	5/17/2000 7/16/2000	1501.22 1501.22	111.78 111.37	1389.44 1389.85	111.69 110.36	1389.53 1390.86	0.09 1.01
	12/29/2000	1501.22	109.20	1392.02	100.90	1400.32	8.30
	7/19/2001	1501.22	109.30	1391.92	101.30	1399.92	8.00
	9/20/2001	1501.22	104.75	1396.47	103.47	1397.75	1.28
	6/10/2002	1501.22	109.60	1391.62	108.53	1392.69	1.07
	10/2/2002	1501.22	109.57	1391.65	109.29	1391.93	0.28
	6/3/2003	1501.22	110.85	1390.37	110.10	1391.12	0.75
	6/23/2003	1501.22	110.40	1390.82	110.14	1391.08	0.26
	7/24/2003 8/28/2003	1501.22 1501.22	110.48 110.99	1390.74 1390.23	110.42 110.72	1390.80 1390.50	0.06 0.27
	9/15/2003	1501.22	111.12	1390.23	110.72	1390.30	0.20
	10/3/2003	1501.22	110.84	1390.38	110.78	1390.44	0.06
	6/2/2004	1501.22	111.72	1389.50	110.94	1390.28	0.78
	6/3/2004	1501.22	111.34	1389.88	111.09	1390.13	0.25
	6/10/2004	1501.22	110.89	1390.33	110.78	1390.44	0.11
	7/8/2004	1501.22	110.60	1390.62	110.36	1390.86	0.24
	7/20/2004	1501.22 1501.22	110.26	1390.96	110.16	1391.06 1391.22	0.10
-	8/12/2004 9/2/2004	1501.22	110.04 109.79	1391.18 1391.43	110.00 109.75	1391.47	0.04 0.04
H	10/19/2004	1501.22	109.79	1391.37	109.76	1391.46	0.09
Ī	6/20/2005	1501.22	111.65	1389.57	109.40	1391.82	2.25
	6/28/2005	1501.22	109.47	1391.75	109.47	1391.75	0.00
	10/17/2005	1501.22	109.12	1392.10	109.12	1392.10	0.00
MW-5	11/3/2005	1501.22	109.21	1392.01	109.15	1392.07	0.06
-	5/31/2006	1501.22 1501.22	111.15	1390.07 1390.20	110.64	1390.58	0.51
-	7/13/2006 10/5/2006	1501.22	111.02 108.35	1392.87	110.70 107.98	1390.52 1393.24	0.32 0.37
	5/30/2007	1501.22	108.94	1392.28	108.72	1392.50	0.22
	7/18/2007	1501.22	109.52	1391.70	109.30	1391.92	0.22
	8/3/2007	1501.22	109.57	1391.65	109.56	1391.66	0.01
	8/17/2007	1501.22	109.61	1391.61	109.46	1391.76	0.15
Ţ	8/24/2007	1501.22	109.63	1391.59	109.51	1391.71	0.12
<u> </u>	9/13/2007	1501.22	109.70	1391.52	109.64	1391.58	0.06
}	9/21/2007 10/5/2007	1501.22 1501.22	109.56 109.25	1391.66 1391.97	109.53 N/A	1391.69 N/A	0.03 0.00
-	10/12/2007	1501.22	109.23	1391.89	109.30	1391.92	0.03
	11/2/2007	1501.22	109.20	1392.02	109.14	1392.08	0.06
ļ	6/2/2008	1501.22	109.86	1391.36	109.77	1391.45	0.09
	7/1/2008	1501.22	110.49	1390.73	110.27	1390.95	0.22
ļ	7/18/2008	1501.22	110.49	1390.73	110.31	1390.91	0.18
<u> </u>	7/23/2008	1501.22 1501.22	110.63	1390.59	110.43	1390.79	0.20
}	7/25/2008 8/12/2008	1501.22 1501.22	110.50 110.49	1390.72 1390.73	110.49 110.37	1390.73 1390.85	0.01 0.12
-	9/3/2008	1501.22	109.63	1391.59	109.61	1390.63	0.02
<u> </u>	9/12/2008	1501.22	109.14	1392.08	109.12	1392.10	0.02
ļ	10/8/2008	1501.22	106.58	1394.64	106.56	1394.66	0.02
	7/18/2009	1501.22	108.25	1392.97	104.42	1396.80	3.83
[8/6/2010	1501.22	110.17	1391.05	109.83	1391.39	0.34
ļ	9/25/2010	1501.22	108.20	1393.02	107.57	1393.65	0.63
<u> </u>	10/8/2010	1501.22	108.20	1393.02	107.32	1393.90	0.88
-	10/12/2010 6/24/2011	1501.22 1501.22	108.12 NM	1393.10 NM	107.12 NM	1394.10 NM	1.00 NM
-	7/18/2011	1501.22	NM	NM	NM	NM	NM

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

	_	Well Elevation	Depth to	Groundwater	Depth to Free	Free Product	Apparent Free
Well Name	Date	(feet above MSL) ^A	Groundwater (feet)	Elevation ^B (feet above MSL)	Product (feet)	Elevation (feet above MSL)	Product Thickness (feet)
	7/26/2011	1501.22	NM	NM	NM	NM	NM
	8/8/2011	1501.22	108.80	1392.42	108.61	1392.61	0.19
	8/22/2011	1501.22	108.60	1392.62	108.42	1392.80	0.18
<u>_</u>	9/9/2011	1501.22	108.86	1392.36	108.80	1392.42	0.06
-	9/19/2011	1501.22	108.61	1392.61	108.54	1392.68	0.07
-	10/6/2011 10/26/2011	1501.22 1501.22	108.46 108.43	1392.76 1392.79	108.44 108.40	1392.78 1392.82	0.02 0.03
-	6/5/2012	1501.22	110.05	1391.17	109.68	1391.54	0.37
	6/20/2012	1501.22	110.13	1391.09	109.77	1391.45	0.36
	7/5/2012	1501.22	110.04	1391.18	109.70	1391.52	0.34
L	7/20/2012	1501.22	109.94	1391.28	109.67	1391.55	0.27
-	8/3/2012	1501.22	110.03	1391.19	109.71	1391.51	0.32
-	8/9/2012 8/23/2012	1501.22 1501.22	109.92 109.71	1391.30 1391.51	109.68 109.51	1391.54 1391.71	0.24 0.20
F	9/6/2012	1501.22	109.87	1391.35	109.67	1391.55	0.20
	9/21/2012	1501.22	109.79	1391.43	109.59	1391.63	0.20
	10/8/2012	1501.22	109.85	1391.37	109.66	1391.56	0.19
	10/22/2012	1501.22	109.85	1391.37	109.75	1391.47	0.10
<u> </u>	6/19/2013	1501.22	111.66	1389.56	111.00	1390.22	0.66
-	6/27/2013	1501.22 1501.22	112.07 NM	1389.15 NM	111.10 NM	1390.12 NM	0.97
-	7/19/2013 8/2/2013	1501.22 1501.22	NM 111.94	1389.28	NM 111.22	1390.00	NM 0.72
<u> </u>	8/14/2013	1501.22	112.38	1388.84	111.52	1389.70	0.86
	8/29/2013	1501.22	112.50	1388.72	111.62	1389.60	0.88
	9/12/2013	1501.22	112.48	1388.74	111.55	1389.67	0.93
	10/4/2013	1501.22	112.50	1388.72	111.61	1389.61	0.89
<u>_</u>	10/17/2013	1501.22	112.40	1388.82	111.68	1389.54	0.72
-	6/3/2014 7/9/2014	1501.22 1501.22	114.43 114.67	1386.79 1386.55	112.48 112.61	1388.74 1388.61	1.95 2.06
-	7/28/2014	1501.22	114.07	1387.01	112.64	1388.58	1.57
-	8/7/2014	1501.22	113.87	1387.35	112.59	1388.63	1.28
	8/26/2014	1501.22	113.02	1388.20	112.52	1388.70	0.50
MW-5	9/23/2014	1501.22	112.54	1388.68	112.29	1388.93	0.25
Continued	10/9/2014	1501.22	112.23	1388.99	111.94	1389.28	0.29
-	6/4/2015 7/3/2015	1501.22 1501.22	NM NM	NM NM	NM NM	NM NM	NM NM
-	7/14/2015	1501.22	112.44	1388.78	111.31	1389.91	1.13
-	7/21/2015	1501.22	112.26	1388.96	111.38	1389.84	0.88
	8/12/2015	1501.22	112.82	1388.40	111.60	1389.62	1.22
	8/25/2015	1501.22	111.68	1389.54	111.57	1389.65	0.11
	9/13/2015	1501.22	112.98	1388.24	111.58	1389.64	1.40
-	10/1/2015	1501.22	113.22	1388.00	111.79	1389.43	1.43
-	6/1/2016 6/2/2016	1501.22 1501.22	112.20 112.23	1389.02 1388.99	111.46 111.64	1389.76 1389.58	0.74 0.59
-	6/7/2016	1501.22	113.06	1388.16	111.58	1389.64	1.48
F	6/11/2016	1501.22	112.85	1388.37	111.60	1389.62	1.25
	6/27/2016	1501.22	113.05	1388.17	111.81	1389.41	1.24
_	7/10/2016	1501.22	113.00	1388.22	111.89	1389.33	1.11
-	8/5/2016 8/18/2016	1501.22 1501.22	112.93 113.09	1388.29 1388.13	111.97 112.12	1389.25 1389.10	0.96 0.97
-	9/5/2016	1501.22	113.09	1388.13	112.12	1389.10	0.97
<u> </u>	9/16/2016	1501.22	112.49	1388.73	112.09	1389.13	0.40
	10/3/2016	1501.22	112.56	1388.66	112.25	1388.97	0.31
	10/13/2016	1501.22	112.38	1388.84	112.17	1389.05	0.21
	5/25/2017	1501.22	NM	NM	NM 110.70	NM 1000 50	NM
F	5/26/2017	1501.22	113.83	1387.39	112.72	1388.50	1.11
-	6/7/2017 6/27/2017	1501.22 1501.22	114.03 113.75	1387.19 1387.47	112.70 112.84	1388.52 1388.38	1.33 0.91
<u> </u>	7/24/2017	1501.22	113.75	1387.36	113.05	1388.17	0.81
-	9/14/2017	1501.22	114.02	1387.20	113.12	1388.10	0.90
	9/28/2017	1501.22	113.38	1387.84	112.93	1388.29	0.45
	10/19/2017	1501.22	113.48	1387.74	113.05	1388.17	0.43
	6/4/2018	1501.22	114.80	1386.42	113.28	1387.94	1.52
	6/8/2018	1501.22 1501.22	114.29 NM	1386.93 NM	113.49 NM	1387.73 NM	0.80 NM
F	6/25/2018			I INIM	ININ/I	I INTA	I INIM

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above	Depth to Groundwater	Groundwater Elevation ^B	Depth to Free Product (feet)	Free Product Elevation	Apparent Free Product Thickness
		MSL) ^A	(feet)	(feet above MSL)	Product (leet)	(feet above MSL)	(feet)
	8/2/2018	1501.22	113.67	1387.55	113.16	1388.06	0.51
	8/16/2018	1501.22	113.71	1387.51	113.21	1388.01	0.50
=	9/4/2018	1501.22	113.55	1387.67	113.11	1388.11	0.44
-	9/18/2018	1501.22	113.16	1388.06	112.98	1388.24	0.18
-	10/1/2018 5/24/2019	1501.22 1501.22	112.85 110.78	1388.37 1390.44	112.72 110.45	1388.50 1390.77	0.13 0.33
-	5/31/2019	1501.22	NM	NM	NM	NM	NM
-	6/14/2019	1501.22	110.78	1390.44	110.46	1390.76	0.32
-	6/28/2019	1501.22	111.03	1390.19	110.65	1390.57	0.38
	7/12/2019	1501.22	111.02	1390.20	110.64	1390.58	0.38
_	7/31/2019	1501.22	111.20	1390.02	110.80	1390.42	0.40
-	8/9/2019	1501.22	111.28	1389.94	110.92	1390.30	0.36
-	8/30/2019	1501.22 1501.22	111.47	1389.75	111.07	1390.15	0.40
-	9/13/2019 9/27/2019	1501.22	111.15 111.60	1390.07 1389.62	110.89 111.15	1390.33 1390.07	0.26 0.45
-	10/14/2019	1501.22	111.03	1399.02	110.84	1390.07	0.43
-	10/30/2019	1501.22	110.75	1390.47	110.62	1390.60	0.13
=	7/1/2020	1501.22	106.54	1394.68	106.24	1394.98	0.30
	7/29/2020	1501.22	106.02	1395.20	104.70	1396.52	1.32
	8/11/2020	1501.22	105.10	1396.12	104.42	1396.80	0.68
-	8/24/2020	1501.22	104.51	1396.71	103.89	1397.33	0.62
_	9/15/2020	1501.22	104.29	1396.93	103.34	1397.88	0.95
MW-5	9/29/2020	1501.22 1501.22	104.41 104.23	1396.81	103.83	1397.39	0.58
Continued	10/14/2020 11/11/2020	1501.22	104.23	1396.99 1397.08	103.59 102.47	1397.63 1398.54	0.64 1.46
Continued	6/1/2021	1501.01	108.10	1392.91	103.50	1397.51	4.60
-	6/15/2021	1501.01	108.06	1392.95	103.82	1397.19	4.24
-	7/9/2021	1501.01	107.58	1393.43	104.20	1396.81	3.38
	7/1/2021	1501.01	105.56	1395.45	104.66	1396.35	0.90
	8/12/2021	1501.01	106.19	1394.82	104.99	1396.02	1.20
-	8/26/2021	1501.01	106.05	1394.96	105.30	1395.71	0.75
-	10/1/2021	1501.01	106.94	1394.07	105.35	1395.66	1.59
-	5/19/2022 6/7/2022	1501.01	108.83 108.08	1392.18 1392.93	108.70 107.95	1392.31 1393.06	0.13 0.13
-	7/8/2022	1501.01 1501.01	107.90	1393.11	107.95	1394.53	1.42
-	7/26/2022	1501.01	107.50	1393.51	106.51	1394.50	0.99
=	8/16/2022	1501.01	106.45	1394.56	105.97	1395.04	0.48
	8/25/2022	1501.01	106.25	1394.76	106.05	1394.96	0.20
	9/8/2022	1501.01	106.07	1394.94	105.80	1395.21	0.27
-	9/20/2022	1501.01	106.36	1394.65	106.08	1394.93	0.28
-	10/17/2022	1501.01	106.32	1394.69	105.81	1395.20	0.51
-	5/23/2023	1501.01	108.38	1392.63	108.30	1392.71	0.08
-	6/1/2023 6/22/2023	1501.01 1501.01	108.38 108.11	1392.63 1392.90	108.25 108.04	1392.76 1392.97	0.13 0.07
-	7/11/2023	1501.01	108.10	1392.90	107.95	1393.06	0.07
-	8/4/2023	1501.01	107.97	1393.04	107.79	1393.22	0.18
-	8/29/2023	1501.01	107.94	1393.07	107.54	1393.47	0.40
•	9/23/2023	1501.01	108.16	1392.85	108.11	1392.90	0.05
	11/21/1998	1501.21	112.66	1388.55	110.52	1390.69	2.14
	12/1/1998	1501.21	113.55	1387.66	110.45	1390.76	3.10
	6/9/1999	1501.21	115.92	1385.29	110.59	1390.62	5.33
-	9/16/1999 10/7/1999	1501.21 1501.21	111.82 111.97	1389.39 1389.24	111.79 111.69	1389.42 1389.52	0.03 0.28
-	11/11/1999	1501.21	112.53	1388.68	111.73	1389.48	0.80
-	5/17/2000	1501.21	110.85	1390.36	NM	NM	NM
	12/29/2000	1501.21	103.00	1398.21	102.15	1399.06	0.85
MM	7/19/2001	1501.32	104.50	1396.82	102.23	1399.09	2.27
MW-6	9/20/2001	1501.32	106.10	1395.22	103.20	1398.12	2.90
	6/11/2002	1501.32	110.49	1390.83	108.45	1392.87	2.04
<u> </u>	10/2/2002	1501.32	109.56	1391.76	109.38	1391.94	0.18
-	6/4/2003	1501.32	116.13	1385.19	109.19	1392.13	6.94
}	6/23/2003 7/24/2003	1501.32 1501.32	110.33 110.53	1390.99 1390.79	110.18 110.42	1391.14 1390.90	0.15 0.11
-	8/28/2003	1501.32	110.53	1390.79	110.42	1390.90	0.11
ŀ	9/15/2003	1501.32	111.12	1390.20	110.78	1390.35	0.14
•	10/3/2003	1501.32	110.96	1390.36	110.81	1390.51	0.15

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above MSL) ^A	Depth to Groundwater (feet)	Groundwater Elevation ^B (feet above MSL)	Depth to Free Product (feet)	Free Product Elevation (feet above MSL)	Apparent Free Product Thickness (feet)
	6/2/2004	1501.32	111.87	1389.45	110.99	1390.33	0.88
	6/3/2004	1501.32	111.20	1390.12	111.18	1390.14	0.02
	6/10/2004	1501.32	110.86	1390.46	NM	NM	NM
	7/8/2004	1501.32	110.47	1390.85	110.43	1390.89	0.04
-	7/20/2004 8/12/2004	1501.32 1501.32	110.30 110.03	1391.02 1391.29	110.22 109.96	1391.10 1391.36	0.08 0.07
-	9/2/2004	1501.32	109.94	1391.38	109.86	1391.46	0.08
	10/19/2004	1501.32	110.16	1391.16	109.80	1391.52	0.36
	6/20/2005	1501.32	111.65	1389.67	109.40	1391.92	2.25
	6/28/2005	1501.32	109.51	1391.81	109.51	1391.81	0.00
	10/17/2005	1501.32	109.22	1392.10	109.21	1392.11	0.01
-	5/31/2006 7/13/2006	1501.32 1501.32	113.28 111.23	1388.04 1390.09	110.36 110.77	1390.96 1390.55	2.92 0.46
ŀ	10/5/2006	1501.32	110.02	1391.30	107.72	1393.60	2.30
	5/30/2007	1501.32	112.79	1388.53	108.09	1393.23	4.70
	7/18/2007	1501.32	109.81	1391.51	109.28	1392.04	0.53
	8/3/2007	1501.32	109.64	1391.68	109.62	1391.70	0.02
	8/17/2007	1501.32	109.53	1391.79	N/A	N/A	0.00
	9/13/2007 9/21/2007	1501.32 1501.32	109.71 109.65	1391.61 1391.67	N/A N/A	N/A N/A	0.00
-	10/5/2007	1501.32	109.05	1391.61	N/A	N/A N/A	0.00
•	10/12/2007	1501.32	109.38	1391.94	109.32	1392.00	0.06
	11/2/2007	1501.32	109.56	1391.76	109.20	1392.12	0.36
	4/16/2008	1501.32	111.79	1389.53	109.10	1392.22	2.69
	6/2/2008	1501.32	112.23	1389.09	109.39	1391.93	2.84
	7/1/2008	1501.32	110.36	1390.96	110.30	1391.02	0.06
-	7/18/2008 7/23/2008	1501.32 1501.32	110.42 110.54	1390.90 1390.78	110.38 110.51	1390.94 1390.81	0.04 0.03
ŀ	8/12/2008	1501.32	110.10	1391.22	N/A	N/A	0.00
	9/3/2008	1501.32	110.00	1391.32	109.65	1391.67	0.35
	9/12/2008	1501.32	109.55	1391.77	109.15	1392.17	0.40
	10/8/2008	1501.32	108.43	1392.89	106.25	1395.07	2.18
MW-6	7/17/2009	1501.32	108.12	1393.20	104.46	1396.86	3.66
Continued	8/7/2010 8/23/2010	1501.32 1501.32	112.59 110.10	1388.73 1391.22	109.48 109.44	1391.84 1391.88	3.11 0.66
-	9/25/2010	1501.32	108.49	1392.83	109.44	1393.73	0.90
-	10/8/2010	1501.32	108.30	1393.02	107.40	1393.92	0.90
	10/12/2010	1501.32	107.78	1393.54	107.29	1394.03	0.49
	6/24/2011	1501.32	NM	NM	N/A	N/A	N/A
	7/18/2011	1501.32	NM	NM	N/A	N/A	N/A
-	7/26/2011	1501.32	NM	NM	N/A	N/A	N/A
-	8/8/2011 8/22/2011	1501.32 1501.32	NM 110.90	NM 1390.42	N/A 108.09	N/A 1393.23	N/A 2.81
-	9/9/2011	1501.32	108.91	1392.41	108.90	1392.42	0.01
	9/19/2011	1501.32	108.62	1392.70	108.61	1392.71	0.01
	10/6/2011	1501.32	108.53	1392.79	108.52	1392.80	0.01
	10/26/2011	1501.32	108.53	1392.79	108.52	1392.80	0.01
ŀ	6/5/2012 6/20/2012	1501.32 1501.32	110.09 110.20	1391.23 1391.12	109.71 109.82	1391.61 1391.50	0.38 0.38
-	7/5/2012	1501.32	110.12	1391.12	109.75	1391.57	0.37
•	7/20/2012	1501.32	110.12	1391.22	109.62	1391.70	0.48
	8/3/2012	1501.32	110.15	1391.17	109.77	1391.55	0.38
	8/9/2012	1501.32	110.05	1391.27	109.69	1391.63	0.36
	8/23/2012	1501.32	109.62	1391.70	109.59	1391.73	0.03
	9/6/2012	1501.32	109.77	1391.55	109.75	1391.57	0.02 0.01
-	9/21/2012 10/8/2012	1501.32 1501.32	109.71 109.79	1391.61 1391.53	109.70 109.78	1391.62 1391.54	0.01
-	10/22/2012	1501.32	109.83	1391.49	109.78	1391.50	0.01
	6/19/2013	1501.32	112.26	1389.06	110.96	1390.36	1.30
ľ	6/27/2013	1501.32	112.41	1388.91	111.12	1390.20	1.29
[7/19/2013	1501.32	112.51	1388.81	111.20	1390.12	1.31
	8/2/2013	1501.32	111.41	1389.91	111.40	1389.92	0.01
	8/14/2013	1501.32	111.55	1389.77	111.55	1389.77	0.00
-	8/29/2013 9/12/2013	1501.32 1501.32	111.62 111.73	1389.70 1389.59	111.60 111.72	1389.72 1389.60	0.02 0.01
	10/4/2013	1501.32	111.77	1389.55	111.76	1389.56	0.01

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above	Depth to Groundwater	Groundwater Elevation ^B	Depth to Free	Free Product Elevation	Apparent Free Product Thickness
Wen Nume	Duto	MSL) ^A	(feet)	(feet above MSL)	Product (feet)	(feet above MSL)	(feet)
	10/17/2013	1501.32	111.79	1389.53	111.78	1389.54	0.01
	6/3/2014	1501.32	113.11	1388.21	112.80	1388.52	0.31
	7/9/2014	1501.32	113.14	1388.18	112.90	1388.42	0.24
-	7/28/2014 8/7/2014	1501.32 1501.32	113.07 112.89	1388.25 1388.43	112.94 112.80	1388.38 1388.52	0.13 0.09
ŀ	8/26/2014	1501.32	112.68	1388.64	112.64	1388.68	0.09
	9/23/2014	1501.32	112.41	1388.91	112.40	1388.92	0.01
	10/9/2014	1501.32	112.01	1389.31	N/A	N/A	0.00
	6/4/2015	1501.32	NM	NM	NM	NM	NM
	7/3/2015	1501.32	NM	NM	NM	NM 1000 70	NM
-	7/14/2015 7/21/2015	1501.32 1501.32	111.65 111.65	1389.67 1389.67	111.54 111.56	1389.78 1389.76	0.11 0.09
-	8/12/2015	1501.32	111.94	1389.38	N/A	N/A	0.09
2024	8/25/2015	1501.32	111.85	1389.47	N/A	N/A	0.00
MW-6	9/13/2015	1501.32	111.91	1389.41	N/A	N/A	0.00
Continued	10/1/2015	1501.32	112.07	1389.25	N/A	N/A	0.00
	6/1/2016	1501.32	111.69	1389.63	111.61	1389.71	0.08
	6/2/2016	1501.32	111.74	1389.58	111.66	1389.66	0.08
	6/7/2016 6/11/2016	1501.32 1501.32	NM 111.95	NM 1389.37	NM 111.85	NM 1389.47	NM 0.10
-	6/27/2016	1501.32	112.02	1389.30	112.01	1389.31	0.10
-	7/10/2016	1501.32	112.05	1389.27	112.04	1389.28	0.01
	8/5/2016	1501.32	112.20	1389.12	112.18	1389.14	0.02
	8/18/2016	1501.32	112.27	1389.05	112.22	1389.10	0.05
	9/5/2016	1501.32	112.22	1389.10	112.21	1389.11	0.01
-	9/16/2016	1501.32	112.21	1389.11	N/A	N/A	0.00
	10/3/2016	1501.32	112.38	1388.94	112.37	1388.95	0.01
-	10/13/2016 Well Decomis	1501.32 ssioned in 2017	112.26 NM	1389.06 NM	112.25 NM	1389.07 NM	0.01 NM
	11/21/1998	1498.75	112.83	1385.92	N/A	N/A	0.00
	12/1/1998	1498.75	112.95	1385.80	N/A	N/A	0.00
	9/16/1999	1498.75	116.86	1381.89	N/A	N/A	0.00
	11/11/1999	1498.75	116.87	1381.88	N/A	N/A	0.00
	5/17/2000	1498.75	116.55	1382.20	N/A	N/A	0.00
-	7/14/2000 3/27/2001	1498.75 1502.44	116.56 NM	1382.19 NM	N/A N/A	N/A N/A	0.00
•	7/12/2001	1502.44	103.82	1398.62	N/A N/A	N/A N/A	0.00
-	9/21/2001	1502.44	112.66	1389.78	N/A	N/A	0.00
	11/19/2001	1502.44	113.53	1388.91	N/A	N/A	0.00
	6/12/2002	1502.44	115.12	1387.32	N/A	N/A	0.00
	10/4/2002	1502.44	114.77	1387.67	N/A	N/A	0.00
	6/24/2003	1502.44	114.71	1387.73	N/A	N/A	0.00
-	10/1/2003 6/11/2004	1502.44 1502.44	114.99 114.88	1387.45 1387.56	N/A N/A	N/A N/A	0.00
•	10/18/2004	1502.44	114.50	1387.94	N/A N/A	N/A N/A	0.00
•	6/27/2005	1502.44	114.26	1388.18	N/A	N/A	0.00
MW-7	10/17/2005	1502.44	114.04	1388.40	N/A	N/A	0.00
141 4 4 - 1	6/2/2006	1502.44	114.73	1387.71	N/A	N/A	0.00
	10/5/2006	1502.44	113.52	1388.92	N/A	N/A	0.00
	7/17/2007	1502.44 1502.44	114.06 114.37	1388.38	N/A	N/A	0.00
-	10/4/2007 7/24/2008	1502.44 1502.44	114.37 114.76	1388.07 1387.68	N/A N/A	N/A N/A	0.00
ŀ	7/17/2009	1502.44	111.38	1391.06	N/A N/A	N/A	0.00
ŀ	8/11/2010	1502.44	115.50	1386.94	N/A	N/A	0.00
ļ	9/8/2011	1502.44	115.18	1387.26	N/A	N/A	0.00
[7/20/2012	1502.44	115.09	1387.35	N/A	N/A	0.00
	8/22/2013	1502.44	115.75	1386.69	N/A	N/A	0.00
	9/19/2013	1502.44	115.69	1386.75	N/A	N/A	0.00
-	6/5/2014 7/15/2015	1502.44 1502.44	116.02 115.44	1386.42 1387.00	N/A N/A	N/A N/A	0.00
ŀ	6/6/2016	1502.44	114.00	1388.44	N/A N/A	N/A N/A	0.00
ŀ	6/7/2017	1502.44	114.97	1387.47	N/A	N/A	0.00
	5/30/2019	1502.44	114.81	1387.63	N/A	N/A	0.00
	6/1/2021	1502.44	112.57	1389.87	N/A	N/A	0.00
	5/22/2023	1502.44	115.41	1387.03	N/A	N/A	0.00
MW-8	11/22/1998	1498.64	113.34	1385.30	N/A	N/A	0.00

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above	Depth to Groundwater	Groundwater Elevation ^B	Depth to Free	Free Product Elevation	Apparent Free Product Thicknes
		MSL) ^A	(feet)	(feet above MSL)	Product (feet)	(feet above MSL)	(feet)
	12/1/1998	1498.64	113.67	1384.97	N/A	N/A	0.00
	6/9/1999	1498.64	113.98	1384.66	N/A	N/A	0.00
	9/17/1999	1498.64	114.52	1384.12	N/A	N/A	0.00
	5/17/2000	1498.64	115.02	1383.62	N/A	N/A	0.00
	7/14/2000	1498.64	115.24	1383.40	N/A	N/A	0.00
-	10/13/2000	1498.64	112.60	1386.04	N/A	N/A	0.00
	3/27/2001 7/12/2001	1498.37 1498.37	NM 99.45	NM 1398.92	N/A N/A	N/A N/A	0.00
	9/21/2001	1498.37	100.39	1397.98	N/A	N/A N/A	0.00
	11/19/2001	1498.37	NM	NM	N/A	N/A	0.00
	6/12/2002	1498.37	106.21	1392.16	N/A	N/A	0.00
	10/4/2002	1498.37	108.68	1389.69	N/A	N/A	0.00
	6/25/2003	1498.37	114.64	1383.73	N/A	N/A	0.00
	10/1/2003	1498.37	114.77	1383.60	N/A	N/A	0.00
	6/11/2004	1498.37	115.16	1383.21	N/A	N/A	0.00
	10/18/2004	1498.37	115.28	1383.09	N/A	N/A	0.00
	6/27/2005	1498.37	114.49	1383.88	N/A	N/A	0.00
MW-8	10/16/2005	1498.37	114.77	1383.60	N/A	N/A	0.00
ontinued	6/2/2006	1498.37	NM	NM	N/A	N/A	0.00
ŀ	10/5/2006 7/17/2007	1498.37 1498.37	113.55 114.67	1384.82 1383.70	N/A N/A	N/A N/A	0.00
-	10/4/2007	1498.37	114.67	1383.70	N/A N/A	N/A N/A	0.00
-	7/24/2008	1498.37	114.89	1383.48	N/A	N/A	0.00
	7/18/2009	1498.37	101.56	1396.81	N/A	N/A	0.00
	8/11/2010	1498.37	109.79	1388.58	N/A	N/A	0.00
	9/8/2011	1498.37	110.10	1388.27	N/A	N/A	0.00
	7/20/2012	1498.37	111.38	1386.99	N/A	N/A	0.00
	8/22/2013	1498.37	114.46	1383.91	N/A	N/A	0.00
	9/19/2013	1498.37	114.67	1383.70	N/A	N/A	0.00
	6/5/2014	1498.37	114.89	1383.48	N/A	N/A	0.00
	7/15/2015	1498.37	114.17	1384.20	N/A	N/A	0.00
	6/7/2016	1498.37	114.60	1383.77	N/A	N/A	0.00
	6/7/2017	1498.37	115.31	1383.06	N/A	N/A	0.00
	5/30/2019	1498.37	113.38	1384.99	N/A	N/A	0.00
-	6/1/2021 5/22/2023	1498.37 1498.37	101.12 108.49	1397.25 1389.88	N/A	N/A	0.00
	12/1/1998	1501.01	110.61	1390.40	N/A N/A	N/A N/A	0.00
-	6/9/1999	1501.01	111.12	1389.89	N/A	N/A N/A	0.00
-	9/16/1999	1501.01	111.49	1389.52	N/A	N/A	0.00
F	11/11/1999	1501.01	111.62	1389.39	N/A	N/A	0.00
	5/17/2000	1501.01	110.53	1390.48	N/A	N/A	0.00
F	7/16/2000	1501.01	110.19	1390.82	N/A	N/A	0.00
	10/11/2000	1501.01	108.60	1392.41	N/A	N/A	0.00
	3/27/2001	1501.01	101.05	1399.96	N/A	N/A	0.00
	7/12/2001	1501.01	102.54	1398.47	N/A	N/A	0.00
	9/20/2001	1501.01	103.50	1397.51	N/A	N/A	0.00
	11/19/2001	1501.01	104.71	1396.30	N/A	N/A	0.00
-	6/12/2002	1501.01	108.42	1392.59	N/A	N/A	0.00
-	10/3/2002	1501.01	108.82	1392.19	N/A	N/A	0.00
-	6/24/2003 10/2/2003	1501.01 1501.01	109.67 110.26	1391.34 1390.75	N/A N/A	N/A N/A	0.00
MW-10	6/10/2004	1501.01	110.26	1390.75	N/A N/A	N/A N/A	0.00
F	10/19/2004	1501.01	109.21	1390.80	N/A	N/A N/A	0.00
-	6/28/2005	1501.01	109.21	1391.99	N/A	N/A	0.00
-	10/16/2005	1501.01	108.80	1392.21	N/A	N/A	0.00
F	6/1/2006	1501.01	110.41	1390.60	N/A	N/A	0.00
-	10/6/2006	1501.01	107.60	1393.41	N/A	N/A	0.00
-	7/17/2007	1501.01	108.80	1392.21	N/A	N/A	0.00
	10/4/2007	1501.01	108.70	1392.31	N/A	N/A	0.00
F	7/24/2008	1501.01	110.13	1390.88	N/A	N/A	0.00
Ī	7/17/2009	1501.01	104.74	1396.27	N/A	N/A	0.00
Ī	8/12/2010	1501.01	109.47	1391.54	N/A	N/A	0.00
	9/8/2011	1501.01	102.88	1398.13	N/A	N/A	0.00
	7/20/2012	1501.01	109.20	1391.81	N/A	N/A	0.00
	8/22/2013	1501.01	111.10	1389.91	N/A	N/A	0.00

Table 1 - Groundwater and Free Product Elevations PS09 Mainline Turbine Sump

Well Name	Date	Well Elevation (feet above MSL) ^A	Depth to Groundwater (feet)	Groundwater Elevation ^B (feet above MSL)	Depth to Free Product (feet)	Free Product Elevation (feet above MSL)	Apparent Free Product Thickness (feet)
	6/3/2014	1501.01	112.44	1388.57	N/A	N/A	0.00
	7/15/2015	1501.01	111.30	1389.71	N/A	N/A	0.00
MW-10	6/7/2016	1501.01	111.42	1389.59	N/A	N/A	0.00
	6/6/2017	1501.01	112.50	1388.51	N/A	N/A	0.00
Continued	5/30/2019	1501.01	109.89	1391.12	N/A	N/A	0.00
	6/1/2021	1501.01	104.02	1396.99	N/A	N/A	0.00
	5/22/2023	1501.01	107.98	1393.03	N/A	N/A	0.00

Notes:

2001 and later elevation data based on December 2001 survey

B Recovery well groundwater elevations have not been corrected to account for presence of free product

Abbreviations:

MSL mean sea level

N/A not applicable; no measurable free product

NM not measured

Table 2 - 1998-2022 MW-1 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal), Unadjusted	Depth to Product (ft)	Depth to Water (ft)	Product Thicknes (ft)
	11/22/1998		N/A	114.54	114.73	0.19
	10/7/1999	-	N/A	115.48	116.71	1.23
1998	12/28/2000		N/A	104.80	112.00	7.20
to	7/19/2001		N/A	101.92	106.40	4.48
2010	6/10/2002		N/A	108.56	108.90	0.34
Maximum	6/3/2003		N/A	110.12	111.07	0.95
Apparent	6/2/2004	-	N/A	110.99	111.89	0.90
Thickness ^A	5/31/2006	-	N/A	110.70	111.41	0.71
Inickness	6/2/2008	-	N/A	109.80	110.22	0.42
	7/17/2009 10/8/2010		N/A N/A	104.48 107.43	108.36 108.25	3.88
	10/6/2010	Initial Measurement	N/A N/A	107.43	108.25	0.82 1.00
		Deployment 1	0.1875	108.03	108.3	0.27
	6/24/2011	Deployment 2	0.025	108.03	108.25	0.22
		Deployment 3	0.125	108.08	108.1	0.02
		Initial Measurement	N/A	108.34	109.02	0.68
	7/18/2011	Deployment 1	0.0625	108.39	108.61	0.22
		Deployment 2	0.125	108.41	108.44	0.03
0044	7/00/0044	Initial Measurement	N/A	108.45	108.64	0.19
2011	7/26/2011	Deployment 1	sheen	108.5	108.53	0.03
	8/8/2011	Initial Measurement	0.0825	108.69	108.75	0.06
		Deployment 1	0.0125	108.7	108.71	0.01
	8/22/2011	Initial Measurement	0.0625	108.53	108.54	0.01
	9/9/2011	Initial Measurement	0.0625	108.84	108.86	0.02
	9/19/2011	Initial Measurement	sheen	108.6	108.61	0.01
	10/6/2011	Initial Measurement	sheen	108.51	108.52	0.01
	10/26/2011	Initial Measurement	0.025	108.56	108.57	0.01
	8/9/2012	Initial Measurement	N/A	109.70	110.06	0.36
	8/23/2012	Initial Measurement	0.0625	109.58	109.78	0.2
	9/6/2012	Initial Measurement	sheen	109.75	109.90	0.15
		Deploy 2" Rigid Sorbent	0.162	109.75	109.90	0.15
		Deploy 2" Rigid Sorbent	0.162	NM	NM	NM
		Deploy 2" Rigid Sorbent	0.162	109.78	109.80	0.02
	9/21/2012	Initial Measurement	0.031	109.69	109.83	0.14
2042		Deploy 2" Rigid Sorbent	0.162 0.162	NM NM	NM NM	NM NM
2012	9/21/2012	Deploy 2" Rigid Sorbent Deploy 2" Rigid Sorbent	0.162	NM	NM	NM
		Deploy 2" Rigid Sorbent Deploy 2" Rigid Sorbent	0.081	109.70	109.73	0.03
		Initial Measurement	0.005	109.75	109.73	0.03
	10/8/2012	Deploy 2" Rigid Sorbent	0.162	NM	NM	NM
		Deploy 2" Rigid Sorbent	0.162	109.78	109.81	0.03
		Deploy 2" Rigid Sorbent	0.162	109.80	109.81	0.01
	10/00/0010	Initial Measurement	0.005	109.78	109.89	0.11
	10/22/2012	Deploy 2" Rigid Sorbent	0.162	109.82	109.83	0.01
	6/19/2013	Frozen	N/A ^B	NM	NM	NM
	6/27/2013	Frozen	N/A ^B	NM	NM	NM
	7/19/2013	Frozen	N/A N/A ^B	NM	NM	NM
2012	8/2/2013	Frozen	N/A N/A ^B	NM	NM	NM
	8/14/2013	Frozen	N/A ^B	NM	NM	NM
2012	5,, 2010	Initial Measurement	N/A	111.41	112.62	1.21
		2" SoakEase deployment 1	0.17	111.44	112.45	1.01
		2" SoakEase deployment 2	0.17	111.45	112.40	0.95
		2" SoakEase deployment 3	0.25	111.49	112.32	0.83
	8/29/2013	2" SoakEase deployment 4	0.25	111.50	112.20	0.70
		2" SoakEase (2 socks)	0.12	111.52	112.16	0.64
		1.66" Product bailer	0.06	NM	NM	NM
		2" SoakEase (2 socks)	0.12	111.56	112.04	0.48
		2" SoakEase (2 socks)	0.12	111.55	111.95	0.40
2013		Initial Measurement	0.00	111.60	112.39	0.79
		2" SoakEase deployment 1	0.12	111.62	112.24	0.62
	9/12/2013	2" SoakEase deployment 2	0.25	111.64	112.15	0.51
		2" SoakEase deployment 3	0.25	111.65	112.10	0.45
		2" SoakEase deployment 4	0.25	111.66	112.04	0.38
		2" SoakEase deployment 5	0.25	111.67	112.04	0.37
		Initial Measurement	0.25	111.69	112.43	0.74
	10/4/2013	2" SoakEase deployments 1-2	0.50	111.73	112.23	0.50
		2" SoakEase deployments 3-4	0.50	111.74	112.15	0.41
		2" SoakEase deployments 5-6	0.50	111.78	111.96	0.18
		2" SoakEase deployments 7-8	0.50	111.79	111.88	0.09
		2" SoakEase deployments 9-10	0.50	111.79	111.80	0.01
		Initial Measurement	0.12	111.68	112.01	0.33
	10/17/2013	2" SoakEase deployment 1 2" SoakEase deployment 2	0.12 0.25	111.72 111.74	111.84 111.80	0.12 0.06
		2" SoakEase deployment 2 2" SoakEase deployment 3	0.25	111.74	111.76	0.06
	5/8/2014	Initial Measurement	N/A ^B	112.43	114.15	1.72
2014		IIIIII IVICASUI EI II EI II	IN/A	112.43	1 14.10	1./4

Table 2 - 1998-2022 MW-1 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal), Unadjusted	Depth to Product	Depth to Water (ft)	Product Thicknes
		Initial Management		(ft)	1 1	(ft)
		Initial Measurement Submersible pump	N/A 1.50	112.60 112.83	114.32 112.96	1.72 0.13
		2" SoakEase deployment 1	0.20	112.81	113.12	0.13
	6/4/2014 ^D	2" SoakEase deployment 2	0.13	112.80	113.10	0.30
		2" SoakEase deployment 3	0.07	112.83	113.00	0.17
		2" SoakEase deployment 4	0.03	112.83	112.96	0.13
	6/5/2014 ^D	Final Measurement	N/A	112.73	113.19	0.46
		Initial Measurement	N/A	112.81	113.80	0.99
	7/9/2014	1.66" Product bailer	0.38	112.88	113.35	0.47
		Initial Measurement	N/A	112.85	113.63	0.78
2014	7/28/2014	1.66" Product bailer	0.38	112.91	113.18	0.27
Continued	1120/2014	2" SoakEase deployment 1	0.15	112.93	113.07	0.14
Continued		2" SoakEase deployment 2	0.15	112.94	112.96	0.02
	8/7/2014	Initial Measurement	N/A	112.74	113.55	0.81
	0/1/2014	1.66" Product bailer	0.20	112.80	113.13	0.33
		Initial Measurement	N/A	112.53	113.48	0.95
	8/26/2014	1.66" Product bailer	0.40	112.62		0.43
		2" SoakEase deployment 1	0.10	112.68		0.01
		Initial Measurement	N/A	112.29		0.64
	9/23/2014	1.66" Product bailer	0.25	112.32		0.40
		2" SoakEase (3 socks)	0.25	112.38		0.01
	10/9/2014	Initial Measurement	N/A	112.00		0.43
		2" SoakEase (3 socks)	0.55 ^C	112.01	113.05 112.69 112.93 112.72 112.39 112.43 112.43 N/A N/A 112.06 111.92 111.70 111.72 112.14 111.99 112.11 111.84 112.11 111.84 112.28 NM NM NM NM NM NM NM 112.23 112.23 112.54 112.27	0.42
	6/4/2015	Initial Measurement	N/A ^B	N/A		N/A
	7/3/2015	Initial Measurement	N/A ^B	N/A		N/A
	7/14/2015	Initial Measurement	N/A	111.48		0.58
	7/22/2015 ^D	Initial Measurement 1.66" Product bailer	N/A	111.44 111.43		0.48 0.27
	1/22/2015		0.26	111.43		0.27
		2" SoakEase (2 socks)	N/A	111.43		0.29
2015	8/12/2015	Initial Measurement ^C 1.66" Product bailer	0.26	111.72		0.42
2013		Initial Measurement ^C	0.20	111.82		0.23
	8/25/2015	2" SoakEase (2 socks)	0.12	111.82		0.29
	9/13/2015	Initial Measurement ^C	N/A	111.82		0.02
		2" SoakEase (2 socks)	0.21	111.82	111.84	0.02
		Initial Measurement ^C	N/A	112.08		0.20
	10/1/2015	1.66" Product bailer	0.1	NM		NM
		2" Soakease (2 socks)	0.25	NM	NM	NM
	6/1/2016	Frozen	N/A ^B	NM	NM	NM
	6/2/2016	Initial Measurement	N/A	111.64		0.59
	6/7/2016	1.66" Product bailer	0.14	111.78		0.76
	6/11/2016	Initial 2" SoakEase Recovery ^C	0.08	111.78		0.49
	0/11/2010	2" Soakease (4 socks)	0.50	111.85	111.86	0.01
	6/27/2016	Initial 2" SoakEase Recovery ^C	0.13	111.93	112.25	0.32
	0/2//2010	2" Soakease (2 socks)	0.25	112.01	112.14	0.13
	7/10/2016	Initial Measurement	N/A	112.03	112.24	0.21
	7710/2010	2" Soakease (2 socks)	0.17	112.05	112.09	0.04
	8/5/2016	Initial 2" SoakEase Recovery	0.20	112.19	112.26	0.07
2016		2" Soakease (1 sock)	0.06	112.19	112.24	0.05
	8/18/2016	Initial 2" SoakEase Recovery	0.17	112.24	112.34	0.10
		2" Soakease (1 sock)	0.08 0.13	112.25	112.26 112.29	0.01 0.11
	9/5/2016	Initial 2" SoakEase Recovery ^C	0.13	112.18 112.20	112.29	
	1	1.66" Product bailer		112.20	112.21	0.01 0.11
					112.33	U.11
	9/16/2016	Initial Measurement	N/A 0.15			Λ Λ1
	9/16/2016	2" Soakease (2 socks)	0.15	112.22	112.23	0.01
		2" Soakease (2 socks) Initial Measurement	0.15 N/A	112.22 112.33	112.23 112.59	0.26
	9/16/2016	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer	0.15 N/A 0.06	112.22 112.33 112.36	112.23 112.59 112.49	0.26 0.13
	10/3/2016	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks)	0.15 N/A 0.06 0.17	112.22 112.33 112.36 NM	112.23 112.59 112.49 112.39	0.26 0.13 0.00
		2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement	0.15 N/A 0.06	112.22 112.33 112.36	112.23 112.59 112.49	0.26 0.13
	10/3/2016	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks)	0.15 N/A 0.06 0.17 N/A 0.26	112.22 112.33 112.36 NM 112.25	112.23 112.59 112.49 112.39 112.42	0.26 0.13 0.00 0.17
	10/3/2016 10/13/2016	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks)	0.15 N/A 0.06 0.17 N/A	112.22 112.33 112.36 NM 112.25 112.28	112.23 112.59 112.49 112.39 112.42 112.28	0.26 0.13 0.00 0.17 0.00
	10/3/2016 10/13/2016 5/25/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B	112.22 112.33 112.36 NM 112.25 112.28 NM	112.23 112.59 112.49 112.39 112.42 112.28 NM	0.26 0.13 0.00 0.17 0.00 NM
	10/3/2016 10/13/2016 5/25/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03	0.26 0.13 0.00 0.17 0.00 NM 1.25
	10/3/2016 10/13/2016 5/25/2017 5/26/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78 112.76	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17	0.26 0.13 0.00 0.17 0.00 NM 1.25
	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A 0.92	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78 112.76 NM	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20
	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A 0.92 0.26	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78 112.76 NM	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20
2017	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to 6/7/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer 2" Soakease (2 socks)	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A 0.92 0.26 0.25	112.22 112.33 112.36 NM 112.25 112.28 NM 112.76 NM NM NM	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20 NM
2017	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer 2" Soakease (2 socks) 2" Soakease (1 sock)	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A 0.92 0.26 0.25 0.06	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78 112.76 NM NM NM	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM NM NM	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20 NM NM NM
2017	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to 6/7/2017 6/27/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer 2" Soakease (2 socks) 2" Soakease (1 sock) Initial 2" SoakEase Recovery ^C	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A 0.92 0.26 0.25 0.06 0.13	112.22 112.33 112.36 NM 112.25 112.28 NM 112.76 NM 112.76 NM NM NM 112.96 112.99	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM NM NM 113.11 113.33	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20 NM NM 0.15 0.34
2017	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to 6/7/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer 2" Soakease (2 socks) 2" Soakease (1 sock) Initial 2" SoakEase Recovery ^C 2" Soakease (2 socks)	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A 0.92 0.26 0.25 0.06 0.13 0.38	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78 112.76 NM NM NM 112.96 112.99	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM NM 113.11 113.33 113.01	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20 NM NM 0.15
2017	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to 6/7/2017 6/27/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer 2" Soakease (2 socks) 2" Soakease (1 sock) Initial 2" SoakEase Recovery ^C 2" Soakease (2 socks) Initial 2" SoakEase Recovery ^C	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A 0.92 0.26 0.25 0.06 0.13 0.38 0.13	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78 112.76 NM NM NM 112.96 112.99 NM	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM NM NM 113.11 113.33 113.01 113.43	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20 NM NM 0.15 0.34 NM
2017	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to 6/7/2017 6/27/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer 2" Soakease (2 socks) 2" Soakease (1 sock) Initial 2" SoakEase Recovery ^C 2" Soakease (2 socks) Initial 2" SoakEase Recovery ^C 2" Soakease (3 socks)	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A N/A 0.92 0.26 0.25 0.06 0.13 0.38 0.13 0.44	112.22 112.33 112.36 NM 112.25 112.28 NM 112.78 112.76 NM NM 112.96 112.99 NM 113.14	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM NM 113.11 113.33 113.01 113.43 113.20	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20 NM NM 0.15 0.34 NM
2017	10/3/2016 10/13/2016 5/25/2017 5/26/2017 6/5/2017 to 6/7/2017 6/27/2017 7/24/2017	2" Soakease (2 socks) Initial Measurement 1.66" Product bailer 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Initial Measurement 2" Soakease (2 socks) Frozen Initial Measurement Initial Measurement 1.66" Product bailer 1.66" Product bailer 2" Soakease (2 socks) 2" Soakease (1 sock) Initial 2" SoakEase Recovery 2" Soakease (2 socks) Initial 2" SoakEase Recovery 2" Soakease (3 socks) Initial 2" SoakEase Recovery 2" Soakease (3 socks) Initial 2" SoakEase Recovery 3" SoakEase Recovery 4" SoakEa	0.15 N/A 0.06 0.17 N/A 0.26 N/A ^B N/A 0.92 0.26 0.25 0.06 0.13 0.38 0.13 0.44 0.25	112.22 112.33 112.36 NM 112.25 112.28 NM 112.76 NM NM NM 112.96 112.99 NM 113.14 113.17 113.2	112.23 112.59 112.49 112.39 112.42 112.28 NM 114.03 114.17 NM NM NM 113.11 113.33 113.01 113.43 113.20 113.61	0.26 0.13 0.00 0.17 0.00 NM 1.25 1.41 0.20 NM NM 0.15 0.34 NM 0.29 0.03 0.41

Table 2 - 1998-2022 MW-1 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal), Unadjusted	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)
2017	40/40/0047	Initial 2" SoakEase Recovery ^C	0.13	113.16	113.35	0.19
Continued	10/19/2017	2" Soakease (3 socks)	0.25	113.18	113.19	0.01
	6/2/2018 to	Initial Measurement	N/A	113.31	114.97	1.66
	6/4/2018	1.66" Product bailer 2" Soakease (3 socks)	1.45 0.31	113.45 113.50	113.82 113.69	0.37 0.19
		Initial 2" SoakEase Recovery ^C	0.17	113.55	113.84	0.19
	6/8/2018	1.66" Product bailer	0.02	NM	NM	NM
		2" Soakease (3 socks)	0.23	113.56	113.64	0.08
	6/25/2018	1.66" Product bailer 2" Soakease (3 socks)	0.33 0.17	NM NM	NM NM	NM NM
		Initial Measurement	N/A	113.52	113.77	0.25
	7/19/2018	1.66" Product bailer	0.13	NM	NM	NM
		2" Soakease (3 socks)	0.11	113.53	113.64	0.11
2018	8/2/2018	Initial Measurement 1.66" Product bailer	N/A 0.26	113.31 NM	113.59 NM	0.28 NM
2010	0/2/2010	2" Soakease (3 socks)	0.25	113.34	113.45	0.11
		Initial Measurement	N/A	113.29	113.99	0.70
	8/16/2018	1.66" Product bailer	0.20	NM	NM	NM
		2" Soakease (8 socks)	0.96	113.28	113.41	0.13
	9/4/2018	Initial Measurement 1.66" Product bailer	N/A 0.26	113.22 NM	113.90 NM	0.68 NM
	3/4/2010	2" Soakease (10 socks)	0.78	113.30	113.39	0.09
		Initial Measurement	N/A	113.10	113.31	0.21
	9/18/2018	1.66" Product bailer	0.06	NM	NM 440.45	NM
		2" Soakease (3 socks) Initial Measurement	0.12 N/A	113.14 112.82	113.15 113.14	0.01 0.32
	10/1/2018	2" Soakease (2 socks)	0.20	112.88	112.90	0.02
	5/24/2019	Initial Measurement	N/A ^B	110.55	110.80	0.25
	5/31/2019	Initial Measurement	N/A	110.45	110.68	0.23
	0.0.,=0.0	2" Pig (5 socks)	0.50	ND 110.55	110.49	0.00
	6/14/2019	Initial Measurement 2" Pig (4 socks)	N/A 0.26	110.55 110.56	110.67 110.57	0.12 0.01
	0/00/0040	Initial Measurement	N/A	110.77	110.94	0.17
	6/28/2019	2" Soakease (5 socks)	0.53	ND	110.70	0.00
	7/12/2019	Initial Measurement	N/A	110.79	110.95	0.16
		2" Soakease (5 socks) Initial Measurement	0.38 N/A	ND 110.94	110.82 111.10	0.00 0.16
	7/31/2019 - 8/9/2019 -	2" Soakease (4 socks)	0.38	ND	110.95	0.00
2019		Initial Measurement	N/A	111.04	111.20	0.16
		2" Soakease (3 socks)	0.33	ND	111.07	0.00
	8/30/2019	Initial Measurement 2" Soakease (3 socks)	N/A 0.25	111.19 ND	111.35 111.20	0.16 0.00
		Initial Measurement	0.25 N/A	110.98	111.20	0.00
	9/13/2019	2" Soakease (2 socks)	0.25	ND	111.03	0.00
	9/27/2019	Initial Measurement	N/A	111.30	111.50	0.20
	0/21/2010	2" Soakease (2 socks) Initial Measurement	0.19	ND 110.02	111.33	0.00
	10/14/2019	2" Soakease (2 socks)	N/A 0.08	110.93 ND	111.00 110.94	0.07
	10/20/2010	Initial Measurement	N/A	110.77	110.81	0.04
	10/30/2019	2" Soakease (2 socks)	0.06	ND	110.77	0.00
	7/1/2020	Well Thawing Trip	N/A ^B	NM ^B	NM ^B	NM ^B
	7/29/2020	Initial Measurement 2" Soakease (5 socks)	N/A 1.09	104.91 104.98	105.52 105.00	0.61 0.02
	0/44/0000	Initial Measurement	N/A	104.58	103.00	0.02
	8/11/2020	2" Soakease (4 socks)	0.59	ND	104.60	0.00
	8/24/2020	Initial Measurement	N/A	104.04	104.28	0.24
2020	0/2 1/2020	2" Soakease (3 socks) Initial Measurement	0.44 N/A	ND 103.55	104.07 103.80	0.00 0.25
2020	9/15/2020	2" Soakease (3 socks)	0.53	ND	103.58	0.25
	9/29/2020	Initial Measurement	N/A	103.91	104.20	0.29
	9/29/2020	2" Soakease (3 socks)	0.38	ND	103.99	0.00
	10/14/2020	Initial Measurement	N/A	103.68	103.97	0.29
		2" Soakease (3 socks) Initial Measurement	0.40 N/A	ND 103.00	103.78 103.15	0.00 0.15
	11/11/2020	2" Soakease (3 socks)	0.50	ND	103.03	0.00
	6/15/2021	Initial Measurement	N/A	104.58	105.55	0.97
		1.66" Product bailer	0.25	NM 404.70	NM 404.74	NM
		2" Soakease (6 socks) Initial Measurement	0.96 N/A	104.70 104.97	104.71 105.20	0.01 0.23
	7/9/2021	2" Soakease (4 socks)	0.50	ND	105.20	0.23
	7/24/2024	Initial Measurement	N/A	105.06	105.17	0.11
2021	7/21/2021	2" Soakease (3 socks)	0.44	ND	105.05	0.00
	8/12/2021	Initial Measurement	N/A	105.43	105.56	0.13
		2" Soakease (2 socks) Initial Measurement	0.25 N/A	ND 105.65	105.45 105.80	0.00 0.15
	8/26/2021	2" Soakease (3 socks)	0.31	ND	105.68	0.00
	10/1/2021	Initial Measurement	N/A	105.89	106.06	0.17
	10/1/2021	2" Soakease (3 socks)	0.44	105.95	105.96	0.01

Table 2 - 1998-2022 MW-1 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal), Unadjusted	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)
	5/19/2022	Initial Measurement	N/A	NM	NM	NM
	6/7/2022	Initial Measurement	N/A	108.18	108.39	0.21
	0/1/2022	2" Soakease (2 socks)	0.19	108.21	108.21	0.00
	7/8/2022	Initial Measurement	N/A	106.96	107.11	0.15
	11012022	2" Soakease (2 socks)	0.19	107.00	107.00	0.00
	7/26/2022	Initial Measurement	N/A	106.92	107.02	0.10
	112012022	2" Soakease (2 socks)	0.19	106.93	106.93	0.00
	8/16/2022	Initial Measurement	N/A	106.28	106.38	0.10
2022	0/10/2022	2" Soakease (2 socks)	0.13	106.31	106.31	0.00
	8/25/2022	Initial Measurement	N/A	106.31	106.45	0.14
	0/23/2022	2" Soakease (2 socks)	0.13	106.32	106.32	0.00
	9/8/2022	Initial Measurement	N/A	106.10	106.15	0.05
	9/0/2022	2" Soakease (2 socks)	0.00	106.12	106.12	0.00
	9/20/2022	Initial Measurement	N/A	106.37	106.50	0.13
	9/20/2022	2" Soakease (2 socks)	0.13	106.36	106.38	0.02
	10/17/2022	Initial Measurement	N/A	106.16	106.25	0.09
	10/17/2022	2" Soakease (5 socks)	0.00	106.18	106.18	0.00
	5/23/2023	Initial Measurement	N/A	108.53	109.03	0.50
	5/23/2023	2" Soakease (3 socks)	0.45	108.60	108.63	0.03
	6/1/2023	Initial Measurement	N/A	108.53	108.66	0.13
		2" Soakease (5 socks)	0.38	108.50	108.55	0.05
	6/22/2023	Initial Measurement	N/A	108.32	108.38	0.06
		2" Soakease (3 socks)	0.15	108.32	108.33	0.01
2023	7/11/2023	Initial Measurement	N/A	108.24	108.29	0.05
2023		2" Soakease (3 socks)	0.10	108.25	108.26	0.01
	8/4/2023	Initial Measurement	N/A	108.06	108.12	0.06
		2" Soakease (3 socks)	0.10	108.11	108.12	0.01
	8/29/2023	Initial Measurement	N/A	107.89	107.90	0.01
	8/29/2023	2" Soakease (3 socks)	0.00	107.89	107.89	0.00
	9/23/2023	Initial Measurement	N/A	108.11	108.16	0.05
		2" Soakease (2 socks)	0.05	108.10	108.10	0.00
		Year	Gallons	Percent of 20	11-2023 Total Reco	vered Volume
	1998-2010 ^A		N/A	N/A		
		2011		2%		
	2012		0.8 1.7	5%		
	2013		8.2	24%		
	2013		4.7	14%		
			1.3	4%		
Product	2015		2.6			
Recovery		2016		8%		
Summary	2017		4.2	12%		
	2018		6.0	18%		
	2019 (Adjusted) ^E		1.2	3%		
		2020 (Adjusted) ^E	1.4	4%		
		2021 (Adjusted) ^E	1.3	4%		
		2022 (Adjusted) ^E	0.3	1%		
		2023 (Adjusted) ^E	0.4	1%		
		Total 2011 to 2023	34.2			

Notes:

0.01 BOLD values indicate the maximum measured product thickness for each year.

A Product recovery cannisters were operated for recovery of product during this period, recovery volumes were not noted for individual wells.

B Ice plug above product depth prevented canister from being deployed for recovery.

^C Product measurement following removal of sorbent sock.

Product measurements during baildown test.

E Total volume of recovered product from visual assessment of 2" Soak Ease™ 2" socks is corrected using correction factor of 0.36 based on results of wringing 2" socks in 2020.

Pig ® 2" down-well socks absorb approximately 0.13 gallon of product each

Soak Ease™ 2" down-well socks absorb approximately 0.25 gallon of product each

Soak Ease™ 4" down-well socks absorb approximately 0.75 gallon of product each

Abbreviations:

ft feet N/A not applicable ND non detect gal gallons NM not measured

Table 3 - 1998-2023 MW-5 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal)	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)
	12/1/1998			110.83	111.62	0.79
	9/16/1999			111.51	113.56	2.05
	12/29/2000	<u></u>		100.90	109.20	8.30
1998	7/19/2001			101.30	109.30	8.00
	6/10/2002			108.53	109.60	1.07
	6/3/2003			110.10	110.85	0.75
2010	6/2/2004			110.10		0.78
Maximum					111.72	
Apparent	6/20/2005			109.40	111.65	2.25
• •	5/31/2006			110.64	111.15	0.51
inickness	5/30/2007			108.72	108.94	0.22
	7/1/2008			110.27	110.49	0.22
	7/18/2009			104.42	108.25	3.83
	10/12/2010			107.12	108.12	1.00
	6/24/2011	Frozen	N/A	NM	NM	N/A
	7/18/2011	Frozen	N/A	NM	NM	N/A
	7/26/2011	Frozen	N/A	NM	NM	N/A
		Initial Measurement	N/A	108.61	108.8	0.19
		Deployment 1	0.75	108.63	108.75	0.12
	8/8/2011	Deployment 2	0.75	108.64	108.7	0.06
		Deployment 3	0.75	108.63	108.7	0.03
2011	0/22/2011	Initial Measurement	N/A	108.42	108.6	0.18
	8/22/2011	Deployment 1	0.33	108.45	108.53	0.08
		Deployment 2	0.33	108.46	108.49	0.03
	9/9/2011	Initial Measurement	1	108.8	108.86	0.06
	0/0/2011	Deployment 1	0.75	108.84	108.87	0.03
	9/19/2011	Initial Measurement	1	108.54	108.61	0.07
	9/19/2011	Deployment 1	0.5	108.55	108.56	0.01
	10/6/2011	Initial Measurement	sheen	108.44	108.46	0.02
	10/26/2011	Initial Measurement	1	108.4	108.43	0.03
	6/5/2012	Initial Measurement	N/A ^B	109.68	110.05	0.37
	6/20/2012	Initial Measurement	N/A ^B	109.77	110.13	0.36
	7/5/2012	Initial Measurement	N/A N/A ^B	109.70	110.13	0.34
	7/3/2012					
	7/20/2012	Initial Measurement	N/A	109.67	109.94	0.27
		Deployment 1	0.00	109.63	109.93	0.3
	8/3/2012	Initial Measurement	0.00	109.71	110.03	0.32
2012	0/0/2012	Deployment 1	0.00	109.71	110.03	0.32
20.2	8/9/2012	Initial Measurement	1	109.68	109.92	0.24
		Deployment 1	0.00	109.68	109.92	0.24
	8/23/2012	Initial Measurement	1	109.51	109.71	0.2
	9/6/2012	Initial Measurement	1	109.67	109.87	0.2
	9/21/2012	Initial Measurement	1	109.59	109.79	0.2
	10/8/2012	Initial Measurement	1	109.66	109.85	0.19
	10/22/2012	Initial Measurement	1	109.75	109.85	0.1
	6/19/2013	Initial Measurement	N/A ^B	111.00	111.66	0.66
	6/27/2013	Initial Measurement		111.00	112.07	0.00
			N/A ^B			
	7/19/2013	Frozen	N/A ^B	NM	NM	NM
Apparent 'hickness ^A	8/2/2013	Initial Measurement	N/A	111.22	111.94	0.72
	8/14/2013	Initial Measurement	0.03	111.52	112.38	0.86
		Initial Measurement	0.01	111.62	112.50	0.88
		2" SoakEase (3 socks)	0.75	111.50	112.21	0.71
		2" SoakEase (4 socks)	0.75	111.55	112.02	0.47
	8/29/2013	2" SoakEase (3 socks)	0.75	111.56	111.95	0.39
		2" SoakEase (3 socks)	0.75	111.58	111.85	0.27
		2" SoakEase (3 socks)	0.75	111.62	111.77	0.15
		2" SoakEase (2 socks)	0.50	111.60	111.71	0.11
		Initial Measurement	0.50	111.55	112.48	0.93
	_	2" SoakEase (3 socks)	0.75	111.57	112.33	0.76
2013	_	2" SoakEase (3 socks)	0.75	111.61	112.18	0.57
2010	9/12/2013	2" SoakEase (3 socks)	0.75	111.64	112.01	0.37
		2" SoakEase (3 socks)	0.75	111.64	111.85	0.37
	_					
		2" SoakEase (3 socks)	0.75	111.72	111.81	0.09
		Initial Measurement	0.75	111.61	112.50	0.89
		4" SoakEase (2 socks)	1.50	111.76	112.22	0.46
	10/4/2013	4" SoakEase (2 socks)	1.50	111.80	112.11	0.31
	10/4/2013	4" SoakEase (2 socks)	1.50	111.75	112.00	0.25
		4" SoakEase (2 socks)	1.50	111.80	111.90	0.10
		4" SoakEase (2 socks)	1.50	111.90	111.92	0.02
		Initial Measurement	0.75	111.66	112.40	0.74
						0.74
		4" SoakEass (1 soak)				
	10/17/2012	4" SoakEase (1 sock)	0.75	111.74	112.36	
	10/17/2013	4" SoakEase (1 sock) 2" SoakEase (3 socks) 2" SoakEase (3 socks)	0.75 0.75 0.75	111.79 111.85	112.36 112.19 112.05	0.40

Table 3 - 1998-2023 MW-5 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal)	Depth to Product (ft)	Depth to Water (ft)	Product Thicknes (ft)
	5/8/2014	Initial Measurement	N/A	112.32	114.30	1.98
	6/3/2014	Initial Measurement	N/A ^B	112.48	114.43	1.95
		Initial Measurement	N/A	112.48	114.45	1.97
	6/4/2014 ^D	Submersible pump	3.49	112.41	113.35	0.94
		4" SoakEase (1 sock)	0.26	112.90	112.92	0.02
	6/5/2014 ^D	Final Measurement	N/A	112.59	113.24	0.65
	7/9/2014	Initial Measurement	N/A ^B	112.61	114.67	2.06
	7/00/0044	Initial Measurement	N/A	112.64	114.21	1.57
	7/28/2014	3.33" Product bailer	2.25	112.95	113.52	0.57
		4" SoakEase (1 sock)	0.66 N/A	112.92 112.59	113.04 113.87	0.12 1.28
2014	8/7/2014	Initial Measurement 3.33" Product bailer	1.90	112.75	113.04	0.29
		Initial Measurement	N/A	112.75	113.04	0.29
	8/26/2014	3.33" Product bailer	1.00	112.64	112.77	0.13
	0/20/2014	4" SoakEase (1 sock)	0.10	112.68	112.77	0.13
		Initial Measurement	N/A	112.29	112.54	0.02
	9/23/2014	3.33" Product bailer	0.33	112.34	112.46	0.12
	0,20,20	4" SoakEase (1 sock)	0.07	112.43	112.44	0.01
		Initial Measurement	N/A	111.94	112.23	0.29
	10/0/00/4	3.33" Product bailer	0.5	112.00	112.05	0.05
	10/9/2014	Initial Measurement	N/A	112.01	112.01	0.00
		4" SoakEase (2 socks)	0.25	112.02	112.03	0.01
	6/4/2015	Initial Measurement	N/A ^B	111.04	111.70	0.66
		Initial Measurement	N/A ^B	N/A	N/A	N/A
	7/3/2015	4" SoakEase (1 sock)	0.16 ^C	N/A	N/A	N/A
	7/14/2015	Initial Measurement	N/A	111.31	112.44	1.13
	7/21/2015 ^D	Initial Measurement	N/A	111.41	112.31	0.90
	7/21/2015	Submersible pump	1.9	111.62	111.70	0.08
2015	8/12/2015	Initial Measurement ^C	0.5	111.60	112.82	1.22
2015	0/12/2013	3.33" Product bailer	2.1	111.71	112.05	0.34
	8/25/2015	Initial Measurement ^C	0.5	111.57	112.68	1.11
	0/23/2013	3.33" Product bailer, 4" SoakEase	2.0	111.21	111.84	0.63
	9/13/2015	Initial Measurement ^C	N/A	111.58	112.98	1.40
	9/13/2013	3.33" Product bailer, 4" SoakEase	2.1	111.90	112.33	0.43
	10/1/2015	Initial Measurement ^C	N/A	111.79	113.22	1.43
		3.33" Product bailer, 4" SoakEase	4.25	112.11	112.18	0.07
	6/1/2016	Initial Measurement	N/A	111.46	112.20	0.74
	6/2/2016	Initial Measurement	N/A	111.50	112.43	0.93
	6/7/2016	Initial Measurement	N/A	111.58	113.06	1.48
	6/11/2016	Initial Measurement	N/A	111.60	112.85	1.25
		1.66" bailer, 4" SoakEase (3 socks)	1.60	NM	NM	NM
	6/27/2016	Initial 4" SoakEase Recovery ^C	0.26	111.81	113.05	1.24
		4" SoakEase (6 sock)	2.00	not recorded	not recorded	0.23
	7/10/2016	Initial 4" SoakEase Recovery ^C	0.26	111.89	113.00	1.11
		3.33" bailer, 4" SoakEase	2.05	111.97	112.38	0.41 0.96
	0/5/2016	Initial 4" SoakEase Recovery ^C	0.26	111.97	112.93	
	8/5/2016	3.33" bailer	2.20 0.40	NM 111.26	NM 111.49	NM 0.23
		4" SoakEase (1 sock)	0.40	111.26 112.12	113.09	0.23
2016	8/18/2016	Initial 4" SoakEase Recovery ^C	0.40 1.50			0.97 NM
2010	0/10/2010	3.33" bailer	0.40	NM 112.28	NM 112.48	0.20
		4" SoakEase (1 sock) Initial 4" SoakEase Recovery ^C	0.40	112.28	112.48	0.20
	9/5/2016	4" SoakEase (1 sock)	0.40	NM	NM	NM
	5/5/2010	3.33" bailer	0.40	112.14	112.33	0.19
		Initial Measurement	N/A	112.09	112.49	0.40
	9/16/2016	3.33" bailer	0.50	112.14	112.36	0.40
	3, . 3, 20 10	4" SoakEase (2 socks)	0.30	112.14	112.25	0.03
		Initial Measurement	N/A	112.25	112.56	0.31
	10/3/2016	3.33" bailer	0.50	112.33	112.38	0.05
		4" SoakEase (1 sock)	0.10	112.39	112.39	0.00
		Initial Measurement	N/A	112.17	112.38	0.21
	10/13/2016	3.33" bailer	0.50	112.22	112.31	0.09
		4" SoakEase (1 sock)	0.26	112.26	112.26	0.00
	5/25/2017	Frozen	N/A ^B	NM	NM	NM
	5/26/2017	Initial Measurement	N/A	112.72	113.83	1.11
	6/5/2017	Initial Measurement	N/A	112.70	114.03	1.33
		3.33" bailer	1.18	112.70	114.02	1.32
	to	4" SoakEase (1 sock)	0.25	NM	NM	NM
2017	6/7/2017	4" SoakEase (1 sock)	0.25	112.89	113.22	0.33
2017		Initial 4" SoakEase Recovery ^C	0.3	112.84	113.75	0.91
	6/27/2017	3.33" bailer	1.58	NM	NM	NM
		4" SoakEase (2 socks)	1.50	113.08	113.12	0.04
		Initial 4" SoakEase Recoverv ^C	0.6	113.05	113.86	0.81
	7/24/2017	3.33" bailer	0.53	NM	NM	NM

Table 3 - 1998-2023 MW-5 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered	Depth to Product	Depth to Water (ft)	Product Thickness
			(gal)	(ft)	(11)	(ft)
		Initial 4" SoakEase Recovery ^C	0.38	113.12	114.02	0.90
	9/14/2017	3.33" bailer	0.80	NM	NM	NM
		4" SoakEase (1 sock)	0.56	113.24	113.29	0.05
2017		Initial Measurement	N/A	112.93	113.38	0.45
Continued	9/28/2017	3.33" bailer	0.53	NM	NM	NM
- Continuou		4" SoakEase (2 socks)	0.50	113.10	113.18	0.08
		Initial 4" SoakEase Recovery ^C	0.25	113.05	113.48	0.43
	10/19/2017	3.33" bailer	0.38	113.12	113.25	0.13
		4" SoakEase (1 sock)	0.06	113.14	113.16	0.02
	6/2/2018 to	Initial Measurement	N/A	113.28	114.80	1.52
	6/4/2018	3.33" bailer	1.45	NM	NM	NM
		4" SoakEase (3 socks)	0.56	113.44	113.74	0.30
	0/0/0040	Initial 2" SoakEase Recovery ^C	0.38	113.49	114.29	0.80
	6/8/2018	3.33" bailer	0.50	NM	NM 442.02	NM
		4" SoakEase (6 socks)	0.93	113.55	113.63	0.08
	6/25/2018	3.33" bailer	1.00	NM	NM	NM
		4" SoakEase (4 socks)	0.50	NM	NM	NM
	7/10/2010	Initial Measurement	N/A	113.33	114.15	0.82
	7/19/2018	3.33" bailer	0.86	NM 112.55	NM	NM
		4" SoakEase (4 socks)	0.68	113.55	113.63	0.08
2049	0/0/0040	Initial Measurement	N/A	113.16	113.67	0.51
2018	8/2/2018	3.33" bailer	0.80	NM	NM	NM 0.10
		4" SoakEase (2 socks)	0.30	113.32	113.42	0.10
	0/16/2010	Initial Measurement	N/A	113.21	113.71	0.50
	8/16/2018	3.33" bailer	0.53	NM	NM	NM 0.00
		4" SoakEase (4 socks)	0.55	113.36	113.42	0.06
	9/4/2018	Initial Measurement	N/A	113.11	113.55	0.44
	9/4/2018	3.33" bailer	0.46	NM	NM	NM
		4" SoakEase (4 socks)	0.65	113.26	113.32	0.06
	0/40/2040	Initial Measurement	N/A	112.98	113.16	0.18
	9/18/2018	3.33" bailer	0.25	NM	NM	NM 0.04
		4" SoakEase (2 socks)	0.25	113.04	113.05	0.01
	10/1/2018	Initial Measurement	N/A	112.72 112.78	112.85 112.79	0.13 0.01
	5/24/2019	4" SoakEase (2 socks)	0.38	110.45	110.78	
	5/31/2019	Initial Measurement Well Thawing Trip	N/A ^B	NM ^B	NM ^B	0.33 NM ^B
	İ	Initial Measurement	N/A N/A	110.46	110.78	0.32
	6/14/2019	4" SoakEase (4 socks)	1.62	110.48	110.62	0.14
		Initial Measurement	N/A	110.65	111.03	0.38
	6/28/2019	4" SoakEase (8 socks)	4.56	110.74	110.82	0.08
		Initial Measurement	N/A	110.64	111.02	0.38
	7/12/2019	4" SoakEase (7 socks)	3.75	110.78	110.81	0.03
		Initial Measurement	N/A	110.80	111.20	0.40
	7/31/2019	4" SoakEase (7 socks)	2.85	110.95	110.96	0.01
	0/0/5	Initial Measurement	N/A	110.92	111.28	0.36
2019	8/9/2019	4" SoakEase (6 socks)	2.63	111.11	111.16	0.05
	0/00/0040	Initial Measurement	N/A	111.07	111.47	0.40
	8/30/2019	4" SoakEase (6 socks)	2.91	111.20	111.24	0.04
	0/40/0040	Initial Measurement	N/A	110.89	111.15	0.26
	9/13/2019	4" SoakEase (3 socks)	0.94	ND	111.04	0.00
	0/07/0040	Initial Measurement	N/A	111.15	111.60	0.45
	9/27/2019	4" SoakEase (4 socks)	2.03	111.39	111.42	0.03
	10/14/2000	Initial Measurement	N/A	110.84	111.03	0.19
	10/14/2009	4" SoakEase (2 socks)	0.71	110.90	110.93	0.03
	10/20/2010	Initial Measurement	N/A	110.62	110.75	0.13
	10/30/2019	4" SoakEase (2 socks)	0.56	ND	110.66	0.00
	7/1/2020	Initial Measurement	N/A ^B	106.24	106.54	0.30
	11112020	Well Thawing Trip	N/A ^B	NM ^B	NM ^B	NM ^B
	7/29/2020	Initial Measurement	N/A	104.70	106.02	1.32
	112312020	4" SoakEase (6 socks)	3.69	104.91	104.92	0.01
	8/11/2020	Initial Measurement	N/A	104.42	105.10	0.68
	0/11/2020	4" SoakEase (3 socks)	1.69	104.53	104.54	0.01
	8/24/2020	Initial Measurement	N/A	103.98	104.51	0.53
2020	0/24/2020	4" SoakEase (3 socks)	1.73	ND	104.03	0.00
2020	0/15/2020	Initial Measurement	N/A	103.34	104.29	0.95
	9/15/2020	4" SoakEase (3 socks)	1.50	103.50	103.51	0.01
	0/20/2020	Initial Measurement	N/A	103.83	104.41	0.58
	9/29/2020	4" SoakEase (3 socks)	1.60	ND	103.97	0.00
	10/14/2020	Initial Measurement	N/A	103.59	104.23	0.64
	10/14/2020	4" SoakEase (3 socks)	1.20	ND	103.74	0.00
	44/44/0000	Initial Measurement	N/A	102.47	103.93	1.46
	11/11/2020	4" SoakEase (3 socks)	1.88	ND	102.73	0.00

Table 3 - 1998-2023 MW-5 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal)	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)
		Initial Measurement	N/A	103.82	108.06	4.24
	6/15/2021	3.33" Product bailer	5.00	NM	NM	NM
		4" SoakEase (5 socks)	2.25	104.55	104.57	0.02
		Initial Measurement	N/A	104.20	107.58	3.38
	7/9/2021	3.33" Product bailer	3.75	NM	NM	NM
		4" SoakEase (2 socks)	0.75	104.76	104.77	0.01
2021	7/21/2021	Initial Measurement	N/A	104.66	105.56	0.90
2021	172172021	4" SoakEase (2 socks)	0.75	ND	104.85	0.00
	8/12/2021	Initial Measurement	N/A	104.99	106.19	1.20
	07.12/2021	4" SoakEase (4 socks)	1.69	ND	105.22	0.00
	8/26/2021	Initial Measurement	N/A	105.30	106.05	0.75
		4" SoakEase (3 socks)	0.94	105.44	105.45	0.01
	10/1/2021	Initial Measurement	N/A	105.35	106.94	1.59
		4" SoakEase (4 socks)	1.50	105.75	105.76	0.01
	5/19/2022	Initial Measurement	N/A	108.70	108.83	0.13
	 	4" Soakease (2 socks)	0.38	108.72	108.72	0.00
	6/7/2022	Initial Measurement	N/A 0.38	107.95 107.95	108.08	0.13 0.01
	 	4" Soakease (2 socks) Initial Measurement	0.38 N/A	107.95	107.96 107.90	1.42
	7/8/2022	4" Soakease (5 socks)	2.25	106.48	106.79	0.01
		, ,	2.25 N/A	106.76	107.50	0.01
	7/26/2022	Initial Measurement 4" Soakease (4 socks)	1.50	106.71	106.71	0.99
		Initial Measurement	N/A	105.97	106.45	0.48
2022	8/16/2022	4" Soakease (2 socks)	0.56	106.06	106.06	0.46
		Initial Measurement	N/A	106.05	106.25	0.00
	8/25/2022	4" Soakease (2 socks)	0.75	106.09	106.09	0.00
		Initial Measurement	N/A	105.80	106.03	0.00
	9/8/2022	4" Soakease (4 socks)	0.30	105.88	105.90	0.02
		Initial Measurement	N/A	106.08	106.36	0.28
	9/20/2022	4" Soakease (2 socks)	0.75	106.15	106.16	0.01
		Initial Measurement	N/A	105.81	106.32	0.51
	10/17/2022	4" Soakease (5 socks)	0.75	106.18	106.18	0.00
	= /0.0 /0.00	Initial Measurement	N/A	108.30	108.38	0.08
	5/23/2023	4" Soakease (2 socks)	0.08	108.31	108.32	0.01
	0/4/0000	Initial Measurement	N/A	108.25	108.38	0.13
	6/1/2023	4" Soakease (2 socks)	0.30	108.27	108.30	0.03
	6/22/2023	Initial Measurement	N/A	108.04	108.11	0.07
	0/22/2023	4" Soakease (3 socks)	0.08	108.06	108.12	0.06
2023	7/11/2023	Initial Measurement	N/A	107.95	108.10	0.15
2023	11111/2023	4" Soakease (4 socks)	0.90	107.96	107.99	0.03
	8/4/2023	Initial Measurement	N/A	107.79	107.97	0.18
	01712020	4" Soakease (4 socks)	0.90	107.85	107.87	0.02
	8/29/2023	Initial Measurement	N/A	107.54	107.94	0.40
	0,20,2020	4" Soakease (5 socks)	1.50	107.65	107.67	0.02
	9/23/2023	Initial Measurement	N/A	107.80	107.97	0.17
		4" Soakease (3 socks)	0.75	107.85	107.86	0.01
	ļ	Year	Gallons	Percent of 20	011-2023 Total Reco	verea Volun
		1998-2010 ^D	N/A		N/A	
	<u> </u>	2011 2012	6.7		5% 4%	
	1	2012	6.0 20.1		15%	
	1	2013	10.8		8%	
	1	2014	13.5		10%	
Product	1	2016	14.6		11%	
Recovery	1	2017	10.1		8%	
Summary	<u> </u>	2018	11.0		8%	
-	 	2019 (Adjusted) ^E	13.5		10%	
	———	2020 (Adjusted) ^E	8.0		6%	
	———	2021 (Adjusted) ^E	13.5		10%	
	———	2022 (Adjusted) ^E	4.6		3%	
	———	2022 (Adjusted) ^E	2.7		2%	
	L	Total 2011 to 2023	135.0			

Table 3 - 1998-2023 MW-5 Summary of Product Gauging and Recovery PS09 Mainline Turbine Sump

Year	Date	Description	Amount Recovered (gal)	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)
Notes:						
0.01	BOLD values indica	te the maximum measured product thicknes	s for each year.			
A	Product recovery ca	innisters were operated for recovery of produ	act during this period, recover	ry volumes were not	noted for individual w	vells.
В	Ice plug above prod	uct depth prevented canister or sock from be	eing deployed for recovery.			
С	Product measureme	ent following removal of sorbent sock.				
D	Product measureme	ents during baildown test.				
E	Total volume of reco wringing 4" socks in	overed product from visual assessment of 4" 2020.	Soak Ease™ socks is correct	cted using correction	n factor of 0.60 based	on results of
		approximately 0.25 gallon of product each approximately 0.75 gallon of product each				
Abbreviations:						
ft	feet	N/A	A not applicable		ND	non detect
gal	gallons	NA	Inot measured			

Table 4 - 1998-2023 Annual Product Recovery Summary PS09 Mainline Turbine Sump

	Period	Volume Recovered (gallons)	Percent of Total Recovered Volume ^A (gallons)	Number of Recovery Events	Recovery Volume per Event (gallons)
	1998-2010 ^B	1,085	86%	N/A	N/A
	2011 ^C	11.2	0.9%	4	2.8
	2012 ^D	8.7	0.7%	4	2.2
	2013 ^D	30.8	2.4%	4	7.7
	2014 ^{E, F}	16.2	1.3%	7	2.3
Product	2015 ^{E, F}	15.1	1.2%	5	3.0
Recovery	2016 ^{E, F}	17.8	1.4%	10	1.8
Summary	2017 ^{E, F}	14.3	1.1%	6	2.4
	2018 ^{E, F}	17.0	1.3%	9	1.9
	2019 ^{G, H}	14.7	1.2%	11	1.3
	2020 ^{H, I}	9.4	0.7%	7	1.3
	2021 ^{E, H}	14.8	1.2%	6	2.5
	2022 ^{H, I}	4.9	0.4%	9	0.5
	2023 ^{H, I}	3.1	0.2%	7	0.4
	Grand Total	1,263	100%	89	

Notes:

- Not applicable
- A Total annual recovery for Monitoring wells MW-1, MW-5, and MW-6 1998 though 2016, monitoring wells MW-1 and MW-5 from 2017 to 2023.
- ^B Product recovery using oil skimmer pump and pneumatically-driven pumps for 1998 through 2009 and product bailers in 2010.
- Product Recovery using Keck[®] Product Recovery Canisters as an active recovery system.
- Product Recovery using bailers and Keck® Product Recovery Canisters as passive recovery systems.
- Product recovery using Durham Geo Slope Indicator SoakEaseTM sorbent socks and product-selective bailers.
- F Total volume of recovered product is considered biased-high due to separate-phase water recovered with product using sorbent socks.
- G Product recovery using Durham Geo Slope Indicator SoakEase[™] and Pig[®] sorbent socks.
- Product and water cut determined through wringing socks and measuring water/product volumes and weighing residual product in wrung socks. Correction factor applied to visually-determined volume.
- Product recovery using only Durham Geo Slope Indicator SoakEaseTM sorbent socks.

						S	ample L	ocations ^B					
Analytical Method and Analyte	ADEC 2023 Groundwater Cleanup Level ^A	MW-2 May 22, 20 12322190	023	MW-3 May 22, 20 12322190 (Primary	023 001	MW-93 May 22, 20 12322190 (Duplicat	023 002	MW-7 May 22, 20 12322190		MW-8 May 22, 20 12322190	023	MW-10 May 22, 20 12322190	023
		Conc. C	Flag	Conc. ^C	Flag	Conc. C	Flag	Conc. ^C	Flag	Conc. ^C	Flag	Conc. C	Flag
DRO by Method AK102													
Diesel Range Organics	1.5	[0.294]	ND	[0.306]	ND	[0.3]	ND	3.03	=	0.202	J	0.228	J
BTEX by Method SW8021B	_												
Benzene	0.0046	[0.00025]	ND	[0.00025]	ND	[0.00025]	ND	0.00173	=	[0.00025]	ND	[0.00025]	ND
Toluene	1.1	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND
Ethylbenzene	0.015	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND
o-Xylene		[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND	[0.0005]	ND
P & M -Xylene		[0.001]	ND	[0.001]	ND	[0.001]	ND	[0.001]	ND	[0.001]	ND	[0.001]	ND
Xylenes (total) ^D	0.19	[0.001]	ND	[0.001]	ND	[0.001]	ND	[0.001]	ND	[0.001]	ND	[0.001]	ND

Shaded yellow indicates an exceedance of ADEC criteria.

Notes

- This cleanup level corresponds to ADEC groundwater cleanup levels, 18 AAC 75.345, Table C, revised as of October 1, 2023.
- The field sample identification number, date collected, and laboratory sample identification number are provided.
- ^C The maximum concentration of a detected analyte is shown. The highest LOD is shown in [brackets] for ND analytes.
- Total values were the summation of detected compounds only. If compounds were ND, then the highest LOD was listed.

Abbreviations

	not applicable or screening criteria does not exist for this compound	DL	detection limit	mg/L milligrams per liter
AAC	Alaska Administrative Code	DRO	diesel range organics	
ADEC	Alaska Department of Environmental Conservation	LOD	limit of detection	
BTEX	benzene, toluene, ethylbenzene, total xylenes	LOQ	limit of quantitation	

Data Flags

- Analyte listed at concentration listed in column to the left.
- J The analyte was positively identified, but the result was between the LOQ and DL; the quantitation was an estimate.
- ND Nondetect; the limit of detection is presented in brackets to the left.

	<u> </u>	AK 102 BTEX USEPA Method 8021B													ΡΔΙ	Hs USEPA N	lethod 8270	SIM						
Well Name	Sample Designation		Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes	2-Methylnaph- thalene	Acenaph- thylene	Acenaph- thene	Anthracene	Benzo(a)- anthracene	Benzo(a) pyrene	Benzo(b)fluor- anthene	Benzo(k)fluor- anthene	Chrysene	Dibenzo(a,h)- anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3)- pyrene	Naphthalene	Phenan- threne	Pyrene
		Cleanup Level A	1.5	0.005	1.0	0.7	10	N/A	N/A	2.2	11	0.0012	0.0002	0.0012	0.012	0.12	0.00012	0.073	1.5	1.5	0.0012	0.73	11	1.1
		Cleanup Level ^B 23 Groundwater	1.5	0.0046	1.1	0.015	0.19	0.036	0.260	0.530	0.043	0.00012	0.000034	0.00034	0.00080	0.0020	0.000034	0.0079	0.260	0.290	0.00019	0.0017	0.170	0.120
ADEC 2016	Cleanup Leve		1.5	0.0046	1.1	0.015	0.19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-1 ^E	PS9-1	11/7/1997		0.200	0.72	0.13	1.6	1,000	ND	0.00182	0.002	0.00011	0.00002	0.00006	0.00002	0.00118	ND	0.00366	0.0006	0.00465	0.00003	0.7	0.074	0.00161
	PS9-2	11/7/1997		ND	ND	ND	ND	0.13	0.02	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	0.00003	0.00003	0.00005	ND	0.0001	0.00008	0.00004
	PS9-4 ^D MW-2	11/7/1997 4/1/1998		ND ND	ND ND	ND ND	ND ND	0.14	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00008 0.037	0.00004	0.00003 ND
	MW-8	4/1/1998		ND ND	ND ND	ND ND	ND ND	23	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.037	0.056	ND ND
	MW-2	11/22/1998		ND	ND	ND	ND	0.08	ND	ND ND	ND	0.00006	ND	ND	ND	0.00005	ND	ND	ND	ND ND	ND	ND	ND	ND
	MW-11 ^D	11/22/1998		ND	ND	ND	ND	ND	ND	ND	ND	0.00006	ND	ND	ND	0.00005	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	6/9/1999	1.80	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-11 ^D	6/9/1999	2.40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00012	0.00013	ND
	MW-2	9/17/1999	0.82	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	11/11/1999	0.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	5/17/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	7/16/2000	ND 0.50	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	10/13/2000	0.58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2 MW-2	3/27/2001 7/12/2001	ND 0.58	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-20 ^D	7/12/2001	ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	MW-2	9/20/2001	ND	ND ND	ND	ND	ND ND		-	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND
	MW-20 ^D	9/20/2001	ND	ND	ND	ND	ND		-	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
	MW-2	11/16/2001	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-20 ^D	11/16/2001	ND	ND	ND	ND	ND		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	6/11/2002	0.576	ND	ND	ND	ND		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	10/5/2002	ND	ND	ND	ND	ND		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	6/25/2003	ND [0.483]	ND	ND	ND	ND		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-2	10/2/2003	ND	ND	ND	ND	ND		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND [0.0000614]	ND	ND
	MW-2	6/10/2004	ND	ND	ND	ND	ND		-							-							-	
	MW-2 MW-2	10/19/2004 6/28/2005	ND 0.501	ND ND	ND ND	ND ND	ND ND															 ND		
MW-2	MW-2	10/17/2005	0.0846	ND ND	ND	ND	ND ND															ND ND		
	MW-2	6/02/2006	0.586	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-2	10/5/2006	ND [0.313]	ND [0.0004]	ND [0.001]	0.00336	0.00561	_	_							-						0.0041		
	MW-2	7/18/2007	0.128 J	ND [0.0004]	0.00031 J	ND [0.001]	ND [0.003]									-								
	DUP-1 ^D	7/18/2007	0.114 J	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	-																
	MW-2	10/4/2007	ND [0.300]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]									-						ND [0.002]		
	DUP-1 ^D	10/4/2007	0.3	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]		-													ND [0.002]	-	
	MW-2	7/25/2008	0.257 J	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]		-													ND [0.002]		
	MW-2A ^D MW-2	7/25/2008 7/18/2009	0.357 0.237 J	ND [0.0004] ND [0.0004]	ND [0.001] ND [0.001]	ND [0.001] ND [0.001]	ND [0.003] ND [0.003]									-				-		ND [0.002] ND [0.002]		
	MW-14 ^D	7/18/2009	ND [0.769]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-2	8/11/2010	1.75	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]									-								
	MW-2D ^D	8/11/2010	0.389 J	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]		_				-										-	
	MW-2	9/8/2011	0.218 J	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.003]																-	
	MW-2	7/20/2012	ND [0.36]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	_						-		-			-					
	MW-2	9/19/2013	0.289 J	ND [0.0003]	ND [0.00062]		ND [0.00186]									-								
	MW-29 ^D	9/19/2013	0.196 J	ND [0.0003]	ND [0.00062]		ND [0.00186]		-		-					-							-	
	MW-2	6/5/2014	ND [0.306]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]									-								
	MW-29 ^D	6/5/2014	ND [0.33]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]							-		-								
	MW-2	7/15/2015	0.511 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]									-								
	MW-29 ^D MW-2	7/15/2015 6/6/2016	0.458 J 0.297 J	ND [0.00025] ND [0.00025]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.001] ND [0.001]		-		<u></u>		<u></u>			-				-			<u></u>	
	MW-29 ^D	6/6/2016	0.297 J 0.238 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001] ND [0.001]																	
	MW-2	6/7/2017	0.236 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-2	5/30/2019	0.285 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-2	6/1/2021	0.362 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]									-								
	MW-2	5/22/2023	ND [0.294]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	-																

			AK 102		BTEX USEPA	Wethod 8021B		<u> </u>							PAI	Hs USEPA N	lethod 82708	SIM						
Well Name	Sample Designation	Date Sampled	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes	2-Methylnaph- thalene	Acenaph- thylene	Acenaph- thene	Anthracene	Benzo(a)- anthracene	Benzo(a) pyrene	Benzo(b)fluor- anthene	Benzo(k)fluor- anthene	Chrysene	Dibenzo(a,h)- anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3)- pyrene	Naphthalene	Phenan- threne	Pyrene
	Groundwater (Groundwater (1.5 1.5	0.005 0.0046	1.0 1.1	0.7 0.015	0.19	N/A 0.036	0.260	2.2 0.530	0.043	0.0012 0.00012	0.0002 0.00034	0.0012 0.00034	0.012	0.12	0.00012 0.00034	0.073 0.0079	0.260	1.5 0.290	0.0012 0.00019	0.73 0.0017	0.170	0.120
		23 Groundwater													0.00080									
	Cleanup Leve		1.5	0.0046	1.1	0.015	0.19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	PS9-3	11/7/1997		ND	ND	ND	ND	0.16	ND	ND	ND	0.00033	0.00018	0.00051	0.00048	0.00044	0.00034	ND	0.00011	0.00002	0.0003	0.00008	0.00005	0.00018
	MW-3	4/1/1998		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-3 MW-3	11/21/1998 6/9/1999	 ND	ND ND	ND ND	ND ND	ND ND	0.06 ND	ND ND	ND ND	ND ND	0.00007 ND	ND ND	ND ND	ND ND	0.00005 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-3	9/16/1999	0.14	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND
	MW-3	11/11/1999	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-3	5/17/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-3	7/16/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-3 MW-3	10/11/2000 3/27/2001	ND ND	ND ND	ND ND	ND ND	ND ND	ND 	ND 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.000065	ND ND	ND ND
	MW-3	7/11/2001	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
	MW-3	9/20/2001	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-3	11/16/2001	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-3 MW-3	6/10/2002 10/3/2002	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-3	6/25/2003	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
	MW-3	10/2/2003	ND	ND	ND	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND [0.0000583]	ND	ND
	MW-3	6/11/2004	ND	ND	ND	ND	ND																	
	MW-3	10/19/2004	ND 0.544	ND	ND	ND	ND																	
MW-3	MW-3 MW-3	6/28/2005 10/17/2005	0.514 0.100	ND ND	ND ND	ND ND	ND ND															ND ND		
10100-5	MW-3	6/01/2006	ND [0.3]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]				<u></u>					<u></u>			<u></u>			ND [0.002]		
	MW-3	10/6/2006	ND [0.311]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	-														ND [0.002]		
	MW-4	10/6/2006	ND [0.314]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	-														ND [0.002]		
	MW-3	7/18/2007	0.0138 J	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]	-	-		-	-			-		-							
	MW-3 MW-3	10/4/2007 7/24/2008	ND [0.313] 0.105 J	ND [0.0004] ND [0.0004]	ND [0.001] ND [0.001]	ND [0.001] ND [0.001]	ND [0.003] ND [0.003]															ND [0.002] ND [0.002]		
	MW-3	7/18/2009	ND [0.769]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-3	8/12/2010	ND [0.714]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]																	
	MW-3	9/8/2011	0.275 J	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.003]	-									-							
	MW-3	7/20/2012	ND [0.396]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	-								-	-							
	MW-3 MW-3	9/19/2013 6/3/2014	ND [0.368] ND [0.371]	ND [0.0003] ND [0.00025]	ND [0.00062] ND [0.0005]	ND [0.00062] ND [0.0005]	ND [0.00186] ND [0.001]																	
	MW-3	7/15/2015	0.425 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-3	6/7/2016	ND [0.278]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]	-					-											
	MW-3	6/7/2017	ND [0.273]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-33 ^D	5/30/2019 5/30/2019	0.304 J 0.272 J	ND [0.00025] ND [0.00025]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.001] ND [0.001]																	
	MW-3	6/1/2021	0.272 J 0.349 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-3		ND [0.306]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]						-											
	MW-93 ^D	5/22/2023	ND [0.3]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]												-					
	MW-4	11/21/1998	1 10	ND	0.007	ND ND	ND ND	0.14	ND	0.00002	ND	0.00006	ND	ND	ND	0.00006	ND	ND	ND	0.00006	ND	ND ND	ND	ND
	MW-4 MW-4	6/9/1999 9/16/1999	1.10 0.57	ND ND	0.036 0.0014	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-4	11/11/1999	0.24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-4	5/17/2000	ND	ND	0.0058	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-4	7/16/2000	0.30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4 ^F	MW-4 MW-4	10/13/2000 3/27/2001	0.36 ND	ND ND	0.0028 ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
IVIVV-4	MW-4	7/12/2001	ND ND	ND ND	0.00604	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND	ND
	MW-4	9/20/2001	ND	ND	0.00285	ND	ND ND			ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
	MW-4	11/16/2001	0.84	ND	0.00103	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
	MW-4	6/11/2002	0.649	ND	0.0285	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	 ND	ND	ND	ND	ND	ND	ND
	MW-4 MW-4	10/5/2002 6/25/2003	ND ND [0.422]	ND ND	ND 0.00223	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-4	10/2/2003	0.41	ND ND	0.00223 ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND		ND ND	ND ND		ND [0.0000543]	ND	ND
<u> </u>	14144	10,2,2000	0.71	140	1 140	שוו	110			140	110	110	IND	1 110	110	110	ווו		110	IND	ND	[0.0000040]	יאו	

			AK 102		BTEX USEPA	Wethod 8021B									PA	Hs USEPA N	Method 8270	SIM						
Well Name	Sample Designation		Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes	2-Methylnaph- thalene	Acenaph- thylene	Acenaph- thene	Anthracene	Benzo(a)- anthracene	Benzo(a) pyrene	Benzo(b)fluor- anthene	Benzo(k)fluor- anthene	Chrysene	Dibenzo(a,h)- anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3)- pyrene	Naphthalene	Phenan- threne	Pyrene
	Groundwater (Cleanup Level A	1.5 1.5	0.005 0.0046	1.0 1.1	0.7 0.015	0.19	N/A 0.036	0.260	2.2 0.530	0.043	0.0012 0.00012	0.0002 0.00034	0.0012 0.00034	0.012	0.12 0.0020	0.00012 0.00034	0.073 0.0079	1.5 0.260	1.5 0.290	0.0012 0.00019	0.73 0.0017	0.170	1.1 0.120
		23 Groundwater													0.00080									
	Cleanup Leve		1.5	0.0046	1.1	0.015	0.19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-4	MW-4	6/11/2004	1.41	ND	ND	ND	ND	-										-						
Continued	MW-4	10/18/2004	0.779	ND	ND	ND	ND																	
	MW-7 MW-7	11/21/1998 11/11/1999		ND ND	ND ND	ND ND	ND ND	0.26	ND 	ND 	ND	0.00006	ND 	ND 	ND	0.00005	ND 	ND	ND	0.00005	ND 	ND 	ND	ND
	MW-7	5/17/2000	2.12	0.00112	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000113	ND	ND	ND	ND	ND	ND	ND	ND
	MW-7	7/16/2000		0.00154	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-7	10/11/2000	0.385	0.00160	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-7	3/27/2001	ND	0.00125	ND	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-7 MW-7	7/12/2001 9/21/2001	2.96 ND	ND 0.00095	ND ND	ND ND	0.00517 ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00002 ND	ND ND	ND ND
	MW-7	11/19/2001	ND	0.00397	ND	ND	ND	_		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
	MW-7	6/12/2002	ND	0.000974	ND	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-7	10/4/2002	ND	0.00197	ND	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-7 MW-7	6/25/2003 10/1/2003	ND [0.498]	ND ND	ND ND	ND ND	ND ND	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND [0.0828]	ND ND	ND ND
	MW-7	6/11/2004	ND ND	0.00377	ND ND	ND ND	ND ND															ND [0.0626]		ND
	MW-7	10/19/2004	ND	0.0299	ND	ND	ND	-	-									-						
	MW-7	6/27/2005	0.928	0.0299	ND	ND	ND	-														ND		
	MW-7	10/17/2005	0.627	0.0284	ND	ND	ND	-														ND		
MW-7	MW-7 MW-7	6/02/2006 10/5/2006	ND [0.5] 0.677	0.0318 0.0218	ND [0.001] ND [0.001]	ND [0.001] ND [0.001]	ND [0.003] ND [0.003]															ND [0.002] ND [0.002]		
	MW-7	7/18/2007	0.686	0.0218	0.000440 J	ND [0.001]	ND [0.003]												<u></u>			ND [0.002]		
	MW-7	10/4/2007	0.973	0.0231	ND [0.001]	ND [0.001]	ND [0.003]	-										-				ND [0.002]		
	MW-7	7/24/2008	0.564	0.0275	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-7 MW-7	7/17/2009	0.489 J	0.0634	ND [0.001]	ND [0.001]	ND [0.003]	-														ND [0.002]		
	MW-7	8/11/2010 9/8/2011	0.909 1.47	0.0243 0.0128	ND [0.002] ND [0.001]	ND [0.002] ND [0.001]	ND [0.002] ND [0.003]																	
	MW-97 ^D	9/8/2011	1.33	0.0124	ND [0.001]	ND [0.001]	ND [0.003]																	
	MW-7	7/20/2012	1.08	0.00452	ND [0.00062]	ND [0.00062]	0.00039 J	-					-		-			-						
	MW-7	9/19/2013	1.29	0.00494	ND [0.00062]	ND [0.00062]	ND [0.00186]	-																
	MW-7 MW-7	6/5/2014 7/15/2015	1.03 0.867	0.00481 0.00122	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.001] ND [0.001]																	
	MW-7	6/6/2016	0.887	0.00122	ND [0.0005]	ND [0.0005]	ND [0.001]				<u></u>													
	MW-7	6/7/2017	0.987	0.00158	ND [0.0005]	ND [0.0005]	ND [0.001]					-						-						
	MW-27 ^D	6/7/2017	1.07	0.0016	ND [0.0005]	ND [0.0005]	ND [0.001]	-																
	MW-7	5/30/2019	1.08	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]		-						-			-	-					
	MW-7 MW-7	6/1/2021 5/22/2023	1.27 3.03	ND [0.00025] 0.00173	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.001] ND [0.001]												<u></u>					
	MW-8	11/22/1998		0.00173 ND	0.022	ND [0.0003]	ND [0.001]	0.45	ND	0.00006	ND	0.00005	ND	ND	ND	ND	ND	ND	ND	0.00009	ND	0.00012	ND	ND
	MW-8	9/17/1999		ND	ND	ND	ND	-										-				=		
	MW-8	5/17/2000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00185	ND	0.00186	0.00246	ND
	MW-8	7/16/2000 10/13/2000	ND	ND	ND ND	ND	ND ND	ND.	ND.	 ND	 ND	ND.	ND		ND.	ND	ND.		ND	ND	ND			ND
	MW-8	3/27/2001	1.10	ND ND	ND ND	ND ND	ND ND	ND 	ND 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND 0.000165	ND ND	ND
	MW-8	7/12/2001	ND	ND	ND	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-8	9/21/2001	ND	ND	ND	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-8	MW-8	11/19/2001		 ND	 ND									 ND						 ND			 ND	
	MW-8 MW-8	6/12/2002 10/5/2002	ND ND	ND ND	ND ND	ND ND	ND ND	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-8	7/3/2002	1.16	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND ND	ND ND	ND	ND
	MW-8	10/1/2003	ND	ND	ND	ND	ND	-		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND [0.0000594]	ND	ND
	MW-8	6/11/2004	ND	ND	ND	ND	ND	-	-										ND					
	MW-8	10/19/2004	ND 0.753	ND	ND ND	ND	ND ND												ND	-				
	MW-8 MW-8	6/28/2005 10/17/2005	0.753 0.167	ND 0.00091	ND 0.0068	ND 0.00073	ND 0.00316															ND ND		
	N/A	June 2006	0.107	0.00091	0.0008	0.00073	0.00310																	
ш	14// 1	J 5.10 2000																						

			AK 102	<u> </u>	BTEX USEPA I	Method 8021B									PAI	Hs USEPA M	lethod 8270	SIM						
Well Name	Sample Designation		Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes	2-Methylnaph- thalene	Acenaph- thylene	Acenaph- thene	Anthracene	Benzo(a)- anthracene	Benzo(a) pyrene	Benzo(b)fluor- anthene	Benzo(k)fluor- anthene	Chrysene	Dibenzo(a,h)- anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3)- pyrene	Naphthalene	Phenan- threne	Pyrene
		Cleanup Level ^A Cleanup Level ^B	1.5 1.5	0.005 0.0046	1.0 1.1	0.7 0.015	0.19	N/A 0.036	0.260	2.2 0.530	0.043	0.0012 0.00012	0.0002 0.00034	0.0012 0.00034	0.012 0.00080	0.12 0.0020	0.00012 0.00034	0.073 0.0079	1.5 0.260	1.5 0.290	0.0012 0.00019	0.73 0.0017	0.170	1.1 0.120
		23 Groundwater																						
	Cleanup Leve	el ^C	1.5	0.0046	1.1	0.015	0.19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	MW-8	10/5/2006	ND [0.541]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-8	7/18/2007 10/4/2007	0.365 J ND [0.300]	ND [0.0004] ND [0.0004]	0.00085 J ND [0.001]	ND [0.001] ND [0.001]	ND [0.003] ND [0.003]															 ND [0.002]		
	MW-8	7/24/2008	0.115 J	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-8	7/18/2009	0.909	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-8	8/11/2010	ND [0.714]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]																	
MW-8	MW-8 MW-8	9/8/2011 7/20/2012	0.218 J ND [0.392]	ND [0.0005] ND [0.0003]	ND[0.001] ND [0.00062]	ND [0.001] ND [0.00062]	ND [0.003] ND [0.00186]		-					<u></u>										
Continued	MW-8	9/19/2013	ND [0.392]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]																	
	MW-8	6/5/2014	ND [0.361]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-8	7/15/2015	0.315 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-8	6/7/2016	0.229 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-8 MW-8	6/7/2017 5/30/2019	0.272 J 0.298 J	ND [0.00025] ND [0.00025]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.001] ND [0.001]																	
	MW-8	6/1/2021	0.393 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-8	5/22/2023	0.202 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-10	11/21/1998	94	ND	ND	ND	ND	ND	ND	ND 0.00004	ND 0.00005	0.00006	ND	ND	ND	0.00005	ND	ND	ND ND	ND	ND	ND 0.00000	ND 0.00000	ND
	MW-10A MW-10	11/23/1998 6/9/1999	10.8	ND ND	0.002 ND	ND ND	0.001 ND	26 ND	ND ND	0.00024 ND	0.00005 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00008 ND	ND ND	0.00033 ND	ND ND	0.00033 0.00023	0.00006 0.00039	0.00006 ND
	MW-10	9/16/1999	1.60	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	MW-15	9/16/1999	1.70	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-10	11/11/1999	5.40	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-25 ^D MW-10	11/11/1999 5/17/2000	2.00	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-11 ^D	5/17/2000	1.17	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND
	MW-10	7/16/2000	1.57	ND	0.0042	0.0026	0.0128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-11 ^D	7/16/2000	0.69	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-10 MW-11 ^D	10/11/2000 10/11/2000	ND 0.33	0.0007 ND	0.0032 ND	0.0029 ND	0.0142 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-10	3/27/2001	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
	MW-11 ^D	3/27/2001	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-10	7/12/2001	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-10 MW-10	9/20/2001 11/19/2001	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-10	6/12/2002	0.533	ND ND	ND ND	ND ND	ND ND			ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
MW-10	MW-D ^D	6/12/2002	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10100-10	MW-10	10/4/2002	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-D ^D MW-10	10/4/2002 6/24/2003	ND ND [0.475]	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	MW-D ^D	6/24/2003	ND [0.473]	ND ND	ND ND	ND	ND			ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND
	MW-10	10/2/2003	ND	0.00174	0.00239	ND	0.00329			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND [0.0000544]	ND	ND
	MW-D ^D	10/2/2003	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	MW-10	6/11/2004	0.620 0.776	ND ND	ND ND	ND ND	ND ND																	
	MW-D ^D MW-10	6/11/2004 10/19/2004	0.776 ND	ND ND	ND ND	ND ND	ND ND									 								
	FD-1 ^D	10/19/2004	ND	ND	ND	ND	ND		-								-							
	MW-10	6/28/2005	0.497	ND	ND	ND	ND															ND		
	MW-Dup ^D	6/28/2005	ND	ND ND	ND ND	ND ND	ND ND			-												ND		<u>-</u>
	MW-10 MW-12 ^D	10/16/2005 10/16/2005	0.141 0.164	ND ND	ND ND	ND ND	ND ND							 								ND ND		
	MW-10	6/1/2006	ND [0.3]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-Dup ^D	6/1/2006	ND [0.3]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-10	10/6/2006	ND [0.311]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]															ND [0.002]		
	MW-10 MW-10	7/18/2007 10/5/2007	0.19 J ND [0.313]	ND [0.0004] ND [0.0004]	ND [0.001] ND [0.001]	ND [0.001] ND [0.001]	ND [0.003] ND [0.003]															 ND [0.002]		
	MW-10	7/24/2008	0.245 J J	<u> </u>	ND [0.001]	ND [0.001]	ND [0.003]		-						-							ND [0.002]		
<u> </u>				. [5.500.]		- [00.1]	[5.000]			•	•	•					•			·		_ [00=]		

			AK 102		BTEX USEPA	Method 8021B									PA	Hs USEPA N	Method 8270	SIM						
Well Name	Sample Designation	Date Sampled	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	Total Xylenes	2-Methylnaph- thalene	Acenaph- thylene	Acenaph- thene	Anthracene	Benzo(a)- anthracene	Benzo(a) pyrene	Benzo(b)fluor- anthene	Benzo(k)fluor- anthene	Chrysene	Dibenzo(a,h)- anthracene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3)- pyrene	Naphthalene	Phenan- threne	Pyrene
ADEC 2015	Groundwater	Cleanup Level ^A	1.5	0.005	1.0	0.7	10	N/A	N/A	2.2	11	0.0012	0.0002	0.0012	0.012	0.12	0.00012	0.073	1.5	1.5	0.0012	0.73	11	1.1
		Cleanup Level ^B	1.5	0.0046	1.1	0.015	0.19	0.036	0.260	0.530	0.043	0.00012	0.000034	0.00034	0.00080	0.0020	0.000034	0.0079	0.260	0.290	0.00019	0.0017	0.170	0.120
ADEC 2018	3, 2021, and 20 Cleanup Leve	23 Groundwater el ^C	1.5	0.0046	1.1	0.015	0.19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	MW-10	7/17/2009	ND [0.714]	ND [0.0004]	ND [0.001]	ND [0.001]	ND [0.003]		-													ND [0.002]		
	MW-10	8/12/2010	ND [0.714]	ND [0.0005]	ND [0.002]	ND [0.002]	ND [0.002]																	
	MW-10	9/8/2011	0.247 J	ND [0.0005]	ND [0.001]	ND [0.001]	ND [0.003]		-		-													
	MW-10	7/20/2012	ND [0.372]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	-							-	-				-				
	MW-30 ^D	7/20/2012	ND [0.36]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]																	
BB8/ 40	MW-10 MW-10	9/19/2013	ND [0.36]	ND [0.0003]	ND [0.00062]	ND [0.00062]	ND [0.00186]	-							-	-				-				
MW-10 (continued)	MW-10	6/3/2014 7/15/2015	ND [0.313] 0.479 J	ND [0.00025]	ND [0.0005] ND [0.0005]	ND [0.0005] ND [0.0005]	ND [0.001]		-															
(continued)	MW-10	6/7/2016	ND [0.283]	ND [0.00025] ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001] ND [0.001]			+														
	MW-10	6/7/2017	ND [0.288]	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]		-															
	MW-10	5/30/2019	0.331 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-10	6/1/2021	0.513 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]									-								
	MW-90 ^D	6/1/2021	0.545	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	
	MW-10	5/22/2023	0.228 J	ND [0.00025]	ND [0.0005]	ND [0.0005]	ND [0.001]																	

Notes:

0.005 Shaded results exceeded ADEC 2015 cleanup levels; see Note A below.

1.71 Results in **bold** exceed ADEC 2016, 2018, 2021, or 2023 cleanup levels; see Notes B, C, D, and E below.

- A Sample results for 2015 and prior years were compared with ADEC 2015 cleanup levels (18 AAC 75), as revised on June 17, 2015
- Sample Results for 2016 were compared with ADEC 2016 cleanup levels (18 AAC 75), as revised on November 6, 2016. Concentration units of mg/L are used for consistency with historical data.
- Sample Results for 2017 through 2023 were compared with applicable ADEC cleanup levels (18 AAC 75), revised as of October 1, 2023. Concentration units of mg/L are used for consistency with historical data.
- Duplicate of preceding sample
- Sampling discontinued after 1997 event due to the presence of free product in the well.
- F Well destroyed in 2005.

Analytes that were not detected in 2012-2023 are presented with the limit of detection in brackets. Analytes that were not detected prior to 2012 are presented with the practical quantitation limit or LOQ in brackets.

Abbreviations:

not analyzed

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

AK Alaska Method

BTEX benzene, toluene, ethylbenzene, and xylenes

DL detection limit

mg/L milligrams per liter

J The analyte was positively identified, but the result was between the LOQ and DL; the quantitation was an estimate.

LOQ limit of quantitation

ND Nondetect; the limit of detection is presented in brackets to the right

N/A not applicable

PAH polynuclear aromatic hydrocarbons

USEPA United States Environmental Protection Agency

Figures

Pump Station 9 Mainline Turbine Sump

2023 Product Recovery and Groundwater Monitoring Report

Alyeska Pipeline Service Company

SLR Project No: 105.01288.23010

December 5, 2023

Appendix A Photograph Log

Pump Station 9 Mainline Turbine Sump

2023 Product Recovery and Groundwater Monitoring Report

Alyeska Pipeline Service Company

SLR Project No: 105.01288.23010

December 5, 2023

September 5, 2023

Pump Station 9 SLR Project No.: 105.01288.23010

2023 PS09 Groundwater Sampling and Product Recovery Report

Photo 1: Groundwater sampling set up at MW-8. Groundwater was sampled at MW-8 with a 2-inch bailer to collect samples (May 22, 2023).

Photo 2: Recovering product at MW-1 with a 2-inch sorbent sock. Sorbent sock saturated with an emulsion of water and product (May 23, 2023).

Appendix B Field Logbook and Field Forms

Pump Station 9 Mainline Turbine Sump

2023 Product Recovery and Groundwater Monitoring Report

Alyeska Pipeline Service Company

SLR Project No: 105.01288.23010

December 5, 2023

145/22/2023 PSO9 Groundwater & Jennings 0700 Meet at office 0830 Cal 451 0900 Pick up Final equipment at SGS 0930 Depart FBX.
1130 Arrive PSO9. 1200 Brett has to take expired SAFDRV training. Caroline gauges all wells. 1320 Begin heating MW-1 and MW-5 with heat trace. 1430 Collect sample MW-3. Duplicate sample MW-93. 1520 Collect sample MW-10. 1605 Collect sample MW-8. 1645 Collect sample MW-7. 1720 Collect sample MW-2. 1730 Close permit. Put away all equipment in Baseline shop. 1745 Shut down heat trace in MW-1 and MW-5, 1800 Depart PS09. 1815 Arnive Deltas End day. 5/22/2023

5/23/2023 PSO9 Product Recovery B Woelber 06-20 Dans of lasted
0630 Depart hotel.
0630 Depart hotel. 0640 completed tailgate
07006 Arrived at PS09
0715 completed permit 0720 Set up at MW-5
0740 MW-5 Depth to product 108,30 initial 0741 MW-5 Depth to water 108.38 initial
0744 MW- 1 Depth to product 108.53 initial
0745 MW-1 Depth to water 109,03 inital
0753 Deploy 2 SOCKs in MW-5= 10, 10.
Final DTP = 108.31
Fin al DTW=108.32
0811 Deploy 6 socks in MW-1=10, 70, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1
(emulsion of water) Final DTP=108.60
Final DTW = 108.63
0850 Disposed oily waste at oily waste dump
0920 Disposed 5 gal of fuel water 0930 Packed up equipment
0950 copped out secret
1010 Depart PS09.
1230 Arrive FBX. Demobilize all field
2001 and the Bains
1431 Bring samples to lab. 1500 End field day.
1500 End field day
1 BHWILL PROPERTY
\$ 123/23

106/01/23 PSO9 Product Recovery C. Jennings
0800 Pickup Alyeska Truck/Inspection Form
0815 Pack equipment into truck
0815 Pack equipment into truck 0845 Fillout Tailgate form and called
Checkin with security
0850 Depart Fourbanks
1052 Arrive at PSO9
1100 Sign Permit
1105 Set up at MW-5
1120 MW-5 DTP = 108.25 initial =013
1120 MW-5 DTP = 108.25 initial = 0.13 1125 MW-5 DTW = 108.38 initial
1130 MW-1 DTP = 108.53 initial - 013
1130 MW-1 DTP = 108.53 initial = 0.13 1135 MW-1 DTW = 108.60 initial
1142 Deploy 2 Socks in MW-5=10, 100 10
Final DTP = 108.26CJ 108.27 = 0.03
Final DTW=108.30
1205 Deploy 5 Socts in MW-7=10, 5 3 1 10,10,10
(emulsion of water)
Ciaal DTP - 108.50
Final DTW=108.55 =0.05
1255 Pack-up equipment and power
sand
1315 Dispose of bily woste
1325 Discussed Cutting wires in NW-5
and Alyeska rep. said they will do it
right away
1340 Fill MW-5 with sand
1 111 1111 0 001111 551111

0700 Pickup equipment from Storage Unit 0730 Arrive at Fairbanks office and Pack truck/complete tailgate and vehicle inspection form 0800 Had conference call/drop off Samples 0920 Get gas for truck 0930 Arrive Depart Fairbanks 1122 Arrive at P809 1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.06 Final DTP=108.06 Final DTP=108.06 Final DTP=108.06 Final DTP=108.06 Final DTP=108.32 = 0.06 1234 Deploy 2 socks in MW-5=10.10 1272 Deploy 3 socks in MW-1=10.10 Final DTP=108.32 = 0.01 Tiral DTW=108.33 1315 Decon product interfece and pack up equipment 1330 Dispose of oily waste	186 22	2/23 PSO9 Product Recovery C. Jennings
Unit 0730 Arrive at Fairbanks office and Pack truck/complete tailgate and vehicle inspection form 0800 Had conference call/clrop off samples 0920 Get gas for truck 0930 Arrive Depart Fairbanks 1122 Arrive at P809 1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1157 MW-1 DTW=108.39 1205 Doploy 2 SocksinMN-5=10,10 Emulsion Final DTP=108.06 Final DTP=108.06 Final DTP=108.32 = 0.06 1234 Deploy 1 more sock in MNB-0 Final DTP=108.32 = 0.01 Tinal DTW=108.33 1315 Decon product interfece and pack up equipment 1330 Dispose of oily waste		
pack truck/complete tailgate and vehicle inspection form 0800 Had conference call/clrop off samples 0920 Get gas for truck 0930 Arrive Depart Fairbanks 1122 Arrive at P809 1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1205 Doploy 2 socksinMW-5=10,10 Emulsion Final DTW=108.12 1234 Deploy 1 more sock in MWB-2 1242 Deploy 3 socks in MW-1=3 3 10 Emuls 1242 Deploy 3 socks in MW-1=3 3 10 Emuls Final DTP=108.33 1315 Decon product interfece and pack up equipment 1330 Dispose of oily waste		All and the second seco
and vehicle inspection form 0800 Had conference call/clrop off Samples 0920 Get gas for truck 0930 Arrive Depart Fairbanks 1122 Arrive at P809 1130 Sign Permit 11360 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 - 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 - 0.06 1157 MW-1 DTW=108.32 - 0.06 1205 Doploy 2 socksin MW-5=10,10 = Emulsion Final DTP=108.06 Final DTW=108.12 - 0.06 1234 Deploy 1 more sock in MWB-2 Final DTP=108.32 - 0.01 Final DTP=108.33 1315 Decon product interfece and pack up equipment 1330 Dispose of oily waste	0730 1	Arrive at Fairbanks office and
0800 Had conference call/clrop off samples 0920 Get gas for truck 0930 Arrive Depart Fairbanks 1122 Arrive at P809 1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 1157 MW-1 DTW=108.32 1205 Doploy 2 socks in MW-5=10, 10 € Emulsion Final DTW=108.06 Final DTW=108.12 1234 Deploy 1 more sock in MW-8-2 1242 Deploy 3 socks in MW-1=333 10 Emuls Final DTP=108.33 1315 Decan product interface and POCK up equipment 1330 Dispose of oily waste		pack truck complete tailgate
0920 Get gas for truck 0930 Arrive Depart Fairbanks 1122 Arrive at P809 1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1205 Doploy 2 socks in MW-5 = 10,10 € Emulsion Final DTP=108.06 Final DTW=108.12 = 0.06 1234 Deploy 1 more sock in MW-8-9 1242 Deploy 3 socks in MW-1=3 3 0 € Emuls 1242 Deploy 3 socks in MW-1=3 3 0 € Emuls 1242 Deploy 3 socks in MW-1=3 3 0 € Emuls 1242 Deploy 3 socks in MW-1=3 3 0 € Emuls 1330 Dispose of oily waste		and vehicle inspection form
1122 Arrive Depart Fairbanks 1122 Arrive at PSO9 1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1157 MW-1 DTW=108.38 = 0.06 1205 Deploy 2 socks in MW-5 = 10,10 < Emulsion Final DTW=108.06 Final DTW=108.12 = 0.06 1234 Deploy 1 more sock in MWB-0 1242 Deploy 3 socks in MW-1=3 3 0 Emuls 1242 Deploy 3 socks in MW-1=3 3 0 Emuls 1242 Deploy 3 socks in MW-1=3 3 0 Emuls 1242 Deploy 3 socks in MW-1=3 3 0 Emuls 1242 Deploy 3 socks in MW-1=3 3 0 Emuls 1315 Decon product interface and pack up equipment 1330 Dispose of oily waste	0800	Had conference call/drop off samples
1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1157 MW-1 DTW=108.38 = 0.06 1205 Deploy 2 socks in MW-5 = 10,10 = Emulsion Final DTP=108.06 Final DTW=108.12 - 0.06 1234 Deploy 1 more sock in MWB-2 1242 Deploy 3 socks in MW-1=3 10 Emuls Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decon procluct interface and pack up equipment	0920	Get gas for truck
1130 Sign Permit 1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1157 MW-1 DTW=108.38 = 0.06 1205 Deploy 2 socks in MW-5=10,10 Emulsion Final DTP=108.06 Final DTW=108.12 = 0.06 1234 Deploy 1 more sock in MWB-2 1242 Deploy 3 socks in MW-1=3 3 10 Emuls Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decon procluct interfece and POCK up equipment 1330 Dispose of oily waste		
1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1205 Doploy 2 socks in MW-5 = 10, 10 Emulsion Final DTP=108.06 Final DTW=108.12 = 0.06 1234 Deploy 1 more sock in MWB-2 1242 Deploy 3 socks in MW-1=3 3 10 Emuls Final DTP=108.33 = 0.01 Tiral DTW=108.33 1315 Decon product interfece and POCK up equipment	1122	Arrive at PSO9
1136 Set up at MW-5. 1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 = 0.06 1205 Doploy 2 socks in MW-5 = 10, 10 Emulsion Final DTP=108.06 Final DTW=108.12 = 0.06 1234 Deploy 1 more sock in MWB-2 1242 Deploy 3 socks in MW-1=3 = 10, 10 Emuls Final DTP=108.32 = 0.01 Tiral DTW=108.33 1315 Decon product interfece and Pack up equipment 1330 Dispose of oily waste	1.130	Sign Permit
1150 MW-5 DTP = 108.02 108.04 = 0.07 1151 MW-5 DTW=108.09 108.11 1156 MW-1 DTP=108.32 1157 MW-1 DTW=108.38 1205 Doploy 2 socks in MW-5 = 10,10 = Emulsion Final DTP = 108.06 Final DTW=108.12 - 0.06 1234 Deploy 1 more sock in MWB-2 Emuls 1242 Deploy 3 socks in MW-1=3 3 0 Emuls Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decon product interface and POCK up equipment	1136	Set up at MW-5.
1156 MW-1 DTP=108.32 1157 MW-1 DTW=108.38 1205 Doploy 2 socks in MW-5=10, 10 Emulsion Final DTP=108.06 Final DTW=108.12 1234 Deploy 1 more sock in MWB-9 1242 Deploy 3 socks in MW-1=3 3 10 Emuls Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decan product interface and POCK up equipment 1330 Dispose of oily waste	1150	MW-5 DTP = 108.02 108.04 = 0.07
1157 MW-1 DTW=108.38 1205 Doploy 2 socks in MW-5=10, 10 Emulsion Final DTP=108.06 Final DTW=108.12 1234 Deploy 1 more sock in MW-8-9 1242 Deploy 3 socks in MW-1=3 3 0 Emuls Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decan product interface and POCK up equipment 1330 Dispose of oily waste	1151	MW-5 DTW=+08.09 108.11
175 / MN-1 DTW=10 8.08 1205 Doploy 2 socks in MW-5=10, 10 Emulsion Final DTP=108.06 Final DTW=108.12 1234 Deploy 1 more sock in MWB-9 1242 Deploy 3 socks in MW-1=3 3 10 Emuls Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decan product interface and POCK up equipment 1330 Dispose of oily waste	1156	MW-1 DTP=108.32 = 0.06
Final DTW = 108.06 Final DTW = 108.12 1234 Deploy I more sock in MINE - Q 1242 Deploy 3 socks in MW-1=3 3 0 cm/s Final DTP = 108.32 = 0.01 Final DTW=108.33 1315 Decon product interfece and Pack up equipment 1330 Dispose of oily waste		MW-1 DTW= 108-08
Final DTW=108.12 1234 Deploy 1 more sock in MWB-9 1242 Deploy 3 socks in MW-1=3,3 in Emula Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decon product interface and POCK up equipment 1330 Dispose of oily waste	1205	Doplay 2 socks in MW-5 = to to Emulsion
1234 Deploy I more sock in MWB-9 1242 Deploy 3 socks in MW-1=3 3 3 0 Emuls Final DTP=108.32 = 0.01 Final DTW=108.33 1315 Decan product interface and POCK up equipment 1330 Dispose of oily waste		
Final DIP=108.32 = 0.01 Final DTW=108.33 1315 Decan product interface and Pack up equipment 1330 Dispose of oily waste		
Final DIP=108.32 = 0.01 Final DTW=108.33 1315 Decan product interface and Pack up equipment 1330 Dispose of oily waste	1234	Deploy I more sock in MINE - Comis
Final DIP=108.32 = 0.01 Final DTW=108.33 1315 Decan product interface and Pack up equipment 1330 Dispose of oily waste	1242	Deploy 3 socks in MW-1=3, 3
Final DTW=108.33 1315 Decon product interface and pack up equipment 1330 Dispose of oily waste	40	Final DTP=108.32 = 0.01
1330 Dispose of oily waste		Firal DTW=108.33
1330 Dispose of oily waste	1315	Decon product interface and
1330 Dispose of oily waste		pack up equipment
1340 Close Our Decomin	1330	Dispose of oily waste
COCO OUT FOILING	1340	Close out permit

C. Jennings
207/11/23 PSO9 Product Recovery
0800 Picking truck complete safety form
0810 Packtruck with Equipment
0810 Packtruckwith Equipment 0820 FIH Get more sorbent socks
from TTT'S.
0830 Fill up truck with diesel
0830 Fill up truck with diesel 0835 Complete tailgate form
0840 Depart Fairbanks
1028 Arrive at PSOG
103-1 Sign Permit
1040 Set up at MW-5
1100 conference call
1205 MW-5 DTP=107.95 = 0.15
MW-5 DTW=108.10
1210 MW-1 DTP=108.24 - 0.05
MW-1 DTW = 108.29
1220 Deploy4 Socks in MW 5= 70 70 70 10 Final DTP = 107, 96 = 0.03 emulsion Final DTW = 107, 99 = 0.03
Final DIP-107,96 = 0.03 emulsion
Final DIN-107.99
1250 Deploy 3 socks in MW-1=30,10
Final DTW=108.25 = 0.01
1320 Decon equipment and packup
1330 Dispose of only waste
1340 Close out permit
1340 Close out permit 1429 Depart PS09
1615 Arrive in Fairbanks

22 8/4/23 1509 POODUA NOCOUN
1030: Paparting North Pole for P809
1030: Departing North Note for 1809
1353° Complete Permit with Lead Tech
1405: Set up on MUJ-5
1405: set up on MW-5 MW-5 DTP = 107.79' = 0.18
1500 = 10t.9t
MW-1 DIP = 108.12 = 0.06'
D10 = 108.06
Deploy socks in MW-5
7/10 + 5/10 + 2/10 emulsion + +2/ wendson 10
Deploy socks in MW-5 7/10 + 5/10 + 2/10 emulsion + +2/Hemision 40 Deploy socks in MW-1 learnision 3/10 + 1/16 emolsion
MW-1 DTP = 108,11 = 0.01' MWI-1 DTW = 108,12'
MW1-1 DTW= 108,12
MIT DED - IDT - I
MW5 DTP = 107.83, = 0.02' MW5 DTW = 107.87 = 0.02'
1525 - Decontaminate equipment
1535-Bag & tie oily waste
1545 - Put gily waste in connex. 1550 - Close out permit.
1550 - Close out permit.
1609. Deport PSD9
1815 Finish unlanding ger at

8/4/23 PSO9 Podid Necdury 23
The blue Moose storage
ara. I Fair banks 1.
1830 At office. Switch to
mohu Jobn May De untoat
The total forms. 8/9/23 20 Rite in the Rain.

24 817 2 172 DC DC DC DC DC DC DC Dennings
248/29/23 PSO9PRODUCT Recovery
0730 Pickup equipment and truck
0830 Depart Fairbanks
1020 Arrive at PSO9
1025 Complete Permit
1035 Setup at MW-5
MW-5 DTP= 107.54 - 0.40
MW-S DTP= 107.54 = 0.40 MW-S DTW= 107.94
MW-1 DIP= 107-89 - 0.01
MW-1DTW= 107,90
1050 Doda 5 cock - 101 10
1050 Deploy 5 socks in MW-5:10, 70, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1
TINAL DIP = 01.05 = 0.02 emulsion 1
MAIN DIVERDINATION AND 1820
1140 Deploy 2 Socks in MW-1:2, to Final DTP=107.89 emulsion Final DTW=107.89 - 0.00
Final DITAL= 107-50 = mulsion
1200 Pack up equipment and
decontaminate equipment 1215 Dispose of oily waste 1230 Close out permit
1215 Dispose of oily waste
1230 Close out permit
1235 Depart P509
1430 Arrive in Fairbanks
11.2511
1455 upload field documents sends
1455 upload office equipment sends 1455 upload field documents, enails 1530 unload equipment at Storage
unit
1600 Drop of truck at the DIF
100000.00

9/23/23 Poor Madel Recovery 25 7+5: Leave Diamond Willow. 810: Armed PSOT, get permit. 840; MW-1 DTP DTW FP Socks Intla - 108.11 108.16 005 2/10 108.12 103.13 201 0/10 103.12 103.13 201 100 9/10 9/123/2 Final 9:15 MW-5 DTP DTW FP SOCKS Inital - 107.80 107.97 0.17 6/10 107.89 107.94 ,03 4/10 - 107.86 /107.88 .02 410 embson 107.85 107.86 .01 10:01 Close Permit 10:10 Deport 19509 12:25 Arrive Sterrage mil in 1=3X 1315 Arive office in FBX complete Poog Work. 1413 Rite in the Rain.

Date:	5	1221	123

Time: 800 Calibration By: BN/CJ

Meter Manufacturer and Identification #

Meter Manufacturer and Identification #:

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
	7.00	7.03	23D4S	5/22/23	4/19/25	7.05	7.03	± 0.10
pH	4.00	4.00	23BIR	5/22/23	2/07/25	4.00	No Cal	± 0.10
	10.00	10.09	23D2T	5/22/23	4/05/25		10.09	± 0.10
Sp Cond (mS/cm)	1.413	1.413	230100541	5/22/23			1413	± 10%
ORP (mV)	240	240	8177	5/22/23	09/2027	241.6	240	
DO*						91.3%	99.6%	± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Date:	Time:	Calibration By:	

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
1000	7.00							± 0.10
pH	4.00							± 0.10
4 11 1	10.00							± 0.10
Sp Cond (mS/cm)	1.413	1.413			Te			± 10%
ORP (mV)	240	240						_
DO*								± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

* Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Calibration By: Meter Manufacturer and Identification #:

Parameter	Standard	True Value	Lot#	Date Opened	Expiration Date	PreCalibration Reading	Reading After Calibration	Calibration Acceptance Criteria
61 30	7.00							± 0.10
рН	4.00							± 0.10
	10.00							± 0.10
Sp Cond (mS/cm)	1.413	1.413	0)					± 10%
ORP (mV)	240	240					- 1	
DO*								± 2%

If parameter not included in sampling event, fill in box with NA (not applicable)

^{*} Note that the True Value for DO is dependent on pressure and altitude; reference the DO Calibration Table

Site/Client Name: PSO9 CIW Monitoring						Well ID: MW-2				
Project #: \OS	12959	5-7-3	010			e ID: M				
Sampled By: BW CJ						e Time: (Sampl	e Date: 5/2	7173
Weather Condition	Weather Conditions: partly claudy						120	Campi	0 00.0. 012	-0120
Sampling Method: ☐ Low Flow ☑ Other Criter						ate ID:	o Ellio	Trip Plank	Required: E	Yes 🗆 No
ATT ROOM	1272300	12-5-11	William		formation	JU TE	SEPINO	Пр ыапк	Kequireo.	
Well Type: Perr	manent T	emporary		Well Diameter	Li in.	Screen Ir	nterval:	- ft Bo	GS to	_ft BGS
Well Condition:	Good Fa	ir Poor (Yes N	lo; If yes,	ft abov	re ground
PERSON N	Charles and	AMOUNT CO.		Gauging/Pur	ging Informa		20/6/90			
Depth to Water (ft	BTOC): \\2	1.75					th (ft. BTOC			
Total Depth (ft BT		-					24-hr) 17	08		
Depth to Product (Product Thickness		_			-	-	24-hr) 17	25		
	• /	- (Tubing I	Conth Ton o	f Screen Depth)		urge Time		nual is not know	wn or water tabl	e is below top of
				I = 3.785L, 1L = 0.26	64 gal	(ii).	ii screen inte	IVAI IS NOT KNO	WIT OF Water test	
Min. purge volume i						lumn thickne	ss(ft)	X # of casing		=gal
Well Diameter -	- gal/ft	1" - 0.	041 gal/ft	The State of	163 gal/ft		4" - 0.653	gal/ft	6" - 1.4	169 gal/ft
(Achieve state	le narameters	for 3 consecu	tive reading 4	Water Qual parameters if practic	ity Paramete	ers ing taken aft	er pumping a	minimum of 1 I	flow through cell	volume])
Time	Flow	Purge	Temp	Specific	DO	pH	ORP	Turbidity	DTW	Drawdown
(24-hr)	Rate	Volume	(°C)	Conductance	(mg/L)	P	(mV)	(NTU)	(ft BTOC)	(ft)
	(mL/minute)	(L or gal Circle one)	(± 3 %)	(μS/cm ^c) (± 3%)	(± 10%)	(± 0.1)	(± 10mV)	(± 10%, or <5 NTU)		(Maxft)
Bailer 1	11	1	5.1	382.1	8.77	7.84	89.2		1	
Bailer 2	11	2	3.9	368.1	8.11	7.58	87.1			
Bailers	11	3	3.6	3.75.1	8.44	7.5%	86,9			
Bailer 4	11	4	3.0	378.4	9,30	7.55	87.6			1
_	71	5	3.5	368.3	7.76				113,30	. 55
Boiler 5			0.0	5000	1. 10	1.0	03.	-	111111111111111111111111111111111111111	
- 1										
								-		- 0
						-				- 2
							/			
Parameter Stabl	e (Check app	licable)	V	V		V	V			
Sample Color:	lear			Sample Odor:	none		Sheer	=none		
	TOO!	1 3 X		Analytica	I Sampling				19 0	1 days
	Analys	ses		Check	Applicable			Comme	nts	
	DRO			V						
6	TEX			1/	/					
Notos										
Notes:										
				1 4						
Equipment:				0.001.0						
Tubing: Polyethyl	ene PFTE	E-Lined 🗹	ther Bail	er (POLY)			4" 3/8"	1/2"	Left in well	Yes No
Pump/Bailer) 6	uler	101		Multi-Param	eter Meter m	ake/SN#)		KO LT	US 05:	34'
WI Indicator	olinsz	Turbidity M	leter (Make/s	NA) NA				Yes W	lo Lot #	
Purge Water Handi	ing: Disch	narged to su	rface Cor	tainerized Tre	ated (how?)_	boast	er pui	no 90.	mp	

Purge Water Handling: ☐ Discharged to surface ☐ Containerized ☐ Treated (how?) booste

W.L. Indicator Solins 101 Turbidity Meter (Make/SN#)

Filtered ☐ Yes No Lot #

Duns amua

Sample ID: MW - 7 Sample Date: 5/22/23	Site/Client Nam	1e: PSO9	GW	Monito	ring	Well I	D: MW	1-7							
Sample By: P.M	Project #: \O	5. 1288	, 230	10	9	Sampl	le ID: M	W-7							
Weather Conditions: SUNTY Sampling Method: Low Flow. Other Coult. Well Information Ms/MSD_Hes No Trip Blank Required: Yes No Sampling Method: Low Flow. Other Coult. Ms/MSD_Hes No Trip Blank Required: Yes No Sampling Method: Temporary Well Diameter in Screen Interval: in Screen	Sampled By: P	T. J. Wie	, _ , _ ,			Sampl	le Time: \	1245	Sample	Date: 5/2	22123				
MS/MSQ West No	Weather Conditi	ons: Sun	N			-									
Well Types				moler				No.	Trin Blank F	Required:	Yes ☐ No				
Well Types_OPermanent Temporary Well Diameter			Z Outer	MILL	Well In		103	140	The Blank						
Depth to Water (fi BTOC): \(\frac{1}{15}, \frac{1}{4} \]	Well Type: Per	manent 🗆 Te	emporary			1	Screen In	terval:	-> ft BC	SS to	ft BGS				
Depth to Water (fil BTOC): \(\frac{1}{15}, \frac{1}{4} \]							Stickup [Yes □ N	o; If yes,	ft abov	e ground				
Purge Start Time (24-hr) 1 (_0 30		THE LABOR	17,027	1000		ging Inform		William .	WILE !	-					
Depth to Product (file STOC)	Depth to Water (ft	BTOC): 115	.41												
Total Purge Time (min) 20	Total Depth (ft BT	OC): 415	CO >												
LOW FLOW: Max Draw Down = (Tubing Deight - Top of Screen Deigh) X0.25 =			_			_	4-								
Screen, then use default value of 0.3 ft. 1 gal = 3.785t, 1t. = 0.244 gal	1 1 1 2 2 2 T 1 1 1 1 1 1 1 1 1 1 1 1 1		= (Tubing F	lonth Top o	of Corner Dooth)				nual is not know	yn or water tab	e is below top of				
Well Diameter - gal/ft		creen, then use	default value	of 0.3 ft. 1 ga	al = 3.785L, 1L = 0.26	4 gal	(ii),	ii screen inte	IVAI IS NOT KNOW	VII OI Water tab	o to boton rap				
Water Quality Parameters Water Quality Water Qu							lumn thickne								
Achieve stable parameters for 3 consecutive reading, 4 parameters if practical [each reading taken after pumping a minimum of 1 flow through cell volume])	Well Diameter -	– gal/ft	1" - 0.	041 gal/ft	Control of the Control of the Control	AND PATRICIA CONTRACT		4" - 0.653	gal/ft	6" – 1.4	469 gal/ft				
Time Riow Purge Temp Specific Conductance (24-hr) Rate Volume (10-gra) Conductance (10-gra) (10	(Achieve stat	hle narameters t	for 3 consecu	tive reading 4				er numning a	minimum of 1	low through cel	I volumel)				
Rate Clore Conductance			- Particular States	William Printers and Conference	A STATE OF THE STA	CHECKSON, CONTRACTOR	STATE OF THE STATE	200	ASSESSMENT OF THE PARTY OF THE	AND THE RESERVE OF THE PERSON NAMED IN					
Circle one (±3%) (±10%) (±10%) (±10mV) (±10m		Rate					pri		(NTU)						
Decision Person		(mL/minute)		(+ 3 %)		(+ 10%)	(+0.1)	(+ 10mV)			(Max ft)				
Sample Color: Clear Sample Odor: NONE Sheen: NONE Sheen: NONE Sample Color: Clear Sample Clear Sample Clear Sample Color: Clear Sample Clear	2 12 1	1.					Chi chialia		(-	(
Railer 3				1		1	-								
Pailer 4 1															
Parameter Stable (Check applicable)	Bailer 3	11				1.80									
Parameter Stable (Check applicable) Sample Odor: NONE Sheen: NONE	Bailer 4	11	4		651.0	1,29									
Parameter Stable (Check applicable) Sample Odor: NONE Sheen: NONE		IL	5	3.0	O5411	1.46	7.53	93.5			1				
Parameter Stable (Check applicable) Sample Color: CIPOY Sample Color: None Analytical Sampling Analyses Check Applicable Comments DPO BTEX Multi-Parameter Meter make/SN#) Multi-Parameter Meter make/SN#) Filtered Yes No Lot #		16	6	3.0	650.1	1.56									
Parameter Stable (Check applicable) Sample Color: CIPOY Sample Color: CIPOY Analytical Sampling Check Applicable Comments DPO STEX Analytical Sampling Check Applicable Comments O.D. 1/4" 3/8" 1/2" Left in well Yes No Pump Called Colors Multi-Parameter Meter make/SN#) Will Indicator COLOSH City Colors C		11	7		(048.1	1,41	7.47			11580	0.39				
Sample Color: CICOY Sample Odor: NONC Analytical Sampling Check Applicable Comments DEO BTEX Comments Commen	unici	1					1			110100					
Sample Color: CICOY Sample Odor: NONC Analytical Sampling Check Applicable Comments DEO BTEX Comments Commen															
Sample Color: CICOY Sample Odor: NONC Analytical Sampling Check Applicable Comments DEO BTEX Comments Commen															
Sample Color: CICOY Sample Odor: NONC Analytical Sampling Check Applicable Comments DEO BTEX Comments Commen						-									
Sample Color: CICOY Sample Odor: NONC Analytical Sampling Check Applicable Comments DEO BTEX Comments Commen							-								
Sample Color: CICOY Sample Odor: NONC Analytical Sampling Check Applicable Comments DEO BTEX Comments Commen				/		/	/	-/-							
Analyses Check Applicable Comments Comments Check Applicable Comments	Parameter Stab	le (Check app	licable)	-	/	V	V	-							
Analyses Check Applicable Comments Comments Check Applicable Comments	Sample Color: (lear			Sample Odor:	none		Shee	in: NON	e					
Notes: Squipment: Could										14,014					
Notes: Equipment: Fubing: □Polyethylene □PFTE-Lined □Other(01) Bouler O.D. □ 1/4" □ 3/8" □ 1/2" Left in well □ Yes □ No Purp Bailer W.L. Indicator □ VI ST □ VI Pro Plus □ 7.3 ⊆ W.L. Indicator □ VI ST □ VI Pro Plus □ 7.3 ⊆ Filtered □ Yes □ No Lot #		Analys	ses		Check	Applicable	n din		Comm	ents					
Notes: Equipment: Fubing: □Polyethylene □PFTE-Lined □Other(01) Bouler O.D. □ 1/4" □ 3/8" □ 1/2" Left in well □ Yes □ No Purp Bailer W.L. Indicator □ VI ST □ VI Pro Plus □ 7.3 ⊆ W.L. Indicator □ VI ST □ VI Pro Plus □ 7.3 ⊆ Filtered □ Yes □ No Lot #	DI	20			V										
Equipment: Cubing: Polyethylene PFTE-Lined Other O.D. 1/4" 3/8" 1/2" Left in well Yes No Pump Bailer PCU PUS O.Z.3 O.Z.	BIE	X			V										
Equipment: Cubing: Polyethylene PFTE-Lined Other O.D. 1/4" 3/8" 1/2" Left in well Yes No Pump Bailer PCU PUS O.Z.3 O.Z.															
Equipment: Cubing: Polyethylene PFTE-Lined Other O.D. 1/4" 3/8" 1/2" Left in well Yes No Pump Bailer PCU PUS O Z 3 G V.L. Indicator COLUNS OTUMBER O.D. Filtered Yes No Lot #															
Tubing: Polyethylene PFTE-Lined Other WY CULLY O.D. 1/4" 3/8" 1/2" Left in well Yes No Pump/Bailer CULLY Oump/Bailer CULLY Multi-Parameter Meter make/SN#) Filtered Yes No Lot #	Notes:														
Tubing: Polyethylene PFTE-Lined Other WY CULLY O.D. 1/4" 3/8" 1/2" Left in well Yes No Pump/Bailer CULLY Oump/Bailer CULLY Multi-Parameter Meter make/SN#) Filtered Yes No Lot #															
Tubing: Polyethylene PFTE-Lined Other WY CULLY O.D. 1/4" 3/8" 1/2" Left in well Yes No Pump/Bailer CULLY Oump/Bailer CULLY Multi-Parameter Meter make/SN#) Filtered Yes No Lot #															
Pump/Railer VCI/Cr Multi-Parameter Meter make/SN#) \ \S1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Equipment:			· v.	0 1101										
Pump/Bailen WOLLOY Multi-Parameter Meter make/SN#) \\ V.L. Indicator \(\frac{\text{SOUNS} Vision			E-Lined 📈	ther 614	Douber		O.D. 🗆 1	1/4" 🔲 3/8"	□ 1/2"	Left in well	Yes TWO				
	I dillipipane	101	,		Multi-Parar	neter Meter	make/SN#	151	Pro Piu						
Purge Water Handling: Discharged to surface Containerized Treated (how?)								Filtere	ed Yes 🗹	No Lot#					
	Purge Water Hand	lling: 🗌 Disch	narged to su	urface □Co	ntainerized Tr	eated (how?	1000	ster	June	SUNAP					

Sample ID: MUN - S sample Time: 6 OS Sample Date: 5122/23 sample table: 6 OS	Site/Client Name: PSO9 GW Monitoring						Well ID: MW-8							
Sample Time: OS Sample Date: 122 22 22 22 22 22 22	Project # : \05	1288	7.30	10			Sample	ID: MN	1-8					
Conditions: OOTH SUNTN COULD Duplicate Dup	Sampled By: BW, CJ							Sample Time: 605 Sample Date: 5122123 Duplicate ID:						
Marging Method: Low Flow Other Call Continued Continue														
Well Information														
ell Types_Permanent Temporary Well Diameter Lin. Screen Interval: B 85 to T 865 to ell Condition Good Fair Poor (if fair or poor explain in Notes) Stickup Ves Sinc. If yes fa above ground seph to Water (if BTOC): G 4 9 Gauging Purpling Information pup lot B TOC Pup B TOC pup lot B TOC Pup B TOC Pup B TOC pup lend Total Pup Total Pup Total Pup Total Pup Total pup lend Total Pup Total Pup Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total seph to Product (if B TOC) Pup B Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total seph to Product (if B TOC) Pup Total Pup Total Pup Total seph total Pup Total Pup Total Pup Total Pup Total	p mg mounds		E Other	Li.Ci		all Info		7 +03	110		ON ELECTION			
Bloom Fair Poor (f fair or poor explain in Notes) Slockup Yes Ro, if yes ft above ground	Well Type: Pern	nanent Te	mporary	1				Screen Inte	rval: -	ft BC	SS to	_ft BGS		
Sauging/Purrign Information	Well Condition:	Good □ Fai	r D Poor (if					Stickup [Yes No:	If yes,	ft above	ground		
Supplied to Water (it BTOC): 0.75 49	COLUMN TO SERVICE SERV			Tall of poor		_						THE REAL PROPERTY.		
Purge Start Time (24-hr) 56-5	Depth to Water (ft I	BTOC): 10	8 49		Oddging	i digi			(ft. BTOC):	-				
Total Purge Time (min) 176 20W FLOW: Max Draw Down = (Tubing Depth — Top of Screen Depth) X 0.25 =			V. 11											
NW FLOW: Max Draw Down = (Tubing Depth - Top of Screen Depth) X 0 25 =	Depth to Product (f	ft. BTOC) -	_			Purge End Time (24-hr) (0 3								
In. purge volume use default value of 0.3 ft. 1 gal = 3.785t, 1t. = 0.264 gal	Product Thickness	(ft)	-				Total Pur	rge Time (m	in) 18					
Manage Polyethylene PFTE-Lined Other Polyethylene Polyethylene PFTE-Lined Other Polyethylene Polyethylene PFTE-Lined Other Polyethylene Poly	LOW FLOW: Ma	ax Draw Down reen, then use	= (Tubing D default value o	epth - Top of of 0.3 ft. 1 ga	Screen Depth	= 0.264	gal							
Water Quality Parameters Water Quality Param														
Charleve stable parameters for 3 consecutive reading, 4 parameters if practical [each reading taken after pumping a minimum of 1 flow through cell to the through ce	Well Diameter -	- gal/ft	1" - 0.0	041 gal/ft	2	<u> </u>	63 gal/ft	-	4" – 0.653 g	al/ft	6 - 1.4	69 gaint		
Time	A TELEVISION				Water	Qualit	y Paramete	rs		alalanum of 1	flow through cell	volumel)		
Rate Color		-	100 000 000 000	_		_								
Continue								рН						
Analyses Check Applicable Comments	(24-111)	(mL/minute) (L or gal		(µS/cm ^c)			(± 0.1)		(± 10%, or		(Maxft)			
Analyses Check Applicable Comments	miler 1	11	1	3.7	528	0	12.87	1.43	103.3	1	1	٨		
Parameter Stable (Check applicable) V V V V V V V V V			7		-	_		7.51	-			7.7		
Parameter Stable (Check applicable) V V V V V V V V V		-	_	7.0	~			7 40	-					
Parameter Stable (Check applicable) Parameter Stable (Check applicable) Sample Color: () CV Sample Odor: NONE Analytical Sampling Check Applicable Comments DEO BIEX Multi-Parameter Meter make/SN#) YS1 TRO Plus 6239 Filtered Yes No Lot #		7-1		2.1			- 0,	7.77						
Parameter Stable (Check applicable) Sample Color: (1/Car Sample Odor: None Sheen: None Analytical Sampling Analyses Check Applicable Comments Check Appli	Bailer4	11		2.8	526.	0	10.00	1.20			,			
Parameter Stable (Check applicable) Sample Odor: None Analyses Analyses Check Applicable Comments Check Applicable Comments Check Applicable Comments Commen		11	5	2.7	524.	3	10:79	7.52	99,3	, 1	109.14	0,65		
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe	unicas							1						
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe														
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe														
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe												1		
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe														
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe														
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe														
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe						_								
Analyses Check Applicable Comments Analyses Check Applicable Comments December Comments Decembe	9													
Analyses Check Applicable Comments Check Applicable Comments	Parameter Stab	le (Check app	olicable)	V	V	_		V	-					
Analyses Check Applicable Comments Check Applic	Sample Color:	Clear			Sample	Sample Odor: none			She	en: NOC	e			
DEO BLEX Dites:					An	alytic	al Sampling							
Auipment: Abing: Polyethylene PFTE-Lined Other POLY BOULET O.D. 1/4" 3/8" 1/2" Left in well Yes 1/2" Left in well 1/2"	Analyses Check						Applicable	applicable Comments						
Auipment: Abing: Polyethylene PFTE-Lined Other Other Other Other Other Multi-Parameter Meter make/SN#) SI TRO Plus 0239 Author Strong Filtered Yes No Lot #	200													
Auipment: Abing: Polyethylene PFTE-Lined Other Other Other Other Other Multi-Parameter Meter make/SN#) SI TRO Plus 0239 Author Strong Filtered Yes No Lot #	2	KO -												
Auipment: Abing: Polyethylene PFTE-Lined Other Other Other Other Other Multi-Parameter Meter make/SN#) SI TRO Plus 0239 Author Strong Filtered Yes No Lot #	BI	5X												
Auipment: Abing: Polyethylene PFTE-Lined Other Other Other Other Other Multi-Parameter Meter make/SN#) SI TRO Plus 0239 Author Strong Filtered Yes No Lot #														
Auipment: Abing: Polyethylene PFTE-Lined Other POLY BOULET O.D. 1/4" 3/8" 1/2" Left in well Yes 1/2" Left in well 1/2"														
hbing: Polyethylene PFTE-Lined Other	Notes:													
hbing: Polyethylene PFTE-Lined Other														
hbing: Polyethylene PFTE-Lined Other														
hbing: Polyethylene PFTE-Lined Other	Equipment:													
Multi-Parameter Meter make/SN#) ST KO Plus C 3 9	Tubing: Dolveth	dene Oper	F-I ined	Other Pr	W Brill	Pr		O.D. [1/4" 🖂 3/	8" 🗆 1/2"	Left in	well 🗆 Van 🗹		
L. Indicator SOLINSTIC Turbidity Meter (Make/SN#) NA Filtered Yes No Lot #	Tubing. Life Digetti	11/4.	L-Linea/L	Other TO	Maril	i-Para	meter Mete							
L. Illaboration State of the Control	Ullip Commy		J				iniciei wete	i makeron						
	W.L. Indicator	20111111	urbidity	Meter (Mak	0,0,1,,	-		a. 1. m		Sied [] Ye				
rrge Water Handling: ☐ Discharged to surface ☐ Containerized ☐ Treated (how?) 6005tcr pump 50 mp	Purge Water Hand	dling: 🗌 Disc	charged to s	surface C	containerized	91	reated (how	(1)	2014	BUM	SUM	2		

Project #	lame: 150	99 GV	n Mou	itoring	Wel	ID: MY	V-10			
Project #:	05.01	288.2	23010		Sam	ple ID: M	W-10			
Sampled By:					Sam	ple Time:	1520	Samp	ole Date: 51.	22/23
Weather Con	ditions: C1	ouch			Dupl	icate ID: -				,
Sampling Method	od: Low FI	ow 🛮 Othe	er Bail	er	MS/I	USD TO	es M No	Trip Blank	Required: E	Yes 🗆 N
Well Type:					I Information			- Level	W TEN	
Well Condition	rermanent [Temporary		Well Diameter	in.		Interval:		BGS to	
Well Colldition:	∐/Good ∐ F	air Poor	r (if fair or pe	oor explain in Note			☐ Yes ☑	No; If yes,	ft abo	ve ground
Depth to Water	(ft BTOC): 1	7.98		Gauging/P	urging Inform		-th /0 DTO	21		
Total Depth (ft B	STOC):						pth (ft. BTO			
Depth to Produc	t (ft. BTOC)	_					(24-hr) 15			
Product Thickne	ss (ft) —						(min) 2 C			
LOW FLOW:	Max Draw Dow	n = (Tubing	Depth - Top	of Screen Depth) gal = 3.785L, 1L = 0.	Y 0.25				own or water tab	ole is below t
Min. purge volume	if required on	rne volume ((aal) = volume	gal = 3.785L, 1L = 0.	al/ft) X Water c	aluma dalaha		N W # - f		_
Well Diameter	- gal/ft	1" - 0	0.041 gal/ft		0.163 gal/ft	biumn thickn	4" - 0.653	t) X # of casing gal/ft		469 gal/ft
				Water Out	ality Paramet	ers	Transfer of a	0.00		177
		for 3 consecu	utive reading,	4 parameters if prac	tical [each read	ding taken at	ter pumping a	minimum of 1	flow through ce	Il volume])
Time (24-hr)	Flow Rate	Purge Volume	Temp (°C)	Specific Conductance	DO (mg/L)	pН	ORP	Turbidity (NTU)	DTW (ft BTOC)	Drawdo
	(mL/minute)	(L or gal		(μS/cm ^c)			(mV)	(± 10%, or	(ILBTOC)	(ft)
0 1 . 4		Circle one)	(± 3 %)	(± 3%)	(± 10%)	(± 0.1)	(± 10mV)	<5 NTU)		(Max
Boiler 1	11	1	5.0	204.1	13.6	7.45	107.3	1		1
Bailer 2	11	2	3.5	454.8	11.13	7.27	103.7			
Sailer 3	11	3	3.4	449.1	11.08	7.41	100.4			
Baller 4	11	4	3.3	450.1	10.03					
sailer 5	11	5	3:3	4510	10.77	7.36				
ailer 6	11	6	3.7.	1155	10.50	7.38	108.3		107.07	00
		0	2.6	400	10 30	1.00	10012		107.97	-:04
		-								
Parameter Stable	(Check application	able)			/	1	V			
mple Color: C	ear			Sample Odor:	nent		Sheen	: non	P	
					Sampling		Sileer	11011		
	Analyses				pplicable		_	Comme	nte	
0	2.0				/	12-1		Comme	iits	ST . 10
12	TEV			- V	/					
10	160									
es:										
200										
pment:	□ncτc	100	12-11	or (pol	$\hat{\mathcal{L}}$					
g: Polyethylene	□PFIE-LIN	Other	ban				" 3/8" [A AL	Left in well [Yes 🔃
Bailer balle	1		22.2	_ Multi-Paramet	ter Meter ma	ke/SN#) _	451 F	ro Plus	-	1
ndicator_Solins			(Make/SN				Filtered	Yes W	lo Lot#	
Water Handling:	☐ Discharge	to surface	e Contain	nerized Treat	ed (how?)	booste			mp -	

Appendix C

Quality Assurance Review, ADEC Data Review Checklists, and Laboratory Analytical Results

Pump Station 9 Mainline Turbine Sump

2023 Product Recovery and Groundwater Monitoring Report

Alyeska Pipeline Service Company

SLR Project No: 105.01288.23010

December 5, 2023

Report

LABORATORY DATA QUALITY ASSURANCE REVIEW

PUMP STATION 9 MAINLINE TURBINE SUMP GROUNDWATER MONITORING ALYESKA PIPELINE SERVICE COMPANY

September 2023

Prepared by: Jennifer Poppe

SLR International Corporation 2700 Gambell Street, Suite 200 Anchorage, AK 99503

SLR Project Number 105.01288.23010 ADEC File Number 330.38.065 Hazard ID: 2681

ACRONYMS AND ABBREVIATIONS

AAC Alaska Administrative Code

AK Alaska Method

ADEC Alaska Department of Environmental Conservation BTEX benzene, toluene, ethylbenzene, and xylenes

°C degrees Celsius

CCV continuing calibration verification

COC chain of custody
DL detection limit
DRO diesel range organics
EDD electronic data deliverable

ID identification

LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection LOQ limit of quantitation

MS matrix spike

MSD matrix spike duplicate

ND not detected

NFG National Functional Guidelines for Superfund Organic Methods Data Review

QA quality assurance

QAR quality assurance review

QC quality control

RPD relative percent difference
SDG sample delivery group
SGS SGS North America, Inc.
SLR SLR International Corporation

USEPA United States Environmental Protection Agency

Introduction

This report summarizes a review of analytical data for groundwater samples collected on May 22, 2023, at Pump Station 9 Mainline Turbine Sump of the Alyeska Pipeline. Samples were collected by SLR International Corporation (SLR). SGS North America, Inc. (SGS) provided analytical support to the project. SGS maintains a current Alaska Department of Environmental Conservation (ADEC) Contaminated Sites approval number (17-021) for analytical methods of interest, as applicable. Table 1 provides a summary of the work order, sample receipt, analytical methods, and analytes.

Table 1 Sample Receipt, Method, and Analyte Summary

SDG	Date Collected	Date Received by Laboratory	Temperature Blank	Matrix	Analytical Method	Analyte
1232219	05/22/2023	SGS, Fairbanks 05/23/2023	0.5°C	Croundurator	SW8021B	BTEX
1232219	03/22/2023	SGS, Anchorage 05/24/2023	Anchorage	Groundwater	AK102	DRO

Acronyms:

°C – degrees Celsius

AK - Alaska

BTEX – benzene, toluene, ethylbenzene, and xylenes

DRO – diesel range organics

SDG – sample delivery group

The laboratory final report was provided as a Level II deliverable and included documentation of the delivery group chain of custody (COC) and sample receipt condition. A Microsoft Access compatible electronic data deliverable (EDD) for the report was also provided. The laboratory report is provided electronically as Attachment 2.

Quality Assurance Program

A quality assurance (QA) program was followed for this project that addressed project administration, sampling, quality control (QC), and data review. SLR adhered to required and established sampling and COC protocols. The select laboratory maintains an internal QA program and standard operating procedures.

The analytical data was reviewed for consistency with any project specific requirements, ADEC Technical Memorandum *Guidelines for Data Reporting* (ADEC, 2022) requirements, National Functional Guidelines (NFG, United States Environmental Protection Agency [USEPA], 2020), analytical method criteria, and laboratory criteria. An ADEC Laboratory Data Review Checklist was completed for the SDG and was included as Attachment 1 to this Quality Assurance Review (QAR). A review for any anomalies to the project requirements for precision, accuracy, bias, representativeness, comparability, and sensitivity are noted in this QAR, and any data qualifications discussed.

The data review included the following, as applicable:

- Reviewing COC records for completeness, signatures, and dates;
- Identifying any sample receipt or preservation anomalies that could impact data quality;
- Verifying that QC blanks (e.g., field blanks, equipment blanks, trip blanks, etc.); were properly prepared, identified, and analyzed;
- Evaluating whether laboratory reporting limits met project goals;
- Reviewing calibration verification recoveries, to include confirming that the laboratory did
 not identify any Continuing Calibration Verification (CCV) recoveries or other calibration
 related criteria as being outside applicable acceptance limits;
- Reviewing the case narrative for any discussion of any internal standard recoveries outside of
 acceptance limits. Internal standard performance was not otherwise presented in the report
 or in the electronic data deliverable and was reviewed only from the case narrative;
- Verifying that surrogate analyses were within recovery acceptance limits;
- Verifying that Laboratory Control Samples (LCS) and Laboratory Control Sample Duplicates (LCSD) recoveries were within acceptance limits;
- Evaluating the result relative percent difference (RPD) between primary and duplicate field samples and LCS/LCSD; and
- Providing an overall assessment of laboratory data quality and qualifying sample results as necessary.

Data Qualifications

As part of this QAR, qualifiers (i.e., flags) were applied to data as determined necessary based on specified criteria, or professional judgement. In all cases, the basis for qualification and the applied data flag are discussed in this QAR. Table 2 provides a list of potential qualifiers (i.e., flags). These data flags were appended to the data as appropriate.

Table 2 Data Qualifiers

Lab Qualifier (Flag)	NFG Qualifier (Flag)	Equivalent Project Qualifier (Flag) ^{1,2,3}	Definition	
U	U	ND	The analyte was analyzed for, but was not detected above the detection limit (DL).	
J	NJ	J	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample between the limit of quantitation (LOQ) and the DL. This qualifier is appended by the laboratory.	
	J	Q	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample, due to one or more laboratory quality control criteria (e.g., LCS recovery, surrogate spike recovery) failed or matrix effect. Where applicable, a "+" or "-" was appended to indicate a high bias, or a low bias respectively.	
	UJ	UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.	
	R	R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.	
		В	Blank contamination: The analyte was positively identified in the blank (e.g., trip blank and/or method blank) associated with the sample and the concentration reported for the sample was less than five times that of the blank (ten times for metals and common laboratory contaminants methylene chloride and acetone). Where applicable, "U" was appended prior to the "B" to indicate the blank detection is greater than the sample detection and the result is likely a false positive. The greater of the sample detection or the limit of detection (LOD) was reported in brackets.	

Notes:

- 1 Flags were appended to the data where applicable. The table presents laboratory, NFG and project equivalent qualifiers.
- 2 Only flags in bold were applicable and appended to data for this project.
- 3 For historical purposes, ND was used in place of "U."

A discussion of the project data quality relative to PARCS goals and summary of any anomalies or failures requiring data qualifiers follows.

Data Validation

Data Packages

The data package was checked for transcription errors, omissions, or other anomalies. No issues were noted with respect to the data package.

Sample Receipt

The sample receipt documentation was checked for anomalies. No issues were noted with regard to sample receipt.

Pump Station 9 Mainline Turbine Sump Groundwater Monitoring

September 2023

Preservation (Chemical and Temperature)

Samples were appropriately preserved and were submitted to SGS within the acceptable temperature range.

• Samples were received at SGS in Fairbanks on May 23rd, 2023, where the receipt temperature was not recorded. Because it was verified with the sampler that samples were chilled from the time of collection until delivery to the laboratory, and the receipt temperature was not noted as out of compliance, data was considered not impacted. Samples were then shipped by SGS, Fairbanks, on May 23rd, 2023, to SGS, Anchorage, where samples were received on May 24th, 2023, with a temperature of 0.5 °C. The Anchorage receipt temperature was recorded on the COC, but the Sample Receipt Form did not note that samples were received within the acceptable 0 to 6 °C. Data was considered not impacted, and all data were usable without qualification.

Holding Times

All sample analysis was conducted within method holding time criteria.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the appropriate frequencies. Analytes were not detected (ND) in any method blanks at or above the LOD or detection limit (DL).

Trip Blanks

One trip blank was submitted for BTEX by Method SW8021B. Analytes were not detected in the trip blank at or above the LOD or DL.

Reporting Limits

For non-detect results, LODs were compared to applicable cleanup levels for the site. For groundwater samples, LODs were compared to 18 Alaska Administration Code (AAC) 75, *Oil and Other Hazardous Substances Pollution Control*, section 75.345 Table C, Groundwater Cleanup Levels (ADEC, 2023). All results of non-detect had LODs at or below applicable cleanup levels.

Continuous Calibration Verifications (CCVs)

CCVs were analyzed at the appropriate frequencies. CCV data was included only in the EDD, not in the case narrative. All CCV recoveries were within acceptable limits, as reviewed in the EDD.

Internal Standards

No internal standards were noted in the case narrative as outside of acceptance limits. Internal standard performance criteria were considered met.

Surrogate Recovery Results

Surrogate analyses were performed at the required frequencies. All surrogate recoveries were within analytical method and SGS percent recovery acceptance limits.

Laboratory Control Samples and Laboratory Control Duplicate Samples

LCS and LCSDs were analyzed at the appropriate frequencies. All LCS and LCSD RPDs were within acceptable limits. LCS and LCSD recovery exceedances were limited to that noted below.

 The LCSD for batch VXX39907 recovered outside acceptable limits for benzene by Method SW8021B. Sample MW-7 was included in this batch and was re-extracted and re-analyzed for benzene in batch VXX39914, which had acceptable recoveries. The MW-7 benzene result from the re-extraction was reported, therefore, data was not affected, and all data were usable without qualification.

Pump Station 9 Mainline Turbine Sump Groundwater Monitoring

September 2023

Matrix Spike and Matrix Spike Duplicate Samples

No matrix spikes (MS) or matrix spike duplicates (MSD) were analyzed with this work order.

Field Duplicates

The field duplicate sample frequency is presented in Table 3. The parent sample and field duplicate pair is presented in Table 4. The parent sample and field duplicate RPD was within criteria. The frequency satisfied the requirement of one per 10 samples or less per matrix and analyte. Field duplicates were submitted blind to the laboratory.

Samples with both results below the LOQ (J flagged or ND) were considered acceptable without qualification.

Table 3 Field Duplicate Frequency, Methods, and Analyses

Matrix	Analytical Method	Analyte	Number of Primary Samples	Number of Field Duplicates
Groundwater	SW8021B	BTEX	5	1
Groundwater	AK102	DRO	5	1

Table 4 Field Duplicate Identification

Sample Type	Parent Sample ID	Duplicate Sample ID	All RPDs acceptable (Y/N)
Groundwater	MW-3	MW-93	Υ

Acronyms:

ID – identification

Laboratory Duplicate Samples

No laboratory duplicates were analyzed with these samples.

Overall Assessment

Precision, Accuracy, Bias, Representativeness, Comparability, and Sensitivity Summary

- Precision: Precision goals were met.
- Accuracy/Bias: Accuracy goals were met.
- Representativeness: Representativeness goals were met. The samples were collected from usual locations in accordance with applicable requirements and guidance documents.
- Comparability: Comparability goals were met. SGS laboratory provided analytical support for all methods.
- Sensitivity: Sensitivity goals were met.

This data were considered of good quality and acceptable for use with no additional qualifications. The data were 100% complete with respect to analysis. No data were rejected.

References

Alaska Department of Environmental Conservation (ADEC). 2023. 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. February 5.

-----. 2022. ADEC Technical Memorandum, Guidelines for Data Reporting. August 15.

United States Environmental Protection Agency (USEPA). 2020. National Functional Guidelines for Superfund Organic Methods Data Review. November.

Attachments

Attachment 1 – ADEC Laboratory Data Review Checklist Attachment 2 – Laboratory Deliverable

Attachment 1

ADEC Laboratory Data Review Checklist

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Jennifer Poppe	CS Site Name:	Pump Station 9 Mainline Turbine Sump	Lab Name:	SGS North America, Inc., Anchorage
Title:	Senior Chemist	ADEC File No.:	330.38.065	Lab Report No.:	1232219
Consulting Firm:	SLR International Corporation	Hazard ID No.:	2681	Lab Report Date:	June 2, 2023

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

		Yes \boxtimes No \square N/A \square Comments: SGS, Anchorage, provided analytical support to the project. SGS maintains a current ADEC CS approval number 17-021 for analytical methods of interest, as applicable.
	b.	If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved? Yes \square No \square N/A \boxtimes
		Comments: Click or tap here to enter text.
2.	Chain	of Custody (CoC)
	a.	Is the CoC information completed, signed, and dated (including released/received by)? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
	b.	Were the correct analyses requested? Yes ⋈ No □ N/A □

a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP)

approved laboratory receive and perform all of the submitted sample analyses?

3. Laboratory Sample Receipt Documentation

Analyses requested: Click or tap here to enter text.

Comments: Click or tap here to enter text.

a.	Is the sample/cooler temperature documented and within range at receipt (0° to					
	6° C)?					
	Yes □ No ⋈ N/A □					

CS Site Name: Pump Station 9 Mainline Turbine Sump

Lab Report No.: 1232219

Cooler temperature(s): Samples were received at SGS in Fairbanks on May 23rd, 2023, where the receipt temperature was not recorded. Samples were then shipped by SGS, Fairbanks, on May 23rd, 2023, to SGS, Anchorage, where О

		samples were received on May 24th, 2023, with a temperature of 0.5 °C. The Anchorage receipt temperature was recorded on the COC, but the Sample Receipt Form did not note that samples were received within the acceptable 0 to 6 °C. Data was considered not impacted, and all data were usable without qualification.
		Sample temperature(s): Click or tap here to enter text. Comments: Click or tap here to enter text.
	b.	Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)? Yes \boxtimes No \square N/A \square
		Comments: Click or tap here to enter text.
	C.	Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.? Yes \boxtimes No \square N/A \square
		Comments: No issues were noted.
	d.	If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.? Yes \square No \square N/A \boxtimes Comments: No discrepancies were noted.
		·
	e.	Is the data quality or usability affected? Yes □ No ☒ N/A □
		Comments: Regarding the Fairbanks receipt temperature, because it was verified with the sampler that samples were chilled from the time of collection until delivery to the laboratory, and the receipt temperature was not noted as out of compliance, data was considered not impacted.
4.	Case	Narrative
	a.	Is the case narrative present and understandable? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
	b.	Are there discrepancies, errors, or QC failures identified by the lab? Yes ⊠ No □ N/A □ Comments: An LCSD recovery failed for benzene. Associated sample MW-7 was re-extracted and re-analyzed. Refer to 5.b.iii and 5.b.v of this checklist.

		Pump Station 9 Mainline Turbine Sump o.: 1232219
	C.	Were all the corrective actions documented? Yes ⊠ No □ N/A □ Comments: Refer to 5.b.iii and 5.b.v of this checklist.
	d.	What is the effect on data quality/usability according to the case narrative? Comments: No impact. Refer to 5.b.v of this checklist.
5. \$	Samp	le Results
	a.	Are the correct analyses performed/reported as requested on CoC? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
	b.	Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
	C.	Are all soils reported on a dry weight basis? Yes □ No □ N/A ☒ Comments: Only waters were analyzed.
	d.	Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project? Yes \boxtimes No \square N/A \square Comments: LODs were compared to 18 AAC 75.345 Table C, Groundwater Cleanup Levels.
	e.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Click or tap here to enter text.
6. (QC Sa	ımples
	a.	Method Blank
		 i. Was one method blank reported per matrix, analysis, and 20 samples? Yes ⋈ No □ N/A □ Comments: Click or tap here to enter text.
		ii. Are all method blank results less than LOQ (or RL)?Yes ⋈ No □Comments: Click or tap here to enter text.
		iii. If above LoQ or RL, what samples are affected?

CS Site Name: Pump Station 9 Mainline Turbine Sump **Lab Report No.:** 1232219 iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⋈ Comments: Click or tap here to enter text. v. Data quality or usability affected? Yes □ No ⋈ N/A □ Comments: Click or tap here to enter text. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text. ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes □ No □ N/A ⊠ Comments: No inorganics were analyzed. iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes □ No ⋈ N/A □ Comments: The LCSD for batch VXX39907 recovered outside acceptable limits for benzene by Method SW8021B. iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Sample MW-7 was included in this batch and was affected. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

in batch VXX39914, which had acceptable recoveries. The MW-7

Comments: Sample MW-7 was re-extracted and re-analyzed for benzene

Yes □ No ⋈ N/A □

CS Site Name: Pump Station 9 Mainline Turbine Sump

Lab Report No.: 1232219

benzene result from the re-extraction was reported, therefore, data was not affected, and all data were usable without qualification.

	vii.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Click or tap here to enter text.
C.	Matrix	Spike/Matrix Spike Duplicate (MS/MSD)
	i.	Organics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No ☒ N/A □ Comments: Precision was established by an LCS/LCSD for all methods and samples.
	ii.	Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No □ N/A ⊠ Comments: No inorganics were analyzed.
	iii.	Accuracy – Are all percent recoveries (%R) reported and within method of laboratory limits and project specified objectives, if applicable? Yes □ No □ N/A ☒ Comments: Click or tap here to enter text.
	iv.	Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes \square No \square N/A \boxtimes Comments: Click or tap here to enter text.
	V.	If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA
	vi.	Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: Click or tap here to enter text.
	vii.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Click or tap here to enter text.

CS Site Name: Pump Station 9 Mainline Turbine Sump

Lab Report No.: 1232219

d.	_	Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only				
	i.	Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples? Yes No N/A Comments: Click or tap here to enter text.				
	ii.	Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.				
	iii.	Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ☒ Comments: Click or tap here to enter text.				
	iv.	Is the data quality or usability affected? Yes □ No ⋈ N/A □ Comments: Click or tap here to enter text.				
e.	Trip BI	anks				
	i.	Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.				
	ii.	Are all results less than LoQ or RL? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.				
	iii.	If above LoQ or RL, what samples are affected? Comments: NA				
	iv.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Click or tap here to enter text.				
f.	Field D	Duplicate				
	i.	Are one field duplicate submitted per matrix, analysis, and 10 project samples? Yes \boxtimes No \square N/A \square				

CS Site Name: Pump Station 9 Mainline Turbine Sump **Lab Report No.:** 1232219 Comments: Click or tap here to enter text. ii. Was the duplicate submitted blind to lab? Yes ⊠ No □ N/A □ Comments: The duplicate pair was MW-3/MW-93. iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil) $RPD \ (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$ Where R_1 = Sample Concentration R₂ = Field Duplicate Concentration Yes. iv. Is the data quality or usability affected? (Explain) Yes □ No ⋈ N/A □ Comments: Click or tap here to enter text. g. Decontamination or Equipment Blanks i. Were decontamination or equipment blanks collected? Yes □ No ⋈ N/A □ Comments: Dedicated or disposable equipment was used for the collection of all samples. ii. Are all results less than LoQ or RL? Yes □ No □ N/A ⊠ Comments: Click or tap here to enter text. iii. If above LoQ or RL, specify what samples are affected. Comments: NA

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

iv. Are data quality or usability affected?

Comments: Click or tap here to enter text.

Yes □ No X N/A □

a. Are they defined and appropriate? Yes \boxtimes No \square N/A \square

Comments: Click or tap here to enter text.

Attachment 2

Laboratory Deliverable

(Data package)

Laboratory Report of Analysis

To: Alyeska Pipeline Srv Co.

543 3rd Ave Suite 235 Fairbanks, AK 99701 (907)452-2252

Report Number: 1232219

Client Project: PS09 GW Mntrg Product Recovery

Dear Carl Benson,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc. Justin Nelson 2023.06.02

17:01:51 -08'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 06/02/2023 4:46:54PM Results via Engage

SGS North America Inc.

Case Narrative

SGS Client: Alyeska Pipeline Srv Co. SGS Project: 1232219

Project Name/Site: PS09 GW Mntrg Product Recovery

Project Contact: Carl Benson

Refer to sample receipt form for information on sample condition.

LCSD for HBN 1856478 [VXX/3990 (1715001) LCSD

8021B - LCSD recovery for Benzene does not meet QC criteria. This analyte was not reported above LOQ in all associated samples.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 06/02/2023 4:46:55PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

В Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit) Ε The analyte result is above the calibrated range.

GT Greater Than ΙB Instrument Blank

Initial Calibration Verification **ICV** The quantitation is an estimation. J LCS(D) Laboratory Control Spike (Duplicate) LLQC/LLIQC Low Level Quantitation Check

Limit of Detection (i.e., 1/2 of the LOQ) LOD

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

Matrix Spike (Duplicate) MS(D)

Indicates the analyte is not detected. ND

RPD Relative Percent Difference TNTC Too Numerous To Count

Indicates the analyte was analyzed for but not detected. U

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 06/02/2023 4:46:58PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	<u>Lab Sample ID</u>	<u>Collected</u>	Received	<u>Matrix</u>
MW-3	1232219001	05/22/2023	05/23/2023	Water (Surface, Eff., Ground)
MW-93	1232219002	05/22/2023	05/23/2023	Water (Surface, Eff., Ground)
MW-10	1232219003	05/22/2023	05/23/2023	Water (Surface, Eff., Ground)
MW-8	1232219004	05/22/2023	05/23/2023	Water (Surface, Eff., Ground)
MW-7	1232219005	05/22/2023	05/23/2023	Water (Surface, Eff., Ground)
MW-2	1232219006	05/22/2023	05/23/2023	Water (Surface, Eff., Ground)
Trip Blank 1	1232219007	05/22/2023	05/23/2023	Water (Surface, Eff., Ground)

MethodMethod DescriptionSW8021BBTEX 8021

AK102 DRO Low Volume (W)

Print Date: 06/02/2023 4:46:59PM

Detectable Results Summary

Client Sample ID: MW-10 Lab Sample ID: 1232219003	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.228J	mg/L
Client Sample ID: MW-8 Lab Sample ID: 1232219004 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	Result 0.202J	<u>Units</u> mg/L
Client Sample ID: MW-7 Lab Sample ID: 1232219005	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels Volatile Fuels	Diesel Range Organics Benzene	3.03 1.73	mg/L ug/L

Print Date: 06/02/2023 4:47:00PM

Client Sample ID: MW-3

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219001 Lab Project ID: 1232219 Collection Date: 05/22/23 14:30 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	Result Qual 0.306 U	<u>LOQ/CL</u> 0.612	<u>DL</u> 0.204	<u>LOD</u> 0.306	<u>Units</u> mg/L	<u>DF</u> 1	Allowable <u>Limits</u>	<u>Date Analyzed</u> 06/02/23 01:27
Surrogates								
5a Androstane (surr)	78.3	50-150			%	1		06/02/23 01:27

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102

Analyst: T.L

Analytical Date/Time: 06/02/23 01:27 Container ID: 1232219001-A

Prep Batch: XXX47918
Prep Method: SW3520C
Prep Date/Time: 05/30/23 18:20
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:02PM J flagging is activated

Client Sample ID: MW-3

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219001 Lab Project ID: 1232219 Collection Date: 05/22/23 14:30 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	0.250	ug/L	1		05/25/23 20:17
Ethylbenzene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:17
o-Xylene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:17
P & M -Xylene	1.00 U	2.00	0.900	1.00	ug/L	1		05/25/23 20:17
Toluene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:17
Xylenes (total)	1.50 U	3.00	1.40	1.50	ug/L	1		05/25/23 20:17
Surrogates								
1,4-Difluorobenzene (surr)	89.7	77-115			%	1		05/25/23 20:17

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/25/23 20:17 Container ID: 1232219001-C Prep Batch: VXX39897 Prep Method: SW5030B Prep Date/Time: 05/25/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:02PM

J flagging is activated

Client Sample ID: MW-93

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219002 Lab Project ID: 1232219 Collection Date: 05/22/23 14:30 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.300 U	0.600	0.200	0.300	mg/L	1		06/02/23 01:37
Surrogates								
5a Androstane (surr)	88.1	50-150			%	1		06/02/23 01:37

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102

Analyst: T.L

Analytical Date/Time: 06/02/23 01:37 Container ID: 1232219002-A

Prep Batch: XXX47918
Prep Method: SW3520C
Prep Date/Time: 05/30/23 18:20
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:02PM J flagging is activated

Client Sample ID: MW-93

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219002 Lab Project ID: 1232219 Collection Date: 05/22/23 14:30 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

			_				Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	0.250	ug/L	1		05/25/23 20:36
Ethylbenzene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:36
o-Xylene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:36
P & M -Xylene	1.00 U	2.00	0.900	1.00	ug/L	1		05/25/23 20:36
Toluene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:36
Xylenes (total)	1.50 U	3.00	1.40	1.50	ug/L	1		05/25/23 20:36
Surrogates								
1,4-Difluorobenzene (surr)	90	77-115			%	1		05/25/23 20:36

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/25/23 20:36 Container ID: 1232219002-C Prep Batch: VXX39897
Prep Method: SW5030B
Prep Date/Time: 05/25/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:02PM

J flagging is activated

Client Sample ID: MW-10

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219003 Lab Project ID: 1232219 Collection Date: 05/22/23 15:20 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.228 J	0.600	0.200	0.300	mg/L	1		06/02/23 01:47
Surrogates								
5a Androstane (surr)	91.2	50-150			%	1		06/02/23 01:47

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102

Analyst: T.L

Analytical Date/Time: 06/02/23 01:47 Container ID: 1232219003-A

Prep Batch: XXX47918
Prep Method: SW3520C
Prep Date/Time: 05/30/23 18:20
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:02PM J flagging is activated

Client Sample ID: MW-10

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219003 Lab Project ID: 1232219 Collection Date: 05/22/23 15:20 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	0.250	ug/L	1		05/25/23 20:54
Ethylbenzene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:54
o-Xylene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:54
P & M -Xylene	1.00 U	2.00	0.900	1.00	ug/L	1		05/25/23 20:54
Toluene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 20:54
Xylenes (total)	1.50 U	3.00	1.40	1.50	ug/L	1		05/25/23 20:54
Surrogates								
1,4-Difluorobenzene (surr)	90	77-115			%	1		05/25/23 20:54

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/25/23 20:54 Container ID: 1232219003-C Prep Batch: VXX39897 Prep Method: SW5030B Prep Date/Time: 05/25/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:02PM

J flagging is activated

Client Sample ID: MW-8

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219004 Lab Project ID: 1232219 Collection Date: 05/22/23 16:05 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Darameter	Booult Oval	LOQ/CL	DI	1.00	Linita	DF	Allowable	Data Analysis
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	DE	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.202 J	0.577	0.192	0.288	mg/L	1		06/02/23 01:57
Surrogates								
5a Androstane (surr)	106	50-150			%	1		06/02/23 01:57

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102

Analyst: T.L

Analytical Date/Time: 06/02/23 01:57 Container ID: 1232219004-A

Prep Batch: XXX47918
Prep Method: SW3520C
Prep Date/Time: 05/30/23 18:20
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:02PM J flagging is activated

Client Sample ID: MW-8

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219004 Lab Project ID: 1232219 Collection Date: 05/22/23 16:05 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	0.250	ug/L	1		05/25/23 21:13
Ethylbenzene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 21:13
o-Xylene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 21:13
P & M -Xylene	1.00 U	2.00	0.900	1.00	ug/L	1		05/25/23 21:13
Toluene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 21:13
Xylenes (total)	1.50 U	3.00	1.40	1.50	ug/L	1		05/25/23 21:13
Surrogates								
1,4-Difluorobenzene (surr)	89.9	77-115			%	1		05/25/23 21:13

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/25/23 21:13 Container ID: 1232219004-C Prep Batch: VXX39897
Prep Method: SW5030B
Prep Date/Time: 05/25/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:02PM

J flagging is activated

Client Sample ID: MW-7

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219005 Lab Project ID: 1232219 Collection Date: 05/22/23 16:45 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	3.03	0.588	0.196	0.294	mg/L	1		06/02/23 02:07
Surrogates								
5a Androstane (surr)	105	50-150			%	1		06/02/23 02:07

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102

Analyst: T.L

Analytical Date/Time: 06/02/23 02:07 Container ID: 1232219005-A Prep Batch: XXX47918
Prep Method: SW3520C
Prep Date/Time: 05/30/23 18:20
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:02PM J flagging is activated

Client Sample ID: MW-7

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219005 Lab Project ID: 1232219 Collection Date: 05/22/23 16:45 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	1.73	0.500	0.150	0.250	ug/L	1		05/31/23 17:12
Ethylbenzene	0.500 U	1.00	0.500	0.500	ug/L	1		05/30/23 18:21
o-Xylene	0.500 U	1.00	0.500	0.500	ug/L	1		05/30/23 18:21
P & M -Xylene	1.00 U	2.00	0.900	1.00	ug/L	1		05/30/23 18:21
Toluene	0.500 U	1.00	0.500	0.500	ug/L	1		05/30/23 18:21
Xylenes (total)	1.50 U	3.00	1.40	1.50	ug/L	1		05/30/23 18:21
Surrogates								
1,4-Difluorobenzene (surr)	90	77-115			%	1		05/30/23 18:21

Batch Information

Analytical Batch: VFC16473 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/31/23 17:12 Container ID: 1232219005-E

Analytical Batch: VFC16470 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/30/23 18:21 Container ID: 1232219005-D Prep Batch: VXX39914
Prep Method: SW5030B
Prep Date/Time: 05/31/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Prep Batch: VXX39907 Prep Method: SW5030B Prep Date/Time: 05/30/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:02PM

J flagging is activated

Client Sample ID: MW-2

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219006 Lab Project ID: 1232219 Collection Date: 05/22/23 17:20 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.294 U	0.588	0.196	0.294	mg/L	1	Limits	06/02/23 02:17
Surrogates 5a Androstane (surr)	103	50-150			%	1		06/02/23 02:17

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102

Analyst: T.L

Analytical Date/Time: 06/02/23 02:17 Container ID: 1232219006-A

Prep Batch: XXX47918
Prep Method: SW3520C
Prep Date/Time: 05/30/23 18:20
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:02PM J flagging is activated

Client Sample ID: MW-2

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219006 Lab Project ID: 1232219 Collection Date: 05/22/23 17:20 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	0.250	ug/L	1		05/25/23 22:08
Ethylbenzene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 22:08
o-Xylene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 22:08
P & M -Xylene	1.00 U	2.00	0.900	1.00	ug/L	1		05/25/23 22:08
Toluene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 22:08
Xylenes (total)	1.50 U	3.00	1.40	1.50	ug/L	1		05/25/23 22:08
Surrogates								
1,4-Difluorobenzene (surr)	89.7	77-115			%	1		05/25/23 22:08

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/25/23 22:08 Container ID: 1232219006-C Prep Batch: VXX39897 Prep Method: SW5030B Prep Date/Time: 05/25/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:02PM

J flagging is activated

Results of Trip Blank 1

Client Sample ID: Trip Blank 1

Client Project ID: PS09 GW Mntrg Product Recovery

Lab Sample ID: 1232219007 Lab Project ID: 1232219 Collection Date: 05/22/23 06:00 Received Date: 05/23/23 15:00 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	0.250	ug/L	1		05/25/23 19:59
Ethylbenzene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 19:59
o-Xylene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 19:59
P & M -Xylene	1.00 U	2.00	0.900	1.00	ug/L	1		05/25/23 19:59
Toluene	0.500 U	1.00	0.500	0.500	ug/L	1		05/25/23 19:59
Xylenes (total)	1.50 U	3.00	1.40	1.50	ug/L	1		05/25/23 19:59
Surrogates								
1,4-Difluorobenzene (surr)	90.2	77-115			%	1		05/25/23 19:59

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B

Analyst: JY

Analytical Date/Time: 05/25/23 19:59 Container ID: 1232219007-A Prep Batch: VXX39897
Prep Method: SW5030B
Prep Date/Time: 05/25/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:02PM

J flagging is activated

Blank ID: MB for HBN 1856411 [VXX/39897]

Blank Lab ID: 1714722

QC for Samples:

 $1232219001,\,1232219002,\,1232219003,\,1232219004,\,1232219006,\,1232219007$

Results by SW8021B

Parameter	Results	LOQ/CL	<u>DL</u>	LOD	Units
Benzene	0.250U	0.500	0.150	0.250	ug/L
Ethylbenzene	0.500U	1.00	0.500	0.500	ug/L
o-Xylene	0.500U	1.00	0.500	0.500	ug/L
P & M -Xylene	1.00U	2.00	0.900	1.00	ug/L
Toluene	0.500U	1.00	0.500	0.500	ug/L
Xylenes (total)	1.50U	3.00	1.40	1.50	ug/L
Surrogates					
1,4-Difluorobenzene (surr)	90.5	77-115		0	%

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: JY

Analytical Date/Time: 5/25/2023 10:35:00AM

Prep Batch: VXX39897 Prep Method: SW5030B

Prep Date/Time: 5/25/2023 6:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:04PM

Blank Spike ID: LCS for HBN 1232219 [VXX39897]

Blank Spike Lab ID: 1714725 Date Analyzed: 05/25/2023 12:25 Spike Duplicate ID: LCSD for HBN 1232219

[VXX39897]

Spike Duplicate Lab ID: 1714726 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1232219001, 1232219002, 1232219003, 1232219004, 1232219006, 1232219007

Results by SW8021B

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	100	114	114	100	113	113	(80-120)	1.20	(< 20)
Ethylbenzene	100	109	109	100	106	106	(75-125)	2.60	(< 20)
o-Xylene	100	101	101	100	98.9	99	(80-120)	2.30	(< 20)
P & M -Xylene	200	213	106	200	208	104	(75-130)	2.50	(< 20)
Toluene	100	111	111	100	109	109	(75-120)	1.80	(< 20)
Xylenes (total)	300	314	105	300	307	102	(79-121)	2.40	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50		105	50		105	(77-115)	0.02	

Batch Information

Analytical Batch: VFC16466 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

A I I BY

Analyst: JY

Prep Batch: VXX39897
Prep Method: SW5030B

Prep Date/Time: 05/25/2023 06:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:07PM

Blank ID: MB for HBN 1856478 [VXX/39907]

Blank Lab ID: 1714997

QC for Samples: 1232219005

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>
Ethylbenzene	0.500U	1.00	0.500	0.500	ug/L
o-Xylene	0.500U	1.00	0.500	0.500	ug/L
P & M -Xylene	1.00U	2.00	0.900	1.00	ug/L
Toluene	0.500U	1.00	0.500	0.500	ug/L
Xylenes (total)	1.50U	3.00	1.40	1.50	ug/L
Surrogates					
1,4-Difluorobenzene (surr)	90.9	77-115		0	%

Batch Information

Analytical Batch: VFC16470 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: JY

Analytical Date/Time: 5/30/2023 3:03:00PM

Prep Batch: VXX39907 Prep Method: SW5030B

Prep Date/Time: 5/30/2023 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:09PM

Blank Spike ID: LCS for HBN 1232219 [VXX39907]

Blank Spike Lab ID: 1715000 Date Analyzed: 05/30/2023 15:57

QC for Samples: 1232219005

Spike Duplicate ID: LCSD for HBN 1232219

[VXX39907]

Spike Duplicate Lab ID: 1715001 Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Ethylbenzene	100	106	106	100	115	115	(75-125)	8.40	(< 20)
o-Xylene	100	98.9	99	100	106	106	(80-120)	6.70	(< 20)
P & M -Xylene	200	207	104	200	223	112	(75-130)	7.30	(< 20)
Toluene	100	109	109	100	120	120	(75-120)	9.90	(< 20)
Xylenes (total)	300	306	102	300	329	110	(79-121)	7.10	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50		105	50		105	(77-115)	0.08	

Batch Information

Analytical Batch: VFC16470 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: JY

Prep Batch: VXX39907
Prep Method: SW5030B

Prep Date/Time: 05/30/2023 06:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:12PM

Blank ID: MB for HBN 1856531 [VXX/39914]

Blank Lab ID: 1715235

QC for Samples: 1232219005

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	0.250	ug/L
Surrogates					
1,4-Difluorobenzene (surr)	98.2	77-115		0	%

Batch Information

Analytical Batch: VFC16473 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: JY

Analytical Date/Time: 5/31/2023 10:20:00AM

Prep Batch: VXX39914 Prep Method: SW5030B

Prep Date/Time: 5/31/2023 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:14PM

Blank Spike ID: LCS for HBN 1232219 [VXX39914]

Blank Spike Lab ID: 1715236 Date Analyzed: 05/31/2023 13:13

QC for Samples: 1232219005 Spike Duplicate ID: LCSD for HBN 1232219

[VXX39914]

Spike Duplicate Lab ID: 1715237 Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	100	104	104	100	101	101	(80-120)	3.00	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50		106	50		104	(77-115)	1.60	

Batch Information

Analytical Batch: VFC16473 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: JY

Prep Batch: VXX39914 Prep Method: SW5030B

Prep Date/Time: 05/31/2023 06:00

Spike Init Wt./Vol.: 50 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 50 ug/L Extract Vol: 5 mL

Print Date: 06/02/2023 4:47:17PM

Blank ID: MB for HBN 1856466 [XXX/47918]

Blank Lab ID: 1714953

QC for Samples:

 $1232219001,\,1232219002,\,1232219003,\,1232219004,\,1232219005,\,1232219006$

Results by AK102

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
Diesel Range Organics	0.0750U	0.150	0.0500	0.0750	mg/L
Surrogates					
5a Androstane (surr)	88.2	60-120		0	%

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: T.L

Analytical Date/Time: 6/1/2023 4:19:00PM

Prep Batch: XXX47918 Prep Method: SW3520C

Prep Date/Time: 5/30/2023 6:20:48PM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 1000 mL Prep Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:19PM

Blank Spike ID: LCS for HBN 1232219 [XXX47918]

Blank Spike Lab ID: 1714954

Date Analyzed: 06/01/2023 16:29

Spike Duplicate ID: LCSD for HBN 1232219

[XXX47918]

Spike Duplicate Lab ID: 1714955

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1232219001, 1232219002, 1232219003, 1232219004, 1232219005, 1232219006

Results by AK102

	E	Blank Spike	(mg/L)	S	pike Duplic	ate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	5	4.19	84	5	4.55	91	(75-125)	8.30	(< 20)
Surrogates									
5a Androstane (surr)	0.1		110	0.1		118	(60-120)	6.80	

Batch Information

Analytical Batch: XFC16523 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: T.L

Prep Batch: XXX47918
Prep Method: SW3520C

Prep Date/Time: 05/30/2023 18:20

Spike Init Wt./Vol.: 0.1 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 0.1 mg/L Extract Vol: 1 mL

Print Date: 06/02/2023 4:47:21PM

SGS North America Inc. CHAIN OF CUSTODY RECORD

	CLIENT:	ca Pipeline Serv	rice Cor	npany						Sectional de						t.		
	CONTACT:	PH	ONE #:			Sec	tion 3	111133	10113 1	nay ac	Jay t	1001	361 0	anai	yolo.		Page _	of
			707 247	2509	1		7.1011 0			, ,	,	Pre	servat	ive	,	,,		-
Section	PROJECT P NAME: Mo	SOUCH RECOVER	SID/ (05.0) MIT#:			т с о		1		<u> </u>								
رد	REPORTS T	O: E-N	MAIL: Bus	elber@5	Com Com	N	Comp					Anal	ysis*				NOTE:	
	INVOICE TO	DOO C VOCK Pro	file #:			7	Grab										•	ing analyses
	AP?	-, -	OTE #:). #: SPO+	† 22300	370	l N	MI (Multi- incre-	² O	X								and/or con	•
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX	E R S	mental)	D P	802 B TE					-			BTEX, Me	als, PFAS
	OHE	MW-3	05/22/23	1420	CODE	5	cirab		1								TILWAT	N3/LOC ID
	ZAE	MW-93	05/22/23	1430	w	5	Grab		/									-
	3)AE	MW-10	05/22/23	1520	W	5	Grab		/									
on 2	4000	MW-8	05/22/23	1605	W	5	Grab		/									
ecti	4)AE 5)8E	MW-7 05/22/23 1645		w	5	Grab	/	/										
Se	6)AE	MW-Z TripBlank_1	PS/22/23	I	w	5	Grab	5	/									
	FIAC	TripBlank-1	05122/23	0600	W	_			/								trip b	lank
							<u> </u>											
		<u> </u>				<u>L</u>			<u> </u>	Section	on 4	DOD	Project	t? Yes	(A)	Doto Do	iverable Requ	·ivo mo o mato ·
	Relinquishe		Date	Time	Received By	/:				Occin	0114	DOD	riojec	. 1 6 3			Z + DV	mements.
		V 2//	5/23/23							Coole	r ID:					Level	2 T D V	
2	Relinquished	d Bly: (2)	Date	Time	Received By	/:				Reques	sted Tu	rnarou	nd Tim	e and/o	or Spec	ial Instruc	tions:	
ction	Polinguicho	Fai			Fairl		5	1		Sto	anc	dara	t k	TA				
Se	Relinquished	а Бу: (3)	Date	Time	Received By					ANC	<i>J</i> _k		<u></u>		· I	Oh oin o	f Country de Cou	L (ΟΙ ΩL »)
`	Dalinguicha	d Du (A)	Doto	10101	Received For Laboratory By:					Temp B		C:	<u>O.</u>	<u></u>		Chain o	f Custody Sea	II: (Cirgle)
	Relinquished By: (4) Date Time Received 1 5/23/23 1540					r Laboi	atory by:					or Amb	oient []		INTACT	BROKEN	ABSENT)
			1/x5/x5	1300	<u> </u>						Deli	very Me	thod:	Hand D	elivery	[] Comme	rical Delivery	
			MNC2 5/24	123						http	o://www	.sgs.cc	m/term	s-and-c	onditio	<u>ns</u>		

1232219

SAMPLE RECEIPT FORM

	<u>'roject i</u>	<u>vianag</u>	<u>er Com</u>	<u>pletion</u>
Was all necessary information recorded on the	(Yes)	No	N/A	
COC upon receipt? (temperature, COC seals,	$ \cdot $			
etc.?)				
Was temperature between 0-6° C?	Yes	No	N/A	If "No", are the samples either exempt* or sampled <8
				hours prior to receipt?
Were all analyses received within holding time*?	Vac	No	N/A	
vvere all allalyses received within holding time ?	Yes	No	19/4	
Was a method specified for each analysis,	(Yes)	No	N/A	
where applicable? If no, please note correct				
methods.			_	•
Are compound lists specified, where applicable?	Yes	No	(N/A)	
For project specific or special compound lists				
please note correct analysis code.				
If rush was requested by the client, was the	Yes	No	(N)A)	If "NO", what is the approved TAT?
requested TAT approved?				
If SEDD Deliverables are required, were	Yes	No.		If "NO", contact client for information.
Location ID's and an NPDL Number provided?				
	Sample			<u>letion</u>
Do ID's on sample containers match COC?	(Yes	No	N/A	
If any side of an acoustic and all detactions		NI-	NI/A	
If provided on containers, do dates/times	Yes	No	N/A	Note: If times differ <1 hr., record details below and
collected match COC?	Voc	No	NI/A	login per COC.
Were all sample containers received in good condition?	Yes	No	N/A	
Were proper containers	Yes)	No	N/A	Note: If 200.8/6020 Total Metals are received unpreserved,
(type/mass/volume/preservative) received for all	('5)	110	19/74	preserve and note HNO3 lot here:
samples?				If 200.8/6020 Dissolved Metals are received unpreserved, log
*See form F-083 "Sample Guide"				in for LABFILTER and do not preserve.
coo romm. coo campio carao				For all non-metals methods, inform Project Manager.
Were Trip Blanks (VOC, GRO, Low-Level Hg,	(Yes	No	N/A	
etc.) received with samples, where applicable*?		140		
Were all VOA vials free of headspace >6mm?	Yes	No	N/A	
viole all voz viale free of fredagopace - offilm.		110	'''' \	
Were all soil VOA samples received field	Yes	No	(N/A,	
extracted with Methanol?				
Did all soil VOA samples have an	Yes	No	(N/A)	
accompanying unpreserved container for %				-
solids?				
If special handling is required, were containers	Yes	No	WA	
labelled appropriately? e.g. MI/ISM, foreign				
soils, lab filter, Ref Lab, limited volume				
For Rush/Short Holding time, was the lab	Yes	No	N/A	
notified?				
For any question answered "NO", was the	Yes	No	(N/A	PM Initials:
Project Manager notified?				
Was Peer Review of sample	Yes	No	N/A	Reviewer Initials: APS
numbering/labelling completed?				
Additional Notes/Clarification where Applicable, inc	luding r	esolutio	on of "N	o" answers when a change order is not attached:

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1232219001-A	HCL to pH < 2	OK			
1232219001-B	HCL to pH < 2	OK			
1232219001-C	HCL to pH < 2	OK			
1232219001-D	HCL to pH < 2	OK			
1232219001-E	HCL to pH < 2	OK			
1232219002-A	HCL to pH < 2	OK			
1232219002-B	HCL to pH < 2	OK			
1232219002-C	HCL to pH < 2	OK			
1232219002-D	HCL to pH < 2	OK			
1232219002-E	HCL to pH < 2	OK			
1232219003-A	HCL to pH < 2	OK			
1232219003-B	HCL to pH < 2	OK			
1232219003-C	HCL to pH < 2	OK			
1232219003-D	HCL to $pH < 2$	OK			
1232219003-E	HCL to $pH < 2$	OK			
1232219004-A	HCL to $pH < 2$	OK			
1232219004-B	HCL to pH < 2	OK			
1232219004-C	HCL to pH < 2	OK			
1232219004-D	HCL to pH < 2	OK			
1232219004-E	HCL to pH < 2	OK			
1232219005-A	HCL to pH < 2	OK			
1232219005-B	HCL to pH < 2	OK			
1232219005-C	HCL to pH < 2	OK			
1232219005-D	HCL to pH < 2	OK			
1232219005-E	HCL to pH < 2	OK			
1232219006-A	HCL to pH < 2	OK			
1232219006-B	HCL to pH < 2	OK			
1232219006-C	HCL to pH < 2	OK			
1232219006-D	HCL to pH < 2	OK			
1232219006-E	HCL to pH < 2	OK			
1232219007-A	HCL to pH < 2	OK			
1232219007-B	HCL to pH < 2	OK			
1232219007-C	HCL to pH < 2	OK			

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Container Id
 Preservative
 Container

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- QN Insufficient sample quantity provided.

