2022 Landfarm Sampling and Groundwater Monitoring Report

Kotzebue Former IHS/BIA Hospital – School Pipeline Release (ADEC File. No. 410.38.025 and Hazard ID. 25558) Kotzebue, Alaska

Prepared for: MANIILAQ ASSOCIATION 725 2ND AVENUE, P.O. BOX 256 KOTZEBUE, AK 99752

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION 555 CORDOVA STREET ANCHORAGE, AK 99501

Prepared by: TANANA COMMERCIAL COMPANY/ENVIRONMENTAL MANAGEMENT LLC JV

> PO BOX 70069 Tanana, Alaska 99777

> > January 2023

2022 Landfarm Sampling and Groundwater Monitoring Report Former IHS/BIA Hospital – School Pipeline Release ADEC File No. 410.38.025; Hazard ID 25558 Kotzebue, Alaska

January 2023

Prepared by:

Tanana Commercial/Environmental Management LLC JV PO Box 70069 Tanana, Alaska 99777

Sample Collection, Data Interpretation, and Report Written by:

Very The

Delaney Dent Qualified Environmental Professional

Data Interpretation and Report Reviewed by:

Shayla Marshall Qualified Environmental Professional

TABLE OF CONTENTS

1.0 1.1	SITE DESCRIPTION AND BACKGROUND Project Purpose and Objectives	
1.2 1.3	Site Location Background	
2.0	CONTAMINANTS OF CONCERN	4
3.4 3	FIELD ACTIVITIES Work Plan Variances. Product Monitoring Activities. Landfarm Soil Treatment and Maintenance. .3.1 Landfarm Soil Sampling. Groundwater Monitoring Activities .4.1 Water Level Measurements and Flow Direction .4.2 Groundwater Sampling	5 5 6 7 7
4.0 4.1 4.2 4.3	SAMPLING RESULTS	8 9
5.0	DISCUSSION1	3
5.1 5.2 5.3	Landfarm Sampling Discussion1Groundwater Monitoring Discussion1Conceptual Site Model Discussion1	3
6.0	QUALITY CONTROL REVIEW1	
6.1 6.2	SGS Report 1224988 Landfarm Soil Samples	
7.0	INVESTIGATIVE DERIVED WASTE MANAGEMENT	8
8.0	CONCLUSIONS AND RECOMMENDATIONS	8
9.0	REFERENCES	0

TABLES

Table 1 – Summary of Landfarm Soil Headspace Results	9
Table 2 – Summary of 2019 Landfarm Soil Analytical Results	9
Table 3 – Groundwater Levels and Elevations	. 10
Table 4 –Summary of Detectable Groundwater Analytical Results	. 11
Table 5 –Historical Groundwater Sampling Results	. 14

FIGURES

Figure 1 – Vicinity Map

Figure 2 – Landfarm 2022 Sample Locations

Figure 3 - Groundwater Monitoring Well Locations and Groundwater Elevation Contours

Figure 4 – Historical DRO Groundwater Concentrations

APPENDICES

- Appendix A Field Notes
- Appendix B Photo Pages
- Appendix C Disposal Documentation
- Appendix D SGS Laboratory Reports and Laboratory Data Review Checklists
- Appendix E Resumes of QEPs
- Appendix F Human Health Conceptual Site Model Graphic Form and Human Health Conceptual Site Model Scoping Form and Standardized Graphic
- Appendix G DEC Review Comment Table

ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
ADEC / DEC	
ADOT&PF	Alaska Department of Environmental Conservation
AST	Alaska Department of Transportation and Public Facilities Aboveground Storage Tank
	Below Ground Surface
bgs BIA	Bureau of Indian Affairs
BTOC	
	Below Top of Casing
COPC	Constituents of Potential Concern
CSM	Conceptual Site Model
DRO	Diesel Range Organics
EIT	Engineer in Training
ft	Feet
GAC	Granulated Activated Carbon
GRO	Gasoline Range Organics
HH	Human Health
IDW	Investigation Derived Waste
IHS	Indian Health Service
KIC	Kikiktagruk Inupiat Corporation
KICC	Kikiktagruk Inupiat Corporation Construction
LOQ	Limits of Quantitation
MAC	Maximum Allowable Concentration
ug/L	Micrograms per Liter
mg/kg	Milligrams per Kilogram
MTG	Migration to Groundwater
ND	Not Detected
РАН	Polyaromatic Hydrocarbon
PCE	Tetrachloroethene
PID	Photoionization Detector
PPE	Personal Protective Equipment
ppmv	Parts Per Million by Volume
QC	Quality Control
QEP	Qualified Environmental Professional
RPD	Relative Percent Difference
RRO	Residual Range Organics
SGS	SGS North America, Inc.
TC-EM JV	Tanana Commercial-Environmental Management Joint Venture
TOC	Top of Casing
USS	United States Survey
UST	Underground Storage Tank
VOC	Volatile Organic Compound
	volutie Organie Compound

2022 Landfarm Sampling and Groundwater Monitoring Report Former IHS/BIA Hospital – School Pipeline Release ADEC File No. 410.38.025; ADEC Hazard ID 25558 Kotzebue, Alaska

This report outlines the 2022 landfarm sampling and groundwater monitoring activities at the former Indian Health Service/Bureau of Indian Affairs (IHS/BIA) Hospital – School Pipeline (subject property) Release in Kotzebue, Alaska. The site is identified as Alaska Department of Environmental Conservation (ADEC) Contaminated Sites File No. 410.38.025 and Hazard ID 25558.

Work was conducted by Tanana Commercial-Environmental Management JV, LLC (TC-EM JV) in accordance with the Professional Services Contract, Amendment 7, from Maniilaq Association.

1.0 SITE DESCRIPTION AND BACKGROUND

The subject property is an active ADEC Contaminated Site and encompasses several lots in Kotzebue, Alaska. The following outlines the purpose of the monitoring and regulatory background, site location, and previous field activities.

1.1 Project Purpose and Objectives

The purpose of the project is to progress toward Cleanup Complete with Institutional Controls for the site. The project objectives include the following:

- Monitoring of product from Monitoring Wells MW1 and MW6 (if present) on Lots 5 and Tract 4A, respectively;
- Groundwater monitoring of the site's ten existing wells (Lots 3 through 5 and Tract 4A);
- Characterize the soil generated during the 2019 and 2020 excavation and treated at the Kikiktagruk Inupiat Corporation (KIC) Base Road landfarm cells.

1.2 Site Location

The ADEC Contaminated Site covers land in the area of the former IHS Hospital and BIA school. The source area consists of Tracts 1 and 4 of United States Survey (USS) 2083. The site is located in the northeast ¼ of the northwest ¼ of Section 3, Township 17 North, Range 18 West, Kateel River Meridian, Alaska (Kotzebue D-2 USGS Quadrangle). The Vicinity Map showing the general location of the project area is included as Figure 1.

The former IHS hospital was located between Second Avenue and Third Avenue, southwest of the current elementary school. The tank farm serving the hospital was located to the north along Second Avenue, near the intersection of Ocean Avenue.

The complete extent of contamination has not yet been determined and likely extends beyond the original ten acres of land and following parcels. The lots included in this assessment and their former uses are the following (WHPacific, 2015):

- Lot 3 Former BIA school and small structures once part of the hospital; current residential
- Lot 4 former hospital grounds (1928-1962); current pedestrian/public use, FRF Building (also known as the Ferguson Building)
- Lot 5 former hospital grounds (1961-1996); current pedestrian/public use, fenced light industrial
- Tract 4A former BIA fuel pipeline corridor to the 1961 hospital; current Kotzebue school complex

Field activities in 2022 primarily focused on groundwater monitoring of the wells near the former IHS hospital (MW-1, MW-2, MW-7, MW-8, and MW-10) carried out concurrently with groundwater monitoring of the wells located near the former BIA school (MW-3 through MW-6, MW-9).

In addition, characterization of contaminated soil generated from 2019 and 2020 field activities took place at the landfarm property that is owned by KIC and is located off of Base Road in Kotzebue. Kikiktagruk Inupiat Corporation Construction (KICC) maintains and manages the 2019 and 2020 contaminated soils at the landfarm. The location of the Base Road landfarm is shown on Figure 1. The soil that was generated from the 2020 excavation on Lot 4 was characterized to determine the presence of contaminants, and the soil from the 2019 excavation was sampled to determine if diesel range organic (DRO) contaminants are present.

1.3 Background

Oil was first discovered in the Kotzebue Elementary School basement and are believed to be a combination of fuel storage tank releases, damaged fuel distribution line, fuel storage tank overfills and other sources (ADEC, 2015). In 1980 the ADEC became aware of the product release when fuel oil was being discharged from an oil-water separator located in the elementary school's basement. The ADEC estimated during the initial investigation that between 100,000 and 200,000 gallons of diesel fuel had been released. Between 1979 and 1980 an estimated 100,000 gallons of fuel was pumped from the basement, and an estimated 40,000 gallons of fuel was recovered by ADEC contractors and citizens from recovery wells during 1980 and 1984. (WHPacific, 2015)

In 1986 the ADEC's contractor evaluated the extent of contamination and decommissioning of the pipeline. ADEC's contractor installed 25 monitoring wells and nine recovery wells. Within a month, all of the wells had evidence of fuel present. The pipeline was also exposed to a depth of less than 3 feet below ground surface and approximately 200 to 300 gallons of diesel was drained from the pipeline. The pipeline was then abandoned in place. (WH Pacific, 2015)

In 1988 an oil sheen was observed on the beach of Kotzebue Sound off of Shore Avenue. Shannon & Wilson installed and operated an oil-recovery system in 1989 which included a 435-foot-long

fabric barrier to prevent migration, additional recovery/monitoring wells, and a 74-foot long oil recovery trench in Second Avenue, north of the former hospital. As much as 2 feet of floating fuel was observed in several wells, but an estimated 5,000 to 7,000 gallons of fuel remained in the ground. The collection efforts ceased after 1990. (S&W, 2010)

In 2008, local residents notified the ADEC that a seasonal sheen was observed in Kotzebue Sound off of Shore Avenue. The ADEC contracted with Shannon & Wilson to collect pore water samples along the beach and install vapor probes near the elementary school. Pore-water samples indicate contamination is entering Kotzebue Sound. With the exception of a probe installed near the former hospital, soil vapor samples were below screening levels. Shannon & Wilson was also tasked with monitoring and recovery well and oil-recovery gallery decommissioning. Of the 64 wells installed in the late 1980s, only 15 were located and of those only three were in good working conditions. The 12 wells were decommissioned. The oil-recovery gallery was unable to be located but the sample collected from the vicinity exceeded DRO levels. (S&W, 2010)

In 2010 the Alaska Department of Transportation and Public Facilities (ADOT&PF) installed a sheet pile wall along the Shore Avenue. The sheet piles were installed along the tideline to approximately 25 feet below mean sea level and extend approximately 6 feet above the ground surface. The impact of this wall and migration towards Kotzebue Sound is unknown. (S&W, 2010)

In 2014 and 2015 WH Pacific conducted site investigations at the site. This included installation of four test pits, 45 soil borings, and 10 monitoring wells in 2014 in the vicinity of the abandoned in-place pipeline and areas of known or former contamination; groundwater sampling in 2014 and 2015; and a shallow soil gas survey in 2015. The highest concentrations were generally along the former BIA pipeline corridor on Tract 4A, and in the right-of-way area northwest of Building 314 and the FRF Building. The shallow soil gas survey did not indicate detectable levels of contaminants of concern in the school's playground area. (WH Pacific, 2015)

In 2019, TC-EM JV conducted pre-excavation sampling, underground storage tank (UST) removal, and groundwater sampling. The UST removal activities focused on the UST and concrete dispensing island along the north side of the FRF Building. While the presumed storage use of the tank was for vehicle fueling that was discontinued sometime prior to 1969, waste oil was encountered in the UST at the time of the field activities. Approximately 16 cubic yards (cy) of contaminated soil was removed during the UST removal activities and transported to KIC's lined landfarm cell on Base Road in Kotzebue. Concentrations greater than the ADEC cleanup levels remain in the UST excavation and based on field screening and analytical results and fact the tank and piping appeared in good condition, the contamination appeared more consistent with the historical fuel oil that has contaminated the project area and not from a release from the UST. Groundwater sampling activities were also conducted during the August 2019 field activities. Measurable product was encountered in Well MW1, which is consistent with the 2014 field activities. Contamination was present in the groundwater in each of the site's wells, with the highest concentrations encountered in the wells along the former pipeline corridor. (TC-EM JV, 2019)

In 2020, TC-EM JV conducted site characterization, soil removal activities, product and groundwater monitoring, and landfarm maintenance at the site. This included drilling 16 borings, monitoring 10 wells, and excavating approximately 170 cy of contaminated soil. Contamination is present in the groundwater in each of the site's wells with product encountered in Wells MW1 and MW6. Additionally, this monitoring event encountered Tetrachloroethene (PCE) in one or more wells though no known or suspected sources of PCE were observed during these field activities. Site characterization of Lot 3 revealed petroleum concentrations greater than ADEC Migration to Groundwater (MTG) cleanup levels but less than the ADEC Human Health/Maximum Allowable Concentration (HH/MAC) cleanup levels detected at various locations on the lot. Borings located on the south side of the duplexes (Buildings 307, 312, and 316) were less than ADEC MTG cleanup levels and, based on the groundwater flow direction measured fall of 2020, these borings are located upgradient in reference to other borings advanced in 2020, suggesting the southern extent of contamination is defined. Site characterization of Lot 4, conducted July 2020, revealed contamination greater that the ADEC HH/MAC cleanup levels. Fall of 2020 soil removal activities commenced, focusing on the excavation of contaminated soils on the northwest side of the Ferguson building. During cleanup activities, buried debris was encountered, and concentrations greater than ADEC HH/MAC cleanup levels remains on the edge of the property boundary of Lots 4 and 5. Site characterization of Lot 5 reveals free product, groundwater contamination, and contaminant concentrations greater than ADEC HH/MAC cleanup levels remains in the soil with the highest concentrations located on the northwest portion of the lot. (TC-EM JV, 2020)

In 2021, TC-EM JV conducted soil removal activities, product and groundwater monitoring and landfarm 2019 soil characterization. This included excavating approximately 218 cy of contaminated soil, monitoring 10 wells, and sampling the treated 2019 landfarmed soils. The 2019 treated soils at the landfarm contained DRO concentrations reduced to slightly above ADEC MTG cleanup level. The maximum DRO concentration result was 299 milligrams per kilogram (mg/kg) compared to the cleanup level of 250 mg/kg, and the location can be seen on Figure 3. Contamination was reported in each of the site wells, except for Well MW3, with product encountered in Wells MW1 and MW6. The soil removal activities concentrated on Lot 4 with results indicating the soil along the edge of the property boundary of Lots 4 and 5, and along the edge of the FRF building, remain above ADEC HH/MAC cleanup levels. During the cleanup activities, buried debris was encountered, including concrete asbestos pipe. Future removal actions in the vicinity will likely encounter additional buried materials. (TC-EM JV, 2021)

2.0 CONTAMINANTS OF CONCERN

The ADEC Contaminated Site's database identifies a historical spill of #1 diesel between 1950 and 1980 at the site that resulted in the estimated release of 100,000 to 200,000 gallons of fuel releases in an area of 10 or more acres. The source or sources are suspected to be a result of the following: 1) ruptured tank at the bulk fuel farm in the 1950s; 2) former distribution line between the bulk tank farm and the school and former hospital; and 3) aboveground storage tanks (ASTs and USTs and associated pipeline at the school and former hospital. In 1989, chromatographic

profiles from the samples of the contaminated material were consistent with No. 1 Fuel Oil. (S&W, 1990)

The constituents of potential concern (COPC) associated with the Former IHS/BIA Hospital-School Pipeline Release site as identified in previous investigations include the following petroleum-related compounds: gasoline range organics (GRO); diesel range organics (DRO); residual range organics (RRO); volatile organic compounds (VOCs); and polyaromatic hydrocarbons (PAH).

Soil and water samples collected during the field activities compared to the cleanup levels outlined in the following regulations:

- Soil: Method Two Under 40 Inch Zone Migration to Groundwater and Human Health and Inhalation levels outlined in Tables B1 and B2 in 18 Alaska Administrative Code (AAC) 75.341, *Oil and Other Hazardous Substances Pollution Control* (November 18, 2021).
- Groundwater: Table C in 18 AAC 75.345, *Oil and Other Hazardous Substances Pollution Control* (November 18, 2021)

3.0 FIELD ACTIVITIES

The field activities were conducted by TC-EM JV in August 2022 and included landfarm sampling and groundwater monitoring. Additional details on the field activities are described below. Field notes of the field activities are provided in Appendix A. Photographs of the field activities are provided in Appendix B.

3.1 Work Plan Variances

In general, the work followed the ADEC-approved work plan as written, with the following exceptions:

- Four headspace samples were collected from the 2020 landfarm soil cell on a 30-foot by 30-foot grid instead of the planned 10-foot by 10-foot grid, Ambient readings and odors indicated elevated levels of contamination were still present. Therefore, additional headspace samples were not collected for the 2020 landfarm soil cell.
- Headspace samples were collected on an approximate 13-foot by 10-foot grid on the 2019 soil cell due to approximately two feet of the west side of the cell having sacrificial fill mixed in with 2019 soils at a total depth of less than six inches.
- Two of the ten monitoring wells were not sampled due to the presence of product or lack of water.

3.2 Product Monitoring Activities

An oil-water interface probe was used during the groundwater monitoring event to assess whether free product may be present in the site wells. Product level measurements were collected for Monitoring Well MW1. Monitoring Well MW6 was suspected to contain ice with potential product on top though no measurable level of product was present. Passive product recovery devices were installed in Wells MW1 and MW6.

3.3 Landfarm Soil Treatment and Maintenance

KICC performed landfarm treatment and maintenance of both cells (2019 and 2020-generated soils) throughout the summer of 2022. The 2019 landfarm cell is approximately 13 feet by 39 feet with soil no greater than 1 foot in thickness (approximately 16 cubic yards). The 2020 landfarm cell is an estimated 60 feet by 60 feet with soil approximately 1 foot in thickness (estimate of 170 cubic yards).

The soil in both landfarm cells was tilled on a bi-weekly basis or when weather allowed using a rototiller. Nutrients comprising a 50-pound bag of fertilizer (46-0-0) were added to the soil during the first tilling event on June 8, 2022 (Photo 2). KICC performed landfarm tilling on the following dates:

- June 8, 2022
- June 23, 2022
- July 6, 2022
- July 22, 2022
- August 24, 2022
- September 7, 2022

During landfarm tilling events and after large rain events, KICC also removed excess water from the inside of the landfarm. The water was pumped using a sump pump into a fabric filter and then into an on-site granulated activated carbon (GAC) system (Photo 4). Approximately 1,200 gallons of water were treated through the GAC filter in Summer 2022. Based on the volume of GAC, maximum concentrations encountered at the site, and amount of water treated to date, the GAC can continue to be used in 2023. The treated water was then discharged to the vegetated area southeast and outside of the landfarm on property also owned by KIC. The discharge location is approximately 950 feet from Kotzebue Sound and over 3 miles from the closest drinking water source (locations noted on Figure 1).

3.3.1 Landfarm Soil Sampling

On August 14 and 15, 2022 the 2019 and 2020 landfarm treated soil was sampled (Photo 3) according to the ADEC-approved work plan. The 2019 soil had been sampled in 2021, with one lab result exceeding ADEC Method Two Table B2 MTG cleanup levels for DRO. Note, the 2020 cell has not been previously sampled.

The 2019 cell was divided into a grid and four headspace samples were collected from the center of each grid. Due to ambient hydrocarbon odors, the 2020 cell was also divided into a fourquadrant grid with four headspace samples collected. All headspace samples were collected at approximately 0.5 feet below ground surface (bgs), at locations that were not saturated or represented base sacrificial soil. The field headspace readings were collected by filling re-sealable quart size bags approximately 1/3 to 1/2 full with soil. The bags were then agitated before being allowed to develop for at least 10 minutes, but no longer than an hour. During this time the soils were warmed to a minimum temperature of 40°F. After the samples had been warmed and allowed to develop, the probe of the photoionization detector (PID) was inserted into the bag about one-half of the headspace depth and the highest displayed reading was recorded in the field notes along with other pertinent information such as time of collection and the location of the sample.

Two analytical soil samples plus one duplicate were selected for analysis, as seen in Figure 2, based on the approximate 16 cubic yards of soil known to be excavated in 2019. The samples were collected to be spatially representative of the landfarm soil, including the slightly elevated headspace sample where the duplicate was also collected. Analytical sample collection of the 2019 landfarm treated soil followed ADEC's January 2022 *Field Sampling Guide*, Table 2A, per the ADEC-approved work plan. Soil samples were collected using clean spoons and disposable equipment and placed directly into clean laboratory-provided containers.

The 2020 soils contained a hydrocarbon odor in each of the four headspace samples collected to determine if hydrocarbon contaminants were elevated across the cell. Therefore, no analytical samples were taken as the elevated headspace readings indicated residual contamination likely above ADEC Method Two Table B2 MTG cleanup levels based on previous headspace readings from the site.

3.4 Groundwater Monitoring Activities

Groundwater sampling was conducted on the site's ten monitoring wells on August 15 and 16, 2022. The locations of the monitoring wells are shown on Figure 3.

3.4.1 Water Level Measurements and Flow Direction

Water level measurements were collected for the site's wells on August 15, 2022. The measurements were collected during the ebb tide, noting the tidal variance on August 15, 2022 was 0.67 feet at high tide (10:39 am) and -0.09 feet at low tide (6:01 pm) according to the National Oceanic and Atmospheric Administration.

3.4.2 Groundwater Sampling

Groundwater sampling proceeded after water levels were collected from each of the wells per the ADEC-approved work plan. Analytical samples were collected in eight of the ten wells. The photo pages in Appendix B show the location and condition of each well during field activities. The following observations were noted:

- Due to the presence of product in Well MW1 (0.03 foot) and an obstruction in Well MW6, analytical samples were not collected.
- Water/product level measurements for Well MW6 were unattainable due to ice believed to be the obstruction at 4.3 feet below top of casing. An ambient PID value of 34.6 ppm was read at the top of the casing of Well MW6.
- Well MW2 was sampled after being uncovered from a gravel pile (Photo 7).

- Well MW6 had been located beneath soil and a water puddle (Photos 11 and 12) which were removed/diverted prior to recovery sock insertion.
- Well MW9 had bentonite swell over the height of the well cap (Photo 15) that was removed prior to sampling.
- Well MW10 was located nearly underneath the tire of a vehicle staged on Lot 5 (Photo 16).

The remaining wells were accessible and in good condition.

The monitoring wells without product were purged using low-flow sampling methods per the Environmental Protection Agency's 2010 *Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.* A decontaminated positive displacement submersible pump and disposable Teflon-lined tubing were used to purge and collect the groundwater monitoring well samples. When samples were being collected, the pump was initially placed to be within 1.5 feet of the water surface. Samples were collected by removing the inflow hose from the flow-through cell and filling laboratory-provided sample containers directly from the tube; first hydrochloric-acid preserved containers for GRO and VOC analysis, then unpreserved containers for PAH analysis, and finally hydrochloric acid-preserved containers for DRO analysis. Purge water was collected in five-gallon buckets. The Low Flow Sampling Data Logs are provided in Appendix A.

4.0 SAMPLING RESULTS

The samples were submitted to SGS North America, Inc. (SGS) laboratory in Anchorage, Alaska for sample analysis. The soil and groundwater results are described in further detail below.

4.1 Landfarm Soil Results

The 2019 and 2020 soils treated at the landfarm by KICC were comprised of primarily moist brown silty sand and gravel. All headspace sample results for the 2019 soil cell were 0.0 ppm, except for LF2019-4 which was 0.5 ppm. Headspace sample results for the 2020 soil cell ranged from 45.6 ppm to 162.8 ppm. Sample locations shown in Figure 2. A summary of the headspace samples, collected approximately 0.5 feet bgs, are shown below in Table 1.

Field Sample ID	Headspace Result (ppmv)	Depth Below Ground Surface (feet)
	Landfarm - 2019 S	Soils
LF2019-1*	0	0.5
LF2019-2	0	0.5
LF2019-3	0	0.5
LF2019-4**	0.5	0.5
	Landfarm - 2020 S	Soils
LF2020-1	76.4 ~	0.5
LF2020-2	162.8 ~	0.5
LF2020-3	45.6 ~	0.5
LF2020-4	62.5 ~	0.5

Table 1 –	Summarv	of Landfarn	n Soil Heads	pace Results
	Comments y			pace results

Notes:

*	Analytical Sample Taken
**	Analytical Primary and Duplicate Sample Taken
~	Hydrocarbon odor detected
ppmv	Parts Per Million by Volume

Per the ADEC-approved workplan, a total of two analytical soil samples, plus one duplicate, were collected on August 15, 2022 and analyzed. Analytical results are shown in Table 2. The laboratory report is provided in Appendix D.

			ADEC	C Cleanup	2019 Landfarm Soils							
Analyte	Analysis	Unit	L	/evel*	Sample ID **							
			MTG	HH/MAC	LF2019-4	~ LF2019-44	LF2019-2					
DRO	AK102	mg/kg	250	10250	239	162	167					

Notes:

notes.	
*	Tables B2, Migration to Groundwater (MTG) or Human Health (HH)/Maximum Allowable
	Concentration (MAC), Method Two Soil Cleanup Levels (18 AAC 75, November, 2021)
**	Sample ID preceded by EMI's job number, 17855, on Chain of Custody
~	Duplicate Sample of Preceding Sample
mg/kg	Milligrams per kilogram
167	Detectable concentration reported in the project sample

4.2 **Product Monitoring Results**

Product monitoring of the ten wells was conducted during the August 2022 field event. On August 15, 2022, MW1 contained 0.03 feet of product, and MW6 had no standing liquid but did have a PID reading of 34.6 ppm at the top of the casing. Due to product presence, historical and current,

recovery socks (3-foot by 2-inch) were placed downhole these two wells, MW1 and MW6, and tied off to the well plug for passive product recovery (Photos 6 and 12). The socks will be removed and approximate volume recovered will be reported in the future monitoring event. The product interface probe did not indicate free product in the remaining eight wells.

4.3 Groundwater Monitoring Results

Water level measurements were collected from the site wells on August 15, 2022. A summary of the water level elevations and notable observations are provided in Table 3 below.

Well	Date	TOC Elevation (ft)	Total Well Depth (ft BTOC)	Depth to Water (ft BTOC)	Water Level Elevation (ft)	Notes
MW1	8/15/2022	8.62	7.8	2.48	6.14	0.03 ft of product
MW2	8/15/2022	10.05	7.90	2.99	7.06	
MW3	8/15/2022	9.54	8.2	2.97	6.57	
MW4	8/15/2022	9.17	12.5	2.72	6.45	
MW5	8/15/2022	9.27	7.0	3.74	5.53	
MW6	8/15/2022	9.33	-	-	-	obstruction at 4.3 ft BTOC
MW7	8/15/2022	10.50	12.7	4.91	5.59	
MW8	8/15/2022	10.06	14.3	3.40	6.66	
MW9	8/15/2022	8.42	6.6	2.20	6.20	-5.75 ft difference in Total Well Depth from 2021 observations
MW10	8/15/2022	9.28	9.2	2.75	6.53	-3.5 ft difference in Total Well Depth from 2021 observations

 Table 3 –Groundwater Levels and Elevations

Notes:

ft	Feet
TOC	Top of Casing
BTOC	Below Top of Casing

Note, the total well depth in Well MW9 was measured at 6.6 feet BTOC compared to 12.35 feet BTOC in 2021 observations. Also, Well MW10 measured at 9.2 feet BTOC compared to 2021 observations of 12.70 feet BTOC.

As shown on Figure 3, the groundwater direction appears to be to the west (IHS wells) and north (BIA wells).

Samples were collected from the eight of the ten groundwater monitoring wells on August 15 and 16, 2022. Analytical samples were not collected from Monitoring Wells MW1 and MW6 due to the presence of product and an obstruction, respectively. Groundwater analytical results are shown in Table 4. The laboratory report is provided in Appendix D.

Table 4 –Summary of Detectable Groundwater Analytical Results

		Unit			Clean-									Sam	ple II)**										
Analyte	Analysis		up Level*	MW2 N		MV	IW5 M		/55~	MW	8	MW4		MW3		MW9	MW7		MW	10	MW101~		Trip Blank			
GRO	AK101	mg/L	2.2	0.100	U	0.100	U	0.100	U	0.100	U	0.100	U	0.100	U	0.228	0.100	U	0.100	U	0.100	U	0.100	U		
DRO	AK102/103 LV	mg/L	1.5	0.600	U	2.44		2.87		0.625	U	1.70		0.625	U	16.4	1.56		7.39		7.39		-			
RRO	AK102/103 LV	mg/L	1.1	0.500	U	0.658		0.678		0.521	U	0.875		0.521	U	2.03	0.688		2.25		2.36		-			
Polycyclic Aromatic Hydrocar	rbons		-	-		-		-		-		-		-		-	-		-		-		-			
1-Methylnaphthalene	8270D SIM LV	ug/L	11	-		-		-		-		-		-		-	-		0.0943	$\mathbf{J}+$	0.506	J+	-			
2-Methylnaphthalene	8270D SIM LV	ug/L	36	-		-		-		-		-		-		-	-		0.0521	UJ+	0.101	J+	-			
Acenaphthene	8270D SIM LV	ug/L	530	-		-		-		-		-		-		-	-		0.0937	$\mathbf{J}+$	0.166	J+	-			
Fluorene	8270D SIM LV	ug/L	290	-		-		-		-		-		-		-	-		0.214	$\mathbf{J}+$	0.295	J+	-			
Naphthalene	8270D SIM LV	ug/L	1.7	-		-		-		-		-		-		-	-		0.652	$\mathbf{J}+$	2.54	J+	-			
Other PAHs	8270D SIM LV	ug/L	varies	-		-		-		-		-		-		-	-		ND		ND		-			
Volatile Organic Compounds			-	-		-		-		-		-		-		-	-		-		-		-			
1,2,3-Trichloropropane	SW8260D	ug/L	0.0075	1.00	UJ+	1.00	UJ+	1.00	UJ+	1.00	U	1.00	U	1.00	U	1.00 U	1.00	U	1.00	U	1.00	U	1.00	U		
1,2,4-Trimethylbenzene	SW8260D	ug/L	56	1.00	U J+	10.4	J+	12.1	J+	1.00	U	1.00	U	1.00	U	35.6	1.00	U	4.58		4.90		1.00	U		
1,3,5-Trimethylbenzene	SW8260D	ug/L	60	1.00	U J+	4.36	J+	4.95	J+	1.00	U	1.00	U	1.00	U	40.7	1.00	U	2.73		2.92		1.00	U		
4-Isopropyltoluene	SW8260D	ug/L	-	1.00	U J+	1.00	U J+	1.00	U J+	1.00	U	1.00	U	1.00	U	21.2	1.00	U	1.43		1.52		1.00	U		
Benzene	SW8260D	ug/L	4.6	0.400	U J+	0.400	U J+	0.400	U J+	0.400	U	0.400	U	0.400	U	8.17	0.400	U	0.400	U	0.400	U	0.400	U		
Chloroform	SW8260D	ug/L	2.2	13.0	J+	1.00	U J+	1.00	U J+	9.50		1.00	U	1.00	U	2.49	1.00	U	1.00	U	1.00	U	1.00	U		
Dichlorodifluoromethane	SW8260D	ug/L	200	22.3	J+	17.2	J+	20.1	J+	3.82		2.47		8.05		8.20	1.62		1.00	U	1.00	U	1.00	U		
Ethylbenzene	SW8260D	ug/L	15	1.00	U J+	1.23	$\mathbf{J}+$	1.37	$\mathbf{J}+$	1.00	U	1.00	U	1.00	U	7.67	1.00	U	4.95		4.90		1.00	U		
Isopropylbenzene (Cumene)	SW8260D	ug/L	450	1.00	U J+	1.31	J+	1.46	J+	1.00	U	1.00	U	1.00	U	7.98	1.00	U	1.16		1.22		1.00	U		
Naphthalene	SW8260D	ug/L	1.7	1.00	U J+	29.9	J+	34.6	$\mathbf{J}+$	1.00	U	1.00	U	1.00	U	65.0	1.00	U	15.6		16.7		1.00	U		
Trichlorofluoromethane	SW8260D	ug/L	5200	127	J+	57.4	J+	67.8	J+	18.1		10.7		33.4		28.1	1.00	U	1.00	U	1.00	U	1.00	U		
Xylenes (total)	SW8260D	ug/L	190	3.00	U J+	3.58	J+	4.04	J+	3.00	U	3.00	U	3.00	U	11.3	3.00	U	6.01		5.97		3.00	U		
n-Propylbenzene	SW8260D	ug/L	660	1.00	U J+	1.00	U J+	1.00	U J+	1.00	U	1.00	U	1.00	U	8.95	1.00	U	1.00		1.08		1.00	U		
sec-Butylbenzene	SW8260D	ug/L	2000	1.00	U J+	1.00	U J+	1.04	$\mathbf{J}+$	1.00	U	1.00	U	1.00	U	6.65	1.00	U	1.00	U	1.00	U	1.00	U		
tert-Butylbenzene	SW8260D	ug/L	690	1.00	U J+	1.00	U J+	1.00	U J+	1.00	U	1.00	U	1.00	U	1.19	1.00	U	1.00	U	1.00	U	1.00	U		
Other VOCs	SW8260D	ug/L	varies	ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND			

Notes:

*	ADEC Table C Groundwater Cleanup Levels (18 AAC 75, November, 2021)
**	Sample Number proceeded by TC-EM JV Job Number, 17855, on Chain of Custody
~	Duplicate of preceding sample
0.400 U	Concentration not detected Above the Limit of Quantitation (LOQ)
1.00 U	Concentration not detected Above the LOQ, but LOQ is greater than the ADEC Cleanup Level
0.658	Detectable concentration reported in the project sample
65.0	Concentration greater than the ADEC Cleanup Level
mg/L	Milligrams per liter
ug/L	Micrograms per liter
-	Not applicable
J+	Result may be biased high due to quality control issues
ND	Not detected

5.0 **DISCUSSION**

A discussion of the results from the August 14 to 16, 2022 landfarm sampling and groundwater monitoring results are described in further detail below.

5.1 Landfarm Sampling Discussion

Four headspace and two analytical samples, plus a duplicate, were taken from the 2019 soil cell treated at the KIC Landfarm. Results indicate any remaining contamination in the soil is below ADEC Method Two Table B2 MTG cleanup levels.

Initial olfactory observations of the 2020 soil cell treated at the KIC Landfarm indicated a slight hydrocarbon odor. Four headspace samples were taken as an initial determination on presence of contamination. Headspace sample results, alongside hydrocarbon odors, indicated contamination present across the 2020 soils in elevated levels likely exceeding ADEC Method Two Table B2 MTG levels.

5.2 Groundwater Monitoring Discussion

Analytical samples were collected from eight of the ten site wells between August 15 and 16, 2022. Due to the presence of product in Well MW1 (0.03 foot) and an obstruction (4.3 feet BTOC) in Well MW6, analytical samples were not collected in these two wells.

Concentrations greater than the ADEC Table C Cleanup Levels were reported in each of the site wells except for Well MW3. These exceedances included DRO, RRO, naphthalene, benzene, and/or chloroform. The highest concentrations were typically encountered in the wells along the former pipeline (Wells MW5, MW9, and MW10). With the exception of Well MW9, DRO concentrations were similar or lower in the 2022 samples from the site wells than during previous events. The well is located downgradient of an active heavy equipment parking/repair/operations site (Lot 5) which has not undergone remediation. Further, the well is situated along the water/sewer/utility pipeline and fuel oil pipeline (still in place). This corridor has long been suspected to be a migration pathway due to the disturbed soil. Between the higher average groundwater levels and fact that Lot 5 has yet not been remediated, this could be contributing to the higher DRO levels observed in Well MW9.

Concentrations of several other analytes decreased since the 2021 sampling event, with the exception of RRO in Wells MW5, MW7, and MW9, and GRO in Wells MW10 and MW9 as well as 1,3,5-Trimethylbenzene and Naphthalene in MW9.

There was no PCE detected in the site wells, noting it was not included in the analytical suite in 2014 and 2015, with exceedances found during the 2020 sampling event in Wells MW3, MW4, MW7, and MW10. The source of the previously detected PCE is unknown. A historical table of groundwater sampling results is provided as Table 5. Graphs showing the DRO concentration trends are provided as Figure 4.

			Contaminant of Concern and ADEC Table C Cleanup Level (units in mg/L)												
		GRO	DRO	RRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	PCE	Chloroform	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl -benzene	Naphth (VOC)	1-Methyl napth	2-Methyl napth
Well	Date	2.2	1.5	1.1	0.0046	1.1	0.015	10	0.041	0.0022	0.056	0.03	0.0017	0.011	0.036
MW1~	8/25/2014	0.878	31.4	3.37	0.00134	0.00112	0.0333	0.118	-	-	-	-	-	-	-
MW1~	7/15/2015	2.01	20.7	1.81	0.0009	0.00114	0.0223	0.118	-	-	-	-	-	-	-
MW1	8/5/2019							Not sampled -	Measurable P	roduct					
MW1	9/30/2020							Not sampled -	Measurable P	roduct					
MW1	9/18/2021							Not sampled -	Measurable P	roduct					
MW1	8/15/2022						Not sampled - I	Measurable Pro	duct (product	recovery sock ir	iserted)				
MW2	8/25/2014	ND	ND	0.248 J	ND	ND	ND	ND	-	-	-	-	-	-	-
MW2	7/13/2015	1.4	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-
MW2	8/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	0.0157	ND	ND	ND	-	-
MW2	10/3/2020	ND	0.922	0.875	ND	ND	ND	ND	0.0107 J-	0.0325 J-	ND	ND	ND	-	-
MW2~	9/19/2021	ND	ND	ND	ND	ND	ND	ND	ND	0.0139	ND	ND	ND	-	_
MW2	8/15/2022	ND	ND	ND	ND	ND	ND	ND	ND	0.0130	ND	ND	ND	-	_
MW3	8/26/2014	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-
MW3	7/13/2015							Not San	npled - Frozen	l					
MW3	8/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00971		
MW3	10/3/2020	ND	0.647	ND	ND	ND	ND	ND	0.107 J-	ND	ND	ND	ND	-	-
MW3	9/19/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
MW3	8/15/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
MW4	8/26/2014	0.136	3.53	0.461 J	ND	0.00039 J	0.00032 J	0.00170 J	-	-	-	-	-	-	-
MW4	7/14/2015	0.102	1.4	0.137 J	ND	ND	ND	ND	-	-	-	-	-	-	-
MW4	8/7/2019	ND	3.27	0.872	ND	ND	ND	ND	ND	ND	ND	0.0046	0.00258	-	-
MW4	10/3/2020	ND	5.6	0.995	ND	ND	ND	ND	0.0464 J-	ND	0.00146 J-	0.0107 J-	0.00321 J-	-	-
MW4	9/19/2021	ND	1.78	ND	ND	ND	ND	ND	ND	ND	ND	0.00492	ND	-	-
MW4	8/15/2022	ND	1.70	0.875	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
MW5	8/25/2014	0.188	5.44	1	ND	0.410 J	0.00304	0.0107	-	-	-	-	-	-	-
MW5	7/14/2015				[npled - Frozen		[1	
MW5	8/7/2019	0.125	3.89	0.663	0.00056	ND	0.00394	0.0108	ND	ND	0.0394	0.0197	0.057	-	-
MW5	10/4/2020	ND	6	1.1	-	-	-	-	-	-	-	-	-	-	-
MW5~	9/18/2021	0.191	2.97	ND	ND	ND	0.00334	0.00922	ND	ND	0.0371	0.0187	0.0642	-	-
MW5~	8/15/2022	ND	2.87	0.678	ND	ND	0.00137	0.00404	ND	ND	0.0121	0.00495	0.0346	-	-

Table 5 – Historical Groundwater Sampling Results

2022 Landfarm Sampling and Groundwater Monitoring Report Former IHS/BIA Hospital – School Pipeline Release Job # 17855, January 2023

			Contaminant of Concern and ADEC Table C Cleanup Level (units in mg/L)*												
		GRO	DRO	RRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	PCE	Chloroform	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl -benzene	Naphth (VOC)	1-Methyl napth	2-Methyl napth
Well	Date	2.2	1.5	1.1	0.0046	1.1	0.015	10	0.041	0.0022	0.056	0.03	0.0017	0.011	0.036
MW6	8/26/2014	0.373	4.84	0.757	ND	ND	0.00824	0.0189	-	-	-	-	-	-	-
MW6	7/14/2015							Not San	npled - Frozen	l					
MW6	8/7/2019	0.322	6.06	0.557	ND	ND	0.0121	0.0253	ND	ND	0.0631	0.0434	0.157	-	-
MW6	10/4/2020							Not Sample	ed - Trace Proc	luct					
MW6	9/18/2021							Not sampled -	Measurable P	roduct					
MW6	8/15/2022						Not samp	pled - Frozen (p	roduct recove	ry sock inserted)				
MW7	8/27/2014	0.0389 J	1.19	0.767	ND	0.00032 J	ND	ND	-	-	-	-	-	-	-
MW7	7/13/2015	0.0313 J	1	0.352 J	ND	ND	ND	ND	-	-	-	-	-	-	-
MW7	8/6/2019	ND	1.41	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
MW7~	10/3/2020	ND	1.56	0.933	ND	ND	ND	ND	0.0584 J-	ND	ND	ND	ND	-	-
MW7	9/19/2021	ND	1.55	0.548	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000445	ND
MW7	8/15/2022	ND	1.56	0.688	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
MW8	8/26/2014	ND	0.2 J	0.298 J	ND	ND	ND	ND	-	-	-	-	-	-	-
MW8	7/13/2015	ND	0.35 J	0.276 J	ND	ND	ND	ND	-	-	-	-	-	-	-
MW8	8/6/2019	ND	ND	ND	0.00112	ND	ND	ND	ND	0.00484	ND	ND	ND	-	-
MW8	10/4/2020	ND	1.1	0.862	0.000620 J-	ND	ND	ND	0.0271 J-	0.00652 J-	ND	ND	ND	-	-
MW8	9/18/2021	ND	1.18	ND	0.000690	ND	ND	ND	ND	0.00948	ND	ND	ND	-	-
MW8	8/15/2022	ND	ND	ND	ND	ND	ND	ND	ND	0.00950	ND	ND	ND	-	-
MW9	8/27/2014	0.488	9.35	1.61	0.00605	0.00076 J	0.00475	0.0283	-	-	-	-	-	-	-
MW9	7/15/2015	0.634	9.02	1.27	0.00343	0.00056 J	0.00665	0.0365	-	-	-	-	-	-	-
MW9~	8/6/2019	0.263	12.8	1.36	0.012	ND	0.00787	0.0107	ND	ND	0.0584	0.0452	0.105	-	-
MW9	10/4/2020	0.373	13.7	1.87	0.0647 J-	ND	0.00753 J-	0.00919 J-	0.0381 J-	ND	0.040 J-	0.0390 J-	0.0841 J-	-	-
MW9	9/18/2021	0.290	14.5	1.31	0.00648	ND	0.00929	0.0114	ND	0.00331	0.0335	0.0371	0.0632	-	-
MW9	8/15/2022	0.228	16.4	2.03	0.00817	ND	0.00767	0.0113	ND	0.00249	0.0356	0.0407	0.0650	-	-
MW10	8/27/2014	0.843 J	14.8	1.95	0.0568	0.0166	0.0425	0.147	-	-	-	-	-	-	-
MW10	7/13/2015	0.543	11	1.63	0.0343	0.00197	0.0375	0.088	-	-	-	-	-	-	-
MW10	8/6/2019	ND	24.1	3.59	0.00083	ND	0.00744	0.00767	ND	ND	0.00854	0.00368	0.0266	ND	ND
MW10~	10/4/2020	0.261	17.9	2.74	0.0172 J-	ND	0.0245 J-	0.0287 J-	0.0975 J-	ND	0.0269 J-	0.0106 J-	0.0816 J-	0.0189	0.00326
MW10	9/18/2021	0.183	26.6	3.55	0.00132	ND	0.0167	0.0203	ND	ND	0.0149	0.00717	0.0504	-	-
MW10~	8/15/2022	ND	7.39	2.36	ND	ND	0.00495	0.00601	ND	ND	0.0049	0.00292	0.0167	0.000506	0.000101

Table 5 – Historical Groundwater Sampling Results Continued

Table 5 Notes:

Table C Groundwater Human Health Cleanup Level (18 AAC 75, November, 2021)
Duplicate sample collected; higher value between the primary and duplicate sample reported
Not applicable
Quantitation is an estimation; potentially biased low
Quantitation is an estimation
Milligrams per liter
Not detected
Detectable concentration reported in the project sample
Above ADEC Table C Cleanup Level

5.3 Conceptual Site Model Discussion

A conceptual site model (CSM) was developed for Lots 3 and 4 as these two lots were the focus of the cleanup and priority for site closure. The Human Health Conceptual Site Model Graphic Form and Human Health Conceptual Site Model Scoping Form and Standardized Graphic are included in Appendix F.

The primary source of contamination at the site is the former fuel pipeline. In 2019 an UST and the former dispenser island was removed from Lot 4; due to the comingling of contamination from the pipeline, it is unknown whether the UST and former dispenser were significant sources of contamination for Lot 4. Drums were also encountered on Lot 4 during the 2020 removal action, but were empty at the time and appeared to have been used as an underground conveyance and no indication of petroleum impact from the drums were noted. The impacted media on Lots 3 and 4 are primarily surface and subsurface soils, and groundwater, noting there are no groundwater monitoring wells on Lot 4 but there are wells on the adjoining lots that have concentrations greater than cleanup levels. Due to the presence of volatile compounds in the soil and groundwater at the site, air is also a potentially impacted media.

The pathways that have been identified as complete in the CSM include: incidental soil ingestion, dermal absorption of contaminants from soil, inhalation of outdoor air, inhalation of indoor air, dermal absorption of contaminants in groundwater, and ingestion of groundwater.

Note, the drinking water sources for Kotzebue are surface water bodies, Vortac Lake and Devils Lake located greater than 2 miles southeast and topographically upgradient from the two lots, as shown on Figure 1. Kotzebue Sound, the closest surface water body to Lots 3 and 4, is not likely to be used as a future drinking water source. Due to a lack of a formal determination from the ADEC that surface water or groundwater is not a current or reasonably expected future source of drinking water per 18 AAC 75.350, ingestion of groundwater is considered a complete pathway.

Inhalation of indoor air is a potential pathway. There are several structures present between Lots 3 and 4. The FRF Building, located on Lot 4, is on pilings with the open space between the ground surface and structure. Therefore, inhalation of indoor air on Lot 4 is considered insignificant. On Lot 3, there are several residential structures. Volatile compounds were not encountered in the

2020 borings closest to Buildings 307, 312, 315, and 317. The closest boring with volatiles (naphthalene) was 2020 Boring B5. Boring B5 is 39 feet from Buildings 307 and 312. Although volatile compounds have been detected on Lot 3, the locations of those detections are over 30 horizontal feet from the residential structures on Lot 3.

The site is located in a mixed residential and business area. As a result, the current and future receptors will include residents, commercial or industrial workers, site visitors, trespassers, and construction workers.

6.0 QUALITY CONTROL REVIEW

ADEC Laboratory Data Review Checklists were completed for the SGS reports. The laboratory reports and checklists are included in Appendix D. The following is a summary of the quality control (QC) issues affecting data quality or usability.

6.1 SGS Report 1224988 Landfarm Soil Samples

No QC issues were noted.

6.2 SGS Report 1224980 Groundwater Samples

The following QC issues and the effect on data quality or usability were noted:

- Surrogate recovery for 1,2-dichloroethane-d4 (8260D) for MW2, MW5, MW55, Trip Blank, and MB (HBN 1842148) may be biased high. There were no detections for analytes associated with this surrogate in the trip blank indicating a negligible effect on results. Since many of these impacted project samples exceed ADEC cleanup levels, the recoveries are not likely to affect the data quality or usability for the project purpose of determining if concentrations exceed cleanup levels. The associated results in Table 4 have been flagged as potentially biased high.
- Surrogate recovery for 2-methylnaphthalene-d10 (8270D SIM) for MW10 and duplicate MW101 does not meet QC criteria. Since both of these impacted project samples exceed ADEC cleanup levels, the recoveries are not likely to affect the data quality or usability for the project purpose of determining if concentrations exceed cleanup levels. The associated results in Table 4 have been flagged as potentially biased high.
- The pH of project sample MW4 (AK101) was greater than two; however, the sample was analyzed within seven days of collection. Therefore, data usability is not affected.
- The LOQ for 1,2,3-trichloropropane exceeded the ADEC cleanup level. The analyte has similar results across all samples regardless of other contaminants present and a lower LOQ was not available for the method used on this project. The data is considered usable for the project purpose.

• The relative percent difference (RPD) is above the recommended 30% for five detected PAH compounds in MW10 and MW101. Analytical results for the five detected PAH compounds did not exceed cleanup levels, except for Naphthalene that was also detected in exceedance via SW8260D. Therefore, the elevated RPD is not likely to affect the data quality or usability for the project purpose of determining if concentrations exceed cleanup levels.

7.0 INVESTIGATIVE DERIVED WASTE MANAGEMENT

Investigation derived waste (IDW) included excavated soil, purge/decontamination water, the debris encountered during excavation, sampling disposables, and personal protective equipment (PPE).

- Purge/decontamination water generated during field activities was treated with a GAC filter and discharged onsite. The GAC filter is being stored for use in future monitoring events.
- Sample disposables including gloves, spoons, Ziplock bags, tubing from the groundwater monitoring, and other sampling disposables were disposed of as solid waste at the Kotzebue Landfill.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Landfarm sampling and groundwater monitoring were conducted in 2022. Below describes TC-EM JV's conclusions and recommendations for the entire site and for the lots previously occupied by IHS.

Contamination is present in the groundwater in each of the site's wells. The highest concentrations were typically encountered in Wells MW5, MW9, and MW10 with product encountered in Well MW 1 and suspected in MW6, all sample locations along the former pipeline corridor. Due to the detection of concentrations greater than cleanup levels of at least one analyte, we recommend continued groundwater monitoring of all the site wells to determine if concentrations are decreasing or stabilizing. In addition, the 2022 monitoring event did not encounter any PCE that was previously noted in the 2020 groundwater monitoring events and the use of Teflon-lined sampling for the full VOC suite during future monitoring events in the groundwater at the site.

Several VOC analytes has LOQs that exceed cleanup levels. Future groundwater monitoring events may include low-level VOC analyses that have lower detection limits, if available.

Measurable product continues to be encountered in Well MW1 and trace product or measurable product has been reported for Well MW6. We recommend continuing the product monitoring in Well MW1 and MW6, and continued passive product recovery if measurable product continues to be present in the wells. The volume of product recovered will be reported in future monitoring reports.

Due to the well depth discrepancies with Wells MW9 and MW10 in addition to the blockages in Well MW6, we recommend using a downhole camera during 2023 field activities to further investigate potential obstructions and/or damage to these wells.

The soils generated during the 2019 and 2020 field activities were tilled in 2021 and 2022. The soils in the 2019 landfarm cell were sampled and concentrations are below the ADEC Method Two Table B2 MTG cleanup level for DRO. Soils in the 2019 landfarm cell are now available for reuse. Post-treated soils will be managed per state regulations and guidance documents including an ADEC Transport and Treatment or Disposal of Contaminated Media Approval form.

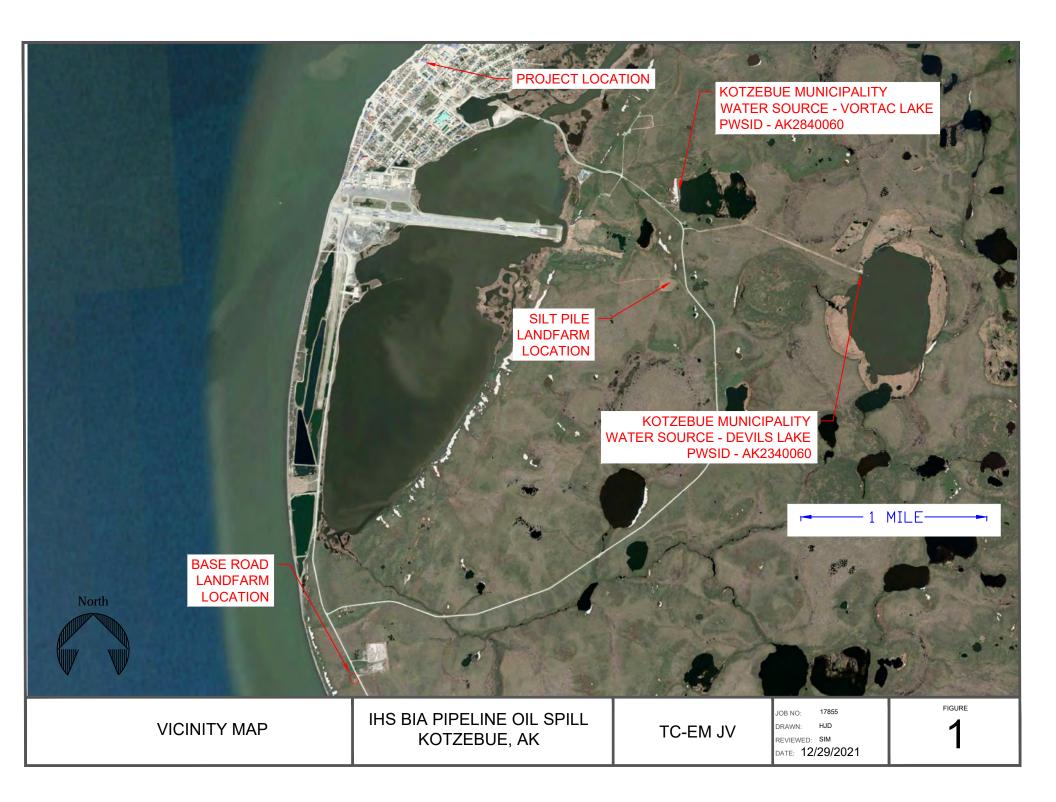
The landfarm cell for the 2020-generated soil will continue to be tilled in 2023. If there is indication that the soils may have cleaned up (based on odors), the soil may be sampled late 2023 to determine if concentrations have reduced for reuse. GAC will continue to be used to treat water within the landfarm cell; the GAC breakthrough calculations will be provided to the ADEC prior to 2023 field work mobilization.

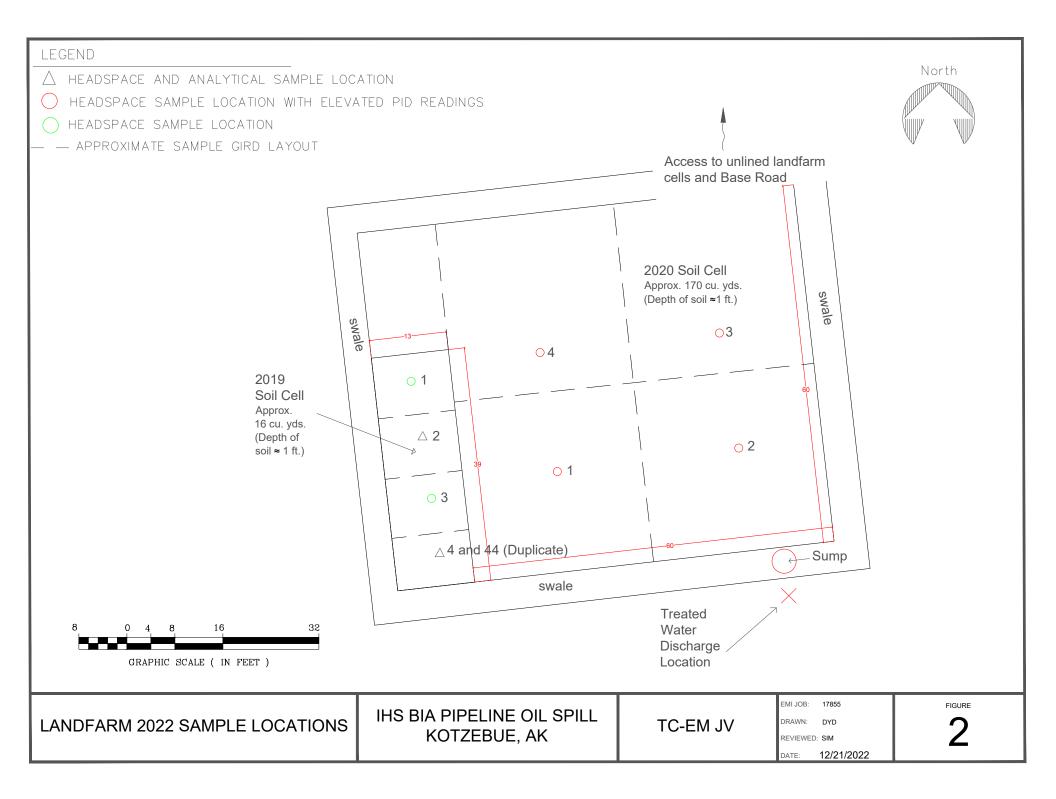
If you have any questions or wish to discuss this project further, please do not hesitate to contact Shayla Marshall at (907) 223-3544.

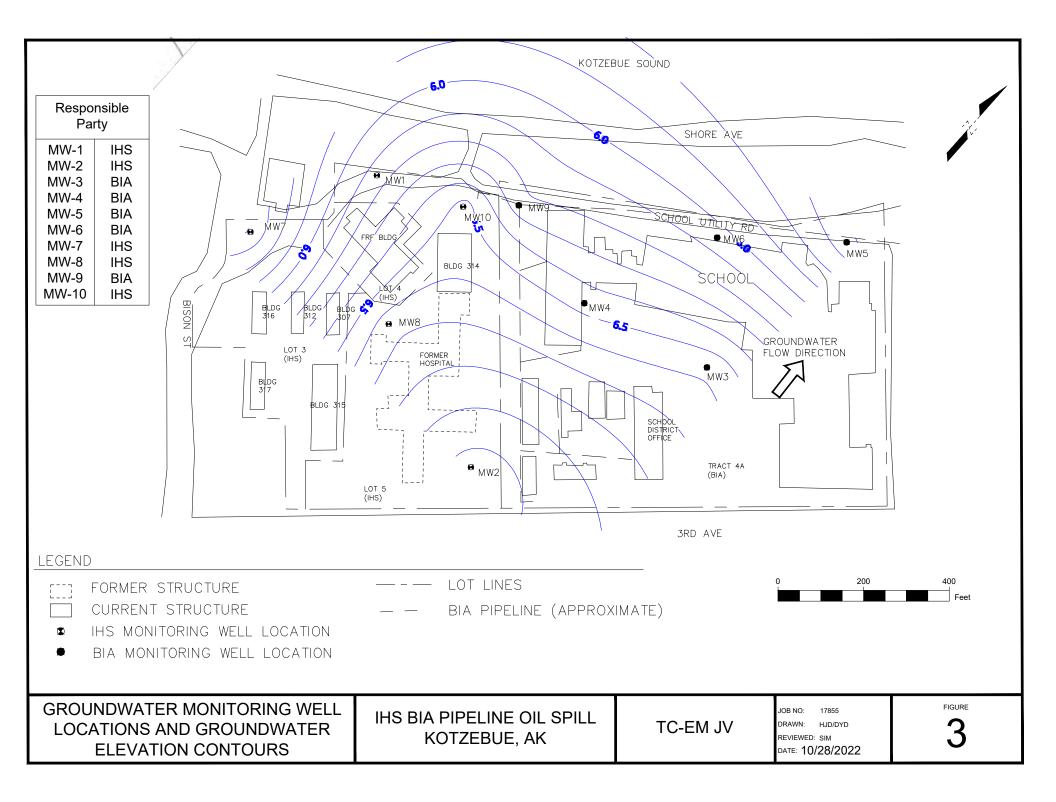
Tanana Commercial/Environmental Management LLC JV

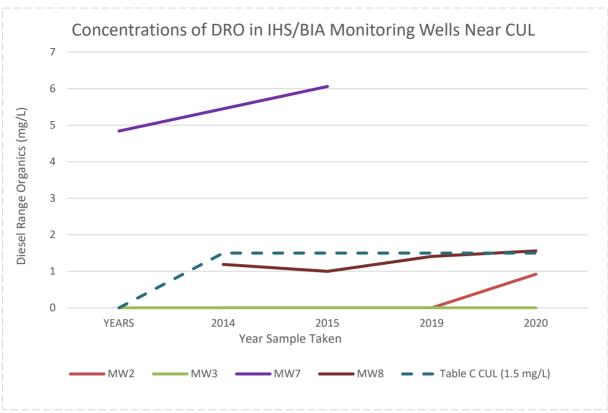
My 12

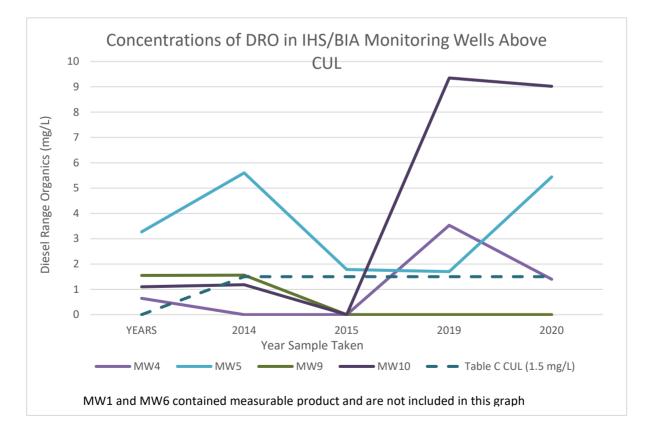
Delaney Dent, EIT, QEP Junior Engineer

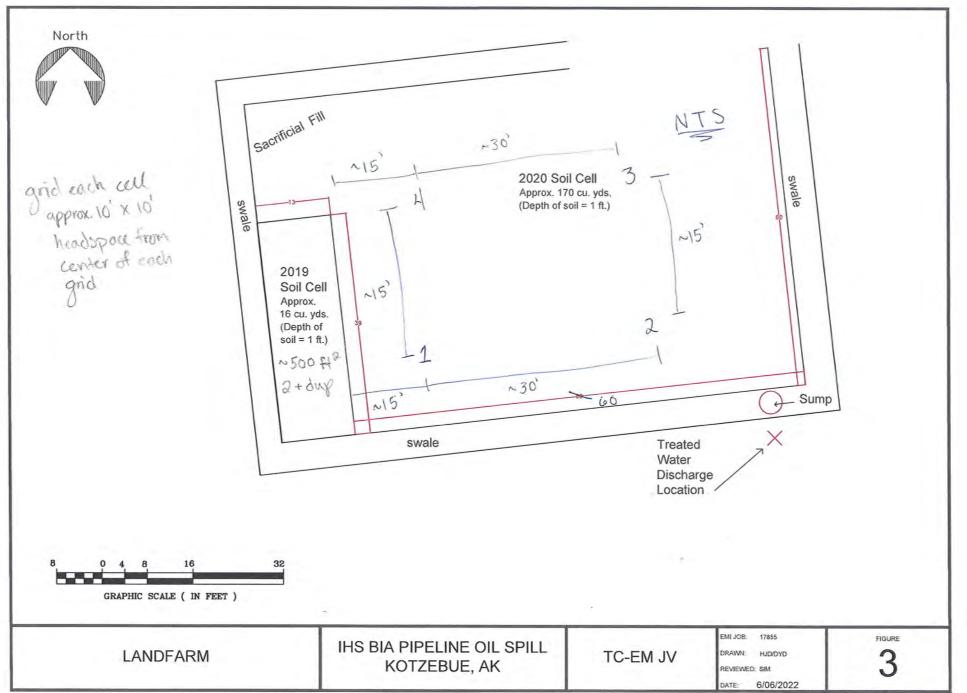

hout


Shayla Marshall, QEP Project Manager


9.0 **REFERENCES**


ADEC. 2021. Oil and Other Hazardous Substances Pollution Control, 18 AAC 75. November 18.


- ADEC. 2022. Field Sampling Guidance. January.
- ADEC. 2015. Cleaning up fuel contamination: Kotzebue's former Indian Health Service hospital and Bureau of Indian Affairs school. July.
- Shannon & Wilson. 1990. Phase II Recommendations & Recovery, 1989 Field Season, Underground Oil Spill, Kotzebue, Alaska. May.
- Shannon & Wilson. 2010. Site Characterization Report, Kotzebue City Oil Spill Area, Kotzebue, Alaska. January.
- TC-EM JV. 2019. Underground Storage Tank Removal and Groundwater Monitoring Report, Kotzebue Former IHS/BIA Hospital-School Pipeline Release. December.
- TC-EM JV. 2021. 2020 Site Characterization, Limited Removal Action, and Groundwater Monitoring, Kotzebue Former IHS/BIA Hospital-School Pipeline Release. April.
- TC-EM JV. 2022. 2021 Limited Removal Action, Groundwater Monitoring, and Landfarm Sampling Report, Kotzebue Former IHS/BIA Hospital-School Pipeline Release. July.
- TC-EM JV. 2022. 2022 Work Plan: Landfarm Sampling and Groundwater Monitoring, Kotzebue Former IHS/BIA Hospital-School Pipeline Release. June.
- WHPacific. 2015. Draft 2015 Site Investigation Report. Former IHS/BIA Hospital School Pipeline Release. December.



APPENDIX A

Field Notes

12 17855		Aug. 14, 2022	17855		Aug. 14, 2022 13
EM.	koe 3000 (k by Cloudy, c P-Delancy ana-Date	Cal 100.0 ppm Isoloutylene nump 100.4 ppm und off the water, 50's F	HSID On OF LF2020-1 2022/203 LF2020-2 2024/203 LF2020-3 2024/203 LF2020-3 2026/20 LF2020-4 2027/20	8 76.4 6 ⁿ 19162.8 1 11 45.6	Notes debr, si sa grav, m, hcode
NTS	1	TN 2020 cell headspace locs on map	rain fall -sum	o area	e Fill north side
	3 4 ^{34×}	*loc for analyfical t dup			
Ewater side	- 2019				
LF2019-1 2 *LF2019-2 2	010/2033 0.0 010/2033 0.0 013/2036 0.0	G" dk br, si sa grav, m			
	015/2037 0.0			end Aug 14 2	02 DD
Scale: 1 square	=		Scale: 1 square =		Rite in the Rain-

14 赛 17855 17855 Aug. 15, 20,22 Hug. 15, 2022 · Partly cloudy, wind off water, 405°F [" put a 3' by 2" sock in well 0800 NAC Bocked -floated on water 0900: Refieve pental car from KIC - fiel ~ 5' of string to well plug 0910 NAC pickup I used bailer to check water swiface 2019 landform soil cell no over or sheen product doserved 17855-LF2019-4 @ 10:12 10:22 (dup of 4)) 17855-LF2019-44 @ 17855-LF2019-2 @ 10:20 MWG N to water NTS d 2 W Well depth Notes time d2P 7.8 Mall 2.48 11:17-2:45 Product 2.75 9.2 11:58 MWID and road 10.5 14.3 MW8 3.40 17:09 bentonite on cosingsides mw9 2.20 12:40. 6.6 12.7 MWIT 4.91 12:57 1 bunged under building 7.9-2.99 MW2 13:37 3.74 MW 5 7.0 13:45 -> PID inserted in MW6 @14:26 = 34.6 ppm MW (0 obstruction@ 4.3' damp, solid, no reading on 272 MW4 12.5 15:11 -8.2 MW3 2.97 15:20 water level meter Femp probe dropped to 40°F in 5 min and MW3 &4 are on school recess grounds steadily decreased suspective - inserted sock -school is in session end spillinger MW5 notes on Nell logs anope Scale: 1 square =

Low-Flow Sampling Water Data Log

Well No.:	2	
Project No:	17855	
Instrument(s):		

797

Date:	Aug. 15 2022
Weather:	Darty cloudy, slight breeze, high
EMI Staff:	Delaney & Dale 405F
	-

Initial Well Parameters

Initial Depth to Water (ft):

Product Present (if so, note thickness): Pump placement (ft BTOC): 4^{γ}

Total Well Depth (ft):	7.9	
NIA		

Well Purge Details

Stabilization Criteria:			+/- 0.1 su	3%	3%	10%	10%	+/- 10 mv	0.33 ft
Time	Depth (위)	Flow Rate	рН (s.u.)	Temp (°()	Cond (^{AS} /m)	DO (%)	Turbidity (NTU)	ORP ()	Drawdown (ft)
16:15	4	103.6 400	6.86	4.72	630	6.9	25.07	35.5	-
16:19	-	200	6-88	4.95	629	7:2	18.16	37.5	
16:22		200	6-91	5.10	631	8.5	14.06	34.1	
16:25		450.	6.90	4.78	620	10.9	7.35	32.3	~
	-	1							
					1				
	11.1								1
						1			
			· ·	· · · · · ·		1			
						1.2.2.2			2

Stable if min. of 3 parameters (4 if using temp) collected 3-5 min are within the criteria

Analytical Sample Details

:30

Sample Collection Date/Time: Notes:

Duplicate Collected (Y/N):

Total volume purged:

Low-Flow Sampling Water Data Log

Well No.:	5	
Project No:	17855	
Instrument(s):		

2

Date:	Aug. 15 2022
Weather:	narthy cloudy slight breeze
EMI Staff:	Delaney & Dale high 4057
	0

Initial Well Parameters

Initial Depth to Water (ft):

Product Present (if so, note thickness): Pump placement (ft BTOC): 4

Total Well Depth (ft):

Well Purge Details

1	Stabilizat	ion Criteria:	+/- 0.1 su	3%	3%	10%	10%	+/- 10 mv	0.33 ft
Time	Depth (위)	Flow Rate	рН (s.u.)	Temp (°С)	Cond (NS/cm)	DO (%)	Turbidity (NTU)	ORP ()	Drawdown (ft)
17:03	41.8	350	6.94	401	370	17.8	71.14	-12.0	-0
17:07		300	6.96	3.51	327	6.5	122.1	-3.7	-
17:11		300	6.98	3.65	306	5.8	26.95	-7.6	-
17:15		300	6.98	3.56	288	5.8	10-56	3.9	_
17:18		300	6.98	3.67	285	5.1	8.77	7.7	-
17:21.	Ø	300	696	3.75	285	4.7	104.2	9.5	-
				_					
	ι.								
	<u>]</u>			(je z li
	i i					<u></u>			
Otekle K							debin eb a an		

Stable if min. of 3 parameters (4 if using temp) collected 3-5 min are within the criteria

Analytical Sample Details

Duplicate Collected (Y/N): Sample Collection Date/Time: 35 MW 55 Notes: Total volume purged:

	CIMENTAL Low-Flow Sar	npling Water Data Log
Well No.:	TOKALED S	Date: Aug. 16, 2022
Project No:	17855	Weather: partly cloudy slight liver 40 sF
Instrument(s):	YST 556, MiniMonsoon, low	
	13 v batt, interface probe, to bid	
Initial Depth to V	Nater (ft): 3.45	Total Well Depth (ft): 14 3

Product Present (if so, note thickness):

Pump placement (ft BTOC): 4.5

Well Purge Details

Stabilization Criteria:		+/- 0.1 su	3%	3%	10%	10%	+/- 10 mv	0.33 ft	
Time	Depth (유ት)	Flow Rate	рН (s.u.)	Temp (°∠)	Cond (1 ^{uS/} cm)	DO (%)	Turbidity (NTU)	ORP	Drawdown (ft)
8:05	4.5	400	6.31	2.75	506	19.4	29.17	209.0	
8:08	1	500	6.72	2.37	493	10.0	18.23	189.8	
8:12		300	6.86	2.41	491	6.4	20.73	182.0	
8:15		400	6.90	2.56	494	5.6	1.66	176.5	0.61
8:18	V	300	6.92	2.48	492	4.8	0.55	173.4	
								1	
								-	
				1		1.			11.5
1 - 11									-
	-								
			1	1					

Stable if min. of 3 parameters (4 if using temp) collected 3-5 min are within the criteria

Analytical Sample Details

5 gal

Sample Collection Date/Time: Notes:

-25

Duplicate Collected (Y/N)?

Total volume purged:

Low-Flow Sampling Water Data Log

Well No .:	4	
Project No:	17855	
Instrument(s):		1

276

Date:	Aug 16 2022
Weather:	partly cloudy, slight weeker
EMI Staff:	Dravey & Dale 400F
	0

Initial Well Parameters

Initial Depth to Water (ft): Product Present (if so, note thickness):

Pump placement (ft BTOC):

Total Well Depth (ft):	12.5
1	

Duplicate Collected (Y/N):

Well Purge Details

	Stabilizat	ion Criteria:	+/- 0.1 su	3%	3%	10%	10%	+/- 10 mv	0.33 ft
Time	Depth (异+)	Flow Rate	рН (s.u.)	Temp (°උ)	Cond (^{µS/cn})	DO (%)	Turbidity (NTU)	ORP	Drawdown (ft)
8159	4	300	6.60	5.54	548	8.6	14.48	173.8	
9:02	1	300	6.70	5.68	554	6.9	1.00	147.0	0.01
9:05		300	6.73	5.64	556	4.9	0.00	123.0	
9:08	Z	300-	6.75	5.61	555	4.2	0.91	91.5	_
				-	1				
							1		-
								7	-
	v				1				
_									
	14								

Stable if min. of 3 parameters (4 if using temp) collected 3-5 min are within the criteria

Analytical Sample Details

Sample Collection Date/Time:

Notes:

Total volume purged:

Low-Flow Sampling Water Data Log

Well No.:	3	
Project No:	17865	
Instrument(s):		

3

L

Date:	Aug. 16,2022
Weather:	purty douby Right Greeze, 405
EMI Staff:	Delaney D Vale
	0

Initial Well Parameters

Initial Depth to Water (ft): Product Present (if so, note thickness):

Pump placement (ft BTOC):

Total Well Depth (ft):	8-d
1111	

Well Purge Details

1.12	Stabilizat	ion Criteria:	+/- 0.1 su	3%	3%	10%	10%	+/- 10 mv	0.33 ft
Time	Depth (升)	Flow Rate	рН (s.u.)	Temp (″C)	Cond (1 ⁹⁵ /cm)	DO (1.)	Turbidity (NTU)	ORP ()	Drawdown (ft)
9:40	4	300	6.69	2.88	578	5.0	17.60	47.5	
9:43	f	300	6.77	3.00	577	4_1	11.99	40-1	(
9:46	V	300	6.80	3.11	572	4.1	13.18	33.2	-
_									_
_									
						-	_		
	C.								
151	1+1								
		1							

Stable if min. of 3 parameters (4 if using temp) collected 3-5 min are within the criteria

Analytical Sample Details

Sample Collection Date/Time: Notes:

Duplicate Collected (Y/N):

Total volume purged:

Low-Flow Sampling Water Data Log

Well No .:	9	
Project No:	17855	_
Instrument(s):		

774

Date:	Aug. 16 2022
Weather:	partly doudy, slight lover, 4057
EMI Staff:	Dale & Delaver
	· · · ·

6.10

Initial Well Parameters

Initial Depth to Water (ft): Product Present (if so, note thickness):

Pump placement (ft BTOC): 32

	1 1 1		1	CONTRACT OF	-			× 1
OME	beitonite	Spilled	in	Casina	, 10	anduct	1151	60

Total Well Depth (ft):

Well Purge Details

epth £4) 1-2	Flow Rate (m4/min) 300 300	pH (s.u.) (2.68 (2.81	Temp (°ć) 3.81	Cond (нч/ст) 533	DO (%)	Turbidity (NTU)	ORP ()	Drawdown (ft)
1.2	300		3.81	533				
		6.81		000	10.9	5.88	10.1	
	2 10 0		3.54	539	11.7	213.9°	-12.4	
1	300	6.88	2.94	531	9.4	77.88	-32.9	0.11
	400	6-89	2.63	521	10.0	111.1	-352	0.01
\sim	400	6.91	2.46	518	8.7	76.22	-34.0	0.02
£.								
				1				
	of 3 g						

Analytical Sample Details

Sample Collection Date/Time:

7:40

Duplicate Collected (Y/N):

Notes: high furb @ 10:25 du	e to sample not all the way	inserter
Total volume purged:	1-5 gal	inder inco

Low-Flow Sampling Water Data Log

Well No .:	\$7
Project No:	17855
Instrument(s):	

297

Date:	Aug 16 2022
Weather:	partly cloudy, slight breeze, 4057
EMI Staff:	

Initial Well Parameters

Initial Depth to Water (ft):

Total Well Depth (ft):

Product Present (if so, note thickness):

Pump placement (ft BTOC):

Well Purge Details

Stabilizat	ion Criteria:	+/- 0.1 su	3%	3%	10%	10%	+/- 10 mv	0.33 ft
Depth (F+)	Flow Rate	рН (s.u.)	Тетр (°()	Cond (NS/04)	DO (%)	Turbidity (NTU)	ORP ()	Drawdown (ft)
5	300	6.87	3.88	542	10.0	51.53	38.6	C 11
	300	6.99	3.86	514	17.0	32.60	26-6	
	300	7.02	3.90	503	19.7	22.44	21.3	
V	300	7.04	3.96	499	19.4	1448	20.3	1
				1				
1000							·	-
					-			
L.								
							· · · · · ·	
			1					
1								
	Depth (5) 5	Depth (f+) Flow Rate (m4/min) 5 300 1 300 300 300 300 300	(F+) (m4min) (s.u.) 5 300 6.87 1 300 6.99 300 7.02 √ 300 7.04 	Depth ($Flow$ Rate (m/min) pH (s.u.) Temp (°C) 5 300 6.87 3.88 1 300 6.99 3.86 300 7.02 3.90 $\sqrt{300}$ 7.04 3.96 $\sqrt{300}$ 7.04 3.96 $\sqrt{300}$ 7.04 3.96 $\sqrt{300}$ 7.04 3.96	Depth (FI)Flow Rate (MU/Min)pH (s.u.)Temp (°C)Cond ($MS/M)$ 53006.873.8854213006.993.865143007.023.90503V3007.043.96499	Depth (FI)Flow Rate (MU/Min)pH (s.u.)Temp ($^{\circ}C$)Cond ($^{WS}/_{OH}$)DO ($^{\sigma}Z$)53006.873.8854210.013006.993.8651417.03007.023.9050319.7 \mathbb{V} 300.7.043.9649919.4 \mathbb{V} 3007.043.9650319.7 \mathbb{V} 3007.043.9640919.4	Depth ($\beta+$)Flow Rate ($m^{1}/m^{1/2}$)pH (s.u.)Temp ($^{\circ}C$)Cond ($^{M^{1}}/_{M^{1}}$)DO ($^{\circ}Z$)Turbidity (NTU)5300 6.87 3.88 542 10.0 51.53 1 300 6.99 3.86 514 17.0 32.60 300 7.02 3.90 503 19.7 22.44 \vee 300 7.04 3.96 499 19.4 14.48 \sim 300 7.04 3.96 499 19.4 14.48 \sim 300 7.04 3.96 409 19.4 14.48 \sim 300 7.04 3.96 409 19.4 14.48 \sim 300 7.04 3.96 409 19.4 14.48 \sim 10 10 10 10 10 10 \sim 10 10 10 10 10 10	Depth ($P+$)Flow Rate ($N+M$ Min)pH (s.u.)Temp ($^{\circ}C$)Cond ($^{NS}/_{CM}$)DO ($^{\circ}C$)Turbidity (NTU)ORP ($^{\circ}C$)5300 6.87 3.88 542 10.0 51.53 38.6 1 300 6.99 3.86 514 17.0 32.60 26.6 1 300 7.02 3.90 503 19.7 22.44 21.3 N 300 7.04 3.96 4199 19.4 114.48 20.3

Analytical Sample Details

Sample Collection Date/Time: <u>11:37</u> Duplicate Collected (Y/M): Notes: inferface probe clied after 1st (11:21) readings - 55 flow Total volume purged: <u>1-5 genl</u>

Low-Flow Sampling Water Data Log

AVIA

Well No.:	10	
Project No:	17855	
Instrument(s):		

N

Date:	Ana. 16, 2022
Weather:	partly cloudy, slight breeze, 40st
EMI Staff:	Delaring & Dale
	J

Initial Well Parameters

Initial Depth to Water (ft):

Pump placement (ft BTOC):

Total	Well	Depth (ft):	9	.2

Well Purge Details

	Stabilizat	ion Criteria:	+/- 0.1 su	3%	3%	10%	10%	+/- 10 mv	0.33 ft
Time	Depth (돠)	Flow Rate	рН (s.u.)	Temp (°⊂)	Cond (MS/cm)	DO (%)	Turbidity (NTU)	ORP ()	Drawdown (ft)
1300	4	300	6-53	4.66	509	7.3	17.26	136.0	
1303	- [300	6-62	4.28	501	6.9	5.75	70.0	0.73
1306		300	6-67	3,99	500	8.4	2.34	20.2	_
1309		300	6.68	21.01	505	7.0	1.95	-3.3	~
1312		300	6.68	4.09	510	5.0	0.000	-25.3	-
1316.		300	6.69	4.08	512	5.3	0.49	-28.9	~
1319	V	300	6-69	4.12	512	4.90	0.16	-24,4	-
Ptoble !f	min of 2	parameters	(A if using	tomp) colle	otod 2 F	min are	lithin the su	itoria	

Stable if min. of 3 parameters (4 if using temp) collected 3-5 min are within the criteria

	Analytical S	ample Details	+704
Sample Collection Date/Time:	13:35	(13:45)	Duplicate Collected (V/N):
Notes:	MWID	(MWIO)	
Total volume purged:	2.5 gal	· · · · · ·	

APPENDIX B

Photo Pages

Photo 1: KIC Landfarm: 2020 soil cell in center. 2019 soil cell right of the centerline. GAC filtration system in back left corner. *facing south* (August 14, 2022)



Photo 2: KIC Landfarm: Post tilling and nutrient addition to 2019 and 2020 soil cells. *facing south* (June 8, 2022)

Photo 3: KIC Landfarm: 2019 soil cell bordering the 2020 soil cell along the left side. *facing south* (August 15, 2022)

Photo 4: KIC Landfarm: GAC system after recent rainfall event. *facing southeast* (August 15, 2022)

Photo 5: Monitoring Well MW1 located along a dirt road. facing west. (August 15, 2022)

Photo 6: Monitoring Well MW1 had a 3-foot long by 2-inch diameter sorbent sock placed downhole and tied off to the well plug. (August 15, 2022)

Photo 7: Monitoring Well MW2 located in a parking lot near the fence line. *facing northwest*. (August 15, 2022)

Photo 8: Monitoring Well MW3 located in the school playground. *facing northwest*. (August 15, 2022)

Photo 9: Monitoring Well MW4 located in the school playground along the wall. *facing southeast*. (August 15, 2022)

Photo 10: Monitoring Well MW5 located along a dirt road near a conex. *facing south*. (August 15, 2022)

Photo 11: Monitoring Well MW6 located in a pothole along the school backroad. *facing southeast*. (August 15, 2022)

Photo 12: Monitoring Well MW6 located in a pothole along the school backroad. Water was originally above the well cap in the pothole. A sorbent sock, tied off to the well plug, was placed downhole. *facing northeast*. (August 15, 2022)

Photo 13: Monitoring Well MW7 located in a parking lot. facing southwest. (August 15, 2022)

Photo 14: Monitoring Well MW8 located underneath a traffic cone. *facing west*. (August 15, 2022)

Photo 15: Monitoring Well MW9 located at the end of the road near the school. Bentonite had swelled above the well cap upon opening. (August 15, 2022)

Photo 16: Monitoring Well MW10 located underneath a tire. (August 15, 2022)

APPENDIX C

Disposal Documentation

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION **DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites and Prevention Preparedness and Response Programs**

Contaminated Media Transport and Treatment or Disposal Approval Form

HAZARD ID # or SPILL ID #	NAME OF CON	ГАМIN	ATED SITE OR SPILI	L			
25558	Kotz	Kotzebue Former IHS/BIA Hospital – School Pipeline Release					
CONTAMINATED SITE OR S	SPILL LOCATION	N – AD	DRESS OR OTHER AR	PPROPRIATE DESCRIPTION			
Kotzebue F	ormer IHS/BIA H	ospita	I – School Pipeline R	elease, Kotzebue, Alaska			
CURRENT PHYSICAL LOCATION OF MEDIA (DAY TANK, FIRE TRAINING PIT, LUST, ETC.)							
See below comments tank releases, damaged fuel line, tank overfills, other sources							
CONTAMINANTS OF CONC	ERN	ESTI	MATED VOLUME	DATE(S) GENERATED			
GRO, DRO, RRO, VOCs, PAH 1- 5			5-gallon GAC Filter week of August 15, 2022				
POST TREATMENT ANALY	SIS REQUIRED (s	such as	GRO, DRO, RRO, VOCs,	metals, PFAS, and/or Chlorinated Solvents)			
	To be co	nducte	d at future disposal r	equest			
COMMENTS OR OTHER IMPORTANT INFORMATION							
TC-EM JV will be utilizing a GAC filter to treat the purgewater. This filter may be stored on site for future use or brought back to EMI's office in Anchorage for temporary storage until the next field effort. An updated transport request form will be provided at the time of disposal.							

TREATMENT FACILITY, LANDFILL, AND/OR FINAL DESTINATION OF MEDIA	PHYSICAL ADDRESS/PHONE NUMBER
Temporary storage for reuse - EMI	206 E Fireweed Lane, Suite 201, Anchorage, AK 99503/907-272-9336
RESPONSIBLE PARTY	ADDRESS/PHONE NUMBER
Indian Health Services / Frank Chua	701 5th Ave, Ste 1600, Seattle, WA 98104; (206) 615-2447
WASTE MANAGEMENT CO. / ORGANIZER	ADDRESS/PHONE NUMBER
TC-EM JV / Shayla Marshall	206 E Fireweed Lane, Suite 201, Anchorage, AK 99503/907-272-9336

*Note, disposal of polluted soil in a landfill requires prior approval from the landfill operator and ADEC Solid Waste Program.

Shayla Marshall

Name of the Person Requesting Approval (printed)

Signature

Project Manager / TC-EM	JV
-------------------------	----

Title/Association

907-223-3544 8/17/2022 Date

Phone Number

-----DEC USE ONLY------

Based on the information provided, ADEC approves transport of the above mentioned material. The Responsible Party or their consultant must submit to the DEC Project Manager a copy of weight receipts of the loads transported and a post treatment analytical report, if disposed of at an approved treatment facility. The contaminated soil shall be transported as a covered load in compliance with 18 AAC 60.015.

Kelly L Walker

DEC Project Manager Name (printed)

Signature

Environmental Program Specialist 3

Project Manager Title

(907) 451-2166

Date

08/17/2022

Phone Number

APPENDIX D

SGS Laboratory Reports and Laboratory Data Review Checklists

Laboratory Report of Analysis

To: Environmental Mgmt Inc (EMI) 206 East Fireweed Lane Suite 201 Anchorage, AK 99503 907-272-9336

Report Number: 1224980

Client Project: 17855 Kotzebue Monitoring Well

Dear Delaney Dent,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Danika at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

2022.09.22 11:48:01 -08'00'

Danika Buzby-Rynders Project Manager Danika.Buzby-Rynders@sgs.com Date

Print Date: 09/21/2022 1:57:46PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Environmental Mgmt Inc (EMI) SGS Project: 1224980 Project Name/Site: 17855 Kotzebue Monitoring Well Project Contact: Delaney Dent

Refer to sample receipt form for information on sample condition.

17855-MW2 (1224980001) PS

8260D – Surrogate recovery for 1,2-dichloroethane-d4 does not meet QC criteria (biased high). Analytes associated with this surrogate may be biased high.

17855-MW5 (1224980002) PS

8260D – Surrogate recovery for 1,2-dichloroethane-d4 does not meet QC criteria (biased high). Analytes associated with this surrogate may be biased high.

17855-MW55 (1224980003) PS

8260D – Surrogate recovery for 1,2-dichloroethane-d4 does not meet QC criteria (biased high). Analytes associated with this surrogate may be biased high.

17855-MW4 (1224980005) PS

AK101 - Sample has a pH greater than two; however, the sample was analyzed within 7 days from collection.

17855-MW10 (1224980009) PS

8270D SIM - PAH Surrogate recovery for 2-methylnaphthalene-d10 does not meet QC criteria.

Trip Blank (1224980010) TB

8260D – Surrogate recovery for 1,2-dichloroethane-d4 does not meet QC criteria (biased high). Analytes associated with this surrogate may be biased high.

17855-MW101 (1224980011) PS

8270D SIM - PAH Surrogate recovery for 2-methylnaphthalene-d10 does not meet QC criteria.

MB for HBN 1842148 [VXX/39066] (1681858) MB

8260D – Surrogate recovery for 1,2-dichloroethane-d4 does not meet QC criteria (biased high). Analytes associated with this surrogate may be biased high.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/21/2022 1:57:47PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Report of Manual Integrations							
Laboratory ID	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason			
8270D SIM LV (F	AH)						
1224980009	17855-MW10	XMS13319	Benzo[k]fluoranthene	BLC			
1224980009	17855-MW10	XMS13319	Fluorene	BLC			
1224980011	17855-MW101	XMS13319	Acenaphthylene	BLC			
SW8260D							
1224980002	17855-MW5	VMS21905	4-Isopropyltoluene	SP			
1224980002	17855-MW5	VMS21905	n-Butylbenzene	SP			
1224980003	17855-MW55	VMS21905	4-Isopropyltoluene	SP			
1224980003	17855-MW55	VMS21905	n-Butylbenzene	SP			

Manual Integration Reason Code Descriptions

Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 09/21/2022 1:57:49PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content.

Print Date: 09/21/2022 1:57:50PM

Note:

Sample Summary

<u>Client Sample ID</u> 17855-MW2	<u>Lab Sample ID</u> 1224980001	<u>Collected</u> 08/15/2022	<u>Received</u> 08/19/2022	<u>Matrix</u> Water (Surface, Eff., Ground)
17855-MW5	1224980002	08/15/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW55	1224980003	08/15/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW8	1224980004	08/16/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW4	1224980005	08/16/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW3	1224980006	08/16/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW9	1224980007	08/16/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW7	1224980008	08/16/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW10	1224980009	08/16/2022	08/19/2022	Water (Surface, Eff., Ground)
Trip Blank	1224980010	08/15/2022	08/19/2022	Water (Surface, Eff., Ground)
17855-MW101	1224980011	08/16/2022	08/19/2022	Water (Surface, Eff., Ground)

Method AK103 SW8260D 8270D SIM LV (PAH) AK101

AK102

Method Description

DRO/RRO Low Volume Water Volatile Organic Compounds (W) FULL 8270 PAH SIM GC/MS LV Gasoline Range Organics (W) DRO/RRO Low Volume Water

Print Date: 09/21/2022 1:57:51PM

Client Sample ID: 17855-MW2 Lab Sample ID: 1224980001 Parameter Result Units Chloroform 13.0 ug/L Volatile GC/MS Dichlorodifluoromethane 22.3 ug/L Trichlorofluoromethane 127 ug/L Client Sample ID: 17855-MW5 Lab Sample ID: 1224980002 Parameter Result Units 2.44 **Diesel Range Organics** mg/L **Semivolatile Organic Fuels Residual Range Organics** 0.658 mg/L Volatile GC/MS 1,2,4-Trimethylbenzene 10.4 ug/L 1,3,5-Trimethylbenzene 4.36 ug/L Dichlorodifluoromethane 17.2 ug/L Ethylbenzene 1.23 ug/L Isopropylbenzene (Cumene) ug/L 1.31 Naphthalene 29.9 ug/L P & M -Xylene 2.93 ug/L Trichlorofluoromethane 57.4 ug/L 3.58 Xylenes (total) ug/L Client Sample ID: 17855-MW55 Lab Sample ID: 1224980003 Parameter Result Units Semivolatile Organic Fuels **Diesel Range Organics** 2.87 mg/L **Residual Range Organics** 0.678 mg/L 1,2,4-Trimethylbenzene 12.1 ug/L Volatile GC/MS 1.3.5-Trimethylbenzene 4.95 ug/L Dichlorodifluoromethane 20.1 ug/L Ethylbenzene 1.37 ug/L Isopropylbenzene (Cumene) 1.46 ug/L 34.6 Naphthalene ug/L P & M -Xylene 3.31 ug/L sec-Butylbenzene 1.04 ug/L Trichlorofluoromethane 67.8 ug/L Xylenes (total) 4.04 ug/L Client Sample ID: 17855-MW8 Lab Sample ID: 1224980004 Parameter Result Units 9.50 Volatile GC/MS Chloroform ug/L Dichlorodifluoromethane 3.82 ug/L Trichlorofluoromethane 18.1 ug/L Client Sample ID: 17855-MW4 Lab Sample ID: 1224980005 Parameter Result Units 1.70 Semivolatile Organic Fuels **Diesel Range Organics** mg/L **Residual Range Organics** 0.875 mg/L Volatile GC/MS Dichlorodifluoromethane 2.47 ug/L Trichlorofluoromethane 10.7 ug/L

Detectable Results Summary

Print Date: 09/21/2022 1:57:53PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 17855-MW3 Lab Sample ID: 1224980006 Parameter Result Units Dichlorodifluoromethane 8.05 ug/L Volatile GC/MS Trichlorofluoromethane 33.4 ug/L Client Sample ID: 17855-MW9 Lab Sample ID: 1224980007 **Parameter** Result <u>Units</u> **Diesel Range Organics** 16.4 mg/L Semivolatile Organic Fuels 2.03 **Residual Range Organics** mg/L Gasoline Range Organics 0.228 Volatile Fuels mg/L Volatile GC/MS 1,2,4-Trimethylbenzene 35.6 ug/L 1,3,5-Trimethylbenzene 40.7 ug/L 4-Isopropyltoluene 21.2 ug/L Benzene 8.17 ug/L Chloroform 2.49 ug/L Dichlorodifluoromethane 8.20 ug/L Ethylbenzene 7.67 ug/L Isopropylbenzene (Cumene) 7.98 ug/L Naphthalene 65.0 ug/L n-Propylbenzene 8.95 ug/L P & M -Xylene 10.9 ug/L sec-Butylbenzene 6.65 ug/L tert-Butylbenzene 1.19 ug/L Trichlorofluoromethane 28.1 ug/L Xylenes (total) 11.3 ug/L Client Sample ID: 17855-MW7 Lab Sample ID: 1224980008 Parameter <u>Result</u> <u>Units</u> Semivolatile Organic Fuels **Diesel Range Organics** 1.56 mg/L **Residual Range Organics** 0.688 mg/L Volatile GC/MS Dichlorodifluoromethane 1.62 ug/L

Detectable Results Summary

Print Date: 09/21/2022 1:57:53PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: 17855-MW10			
Lab Sample ID: 1224980009	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.0943	ug/L
-	Acenaphthene	0.0937	ug/L
	Fluorene	0.214	ug/L
	Naphthalene	0.652	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	7.39	mg/L
C C	Residual Range Organics	2.25	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	4.58	ug/L
	1,3,5-Trimethylbenzene	2.73	ug/L
	4-Isopropyltoluene	1.43	ug/L
	Ethylbenzene	4.95	ug/L
	Isopropylbenzene (Cumene)	1.16	ug/L
	Naphthalene	15.6	ug/L
	n-Propylbenzene	1.00	ug/L
	P & M -Xylene	6.01	ug/L
	Xylenes (total)	6.01	ug/L
Client Sample ID: 17855-MW101			
Lab Sample ID: 1224980011	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.506	ug/L
	2-Methylnaphthalene	0.300	ug/L
	Acenaphthene	0.166	ug/L
	Fluorene	0.295	ug/L
	Naphthalene	2.54	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	7.39	mg/L
Sentrolatile Organic Fuels	Residual Range Organics	2.36	mg/L
Volatile GC/MS	1,2,4-Trimethylbenzene	4.90	ug/L
Volatile GC/WS	1,3,5-Trimethylbenzene	2.92	ug/L
	4-Isopropyltoluene	1.52	ug/L
	Ethylbenzene	4.90	ug/L
	Isopropylbenzene (Cumene)	1.22	ug/L
	Naphthalene	1.22	ug/L
	n-Propylbenzene	1.08	ug/L
	P & M -Xylene	5.97	ug/L
	Xylenes (total)	5.97	ug/L
		5.51	ug/L

Print Date: 09/21/2022 1:57:53PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Diesel Range Organics 0.66 Surrogates 5a Androstane (surr) 80 Batch Information 80 Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analyst: HMW Analytical Date/Time: 08/28/22 15:39 Container ID: 1224980001-G	sult Qual 00 U 0.5	I	DL 0.200 Prep Batch: >	Units mg/L %	<u>DF</u> 1 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/28/22 15:38 08/28/22 15:38
Diesel Range Organics 0.66 Surrogates 5a Androstane (surr) 80 Batch Information 80 Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analyst: HMW Analytical Date/Time: 08/28/22 15:39 Container ID: 1224980001-G	00 U	0.600	0.200 Prep Batch: >	mg/L %	1		08/28/22 15:39
5a Androstane (surr) 80 Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:39 Container ID: 1224980001-G	0.5				1		08/28/22 15:39
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:39 Container ID: 1224980001-G	0.5				1		08/28/22 15:39
Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:39 Container ID: 1224980001-G		I		(7746868			
Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:39 Container ID: 1224980001-G		I		(XX16868			
Parameter Res			Prep Date/Tim Prep Initial Wt Prep Extract \	SW3520C ne: 08/25/2 i./Vol.: 250	2 15:50		
	<u>sult Qual</u> 00 U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.200	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzec</u> 08/28/22 15:3
Surrogates n-Triacontane-d62 (surr) 10	00	50-150		%	1		08/28/22 15:3
Batch Information							
Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 15:39 Container ID: 1224980001-G			Prep Batch: > Prep Method: Prep Date/Tim Prep Initial Wt Prep Extract \	SW3520C ne: 08/25/2 ./Vol.: 250	2 15:50		

Print Date: 09/21/2022 1:57:54PM

CCC

-Results of 17855-MW2							
Client Sample ID: 17855-MW2 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980001 Lab Project ID: 1224980	onitoring Well	R M S	collection Da deceived Dat latrix: Water olids (%): ocation:	te: 08/19/2	22 13:14		
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/22/22 22:47
Surrogates							
4-Bromofluorobenzene (surr)	68.2	50-150		%	1		08/22/22 22:47
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/22/22 22:47 Container ID: 1224980001-A			Prep Batch: \ Prep Method: Prep Date/Tir Prep Initial W Prep Extract \	SW5030B ne: 08/22/2 t./Vol.: 5 m	22 06:00		

Print Date: 09/21/2022 1:57:54PM

SG

Client Sample ID: **17855-MW2** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980001 Lab Project ID: 1224980 Collection Date: 08/15/22 16:30 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	Result Qual 0.500 U 1.00 U 0.500 U 0.400 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	LOQ/CL 0.500 1.00 0.500 0.400 1.00 1.00 1.00 1.00 1.00 1.00	DL 0.150 0.310 0.150 0.120 0.310 0.310 0.310 0.310 0.310	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	DF 1 1 1 1 1 1 1 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	1.00 U 0.500 U 0.400 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	1.00 0.500 0.400 1.00 1.00 1.00 1.00 1.00	0.310 0.150 0.120 0.310 0.310 0.310 0.310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1		08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	0.500 U 0.400 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	0.500 0.400 1.00 1.00 1.00 1.00 1.00	0.150 0.120 0.310 0.310 0.310 0.310	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1		08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	0.400 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	0.400 1.00 1.00 1.00 1.00 1.00	0.120 0.310 0.310 0.310 0.310	ug/L ug/L ug/L ug/L ug/L	1 1 1 1		08/24/22 15:36 08/24/22 15:36 08/24/22 15:36 08/24/22 15:36
1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	1.00 1.00 1.00 1.00 1.00	0.310 0.310 0.310 0.310	ug/L ug/L ug/L ug/L	1 1 1		08/24/22 15:36 08/24/22 15:36 08/24/22 15:36
1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	1.00 1.00 1.00 1.00	0.310 0.310 0.310	ug/L ug/L ug/L	1 1		08/24/22 15:36 08/24/22 15:36
1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	1.00 U 1.00 U 1.00 U 1.00 U	1.00 1.00 1.00	0.310 0.310	ug/L ug/L	1		08/24/22 15:36
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	1.00 U 1.00 U 1.00 U	1.00 1.00	0.310	ug/L			
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	1.00 U 1.00 U	1.00		•	1		
1,2,4-Trichlorobenzene	1.00 U		0.310	ua/l			08/24/22 15:36
		1.00		ug/L	1		08/24/22 15:36
124-Trimethylbenzene	1.00 U		0.310	ug/L	1		08/24/22 15:36
.,_,		1.00	0.310	ug/L	1		08/24/22 15:36
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
1,2-Dibromoethane 0).0750 U	0.0750	0.0180	ug/L	1		08/24/22 15:36
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 15:36
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:36
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:36
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:36
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:36
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 15:36
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:36
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **17855-MW2** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980001 Lab Project ID: 1224980 Collection Date: 08/15/22 16:30 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	13.0	1.00	0.310	ug/L	1		08/24/22 15:36
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:36
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:36
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Dichlorodifluoromethane	22.3	1.00	0.310	ug/L	1		08/24/22 15:36
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
Naphthalene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		08/24/22 15:36
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:36
Trichlorofluoromethane	127	1.00	0.310	ug/L	1		08/24/22 15:36
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:36
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 15:36
Xylenes (total)	3.00 U	3.00	1.00	ug/L	1		08/24/22 15:36
Surrogates							
1,2-Dichloroethane-D4 (surr)	125 *	81-118		%	1		08/24/22 15:36
4-Bromofluorobenzene (surr)	94.1	85-114		%	1		08/24/22 15:36
Toluene-d8 (surr)	97.1	89-112		%	1		08/24/22 15:36

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **17855-MW2** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980001 Lab Project ID: 1224980 Collection Date: 08/15/22 16:30 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21905 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 15:36 Container ID: 1224980001-D Prep Batch: VXX39066 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/21/2022 1:57:54PM

Client Sample ID: 17855-MW5 Client Project ID: 17855 Kotzebue Moni Lab Sample ID: 1224980002 Lab Project ID: 1224980 Results by Semivolatile Organic Fuels <u>Parameter</u> Diesel Range Organics Surrogates 5a Androstane (surr) Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:49 Container ID: 1224980002-G	itoring Well Result Qual 2.44 84.7	F N S L L Q (CL 0.625 50-150	Collection Da Received Dat Matrix: Water Solids (%): .ocation: <u>DL</u> 0.208	te: 08/19/2	2 13:14	und) <u>Allowable</u> <u>Limits</u>	Date Analyzed 08/28/22 15:49 08/28/22 15:49
Parameter Diesel Range Organics Surrogates 5a Androstane (surr) Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:49	2.44	0.625		mg/L	1		08/28/22 15:49
Diesel Range Organics Surrogates 5a Androstane (surr) Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:49	2.44	0.625		mg/L	1		08/28/22 15:49
5a Androstane (surr) Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:49	84.7			%	1		08/28/22 15:49
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:49	84.7			%	1		08/28/22 15:49
Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:49							
Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:49							
			Prep Batch: 2 Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	: SW3520C me: 08/25/2 /t./Vol.: 240	2 15:50		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.658	<u>LOQ/CL</u> 0.521	<u>DL</u> 0.208	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Surrogates							
n-Triacontane-d62 (surr)	95.2	50-150		%	1		08/28/22 15:49
Batch Information							
Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 15:49 Container ID: 1224980002-G			Prep Batch: 2 Prep Method: Prep Date/Tir Prep Initial W Prep Extract V	: SW3520C me: 08/25/2 't./Vol.: 240	2 15:50		

Print Date: 09/21/2022 1:57:54PM

CCC

Results of 17855-MW5	h						
Lab Sample ID: 1224980002 Lab Project ID: 1224980	Client Project ID: 17855 Kotzebue Monitoring Well Lab Sample ID: 1224980002		Received Da				
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/23/22 00:3
urrogates							
4-Bromofluorobenzene (surr)	83	50-150		%	1		08/23/22 00:3
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/23/22 00:37 Container ID: 1224980002-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030E me: 08/22// /t./Vol.: 5 m	22 06:00		

Print Date: 09/21/2022 1:57:54PM

COC

SG

Client Sample ID: **17855-MW5** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980002 Lab Project ID: 1224980 Collection Date: 08/15/22 17:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	<u></u> 0.150	ug/L	1		08/24/22 15:51
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:51
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:51
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,2,4-Trimethylbenzene	10.4	1.00	0.310	ug/L	1		08/24/22 15:51
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/24/22 15:51
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 15:51
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,3,5-Trimethylbenzene	4.36	1.00	0.310	ug/L	1		08/24/22 15:51
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:51
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:51
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:51
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:51
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 15:51
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:51
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **17855-MW5** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980002 Lab Project ID: 1224980 Collection Date: 08/15/22 17:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:51
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:51
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Dichlorodifluoromethane	17.2	1.00	0.310	ug/L	1		08/24/22 15:51
Ethylbenzene	1.23	1.00	0.310	ug/L	1		08/24/22 15:51
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Isopropylbenzene (Cumene)	1.31	1.00	0.310	ug/L	1		08/24/22 15:51
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
Naphthalene	29.9	1.00	0.310	ug/L	1		08/24/22 15:51
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
P & M -Xylene	2.93	2.00	0.620	ug/L	1		08/24/22 15:51
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:51
Trichlorofluoromethane	57.4	1.00	0.310	ug/L	1		08/24/22 15:51
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:51
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 15:51
Xylenes (total)	3.58	3.00	1.00	ug/L	1		08/24/22 15:51
Surrogates							
1,2-Dichloroethane-D4 (surr)	129 *	81-118		%	1		08/24/22 15:51
4-Bromofluorobenzene (surr)	90.1	85-114		%	1		08/24/22 15:51
Toluene-d8 (surr)	93.7	89-112		%	1		08/24/22 15:51

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **17855-MW5** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980002 Lab Project ID: 1224980 Collection Date: 08/15/22 17:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21905 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 15:51 Container ID: 1224980002-D Prep Batch: VXX39066 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/21/2022 1:57:54PM

Results of 17855-MW55 Client Sample ID: 17855-MW55 Client Project ID: 17855 Kotzebue Monitoring Well Lab Sample ID: 1224980003 Lab Project ID: 1224980		Collection Date: 08/15/22 17:25 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:					
Results by Semivolatile Organic Fuels	5						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 2.87	<u>LOQ/CL</u> 0.625	<u>DL</u> 0.208	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/28/22 15:59
Surrogates 5a Androstane (surr)	90.5	50-150		%	1		08/28/22 15:59
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 15:59 Container ID: 1224980003-G		Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL					
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.678	<u>LOQ/CL</u> 0.521	<u>DL</u> 0.208	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/28/22 15:59
Surrogates n-Triacontane-d62 (surr)	105	50-150		%	1		08/28/22 15:59
Batch Information							
Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 15:59 Container ID: 1224980003-G		Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL					

Print Date: 09/21/2022 1:57:54PM

CCC

Results of 17855-MW55							
Client Sample ID: 17855-MW55 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980003 Lab Project ID: 1224980	nitoring Well	F	Collection Da Received Dat Matrix: Water Solids (%): ocation:	te: 08/19/2	22 13:14		
Results by Volatile Fuels			_			A.H	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.100 U	0.100	0.0450	mg/L	1		08/23/22 16:42
Surrogates							
4-Bromofluorobenzene (surr)	88.5	50-150		%	1		08/23/22 16:42
Batch Information							
Analytical Batch: VFC16228			Prep Batch: \				
Analytical Method: AK101			Prep Method: Prep Dete/Tir				
Analyst: PHK Analytical Date/Time: 08/23/22 16:42			Prep Date/Tir Prep Initial W				
Container ID: 1224980003-A			Prep Extract		_		

SG

Client Sample ID: **17855-MW55** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980003 Lab Project ID: 1224980 Collection Date: 08/15/22 17:25 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	Linits	08/24/22 16:06
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 16:06
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/24/22 16:06
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,2,4-Trimethylbenzene	12.1	1.00	0.310	ug/L	1		08/24/22 16:06
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/24/22 16:06
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 16:06
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,3,5-Trimethylbenzene	4.95	1.00	0.310	ug/L	1		08/24/22 16:06
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 16:06
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 16:06
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 16:06
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 16:06
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 16:06
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 16:06
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW55** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980003 Lab Project ID: 1224980 Collection Date: 08/15/22 17:25 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 16:06
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 16:06
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Dichlorodifluoromethane	20.1	1.00	0.310	ug/L	1		08/24/22 16:06
Ethylbenzene	1.37	1.00	0.310	ug/L	1		08/24/22 16:06
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Isopropylbenzene (Cumene)	1.46	1.00	0.310	ug/L	1		08/24/22 16:06
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
Naphthalene	34.6	1.00	0.310	ug/L	1		08/24/22 16:06
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
P & M -Xylene	3.31	2.00	0.620	ug/L	1		08/24/22 16:06
sec-Butylbenzene	1.04	1.00	0.310	ug/L	1		08/24/22 16:06
Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 16:06
Trichlorofluoromethane	67.8	1.00	0.310	ug/L	1		08/24/22 16:06
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 16:06
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 16:06
Xylenes (total)	4.04	3.00	1.00	ug/L	1		08/24/22 16:06
Surrogates							
1,2-Dichloroethane-D4 (surr)	137 *	81-118		%	1		08/24/22 16:06
4-Bromofluorobenzene (surr)	91.7	85-114		%	1		08/24/22 16:06
Toluene-d8 (surr)	96.3	89-112		%	1		08/24/22 16:06

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW55** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980003 Lab Project ID: 1224980

Collection Date: 08/15/22 17:25 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21905 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 16:06 Container ID: 1224980003-D Prep Batch: VXX39066 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Diesel Range Organics 0 Surrogates 5a Androstane (surr) Batch Information - Analytical Batch: XFC16326 - Analytical Method: AK102 - Analyst: HMW - Analytical Date/Time: 08/28/22 16:09 - Container ID: 1224980004-G - Parameter Ra Residual Range Organics 0	Result Qual 0.625 U 74.9		DL 0.208		<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/28/22 16:09 08/28/22 16:09
Diesel Range Organics 0 Surrogates 5a Androstane (surr) Batch Information - Analytical Batch: XFC16326 - Analytical Method: AK102 - Analyst: HMW - Analytical Date/Time: 08/28/22 16:09 - Container ID: 1224980004-G - Parameter Rate Residual Range Organics 0).625 U	0.625	0.208 Prep Batch: 2 Prep Method:	mg/L % <xx46868< th=""><th>1</th><th></th><th>08/28/22 16:09</th></xx46868<>	1		08/28/22 16:09
5a Androstane (surr) Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 16:09 Container ID: 1224980004-G Parameter Residual Range Organics 0	74.9		Prep Method:	<xx46868< th=""><th>1</th><th></th><th>08/28/22 16:09</th></xx46868<>	1		08/28/22 16:09
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 16:09 Container ID: 1224980004-G Parameter Residual Range Organics 0	74.9		Prep Method:	<xx46868< td=""><td>1</td><td></td><td>08/28/22 16:09</td></xx46868<>	1		08/28/22 16:09
Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 16:09 Container ID: 1224980004-G Parameter Residual Range Organics 0			Prep Method:				
Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 16:09 Container ID: 1224980004-G Parameter Residual Range Organics 0			Prep Method:				
Residual Range Organics 0			Prep Date/Tin Prep Initial W Prep Extract \	ne: 08/25/2 t./Vol.: 240	2 15:50		
	Result Qual 0.521 U	<u>LOQ/CL</u> 0.521	<u>DL</u> 0.208	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzec</u> 08/28/22 16:09
Surrogates							
n-Triacontane-d62 (surr)	86.8	50-150		%	1		08/28/22 16:0
Batch Information							
Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 16:09 Container ID: 1224980004-G			Prep Batch: 2 Prep Method: Prep Date/Tin Prep Initial W Prep Extract V	SW3520C ne: 08/25/2 t./Vol.: 240	2 15:50		

CCC

Results of 17855-MW8							
Client Sample ID: 17855-MW8 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980004 Lab Project ID: 1224980	nitoring Well	R M S	Collection Da Received Dat Matrix: Water Colids (%): ocation:	te: 08/19/2	22 13:14		
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	DF 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/22/22 23:0
ũ ũ	0.100 0	0.100	0.0430	mg/L			00/22/22 23.0
Surrogates 4-Bromofluorobenzene (surr)	79.7	50-150		%	1		08/22/22 23:0
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/22/22 23:06 Container ID: 1224980004-A			Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	SW5030B me: 08/22/2 t./Vol.: 5 m	2 06:00		

CCC

SG

Client Sample ID: **17855-MW8** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980004 Lab Project ID: 1224980 Collection Date: 08/16/22 08:25 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	<u></u> 0.150	ug/L	1	Linito	08/24/22 14:48
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 14:48
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/24/22 14:48
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,2,4-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/24/22 14:48
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 14:48
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 14:48
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 14:48
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 14:48
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 14:48
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 14:48
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 14:48
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW8** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980004 Lab Project ID: 1224980 Collection Date: 08/16/22 08:25 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	9.50	1.00	0.310	ug/L	1		08/24/22 14:48
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 14:48
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 14:48
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Dichlorodifluoromethane	3.82	1.00	0.310	ug/L	1		08/24/22 14:48
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
Naphthalene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		08/24/22 14:48
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 14:48
Trichlorofluoromethane	18.1	1.00	0.310	ug/L	1		08/24/22 14:48
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 14:48
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 14:48
Xylenes (total)	3.00 U	3.00	1.00	ug/L	1		08/24/22 14:48
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	81-118		%	1		08/24/22 14:48
4-Bromofluorobenzene (surr)	97.7	85-114		%	1		08/24/22 14:48
Toluene-d8 (surr)	104	89-112		%	1		08/24/22 14:48

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW8** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980004 Lab Project ID: 1224980

Collection Date: 08/16/22 08:25 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21907 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 14:48 Container ID: 1224980004-D Prep Batch: VXX39068 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of 17855-MW4 Client Sample ID: 17855-MW4		C	ollection Da	ate: 08/16/	22 00.12		
Client Sample ID: 17855-MW4 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980005 Lab Project ID: 1224980	nitoring Well	R M S	eceived Da latrix: Wate olids (%): ocation:	te: 08/19/2	22 13:14		
Results by Semivolatile Organic Fuel	s						
<u>Parameter</u> Diesel Range Organics	<u>Result</u> Qual 1.70	<u>LOQ/CL</u> 0.625	<u>DL</u> 0.208	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/28/22 16:1
urrogates 5a Androstane (surr)	86.7	50-150		%	1		08/28/22 16:1
Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 16:19 Container ID: 1224980005-G		1	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/25/2 /t./Vol.: 240	22 15:50		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 0.875	<u>LOQ/CL</u> 0.521	<u>DL</u> 0.208	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/28/22 16:1
urrogates n-Triacontane-d62 (surr)	97.7	50-150		%	1		08/28/22 16:1
	51.1	50-150		70	I		00/20/22 10.1
Batch Information Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 16:19 Container ID: 1224980005-G		l	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/25/2 /t./Vol.: 240	22 15:50		

Results of 17855-MW4							
Client Sample ID: 17855-MW4 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980005 Lab Project ID: 1224980	nitoring Well	F	collection Da teceived Dat latrix: Water olids (%): ocation:	te: 08/19/2	22 13:14		
Results by Volatile Fuels	Result Qual	LOQ/CL		<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.100 U	0.100	0.0450	mg/L	1		08/22/22 23:24
Surrogates 4-Bromofluorobenzene (surr)	61.6	50-150		%	1		08/22/22 23:24
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/22/22 23:24 Container ID: 1224980005-A		Prep Batch: VXX39050 Prep Method: SW5030B Prep Date/Time: 08/22/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

SG

Client Sample ID: **17855-MW4** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980005 Lab Project ID: 1224980 Collection Date: 08/16/22 09:12 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	<u>Result Qual</u>	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:03
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:03
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:03
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,2,4-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:03
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/24/22 15:03
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 15:03
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:03
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:03
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:03
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:03
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:03
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:03
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:03
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 15:03
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:03
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:03
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:03

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW4** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980005 Lab Project ID: 1224980 Collection Date: 08/16/22 09:12 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter Result Qual LOQ/CL DL Units DF Chloroform 1.00 U 1.00 U 0.310 ug/L 1 Chloromethane 1.00 U 1.00 U 0.310 ug/L 1 cis-1,2-Dichloroethene 1.00 U 1.00 0.310 ug/L 1 cis-1,3-Dichloropropene 0.500 U 0.500 0.150 ug/L 1 Dibromochloromethane 0.500 U 0.500 0.150 ug/L 1 Dibromochloromethane 1.00 U 1.00 0.310 ug/L 1 Dichlorodifluoromethane 2.47 1.00 0.310 ug/L 1 Ethylbenzene 1.00 U 1.00 0.310 ug/L 1 Freon-113 10.0 U 1.00 0.310 ug/L 1 Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methyl-t-butyl ether 10.0 U 1.00 0.310 ug/L 1	Allowable Limits Date Analyzed 08/24/22 15:03 08/24/22 15:03
Chloromethane1.00 U1.000.310ug/L1cis-1,2-Dichloroethene1.00 U1.000.310ug/L1cis-1,3-Dichloropropene0.500 U0.5000.150ug/L1Dibromochloromethane0.500 U0.5000.150ug/L1Dibromothane1.00 U1.000.310ug/L1Dibromothane1.00 U1.000.310ug/L1Dichlorodifluoromethane2.471.000.310ug/L1Ethylbenzene1.00 U1.000.310ug/L1Freon-11310.0 U10.03.10ug/L1Isopropylbenzene (Cumene)1.00 U1.000.310ug/L1Methylene chloride10.0 U10.03.10ug/L1Methylether10.0 U10.03.10ug/L1	
cis-1,2-Dichloroethene 1.00 U 1.00 0.310 ug/L 1 cis-1,3-Dichloropropene 0.500 U 0.500 0.150 ug/L 1 Dibromochloromethane 0.500 U 0.500 0.150 ug/L 1 Dibromochloromethane 1.00 U 1.00 0.310 ug/L 1 Dibromomethane 2.47 1.00 0.310 ug/L 1 Ethylbenzene 1.00 U 1.00 0.310 ug/L 1 Freon-113 10.0 U 1.00 0.310 ug/L 1 Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methylene chloride 10.0 U 1.00 0.310 ug/L 1	08/24/22 15:03
cis-1,3-Dichloropropene0.500 U0.5000.150ug/L1Dibromochloromethane0.500 U0.5000.150ug/L1Dibromomethane1.00 U1.000.310ug/L1Dichlorodifluoromethane2.471.000.310ug/L1Ethylbenzene1.00 U1.000.310ug/L1Freon-11310.0 U10.03.10ug/L1Isopropylbenzene (Cumene)1.00 U1.000.310ug/L1Methylene chloride10.0 U10.03.10ug/L1Methyleher10.0 U10.03.10ug/L1	
Dibromochloromethane 0.500 U 0.500 0.150 ug/L 1 Dibromomethane 1.00 U 1.00 0.310 ug/L 1 Dichlorodifluoromethane 2.47 1.00 0.310 ug/L 1 Ethylbenzene 1.00 U 1.00 0.310 ug/L 1 Freon-113 10.0 U 10.0 3.10 ug/L 1 Hexachlorobutadiene 1.00 U 1.00 0.310 ug/L 1 Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methylene chloride 10.0 U 1.00 3.10 ug/L 1 Methyl-t-butyl ether 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
Dibromomethane 1.00 U 1.00 U 0.310 ug/L 1 Dichlorodifluoromethane 2.47 1.00 0.310 ug/L 1 Ethylbenzene 1.00 U 1.00 0.310 ug/L 1 Freon-113 10.0 U 1.00 0.310 ug/L 1 Hexachlorobutadiene 1.00 U 10.0 3.10 ug/L 1 Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methylene chloride 10.0 U 10.0 3.10 ug/L 1 Methyl-t-butyl ether 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
Dichlorodifluoromethane 2.47 1.00 0.310 ug/L 1 Ethylbenzene 1.00 U 1.00 0.310 ug/L 1 Freon-113 10.0 U 10.0 3.10 ug/L 1 Hexachlorobutadiene 1.00 U 1.00 0.310 ug/L 1 Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methylene chloride 10.0 U 10.0 3.10 ug/L 1 Methyl-t-butyl ether 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
Ethylbenzene1.00 U1.000.310ug/L1Freon-11310.0 U10.03.10ug/L1Hexachlorobutadiene1.00 U1.000.310ug/L1Isopropylbenzene (Cumene)1.00 U1.000.310ug/L1Methylene chloride10.0 U10.03.10ug/L1Methyl-t-butyl ether10.0 U10.03.10ug/L1	08/24/22 15:03
Freon-113 10.0 U 10.0 3.10 ug/L 1 Hexachlorobutadiene 1.00 U 1.00 0.310 ug/L 1 Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methylene chloride 10.0 U 10.0 3.10 ug/L 1 Methyl-t-butyl ether 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
Hexachlorobutadiene 1.00 U 1.00 U 0.310 ug/L 1 Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methylene chloride 10.0 U 10.0 3.10 ug/L 1 Methyl-t-butyl ether 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
Isopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 Methylene chloride 10.0 U 10.0 3.10 ug/L 1 Methyl-t-butyl ether 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
Methylene chloride 10.0 U 10.0 U 3.10 ug/L 1 Methyl-t-butyl ether 10.0 U 10.0 U 3.10 ug/L 1	08/24/22 15:03
Methyl-t-butyl ether 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
· · · · · · · · · · · · · · · · · · ·	08/24/22 15:03
	08/24/22 15:03
Naphthalene 1.00 U 1.00 U 0.310 ug/L 1	08/24/22 15:03
n-Butylbenzene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
n-Propylbenzene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
o-Xylene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
P & M -Xylene 2.00 U 2.00 0.620 ug/L 1	08/24/22 15:03
sec-Butylbenzene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
Styrene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
tert-Butylbenzene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
Tetrachloroethene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
Toluene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
trans-1,2-Dichloroethene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
trans-1,3-Dichloropropene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
Trichloroethene 1.00 U 1.00 0.310 ug/L 1	08/24/22 15:03
Trichlorofluoromethane 10.7 1.00 0.310 ug/L 1	08/24/22 15:03
Vinyl acetate 10.0 U 10.0 3.10 ug/L 1	08/24/22 15:03
Vinyl chloride 0.150 U 0.150 0.0500 ug/L 1	08/24/22 15:03
Xylenes (total) 3.00 U 3.00 1.00 ug/L 1	08/24/22 15:03
Surrogates	
1,2-Dichloroethane-D4 (surr) 105 81-118 % 1	08/24/22 15:03
4-Bromofluorobenzene (surr) 97.3 85-114 % 1	08/24/22 15:03
Toluene-d8 (surr) 103 89-112 % 1	00/2 1/22 10:00

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW4** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980005 Lab Project ID: 1224980

Collection Date: 08/16/22 09:12 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21907 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 15:03 Container ID: 1224980005-D Prep Batch: VXX39068 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Location: Results by Semivolatile Organic Fuels Parameter Result Qual LOQ/CL DL Units DF Limits Diesel Range Organics 0.625 U 0.625 0.208 mg/L 1 Surrogates Sa Androstane (surr) 85.8 50-150 % 1 Batch Information Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/28/22 16:29 Prep Method: SW3520C Prep Date/Time: 08/28/22 16:29 Prep Initial Wt./vol.: 240 mL Allowable Container ID: 1224980006-G 0.521 U 0.521 0.208 mg/L 1 Parameter Result Qual LOQ/CL DL Units DF Limits Residual Range Organics 0.521 U 0.521 0.208 mg/L 1 Surrogates n-Triacontane-d62 (surr) 98.2 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Limits	Location: Drganic Fuels Result Qual LOQ/CL DL Units DE Allowable 0.625 U 0.625 0.208 mg/L 1 08/28/22 16:29 85.8 50-150 % 1 08/28/22 16:29 326 Prep Batch: XXX46868 2 Prep Method: SW3520C 28/22 16:29 Prep Initial Wt./Vol.: 240 mL Result Qual LOQ/CL DL Units DE Allowable 85.8 50-150 % 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 926 Prep Batch: XXX46868 Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 226 Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50	onitoring Well	М	eceived Da latrix: Wate olids (%):		22 13:14		
Parameter Result Qual LOQ/CL DL Units DE Allowable Diesel Range Organics 0.625 U 0.625 0.208 mg/L 1 Limits Limits Limits Limits DE Limits Limits DE Limits Limits Limits Limits DE Limits Limits Limits DE Limits L	Result Qual 0.625 ULOQ/CL 0.625DL 0.208Units mg/LDF 1Allowable LimitsDate Analyzed 							
ParameterResult QualLOQ/CLDLUnitsDFLimitsDiesel Range Organics0.625 U0.6250.208mg/L1Surrogates5a Androstane (surr)85.850-150%1Batch InformationAnalytical Batch: XFC16326Prep Batch: XXX46868Analytical Batch: XFC16326Prep Method: SW3520CAnalytical Date/Time: 08/28/22 16:29Prep Date/Time: 08/25/22 15:50Container ID: 1224980006-GPrep Initial Wt./Vol.: 240 mLParameterResult QualLOQ/CLDLUnitsDFResidual Range Organics0.521 U0.5210.208mg/L1Surrogatesn-Triacontane-d62 (surr)98.250-150%1Analytical Batch: XFC16326Prep Batch: XXX46868Prep Batch: XXX46868	Result Qual 0.625 ULOQ/CL 0.625DL 0.208Units mg/LDE LimitsLimits Date Analyzed 08/28/22 16:2985.850-150%108/28/22 16:29326 2Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50928/22 16:29Prep Method: SW3520C Prep Date/Time: 08/25/22 15:5028/22 16:29Prep Initial Wt./vol.: 240 mL Prep Extract Vol: 1 mLResult Qual 0.521 ULOQ/CL 0.521DL 0.208Units mg/LDF 1Allowable LimitsDate Analyzed 08/28/22 16:2998.250-150%108/28/22 16:2998.250-150%108/28/22 16:2998.250-150%108/28/22 16:2992292.1550Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50922Prep Initial Wt./vol.: 240 mL	ls		_				
5a Androstane (surr) 85.8 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK102 Prep Method: SW3520C Analyst: HMW Prep Date/Time: 08/28/22 16:29 Prep Date/Time: 08/28/22 15:50 Container ID: 1224980006-G Prep Initial Wt./Vol.: 240 mL Parameter Result Qual LOQ/CL DL Units DE Residual Range Organics 0.521 U 0.521 0.208 mg/L 1 Surrogates n-Triacontane-d62 (surr) 98.2 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 1	326 Prep Batch: XXX46868 2 Prep Method: SW3520C 28/22 16:29 Prep Date/Time: 08/25/22 15:50 6-G Prep Initial Wt./Vol.: 240 mL Result Qual LOQ/CL DL Units DF 0.521 U 0.521 0.208 mg/L 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 226 Prep Batch: XXX46868 Prep Method: SW3520C Prep Method: SW3520C 326 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 28/22 16:29 Prep Initial Wt./Vol.: 240 mL							
5a Androstane (surr) 85.8 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK102 Prep Method: SW3520C Analyst: HMW Prep Date/Time: 08/28/22 16:29 Prep Date/Time: 08/28/22 15:50 Container ID: 1224980006-G Prep Initial Wt./Vol.: 240 mL Parameter Result Qual LOQ/CL DL Units DE Residual Range Organics 0.521 U 0.521 0.208 mg/L 1 Surrogates n-Triacontane-d62 (surr) 98.2 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 1	326 Prep Batch: XXX46868 2 Prep Method: SW3520C 28/22 16:29 Prep Date/Time: 08/25/22 15:50 6-G Prep Initial Wt./Vol.: 240 mL Result Qual LOQ/CL DL Units DE 0.521 U 0.521 0.208 mg/L 1 08/28/22 16:25 98.2 50-150 % 1 08/28/22 16:25 926 Prep Batch: XXX46868 Prep Method: SW3520C Prep Method: SW3520C 926 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 28/22 16:29 Prep Initial Wt./Vol.: 240 mL Prep Initial Wt./Vol.: 240 mL							
Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK102 Prep Method: SW3520C Analyst: HMW Prep Date/Time: 08/25/22 15:50 Analytical Date/Time: 08/28/22 16:29 Prep Initial Wt./vol.: 240 mL Container ID: 1224980006-G Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DE Residual Range Organics 0.521 U 0.521 0.208 mg/L 1 Surrogates n-Triacontane-d62 (surr) 98.2 50-150 % 1 Analytical Batch: XFC16326 Prep Batch: XXX46868	2 Prep Method: SW3520C 28/22 16:29 Prep Date/Time: 08/25/22 15:50 6-G Prep Initial Wt./Vol.: 240 mL 6-G Prep Extract Vol: 1 mL Allowable 0.521 U 0.521 0.521 U 0.521 0.521 U 0.521 0.521 U 0.521 98.2 50-150 % 1 08/28/22 16:29 Prep Batch: XXX46868 Prep Method: SW3520C Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 28/22 16:29	85.8	50-150		%	1		08/28/22 16:29
Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK102 Prep Method: SW3520C Analyst: HMW Prep Date/Time: 08/25/22 15:50 Analytical Date/Time: 08/28/22 16:29 Prep Initial Wt./vol.: 240 mL Container ID: 1224980006-G Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DE Residual Range Organics 0.521 U 0.521 0.208 mg/L 1 Surrogates n-Triacontane-d62 (surr) 98.2 50-150 % 1 Analytical Batch: XFC16326 Prep Batch: XXX46868	2 Prep Method: SW3520C 28/22 16:29 Prep Date/Time: 08/25/22 15:50 28/22 16:29 Prep Initial Wt./Vol.: 240 mL 6-G Prep Extract Vol: 1 mL Allowable Limits 0.521 U 0.521 0.523 0.208 98.2 50-150 % 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 98.2 50-150 Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 240 mL							
Parameter Result Qual LOQ/CL DL Units DF Limits Residual Range Organics 0.521 U 0.521 0.208 mg/L 1 Surrogates n-Triacontane-d62 (surr) 98.2 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Batch: XXX46868	Result Qual LOQ/CL DL Units DF Limits Date Analyzed 0.521 U 0.521 0.208 mg/L 1 08/28/22 16:29 98.2 50-150 % 1 08/28/22 16:29 326 Prep Batch: XXX46868 Prep Method: SW3520C 328/22 16:29 Prep Initial Wt./Vol.: 240 mL		F F F	Prep Method Prep Date/Tii Prep Initial W	: SW3520C me: 08/25/2 /t./Vol.: 240	22 15:50		
n-Triacontane-d62 (surr) 98.2 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868	B26 Prep Batch: XXX46868 3 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 28/22 16:29 Prep Initial Wt./Vol.: 240 mL							-
Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868	Batch: XXX46868 Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 28/22 16:29 Prep Initial Wt./Vol.: 240 mL							
Analytical Batch: XFC16326 Prep Batch: XXX46868	B Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 28/22 16:29 Prep Initial Wt./Vol.: 240 mL	98.2	50-150		%	1		08/28/22 16:29
	B Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 28/22 16:29 Prep Initial Wt./Vol.: 240 mL							
Analyst: HMWPrep Date/Time: 08/25/22 15:50Analytical Date/Time: 08/28/22 16:29Prep Initial Wt./Vol.: 240 mL			F F	Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 08/25/2 /t./Vol.: 240	22 15:50		
Analyst: HMW Analytical Date/Time: 08/28/22 16:29			Result Qual 0.625 U 85.8 <u>Result Qual</u> 0.521 U	Is LOQ/CL 0.625 U 0.625 85.8 50-150 Result Qual LOQ/CL 0.521 U 0.521 98.2 50-150	Is Result Qual 0.625 U LOQ/CL 0.625 DL 0.208 85.8 50-150 Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract Result Qual 0.521 U LOQ/CL 0.521 DL 0.208 98.2 50-150 Prep Batch: Prep Method Prep Date/Til Prep Initial W Prep Extract	Is Result Qual 0.625 U LOQ/CL 0.625 DL 0.208 Units mg/L 85.8 50-150 % Prep Batch: XXX46868 Prep Method: SW35200 Prep Date/Time: 08/25/2 Prep Initial Wt./Vol.: 240 Prep Extract Vol: 1 mL Result Qual 0.521 U LOQ/CL 0.521 DL 0.208 Units mg/L 98.2 50-150 % Prep Batch: XXX46868 Prep Method: SW35200 Prep Extract Vol: 1 mL Mait School Prep Extract Vol: 240 Prep Extract Vol: 240 Prep Date/Time: 08/25/2 Prep Initial Wt./Vol.: 240	Is Result Qual 0.625 U LOQ/CL 0.625 DL 0.208 Units mg/L DF 1 85.8 50-150 % 1 Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL Result Qual 0.521 U LOQ/CL 0.521 DL 0.208 Units mg/L DF 1 98.2 50-150 % 1 Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 240 mL	Is Allowable Result Qual LOQ/CL DL Units DF 1 85.8 50-150 % 1 1 85.8 50-150 % 1 1 Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL Result Qual LOQ/CL DL Units DE 0.521 U 0.521 0.208 mg/L 1 98.2 50-150 % 1 Prep Batch: XXX46868 Prep Method: SW3520C Prep Batch: XXX46868 Prep Method: SW3520C 98.2 50-150 % 1 Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Prep Method: SW3520C Prep Initial Wt./Vol.: 240 mL ML ML

CCC

Results of 17855-MW3							
Client Sample ID: 17855-MW3 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980006 Lab Project ID: 1224980	nitoring Well	R M Se	ollection Da eceived Dat atrix: Water olids (%): ocation:	te: 08/19/2	22 13:14		
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/22/22 23:4
urrogates			-				
4-Bromofluorobenzene (surr)	66.2	50-150 % 1					08/22/22 23:4
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/22/22 23:42 Container ID: 1224980006-A		F F	Prep Batch: Prep Method: Prep Date/Tir Prep Initial W Prep Extract	: SW5030B me: 08/22/2 't./Vol.: 5 m	2 06:00		

COC

SG

Client Sample ID: **17855-MW3** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980006 Lab Project ID: 1224980 Collection Date: 08/16/22 09:50 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:17
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,2,4-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/24/22 15:17
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 15:17
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:17
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 15:17
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW3** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980006 Lab Project ID: 1224980 Collection Date: 08/16/22 09:50 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter Result Qual LOQ/CL DL Units DE Limits Date Analyzed Chloroofm 1.00 1.00 0.310 ug/L 1 08/24/22 15:17 Chloroothane 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Sis-1,2-Dichloroothane 0.500 U 0.500 0.150 ug/L 1 08/24/22 15:17 Dibromochhane 0.500 U 0.500 0.310 ug/L 1 08/24/22 15:17 Dichloroothane 8.05 1.00 0.310 ug/L 1 08/24/22 15:17 Teroon-113 10.0 U 1.00 0.310 ug/L 1 08/24/22 15:17 Teroon-113 10.0 U 1.00 0.310 ug/L 1 08/24/22 15:17 Stapphonezone (Cumene) 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Vehtyl-betyl ether 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Vehtyl-betyl ether 1.00 U 1.00<							Allowable	
Chloromethane 1.00 U 1.00 U 0.310 U U/L 1 08/24/22 15:17 cis-1,3-Dichloroethene 1.00 U 1.00 O 0.310 U/L 1 08/24/22 15:17 Dichromochhormethane 0.500 U 0.500 O 0.150 U/L 1 08/24/22 15:17 Dichromochhormethane 0.500 U 0.500 O 0.310 U/L 1 08/24/22 15:17 Dichoroothormethane 8.05 1.00 O 0.310 U/L 1 08/24/22 15:17 Dichoroothuane 1.00 U 1.00 O 0.310 U/L 1 08/24/22 15:17 Texachlorobutadiene 1.00 U 1.00 O 0.310 U/L 1 08/24/22 15:17 Veaxchlorobutadiene 1.00 U 1.00 O 0.310 U/L 1 08/24/22 15:17 Veaxchlorobutadiene 1.00 U 1.00 U 3.10 U/L 1 08/24/22 15:17 Vaphthalene 1.00 U 1.00 U 3.10 U/L 1 08/24/22 15:17 Vaphthalene 1.00 U 1.00 U 3.10 U/L 1 08/24/22 15:17 Vaphytheine	Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF		Date Analyzed
sis-1,2-Dichloroethene 1.00 U 1.00 U 0.310 U U 1.00 U 0.310 U U 1.00 U 0.310 U U 1.00 U 0.500 U 0.510 U U 0.60/24/21 5:17 0.60/24/22 15	Chloroform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
cis-1,3-Dichloropropene 0.500 U 0.510 U	Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Dibromochloromethane 0.500 U 0.500 U <td>cis-1,2-Dichloroethene</td> <td>1.00 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>08/24/22 15:17</td>	cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Dibromomethane 1.00 1.00 0.310 ug/L 1 08/24/22 15:17 Dichlorodifluoromethane 8.05 1.00 0.310 ug/L 1 08/24/22 15:17 Ethylbenzene 1.00 1.00 0.310 ug/L 1 08/24/22 15:17 Ethylbenzene 1.00 1.00 0.310 ug/L 1 08/24/22 15:17 Freon-113 10.0 1.00 0.310 ug/L 1 08/24/22 15:17 sopropylbenzene (Cumene) 1.00 1.00 0.310 ug/L 1 08/24/22 15:17 Wethyl-1-butyl ether 10.0 1.00 3.10 ug/L 1 08/24/22 15:17 Naphthalene 1.00.U 1.00 0.310 ug/L 1 08/24/22 15:17 Naphthalene 1.00.U 1.00 0.310 ug/L 1 08/24/22 15:17 Systene 1.00.U 1.00 0.310 ug/L 1 08/	cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
Dicklorodifluoromethane 8.05 1.00 0.310 ug/L 1 08/24/22 15:17 Ethylbenzene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Teon-113 10.0 U 1.00 0.310 ug/L 1 08/24/22 15:17 teaxachorobutadiene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 sopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Wethyl-t-bulyl ether 10.0 U 1.00 3.10 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 3.10 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Stylene 2.00 U 2.00 0.820 ug/L 1	Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:17
Ethylbenzene 1.00 U 1.00 U 0.310 U U/L 1 08/24/22 15:17 Freon-113 10.0 U 1.00 U 3.10 U/L 1 08/24/22 15:17 texachlorobutadiene 1.00 U 1.00 U 0.310 U/L 1 08/24/22 15:17 sopropylbenzene (Cumene) 1.00 U 1.00 U 3.10 U/L 1 08/24/22 15:17 Wethyl-touly ether 10.0 U 10.0 3.10 U/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 3.10 U/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Systene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Systene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Systene 1.00 U 1.00 0.310 U/L	Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Freen-113 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Hexachlorobutadiene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 sopropylbenzene (Cumene) 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Wethylene chloride 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Wethyl-butyl ether 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Systeme 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Systeme 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Fetracklorobethene 1.00 U 1.00 0.310	Dichlorodifluoromethane	8.05	1.00	0.310	ug/L	1		08/24/22 15:17
Heachlorobutadiene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 sopropylbenzene (Cumene) 1.00 U 1.00 3.10 ug/L 1 08/24/22 15:17 Wethylene chloride 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Wethyl-butyl ether 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Naphthalenzene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Systene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Systene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Systene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Fetrachloroethene 1.00 U 1.	Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
sopropylbenzene (Cumene) 1.00 U 1.00 U 0.310 U/L 1 08/24/22 15:17 Methylene chloride 10.0 U 10.0 3.10 U/L 1 08/24/22 15:17 Methylene chloride 10.0 U 10.0 3.10 U/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 n-Butylbenzene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 n-Propylbenzene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 >-Sylene 2.00 U 2.00 0.620 U/L 1 08/24/22 15:17 2 & M -Xylene 2.00 U 2.00 0.620 U/L 1 08/24/22 15:17 Styrene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Styrene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Fertachloroethene 1.00 U 1.00 0.310 U/L 1 08/24/22 15:17 Trans-1,2-Dichloroethene 1.00 U 1.00 0.310 U/L <td>Freon-113</td> <td>10.0 U</td> <td>10.0</td> <td>3.10</td> <td>ug/L</td> <td>1</td> <td></td> <td>08/24/22 15:17</td>	Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
Number Numer Numer Numer <td>Hexachlorobutadiene</td> <td>1.00 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>08/24/22 15:17</td>	Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Methyl-L-bulyl ether 10.0 U 10.0 U 3.10 u/L u/L 1 08/24/22 15:17 Naphthalene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 n-Butylbenzene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 n-Propylbenzene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 >-Xylene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 >-Xylene 2.00 U 2.00 0.620 u/L 1 08/24/22 15:17 Sec-Butylbenzene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 Styrene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 Styrene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 Fetrachloroethene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 Tons-1,2-Dichloroethene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 Trichloroethene 1.00 U 1.00 0.310 u/L 1 08/24/22 15:17 Trichloroethene 1.00 U 1.00 0.310 u/L 1	Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Naprthale1.00 U1.000.310ug/L108/24/22 15:17n-Butylbenzene1.00 U1.000.310ug/L108/24/22 15:17n-Propylbenzene1.00 U1.000.310ug/L108/24/22 15:17o-Xylene1.00 U1.000.310ug/L108/24/22 15:17o-Xylene2.00 U2.000.620ug/L108/24/22 15:17o-Xylene1.00 U1.000.310ug/L108/24/22 15:17o-Xylene1.00 U1.000.310ug/L108/24/22 15:17sec-Butylbenzene1.00 U1.000.310ug/L108/24/22 15:17Styrene1.00 U1.000.310ug/L108/24/22 15:17Fetrachloroethene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene3.04<	Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
Butylbenzene1.00 U1.000.310ug/L108/24/22 15:17P-Propylbenzene1.00 U1.000.310ug/L108/24/22 15:17D-Xylene1.00 U1.000.310ug/L108/24/22 15:17D-Xylene2.00 U2.000.620ug/L108/24/22 15:17D-Xylene1.00 U1.000.310ug/L108/24/22 15:17D-Xylene1.00 U1.000.310ug/L108/24/22 15:17D-Xylene1.00 U1.000.310ug/L108/24/22 15:17Styrene1.00 U1.000.310ug/L108/24/22 15:17Tetrachloroethene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichlorofluoromethane3.3.41.000.310ug/L108/24/22 15:17Vinyl acetate0.150 U0.1500.500ug/L108/24/22 15:17Vinyl choride0.150 U0.1500.500ug/L108/24/22 15:17Jurrogates10.500ug/L108/24/22 15:1708/24/22 15:174-Bromofluorobenzen	Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
And Description1.00 U1.00 U0.310 Ug/L108/24/22 15:17Skylene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Skylene2.00 U2.00 U0.620 Ug/L108/24/22 15:17Sec-Butylbenzene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Styrene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Styrene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Tetrachloroethene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Toluene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Toluene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Trichloroethene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Trichloroethene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Trichloroethene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Trichloroethene1.00 U1.00 U0.310 Ug/L108/24/22 15:17Trichloroethene3.41.00 U0.310 Ug/L108/24/22 15:17Vinyl acetate0.0.0 U0.150 U0.0500 Ug/L108/24/22 15:17Vinyl choirde0.150 U0.150 U0.0500 Ug/L108/24/22 15:17Turogates1.2-Dichloroethane-D4 (surr)10881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	Naphthalene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
b-Xylene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 P & M -Xylene 2.00 U 2.00 0.620 ug/L 1 08/24/22 15:17 Sec-Butylbenzene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Styrene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Fetra-Butylbenzene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Fetrachloroethene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Toluene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 rans-1,2-Dichloroethene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 rans-1,3-Dichloropropene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Trichlorofluoromethane 33.4 1.00 0.310 ug/L 1 08/24/22 15:17 Vinyl acetate 10.0 U 1.00 3.1	n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
P & M -Xylene 2.00 U 2.00 U 2.00 U 0.620 ug/L 1 08/24/22 15:17 sec-Butylbenzene 1.00 U 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Styrene 1.00 U 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Styrene 1.00 U 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Tetrabutylbenzene 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Tetrachloroethene 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Toluene 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Trans-1,2-Dichloroethene 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Trichloroethene 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Trichloroethene 1.00 U 1.00 U 0.310 ug/L 1 08/24/22 15:17 Trichlorofluoromethane 3.3.4 1.00 U 0.310 ug/L 1 08/24/22 15:17 Vinyl acetate 0.100 U 0.150 U 0.5500 ug/L	n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
sec-Butylbenzene1.00 U1.000.310ug/L108/24/22 15:17Styrene1.00 U1.000.310ug/L108/24/22 15:17Tetra-Butylbenzene1.00 U1.000.310ug/L108/24/22 15:17Tetra-Chloroethene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.000.310ug/L108/24/22 15:17Trans-1,2-Dichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trans-1,3-Dichloropropene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichlorofluoromethane33.41.000.310ug/L108/24/22 15:17Vinyl acetate10.0 U10.03.10ug/L108/24/22 15:17Vinyl chloride0.150 U0.1500.0500ug/L108/24/22 15:17Vinyl chloride0.150 U0.1500.0500ug/L108/24/22 15:17Turogates11.0881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Styren1.00 U1.000.310ug/L108/24/22 15:17Tetr-Butylbenzene1.00 U1.000.310ug/L108/24/22 15:17Tetrachloroethene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.000.310ug/L108/24/22 15:17Trans-1,2-Dichloroethene1.00 U1.000.310ug/L108/24/22 15:17trans-1,3-Dichloropropene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichlorofluoromethane3.3.41.000.310ug/L108/24/22 15:17Vinyl acetate10.0 U10.03.10ug/L108/24/22 15:17Vinyl chloride0.150 U0.1500.0500ug/L108/24/22 15:17Xylenes (total)3.00 U3.001.00ug/L108/24/22 15:17 urrogates 11.0881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		08/24/22 15:17
Lert-Butylbenzene1.00 U1.000.310ug/L108/24/22 15:17Tetrachloroethene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.000.310ug/L108/24/22 15:17trans-1,2-Dichloroethene1.00 U1.000.310ug/L108/24/22 15:17trans-1,3-Dichloropropene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichlorofluoromethane33.41.000.310ug/L108/24/22 15:17Vinyl acetate10.0 U10.03.10ug/L108/24/22 15:17Vinyl chloride0.150 U0.1500.0500ug/L108/24/22 15:17Xylenes (total)3.00 U3.001.00ug/L108/24/22 15:17Jac-Dichloroethane-D4 (surr)10881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Tetrachloroethene1.00 U1.000.310ug/L108/24/22 15:17Toluene1.00 U1.00 U0.310ug/L108/24/22 15:17trans-1,2-Dichloroethene1.00 U1.000.310ug/L108/24/22 15:17trans-1,3-Dichloropropene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichlorofluoromethane3.3.41.000.310ug/L108/24/22 15:17Vinyl acetate10.0 U10.03.10ug/L108/24/22 15:17Vinyl chloride0.150 U0.1500.0500ug/L108/24/22 15:17Kylenes (total)3.00 U3.001.00ug/L108/24/22 15:17J.2-Dichloroethane-D4 (surr)10881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Toluene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 trans-1,2-Dichloroethene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 trans-1,3-Dichloropropene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Trichloroethene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Trichloroethene 3.04 1.00 0.310 ug/L 1 08/24/22 15:17 Trichlorofluoromethane 33.4 1.00 0.310 ug/L 1 08/24/22 15:17 Vinyl acetate 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Vinyl chloride 0.150 U 0.150 0.0500 ug/L 1 08/24/22 15:17 Kylenes (total) 3.00 U 3.00 1.00 ug/L 1 08/24/22 15:17 urrogates 1,2-Dichloroethane-D4 (surr) 108 81-118 % 1 08/24/22 15:17 4-Bromofluorobenzene (surr) 98.1 85-114 % 1 08/24/22 15:17	tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
trans-1,2-Dichloroethene1.00 U1.000.310ug/L108/24/22 15:17trans-1,3-Dichloropropene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichlorofluoromethane33.41.000.310ug/L108/24/22 15:17Vinyl acetate10.0 U10.03.10ug/L108/24/22 15:17Vinyl chloride0.150 U0.1500.0500ug/L108/24/22 15:17Kylenes (total)3.00 U3.001.00ug/L108/24/22 15:171,2-Dichloroethane-D4 (surr)10881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
trans-1,3-Dichloropropene1.00 U1.000.310ug/L108/24/22 15:17Trichloroethene1.00 U1.000.310ug/L108/24/22 15:17Trichlorofluoromethane33.41.000.310ug/L108/24/22 15:17Vinyl acetate10.0 U10.03.10ug/L108/24/22 15:17Vinyl chloride0.150 U0.1500.0500ug/L108/24/22 15:17Kylenes (total)3.00 U3.001.00ug/L108/24/22 15:17J_2-Dichloroethane-D4 (surr)10881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Trichloroethene 1.00 U 1.00 0.310 ug/L 1 08/24/22 15:17 Trichlorofluoromethane 33.4 1.00 0.310 ug/L 1 08/24/22 15:17 Vinyl acetate 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Vinyl acetate 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Vinyl chloride 0.150 U 0.150 0.0500 ug/L 1 08/24/22 15:17 Xylenes (total) 3.00 U 3.00 1.00 ug/L 1 08/24/22 15:17 urrogates 1 1.08 81-118 % 1 08/24/22 15:17 4-Bromofluorobenzene (surr) 98.1 85-114 % 1 08/24/22 15:17	trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Trichlorofluoromethane 33.4 1.00 0.310 ug/L 1 08/24/22 15:17 Vinyl acetate 10.0 U 10.0 3.10 ug/L 1 08/24/22 15:17 Vinyl acetate 0.150 U 0.150 0.0500 ug/L 1 08/24/22 15:17 Vinyl chloride 0.150 U 0.150 0.0500 ug/L 1 08/24/22 15:17 Xylenes (total) 3.00 U 3.00 U 3.00 1.00 ug/L 1 08/24/22 15:17 urrogates 1,2-Dichloroethane-D4 (surr) 108 81-118 % 1 08/24/22 15:17 4-Bromofluorobenzene (surr) 98.1 85-114 % 1 08/24/22 15:17	trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Vinyl acetate 10.0 U 10.0 U 10.0 S.10 U ug/L 1 08/24/22 15:17 Vinyl chloride 0.150 U 0.150 0 0.0500 U ug/L 1 08/24/22 15:17 Xylenes (total) 3.00 U 3.00 U 1.00 U ug/L 1 08/24/22 15:17 urrogates 1.00 U 1.00 U 98.1 81-118 % 1 08/24/22 15:17 4-Bromofluorobenzene (surr) 98.1 85-114 % % 1 08/24/22 15:17	Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:17
Vinyl chloride 0.150 U 0.150 O 0.0500 Ug/L 1 08/24/22 15:17 Xylenes (total) 3.00 U 3.00 I 1.00 Ug/L 1 08/24/22 15:17 urrogates 1.2-Dichloroethane-D4 (surr) 108 81-118 % 1 08/24/22 15:17 4-Bromofluorobenzene (surr) 98.1 85-114 % 1 08/24/22 15:17	Trichlorofluoromethane	33.4	1.00	0.310	ug/L	1		08/24/22 15:17
Xylenes (total) 3.00 U 3.00 I 1.00 ug/L 1 08/24/22 15:17 urrogates I.2-Dichloroethane-D4 (surr) 108 81-118 % 1 08/24/22 15:17 4-Bromofluorobenzene (surr) 98.1 85-114 % 1 08/24/22 15:17	Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:17
urrogates 108 81-118 % 1 08/24/22 15:17 4-Bromofluorobenzene (surr) 98.1 85-114 % 1 08/24/22 15:17	Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 15:17
1,2-Dichloroethane-D4 (surr)10881-118%108/24/22 15:174-Bromofluorobenzene (surr)98.185-114%108/24/22 15:17	Xylenes (total)	3.00 U	3.00	1.00	ug/L	1		08/24/22 15:17
4-Bromofluorobenzene (surr) 98.1 85-114 % 1 08/24/22 15:17	Surrogates							
	1,2-Dichloroethane-D4 (surr)	108	81-118		%	1		08/24/22 15:17
Toluene-d8 (surr) 105 89-112 % 1 08/24/22 15:17	4-Bromofluorobenzene (surr)	98.1	85-114		%	1		08/24/22 15:17
	Toluene-d8 (surr)	105	89-112		%	1		08/24/22 15:17

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW3** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980006 Lab Project ID: 1224980 Collection Date: 08/16/22 09:50 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21907 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 15:17 Container ID: 1224980006-D Prep Batch: VXX39068 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of 17855-MW9							
Client Sample ID: 17855-MW9 Client Project ID: 17855 Kotzebue M Lab Sample ID: 1224980007 Lab Project ID: 1224980	onitoring Well	R M Se	ollection Da eceived Da atrix: Wate olids (%): ocation:	te: 08/19/2	22 13:14		
Results by Semivolatile Organic Fue	ls						
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 16.4	<u>LOQ/CL</u> 0.638	<u>DL</u> 0.213	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/28/22 16:3
urrogates 5a Androstane (surr)	87.8	50-150		%	1		08/28/22 16:3
Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 16:39 Container ID: 1224980007-G		F F F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/25/2 /t./Vol.: 235	22 15:50		
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 2.03	<u>LOQ/CL</u> 0.532	<u>DL</u> 0.213	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyze 08/28/22 16:3
urrogates n-Triacontane-d62 (surr)	98.9	50-150		%	1		08/28/22 16:3
	30.9	30-130		70	I		00/20/22 10.0
Batch Information Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 16:39 Container ID: 1224980007-G		F F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/25/2 /t./Vol.: 235	22 15:50		

SGS							
Results of 17855-MW9							
Client Sample ID: 17855-MW9 Client Project ID: 17855 Kotzebue Mc Lab Sample ID: 1224980007 Lab Project ID: 1224980	onitoring Well	F M S	Collection Da Received Dat Matrix: Water Colids (%): ocation:	te: 08/19/2	22 13:14		
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.228	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/23/22 01:13
Surrogates							
4-Bromofluorobenzene (surr)	137	50-150		%	1		08/23/22 01:13
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/23/22 01:13 Container ID: 1224980007-A			Prep Batch: ` Prep Method: Prep Date/Tir Prep Initial W Prep Extract `	: SW5030E me: 08/22/2 't./Vol.: 5 m	22 06:00		

SG

Client Sample ID: **17855-MW9** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980007 Lab Project ID: 1224980 Collection Date: 08/16/22 10:40 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	<u>Result Qual</u> 0.500 U	LOQ/CL	<u>DL</u>	Units	DE	Allowable	
	0 500 11			Units	DF	Limits Date A	nalyzed
1,1,1-Trichloroethane	0.300 0	0.500	0.150	ug/L	1	08/24/2	22 15:32
	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	08/24/2	22 15:32
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1	08/24/2	22 15:32
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,2,4-Trimethylbenzene	35.6	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1	08/24/2	22 15:32
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1	08/24/2	22 15:32
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1	08/24/2	22 15:32
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,3,5-Trimethylbenzene	40.7	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1	08/24/2	22 15:32
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1	08/24/2	22 15:32
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1	08/24/2	22 15:32
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
2-Hexanone	10.0 U	10.0	3.10	ug/L	1	08/24/2	22 15:32
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
4-Isopropyltoluene	21.2	1.00	0.310	ug/L	1	08/24/2	22 15:32
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1	08/24/2	22 15:32
Benzene	8.17	0.400	0.120	ug/L	1	08/24/2	22 15:32
Bromobenzene	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1	08/24/2	22 15:32
Bromoform	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
Bromomethane	6.00 U	6.00	3.00	ug/L	1	08/24/2	22 15:32
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1	08/24/2	22 15:32
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1	08/24/2	22 15:32
Chloroethane	1.00 U	1.00	0.310	ug/L	1	08/24/2	22 15:32

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW9** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980007 Lab Project ID: 1224980 Collection Date: 08/16/22 10:40 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	2.49	1.00	0.310	ug/L	1		08/24/22 15:32
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:32
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:32
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
Dichlorodifluoromethane	8.20	1.00	0.310	ug/L	1		08/24/22 15:32
Ethylbenzene	7.67	1.00	0.310	ug/L	1		08/24/22 15:32
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:32
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
Isopropylbenzene (Cumene)	7.98	1.00	0.310	ug/L	1		08/24/22 15:32
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:32
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:32
Naphthalene	65.0	1.00	0.310	ug/L	1		08/24/22 15:32
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
n-Propylbenzene	8.95	1.00	0.310	ug/L	1		08/24/22 15:32
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
P & M -Xylene	10.9	2.00	0.620	ug/L	1		08/24/22 15:32
sec-Butylbenzene	6.65	1.00	0.310	ug/L	1		08/24/22 15:32
Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
tert-Butylbenzene	1.19	1.00	0.310	ug/L	1		08/24/22 15:32
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:32
Trichlorofluoromethane	28.1	1.00	0.310	ug/L	1		08/24/22 15:32
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:32
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 15:32
Xylenes (total)	11.3	3.00	1.00	ug/L	1		08/24/22 15:32
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		08/24/22 15:32
4-Bromofluorobenzene (surr)	99.6	85-114		%	1		08/24/22 15:32
Toluene-d8 (surr)	103	89-112		%	1		08/24/22 15:32

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW9** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980007 Lab Project ID: 1224980

Collection Date: 08/16/22 10:40 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21907 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 15:32 Container ID: 1224980007-D Prep Batch: VXX39068 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Diesel Range Organics 1.56 0.638 0.213 mg/L 1 0 Surrogates 5a Androstane (surr) 75.6 50-150 % 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C Analytical Method: AK102 Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 235 mL Prep Initial Wt./Vol.: 235 mL Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL DE Units DF Limits 1 Parameter Result Qual LOQ/CL DL Units DF Limits 1 Surrogates 0.688 0.532 0.213 mg/L 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 1 0 Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C 0	Sample ID: 1224980008 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: sults by Semivolatile Organic Fuels ameter Result Qual LOQ/CL DL Units DF Limits Date Analyzed ogates 1.56 0.638 0.213 mg/L 1 08/28/22 17:09 ogates 0.618 0.213 mg/L 1 08/28/22 17:09 orgates 0.638 0.213 mg/L 1 08/28/22 17:09 ch Information Prep Batch:: XXX46868 Prep Method: SW3520C Prep Initial WL/Vol.: 235 mL Prep Date/Time: 08/25/22 15:50 ameter Result Qual LOQ/CL DL Units DE Limits Date Analyzed onalytical Date/Time: 08/28/22 17:09 Prep Method: SW3520C Prep Initial WL/Vol.: 235 mL Prep Mathod: SW3520C Prep Extract Vol: 1 mL DE Limits Date Analyzed ogates 0.688 0.532 0.213 mg/L 1 08/28/22 17:09 ogates Iacontane-d62 (surr) 85.4 50-150 % 1 08/28/22 17:09 ch Information Prep Bat	Results of 17855-MW7 Client Sample ID: 17855-MW7		-	ollection Da			
Parameter Result Qual LOQ/CL DL Units DF Limits L Diesel Range Organics 1.56 0.638 0.213 mg/L 1 0 Surrogates 5a Androstane (surr) 75.6 50-150 % 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C Prep Date/Time: 08/25/22 15:50 Analytical Date/Time: 08/28/22 17:09 Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 Parameter Result Qual LOQ/CL DL Units DE Limits 1 Parameter Result Qual LOQ/CL DL Units DE Limits 1 Residual Range Organics 0.688 0.532 0.213 mg/L 1 0 Surrogates n-Triacontane-d62 (surr) 85.4 50-150 % 1 0 Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C Prep Method: SW3520C	ameter Result Qual LOQ/CL DL Units DF Allowable sel Range Organics 1.56 0.638 0.213 mg/L 1 08/28/22 17:09 ogates Androstane (surr) 75.6 50-150 % 1 08/28/22 17:09 ch Information Inalytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C Prep Method: SW3520C nalytical Date/Time: 08/28/22 17:09 Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./vol.: 235 mL ameter Result Qual LOQ/CL DL Units DF Allowable idual Range Organics 0.688 0.532 0.213 mg/L 1 08/28/22 17:09 ogates 0.688 0.532 0.213 mg/L 1 08/28/22 17:09 ogates 0.688 0.532 0.213 mg/L 1 08/28/22 17:09 ogates 0.6167 Prep Batch: XXX46868 Limits Date Analyzed idual Range Organics 0.688 0.532 0.213 mg/L 1 08/28/22 17:09 ogates Iriacontane-d62 (surr) 85.4	Lab Sample ID: 1224980008 Lab Project ID: 1224980		M	atrix: Wate olids (%):			
Parameter Result Qual LOQ/CL DL Units DF Limits I Diesel Range Organics 1.56 0.638 0.213 mg/L 1 0 Surrogates 5a Androstane (surr) 75.6 50-150 % 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 Analytical Date/Time: 08/28/22 17:09 Prep Date/Time: 08/25/22 15:50 Prep Date/Time: 08/25/22 15:50 Prep Initial Wt./Vol.: 235 mL Prep Date/Time: 10: 1224980008-G Prep Method: SW3520C Prep Extract Vol: 1 mL Imits 1 Parameter Result Qual LOQ/CL DL Units DF Limits 1 Residual Range Organics 0.688 0.532 0.213 mg/L 1 0 Surrogates n-Triacontane-d62 (surr) 85.4 50-150 % 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C 1 0	ameter Result Qual LOQ/CL DL Units DF Limits Date Analyzed sel Range Organics 1.56 0.638 0.213 mg/L 1 08/28/22 17:09 ogates Androstane (surr) 75.6 50-150 % 1 08/28/22 17:09 ch Information	Results by Semivolatile Organic Fuels	5		_			
Surrogates 5a Androstane (surr) 75.6 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 08/28/22 17:09 Prep Date/Time: 08/25/22 15:50 Container ID: 1224980008-G Prep Initial Wt./vol.: 235 mL Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits I Residual Range Organics 0.688 0.532 0.213 mg/L 1 0 Surrogates n-Triacontane-d62 (surr) 85.4 50-150 % 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C	ogates 75.6 50-150 % 1 08/28/22 17:09 cch Information							
5a Androstane (surr) 75.6 50-150 % 1 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 08/28/22 17:09 Prep Initial Wt./Vol.: 235 mL Container ID: 1224980008-G Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits I Residual Range Organics 0.688 0.532 0.213 mg/L 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C	Androstane (surr) 75.6 50-150 % 1 08/28/22 17:09 ch Information Inalytical Batch: XFC16326 Inalytical Date/Time: 08/28/22 17:09 Container ID: 1224980008-G ameter Result Qual LOQ/CL DL Units DF Limits Date Analyzed idual Range Organics 0.688 0.532 0.213 mg/L 1 08/28/22 17:09 Container - Control of the term of term	Diesel Range Organics	1.56	0.638	0.213	mg/L	1	08/28/22 17:09
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analytical Method: AK102 Analytical Date/Time: 08/28/22 17:09 Container ID: 1224980008-G Parameter Residual Range Organics 0.688 0.532 0.213 mg/L 1 Murrogates n-Triacontane-d62 (surr) 85.4 50-150 % 1 Batch Information Analytical Batch: XFC16326 Analytical Batch: XFC16326 Analytical Batch: XFC16326 Analytical Method: AK103	ch Information nalytical Batch: XFC16326 nalytical Method: AK102 nalytical Date/Time: 08/28/22 17:09 container ID: 1224980008-G Prep Method: SW3520C Prep Date/Time: 08/28/22 17:09 container ID: 1224980008-G Prep Extract Vol: 1 mL ameter Result Qual LOQ/CL DL Units prep Limits Date Analyzed idual Range Organics 0.688 0.532 02013 mg/L 1 08/28/22 17:01 opgates riacontane-d62 (surr) 85.4 50-150 % 1 08/28/22 17:01 ch Information	-	75.0	50.450		0/	4	00/00/00 47.0
Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK102 Prep Method: SW3520C Analytical Date/Time: 08/28/22 17:09 Prep Date/Time: 08/25/22 15:50 Container ID: 1224980008-G Prep Initial Wt./Vol.: 235 mL Prep Extract Vol: 1 mL Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits I Residual Range Organics 0.688 0.532 0.213 mg/L 1 O urrogates n-Triacontane-d62 (surr) 85.4 50-150 % 1 O Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C	Analytical Batch: XFC16326 nalytical Method: AK102 nalytical Date/Time: 08/28/22 17:09 container ID: 1224980008-G	Sa Androstane (sur)	75.0	50-150		70	I	00/20/22 17.0
Analytical Method: AK102 Prep Method: SW3520C Analyst: HMW Prep Date/Time: 08/25/22 15:50 Analytical Date/Time: 08/28/22 17:09 Prep Initial Wt./Vol.: 235 mL Container ID: 1224980008-G Prep Extract Vol: 1 mL Parameter Result Qual LOQ/CL DL Units DF Limits I Residual Range Organics 0.688 0.532 0.213 mg/L 1 0 urrogates n-Triacontane-d62 (surr) 85.4 50-150 % 1 0 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C	nalytical Method: AK102 Prep Method: SW3520C Prep Date/Time: 08/28/22 17:09 Prep Initial Wt./vol.: 235 mL Prep Extract Vol: 1 mL Allowable Limits Date Analyzed prep Extract Vol: 1 mL Allowable Limits Date Analyzed Date Anal	Batch Information						
Parameter Result Qual LOQ/CL DL Units DF Limits I Residual Range Organics 0.688 0.532 0.213 mg/L 1 0 iurrogates n-Triacontane-d62 (surr) 85.4 50-150 % 1 0 Batch Information	ameterResult QualLOQ/CLDLUnitsDFLimitsDate Analyzeridual Range Organics0.6880.5320.213mg/L108/28/22 17:0ogatesriacontane-d62 (surr)85.450-150%108/28/22 17:0cch Information.nalytical Batch: XFC16326Prep Batch: XXX46868.nalytical Method: AK103Prep Method: SW3520C.nalyt: HMWPrep Date/Time:08/25/22 15:50.nalytical Date/Time:08/28/22 17:09Prep Initial Wt./Vol.:	Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 17:09		F F	Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 08/25/2 /t./Vol.: 235	22 15:50	
n-Triacontane-d62 (surr) 85.4 50-150 % 1 Batch Information Analytical Batch: XFC16326 Analytical Method: AK103 Prep Method: SW3520C	Indext Name No. 1							-
Batch Information Analytical Batch: XFC16326 Analytical Method: AK103 Prep Method: SW3520C	InformationInalytical Batch: XFC16326Prep Batch: XXX46868Inalytical Method: AK103Prep Method: SW3520CInalyst: HMWPrep Date/Time: 08/25/22 15:50Inalytical Date/Time: 08/28/22 17:09Prep Initial Wt./Vol.: 235 mL	urrogates						
Analytical Batch: XFC16326Prep Batch: XXX46868Analytical Method: AK103Prep Method: SW3520C	Inalytical Batch: XFC16326Prep Batch: XXX46868Inalytical Method: AK103Prep Method: SW3520CInalyst: HMWPrep Date/Time: 08/25/22 15:50Inalytical Date/Time: 08/28/22 17:09Prep Initial Wt./Vol.: 235 mL	n-Triacontane-d62 (surr)	85.4	50-150		%	1	08/28/22 17:0
Analytical Method: AK103 Prep Method: SW3520C	Inalytical Method: AK103Prep Method: SW3520CInalyst: HMWPrep Date/Time: 08/25/22 15:50Inalytical Date/Time: 08/28/22 17:09Prep Initial Wt./Vol.: 235 mL	Batch Information						
Analytical Date/Time: 08/28/22 17:09 Prep Initial Wt./Vol.: 235 mL		Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 17:09		F F	Prep Method Prep Date/Til Prep Initial W	: SW3520C me: 08/25/2 /t./Vol.: 235	22 15:50	

CCC

Results of 17855-MW7							
Client Sample ID: 17855-MW7 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980008 Lab Project ID: 1224980	nitoring Well	R M S	ollection Da eceived Da latrix: Water olids (%): pocation:	te: 08/19/2	22 13:14		
Results by Volatile Fuels			_				
<u>Parameter</u> Gasoline Range Organics	<u>Result Qual</u> 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/23/22 00:00
Surrogates 4-Bromofluorobenzene (surr)	68.2	50-150		%	1		08/23/22 00:00
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/23/22 00:00 Container ID: 1224980008-A		I	Prep Batch: Prep Method Prep Date/Tin Prep Initial W Prep Extract	: SW5030E me: 08/22/2 /t./Vol.: 5 m	22 06:00		

COC

SG

Client Sample ID: **17855-MW7** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980008 Lab Project ID: 1224980 Collection Date: 08/16/22 11:37 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:47
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,2,4-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/24/22 15:47
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 15:47
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 15:47
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 15:47
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW7** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980008 Lab Project ID: 1224980 Collection Date: 08/16/22 11:37 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	Units	DF	<u>Limits</u>	Date Analyzed
Chloroform	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 15:47
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Dichlorodifluoromethane	1.62	1.00	0.310	ug/L	1		08/24/22 15:47
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
Naphthalene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		08/24/22 15:47
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 15:47
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 15:47
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 15:47
Xylenes (total)	3.00 U	3.00	1.00	ug/L	1		08/24/22 15:47
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/24/22 15:47
4-Bromofluorobenzene (surr)	98.2	85-114		%	1		08/24/22 15:47
Toluene-d8 (surr)	104	89-112		%	1		08/24/22 15:47

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW7** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980008 Lab Project ID: 1224980 Collection Date: 08/16/22 11:37 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21907 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 15:47 Container ID: 1224980008-D Prep Batch: VXX39068 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: **17855-MW10** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980009 Lab Project ID: 1224980 Collection Date: 08/16/22 13:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						A 11 -	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1-Methylnaphthalene	0.0943	0.0521	0.0156	ug/L	1		08/26/22 17:24
2-Methylnaphthalene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Acenaphthene	0.0937	0.0521	0.0156	ug/L	1		08/26/22 17:24
Acenaphthylene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Anthracene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Benzo(a)Anthracene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Benzo[a]pyrene	0.0208 U	0.0208	0.00646	ug/L	1		08/26/22 17:24
Benzo[b]Fluoranthene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Benzo[g,h,i]perylene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Benzo[k]fluoranthene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Chrysene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Dibenzo[a,h]anthracene	0.0208 U	0.0208	0.00646	ug/L	1		08/26/22 17:24
Fluoranthene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Fluorene	0.214	0.0521	0.0156	ug/L	1		08/26/22 17:24
Indeno[1,2,3-c,d] pyrene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Naphthalene	0.652	0.104	0.0323	ug/L	1		08/26/22 17:24
Phenanthrene	0.104 U	0.104	0.0323	ug/L	1		08/26/22 17:24
Pyrene	0.0521 U	0.0521	0.0156	ug/L	1		08/26/22 17:24
Surrogates							
2-Methylnaphthalene-d10 (surr)	34.7 *	42-86		%	1		08/26/22 17:24
Fluoranthene-d10 (surr)	58.5	50-97		%	1		08/26/22 17:24

Batch Information

Analytical Batch: XMS13319 Analytical Method: 8270D SIM LV (PAH) Analyst: NGG Analytical Date/Time: 08/26/22 17:24 Container ID: 1224980009-J Prep Batch: XXX46842 Prep Method: SW3535A Prep Date/Time: 08/22/22 10:27 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

Print Date: 09/21/2022 1:57:54PM

Results of 17855-MW10 Client Sample ID: 17855-MW10 Client Project ID: 17855 Kotzebue Monitoring Well Lab Sample ID: 1224980009 Lab Project ID: 1224980		Collection Date: 08/16/22 13:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%):							
Results by Semivolatile Organic Fuel	s	Lo	ocation:						
Parameter Diesel Range Organics	<u>Result Qual</u> 7.39	<u>LOQ/CL</u> 0.638	<u>DL</u> 0.213	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/28/22 17:1		
urrogates 5a Androstane (surr)	85.5	50-150		%	1		08/28/22 17:1		
Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 17:19 Container ID: 1224980009-G		1	Prep Method Prep Date/Ti Prep Initial W Prep Extract	me: 08/25/2 /t./Vol.: 235	22 15:50 5 mL	Allowable			
<u>Parameter</u> Residual Range Organics	<u>Result Qual</u> 2.25	<u>LOQ/CL</u> 0.532	<u>DL</u> 0.213	<u>Units</u> mg/L	<u>DF</u> 1	Limits	<u>Date Analyze</u> 08/28/22 17:1		
urrogates n-Triacontane-d62 (surr)	95.5	50-150		%	1		08/28/22 17:1		
Batch Information Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 17:19 Container ID: 1224980009-G		1	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	: SW3520C me: 08/25/2 /t./Vol.: 235	22 15:50				

Results of 17855-MW10							
Client Sample ID: 17855-MW10 Client Project ID: 17855 Kotzebue Monitoring Well Lab Sample ID: 1224980009 Lab Project ID: 1224980		C R M S					
Results by Volatile Fuels							
Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
Gasoline Range Organics	0.100 U	0.100	0.0450	mg/L	1		08/22/22 20:2
surrogates							
4-Bromofluorobenzene (surr)	81.2	50-150		%	1		08/22/22 20:2
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101			Prep Batch: N Prep Method:				
Analyst: PHK Analytical Date/Time: 08/22/22 20:22		Prep Date/Time: 08/22/22 06:00					
		Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

SG

Client Sample ID: **17855-MW10** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980009 Lab Project ID: 1224980 Collection Date: 08/16/22 13:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	<u>Result Qual</u>	LOQ/CL	DL	Units	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1	LIIIIIIS	08/25/22 18:07
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:07
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/25/22 18:07
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,2,4-Trimethylbenzene	4.58	1.00	0.310	ug/L	1		08/25/22 18:07
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:07
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/25/22 18:07
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/25/22 18:07
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,3,5-Trimethylbenzene	2.73	1.00	0.310	ug/L	1		08/25/22 18:07
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:07
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:07
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:07
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:07
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
4-Isopropyltoluene	1.43	1.00	0.310	ug/L	1		08/25/22 18:07
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:07
Benzene	0.400 U	0.400	0.120	ug/L	1		08/25/22 18:07
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:07
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/25/22 18:07
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:07
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:07
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:07

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW10** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980009 Lab Project ID: 1224980 Collection Date: 08/16/22 13:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Chloroform	1.00 U	1.00	0.310	ug/L	1	C	08/25/22 18:07
Chloromethane	1.00 U	1.00	0.310	ug/L	1	C	08/25/22 18:07
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	C	08/25/22 18:07
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1	C	8/25/22 18:07
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1	C	8/25/22 18:07
Dibromomethane	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Ethylbenzene	4.95	1.00	0.310	ug/L	1	C	8/25/22 18:07
Freon-113	10.0 U	10.0	3.10	ug/L	1	C	8/25/22 18:07
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Isopropylbenzene (Cumene)	1.16	1.00	0.310	ug/L	1	C	8/25/22 18:07
Methylene chloride	10.0 U	10.0	3.10	ug/L	1	C	8/25/22 18:07
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1	C	8/25/22 18:07
Naphthalene	15.6	1.00	0.310	ug/L	1	C	8/25/22 18:07
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
n-Propylbenzene	1.00	1.00	0.310	ug/L	1	C	8/25/22 18:07
o-Xylene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
P & M -Xylene	6.01	2.00	0.620	ug/L	1	C	8/25/22 18:07
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Styrene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Toluene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Trichloroethene	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1	C	8/25/22 18:07
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1	C	8/25/22 18:07
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1	C	8/25/22 18:07
Xylenes (total)	6.01	3.00	1.00	ug/L	1	C	8/25/22 18:07
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1	C	8/25/22 18:07
4-Bromofluorobenzene (surr)	97.5	85-114		%	1	C	08/25/22 18:07
Toluene-d8 (surr)	104	89-112		%	1	C	8/25/22 18:07

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW10** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980009 Lab Project ID: 1224980 Collection Date: 08/16/22 13:35 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21906 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/25/22 18:07 Container ID: 1224980009-D Prep Batch: VXX39067 Prep Method: SW5030B Prep Date/Time: 08/25/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of Trip Blank							
Client Sample ID: Trip Blank Client Project ID: 17855 Kotzebue I Lab Sample ID: 1224980010 Lab Project ID: 1224980	Collection Date: 08/15/22 15:00 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels							
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/22/22 17:0
urrogates							
4-Bromofluorobenzene (surr)	69.2	50-150		%	1		08/22/22 17:0
Batch Information							
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/22/22 17:01 Container ID: 1224980010-A		Prep Batch: VXX39050 Prep Method: SW5030B Prep Date/Time: 08/22/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL					

000

Results of Trip Blank

SG

Client Sample ID: **Trip Blank** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980010 Lab Project ID: 1224980 Collection Date: 08/15/22 15:00 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/24/22 13:37
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,2,4-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/24/22 13:37
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/24/22 13:37
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,3,5-Trimethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
4-Isopropyltoluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
Benzene	0.400 U	0.400	0.120	ug/L	1		08/24/22 13:37
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/24/22 13:37
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Results of Trip Blank

SG

Client Sample ID: **Trip Blank** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980010 Lab Project ID: 1224980 Collection Date: 08/15/22 15:00 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/24/22 13:37
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Ethylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Isopropylbenzene (Cumene)	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
Naphthalene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
n-Propylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
P & M -Xylene	2.00 U	2.00	0.620	ug/L	1		08/24/22 13:37
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Styrene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Toluene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1		08/24/22 13:37
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/24/22 13:37
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/24/22 13:37
Xylenes (total)	3.00 U	3.00	1.00	ug/L	1		08/24/22 13:37
Surrogates							
1,2-Dichloroethane-D4 (surr)	127 *	81-118		%	1		08/24/22 13:37
4-Bromofluorobenzene (surr)	92.9	85-114		%	1		08/24/22 13:37
Toluene-d8 (surr)	96.8	89-112		%	1		08/24/22 13:37

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Results of Trip Blank

Client Sample ID: **Trip Blank** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980010 Lab Project ID: 1224980 Collection Date: 08/15/22 15:00 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21905 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/24/22 13:37 Container ID: 1224980010-D Prep Batch: VXX39066 Prep Method: SW5030B Prep Date/Time: 08/24/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/21/2022 1:57:54PM

Client Sample ID: **17855-MW101** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980011 Lab Project ID: 1224980 Collection Date: 08/16/22 13:45 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Devenueter	Desuit Qual			Linite		Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>		ate Analyzed
1-Methylnaphthalene	0.506	0.0510	0.0153	ug/L	1	80	/26/22 17:45
2-Methylnaphthalene	0.101	0.0510	0.0153	ug/L	1	80	/26/22 17:45
Acenaphthene	0.166	0.0510	0.0153	ug/L	1	80	/26/22 17:45
Acenaphthylene	0.0510 U	0.0510	0.0153	ug/L	1	80	/26/22 17:45
Anthracene	0.0510 U	0.0510	0.0153	ug/L	1	80	/26/22 17:45
Benzo(a)Anthracene	0.0510 U	0.0510	0.0153	ug/L	1	80	/26/22 17:45
Benzo[a]pyrene	0.0204 U	0.0204	0.00633	ug/L	1	08	/26/22 17:45
Benzo[b]Fluoranthene	0.0510 U	0.0510	0.0153	ug/L	1	80	/26/22 17:45
Benzo[g,h,i]perylene	0.0510 U	0.0510	0.0153	ug/L	1	08	/26/22 17:45
Benzo[k]fluoranthene	0.0510 U	0.0510	0.0153	ug/L	1	08	/26/22 17:45
Chrysene	0.0510 U	0.0510	0.0153	ug/L	1	08	/26/22 17:45
Dibenzo[a,h]anthracene	0.0204 U	0.0204	0.00633	ug/L	1	08	/26/22 17:45
Fluoranthene	0.0510 U	0.0510	0.0153	ug/L	1	08	/26/22 17:45
Fluorene	0.295	0.0510	0.0153	ug/L	1	08	/26/22 17:45
Indeno[1,2,3-c,d] pyrene	0.0510 U	0.0510	0.0153	ug/L	1	08	/26/22 17:45
Naphthalene	2.54	0.102	0.0316	ug/L	1	08	/26/22 17:45
Phenanthrene	0.102 U	0.102	0.0316	ug/L	1	08	/26/22 17:45
Pyrene	0.0510 U	0.0510	0.0153	ug/L	1	80	/26/22 17:45
Surrogates							
2-Methylnaphthalene-d10 (surr)	38.5 *	42-86		%	1	80	/26/22 17:45
Fluoranthene-d10 (surr)	55.1	50-97		%	1	80	/26/22 17:45

Batch Information

Analytical Batch: XMS13319 Analytical Method: 8270D SIM LV (PAH) Analyst: NGG Analytical Date/Time: 08/26/22 17:45 Container ID: 1224980011-I Prep Batch: XXX46842 Prep Method: SW3535A Prep Date/Time: 08/22/22 10:27 Prep Initial Wt./Vol.: 245 mL Prep Extract Vol: 1 mL

Print Date: 09/21/2022 1:57:54PM

Diesel Range Organics S urrogates 5a Androstane (surr)	<u>Result Qual</u> 7.39	<u>LOQ/CL</u> 0.638	<u>DL</u> 0.213	<u>Units</u> mg/L	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics S urrogates 5a Androstane (surr)	7.39						Date Analyzed
5a Androstane (surr)				0	1		08/28/22 17:2
	83	50-150		%	1		08/28/22 17:2
		00 100		,,			00,20,22 11.2
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/28/22 17:29 Container ID: 1224980011-G		F F	Prep Batch:) Prep Method: Prep Date/Tin Prep Initial W Prep Extract \	SW3520C ne: 08/25/2 t./Vol.: 235	2 15:50		
Parameter Residual Range Organics	Result Qual 2.36	<u>LOQ/CL</u> 0.532	<u>DL</u> 0.213	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	Date Analyze 08/28/22 17:2
surrogates	2.00	0.002	0.210	ing/2	·		00/20/22 11:2
n-Triacontane-d62 (surr)	93.6	50-150		%	1		08/28/22 17:2
Batch Information							
Analytical Batch: XFC16326 Analytical Method: AK103 Analyst: HMW Analytical Date/Time: 08/28/22 17:29 Container ID: 1224980011-G		F F F	Prep Batch: 2 Prep Method: Prep Date/Tin Prep Initial W Prep Extract V	SW3520C ne: 08/25/2 t./Vol.: 235	2 15:50		

Print Date: 09/21/2022 1:57:54PM

000

Results of 17855-MW101	k							
Client Sample ID: 17855-MW101 Client Project ID: 17855 Kotzebue Mo Lab Sample ID: 1224980011 Lab Project ID: 1224980	nitoring Well	Collection Date: 08/16/22 13:45 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:						
Results by Volatile Fuels								
<u>Parameter</u> Gasoline Range Organics	<u>Result</u> Qual 0.100 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/22/22 20:4	
Surrogates								
4-Bromofluorobenzene (surr)	81.7	50-150		%	1		08/22/22 20:4	
Batch Information								
Analytical Batch: VFC16226 Analytical Method: AK101 Analyst: PHK Analytical Date/Time: 08/22/22 20:40 Container ID: 1224980011-A		Prep Batch: VXX39050 Prep Method: SW5030B Prep Date/Time: 08/22/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL						

Print Date: 09/21/2022 1:57:54PM

CCC

SG

Client Sample ID: **17855-MW101** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980011 Lab Project ID: 1224980 Collection Date: 08/16/22 13:45 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
1,1,1-Trichloroethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,1,2,2-Tetrachloroethane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
1,1,2-Trichloroethane	0.400 U	0.400	0.120	ug/L	1		08/25/22 18:22
1,1-Dichloroethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,1-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,1-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,2,3-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,2,3-Trichloropropane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,2,4-Trichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,2,4-Trimethylbenzene	4.90	1.00	0.310	ug/L	1		08/25/22 18:22
1,2-Dibromo-3-chloropropane	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
1,2-Dibromoethane	0.0750 U	0.0750	0.0180	ug/L	1		08/25/22 18:22
1,2-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,2-Dichloroethane	0.500 U	0.500	0.200	ug/L	1		08/25/22 18:22
1,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,3,5-Trimethylbenzene	2.92	1.00	0.310	ug/L	1		08/25/22 18:22
1,3-Dichlorobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
1,3-Dichloropropane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
1,4-Dichlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
2,2-Dichloropropane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
2-Butanone (MEK)	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
2-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
2-Hexanone	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
4-Chlorotoluene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
4-Isopropyltoluene	1.52	1.00	0.310	ug/L	1		08/25/22 18:22
4-Methyl-2-pentanone (MIBK)	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
Benzene	0.400 U	0.400	0.120	ug/L	1		08/25/22 18:22
Bromobenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Bromochloromethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Bromodichloromethane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
Bromoform	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Bromomethane	6.00 U	6.00	3.00	ug/L	1		08/25/22 18:22
Carbon disulfide	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
Carbon tetrachloride	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Chlorobenzene	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
Chloroethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

SG

Client Sample ID: **17855-MW101** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980011 Lab Project ID: 1224980 Collection Date: 08/16/22 13:45 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Chloromethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
cis-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
cis-1,3-Dichloropropene	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
Dibromochloromethane	0.500 U	0.500	0.150	ug/L	1		08/25/22 18:22
Dibromomethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Dichlorodifluoromethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Ethylbenzene	4.90	1.00	0.310	ug/L	1		08/25/22 18:22
Freon-113	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
Hexachlorobutadiene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Isopropylbenzene (Cumene)	1.22	1.00	0.310	ug/L	1		08/25/22 18:22
Methylene chloride	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
Methyl-t-butyl ether	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
Naphthalene	16.7	1.00	0.310	ug/L	1		08/25/22 18:22
n-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
n-Propylbenzene	1.08	1.00	0.310	ug/L	1		08/25/22 18:22
o-Xylene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
P & M -Xylene	5.97	2.00	0.620	ug/L	1		08/25/22 18:22
sec-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Styrene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
tert-Butylbenzene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Tetrachloroethene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Toluene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
trans-1,2-Dichloroethene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
trans-1,3-Dichloropropene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Trichloroethene	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Trichlorofluoromethane	1.00 U	1.00	0.310	ug/L	1		08/25/22 18:22
Vinyl acetate	10.0 U	10.0	3.10	ug/L	1		08/25/22 18:22
Vinyl chloride	0.150 U	0.150	0.0500	ug/L	1		08/25/22 18:22
Xylenes (total)	5.97	3.00	1.00	ug/L	1		08/25/22 18:22
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		08/25/22 18:22
4-Bromofluorobenzene (surr)	99.7	85-114		%	1		08/25/22 18:22
Toluene-d8 (surr)	103	89-112		%	1		08/25/22 18:22

Print Date: 09/21/2022 1:57:54PM

SGS North America Inc.

Client Sample ID: **17855-MW101** Client Project ID: **17855 Kotzebue Monitoring Well** Lab Sample ID: 1224980011 Lab Project ID: 1224980 Collection Date: 08/16/22 13:45 Received Date: 08/19/22 13:14 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21906 Analytical Method: SW8260D Analyst: AZL Analytical Date/Time: 08/25/22 18:22 Container ID: 1224980011-D Prep Batch: VXX39067 Prep Method: SW5030B Prep Date/Time: 08/25/22 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/21/2022 1:57:54PM

SGS

Method Blank

Blank ID: MB for HBN 1841958 [VXX/39050] Blank Lab ID: 1680966 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1224980001, 1224980002, 1224980004, 1224980005, 1224980006, 1224980007, 1224980008, 1224980009, 1224980010, 1224980011

Results by AK101

<u>Results</u>).0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	
9	50-150		%	
) 11:45:00AM	Prep Meth Prep Date/ Prep Initial	od: SW5030B Time: 8/22/2022 Wt./Vol.: 5 mL	e 6:00:00AM	
)	.0500U 9	.0500U 0.100 9 50-150 Prep Batch Prep Metho Prep Date/ Prep Initial	0.500U 0.100 0.0450 9 50-150 Prep Batch: VXX39050 Prep Method: SW5030B Prep Date/Time: 8/22/2022 Prep Initial Wt./Vol.: 5 mL	0.0500U 0.100 0.0450 mg/L 9 50-150 % Prep Batch: VXX39050 % Prep Method: SW5030B Prep Date/Time: 8/22/2022 6:00:00AM Prep Initial Wt./Vol.: 5 mL %

Print Date: 09/21/2022 1:57:57PM

		7						
9	VXX39050]	-	[VX Spił	X39050] ke Duplica	te Lab ID:	1680970		
			24980005,	122498000	06, 12249800	007, 1224980	008,	
	Blank Spike (r	ng/L)	S	pike Duplic	ate (mg/L)			
Spike	Result	Rec (%)	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1.00	0.906	91	1.00	0.845	85	(60-120)	7.00	(< 20)
0.0500		85	0.0500		81	(50-150)	4.90	
			Prep	Batch: V	XX39050			
/FID							t Vol: 5 ml	
	9 : 12:40 0001, 122498 0009, 122498 <u>Spike</u> 1.00	2 12:40 2001, 1224980002, 122498 2009, 1224980010, 122498 Blank Spike (r <u>Spike Result</u> 1.00 0.906 0.0500	9 12:40 1001, 1224980002, 1224980004, 122 1224980010, 1224980011 Blank Spike (mg/L) Spike Result Rec (%) 1.00 0.906 91 0.0500 85	9 [VX: Spik 2: 12:40 Spik Mati Mati 0001, 1224980002, 1224980004, 1224980005, 1009, 1224980010, 1224980011 Mati Blank Spike (mg/L) S Spike Result Rec (%) Spike 1.00 0.906 91 1.00 0.0500 85 0.0500 Prep /FID Prep Prep Spike Result State	9 [VXX39050] 2 12:40 Spike Duplica Matrix: Water 1001, 1224980002, 1224980004, 1224980005, 122498000 1009, 1224980010, 1224980011 Blank Spike (mg/L) Spike Duplic Spike Result Rec (%) Spike Result 1.00 0.906 91 1.00 0.845 0.0500 85 0.0500 Prep Batch: V2 Prep Method: Prep Date/Time Spike Init Wt./V	9 [VXX39050] 12:40 Spike Duplicate Lab ID: Matrix: Water (Surface, 0001, 1224980002, 1224980004, 1224980005, 1224980006, 1224980010 0009, 1224980010, 1224980011 Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) 1.00 0.906 91 1.00 0.845 85 0.0500 85 0.0500 81	9 [VXX39050] 12:40 Spike Duplicate Lab ID: 1680970 Matrix: Water (Surface, Eff., Ground 0001, 1224980002, 1224980004, 1224980005, 1224980006, 1224980007, 1224980 0009, 1224980010, 1224980011 Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) CL 1.00 0.906 91 1.00 0.845 85 (60-120) 0.0500 85 0.0500 81 (50-150)	9 [VXX39050] 12:40 Spike Duplicate Lab ID: 1680970 Matrix: Water (Surface, Eff., Ground) 0001, 1224980002, 1224980004, 1224980005, 1224980006, 1224980007, 1224980008, 1224980010, 1224980011 Blank Spike (mg/L) Spike Duplicate (mg/L) Spike Result Rec (%) Spike Result Rec (%) 1.00 0.906 91 1.00 0.845 85 (60-120) 7.00 0.0500 85 0.0500 81 (50-150) 4.90 Prep Batch: VXX39050 Prep Method: SW5030B

SGS Method Blank	1
Blank ID: MB for HBN 1842023 [VXX/39054] Blank Lab ID: 1681262	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1224980003	
Results by AK101	6

Results by AK101					
<u>Parameter</u> Gasoline Range Organics	<u>Results</u> 0.0500U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	
Surrogates 4-Bromofluorobenzene (surr) Batch Information	76	50-150		%	
Analytical Batch: VFC16228 Analytical Method: AK101 Instrument: Agilent 7890 PID, Analyst: PHK Analytical Date/Time: 8/23/20		Prep Me Prep Da Prep Init	tch: VXX39054 thod: SW5030E te/Time: 8/23/2 ial Wt./Vol.: 5 m ract Vol: 5 mL	3 022 6:00:00AM	

Print Date: 09/21/2022 1:58:02PM

Blank Spike ID: LCS for HBN 1224980 [VXX39054] Blank Spike Lab ID: 1681265 Date Analyzed: 08/23/2022 12:51 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39054] Spike Duplicate Lab ID: 1681266 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980003

Results by AK101			_						
		Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Gasoline Range Organics	1.00	0.863	86	1.00	0.848	85	(60-120)	1.80	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500		82	0.0500		75	(50-150)	7.80	
Batch Information									
Analytical Batch: VFC16228				Prep	Batch: V	XX39054			
Analytical Method: AK101				Prep	Method:	SW5030B			
Instrument: Agilent 7890 PID	/FID			Prep	o Date/Tim	e: 08/23/202	2 06:00		
Analyst: PHK							mg/L Extrac		
				Dup	e Init Wt./\	/ol.: 0.0500	mg/L Extrac	t Vol: 5 mL	

Print Date: 09/21/2022 1:58:05PM

SGS

Method Blank

Blank ID: MB for HBN 1842148 [VXX/39066] Blank Lab ID: 1681858 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980001, 1224980003, 1224980010

Results by SW8260D

-				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	3.00U	6.00	3.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 09/21/2022 1:58:07PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1842148 [VXX/39066] Blank Lab ID: 1681858 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980001, 1224980003, 1224980010

Results by SW8260D		·		
	Results	LOQ/CL	DL	Units
<u>Parameter</u> Chloromethane	0.500U	<u>1.00</u>	<u>DL</u> 0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	123*	81-118		%
4-Bromofluorobenzene (surr)	95.5	85-114		%
Toluene-d8 (surr)	97.2	89-112		%

Print Date: 09/21/2022 1:58:07PM

SGS North America Inc.

SGS	
and the second sec	

Matrix Ma		
Matrix: Wa	ter (Surface, Eff., Ground)	
LOQ/CL DI	L Units	
Prep Method: Prep Date/Tim Prep Initial Wt	SW5030B ne: 8/24/2022 6:00:00AM ./Vol.: 5 mL	
	Prep Batch: \ Prep Method: Prep Date/Tin Prep Initial Wt	LOQ/CL DL Units Prep Batch: VXX39066 Prep Method: SW5030B Prep Date/Time: 8/24/2022 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol.: 5 mL

Blank Spike ID: LCS for HBN 1224980 [VXX39066] Blank Spike Lab ID: 1681859 Date Analyzed: 08/24/2022 10:12 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39066] Spike Duplicate Lab ID: 1681860 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980001, 1224980002, 1224980003, 1224980010

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	32.0	107	30	31.6	105	(78-124)	1.30	(< 20)
1,1,1-Trichloroethane	30	33.8	113	30	34.5	115	(74-131)	2.20	(< 20)
1,1,2,2-Tetrachloroethane	30	26.8	89	30	26.8	89	(71-121)	0.19	(< 20)
1,1,2-Trichloroethane	30	29.5	98	30	28.9	96	(80-119)	2.00	(< 20)
1,1-Dichloroethane	30	29.0	97	30	29.6	99	(77-125)	2.30	(< 20)
1,1-Dichloroethene	30	30.8	103	30	31.5	105	(71-131)	2.00	(< 20)
1,1-Dichloropropene	30	30.8	103	30	31.1	104	(79-125)	0.90	(< 20)
1,2,3-Trichlorobenzene	30	29.2	97	30	29.2	97	(69-129)	0.03	(< 20)
1,2,3-Trichloropropane	30	29.3	98	30	29.4	98	(73-122)	0.41	(< 20)
1,2,4-Trichlorobenzene	30	27.9	93	30	28.6	95	(69-130)	2.30	(< 20)
1,2,4-Trimethylbenzene	30	26.0	87	30	26.6	89	(79-124)	2.30	(< 20)
1,2-Dibromo-3-chloropropane	30	29.2	97	30	28.5	95	(62-128)	2.50	(< 20)
1,2-Dibromoethane	30	31.5	105	30	31.0	103	(77-121)	1.60	(< 20)
1,2-Dichlorobenzene	30	28.8	96	30	29.5	98	(80-119)	2.60	(< 20)
1,2-Dichloroethane	30	33.3	111	30	34.0	113	(73-128)	2.20	(< 20)
1,2-Dichloropropane	30	27.9	93	30	28.4	95	(78-122)	1.70	(< 20)
1,3,5-Trimethylbenzene	30	25.7	86	30	26.2	87	(75-124)	2.10	(< 20)
1,3-Dichlorobenzene	30	28.7	96	30	29.6	99	(80-119)	2.80	(< 20)
1,3-Dichloropropane	30	29.2	97	30	28.7	96	(80-119)	1.90	(< 20)
1,4-Dichlorobenzene	30	28.8	96	30	29.5	98	(79-118)	2.60	(< 20)
2,2-Dichloropropane	30	35.4	118	30	35.8	119	(60-139)	1.20	(< 20)
2-Butanone (MEK)	90	86.0	96	90	82.8	92	(56-143)	3.80	(< 20)
2-Chlorotoluene	30	28.5	95	30	27.2	91	(79-122)	4.90	(< 20)
2-Hexanone	90	85.0	94	90	82.4	92	(57-139)	3.10	(< 20)
4-Chlorotoluene	30	27.2	91	30	27.7	92	(78-122)	1.80	(< 20)
4-Isopropyltoluene	30	25.8	86	30	26.4	88	(77-127)	2.30	(< 20)
4-Methyl-2-pentanone (MIBK)	90	88.7	99	90	87.9	98	(67-130)	0.86	(< 20)
Benzene	30	28.7	96	30	29.6	99	(79-120)	3.20	(< 20)
Bromobenzene	30	28.9	96	30	29.7	99	(80-120)	2.70	(< 20)
Bromochloromethane	30	31.3	104	30	32.2	107	(78-123)	3.00	(< 20)
Bromodichloromethane	30	31.2	104	30	32.0	107	(79-125)	2.60	(< 20)
Bromoform	30	32.8	109	30	32.3	108	(66-130)	1.50	(< 20)
Bromomethane	30	26.0	87	30	31.4	105	(53-141)	18.80	(< 20)
Carbon disulfide	45	43.3	96	45	43.9	98	(64-133)	1.40	(< 20)

Print Date: 09/21/2022 1:58:10PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1224980 [VXX39066] Blank Spike Lab ID: 1681859 Date Analyzed: 08/24/2022 10:12 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39066] Spike Duplicate Lab ID: 1681860 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980001, 1224980002, 1224980003, 1224980010

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	34.0	113	30	34.7	116	(72-136)	2.00	(< 20)
Chlorobenzene	30	30.2	101	30	30.3	101	(82-118)	0.56	(< 20)
Chloroethane	30	29.1	97	30	30.1	100	(60-138)	3.30	(< 20)
Chloroform	30	29.4	98	30	30.2	101	(79-124)	2.60	(< 20)
Chloromethane	30	24.1	80	30	24.4	81	(50-139)	1.20	(< 20)
cis-1,2-Dichloroethene	30	29.2	97	30	30.3	101	(78-123)	3.70	(< 20)
cis-1,3-Dichloropropene	30	30.8	103	30	31.4	105	(75-124)	2.00	(< 20)
Dibromochloromethane	30	32.3	108	30	31.9	106	(74-126)	1.20	(< 20)
Dibromomethane	30	31.9	106	30	32.5	108	(79-123)	1.60	(< 20)
Dichlorodifluoromethane	30	31.7	106	30	31.9	106	(32-152)	0.50	(< 20)
Ethylbenzene	30	30.6	102	30	30.6	102	(79-121)	0.13	(< 20)
Freon-113	45	48.5	108	45	49.2	109	(70-136)	1.40	(< 20)
Hexachlorobutadiene	30	30.0	100	30	30.6	102	(66-134)	1.90	(< 20)
lsopropylbenzene (Cumene)	30	31.3	104	30	31.2	104	(72-131)	0.26	(< 20)
Methylene chloride	30	30.1	100	30	30.7	102	(74-124)	2.10	(< 20)
Methyl-t-butyl ether	45	50.8	113	45	50.8	113	(71-124)	0.16	(< 20)
Naphthalene	30	29.0	97	30	30.0	100	(61-128)	3.60	(< 20)
n-Butylbenzene	30	25.2	84	30	25.8	86	(75-128)	2.10	(< 20)
n-Propylbenzene	30	28.5	95	30	29.2	97	(76-126)	2.40	(< 20)
o-Xylene	30	30.9	103	30	30.9	103	(78-122)	0.07	(< 20)
P & M -Xylene	60	63.1	105	60	62.8	105	(80-121)	0.54	(< 20)
sec-Butylbenzene	30	28.4	95	30	29.0	97	(77-126)	2.20	(< 20)
Styrene	30	28.8	96	30	28.7	96	(78-123)	0.17	(< 20)
tert-Butylbenzene	30	28.6	95	30	29.4	98	(78-124)	2.60	(< 20)
Tetrachloroethene	30	31.8	106	30	31.3	104	(74-129)	1.70	(< 20)
Toluene	30	27.4	92	30	27.2	91	(80-121)	0.80	(< 20)
trans-1,2-Dichloroethene	30	30.1	100	30	30.7	102	(75-124)	2.00	(< 20)
trans-1,3-Dichloropropene	30	30.8	103	30	30.6	102	(73-127)	0.88	(< 20)
Trichloroethene	30	30.7	102	30	31.1	104	(79-123)	1.10	(< 20)
Trichlorofluoromethane	30	33.8	113	30	34.6	115	(65-141)	2.10	(< 20)
Vinyl acetate	30	33.2	111	30	32.6	109	(54-146)	1.60	(< 20)
Vinyl chloride	30	27.9	93	30	28.0	93	(58-137)	0.36	(< 20)
Xylenes (total)	90	94.0	104	90	93.7	104	(79-121)	0.34	(< 20)

Print Date: 09/21/2022 1:58:10PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1224980 [VXX39066] Blank Spike Lab ID: 1681859 Date Analyzed: 08/24/2022 10:12 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39066] Spike Duplicate Lab ID: 1681860 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980001, 1224980002, 1224980003, 1224980010

Results by SW8260D

		Blank Spil	ke (%)		Spike Dup	licate (%)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		117	30		117	(81-118)	0.06	
4-Bromofluorobenzene (surr)	30		92	30		93	(85-114)	1.90	
Toluene-d8 (surr)	30		98	30		97	(89-112)	1.10	

Batch Information

Analytical Batch: VMS21905 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: AZL Prep Batch: VXX39066 Prep Method: SW5030B Prep Date/Time: 08/24/2022 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/21/2022 1:58:10PM

SGS

Method Blank

Blank ID: MB for HBN 1842151 [VXX/39067] Blank Lab ID: 1681868

QC for Samples: 1224980009, 1224980011

Results by SW8260D

-				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	3.00U	6.00	3.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L

Print Date: 09/21/2022 1:58:12PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

SGS

Method Blank

Blank ID: MB for HBN 1842151 [VXX/39067] Blank Lab ID: 1681868 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980009, 1224980011

Results by SW8260D

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	108	81-118		%
4-Bromofluorobenzene (surr)	98.5	85-114		%
Toluene-d8 (surr)	102	89-112		%

Print Date: 09/21/2022 1:58:12PM

SGS North America Inc.

Method Blank	
Blank ID: MB for HBN 1842151 [VXX/39067] Blank Lab ID: 1681868] Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1224980009, 1224980011 Results by SW8260D	
Parameter Results	LOQ/CL DL Units

Print Date: 09/21/2022 1:58:12PM

_

Blank Spike ID: LCS for HBN 1224980 [VXX39067] Blank Spike Lab ID: 1681869 Date Analyzed: 08/25/2022 12:40 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39067] Spike Duplicate Lab ID: 1681870 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980009, 1224980011

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	33.2	111	30	33.1	110	(78-124)	0.42	(< 20)
1,1,1-Trichloroethane	30	30.0	100	30	30.7	102	(74-131)	2.40	(< 20)
1,1,2,2-Tetrachloroethane	30	30.7	102	30	30.2	101	(71-121)	1.60	(< 20)
1,1,2-Trichloroethane	30	31.7	106	30	31.0	103	(80-119)	2.00	(< 20)
1,1-Dichloroethane	30	28.2	94	30	28.5	95	(77-125)	0.88	(< 20)
1,1-Dichloroethene	30	27.6	92	30	28.2	94	(71-131)	2.10	(< 20)
1,1-Dichloropropene	30	29.2	97	30	30.1	100	(79-125)	2.90	(< 20)
1,2,3-Trichlorobenzene	30	31.3	104	30	31.7	106	(69-129)	1.40	(< 20)
1,2,3-Trichloropropane	30	31.4	105	30	30.8	103	(73-122)	1.90	(< 20)
1,2,4-Trichlorobenzene	30	30.9	103	30	31.4	105	(69-130)	1.40	(< 20)
1,2,4-Trimethylbenzene	30	30.7	102	30	31.5	105	(79-124)	2.50	(< 20)
1,2-Dibromo-3-chloropropane	30	30.7	102	30	30.5	102	(62-128)	0.75	(< 20)
1,2-Dibromoethane	30	32.4	108	30	31.9	106	(77-121)	1.40	(< 20)
1,2-Dichlorobenzene	30	31.2	104	30	31.3	104	(80-119)	0.16	(< 20)
1,2-Dichloroethane	30	28.8	96	30	28.4	95	(73-128)	1.20	(< 20)
1,2-Dichloropropane	30	30.2	101	30	30.2	101	(78-122)	0.13	(< 20)
1,3,5-Trimethylbenzene	30	30.6	102	30	31.1	104	(75-124)	1.80	(< 20)
1,3-Dichlorobenzene	30	31.2	104	30	32.0	107	(80-119)	2.50	(< 20)
1,3-Dichloropropane	30	31.2	104	30	30.7	102	(80-119)	1.60	(< 20)
1,4-Dichlorobenzene	30	31.8	106	30	31.6	105	(79-118)	0.51	(< 20)
2,2-Dichloropropane	30	27.9	93	30	28.8	96	(60-139)	3.10	(< 20)
2-Butanone (MEK)	90	86.8	96	90	82.5	92	(56-143)	5.10	(< 20)
2-Chlorotoluene	30	30.6	102	30	31.0	103	(79-122)	1.20	(< 20)
2-Hexanone	90	96.4	107	90	93.3	104	(57-139)	3.20	(< 20)
4-Chlorotoluene	30	30.7	102	30	31.0	103	(78-122)	0.84	(< 20)
4-Isopropyltoluene	30	31.4	105	30	32.3	108	(77-127)	2.60	(< 20)
4-Methyl-2-pentanone (MIBK)	90	93.5	104	90	91.3	101	(67-130)	2.30	(< 20)
Benzene	30	29.2	97	30	29.5	98	(79-120)	0.85	(< 20)
Bromobenzene	30	31.3	104	30	31.4	105	(80-120)	0.29	(< 20)
Bromochloromethane	30	30.0	100	30	29.8	100	(78-123)	0.60	(< 20)
Bromodichloromethane	30	31.3	104	30	31.0	103	(79-125)	0.99	(< 20)
Bromoform	30	30.4	101	30	29.8	99	(66-130)	2.10	(< 20)
Bromomethane	30	26.1	87	30	26.1	87	(53-141)	0.04	(< 20)
Carbon disulfide	45	39.0	87	45	39.8	89	(64-133)	2.10	(< 20)

Print Date: 09/21/2022 1:58:14PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1224980 [VXX39067] Blank Spike Lab ID: 1681869 Date Analyzed: 08/25/2022 12:40 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39067] Spike Duplicate Lab ID: 1681870 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980009, 1224980011

Results by SW8260D

· · · ·		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	30.7	102	30	31.8	106	(72-136)	3.20	(< 20)
Chlorobenzene	30	31.5	105	30	31.7	106	(82-118)	0.54	(< 20)
Chloroethane	30	35.3	118	30	33.5	112	(60-138)	5.30	(< 20)
Chloroform	30	29.2	97	30	29.2	97	(79-124)	0.00	(< 20)
Chloromethane	30	26.2	88	30	26.5	88	(50-139)	1.10	(< 20)
cis-1,2-Dichloroethene	30	29.2	97	30	29.1	97	(78-123)	0.31	(< 20)
cis-1,3-Dichloropropene	30	29.5	98	30	29.4	98	(75-124)	0.61	(< 20)
Dibromochloromethane	30	30.8	103	30	30.3	101	(74-126)	1.60	(< 20)
Dibromomethane	30	30.0	100	30	29.3	98	(79-123)	2.60	(< 20)
Dichlorodifluoromethane	30	26.8	89	30	27.4	91	(32-152)	2.20	(< 20)
Ethylbenzene	30	32.5	108	30	32.6	109	(79-121)	0.58	(< 20)
Freon-113	45	42.7	95	45	43.7	97	(70-136)	2.40	(< 20)
Hexachlorobutadiene	30	30.3	101	30	31.3	104	(66-134)	3.10	(< 20)
Isopropylbenzene (Cumene)	30	32.2	107	30	32.5	108	(72-131)	0.99	(< 20)
Methylene chloride	30	28.9	96	30	28.9	96	(74-124)	0.17	(< 20)
Methyl-t-butyl ether	45	46.2	103	45	45.4	101	(71-124)	1.70	(< 20)
Naphthalene	30	32.5	108	30	32.6	109	(61-128)	0.34	(< 20)
n-Butylbenzene	30	30.9	103	30	31.5	105	(75-128)	2.00	(< 20)
n-Propylbenzene	30	30.5	102	30	31.3	104	(76-126)	2.50	(< 20)
o-Xylene	30	31.6	105	30	31.8	106	(78-122)	0.69	(< 20)
P & M -Xylene	60	63.7	106	60	64.6	108	(80-121)	1.40	(< 20)
sec-Butylbenzene	30	31.0	103	30	31.7	106	(77-126)	2.50	(< 20)
Styrene	30	33.0	110	30	32.8	109	(78-123)	0.40	(< 20)
tert-Butylbenzene	30	30.7	102	30	31.8	106	(78-124)	3.50	(< 20)
Tetrachloroethene	30	30.8	103	30	31.3	104	(74-129)	1.80	(< 20)
Toluene	30	29.6	99	30	30.1	100	(80-121)	1.50	(< 20)
trans-1,2-Dichloroethene	30	28.6	95	30	29.0	97	(75-124)	1.30	(< 20)
trans-1,3-Dichloropropene	30	28.7	96	30	28.0	93	(73-127)	2.50	(< 20)
Trichloroethene	30	30.0	100	30	30.4	101	(79-123)	1.30	(< 20)
Trichlorofluoromethane	30	31.2	104	30	33.0	110	(65-141)	5.60	(< 20)
Vinyl acetate	30	27.1	91	30	26.4	88	(54-146)	2.80	(< 20)
Vinyl chloride	30	26.4	88	30	26.6	89	(58-137)	0.57	(< 20)
Xylenes (total)	90	95.3	106	90	96.4	107	(79-121)	1.20	(< 20)

Print Date: 09/21/2022 1:58:14PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1224980 [VXX39067] Blank Spike Lab ID: 1681869 Date Analyzed: 08/25/2022 12:40 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39067] Spike Duplicate Lab ID: 1681870 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980009, 1224980011

Results by SW8260D

		Blank Spil	ke (%)		Spike Dup	licate (%)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		105	30		101	(81-118)	3.50	
4-Bromofluorobenzene (surr)	30		97	30		97	(85-114)	0.45	
Toluene-d8 (surr)	30		104	30		104	(89-112)	0.19	

Batch Information

Analytical Batch: VMS21906 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: AZL Prep Batch: VXX39067 Prep Method: SW5030B Prep Date/Time: 08/25/2022 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/21/2022 1:58:14PM

SGS

Method Blank

Blank ID: MB for HBN 1842155 [VXX/39068] Blank Lab ID: 1681880 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1224980004, 1224980005, 1224980006, 1224980007, 1224980008

Results by SW8260D				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	3.00U	6.00	3.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 09/21/2022 1:58:16PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1842155 [VXX/39068] Blank Lab ID: 1681880 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1224980004, 1224980005, 1224980006, 1224980007, 1224980008

_	Results by SW8260D						
	<u>Parameter</u>	Results	1	LOQ/CL	<u>DL</u>	Units	
	Chloromethane	0.500U		1.00	0.310	ug/L	
	cis-1,2-Dichloroethene	0.500U		1.00	0.310	ug/L	
	cis-1,3-Dichloropropene	0.250U		0.500	0.150	ug/L	
	Dibromochloromethane	0.250U		0.500	0.150	ug/L	
	Dibromomethane	0.500U		1.00	0.310	ug/L	
	Dichlorodifluoromethane	0.500U		1.00	0.310	ug/L	
	Ethylbenzene	0.500U		1.00	0.310	ug/L	
	Freon-113	5.00U		10.0	3.10	ug/L	
	Hexachlorobutadiene	0.500U		1.00	0.310	ug/L	
	Isopropylbenzene (Cumene)	0.500U		1.00	0.310	ug/L	
	Methylene chloride	5.00U		10.0	3.10	ug/L	
	Methyl-t-butyl ether	5.00U		10.0	3.10	ug/L	
	Naphthalene	0.500U		1.00	0.310	ug/L	
	n-Butylbenzene	0.500U		1.00	0.310	ug/L	
	n-Propylbenzene	0.500U		1.00	0.310	ug/L	
	o-Xylene	0.500U		1.00	0.310	ug/L	
	P & M -Xylene	1.00U		2.00	0.620	ug/L	
	sec-Butylbenzene	0.500U		1.00	0.310	ug/L	
	Styrene	0.500U		1.00	0.310	ug/L	
	tert-Butylbenzene	0.500U		1.00	0.310	ug/L	
	Tetrachloroethene	0.500U		1.00	0.310	ug/L	
	Toluene	0.500U		1.00	0.310	ug/L	
	trans-1,2-Dichloroethene	0.500U		1.00	0.310	ug/L	
	trans-1,3-Dichloropropene	0.500U		1.00	0.310	ug/L	
	Trichloroethene	0.500U		1.00	0.310	ug/L	
	Trichlorofluoromethane	0.500U		1.00	0.310	ug/L	
	Vinyl acetate	5.00U		10.0	3.10	ug/L	
	Vinyl chloride	0.0750U		0.150	0.0500	ug/L	
	Xylenes (total)	1.50U		3.00	1.00	ug/L	
	Surrogates						
	1,2-Dichloroethane-D4 (surr)	108		81-118		%	
	4-Bromofluorobenzene (surr)	96.7		85-114		%	
	Toluene-d8 (surr)	105		89-112		%	

Print Date: 09/21/2022 1:58:16PM

SGS North America Inc.

SGS	
UUU	

Method Blank								
Blank ID: MB for HBN 18 Blank Lab ID: 1681880	42155 [VXX/39068]	Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1224980004, 1224980005,	1224980006, 1224980007, 122	4980008						
Results by SW8260D								
Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>				
Batch Information								
Analytical Batch: VMS2 Analytical Method: SW8 Instrument: VPA 780/59 Analyst: AZL Analytical Date/Time: 8/	3260D 375 GC/MS	Prep M Prep Da Prep Ini	atch: VXX39(ethod: SW50 ate/Time: 8/2 tial Wt./Vol.: tract Vol: 5 r	030B 24/2022 6:00:00AM 5 mL				

Print Date: 09/21/2022 1:58:16PM

Blank Spike ID: LCS for HBN 1224980 [VXX39068] Blank Spike Lab ID: 1681881 Date Analyzed: 08/24/2022 10:10 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39068] Spike Duplicate Lab ID: 1681882 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980004, 1224980005, 1224980006, 1224980007, 1224980008

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	33.5	112	30	32.8	109	(78-124)	2.20	(< 20)
1,1,1-Trichloroethane	30	31.2	104	30	30.0	100	(74-131)	3.90	(< 20)
1,1,2,2-Tetrachloroethane	30	31.0	103	30	30.8	103	(71-121)	0.52	(< 20)
1,1,2-Trichloroethane	30	32.1	107	30	31.8	106	(80-119)	1.10	(< 20)
1,1-Dichloroethane	30	29.3	98	30	28.3	94	(77-125)	3.30	(< 20)
1,1-Dichloroethene	30	29.6	99	30	27.8	93	(71-131)	6.00	(< 20)
1,1-Dichloropropene	30	30.8	103	30	29.6	99	(79-125)	4.00	(< 20)
1,2,3-Trichlorobenzene	30	32.2	107	30	31.7	106	(69-129)	1.40	(< 20)
1,2,3-Trichloropropane	30	31.6	105	30	31.2	104	(73-122)	1.30	(< 20)
1,2,4-Trichlorobenzene	30	32.0	107	30	31.5	105	(69-130)	1.40	(< 20)
1,2,4-Trimethylbenzene	30	31.9	106	30	30.6	102	(79-124)	4.00	(< 20)
1,2-Dibromo-3-chloropropane	30	31.5	105	30	30.7	102	(62-128)	2.60	(< 20)
1,2-Dibromoethane	30	32.8	109	30	32.6	109	(77-121)	0.89	(< 20)
1,2-Dichlorobenzene	30	31.7	106	30	31.2	104	(80-119)	1.50	(< 20)
1,2-Dichloroethane	30	29.1	97	30	28.7	96	(73-128)	1.40	(< 20)
1,2-Dichloropropane	30	31.0	103	30	30.6	102	(78-122)	1.30	(< 20)
1,3,5-Trimethylbenzene	30	31.6	105	30	31.0	103	(75-124)	1.90	(< 20)
1,3-Dichlorobenzene	30	32.4	108	30	31.9	106	(80-119)	1.50	(< 20)
1,3-Dichloropropane	30	31.6	105	30	31.4	105	(80-119)	0.64	(< 20)
1,4-Dichlorobenzene	30	32.0	107	30	31.7	106	(79-118)	0.88	(< 20)
2,2-Dichloropropane	30	29.3	98	30	28.3	94	(60-139)	3.50	(< 20)
2-Butanone (MEK)	90	88.2	98	90	84.5	94	(56-143)	4.30	(< 20)
2-Chlorotoluene	30	31.6	105	30	30.9	103	(79-122)	2.30	(< 20)
2-Hexanone	90	97.3	108	90	95.8	106	(57-139)	1.60	(< 20)
4-Chlorotoluene	30	31.7	106	30	31.0	103	(78-122)	2.40	(< 20)
4-Isopropyltoluene	30	32.7	109	30	31.2	104	(77-127)	4.90	(< 20)
4-Methyl-2-pentanone (MIBK)	90	94.3	105	90	93.8	104	(67-130)	0.47	(< 20)
Benzene	30	30.1	100	30	29.4	98	(79-120)	2.20	(< 20)
Bromobenzene	30	32.3	108	30	31.7	106	(80-120)	2.00	(< 20)
Bromochloromethane	30	30.4	101	30	30.2	101	(78-123)	0.56	(< 20)
Bromodichloromethane	30	31.8	106	30	31.2	104	(79-125)	1.80	(< 20)
Bromoform	30	30.2	101	30	30.4	101	(66-130)	0.59	(< 20)
Bromomethane	30	28.8	96	30	27.3	91	(53-141)	5.30	(< 20)
Carbon disulfide	45	41.9	93	45	39.5	88	(64-133)	5.90	(< 20)

Print Date: 09/21/2022 1:58:19PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1224980 [VXX39068] Blank Spike Lab ID: 1681881 Date Analyzed: 08/24/2022 10:10 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39068] Spike Duplicate Lab ID: 1681882 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980004, 1224980005, 1224980006, 1224980007, 1224980008

Results by SW8260D Blank Spike (ug/L) Spike Duplicate (ug/L) Parameter Spike Spike Rec (%) RPD (%) RPD CL Result Rec (%) Result CL Carbon tetrachloride 30 31.9 106 30 30.8 103 (72-136) 3.50 (< 20) Chlorobenzene 30 32.3 108 30 31.7 106 (82-118) 2.10 (< 20) Chloroethane 30 35.3 118 30 34 0 (60-138) 3.80 113 (< 20) Chloroform 30 99 29.2 2.00 29.8 30 97 (79-124) (< 20) Chloromethane 30 27.8 93 30 26.4 88 (50-139) 5.00 (< 20) cis-1,2-Dichloroethene 98 29.1 0.82 30 29.4 30 97 (78-123) (< 20) cis-1,3-Dichloropropene 30 30.3 101 30 29.9 100 (75-124) 1.20 (< 20) 103 30.7 Dibromochloromethane 30 31.0 30 102 (74-126) 1.20 (< 20) Dibromomethane 30.3 101 30 29.5 2.60 30 98 (79-123) (< 20) Dichlorodifluoromethane 30 30.1 100 30 28.2 94 (32-152) 6.20 (< 20) Ethylbenzene 30 33.2 111 30 32.4 108 (79-121) 2.70 (< 20) Freon-113 45 45.4 101 45 43.1 96 (70-136) 5.30 (< 20) 105 30.2 (66-134) Hexachlorobutadiene 30 31.6 30 101 4.50 (< 20) Isopropylbenzene (Cumene) 32.9 110 32.0 107 2.80 30 30 (72-131) (< 20) Methylene chloride 30 30.4 101 30 29.7 99 (74-124) 2.20 (< 20) 45 105 45 46.9 0.95 Methyl-t-butyl ether 47.4 104 (71-124) (< 20) Naphthalene 30 33.4 111 30 33.3 111 (61-128) 0.42 (< 20) 32.1 107 30 31.0 3.60 n-Butylbenzene 30 103 (75-128) (< 20) n-Propylbenzene 30 31.9 106 30 30.9 103 (76-126) 3.20 (< 20) o-Xylene 30 32.6 109 30 31.5 105 (78-122) 3.20 (< 20) P & M -Xylene 60 66.1 110 60 63.8 106 (80-121) 3.60 (< 20) sec-Butylbenzene 30 32.2 107 30 30.8 103 (77-126) 4.40 (< 20) 2.70 Styrene 30 33.7 112 30 327 109 (78-123) (< 20) tert-Butylbenzene 30 32.2 107 30 31.2 104 (78-124) 3.00 (< 20) Tetrachloroethene 30 31.6 105 30 30.8 103 (74-129) 2.70 (< 20) Toluene 30 30.8 103 30 29.9 100 (80-121) 2.80 (< 20) trans-1,2-Dichloroethene 30 29.6 gg 30 28 4 95 (75-124) 4.20 (< 20) trans-1,3-Dichloropropene 29.0 97 28.4 30 30 95 (73-127) 2.10 (< 20) Trichloroethene 30 31.1 104 30 30.1 100 (79-123) 3.40 (< 20) Trichlorofluoromethane 111 30.2 (65-141) 9.40 30 33.2 30 101 (< 20) Vinyl acetate 30 27.6 92 30 27.1 90 (54-146) 1.90 (< 20) Vinyl chloride 30 28.0 93 30 26.4 88 (58-137) 5.90 (< 20)

Print Date: 09/21/2022 1:58:19PM

Xylenes (total)

SGS North America Inc.

90

98.7

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

110

90

95.3

106

(79-121)

3.40

(< 20)

Blank Spike ID: LCS for HBN 1224980 [VXX39068] Blank Spike Lab ID: 1681881 Date Analyzed: 08/24/2022 10:10 Spike Duplicate ID: LCSD for HBN 1224980 [VXX39068] Spike Duplicate Lab ID: 1681882 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980004, 1224980005, 1224980006, 1224980007, 1224980008

Results by SW8260D

		Blank Spil	ke (%)		Spike Dup	licate (%)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		103	30		104	(81-118)	1.20	
4-Bromofluorobenzene (surr)	30		98	30		97	(85-114)	1.10	
Toluene-d8 (surr)	30		104	30		104	(89-112)	0.03	

Batch Information

Analytical Batch: VMS21907 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: AZL Prep Batch: VXX39068 Prep Method: SW5030B Prep Date/Time: 08/24/2022 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/21/2022 1:58:19PM

Method Blank

Blank ID: MB for HBN 1841857 [XXX/46842] Blank Lab ID: 1680732 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980009, 1224980011

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	<u>Results</u>	LOQ/CL	DL	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0264J	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0173J	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0294J	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0198J	0.0500	0.0150	ug/L
Chrysene	0.0180J	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0236J	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0324J	0.100	0.0310	ug/L
Pyrene	0.0200J	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	62.8	42-86		%
Fluoranthene-d10 (surr)	72.8	50-97		%

Batch Information

Analytical Batch: XMS13319 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: NGG Analytical Date/Time: 8/26/2022 10:53:00AM Prep Batch: XXX46842 Prep Method: SW3535A Prep Date/Time: 8/22/2022 10:27:40AM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/21/2022 1:58:21PM

SGS North America Inc.

Blank Spike ID: LCS for HBN 1224980 [XXX46842] Blank Spike Lab ID: 1680733 Date Analyzed: 08/26/2022 11:14 Spike Duplicate ID: LCSD for HBN 1224980 [XXX46842] Spike Duplicate Lab ID: 1680734 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1224980009, 1224980011

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
1-Methylnaphthalene	2	1.28	64	2	1.29	64	(41-115)	0.26	(< 20)
2-Methylnaphthalene	2	1.24	62	2	1.24	62	(39-114)	0.56	(< 20)
Acenaphthene	2	1.48	74	2	1.46	73	(48-114)	0.90	(< 20)
Acenaphthylene	2	1.48	74	2	1.47	73	(35-121)	0.86	(< 20)
Anthracene	2	1.62	81	2	1.58	79	(53-119)	3.00	(< 20)
Benzo(a)Anthracene	2	1.49	75	2	1.54	77	(59-120)	3.10	(< 20)
Benzo[a]pyrene	2	1.59	80	2	1.65	83	(53-120)	3.90	(< 20)
Benzo[b]Fluoranthene	2	1.50	75	2	1.59	80	(53-126)	6.20	(< 20)
Benzo[g,h,i]perylene	2	1.79	90	2	1.84	92	(44-128)	2.50	(< 20)
Benzo[k]fluoranthene	2	1.70	85	2	1.75	88	(54-125)	2.80	(< 20)
Chrysene	2	1.60	80	2	1.63	82	(57-120)	1.90	(< 20)
Dibenzo[a,h]anthracene	2	1.77	89	2	1.82	91	(44-131)	2.30	(< 20)
Fluoranthene	2	1.50	75	2	1.50	75	(58-120)	0.32	(< 20)
Fluorene	2	1.53	77	2	1.49	74	(50-118)	2.70	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.76	88	2	1.79	90	(48-130)	2.10	(< 20)
Naphthalene	2	1.25	62	2	1.25	63	(43-114)	0.52	(< 20)
Phenanthrene	2	1.63	81	2	1.62	81	(53-115)	0.41	(< 20)
Pyrene	2	1.53	77	2	1.48	74	(53-121)	3.10	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2		59	2		57	(42-86)	2.60	
Fluoranthene-d10 (surr)	2		69	2		68	(50-97)	1.10	

Batch Information

Analytical Batch: XMS13319 Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent GC 7890B/5977A SWA Analyst: NGG Prep Batch: XXX46842 Prep Method: SW3535A Prep Date/Time: 08/22/2022 10:27 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 09/21/2022 1:58:24PM

Method Blank

SG

Blank ID: MB for HBN 1842097 [XXX/46868] Blank Lab ID: 1681614 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1224980001, 1224980002, 1224980003, 1224980004, 1224980005, 1224980006, 1224980007, 1224980008, 1224980009, 1224980011

Results by AK102

Parameter Diesel Range Organics	<u>Results</u> 0.300U	<u>LOQ/CL</u> 0.600	<u>DL</u> 0.200	<u>Units</u> mg/L	
Surrogates 5a Androstane (surr)	76.4	60-120		%	
Batch Information					
Analytical Batch: XFC163 Analytical Method: AK102 Instrument: Agilent 7890E Analyst: HMW Analytical Date/Time: 8/2	2 3 R	Prep Metho Prep Date/ Prep Initial	i: XXX46868 od: SW35200 Time: 8/25/20 Wt./Vol.: 250 ct Vol: 1 mL	022 3:50:36PM	

Print Date: 09/21/2022 1:58:26PM

Blank	Spike	Summary
-------	-------	---------

Blank Spike ID: LCS for HBN 1224980 [XXX46868] Blank Spike Lab ID: 1681615 Date Analyzed: 08/28/2022 13:35 Spike Duplicate ID: LCSD for HBN 1224980 [XXX46868] Spike Duplicate Lab ID: 1681616 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1224980001, 1224980002, 1224980003, 1224980004, 1224980005, 1224980006, 1224980007, 1224980008, 1224980009, 1224980011

Results by AK102									
		e (mg/L)	L) Spike Duplicate (mg/L)						
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	20	16.6	83	20	16.2	81	(75-125)	2.10	(< 20)
Surrogates									
5a Androstane (surr)	0.4		84	0.4		84	(60-120)	0.36	
Batch Information									
Analytical Batch: XFC16326				Pre	p Batch: X	XX46868			
Analytical Method: AK102				Pre	p Method:	SW3520C			
Instrument: Agilent 7890B R				Pre	p Date/Tim	e: 08/25/202	2 15:50		
Analyst: HMW				Spi	ke Init Wt./\	/ol.: 0.4 mg	J/L Extract \	/ol: 1 mL	
				Dup	be Init Wt./V	/ol.: 0.4 mg	/L Extract V	ol: 1 mL	

Print Date: 09/21/2022 1:58:29PM

SGS

Method Blank

Blank ID: MB for HBN 1842097 [XXX/46868] Blank Lab ID: 1681614 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1224980001, 1224980002, 1224980003, 1224980004, 1224980005, 1224980006, 1224980007, 1224980008, 1224980009, 1224980011

Results by AK103

Parameter Residual Range Organics	<u>Results</u> 0.250U	<u>LOQ/CL</u> 0.500	<u>DL</u> 0.200	<u>Units</u> mg/L	
Surrogates					
n-Triacontane-d62 (surr)	94	60-120		%	
Batch Information					
Analytical Batch: XFC16326		Prep Batch: XXX46868			
Analytical Method: AK103		Prep Method: SW3520C Prep Date/Time: 8/25/2022 3:50:36PM			
Instrument: Agilent 7890B R Analyst: HMW		Prep Initial Wt./Vol.: 250 mL			
Analytical Date/Time: 8/28/2022 1:25:00PM		Prep Extract Vol: 1 mL			

Print Date: 09/21/2022 1:58:31PM

	•	15 2 13:35 0001, 12249	-	980003, 122	[XX Spi Ma	(X46868] ike Duplica trix: Wate	ate Lab ID: r (Surface,	D for HBN 1 1681616 Eff., Ground 006, 1224980)	
ParameterSpikeResultRec (%)SpikeResultRec (%)CLRPD (%)RPResidual Range Organics2018.2912017.688(60-120)3.70(<3Surrogatesn-Triacontane-d62 (surr)0.4920.492(60-120)0.42Batch InformationAnalytical Batch: XFC16326Analytical Method: AK103Instrument: Agilent 7890B RAnalyst: HMW	Results by AK103									
Residual Range Organics 20 18.2 91 20 17.6 88 (60-120) 3.70 (<3 Surrogates n-Triacontane-d62 (surr) 0.4 92 0.4 92 (60-120) 0.42 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Prep Method: SW3520C Analytical Method: AK103 Prep Date/Time: 08/25/2022 15:50 Prep Date/Time: 08/25/2022 15:50 Analyst: HMW Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL						Spike Dupli				
Surrogates n-Triacontane-d62 (surr) 0.4 92 0.4 92 (60-120) 0.42 Batch Information Analytical Batch: XFC16326 Prep Batch: XXX46868 Analytical Method: AK103 Prep Method: SW3520C Instrument: Agilent 7890B R Prep Date/Time: 08/25/2022 15:50 Analyst: HMW Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL										RPD CL
n-Triacontane-d62 (surr) 0.4 92 0.4 92 (60-120) 0.42 Batch Information Analytical Batch: XFC16326 Analytical Method: AK103 Instrument: Agilent 7890B R Analyst: HMW Prep Method: SW3520C Prep Date/Time: 08/25/2022 15:50 Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL	Residual Range Organics	20	18.2	91	20	17.6	88	(60-120)	3.70	(< 20)
Batch Information Analytical Batch: XFC16326 Analytical Method: AK103 Instrument: Agilent 7890B R Analyst: HMW Prep Date/Time: 08/25/2022 15:50 Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL	Surrogates									
Analytical Batch:XFC16326Prep Batch:XXX46868Analytical Method:AK103Prep Method:SW3520CInstrument:Agilent 7890B RPrep Date/Time:08/25/202215:50Analyst:HMWSpike Init Wt./Vol.:0.4 mg/LExtract Vol:1 mL	n-Triacontane-d62 (surr)	0.4		92	0.4		92	(60-120)	0.42	
Analytical Method: AK103Prep Method: SW3520CInstrument: Agilent 7890B RPrep Date/Time: 08/25/2022 15:50Analyst: HMWSpike Init Wt./Vol.: 0.4 mg/L	Batch Information									
	Analytical Method: AK103 Instrument: Agilent 7890B F	R			Pre Pre Spi	, p Method: p Date/Tim ke Init Wt./\	SW3520C e: 08/25/202 /ol.: 0.4 mg	J/L Extract V		

Print Date: 09/21/2022 1:58:33PM

SGS North America Inc. CHAIN OF CUSTODY RECORD

1224980

Profil #369569 CM

	CLIENT:	EMI												e fille		·	1	
	CONTACT:		DNE #. 007	-171-0	33/0			missi	ons n	nay de	elay ti	ne on	set of	f analy	/SIS.		Page)_of_2
	Delaney	PH Dent/Shayla Marsha	II -907	952-77	87	Sec	tion 3					Pre	servati	ve				
ч		PBC	JECT/			#				$\langle \rangle$		/	/				//	
Section	NAME: Kot	zebue Monitoring Welling	міт#: 17	855		C O			<u>></u> />		<u>s</u>					/ /	-	
0.0	REPORTS TO	D: E-N	IAIL: ddentb	Jemi-alas	ea.com	N T	Comp			r		Analy	ysis*	1	r		NOTE:	
		1 .	file #: 5m ars	nangemi-	alaska.com	A	Grab	101	60B	1 23	270 MS							wing analyses pecific method
		FLIN OLIVIN	OTE #:). #:			l N	MI (Multi-	-AK IOI	VOC-SW8360B	-DRO/RRO- 74K 103/103	5128270 51115							mpound list:
	RESERVED		DATE	TIME	MATRIX/	E R	incre- mental)	1-0;	5-5	K OX	-H						BTEX, M	etals, PFAS
	for lab use	SAMPLE IDENTIFICATION	mm/dd/yy	HH:MM	MATRIX CODE	s		GRO.			HH4						REMA	RKS/LOC ID
	IAH	17855-MW2	8/15/2022	16:30	Water	8	Grab	X	<u>X</u>	X								
	aah	17855-MW5	8/15/2022	17:35	Water	8	Grab		X	X								
2	3AH	M855-MW55	8/15/2022	17:25	Water	8	Girab		X	X								
uo	444	17855-MW8	8116/2022	8:25	Water	8	Grab		X	X								
Section	SAH	17855-MW4	8/16/2022	9:12	Water	8	Grab		X	X								
S	6AH	17855-MW3	8/16/2022	9:50	Water	8	Girab	X	Х	X								
	ZAH	17855 - MW9	8/16/2022		Water	8	Grab	X	X	X								
	8AH	17855-MW7	8/16/2022		Water	8	Girab		X	X								
	9AJ	17855-MW10		13:35	Water	8	Grab		X	X	X							
L	IDAF	Trìp blank	8/15/2022	15:00				X	X	Coot	ion 4		Broio	ct? Yes	Ma	Data D	eliverable Re	quirements:
	Relinquishe	ed By: (1)	Date	Time	Received By	<i>ו</i> :				Seci	1011 4		Projec		5 441 0			quiremento.
	Du	2 D-	8/17/22	1600	1 th	m	AA.			Cool	ler ID:					le	wel II	
	Relinquishe	d By: (2)	Date /	Time	Received By	/:				Reque	ested T	urnaro	und Tin	ne and/	or Spec	cial Instru	ctions:	
Section 5	Eur	South	8(19/22	13:14)			Sta	nda	rd -	Tom	aro	onel	Tinge	
Sect	Relinquishe	d By: (3)	Date	Time	Received By	<i>r</i> :							-		-			
ľ										Temp	Blank	<u>∞: /ı</u>	8 1	262		Chain	of Custody S	eal: (Circle)
	Relinquishe	d By: (4)	Date	Time	Received Fo	or Labo	ratory By	:					bient (INTAC	T BROKEN	ABSENT
			8/19/22	13:14	In		~	- - c	27		Del	ivery N	lethod:	Hand [Delivery	Com	nerical Delive	ery []

http://www.sgs.com/terms-and-conditions

SGS North America Inc. CHAIN OF CUSTODY RECORD

																www.u	us.sqs.	com
	client :	MI									ons 1 elay ti				d out ysis.	•		Page 2 of 2
	CONTACT: Delaney 7	PHC Dent/Shayla Marsha	DNE #: \ 907-,	272-93	36	Sec	tion 3			.	,	Pre	servati	ve	,	,		
ection	PROJECT NAME: Kotze	bue Monitoring Wellsper	ID/ MIT#: 178	55		# C O		A Republic	<u>, , , , , , , , , , , , , , , , , , , </u>		, 							
S	Delaney T	Zont/Sharyla Marshall Pro	AIL: Jdent file #: smars) DTE #:	@emi-ala naN@emi-	ska.com alaska.com	N T A	Comp Grab Mi	SKO-AK 101	VOC-SWEZGOB	0 - 0	-SMIS 2 CMIS	Anal	ysis^					NOTE: *The following analyses require specific method
		mi-alaska.com P.O				N	(Multi- incre-	H-(-SW	Noal Noal	NS-							and/or compound list: BTEX, Metals, PFAS
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	R S	mental)	GRC		- DRO / REC - AK 102/103	PAN							REMARKS/LOC ID
	CAN	17855-MW101	8/16/2022	13:45	Water	8	Grab	X	X	\times	X							
2																		
Section																		
						+												
F	Relinquish	ed By: (1)	Date	Time	Received B	-				Sec	tion 4	DO	D Proje	ct? Ye	s Kov	Ι.		erable Requirements:
		100	8/15/22	1600	2	Sru	Atto)			ler ID:			-			-	IT he
<u>, n 5</u>	Relinquishe	ed By: (2)	Date 8/19/22	Time (3:14	Received B	y:									or Spe		,	ons:
Section 5	Relinquishe	ed By: (3)	Date	Time	Received B	ly:						-					_6	Custody Seal: (Circle)
ľ					Dessived D	or Leb	aroton P			Temp	Blank				2	-		
	Relinquishe	ed By: (4)	Date 7/19/22	Time 13',14	Received F	/							nbient		<u> </u>			
			× 11 9	רויטן	m	X	<u> </u>	- 0	75		De	ivery i	Nethod	Hand	Deliver	YN CO	mmeri	cal Delivery []

http://www.sgs.com/terms-and-conditions

000	e-Sam <u>p</u>	e-Sample Receipt Form						
202	SGS Workorder #:	1224980	1224980					
R	eview Criteria	Condition (Yes, No, N/A	Exceptions Noted below					
Chain of Custo	dy / Temperature Requirements	Note: Temperature a	nd COC seal information is found on the chain of custody form					
DOD only: Did all sa	ample coolers have a corresponding (
	If <0°C, were sample containers ice							
	Note containers receive	<mark>d with ice:</mark>						
Identify any cor	ntainers received at non-compliant ter (Use form FS-0029 if more space i							
-			083 "Sample Guide" for specific holding times and sample containers					
	les received within analytical holding							
Do sample	labels match COC? Record discrepa	ncies. Yes						
	containers differs from COC, default nes differ <1hr, record details & login							
	Were analytical requests of	clear? Yes						
	or analyses with multiple option for me 1 vs 8260, Metals 6020 vs 200.8)	ethod						
Were proper containe	ers (type/mass/volume/preservative)u	sed? Yes						
Note: Exemption for	r metals analysis by 200.8/6020 in wa	ter.						
Volatile Analysis R	equirements (VOC, GRO, LL-Hg	, etc.)						
ere all soil VOAs receive	d with a corresponding % solids conta	ainer? N/A						
Were Trip Blanks (e	e.g., VOAs, LL-Hg) in cooler with sam	ples? Yes						
	free of headspace (e.g., bubbles ≤ 6							
	VOAs field extracted with Methanol+							
Note to Client: An	y "No", answer above indicates non-c	compliance with standard p	procedures and may impact data quality.					
		notes (if applicable):						

-

Sample Containers and Preservatives

Container Id	Preservative	<u>Container</u> Condition	<u>Container Id</u>	Preservative	<u>Container</u> <u>Condition</u>
1224980001-A	HCL to pH < 2	ОК	1224980007-B	HCL to pH < 2	ОК
1224980001-B	HCL to $pH < 2$	OK	1224980007-C	HCL to $pH < 2$	OK
1224980001-C	HCL to $pH < 2$	OK	1224980007-D	HCL to $pH < 2$	OK
1224980001-D	HCL to $pH < 2$	OK	1224980007-E	HCL to $pH < 2$	OK
1224980001-E	HCL to $pH < 2$	OK	1224980007-F	HCL to $pH < 2$	OK
1224980001-F	HCL to $pH < 2$	OK	1224980007-G	HCL to $pH < 2$	OK
1224980001-G	HCL to $pH < 2$	OK	1224980007-H	HCL to $pH < 2$	OK
1224980001-H	HCL to $pH < 2$	OK	1224980008-A	HCL to $pH < 2$	OK
1224980002-A	HCL to $pH < 2$	OK	1224980008-B	HCL to $pH < 2$	OK
1224980002-B	HCL to $pH < 2$	OK	1224980008-C	HCL to $pH < 2$	OK
1224980002-C	HCL to $pH < 2$	OK	1224980008-D	HCL to $pH < 2$	OK
1224980002-D	HCL to $pH < 2$	OK	1224980008-E	HCL to $pH < 2$	OK
1224980002-E	HCL to $pH < 2$	OK	1224980008-F	HCL to $pH < 2$	OK
1224980002-F	HCL to $pH < 2$	OK	1224980008-G	HCL to $pH < 2$	OK
1224980002-G	HCL to $pH < 2$	OK	1224980008-H	HCL to $pH < 2$	OK
1224980002-H	HCL to $pH < 2$	OK	1224980009-A	HCL to $pH < 2$	OK
1224980003-A	HCL to $pH < 2$	OK	1224980009-B	HCL to $pH < 2$	OK
1224980003-B	HCL to $pH < 2$	OK	1224980009-C	HCL to $pH < 2$	OK
1224980003-C	HCL to $pH < 2$	OK	1224980009-D	HCL to $pH < 2$	OK
1224980003-D	HCL to $pH < 2$	OK	1224980009-E	HCL to $pH < 2$	OK
1224980003-E	HCL to $pH < 2$	OK	1224980009-F	HCL to $pH < 2$	OK
1224980003-F	HCL to $pH < 2$	OK	1224980009-G	HCL to $pH < 2$	OK
1224980003-G	HCL to $pH < 2$	OK	1224980009-H	HCL to $pH < 2$	OK
1224980003-H	HCL to $pH < 2$	OK	1224980009-I	No Preservative Required	OK
1224980004-A	HCL to $pH < 2$	OK	1224980009-J	No Preservative Required	OK
1224980004-B	HCL to $pH < 2$	OK	1224980010-A	HCL to pH < 2	OK
1224980004-C	HCL to $pH < 2$	OK	1224980010-B	HCL to $pH < 2$	OK
1224980004-D	HCL to $pH < 2$	OK	1224980010-C	HCL to $pH < 2$	OK
1224980004-E	HCL to $pH < 2$	OK	1224980010-D	HCL to $pH < 2$	OK
1224980004-F	HCL to $pH < 2$	OK	1224980010-E	HCL to $pH < 2$	OK
1224980004-G	HCL to $pH < 2$	OK	1224980010-F	HCL to $pH < 2$	OK
1224980004-H	HCL to $pH < 2$	OK	1224980011-A	HCL to $pH < 2$	OK
1224980005-A	HCL to $pH < 2$	OK	1224980011-B	HCL to $pH < 2$	OK
1224980005-B	HCL to $pH < 2$	OK	1224980011-C	HCL to $pH < 2$	OK
1224980005-C	HCL to $pH < 2$	OK	1224980011-D	HCL to $pH < 2$	OK
1224980005-D	HCL to $pH < 2$	OK	1224980011-E	HCL to $pH < 2$	OK
1224980005-E	HCL to $pH < 2$	OK	1224980011-F	HCL to $pH < 2$	OK
1224980005-F	HCL to $pH < 2$	OK	1224980011-G	HCL to $pH < 2$	OK
1224980005-G	HCL to $pH < 2$	OK	1224980011-H	HCL to $pH < 2$	OK
1224980005-H	HCL to $pH < 2$	OK	1224980011-I	No Preservative Required	OK
1224980006-A	HCL to $pH < 2$	OK	1224980011-J	No Preservative Required	OK
1224980006-B	HCL to $pH < 2$	OK	12219000119	•	ÖR
1224980006-C	HCL to $pH < 2$	OK			
1224980006-D	HCL to $pH < 2$	OK			
1224980006-E	HCL to $pH < 2$	OK			
1224980006-F	HCL to $pH < 2$	OK			
1224980006-G	HCL to $pH < 2$	OK			
	HCL to pH < 2				

ОК

ΟK

1224980006-H

1224980007-A

HCL to pH < 2

HCL to pH < 2

Container Id

<u>Preservative</u>

<u>Container</u> <u>Condition</u> Container Id

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Delaney Dent	CS Site Name:	Kotzebue Former HIS/BIA Hospital – School Pipeline Release	Lab Name:	SGS
Title:	Junior Environment al Scientist	ADEC File No.:	410.38.025	Lab Report No.:	1224980
Consulting Firm:	EMI	Hazard ID No.:	25558	Lab Report Date:	9/22/2022

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

- a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

Yes \Box No \Box N/A \boxtimes Comments: All samples were analyzed by SGS in Anchorage, AK

2. Chain of Custody (CoC)

a. Is the CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

b. Were the correct analyses requested?

Yes \boxtimes No \square N/A \square Analyses requested: GRO, VOC, DRO, RRO, PAH Comments: Click or tap here to enter text.

3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Cooler temperature(s): 1.8°C Sample temperature(s): Click or tap here to enter text. Comments: Click or tap here to enter text.

b. Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- c. Is the sample condition documented broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?
 Yes ⊠ No □ N/A □
 Comments: No issues noted on sample receipt form
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
 Yes □ No □ N/A ⊠
 Comments: No issues noted
- e. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No issues noted

4. Case Narrative

- a. Is the case narrative present and understandable?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- b. Are there discrepancies, errors, or QC failures identified by the lab?

Yes ⊠ No □ N/A □ Comments: Surrogate recovery for -1,2-dichloroethane-d4 (8260D) for MW2, MW5, MW55, Trip Blank, MB may be biased high. -2-methylnaphthalene-d10 (8270D SIM) for MW10 and duplicate MW101 does not meet QC criteria. -MW4 sample pH is greater than two (AK 101); however, the sample was analyzed within 7 days from collection.

c. Were all the corrective actions documented?
 Yes □ No □ N/A ⊠
 Comments: No corrective actions documented

d. What is the effect on data quality/usability according to the case narrative?

Comments: Results show no detection of analytes associated with the surrogate 1,2-dichloroethane-d4 in the trip blank sample. This indicates a negligible effect on sample results. Overall, since many of these impacted project samples exceed ADEC cleanup levels, the recoveries are not likely to affect the data quality or usability for the project purpose of determining if concentrations exceed cleanup levels.

5. Sample Results

Are the correct analyses performed/reported as requested on CoC?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.

b. Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.

- c. Are all soils reported on a dry weight basis?
 Yes □ No □ N/A ⊠
 Comments: Water samples
- d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?

Yes \Box No \boxtimes N/A \Box Comments: All analyte LOQs are reported below cleanup levels except 1,2,3-Trichloropropane reported above the cleanup level at 1.00 ug/L

e. Is the data quality or usability affected?

Yes □ No ⊠ N/A □

Comments: Data quality is not affected due to all sample results, including the trip blank, at the same non-detect quantification. Data is considered usable for the project purpose.

6. QC Samples

a. Method Blank

Was one method blank reported per matrix, analysis, and 20 samples?
 Yes ⊠ No □ N/A □
 Commente: Click or ten here to enter text

Comments: Click or tap here to enter text.

ii. Are all method blank results less than LOQ (or RL)?

Yes D No D Comments: Click or tap here to enter text.

- iii. If above LoQ or RL, what samples are affected? Comments: Click or tap here to enter text.
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes □ No □ N/A ⊠ Comments: No issues noted

 v. Data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No issues noted

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

- ii. Metals/Inorganics Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
 Yes □ No □ N/A ⊠
 Comments: No metal/inorganic analyses conducted
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Click or tap here to enter text.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

 $\mathsf{Yes} \ \square \quad \mathsf{No} \ \square \quad \mathsf{N/A} \ \boxtimes$

Comments: All within prescribed limits

- vii. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No issues noted
- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 - Organics Are one MS/MSD reported per matrix, analysis and 20 samples?
 Yes □ No ⊠ N/A □
 Comments: No MS/MSD reported
 - ii. Metals/Inorganics Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes \Box No \Box N/A \boxtimes Comments: No metal/inorganic analyses conducted

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
 Yes □ No □ N/A ⊠
 Comments: No MS/MSD reported
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes □ No □ N/A ⊠ Comments: No MS/MSD reported

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Click or tap here to enter text.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes □ No □ N/A ⊠ Comments: No MS/MSD reported

vii. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No MS/MSD reported

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

 ii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

 $\mathsf{Yes} \ \square \quad \mathsf{No} \ \boxtimes \quad \mathsf{N/A} \ \square$

Comments: All surrogate recoveries are reported. 1,2-Dichloroethane-D4 is above percent recovery limits for samples MW2, MW5, MW55, Trip Blank, and the Method Blank for HBN 1842148 (MW2, MW5, MW55, Trip Blank).

2-Methylnaphthalene-d10 is below percent recovery limits for MW10 and MW 101.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

iv. Is the data quality or usability affected?

Yes □ No ⊠ N/A □

Comments: Since many of these impacted project samples exceed ADEC cleanup levels, the recoveries are not likely to affect the data quality or usability for the project purpose of determining if concentrations exceed cleanup levels.

e. Trip Blanks

- Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- ii. Are all results less than LoQ or RL?
 Yes □ No ⊠ N/A □
 Comments: 1,2,3-Trichloropropane LOQ is above the cleanup level.
- iii. If above LoQ or RL, what samples are affected? Comments: All samples gave the same non-detect result.
- iv. Is the data quality or usability affected?

 $\mathsf{Yes} \Box \mathsf{No} \boxtimes \mathsf{N/A} \Box$

Comments: Data quality is not affected due to all sample results, including the trip blank, reported at the same non-detect quantification.

f. Field Duplicate

i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

ii. Was the duplicate submitted blind to lab? Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$$

Where R_1 = Sample Concentration

R₂ = Field Duplicate Concentration

Is the data quality or usability affected? (Explain)

Yes \Box No \boxtimes N/A \Box

Comments: MW10 and/or MW101 detected five PAH compounds, and the RPD is above 30% for each one.

iv. Is the data quality or usability affected? (Explain)

Yes □ No ⊠ N/A □

Comments: Data quality is not affected due to all analytical results for the five detected PAH compounds in MW10 and MW101 not exceeding cleanup levels, except for Naphthalene which was also detected in exceedance via SW8260D. Therefore, the elevated RPD is not likely to affect the data quality or usability for the project purpose of determining if concentrations exceed cleanup levels.

g. Decontamination or Equipment Blanks

- Were decontamination or equipment blanks collected? Yes □ No ⊠ N/A □ Comments: Disposable sampling equipment used
- ii. Are all results less than LoQ or RL?

Yes \Box No \Box N/A \boxtimes Comments: Disposable sampling equipment used

- iii. If above LoQ or RL, specify what samples are affected. Comments: Click or tap here to enter text.
- iv. Are data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Disposable sampling equipment used

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Are they defined and appropriate?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

Laboratory Report of Analysis

To: Environmental Mgmt Inc (EMI) 206 East Fireweed Lane Suite 201 Anchorage, AK 99503 907-272-9336

Report Number: 1224988

Client Project: 17855 Kotzebue Landfarm

Dear Delaney Dent,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Justin Nelson

14:09:32 -08'00'

2022.09.02

Sincerely, SGS North America Inc.

Justin.Nelson@sgs.com

Justin Nelson Project Manager

Date

Print Date: 09/02/2022 8:54:04AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Environmental Mgmt Inc (EMI) SGS Project: 1224988 Project Name/Site: 17855 Kotzebue Landfarm Project Contact: Delaney Dent

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/02/2022 8:54:06AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

nt.

Print Date: 09/02/2022 8:54:08AM

Note:

Sample Summary								
<u>Client Sample ID</u> 17855-LF2019-4	<u>Lab Sample ID</u> 1224988001	<u>Collected</u> 08/15/2022	<u>Received</u> 08/19/2022	<u>Matrix</u> Soil/Solid (dry weight)				
17855-LF2019-44	1224988002	08/15/2022	08/19/2022	Soil/Solid (dry weight)				
17855-LF2019-2	1224988003	08/15/2022	08/19/2022	Soil/Solid (dry weight)				
Trip Blank	1224988004	08/15/2022	08/19/2022	Soil/Solid (dry weight)				
<u>Method</u>	Method Des	scription						
AK102	Diesel Ran	ge Organics (S)						
SM21 2540G	Percent Sol	ids SM2540G						

Print Date: 09/02/2022 8:54:09AM

Detectable Results Summary Client Sample ID: 17855-LF2019-4 Lab Sample ID: 1224988001 Parameter Result Units **Diesel Range Organics** 239 Semivolatile Organic Fuels mg/kg Client Sample ID: 17855-LF2019-44 Lab Sample ID: 1224988002 **Parameter** Result <u>Units</u> **Diesel Range Organics** Semivolatile Organic Fuels 162 mg/kg Client Sample ID: 17855-LF2019-2 Lab Sample ID: 1224988003 Parameter Result <u>Units</u> **Diesel Range Organics** 167 mg/kg Semivolatile Organic Fuels

Print Date: 09/02/2022 8:54:11AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS	
Results of 17855-LF2019-4	
Client Sample ID: 17855-LF2019-4	

Collection Date: 08/15/22 10:12 Received Date: 08/19/22 13:15 Client Project ID: 17855 Kotzebue Landfarm Matrix: Soil/Solid (dry weight) Lab Sample ID: 1224988001 Lab Project ID: 1224988 Solids (%):91.2 Location: Results by Semivolatile Organic Fuels Allowable Parameter Result Qual LOQ/CL DL Units <u>DF</u> <u>Limits</u> Date Analyzed **Diesel Range Organics** 239 21.6 9.72 mg/kg 1 08/29/22 02:39 Surrogates 5a Androstane (surr) 108 50-150 % 1 08/29/22 02:39 **Batch Information** Analytical Batch: XFC16326 Prep Batch: XXX46872 Analytical Method: AK102 Prep Method: SW3550C Analyst: HMW Prep Date/Time: 08/26/22 14:07 Analytical Date/Time: 08/29/22 02:39 Prep Initial Wt./Vol.: 30.438 g Container ID: 1224988001-A Prep Extract Vol: 5 mL

Print Date: 09/02/2022 8:54:12AM

Client Sample ID: 17855-LF2019-44 Client Project ID: 17855 Kotzebue Lan Lab Sample ID: 1224988002 Lab Project ID: 1224988	ndfarm	C R M S L					
Results by Semivolatile Organic Fuels	5		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 162	<u>LOQ/CL</u> 21.2	<u>DL</u> 9.56	<u>Units</u> mg/kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
urrogates							
5a Androstane (surr)	90.7	50-150		%	1		08/29/22 02:49
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/29/22 02:49		F	Prep Methoo Prep Date/T	XXX46872 d: SW3550C ime: 08/26/2 Vt./Vol.: 30.2	2 14:07		
Container ID: 1224988002-A				Vol: 5 mL	.55 Y		

Print Date: 09/02/2022 8:54:12AM

Client Sample ID: 17855-LF2019-2 Client Project ID: 17855 Kotzebue Lar Lab Sample ID: 1224988003 Lab Project ID: 1224988	ndfarm	C R M S L					
Results by Semivolatile Organic Fuels	S		_				
<u>Parameter</u> Diesel Range Organics	<u>Result Qual</u> 167	<u>LOQ/CL</u> 23.3	<u>DL</u> 10.5	<u>Units</u> mg/kg	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed
urrogates							
5a Androstane (surr)	84.7	50-150		%	1		08/29/22 02:59
Batch Information Analytical Batch: XFC16326 Analytical Method: AK102 Analyst: HMW Analytical Date/Time: 08/29/22 02:59 Container ID: 1224988003-A		F	Prep Methoo Prep Date/T Prep Initial V	XXX46872 d: SW3550C ime: 08/26/2 Vt./Vol.: 30.3 Vol: 5 mL	2 14:07		

Print Date: 09/02/2022 8:54:12AM

lethod Blank						
Blank ID: MB for HBN Blank Lab ID: 168119	N 1842004 [SPT/11610] 98	Matrix: Soil/Solid (dry weight)				
QC for Samples: 224988001						
		-				
Results by SM21 254	0G					
Parameter	0G <u>Results</u> 100	LOQ/CL	DL	<u>Units</u> %		
Parameter Total Solids	Results	LOQ/CL	DL			
Results by SM21 254 Parameter Fotal Solids atch Information Analytical Batch: SF Analytical Method: SF Instrument:	Results 100 PT11610	<u>LOQ/CL</u>	DL			

Print Date: 09/02/2022 8:54:14AM

1

Duplicate Sample Summ Original Sample ID: 122 Duplicate Sample ID: 16	4855001		Analysis Date: Matrix: Soil/So	08/23/2022 17:40 lid (dry weight)	
QC for Samples:					
1224988001					
Results by SM21 2540G					
NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Solids	99.9	99.8	%	0.10	(< 15)
Batch Information					
Analytical Batch: SPT116 Analytical Method: SM21 Instrument: Analyst: BRP					

Print Date: 09/02/2022 8:54:15AM

SGS North America Inc.

Duplicate Sample Sum	imary							
Driginal Sample ID: 1224991001 Duplicate Sample ID: 1681200 QC for Samples:			Analysis Date: 08/23/2022 17:40 Matrix: Soil/Solid (dry weight)					
1224988001								
Results by SM21 25400	3							
NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL			
<u> </u>		95.7	% 0.14					
	95.6	55.1						
Total Solids	95.6	55.7						
Total Solids Batch Information								
Total Solids Batch Information Analytical Batch: SPT11 Analytical Method: SM2 Instrument:	610							

Print Date: 09/02/2022 8:54:15AM

SGS North America Inc.

Member of SGS Group

Method Blank						
Blank ID: MB for HBN Blank Lab ID: 168167	I 1842108 [SPT/11612] '3	Matrix: Soil/Solid (dry weight)				
QC for Samples: 1224988002, 12249880	03					
	Results by SM21 2540G					
Results by SM21 254	0G					
Results by SM21 254 <u>Parameter</u> Total Solids	0G <u>Results</u> 99.9	LOQ/CL	DL	<u>Units</u> %		
Parameter	Results	LOQ/CL	DL			
Parameter Total Solids	<u>Results</u> 99.9 •••••••••••••••••••••••••••••••••	<u>LOQ/CL</u>	DL			

Print Date: 09/02/2022 8:54:18AM

SGS Duplicate Sample Summ	Duplicate Sample Summary					
Original Sample ID: 122 Duplicate Sample ID: 16		Analysis Date: 08/25/2022 16:30 Matrix: Soil/Solid (dry weight)				
QC for Samples:	QC for Samples:					
1224988002, 122498800	1224988002, 1224988003					
Results by SM21 2540G						
NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL	
Total Solids	46.0	48.9	%	6.20	(< 15)	
Batch Information Analytical Batch: SPT116 Analytical Method: SM21 Instrument: Analyst: ICC						

SGS	
the second se	

Blank ID: MB for HBN 184 Blank Lab ID: 1681770	2130 [XXX/46872]	Matrix	k: Soil/Solid (d	ry weight)
QC for Samples: I224988001, 1224988002, 1	224988003			
Results by AK102				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Diesel Range Organics	10.0U	20.0	9.00	mg/kg
urrogates				
a Androstane (surr)	94.8	60-120		%
atch Information				
Analytical Batch: XFC163	326	Prep Ba	tch: XXX46872	
Analytical Method: AK10			ethod: SW3550	
Instrument: Agilent 7890	3 R			2022 2:07:40PM
Analyst: HMW Analytical Date/Time: 8/2	0/2022 1.40.00 M		tial Wt./Vol.: 30	
Analylical Date/Time: 8/2	9/2022 1:49:00AIVI	Prep Ex	tract Vol: 5 mL	

Print Date: 09/02/2022 8:54:23AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1224988 [XXX46872] Blank Spike Lab ID: 1681771 Date Analyzed: 08/29/2022 01:59 Spike Duplicate ID: LCSD for HBN 1224988 [XXX46872] Spike Duplicate Lab ID: 1681772 Matrix: Soil/Solid (dry weight)

QC for Samples: 1224988001, 1224988002, 1224988003

Results by AK102			_						
	E	Blank Spike	(mg/kg)	s	pike Duplic				
<u>Parameter</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Diesel Range Organics	667	687	103	667	711	107	(75-125)	3.40	(< 20)
Surrogates									
5a Androstane (surr)	16.7		97	16.7		100	(60-120)	2.70	
Batch Information									
Analytical Batch: XFC16326				Pre	p Batch: X	XX46872			
Analytical Method: AK102				Pre	p Method:	SW3550C			
Instrument: Agilent 7890B R				Pre	p Date/Tim	e: 08/26/202	2 14:07		
Analyst: HMW							g/kg Extract		
				Dup	e Init Wt./V	/ol.: 16.7 mg	g/kg Extract	Vol: 5 mL	

Print Date: 09/02/2022 8:54:26AM

SGS North America Inc. CHAIN OF CUSTODY RECORD

1224988

Profil #369569 9

	CLIENT:	MI					Inst Oi	ructio missio	ons: S ons m	Section	s 1 - ay the	5 mu onse	st be 1 et of a	illed out. nalysis.		Page of
	CONTACT:		NE #: 907-7	172-93	36	Sec	tion 3					Prese	rvative			
ctic %		PRO. PWSI	ест/ d/ \78 иіт#:			# C		/			/		/ /			
Se	REPORTS TO Del aneu	j Dent & Shavla IPro	ile #: ^{smars})emi-alask navl@emi-	a.com alaska.com	O N T	Comp Grab	62				Analysi	s*			NOTE: *The following analyses require specific method
	INVOICE TO:	Frin Smith QUA Gemi-alsaska.com P.O			MATRIX	I N E	MI (Multi- incre- mental)	0-AK102								and/or compound list: BTEX, Metals, PFAS
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM		R S		DRO							-	REMARKS/LOC ID
	IAB	17855-LF2019-4	8 15 22	10:12	<u>soil</u>	\downarrow	gravb	$\overline{\checkmark}$								
	2AB	17855-LF2019-44	8 15/22	10:22	soil		group									
	3AB	17855-1F2019-2	8/15/22	10:20	soit		grab									
	4A						<u> </u>									
Section						<u></u>										
0.						+					+					
						+	-									
								1 .								
						-										
┝			Date	Time	Received E	Bv:				Sectio	on 4	DOD	Project?	Yes No		eliverable Requirements:
	Relinquish	ed By: (1)	8/17/22	1600	G.	\sim	itte								lev	rel II
	The	7 he	Date	Time	Received I		WW	<u> </u>		Coole Reques	ted Tu	rnarou	nd Time	and/or Spe	cial Instru	ctions:
L.	Relinquish	A		1	-											
	Relinquish	Smith	8/19/22		Received	R17-	$ \rightarrow $			1 5	tan	dard	lw	rnarour		11. 11
d	D Relinquish	ed By: (3)	Date	Time	neceiveu	<u>.</u>				Temp B	lank °	c: <u>5</u> ,	a í	X62	Chain	of Custody Seal: (Circle)
	Relinquish	ed By: (4)	Date	Time	Received	For Lab	oratory By	y:		1			ient []		INTAC	T BROKEN ABSENT
			8/6/22	13:15			h	$\sum_{i=1}^{n}$	JS		Deli	very Me	thod: H	and Deliver	y Comm	nerical Delivery []

http://www.sgs.com/terms-and-conditions

2

363	SGS Workorder #:	1224988	1224988
R	eview Criteria	Condition (Yes, No, N/A	Exceptions Noted below
Chain of Custo	dy / Temperature Requirements	Note: Temperature a	nd COC seal information is found on the chain of custody for
DOD only: Did all sa	ample coolers have a corresponding (COC? N/A	
	If <0°C, were sample containers ice	free? N/A	
	Note containers receive	ed with ice:	
Identify any co	ntainers received at non-compliant ter (Use form FS-0029 if more space i		
	entation / Sample Condition Req		083 "Sample Guide" for specific holding times and sample contair
Do sample	labels match COC? Record discrepa	ncies. Yes	
	containers differs from COC, default nes differ <1hr, record details & login		
	Were analytical requests	clear? Yes	
•	or analyses with multiple option for m 1 vs 8260, Metals 6020 vs 200.8)	ethod	
	ers (type/mass/volume/preservative)u		
Note: Exemption fo	r metals analysis by 200.8/6020 in wa	ater.	
Volatile Analysis R	equirements (VOC, GRO, LL-Hg	, etc.)	
ere all soil VOAs receive	d with a corresponding % solids conta	ainer? Yes	
Were Trip Blanks (e.g., VOAs, LL-Hg) in cooler with sam	nples? Yes	
	free of headspace (e.g., bubbles \leq 6		
	VOAs field extracted with Methanol+		
Note to Client: An	y "No", answer above indicates non-o	compliance with standard	procedures and may impact data quality.
		notes (if applicable):	

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition
1224988001-A	No Preservative Required	ОК			
1224988001-B	Methanol field pres. 4 C	ОК			
1224988002-A	No Preservative Required	OK			
1224988002-B	Methanol field pres. 4 C	ОК			
1224988003-A	No Preservative Required	ОК			
1224988003-B	Methanol field pres. 4 C	ОК			
1224988004-A	Methanol field pres. 4 C	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Delaney Dent	CS Site Name:	Kotzebue Former HIS/BIA Hospital – School Pipeline Release	Lab Name:	SGS
Title:	Junior Environment al Scientist	ADEC File No.:	410.38.025	Lab Report No.:	1224988
Consulting Firm:	EMI	Hazard ID No.:	25558	Lab Report Date:	9/02/2022

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

- a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses? Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

Yes \Box No \Box N/A \boxtimes Comments: All samples were analyzed by SGS in Anchorage, AK

2. Chain of Custody (CoC)

a. Is the CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

b. Were the correct analyses requested?

Yes \boxtimes No \square N/A \square Analyses requested: DRO - AK102 Comments: Click or tap here to enter text.

3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Cooler temperature(s): 5.2°C

Sample temperature(s): Click or tap here to enter text. Comments: Click or tap here to enter text.

b. Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- c. Is the sample condition documented broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?
 Yes ⊠ No □ N/A □
 Comments: No issues noted on sample receipt form
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
 Yes □ No □ N/A ⊠
 Comments: No issues noted
- e. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No issues noted

4. Case Narrative

- a. Is the case narrative present and understandable?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- b. Are there discrepancies, errors, or QC failures identified by the lab?
 Yes □ No ⊠ N/A □
 Comments: No issues noted
- c. Were all the corrective actions documented?
 Yes □ No □ N/A ⊠
 Comments: No issues noted
- d. What is the effect on data quality/usability according to the case narrative? Comments: N/A No issues noted

5. Sample Results

Are the correct analyses performed/reported as requested on CoC?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.

- b. Are all applicable holding times met?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- c. Are all soils reported on a dry weight basis?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- e. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No issues noted

6. QC Samples

- a. Method Blank
 - i. Was one method blank reported per matrix, analysis, and 20 samples? Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
 - ii. Are all method blank results less than LOQ (or RL)?
 Yes ⊠ No □
 Comments: Click or tap here to enter text.
 - iii. If above LoQ or RL, what samples are affected? Comments: Click or tap here to enter text.
 - iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
 Yes □ No □ N/A ⊠

Comments: No issues noted

v. Data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No issues noted

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - Organics Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \Box No \Box N/A \boxtimes Comments: No metal/inorganic analyses conducted

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Click or tap here to enter text.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \Box No \Box N/A \boxtimes Comments: All within prescribed limits

- vii. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: No issues noted
- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 - i. Organics Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes □ No ⊠ N/A □ Comments: No MS/MSD reported **CS Site Name:** Kotzebue Former HIS/BIA Hospital – School Pipeline Release Lab Report No.: 1224988

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?
 Yes □ No □ N/A ⊠

Comments: No metals/inorganics analyses conducted

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
 Yes □ No □ N/A ⊠
 Comments: No MS/MSD reported
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes □ No □ N/A ⊠ Comments: No MS/MSD reported

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Click or tap here to enter text.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes □ No □ N/A ⊠ Comments: No MS/MSD reported

vii. Is the data quality or usability affected?
Yes □ No ⊠ N/A □
Comments: Click or tap here to enter text.

d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.

 Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

CS Site Name: Kotzebue Former HIS/BIA Hospital – School Pipeline Release Lab Report No.: 1224988

Yes □ No □ N/A ⊠ Comments: No issues noted

- iv. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No issues noted
- e. Trip Blanks
 - Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes □ No □ N/A ⊠
 Comments: No volatile samples analyzed
 - ii. Are all results less than LoQ or RL?
 Yes □ No □ N/A ⊠
 Comments: No volatile samples analyzed
 - iii. If above LoQ or RL, what samples are affected? Comments: Click or tap here to enter text.
 - iv. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: No volatile samples analyzed

f. Field Duplicate

Are one field duplicate submitted per matrix, analysis, and 10 project samples?
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

Was the duplicate submitted blind to lab?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.

CS Site Name: Kotzebue Former HIS/BIA Hospital – School Pipeline Release Lab Report No.: 1224988

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$$

Where R_1 = Sample Concentration

R₂ = Field Duplicate Concentration

Is the data quality or usability affected? (Explain)

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

iv. Is the data quality or usability affected? (Explain)
 Yes □ No ⊠ N/A □
 Comments: RPD within recommended limits

g. Decontamination or Equipment Blanks

- Were decontamination or equipment blanks collected? Yes □ No ⊠ N/A □ Comments: Disposable sampling equipment used
- ii. Are all results less than LoQ or RL?
 Yes □ No □ N/A ⊠
 Comments: Disposable sampling equipment used
- iii. If above LoQ or RL, specify what samples are affected. Comments: Click or tap here to enter text.
- iv. Are data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Disposable sampling equipment used

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Are they defined and appropriate?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

APPENDIX E

Resumes of QEPs

SHAYLA MARSHALL

QUALIFIED ENVIRONMENTAL PROFESSIONAL

smarshall@emi-alaska.com

EDUCATION

- M.S. in Environmental Science, 2004, Alaska Pacific University
- B.A. in Environmental Studies, 2002, Concordia College

PROFESSIONAL CERTIFICATIONS

- 40 Hour HAZWOPER Certification
- Army Corps of Engineers Wetland Delineation and Management Training
- Wetland Delineation Professional Certification
- Wetland Plants of the Pacific Northwest Professional Certification
- Advanced Wetland Soils and Hydrology for Delineators Professional Certification

EXPERIENCE AND QUALIFICATIONS

Ms. Marshall began her environmental consulting career in 2004. In 2015, she joined EMI. She has deep experience in the environmental field, specializing in environmental assessments, investigation and cleanups, landfill compliance, statistical analysis, geographical information systems (GIS), and wetland delineations and permitting. As an Environmental Professional (ASTM) and ADEC Qualified Environmental Professional, she has worked on or managed numerous site investigations and remedial actions throughout urban and rural Alaska and is familiar with the logistical issues associated with conducting environmental work in the state. She has the authority to conduct and/or manage Phase I Environmental Site Assessments (ESA) following ASTM 1527-13 standards, wetland delineations, natural resource permitting, site assessments and investigations, contaminated site cleanups, and environmental reviews.

SPECIFIC ENVIRONMENTAL PROJECT EXPERIENCE

Haines Tank Farm Spill Response and Cleanup, Haines, Alaska | Delta Western, LLC | 2020 – Present Project manager associated with the spill response associated with a breach of the secondary containment at a tank farm in Haines. An estimated 735 gallons of diesel fuel was released from the tank. In order to prevent any further migration of fuel, earthen dams were constructed and sorbent booms were deployed at the time of the spill along the drainage swales around the secondary containment area. Contaminated soil was removed along the swales and placed in supersacks for transport to Juneau for treatment. Due to the presence of product in the swales, skimmers were deployed and the skimmed product-water mixture was transported to Ketchikan for recycling. As the project site was proximate to the waterfront, the project entailed close coordination with the US Coast Guard, community, landowner, and ADEC.

Shungnak Tank Farm Release Spill Assessment and Cleanup, Shungnak, Alaska | Village of Shungnak | 2020 – Present

Project manager for the spill response associated with an approximately 15,000-gallon fuel release at the Shungnak School heating oil tank farm. Due to the close proximity of the spill to the Kobuk River, Shungnak's source for drinking water, the project was expedited to remove the most grossly impacted soil and assess the potential impact to the drinking water source. In 2020, the project involved a survey of the spill area and landfarm area, including mapping using drones. Test pits and hand tools were also

used to assess the soil conditions and delineate the extent of contamination. In 2021, the scope entailed further delineation of select areas at the site and development of a cleanup plan for the removal and local landfarming of impacted soil.

Release Investigation, Cleanup, and Closure of Spill at Pilot Mountain Tower, Outside of Galena, Alaska | DRS Global | 2018 – 2019

Project manager for the spill response at the Pilot Mountain telecommunications tower. In 2018, conducted a release investigation in response to a spill caused by bear activity at the fuel line. Based on the results of the sampling activities, mobilized to the site in 2019 to begin cleanup activities. Due to the remote nature of the site, a mini-excavator was slung to the top of the mountain via helicopter to facilitate filling of supersacks of contaminated soil. The supersacks were transported to the barge landing in Galena, then transported to OIT via barge and then truck. Due to the limited availability of fill material in the region and cost to transport fill to the site for backfill of the excavation. Based on the results of the 2019 removal actions, the site was eligible for closure with institutional controls. Coordinated with the ADEC, landowner, and responsible party to develop a closure document that outlined the covenants on the site that is agreeable to all three parties.

Site Investigation and Cleanup, Kenai, Alaska | Arctic Slope Regional Corporation | 2015 – 2019

Project manager for the site investigation and cleanup work associated with industrial activities that resulted in POL, solvent, and TENORM contamination at the site, including within buildings. Field activities included several field efforts identifying extent of contamination using test pits and soil borings, and soil removal from discrete locations across the property. Due to the presence of an on-site drinking water well, collected drinking water well samples to determine if the contamination extended to the drinking water aquifer.

Buried Debris Evaluation and Site Characterization, Deadhorse, Alaska | CH2MHill-Jacobs | 2018

Project manager for the geophysical survey and environmental site characterization activities on Tract 22. The environmental activities included collecting soil and porewater samples from borings, and collecting sediment and surface water samples from a nearby unnamed water body. Coordinated the geophysical survey, including conducting the data processing of EM31 (conductivity and magnetivity) and resistivity data and associated writeup to determine the lateral and vertical extent of buried debris.

Remediation of Pipeline Release, Kotzebue, Alaska | Maniilaq Association | 2017 – Present

Project manager for remediation from the Former Indian Health Service/Bureau of Indian Affairs (IHS/BIA) Hospital – School Pipeline Release in Kotzebue. In 2017, a work plan was developed to remove an underground storage tank (UST). In 2018, a geophysical survey was conducted to identify the location of the UST, associated piping, and dispensers. In 2019, the UST was removed, groundwater samples were collected from the area, and a landfarm was developed to treat the impacted soil removed during the UST excavation activities. The 2020 field activities were conducted in two phases. In the spring, the field activities focused on the investigation into the extent of contamination on the three formerly IHS-occupied lots using soil borings. In addition, due to the previous presence of free product at the site, passive product recovery was conducted. In the fall, conducted the first phase of cleanup on the lots, with the cleanup being phased due to the availability of local resources and short field season. The cleanup entailed removal of contaminated soil and placement of a locally-managed landfarm and placement of a curtain to minimize the migration of contamination into the cleaned area. Conducted additional groundwater monitoring in the fall of 2020 to assess the trend of contamination in the groundwater as the contaminated soil and sources (i.e., tank) after removal.

DELANEY DENT, E.I.T.

QUALIFIED ENVIRONMENTAL PROFESSIONAL, ENGINEER IN TRAINING

ddent@emi-alaska.com

EDUCATION

• B.S. in Chemical Engineering, 2019, University of Wyoming

PROFESSIONAL CERTIFICATIONS

- 40 Hour HAZWOPER Certification
- EPA / AHERA Inspector
- Nielsen Environmental Field School Environmental Sampling Certification

EXPERIENCE AND QUALIFICATIONS

Ms. Dent has nearly two years of experience in environmental consulting. Prior to joining EMI, she worked at a chemical plant in Wyoming, conducting long-term groundwater and air monitoring, as well as serving overseas in health promotion in the village of Malembo in Malawi. At EMI, she specializes in sampling soil, groundwater, and hazardous building materials, plus site characterizations using soil borings and monitoring wells, characterizing stockpiles and excavations in association with USTs, providing oversite and recommendations for Spill Prevention, Control, and Countermeasure Plans for facilities using ASTs, and assisting with engineering design and CAD design of landfill projects. She also conducts quality control review of laboratory data, writes work plans, compiles project specific deliverables, and is EMI's secondary CAD designer.

SPECIFIC ENVIRONMENTAL PROJECT EXPERIENCE

Former IHS/BIA Pipeline Spill Remediation and Long-Term Groundwater Monitoring, Kotzebue, Alaska | Maniilag Association | 2021 – Present

Compiled work plans for two consecutive years to conduct site characterization of potentially fuel impacted soils and groundwater at the Former IHS/BIA Hospital-School, Kotzebue, Alaska. Conducted field activities, which included groundwater sampling, excavation, and landfarm soil sampling, plus a site reconnaissance of current conditions at the site. Finally, conducted data analysis and area-focused investigation and is involved in the effort to determine next steps for the site.

Selawik Diesel Overflow Site Assessment, Selawik, Alaska | City of Selawik | 2021 – Present Assisted in compiling the work plan for the site assessment activities for the Water Treatment Plant in Selawik, Alaska. Conducted the field activities, which included installation and sampling of long-term monitoring wells to delineate the horizontal extent of surface water contamination currently at the remote site.

College Station Groundwater Monitoring, Fairbanks, Alaska | USPS | 2021 – Present Conducting quarterly groundwater sampling at an on-site monitoring well, transporting samples, and upon completion, evaluating the sample data and drafting the report. Storm Water Outfall Foam Investigation, Anchorage, Alaska | Private Client | 2021 – Present Assisted in the investigation of a source of foam located at the outfall of a storm sewer system draining a large area. Worked to maintain a remote camera used to monitor foam and water quality for PFAS and glycol.

Spenard Buckets Characterization, Anchorage, Alaska | Central Environmental, Inc. | 2021 Assisted the field lead collecting characterization samples from several unlabeled containers of unidentified liquids found during demolition. Inventoried containers that had labels and contained their original contents.

Seward Well Decommissioning, Seward, Alaska | Private Client | 2021

Under the guidance of a QEP, conducted field activities consisting of directing and documenting the decommissioning of two monitoring wells. Lead author on report discussing the activities and conclusions.

IHS-BIA Pipeline Oil Spill, Kotzebue, Alaska | Maniilaq Association | 2021

Worked under the direction of a QEP on contaminated soil removal, sampling, and groundwater monitoring conducted at the former hospital – school pipeline release. Conducted soil removal activities with subsequent field screening and analytical sampling at the limits of excavation. Managed asbestos containing material discovered during excavation activities as a certified EPA/AHERA Inspector. To provide an efficient use of resources, also assisted in landfarm soil sampling and groundwater monitoring of onsite wells. Upon completion of field activities, provided a report documenting work done, analyzing analytical results, and final conclusions.

3319 Industrial Avenue Heating Oil Overfill Cleanup, Fairbanks, Alaska | National Express, LLC | 2021

Worked alongside a QEP on an environmental cleanup in Fairbanks associated with a heating oil overfill. Drafted the work plan on cleanup activities, field screened soil onsite after contaminated soil removal, and collected analytical samples from the sidewalls and excavation base. Field activities also included coordination with the vac truck company, backfill source, and trucking company. Once sample results were received, served as the primary author of the cleanup report.

Adler School Demo Soil Cleanup, North Pole, Alaska | Central Environmental, Inc. | 2021

Assisted in compiling the work plan for the sampling approach on removing soil and characterizing the extent of fuel impacted soils associated with the heating oil tank at the former Adler School, North Pole, Alaska. Assisted the accompanying ADEC Qualified Environmental Professional in performing the site work, transporting samples, and upon completion, evaluating the sample data and drafting the report.

Water Treatment Plant Diesel Overflow, Selawik, Alaska | City of Selawik | 2021 – Present Assisted in compiling a work plan for the analysis of samples to delineate the extent of contamination at the diesel overflow site in Selawik, Alaska, under the supervision of an ADEC Qualified Environmental Professional.

Home Heating Oil Tank, Chugiak, Alaska | Private Client | 2021

Conducted a site investigation for the removal of a home heating oil tank at a property in Chugiak, Alaska. To check for potential contamination from a home heating oil tank, checked condition of the tank, the removed soils, and the soils at the limits of the excavation. Collected samples for field testing with the PID, documented the photoionization readings, and collected laboratory samples from the locations most likely to be contaminated. Sampling and testing procedures followed ADEC's *Field Sampling Guidance*. Work was checked by an ADEC Qualified Environmental Professional.

APPENDIX F

Human Health Conceptual Site Model Graphic Form and

Human Health Conceptual Site Model Scoping Form and Standardized Graphic

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: Kotzebue Former IHS/BIA Hospital – School Pipeline Release (Lot 3) File No: 410.38.025 <u>Instructions</u>: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

Completed I	_{By:} Shayla Marshall			use controls when describing pair	iways	-						
Date Completed: 11/1/2022									(5)			
(1)	(2)	(3)		(4)	exp "F"	osure p for futu	athwa re rece	y: Ente eptors,	otentiall er "C" fo "C/F" fo or insign	or curre or both	ent rec currer	eptor nt and
Check the media could be directly		Check all exposure media identified in (Check all pathways that could be complete. <u>The pathways identified in this column must</u>					ture			
by the release.	(1) if the media acts as a secondary source.		(2).	agree with Sections 2 and 3 of the Human Health CSM Scoping Form.		/	/	ers,			•	,
Media	Transport Mechanisms	Exposure M	edia	Exposure Pathway/Route	/	tren)	kers	l use	Vorke		ousr	/
Surface Soil (0-2 ft bgs)	Direct release to surface soil check soil ✓ Migration to subsurface check soil ✓ Migration to groundwater check groundwater ✓ Volatilization check air				Residents	Commercial or children)	Site visitors	Construction Users	Farmers or subsist	Subsistence co.	Other -	
	Runoff or erosion check surface water		🖌 Incide	ental Soil Ingestion	C/F	C/F	C/F	C/F				
	Uptake by plants or animals <u>check biota</u>	🔽 soil	✓ Derm	al Absorption of Contaminants from Soil	C/F	C/F	C/F	C/F				
	Other (list):		Inhala	ation of Fugitive Dust								
	Direct release to subsurface soil check soil											
Subsurface Soil	✓ Migration to groundwater check groundwater ✓ Volatilization check air		√ Inges	tion of Groundwater	I	I	I	I				I
(2-15 ft bgs)	Uptake by plants or animals <u>check biota</u>	groundwater	✓ Derm	al Absorption of Contaminants in Groundwater				C/F				I
	Other (list):		Inhala	ation of Volatile Compounds in Tap Water								I
	Direct release to groundwater check groundwater											
Ground-	Volatilization check air		🖌 Inhala	ation of Outdoor Air	C/F	C/F	C/F	C/F				
water	Flow to surface water body check surface water Flow to sediment check sediment	<mark>⊠</mark> air	🗸 Inhala	ation of Indoor Air	C/F	C/F	C/F	C/F				
	Uptake by plants or animals check biota		Inhala	ation of Fugitive Dust								
	Other (list):						1	1				
	Direct release to surface water check surface water		✓ Inges	tion of Surface Water	I	I	I	I				
Surface	Volatilization check air	surface water	Derm	al Absorption of Contaminants in Surface Water								
Water	Sedimentation check sediment		Inhala	tion of Volatile Compounds in Tap Water								
	Uptake by plants or animals check biota							1	II]	
		sediment	Direct	Contact with Sediment								
	Direct release to sediment check sediment		/				1	1				
Sediment	Resuspension, runoff, or erosion <u>check surface water</u> Uptake by plants or animals <u>check biota</u>	biota		tion of Wild or Farmed Foods								
	Other (list):											

Revised, 10/01/2010

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	Kotzebue Former IHS/BIA Hospital – School Pipeline Release (Lot 3)
File Number:	410.38.025
Completed by:	Shayla Marshall

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

USTs	Vehicles					
🖂 ASTs						
Dispensers/fuel loading racks	Transformers					
Drums	⋉ Other: Former BIA-IHS Pipeline					
Release Mechanisms (check potential release mechanisms at the site)						

Direct discharge
Burning
Other:

Impacted Media (check potentially-impacted media at the site)

\boxtimes Surface soil (0-2 feet bgs*)	S Groundwater
\boxtimes Subsurface soil (>2 feet bgs)	Surface water
🖂 Air	Biota
Sediment	Other:

Receptors (check receptors that could be affected by contamination at the site)

🖂 Re	sidents	(adult	or	child)	

- \boxtimes Commercial or industrial worker
- \boxtimes Construction worker
- Subsistence harvester (i.e. gathers wild foods)
- Subsistence consumer (i.e. eats wild foods)
- Farmer

 \boxtimes Site visitor

 \boxtimes Trespasser

□ Recreational user

Other:

- **2. Exposure Pathways:** (*The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".*)
- a) Direct Contact -

b)

1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

If the box is checked, label this pathway complete:	Complete	
Comments:		
Contaminants include: DRO, 1-methylnapthalene, 2-methylnapthalene 1,3,5-trimethylbenzene, and naphthalene	e, 1,2,4-trimethylbenzene,	
2. Dermal Absorption of Contaminants from Soil		
Are contaminants present or potentially present in surface soil (Contamination at deeper depths may require evaluation on a		w the ground surface? \boxtimes
Can the soil contaminants permeate the skin (see Appendix B	in the guidance document)?	X
If both boxes are checked, label this pathway complete:	Complete	
Comments:		
1-Methylnapthalene and 2-Methylnapthalene both present		
Ingestion - 1. Ingestion of Groundwater		
Have contaminants been detected or are they expected to be d or are contaminants expected to migrate to groundwater in the	U	$\overline{\times}$
Could the potentially affected groundwater be used as a current source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source of to 18 AAC 75.350.	s determined the ground-	$\overline{\times}$
If both boxes are checked, label this pathway complete:	Complete	
Comments:		
MW7 is present on Lot 3 and has contained the following analytes at co cleanup levels: DRO, RRO, and tetrachloroethene (PCE). The community water bodies and not from groundwater wells.		

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:	Incomplete
Comments:	
Prior to installation of the piles along Shore Avenue, sheen had been reported downgradient of the site.	ed in Kotzebue Sound,
3. Ingestion of Wild and Farmed Foods	
Is the site in an area that is used or reasonably could be used for hu harvesting of wild or farmed foods?	unting, fishing, or
Do the site contaminants have the potential to bioaccumulate (see document)?	Appendix C in the guidance
Are site contaminants located where they would have the potential biota? (i.e. soil within the root zone for plants or burrowing depth groundwater that could be connected to surface water, etc.)	1
If all of the boxes are checked, label this pathway complete:	Incomplete
Comments:	
nhalation-	
1. Inhalation of Outdoor Air	
Are contaminants present or potentially present in surface soil betw	ween 0 and 15 feet below the

ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.)

Are the contaminants in soil volatile (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

c)

Volatile soil contaminants encountered on Lot 3 include: 1-methylnapthalene, 2-methylnapthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene.

 \times

 $\overline{\times}$

 \square

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

Volatile compounds were not encountered in the borings closest to Buildings 307, 312, 315, and 317. The closest boring with volatiles (naphthalene) was Boring B5--that boring is 39 feet from Buildings 307 and 312. Although volatile compounds have been detected on Lot 3, the locations of those detections are well over 30 horizontal feet from the residential structures on Lot 3.

 $\overline{\times}$

 \overline{X}

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- o Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:

Comments:

Due to shallow groundwater, groundwater may be exposed during construction.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Not applicable

 \square

 \overline{X}

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Not applicable

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- o Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

Not applicable

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: Kotzebue Former IHS/BIA Hospital – School Pipeline Release (Lot 4) File No: 410.38.025 <u>Instructions</u>: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

Completed	_{By:} Shayla Marshall			use controls when describing par	iiways	•					
Date Completed: 11/1/2022									(5)		
(1)	(2)	(3)		(4)	exp "F"	osure p for futu	athwa re rece	y: Ente eptors,	ər "C" fo "C/F" fo	or curre or both	ted by each ent receptor current and t exposure.
Check the media	that For each medium identified in (1), follow the	Check all exposure		Check all pathways that could be complete.					0		ceptors
could be directly by the release.	affected top arrow <u>and</u> check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	media identified in (:	2).	<u>The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.</u>		,	,	ŝ	, ,		•
Media	Transport Mechanisms	Exposure M	edia	Exposure Pathway/Route	/	Iren,	kers	l nse	Vork	; ;	lsuo.
Surface Soil (0-2 ft bgs)	Direct release to surface soil check soil ✓ Migration to subsurface check soil ✓ Migration to groundwater check groundwater ✓ Volatilization check air				Residents	Commercial or children)	Site visitors	Construction users	Farmers or subsist	Subsistence con	Other 0
	Runoff or erosion check surface water		✓ Incide	ental Soil Ingestion	C/F	C/F	C/F	C/F			
	Uptake by plants or animals check biota	🔽 soil	✓ Derm	al Absorption of Contaminants from Soil	C/F	C/F	C/F	C/F			
	Other (list):		Inhala	ation of Fugitive Dust							
	Direct release to subsurface soil check soil										
Subsurface Soil	Migration to groundwater <u>check groundwater</u> Volatilization <u>check air</u>		√ Inges	tion of Groundwater	1	I	1	1			
(2-15 ft bgs)	Uptake by plants or animals check biota	groundwater		al Absorption of Contaminants in Groundwater				C/F			
	Other (list):		Inhala	ation of Volatile Compounds in Tap Water							
	Direct release to groundwater check groundwater					_			1 1		
Ground-	✓ Volatilization check air		🗸 Inhala	ation of Outdoor Air	C/F	C/F	C/F	C/F			
water	Flow to surface water body check surface water Flow to sediment check sediment	air	🗸 Inhala	ation of Indoor Air	I	1	I	1			
	Flow to sediment Check sediment Uptake by plants or animals Check biota	/	Inhala	ation of Fugitive Dust							
	Other (list):					1					
	Direct release to surface water check surface water		✓ Ingest	tion of Surface Water	I	I	I	I			
Surface	Volatilization check air	surface water	Derm	al Absorption of Contaminants in Surface Water							
Water	Sedimentation check sediment		🗌 Inhala	ation of Volatile Compounds in Tap Water							
	Uptake by plants or animals <u>check biota</u> Other (list):										
		sediment	Direct	Contact with Sediment							
	Direct release to sediment check sediment Resuspension, runoff, or erosion check surface water]
Sediment	Uptake by plants or animals check biota	biota	Inges	tion of Wild or Farmed Foods							
	Other (list):						1	1			

Revised, 10/01/2010

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	Kotzebue Former IHS/BIA Hospital – School Pipeline Release (Lot 4)
File Number:	410.38.025
Completed by:	Shayla Marshall

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

🗵 USTs	Vehicles				
🖂 ASTs					
Dispensers/fuel loading racks	Transformers				
Drums	⊘ Other: Former IHS-BIA Pipeline				
Release Mechanisms (check potential release mechanisms at the site)					
⊠ Spills	Direct discharge				

🗵 Leaks	Burning
	Other:
	r.

Impacted Media (check potentially-impacted media at the site)

⊠ Surface soil (0-2 feet bgs*)	⊠ Groundwater
⊠ Subsurface soil (>2 feet bgs)	Surface water
🖂 Air	Biota
☐ Sediment	Other:

Receptors (check receptors that could be affected by contamination at the site)

\boxtimes Residents (adult or child)	
--	--

- \boxtimes Commercial or industrial worker
- $\overline{\boxtimes}$ Construction worker
- Subsistence harvester (i.e. gathers wild foods)
- Subsistence consumer (i.e. eats wild foods)
- Farmer

 \boxtimes Site visitor

 \boxtimes Trespasser

□ Recreational user

Other:

* bgs - below ground surface

- **2. Exposure Pathways:** (*The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".*)
- a) Direct Contact -

1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

If the box is checked, label this pathway complete:	Complete	
Comments:		
Contaminants detected on Lot 4 include: DRO, 1-methylnapthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene	2-methylnapthalene,	
 Dermal Absorption of Contaminants from Soil 		
Are contaminants present or potentially present in surface so (Contamination at deeper depths may require evaluation on		the ground surface? \boxtimes
Can the soil contaminants permeate the skin (see Appendix	B in the guidance document)?	$\overline{\times}$
If both boxes are checked, label this pathway complete:	Complete	
Comments:		
1-Methylnapthalene and 2-Methylnapthalene both present. Ingestion - 1. Ingestion of Groundwater		
Have contaminants been detected or are they expected to be or are contaminants expected to migrate to groundwater in t	•	$\overline{\times}$
Could the potentially affected groundwater be used as a curr source? Please note, only leave the box unchecked if DEC h water is not a currently or reasonably expected future source to 18 AAC 75.350.	has determined the ground-	$\overline{\times}$
If both boxes are checked, label this pathway complete:	Complete	
Comments:		
There are no wells on Lot 4. However, wells on adjoining lots have co benzene, ethylbenzene, tetrachloroethene (PCE), napthalene, 1,2,4-t 1,3,5-trimethylbenzene, and 1-methylnapthalene. The community d bodies and not from groundwater wells.	rimethylbenzene,	

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:	Incomplete
Comments:	
Prior to installation of the piles along Shore Avenue, sheen had been reported downgradient of the site.	ed in Kotzebue Sound,
3. Ingestion of Wild and Farmed Foods	
Is the site in an area that is used or reasonably could be used for hu harvesting of wild or farmed foods?	unting, fishing, or
Do the site contaminants have the potential to bioaccumulate (see a document)?	Appendix C in the guidance
Are site contaminants located where they would have the potential biota? (i.e. soil within the root zone for plants or burrowing depth groundwater that could be connected to surface water, etc.)	1
If all of the boxes are checked, label this pathway complete:	Incomplete
Comments:	
Inhalation- 1. Inhalation of Outdoor Air	

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.)

Are the contaminants in soil volatile (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

c)

Volatile soil contaminants encountered at the site include: 1-methylnapthalene, 2-methylnapthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene

 \times

 \overline{X}

 $\overline{\times}$

 \square

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

Volatile soil contaminants encountered at the site include: 1-methylnapthalene, 2-methylnapthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and naphthalene

Note, the FRF Building is on pilings with an open area beneath the building for airflow.

 $\overline{\times}$

 $\overline{\times}$

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- o Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:

Comments:

Due to shallow groundwater, workers may be exposed to groundwater during construction activities.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Not applicable

 \square

 \times

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Not applicable

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- o Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

Not applicable

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

APPENDIX G

DEC Review Comment Table

Document: draft, 2022 Landfarm Sampling and Groundwater Monitoring Report, Former IHS/BIA Hospital-School Pipeline Release, IHS, November 2022, Tanana Commercial/Environmental Management, LLC JV

File No: 41	0.38.025

Comment No.	Section/Page	DEC Comment/Recommendation 12/16/2022	Responsible Party Response 01/24/2022 ADEC response: 01/06/2023
1.	3.1, 1 st bullet	 Headspace samples were not collected from the 2020 landfarm soil cell on a 10-foot by 10-foot grid due to <u>initial readings</u> indicating elevated levels of contamination still present. Please clarify what is meant by "initial readings". 	Revised Section 3.1 ADEC, 01/06/2023: Response accepted.
2.	3.2	 Product level measurements were collected for Monitoring Well MW1. Monitoring Well MW6 was suspected to contain ice with potential product on top though no measurable level of product was present. Was there an attempt to remove the product in MW1? If so, approximately how much product was removed? DEC notes free product must be removed to the maximum extent practicable, per 18 AAC 75.325(f)(1)(B). 	Passive product recovery was put in place. See section 4.2 and photos 6 and 12. Approximate volume of product removed will be calculated after removal of the passive product recovery device in a future field event. ADEC, 01/06/2023: Response accepted.
3.	3.3	Based on volume of GAC, maximum concentrations encountered at the site, and amount of water treated to date, the GAC can continue to be used in 2023.Please provide GAC breakthrough calculations prior to the next field mobilization, per ADEC's Field Sampling Guidance (2022).	GAC breakthrough calculations will be provided in the next field sampling work plan prior to mobilization. Updated Section 8.0. ADEC, 01/06/2023: Response accepted.

Comment No.	Section/Page	DEC Comment/Recommendation 12/16/2022	Responsible Party Response 01/24/2022 ADEC response: 01/06/2023
4.	3.4.2	 Analytical samples were collected in eight of the ten wells. Please include this sampling deviation in the Work Plan Variances section. Additionally, the bulleted list seems to indicate MW2 and MW10 may not have been accessible or sampled. Please clarify. 	Revised 3.1 bullet three Revised 3.4.2 bullets for MW2 and MW10 ADEC, 01/06/2023: Response accepted.
5.	4.2	This section indicates MW6 was dry whereas section 3.2 notes MW6 likely contained ice and was not sampled. Please clarify if MW6 was dry or if MW6 contained ice.	Revised "Dry well" meaning there is no attainable liquid downhole ADEC, 01/06/2023: Response accepted.
6.	4.3	On August 15, 2022, MW1 contained 0.03 feet and MW6 was dry, but the PID read 34.6 ppm from the top of the casing. Was 34.6 ppm the PID reading for both wells? Please clarify.	Revised Section 4.2 ADEC, 01/06/2023: Response accepted.
7.	5.1	 Results indicate any remaining contamination in soil is below ADEC MTR cleanup levels. DEC concurs with this conclusion that the 2019 soils are below ADEC Method Two Table B2 Migration to Groundwater Cleanup levels. 	ADEC MTG revised to ADEC Method Two Table B2 MTG ADEC, 01/06/2023: Response accepted with comments. Prior to moving the 2019 soils offsite, an ADEC Transport and Treatment or Disposal of Contaminated Media Approval form must be completed. Updated language in Section 8.0, end of paragraph 6.

Comment No.	Section/Page	DEC Comment/Recommendation 12/16/2022	Responsible Party Response 01/24/2022 ADEC response: 01/06/2023
8.	5.2	The source causing the increasing DRO in Well MW9 is unknown. Could increasing DRO be related to the additional excavation of contaminated soils in 2021?	The 2021 removal included the removal of soils downgradient from MW9. As a result, this is not likely to be the cause of increasing DRO levels in MW9. Section has been updated with potential sources contributing to the DRO levels. ADEC, 01/06/2023: Response
9.	6.2	Surrogate recovery for 1,2-dichloroethane-d4 (8260D) for MW2, MW5, MW55, Trip Blank, and MB (HBN 1842148) may be biased high.	accepted. Table 4 has been updated Revised Section 6.2
		 Surrogate recovery for 2-methylnaphthalene-d10 (8270D SIM) for MW10 and duplicate MW101 does not meet QC criteria. DEC requests the analytical results associated with the samples mentioned above be flagged due to quality control issues. 	ADEC, 01/06/2023: Response accepted.
10.	6.2	The LOQ for 1,2,3-trichloropropane exceeded the ADEC cleanup level. For future fieldwork, DEC requests analytical methods be used that have LOQs below ADEC Method Two Table B1/B2 Cleanup Levels.	Updated Section 8.0 to include future low-level VOC analyses. ADEC, 01/06/2023: Response accepted.
11.	6.2, ADEC Checklist for Lab Report 1224980	The relative percent difference (RPD) is above the recommended 30% for five detected PAH compounds in MW10 and MW101. DEC requests the data results for MW10 and MW101 be flagged due to quality control issues.	PAHs have been flagged in Table 4 ADEC, 01/06/2023: Response accepted.

Comment No.	Section/Page	DEC Comment/Recommendation 12/16/2022	Responsible Party Response 01/24/2022 ADEC response: 01/06/2023
12.	8.0	We recommend continued sampling for the full VOC suite during future monitoring events and the use of Teflon-lined sampling materials due to the prior presence of chlorinated solvents in the groundwater at the site.	Section 8.0 has been revised ADEC, 01/06/2023: Response accepted.
		DEC concurs with the above recommendation. Additionally, DEC requests the use of VOC analysis with LOQs below DEC Table C Groundwater Cleanup Levels to determine presence vs absence of analytes. See comment 11.	
13.	8.0	 We recommend continuing product monitoring in Well MW1 and MW6, and continued passive product recovery if measurable product continues to be present in the wells. DEC concurs with this recommendation. For future product recovery, DEC would be interested in amounts of product recovered to determine if free product is decreasing in the well over time. 	Updated Section 8.0 ADEC, 01/06/2023: Response accepted.
14.	8.0	Soils in the 2019 landfarm cell are now available for reuse. DEC agrees that soils in the 2019 cell are below DEC Method Two Table B1/B2 Migration to Groundwater Soil Cleanup Levels. Please coordinate with DEC's Solid Waste Program prior to disposal at a landfill to ensure regulatory compliance. Additionally, post-treated soils may not be used in contact with surface water or in any sensitive environment, per Landfarm Technical Memorandum (2020).	Updated language in Section 8.0 ADEC, 01/06/2023: Response accepted with comments. Prior to moving the 2019 soils offsite, an ADEC Transport and Treatment or Disposal of Contaminated Media Approval form must be completed. Updated language in Section 8.0,

Comment No.	Section/Page	DEC Comment/Recommendation 12/16/2022	Responsible Party Response 01/24/2022 ADEC response: 01/06/2023
15.	Figure 2	 Please provide a more detailed figure of the landfarm showing: 1. Dimensions of grid system used for field screening samples for 2019 and 2020 soils and analytical samples for 2019. 2. Estimated area of sacrificial fill. 3. Dimensions of 2020 soil cell. 	Figure 2 with information from bullets 1 and 3. ADEC, 01/06/2023: Response accepted. In response to bullet 2: Approximately 6 inches of protective/sacrificial fill was placed across the entire landfarm (includes 2019 and 2020 cells) when it was constructed in 2019. See Photo 6 in 2019 report. No changes were made to Figure 2. ADEC, 01/06/2023: Response accepted.
16.	Field Notes, August 15	Field notes indicated MW3 and MW4 are located on school recess grounds. Please confirm these wells are secured. The photos for MW3 and MW4 show well caps but do not show if the well caps have locks on them.	MW4 photo (Photo 9) updated. MW3 photo of locked cap was not taken. This will be noted for the next field effort. (for reference MW3 locked cap looks similar to MW4) ADEC, 01/06/2023: Response accepted.
17.	Appendix F, CSM Graphic Form, Lot 3	Groundwater, Transport Mechanisms DEC notes that while there is a sea wall barrier that is meant to prevent migration of groundwater into Kotzebue Sound, this has not been confirmed or recently sampled. In order to remain conservative, please check the "Flow to Surface Water Body" box under transport mechanisms for groundwater.	Revised ADEC, 01/06/2023: Response accepted.

Comment No.	Section/Page	DEC Comment/Recommendation 12/16/2022	Responsible Party Response 01/24/2022 ADEC response: 01/06/2023
18.	Appendix F, CSM Scoping	Sources	Revised
	Form, Lot 3,	DEC notes the former aboveground storage tanks from the former tank	ADEC, 01/06/2023: Response
	General Information	farm are documented as possible sources at this site. Please check the ASTs box under sources.	accepted.
19.	Appendix F, CSM Scoping	Groundwater, Transport Mechanisms	Revised
	Form, Lot 4	DEC notes that while there is a sea wall barrier that is meant to prevent migration of groundwater into Kotzebue Sound, this has not been confirmed or recently sampled. In order to remain conservative, please check the "Flow to Surface Water Body" box under transport mechanisms for groundwater.	ADEC, 01/06/2023: Response accepted.
20.		-end of table-	