

TABLE OF CONTENTS

<u>SEC</u>	TIO	<u>N</u>	PAGE
ACF	RONY	YMS AND ABBREVIATIONS	iii
EXE	ECUT	TIVE SUMMARY	ES-1
1.0	INT	RODUCTION	1-1
	1.1	PROJECT OBJECTIVES	1-2
	1.2	SITE DESCRIPTION	1-3
	1.3	SITE HISTORY	1-4
	1.4	REDUCTIVE DECHLORINATION	1-7
	1.5	CHANGES FROM THE 2021 EFFORT	1-9
2.0	FIE	LD ACTIVITIES	2-1
	2.1	WORK PLAN DEVIATIONS	2-2
	2.2	MONITORING WELL INTEGRITY AND MAINTENANCE	2-3
	2.3	GROUNDWATER SAMPLING	2-4
	2.4	MONITORING WELL SURVEY	2-6
	2.5	INVESTIGATION-DERIVED WASTE	2-7
	2.6	WASTE CHARACTERIZATION	2-8
3.0	PRO	DJECT SCREENING LEVELS	
4.0	QU	ALITY ASSURANCE ASSESSMENT	4-1
	4.1	QUALITY CONTROL AND SAMPLE PRESERVATION	
	4.2	DATA QUALITY	4-3
5.0	RES	SULTS AND FINDINGS	5-1
	5.1	MONITORING WELL GAUGING AND SURVEY	
	5.2	WATER QUALITY PARAMETERS	5-4
	5.3	COC ANALYTICAL RESULTS	5-5
	5.4	REDUCTIVE DECHLORINATION	5-9
		5.4.1 MNA PARAMETER EVALUATION	5-10
		5.4.2 MOLAR FRACTION CALCULATIONS	5-17
6.0	COI	NCEPTUAL SITE MODEL UPDATE	6-1
7.0	COI	NCLUSIONS	7-1
8.0	REC	COMMENDATIONS	
9.0	REF	FERENCES	

TABLES

Table 3-1	Project Groundwater Screening Levels	3-1
Table 5-1	Status and Depth to Groundwater of Drainage Pond Site Wells Sampled in 2023	5-2
Table 5-2	Water Quality Parameters from Wells Sampled in 2023	5-4
Table 5-3	Groundwater Results from the 2023 Sampling Event	5-6
Table 5-4	2023 and Historical MNA Parameters	.5-12
Table 5-5	Chloroethene Molar Fraction Trends for Drainage Pond Site Wells Sampled in 2023	. 5-17

CHART

Chart 5-1	Total Chloroethene Trends for Drainage Pond Site Wells Sampled
	in 2023

APPENDICES

Appendix A	Site Figures
Appendix B	Logbook
Appendix C	Groundwater Monitoring Forms
Appendix D	Historical and Current (2023) Results
Appendix E	Data Quality Assessment
Appendix F	Human Health CSM Scoping and Graphic Forms
Appendix G	ADEC Transport, Treatment, and Disposal Approval Form for Contaminated Media
Appendix H	ADEC Response Letter and Response to Comments

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
μg/L	microgram(s) per liter
µS/cm	microSiemens per centimeter
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
amsl	above mean sea level
bgs	below ground surface
COC	contaminant of concern
CSM	conceptual site model
DCE	1,2-dichloroethylene
DO	dissolved oxygen
DOT&PF	Alaska Department of Transportation and Public Facilities
EPA	U.S. Environmental Protection Agency
FAI	Fairbanks International Airport
GCL	groundwater cleanup level
IDW	investigation-derived waste
Jacobs	Jacobs Engineering Group Inc.
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LOD	limit of detection
mg/L	milligram(s) per liter
MNA	monitored natural attenuation
MS	matrix spike
MSD	matrix spike duplicate
mV	millivolt(s)
ND	nondetect
NTU	nephelometric turbidity unit
Oasis	Oasis Environmental Inc.
ORP	oxidation-reduction potential
PCE	tetrachloroethylene
PFAS	per- and polyfluoroalkyl substances
QC	quality control
RPD	relative percent difference
SGS	SGS North America, Inc.
SLR	SLR International Corporation

- TCE trichloroethylene
- TOC total organic carbon
- VOC volatile organic compound

EXECUTIVE SUMMARY

The Alaska Department of Transportation and Public Facilities (DOT&PF) requested groundwater monitoring at the Alaska Department of Environmental Conservation (ADEC) Fairbanks International Airport (FAI) Drainage Pond site (File No. 100.38.188, Hazard ID 1923) located at the FAI (Figures A-1 to A-3 in Appendix A). At the request of DOT&PF, Jacobs Engineering Group Inc. conducted groundwater monitoring on 8 and 9 August 2023. During the project, six wells were visited for groundwater sampling (MW-11R, MW-34, MW-38S [shallow], MW-38D [deep], MW-39, and MW-40). Groundwater samples collected during the investigation were analyzed for the following contaminants of concern: benzene, tetrachloroethylene, trichloroethylene (TCE), cis-1,2-dichloroethylene (DCE), trans-DCE, and vinyl chloride. In addition, samples from select wells were analyzed for the following monitored natural attenuation (MNA) parameters: dissolved and total iron and manganese, total organic carbon (TOC), methane, sulfate, and nitrate/nitrite.

Similar to previous years, groundwater samples collected from MW-11R, MW-40, and MW-38S continued to have high concentrations of chloroethenes compared to the other wells sampled. Results from 2023 show that the concentrations of cis-DCE in MW-11R decreased by an order of magnitude and were lower than concentrations of cis-DCE in both MW-40 and MW-38S. TCE in MW-40 exceeded the groundwater cleanup level for the first time in five sampling events. These three wells plus MW-39 with the highest concentrations of total chloroethenes are located most centrally within the known contaminant plume (Figure A-3) and showed higher levels of cis-DCE and vinyl chloride, while the well farthest to the west, MW-34, was nondetect for all analytes.

Results of MNA parameter evaluation provide evidence that the geochemical environment within the plume might be supportive of reductive dechlorination, although it is somewhat inconclusive. Past results have concluded an apparent stall of this process at the trans-DCE stage due to an oxidizing environment within the contaminant plume. TOC has been present at concentrations high enough to provide energy for the process (as seen in 2021) and might continue to be in 2023 (only samples from wells outside the plume were analyzed for TOC). Dissolved oxygen results suggest the reductive pathway is not suppressed within the

contaminant plume, and oxidation-reduction potential suggests reductive dechlorination is possible. Manganese and iron results seem to indicate most of the available oxidized states of each metal have been reduced. It was concluded that conditions in 2006 and 2010 were supportive of a reducing environment; therefore, the total and dissolved iron and manganese concentrations observed in 2023 may be indicative of the historical reducing environment. Nitrate/nitrite concentrations indicate it is not inhibiting reductive dechlorination and that nitrate is not a significant presence as an electron receptor at the site. Historically decreasing sulfate concentrations indicated sulfate reduction was occurring, and concentrations of sulfate have not been great enough to compete with reductive dechlorination. However, the latest increase in sulfate concentrations in two wells sampled this year may point to the possibility of sulfate competing with reductive dichlorination.

1.0 INTRODUCTION

The Alaska Department of Transportation and Public Facilities (DOT&PF) contracted Jacobs Engineering Group Inc. (Jacobs) to perform groundwater monitoring activities at the Fairbanks International Airport (FAI) Drainage Pond contaminated site, Alaska Department of Environmental Conservation (ADEC) File No. 100.38.188 and Hazard ID 1923. The work was performed under the Alaska DOT&PF Term Agreement for FAI Environmental Services 2019, Notice-to-Proceed No. 6, Agreement No. 25-19-1-017.

1.1 PROJECT OBJECTIVES

The primary objectives of the 2023 groundwater monitoring project were as follows:

- Conduct biennial groundwater monitoring to meet ADEC requirements.
- Assess groundwater contaminant of concern (COC) concentrations in relation to the 2023 ADEC groundwater cleanup levels (GCLs) (ADEC 2023).
- Survey monitoring wells and inspect integrity of groundwater monitoring wells.
- Improve understanding of plume behavior and groundwater conditions at the Drainage Pond site through contaminant trend analysis and monitoring of natural attenuation parameters.

1.2 SITE DESCRIPTION

The DOT&PF is the owner and operator of FAI. The Drainage Pond site includes the FAI property and those adjacent to it. The Drainage Pond site is located within the Fairbanks Meridian, Township 1 South, Range 2 West, Section 24. The site is located at 64.814693 degrees north and 147.876707 degrees west, World Geodetic Datum 1984. Monitoring wells MW-11R, MW-38S, MW-38D, MW-39, and MW-40 are within block 02, lot 07 and MW-34 is located within the Mail Trail Road DOT&PF right-of-way. The monitoring wells are northwest of the FAI runways in the vicinity of the Mail Trail Road and Airport Industrial Road intersection (Figure A-2 in Appendix A); sampling at the site includes six monitoring wells closely grouped near the intersection. Monitoring wells MW-11R, MW-38S, MW-38D, MW-39, and MW-40 are installed in a low-lying area to the east of Airport Industrial Road and monitoring well MW-34 is located just west of the Airport Industrial Road. The groundwater aquifer in this area is believed to be perched on a thin silt lens in the vicinity of wells MW-39 and MW-40 and may taper toward MW-11R in the former Drainage Pond area (SLR International Corporation [SLR] 2018).

1.3 SITE HISTORY

A hydrant fuel system was used to fuel aircraft on the FAI south apron in the 1980s. In 1986, it was shut down due to operational and maintenance problems. FAI began site investigations in 1993, when free product associated with the past hydrant fuel system was discovered during a sewer line installation (ADEC 2019). A preliminary soil and groundwater investigation and evaluation of the hydrant fuel system performed from 1997 to 1998 concluded the hydrant fuel system was the source of groundwater contamination. In 1999, an initial site investigation was conducted at the present Drainage Pond site, which included installation of monitoring wells near the Hydrant Fuel System pump building (MW-10), crossgradient from the Hydrant Fuel System pump building (MW-12), upgradient (MW-29 and MW-30), and within the present-day groundwater plume (MW-11) (Oasis Environmental Inc. [Oasis] 2006) (Figure A-2). Results from this study revealed chlorinated solvents in groundwater in and around MW-11. Annual groundwater sampling continued and monitoring wells MW-34 and MW-35 were added in 2003 and 2005, respectively. Data obtained from these investigations produced results indicative of reductive dechlorination (i.e., sequential dechlorination from tetrachloroethylene [PCE] to trichloroethylene [TCE] to 1,2-dichloroethylene [DCE] to vinyl chloride to ethylene). In 2005, monitoring well MW-11 was replaced by MW-11R, which was installed deeper than the original well (16 feet) at a depth of 34.5 feet (Oasis 2006). In 2005, ADEC changed the site name from FAI – Hydrant Fuel System to FAI – Drainage Pond with the objective to track solvents (ADEC 2019).

In 2006, soil gas and groundwater monitoring studies were conducted at the Drainage Pond site (Oasis 2007). The following monitoring wells were sampled for benzene, PCE, TCE, cis-DCE, trans-DCE, and vinyl chloride: MW-10, MW-11R, MW-12, MW-29R, MW-30R, MW-34, MW-35, MW-36, and MW-37. At the time of the investigation, MW-11R was the only monitoring well from which analytical groundwater sample results exceeded the 2006 GCLs for PCE, TCE, cis-DCE, and vinyl chloride (Oasis 2007). During the 2006 investigation, two temporary well points (TW-1 and TW-2) were installed downgradient of the study site to better delineate the plume and determine if the contamination had migrated below the water table.

These wells had only trace concentrations of DCE and cis-DCE and showed no increased contamination with depth (Oasis 2007).

Groundwater sampling continued through 2007, 2008, and 2010; groundwater sampling was not conducted in 2009 (Oasis 2011). During the 2010 investigation, four new monitoring wells (MW-38S, MW-38D, MW-39, and MW-40) and one temporary well point (TW-3) were installed adjacent to MW-11R to characterize the magnitude and extent of chloroethene contamination in the area. Monitoring wells MW-38S and MW-38D were installed immediately adjacent to one another at total well depths of 14.55 feet and 34.24 feet, respectively, to compare shallow and deep contaminant concentrations. In 2010, samples collected from MW-11R continued to have results exceeding the GCLs for PCE, TCE, cis-DCE, and vinyl chloride.

Sampling at MW-11R, MW-34, MW-38S, MW-38D, MW-39, and MW-40 was conducted again in 2013 and in 2017 (Environmental Resources Management 2014; SLR 2018). Chloroethenes exceeded GCLs for PCE, TCE, and cis-DCE at MW-11R in both investigations. Concentrations of cis-DCE and vinyl chloride in groundwater at MW-38S and MW-40 also exceeded GCLs. Notably, the 2014 GCLs changed in 2017; the GCL for PCE was raised from 5 to 41 micrograms per liter (μ g/L), and the GCL for TCE was reduced from 5 to 2.8 μ g/L (SLR 2018).

Recent groundwater monitoring events in December 2019 and 2021 found that TCE, cis-DCE, and vinyl chloride concentrations exceeded the ADEC GCLs in monitoring well MW-11R (DOT&PF 2020, 2022). Those wells located within the know contaminant groundwater plume (MW-38S, MW-39, and MW-40) also showed higher levels of cis-DCE and vinyl chloride that exceeded ADEC GCLs (DOT&PF 2020, 2022). Interestingly, the well farthest to the west, in the direction previously reported to be downgradient (MW-34), was nondetect for all analytes besides per- and polyfluoroalkyl substances (PFAS), the results for which were below ADEC GCLs (DOT&PF 2022). Groundwater flow direction and gradient based on the 2021 survey data from the Drainage Pond and neighboring Hydrant Fuel System sites were recalculated at 0.0004-foot/foot to the southeast, not toward MW-34 as previously reported. Historical groundwater monitoring studies also mentioned an up to 180 degrees change in groundwater

flow direction was possible and observed (Oasis 1999). A more thorough discussion of groundwater flow direction and gradient is presented in Section 5.1.

1.4 REDUCTIVE DECHLORINATION

The reductive dechlorination process has been observed at this site, with the reduction of PCE concentrations and subsequent daughter products. Reductive dechlorination of chloroethenes is important for bioremediation of polluted groundwater (Wiedemeier et al. 1996). One particularly important example for public health is the organochloride respiration of PCE and TCE by naturally occurring anaerobic bacteria. During reductive dechlorination, chlorine atoms are replaced by electrons coupled to hydrogen atoms, resulting in sequential dechlorination from PCE to TCE to DCE to vinyl chloride to ethylene. During reductive dechlorination, cis-DCE is the commonly formed isomer of DCE (Wiedemeier et al. 1996).

To evaluate reductive dechlorination at the site, monitored natural attenuation (MNA) parameters were analyzed during the 2006, 2010, 2021, and 2023 field efforts to determine whether groundwater geochemistry reducing conditions were sufficient. Molar fractions of chloroethanes were calculated during historical groundwater monitoring events to allow for direct comparison of concentrations between years despite annual variability in total concentration.

In 2006, monitoring wells MW-11R (located within the Drainage Pond contaminant plume), MW-30R (located at the neighboring Hydrant Fuel System site upgradient from the Drainage Pond plume), and MW-35 (located downgradient from the Drainage Pond plume but later found to be destroyed/missing) (Figure A-2) were sampled for dissolved and total iron, manganese, sulfate, nitrate, chloride, and alkalinity (Oasis 2007). In 2010, monitoring wells MW-38S, MW-38D, MW-39, and MW-40, all located at the Drainage Pond site (Figure A-2), were analyzed for dissolved and total iron, dissolved and total manganese, total organic carbon (TOC), methane, sulfate, and nitrate-nitrite (Oasis 2011). In addition, water quality parameters were measured during groundwater purging and assessed in both 2006 and 2010, including dissolved oxygen (DO), temperature, pH, and oxidation-reduction potential (ORP) (Oasis 2007, 2011). The findings from 2006 indicated groundwater geochemistry conditions supported reductive dechlorination of PCE and TCE within the contaminant plume at MW-11R but were not sufficiently reducing for reductive dechlorination of cis-DCE and vinyl chloride (Oasis 2007).

The 2010 MNA parameter evaluation confirmed that reductive dechlorination of PCE and TCE is occurring in the groundwater plume, with the most highly reducing portion of the groundwater plume located near MW-39 and MW-40 (Oasis 2011).

Although MNA parameter results from both 2006 and 2010 indicated reducing conditions in the groundwater plume, and analytical data supported reduction of PCE and TCE to cis-DCE and further to vinyl chloride, elevated concentrations of cis-DCE and vinyl chloride found throughout the groundwater plume in both years suggest reductive dechlorination from cis-DCE to vinyl chloride was not yet dominant (Oasis 2007, 2011). MNA parameters were not assessed during sampling events between 2010 and 2021. However, in 2019, the molar fraction calculations when compared to historical calculations indicated a slight downward trend in vinyl chloride concentrations and a slight upward trend in trans-DCE concentrations, further indicating a stall in the dechlorination process at DCE (DOT&PF 2020).

Results of MNA parameter evaluation in 2021 provided evidence that the geochemical environment within the plume was prohibitive of reductive dechlorination and supports the apparent stall of this process at the trans-DCE stage. Although TOC was present at concentrations high enough to provide energy for the process, DO results suggested an oxidizing environment within the contaminant plume. Manganese and iron results seem to indicate most of the available oxidized states of each metal have been reduced. Because conditions in 2006 and 2010 were concluded to be supportive of a reducing environment, the total and dissolved iron and manganese concentrations observed in 2021 may be indicative of the historical reducing environment. Nitrate/nitrite concentrations indicated nitrate was not a significant presence as an electron receptor at the site. Decreasing sulfate concentrations over time indicated sulfate reduction was occurring, but concentrations of sulfate were not and have not been great enough to compete with reductive dechlorination.

1.5 CHANGES FROM THE 2021 EFFORT

The list of COCs at the Drainage Pond site was reduced to remove PFAS in 2023 due to results from the 2021 effort below ADEC GCLs despite the overlap of the site with the PFAS groundwater contamination plume at FAI (ADEC File No. 100.38.277, Hazard ID No. 26816). MNA parameters, added in 2021 to the list of analytes, as described in Section 5.1, were also kept for select wells; MW-11R, MW-30R, and MW-34.

2.0 FIELD ACTIVITIES

Field activities during the 2023 groundwater monitoring event included well integrity inspections, gauging, groundwater sampling, and waste management. All field work was conducted by ADEC Qualified Environmental Professionals from the Jacobs Fairbanks and Anchorage offices. Field work began on 7 August 2023 with sampling at the nearby Hydrant Fuel Site. Well integrity inspections, well gauging, groundwater sampling, and waste characterization sampling took place 8 and 9 August 2023. Monitoring wells MW-11R, MW-30R, MW-38S, MW-38D, and MW-39 were sampled on 8 August 2023 and monitoring wells MW-34 and MW-40 were sampled on 9 August 2023. All field activities were documented in the field logbook (Appendix B) and groundwater sampling forms (Appendix C).

2.1 WORK PLAN DEVIATIONS

The method cited for analyzing PFAS in investigation-derived waste (IDW) samples was changed following work plan approval. PFAS were included in the wastewater sampling plan via U.S. Environmental Protection Agency (EPA) Method 537.1, however upon submittal of the work plan it was noted that this method is no longer supported by ADEC, so PFAS was instead analyzed via EPA Method 537M, as recommended by ADEC.

The second deviation from the work plan involved the pump type used to collect MNA parameters from well MW-30R (part of the Hydrant Fuel System well network). A peristaltic pump was used to collect the groundwater sample from well MW-30R rather than a bladder pump (like all the other wells at the Drainage Pond site). MW-30R is part of the Hydrant Fuel System network and was only sampled as part of this study to assess the natural attenuation parameters at the southern edge of the Drainage Pond site. The analytes collected from MW-30R were not volatiles and thus were not expected to be affected by the change in pump.

2.2 MONITORING WELL INTEGRITY AND MAINTENANCE

While collecting groundwater samples, Jacobs field personnel inspected the monitoring well caps, cover bolts, casings, and plugs. All sampled monitoring wells were in good condition with no apparent frost jacking. Any missing cover bolts were replaced.

2.3 GROUNDWATER SAMPLING

Groundwater samples were collected at each of the six proposed monitoring wells on 8 and 9 August 2023. Sampling activities were conducted by Jacobs Project Manager Guy Wade and geologist Karri Sicard, both ADEC-qualified samplers. All sampled monitoring wells were gauged using a water level meter with interface probe to measure depth to product (if applicable), depth to groundwater, and total well depth. This information was recorded on groundwater sampling data sheets (Appendix C) and results are tabulated in Section 5.1. Groundwater sampling was conducted in general accordance with the 2023 Programmatic Work Plan (DOT&PF 2023) and the ADEC *Field Sampling Guidance* (ADEC 2022).

A bladder pump was used to purge and sample groundwater at each monitoring well. The pump intake was set to the approximate middle of the screen during purging and sampling since the screens were submerged due to high water at the site. During past event, the wells were sampled at approximately 1 foot below the static groundwater level within each well during both the purging and groundwater sampling process. Prior to sample collection, groundwater was purged from the monitoring wells using an in-line flow through cell and multi-parameter water quality meter (YSI 556) to measure water quality parameters and monitor for parameter stability. The following water quality parameters were recorded at 3- to 5-minute increments during well purging: temperature, pH, specific conductance, DO, and ORP. Turbidity and well drawdown height were also measured during purging using a turbidity meter and water level meter, respectively.

Analytical samples were collected once water quality parameters stabilized, or after three well volumes were purged from each monitoring well. Water quality parameters were considered stable once three of the five parameters, excluding temperature, met the parameter-specific stability criteria for three successive readings, per the Programmatic Work Plan (DOT&PF 2023). Groundwater sampling data sheets corresponding to monitoring wells sampled in 2023 are presented in Appendix C. Final water quality parameters at are tabulated in Section 5.1.

All groundwater samples were submitted to SGS North America, Inc. (SGS) laboratory in Fairbanks, Alaska and transferred to the SGS facility in Anchorage, Alaska, for analysis of the following COCs and analytical methods:

• Benzene, PCE, TCE, cis-DCE, trans-DCE, and vinyl chloride by EPA SW8260D.

In addition, samples collected from wells MW-11R, MW-34, and MW-30R (a Hydrant Fuel Site well) were submitted for analysis of the following MNA parameters by the methods indicated:

- Dissolved and total iron and manganese via EPA SW6020A
- TOC via EPA SM5310B/SW9060A
- Methane via EPA RSK 175
- Sulfate via EPA 300.0
- Nitrate and nitrite via EPA SM4500 NO3-F

Samples collected for analysis of dissolved iron and manganese were filtered at the time of sample collection with an in-line 0.45-micrometer filter.

2.4 MONITORING WELL SURVEY

During the 2021 groundwater monitoring event, Lounsbury, Inc. accompanied Jacobs field staff to the Drainage Pond site to perform a loop-level survey of all site monitoring wells using differential leveling procedures with digital level and real-time kinematic techniques with Trimble R10 global positioning system receivers (DOT&PF 2022). The survey report and results were used for the groundwater flow calculations. The wells were not resurveyed in 2023, but groundwater elevations displayed in Table 5-1 were recalculated based on remeasured depth to groundwater during 2023 sampling.

2.5 INVESTIGATION-DERIVED WASTE

Sampling was primarily conducted using disposable sampling equipment. Reusable equipment during the 2023 groundwater sampling event included the water level meter with interface probe, the YSI 556 water quality meter, turbidity meter, and bladder pump. None of the reusable equipment was used for sampling except for the bladder pump (and the disposable bladder was replaced between each well), and all reusable equipment was decontaminated between monitoring wells in accordance with the work plan. Decontamination water was containerized in 5-gallon buckets before being transferred to a 55-gallon drum at the FAI storage facility located at the DOT&PF Maintenance Facility (Figure A-1 in Appendix A). Other nonhazardous IDW included purge water, which was also containerized in the 55-gallon drum. Disposable personal protective equipment and sampling materials were bagged and disposed of at Fairbanks North Star Borough landfill.

2.6 WASTE CHARACTERIZATION

Containerized IDW (purge and decontamination water) was sampled from the 55-gallon drum using a peristaltic pump and disposable tubing. Waste characterization water samples were submitted to SGS for analysis of site COCs via the methods listed in Section 2.3 plus PFAS by EPA Method 537M. Waste samples were analyzed for PFAS since the Drainage Pond site lies within the known FAI PFAS plume. The analytical results of the waste sampling were used to characterize water for disposal purposes. Analytical results of the waste characterization sample (23DPS-01W) can be observed in the analytical results data table in Appendix D. Disposal of IDW purge and decontamination water is being coordinated with US Ecology. An ADEC Transport, Treatment, and Disposal Approval Form for the contaminated media will be completed and submitted to ADEC for approval. The final signed approval form will be included in Appendix E of this report.

3.0 PROJECT SCREENING LEVELS

Analytical sample results were screened against 2023 ADEC GCLs specified in Table C of the Alaska Administrative Code (AAC) Title 18, Chapter 75 (18 AAC 75), amended through 18 October 2023 (ADEC 2023). Table 3-1 lists the COCs along with the respective analytical methods, GCLs, and limit of detection (LOD). Although manganese is not considered a COC, it has been included in Table 3-1 because ADEC has established a GCL for it, and manganese was analyzed for as part of MNA.

Analyte	Method	Project GCL (mg/L)	LOD ¹	
Benzene	EPA SW8260D	0.0046	0.001	
PCE	EPA SW8260D	0.041	0.0025	
TCE	EPA SW8260D	0.0028	0.0025	
cis-DCE	EPA SW8260D	0.036	0.01	
trans-DCE	EPA SW8260D	0.36	0.0025	
Vinyl chloride	EPA SW8260D	0.00019	0.000375	
Manganese	EPA SW6020B	0.43	0.01	

Table 3-1Project Groundwater Screening Levels

Notes:

¹ The LOD is the highest observed LOD in all samples.

For definitions, refer to the Acronyms and Abbreviations section.

(intentionally blank)

4.0 QUALITY ASSURANCE ASSESSMENT

This section details the quality control (QC) and sample preservation practices employed during groundwater sample collection to ensure data quality. Analytical data packets received by the laboratory were reviewed for data quality and usability by Kari Hagen, the Jacobs project chemist. Findings of the data review are presented in Section 5.2.

4.1 QUALITY CONTROL AND SAMPLE PRESERVATION

Samples were collected using the sample containers provided by SGS. The sample containers came prepared with the appropriate laboratory-provided preservative. Sample containers were labeled with the sample identification number, date and time of collection, sampler initials, and analyses requested. Sample temperature was maintained between 0 and 6 degrees Celsius (°C) while in storage. The samples were submitted to SGS at the Fairbanks, Alaska office for shipment to their laboratory in Anchorage, Alaska for analytical testing. For QC, the following samples were included in the project sample analysis:

- One field duplicate was collected from MW-11R and submitted for analysis of all COCs and MNA parameters specified in Section 2.3.
- One trip blank was prepared for analysis of select volatile organic compounds (VOCs) (benzene, PCE, TCE, cis-DCE, trans-DCE, and vinyl chloride) and was transported with the sample cooler at all times.

4.2 DATA QUALITY

Jacobs performed this data quality review and completed the ADEC Laboratory Data Review Checklist for records associated with the analytical data (Appendix E). The Jacobs project chemist performed a completeness check to verify data packages included all requested information. All analytical data were reviewed, including the chain-of-custody and sample receipt records, laboratory case narratives, and laboratory data. Analytical data were reviewed for methodology, sample holding times, laboratory blanks, limits of quantitation, LODs, detection limits, laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries, and precision. Other QC parameters (initial calibration, continuing calibration, tuning, internal standards, interference check solutions, post-digestion spikes, and serial dilutions) were reviewed by means of the laboratory case narrative. The following qualifiers were applied during the review:

- B The analyte was detected in the method blank, trip blank and/or equipment blank, and the sample concentration did not exceed the blank concentration by a factor of 10.
- J The result is an estimated value because it is less than the limit of quantitation.
- JD The result was qualified because the relative percent difference (RPD) between the primary sample and the field duplicate sample exceeded 30 percent. If one result was a detect, and the other was a nondetect, then the LOD value was used in the RPD calculation for the nondetect result.
- JS+ The result was an estimated value, biased high because at least one surrogate failed recovery criteria for the sample. The result was biased high because the recovery exceeded the upper control limit.
- JP- The result was considered an estimated value because incorrect or inadequate preservation methods were used.
- UB The analyte was detected in the method blank within 10 times the reported result.

Project specific matrix spike (MS)/matrix spike duplicates (MSDs) were not required for this project; however, they were included in the analytical batches as the methods required. MS/MSDs were only evaluated if they were performed on samples from this project. All LCS/LCSD recoveries were within control limits; therefore, there was no effect on the data quality or usability.

The overall quality of the data was acceptable. The following QC issues were identified during the review:

- Several volatile organic analysis vials were received by the lab containing an air bubble greater than 6mm. One of three vials submitted contained an air bubble for the following SW8260D VOC samples: 23DPS-MW11R-GW, 23DPS-MW34-GW, 23DPS-MW38S-GW, 23DPS-MW39-GW, 23DPS-MW40-GW and 23DPS-01W. One of three vials submitted for RSK175 methane contained an air bubble in sample 23HFS-MW30R-GW. Not all vials submitted contained air bubbles, however if the samples were analyzed from a vial that did contain an air bubble, the result may be biased low. The affected samples results were qualified JP-. Most affected results were less than half the screening level; therefore, the effects on data quality or usability were minimal.
- Perfluorohexanoic acid (PFHxA) was detected in the batch method blank affecting sample 23DPS-01W. Sample results less than 10 times the blank concentration were qualified B, biased high. A screening level for PFHxA has not been established. The effects on data quality or usability were minimal.
- cis-DCE was detected in the equipment blank affecting sample 23DPS-MW38D-GW. Detected sample results less than 10 times the blank concentration were qualified B, biased high. The affected sample result was significantly less than the screening level; therefore, the effects on data quality or usability were minimal.
- The RPD between the vinyl chloride (SW8260D) results in the primary and field duplicate was greater than 30 percent. The sample results were qualified JD and considered estimated with unknown bias. The result of the primary sample 23DPS-MW11R-GW was greater than the screening level and the result of the field duplicate 23DPS-MW11R-GWA was nondetect. The primary sample result should be used for data analysis. The data are considered usable with unknown bias.

The overall quality of project data was acceptable. The qualifications applied during data validation did not adversely affect data usability.

(intentionally blank)

5.0 RESULTS AND FINDINGS

This section presents results of monitoring well gauging and survey, analytical groundwater results, result of MNA parameters, and the results of the reductive dechlorination analysis.

5.1 MONITORING WELL GAUGING AND SURVEY

A summary of monitoring well integrity, gauging, and groundwater depth data is included in Table 5-1. No free product was detected in any monitoring wells at the Drainage Pond site. Groundwater elevation at the site ranges from 421.08 feet above mean sea level (amsl) at MW-34 to 423.52 feet amsl at MW-39.

Well ID	Integrity	Depth to Product	Depth to Groundwater (feet bgs)	Total Well Depth (feet bgs)	Groundwater Elevation (feet amsl) ¹	
MW-11R	Good	No free product	5.20	33.94	425.29	
MW-34	Good	No free product	4.09	13.20	425.49	
MW-38S	Good	No free product	4.48	14.55	425.43	
MW-38D	Good	No free product	4.55	34.24	425.42	
MW-39	Good	No free product	6.35	16.50	423.88	
MW-40	Good	No free product	6.00	15.67	424.56	

 Table 5-1

 Status and Depth to Groundwater of Drainage Pond Site Wells Sampled in 2023

Notes:

¹ Groundwater elevations recalculated from the well survey report conducted by Lounsbury Inc. in 2021 (DOT&PF 2021). For definitions, refer to the Acronyms and Abbreviations section.

Groundwater flow direction and gradient calculations performed using survey data from wells at the Drainage Pond site only indicate a localized groundwater flow direction at a bearing of north 7 degrees west, with a gradient of 0.065. However, because groundwater monitoring wells are tightly spaced, with a maximum distance between wells of approximately 200 feet between MW-34 and MW-39 (as an example), the spatial coverage is likely too small and not representative of the flow direction over a wider footprint of the FAI. Calculations performed using all survey data from the Drainage Pond site and the neighboring Hydrant Fuel System site, both surveyed in October 2021, indicate groundwater flow direction at a bearing of south 32 degrees east, with a gradient of 0.0004 feet/foot. This indicates groundwater flow is parallel to the flow direction of the nearest section of the Chena River (located approximately 0.25 miles directly east of the Drainage Pond site) and toward the Tanana River (Figure A-1 in Appendix A).

Notably, the gradient of 0.0004 foot/foot suggests comparative flatness across the two sites, indicating that a slight change in groundwater slope in any one direction would have a dramatic effect on the calculated flow direction. The calculated 2021 flow direction to the southeast conflicts with the flow direction reported in the 2006 VOC site characterization (Oasis 2007), which reported that frost jacking of monitoring wells was evident and that groundwater elevations derived from the 2005 well survey should therefore be considered approximate. Past groundwater studies at the site have found that groundwater flow direction can change from northwest to southeast due to its proximity to the Chena and Tanana Rivers which experience seasonal stage changes from runoff, ice jams, and flooding events (Oasis 1999).

5.2 WATER QUALITY PARAMETERS

During the 2023 sampling event, water quality parameters reached stability prior to groundwater sample collection at all the wells sampled. Purge volume and/or groundwater parameters were recorded in the Groundwater Sample Data Sheets (Appendix C). Table 5-2 shows the water quality parameters measured during monitoring well purging.

Well ID	Groundwater Depth* (feet bgs)	Sample Depth (feet bgs)	်ဇင္ခ)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)
MW-11R	5.20	19.53	6.80	503	0.27	7.08	22.8	2.49
MW-34	4.09	8.65	7.63	693	1.39	6.70	59.5	6.35
MW-38S	4.48	9.50	7.81	588	0.25	7.08	5.90	2.53
MW-38D	4.55	19.40	5.94	337	0.38	7.19	3.70	3.51
MW-39	6.35	11.42	9.66	965	0.50	6.86	20.90	3.12
MW-40	6.00	10.94	8.23	1208	0.38	6.65	77.30	16.22
MW-30R	8.03	15.50	4.20	618	1.15	6.69	92.60	17.68

Table 5-2Water Quality Parameters from Wells Sampled in 2023

Notes:

*Depth to groundwater corresponds to the depth at the start of sampling. For definitions, refer to the Acronyms and Abbreviations section.

5.3 COC ANALYTICAL RESULTS

Table 5-3 presents the 2023 groundwater analytical results; these are also depicted on Figure A-3 (Appendix A). Appendix D presents the historical and 2023 results for VOCs. Historical results (pre-2019 data) in this appendix have been rescreened against the 2023 ADEC GCLs. Appendix D presents the sample summary and results tables, the ADEC Laboratory Data Review Checklist, and laboratory reports.

The 2023 groundwater results are summarized in this section following Table 5-3, and a comparison with the historical data is also provided in the narrative. Note that all references to GCLs throughout this section are in reference to the 2023 ADEC GCLs that are presented in Section 3.0 and the data tables within this report.

Similar to previous years, groundwater samples collected from MW-11R, MW-40, and MW-38S continued to have high concentrations of chloroethenes compared to the other wells sampled. However, results from 2023 show that the concentrations of cis-DCE in MW-11R decreased by an order of magnitude and were lower than concentrations of both MW-40 and MW-38S. TCE in MW-40 exceeded the GCL for the first time in five sampling events. These three wells containing the highest concentrations of total chloroethenes are located most centrally within the known contaminant plume (Figure A-3) and showed higher levels of cis-DCE and vinyl chloride, while the well farthest to the west, MW-34, was nondetect for all analytes. The deepest monitoring well, MW-38D, continues to show concentrations of COCs under the GCLs or nondetect in the deeper groundwater zone. For historical comparison, monitoring wells MW-38S, MW-38D, MW-39, and MW-40 are relatively new (established in 2010), whereas MW-11R was first sampled in 2005 and MW-34 in 2003.

Analyte:		Benzene	PCE	TCE	cis-DCE	trans-DCE	Vinyl Chloride
2023 ADEC GCL ¹ (mg/L):		0.0046	0.041	0.0028	0.036	0.36	0.00019
Monitoring Well ID	Sample Date			Analytical	Result (mg/L)		
MW-11R	8/8/2023	0.00236 JP-	0.00596 JP-	0.00121 JP-	0.116 B,JP-	0.00145 JP-	0.00072 JD,JP-
MW-11R (DUP)	8/8/2023	0.0024	0.00597	0.00116	0.116 B	0.00148	ND [0.000075] JD
MW-34	8/9/2023	ND [0.0002] JP-	ND [0.0005] JP-	ND [0.0005] JP-	ND [0.0005] JP-	ND [0.0005] JP-	ND [0.000075] JP-
MW-38S	8/8/2023	0.00319 JP-	0.00062 JP-	0.00021 J,JP-	0.148 B,JP-	0.00207 JP-	0.0018 JP-
MW-38D	8/8/2023	ND [0.0002]	ND [0.0005]	0.00015 J	0.00048 J,B	ND [0.0005]	ND [0.000075]
MW-39	8/8/2023	0.00148 JP-	ND [0.0005] JP-	0.00121 JP-	0.0487 B,JP-	0.00214 JP-	0.00224 JP-
MW-40	8/9/2023	0.0008 JP-	0.0156 JP-	0.0258 JP-	0.467 B,JP-	0.00617 JP-	0.00344 JP-

Table 5-3 Groundwater Results from the 2023 Sampling Event

Notes: ¹18 AAC 75. Table C Groundwater Human Health Cleanup Levels (ADEC 2023) Bold red indicates value exceeds ADEC GCL.

[] = LOD

DUP = Field duplicate sample collected from monitoring well MW-11R. For data qualifiers, refer to Section 4.2.

For definitions, refer to the Acronyms and Abbreviations section.

FINAL

Benzene: There were no exceedances of benzene GCL (0.0046 milligrams per liter [mg/L]) in 2023, but benzene was detected in monitoring wells MW-11R (and field duplicate), MW-38S, MW-39, and MW-40 at concentrations less than the GCL. Historically, benzene has exceeded the GCL at MW-11R, MW-38S, and MW-39 but has been below those concentrations during the last four sampling events.

PCE: PCE concentrations did not exceed the GCL (0.041 mg/L) in any sampled monitoring wells in 2023. However, PCE was detected at concentrations less than the GCL at MW-11R, MW-38S, and MW-40. Concentrations ranged from 0.00062 mg/L (qualified J, JP-) at MW-38S to 0.0156 mg/L (qualified JP-) at MW-40. Historically, PCE concentrations have not exceeded the GCL in any monitoring wells but have been detected at concentrations below the GCL in at least one monitoring event at MW-11R, MW-38S, MW-38D, MW-39, and MW-40. At MW-11R, PCE has been detected below the GCL in all monitoring years, and at MW-38S and MW-40, PCE has been detected in all monitoring events except the 2013 monitoring event.

TCE: The concentration of TCE exceeded the GCL (0.0028 mg/L) in monitoring well MW-40 with a concentration of 0.0258 (qualified JP-) in 2023. TCE was detected at concentrations less than the GCL at MW-11R (and field duplicate), MW-38S, and MW-38D. Historically, TCE exceeded the GCL at MW-11R in all monitoring events except for 2013. At MW-40 TCE only exceeded the GCL during the 2017 monitoring event and has not exceeded the GCL but has been detected at concentrations below the GCL in at least one monitoring event at MW-38S, MW-38D, and MW-39. The maximum historical concentration of TCE at the site was 0.0112 mg/L, detected at MW-11R in 2008.

cis-DCE: Concentrations of cis-DCE at MW-11R, MW-38S, MW-39, and MW-40 exceeded the GCL (0.036 mg/L) in 2023. cis-DCE ranged from the minimum detected concentration of 0.0487 mg/L (qualified B, JP-) at MW-39, to a maximum concentration of 0.467 mg/L (qualified B, JP-) at MW-40. Historically, at MW-11R and MW-40, cis-DCE has exceeded the GCL in all monitoring events. At MW-38S and MW-39, cis-DCE has exceeded the GCL in all sampling events except in 2013 at MW-38S and 2017 at MW-39. The maximum historical concentration of cis-DCE at the site was 2.68 mg/L, detected at MW-11R in 2008.

trans-DCE: In 2023, trans-DCE did not exceed the GCL (0.36 mg/L) in any sampled monitoring wells. However, trans-DCE was detected at concentrations less than the GCL at MW-11R, MW-38S, MW-39, and MW-40. This pattern is consistent with historical data.

Vinyl chloride: Concentrations of vinyl chloride exceeded the GCL (0.00019 mg/L) at monitoring wells MW-11R, MW-38S, MW-39, and MW-40 in 2023. Vinyl chloride was nondetect at monitoring wells MW-34 and MW-38D in 2023, which is consistent with historical data. Historically, vinyl chloride concentrations have exceeded the GCL in all monitoring events at MW-40; and at MW-11R, in all events except 2013 and 2017. At MW-38S and MW-39, concentrations exceeded the GCL in all events except 2013 at MW-38S and 2017 at MW-39. The maximum historical concentration of vinyl chloride at the site was 0.00694 mg/L, detected at MW-11R in 2010.

5.4 **REDUCTIVE DECHLORINATION**

The following sections present 2023 MNA parameter and molar fraction data alongside historical data for comparison.

5.4.1 MNA PARAMETER EVALUATION

Analytical MNA parameter results and select water quality measurements taken during well purging provide insight about the geochemical conditions at the site and whether they are favorable for reductive dechlorination. This section discusses each parameter and the results obtained during the 2023 sampling event.

5.4.1.1 Water Quality Parameters

Temperature, pH, DO, and ORP are water quality parameters measured at each sampled monitoring well in 2023 and presented in Table 5-2. These parameters can provide evidence that either suggest site conditions are conducive to reductive dechlorination or that the process is unlikely. For example, at low temperatures (less than 5°C) biodegradation is inhibited (Wiedemeier et al. 1998). Groundwater with a pH that is too acidic (less than 5) or to alkaline (greater than 9) can also inhibit biodegradation. DO at concentrations less than 0.5 mg/L suggests the reductive pathway is not suppressed and that reductive dechlorination may be occurring. ORP measurements provide evidence for either oxidizing (aerobic) conditions that inhibit reductive dechlorination or reducing (anaerobic) conditions that are supportive of dechlorination. More specifically, at ORP levels between 50 millivolts (mV) and -100 mV, reductive dechlorination is possible, and at levels less than -100 mV, reductive dechlorination is possible, and at levels less than -100 mV, reductive dechlorination is possible.

Temperatures at the Drainage Pond site during sampling in August 2023 were greater than 5°C in all monitoring wells. Monitoring well MW-30R fell slightly below 5 °C (4.20°C) but is technically part of the Hydrant Fuel System wells south of the Drainage Pond site. Notably, in Fairbanks, Alaska, these temperatures are expected to drop significantly as winter freeze sets in, which implies that temperatures are favorable for reductive dechlorination in the spring, summer, and fall periods when the ground is not frozen. Results for pH in all sampled monitoring wells was measured between 6.65 and 7.08 pH, which falls within the optimal range for reductive dechlorination (5-9). DO was measured at concentrations lower than 0.5 mg/L in all sampled monitoring wells except for MW-34 and MW-30R (upgradient and downgradient

from the plume), which implies reductive dechlorination may be occurring. ORP was within the range of possible dechlorination (-100 to 50 mV) at four monitoring wells within the groundwater plume MW-11R, MW38S, MW-38D, and MW-39 but was outside the range of possible dechlorination in MW-34, MW-40, and MW-30R. The temperature, pH, DO and ORP results suggest conditions are possible for the reductive dechlorination pathway.

5.4.1.2 Analytical MNA Results

The analytical results for ethane and ethene, methane, dissolved and total iron, dissolved and total manganese, nitrate and nitrite, sulfate, and TOC help to determine if the geochemistry of the groundwater is actively supportive of reductive dechlorination. The analytical results of MNA parameters measured during the 2023 sampling event are tabulated in Table 5-4 along with historical results.

Analyte:		Ethane	Ethene	Methane	Total Iron ³	Dissolved Iron ³	Total Manganese⁴	Dissolved Manganese ⁴	Sulfate	Total Nitrate/Nitrite	тос
2023 ADEC	C GCL ¹ (mg/L):	-	-	-	-	-	0.43	0.43	-	-	-
Monitoring Well ID	Sample Date		Analytical Result (mg/L)								
	11/1/2006	-	-	-	-	34	3.83	-	9.17	0.122	-
MW-11R	10/17/2007	-	-	5.82	-	-	-	4.61	7.06	0.100 UB	11.9
	10/20/2021	ND [0.0005]	ND [0.0005]	10.5	80.3	82.3	2.24	2.17	1.6	0.163 J	36.7
	8/8/2023 ²	ND [0.0005]	ND [0.0005]	1.85	32.9	26.8	3.42	3.46	17	0.112 J	9.29
MW-30R	8/8/2023	ND [0.0005] JP-	ND [0.0005] JP-	1.03 JP-	13.8	21.8	4.93	5.2	1.08	ND [100]	53.4
MW-34	10/21/2021	ND [0.0005]	ND [0.0005]	0.00028 J	1.58	1.23	0.0204	0.0191	16.9	0.126 J	4.1
10100-34	8/9/2023	ND [0.0005]	ND [0.0005]	0.00074	0.563	0.243 J	0.0489	0.0411	37.6	0.956	5.8
MW-38S	10/29/2010	-	-	2.1	411	36.8	2.42	2.16	10.7	0.111	15.2
10100-303	10/21/2021	0.00193	ND [0.0005]	6.62	98.5	93.5	2.73	2.64	5.35	0.265	38.1
MW-38D	10/29/2010	-	-	0.2	8.09	7.32	1.85	1.84	17.8	0.255	4.53
10100-360	10/21/2021	0.0072	ND [0.0005]	1.07	2.64	2.36	0.566	0.592	1.42	0.128 J	7.64
MW-39	10/29/2010	-	-	8.2	29.6	24.4	1.17	1.17	1.18	0.052 J	46
10100-39	10/20/2021	ND [0.0005]	ND [0.0005]	11.7	91.4	100	4.07	4.17	0.208	0.202	22.1
MW-40	10/29/2010	-	-	7.8	89.2	84.4	0.868	0.83	0.317	0.139	77.4
10100-40	10/20/2021 ²	ND [0.0005]	ND [0.0005]	6.85	75.2	71.7	1.11	1.08	0.565	0.143 J	42.6

Table 5-42023 and Historical MNA Parameters

Notes:

¹ 18 AAC 75, Table C Groundwater Human Health Cleanup Levels (ADEC 2023).

² Result is the maximum obtained from the primary and duplicate sample pair.

³ Total iron is a combination of ferric and ferrous (i.e., dissolved) iron; dissolved iron is indicative of reducing conditions.

⁴ Total manganese is a combination of reduced valence (2+) manganese and valence 4+ manganese whereas dissolved manganese is a measure of reduced manganese only.

- = No ADEC GCL has been established for the analyte or the sample was not analyzed for the analyte.

[] = LOD

Bold red indicates value exceeds ADEC GCL.

Italics and gray rows signify 2023 results.

Historical results prior to 2021 were obtained from the 2006 VOC characterization report (Oasis 2007) and the 2010 Drainage Pond Groundwater Monitoring Report (Oasis 2011). For data qualifiers, refer to Section 4.2.

For definitions, refer to the Acronyms and Abbreviations section.

Ethane and Ethene

Ethane and ethene are produced during reductive dechlorination, and analytical results greater than 0.01 mg/L are indicative of reducing conditions (Wiedemeier et al. 1998).

Ethane and ethene were not detected in any monitoring wells sampled for them in 2023. This suggests the reductive pathway is unlikely and that reductive dechlorination is not supported to a significant extent. Historically, ethane and ethene were not monitored, but in 2021 ethane was detected at MW-38S and MW-38D only, at concentrations less than 0.01 mg/L. Ethene was not detected in 2021.

Methane

Methane detections in groundwater are indicative of methanogenesis, which typically occurs after oxygen, nitrate, and sulfate are depleted. Concentrations greater than 0.5 mg/L indicate the reductive pathway is likely but that methanogenesis may be competing with reductive dechlorination (Wiedemeier et al. 1998).

Methane was detected at concentrations greater than 0.5 mg/L in both MW-11R and MW-30R in 2023, and below 0.5 mg/L at MW-34, located outside the contaminant plume footprint (Figure A-3). This suggests the reductive pathway is likely within the contaminant plume but that methanogenesis may be competing with reductive dechlorination. MW-11R showed an order of magnitude decrease in methane from 10.1 mg/L in 2021 to 1.85 mg/L in 2023. Historically, methane concentrations have been greater than the 0.5 mg/L threshold in all sampled wells, except MW-38S, which had a concentration of 0.2 mg/L in 2010, and at MW-34, which was not sampled for methane. In general, concentrations of methane have increased slightly (within the same order of magnitude) in all sampled monitoring wells since 2010, except MW-40, which showed a slight decrease in 2021, and MW-11R, which showed a decrease since 2021.

Iron

Dissolved iron is produced during reducing conditions when the supply of ferric iron, supplied by subsurface soil, is reduced during anaerobic biodegradation. The measure of total versus dissolved iron is important for determining the available supply of iron in its oxidized state compared to that which has been reduced. At concentrations of dissolved iron greater than 1 mg/L, the reductive pathway may be active (Wiedemeier et al. 1998).

Dissolved iron concentrations were greater than 1 mg/L in monitoring wells MW-11R and MW-30R, but less than 1 mg/L in MW-34 in 2023. Total iron concentrations were generally very similar to dissolved iron concentrations. The data suggest the reductive pathway is active but that most of the ferric iron available for reduction has been depleted.

Manganese

Similar to iron, manganese sourced from the subsurface soil serves as an electron acceptor for anaerobic biodegradation; high concentrations of dissolved manganese are indicative that the anaerobic biodegradation process is occurring (Wiedemeier et al. 1998).

Dissolved and total manganese concentrations in each well were generally very similar to one another, suggesting that the majority of the available oxidized manganese has been reduced. Concentrations were generally one order of magnitude greater than the 2023 ADEC GCL in both MW-11R and MW-30R, but not in MW-34, located outside the groundwater contaminant plume, concentrations were one order of magnitude less than the GCL. The observed concentrations of dissolved manganese within the groundwater contaminant plume suggest a reducing environment with active anaerobic biodegradation.

Nitrate/Nitrite

Nitrate serves as an electron receptor for anaerobic biodegradation once DO has been depleted from the groundwater. Nitrite in groundwater is the reduced form of nitrate. Measures of nitrate/nitrite in groundwater can offer information on whether nitrate is available in the subsurface environment to serve as an electron acceptor. Concentrations of nitrate less than 1 mg/L are optimal for the reductive pathway; concentrations greater than 1 mg/L may compete with and inhibit reductive dechlorination (Wiedemeier et al. 1998).

Analytical results for nitrate/nitrite in 2023 and in historical monitoring events were less than 1 mg/L in all sampled monitoring wells. This indicates nitrate is not inhibiting reductive dechlorination and supports the idea that DO in groundwater, as previously discussed, has yet to be depleted.

Sulfate

Sulfate becomes an electron receptor once both DO and nitrate have been depleted from the subsurface environment. Optimal concentrations of sulfate to support reductive dechlorination are less than 20 mg/L. At concentrations greater than this threshold, reduction of sulfate may compete with reductive dechlorination (Wiedemeier et al. 1998).

The 2023 sulfate concentrations in MW-11R and MW-30R were less than 20 mg/L, although they increased by an order of magnitude at MW-11R. Sulfate was above 20 mg/L at MW-34 (outside the contaminant plume) at a concentration of 37.6 mg/L. Historical sulfate concentrations in all sampled monitoring wells were less than 20 mg/L with concentrations generally decreasing over time in most sampled monitoring wells. The data suggest the sulfate-reducing process may be occurring; sulfate concentrations are not great enough to compete against the reductive dechlorination process within the known contaminant plume.

ТОС

TOC serves as an energy source that drives the reductive dechlorination process. Optimal concentrations of TOC are greater than 20 mg/L. At concentrations less than this threshold, TOC is not considered a significant enough source of energy to promote the process (Wiedemeier et al. 1998).

In 2023, TOC concentrations were greater than 20 mg/L in only one of the three wells sampled for this parameter: MW-30R that is outside the contaminant plume. TOC concentrations were below 10 mg/L in MW-11R and MW-34. Historically TOC concentrations were greater than 20 mg/L in all sampled monitoring wells in 2021 except at MW-34, located outside the contaminant plume, and at MW-38D, located immediately east of the plume. Historically concentrations at MW-39 and MW-40 were greater than 20 mg/L, whereas concentrations at

other sampled wells were less than the 20 mg/L threshold. Since all wells were not sampled for TOC, it is inconclusive whether the concentrations within the plume have changed, but 2021 sampling results concluded that TOC was likely a significant source of energy to promote the reductive dechlorination process.

Conclusions of MNA Analytical Results

Results of MNA parameter evaluation provide evidence that the geochemical environment within the plume might be supportive of reductive dechlorination. Past results have concluded an apparent stall of this process at the trans-DCE stage due to an oxidizing environment within the contaminant plume. TOC has been present at concentrations high enough to provide energy for the process (as seen in 2021) and might continue to be in 2023 (only samples from wells outside the plume were analyzed for TOC). DO results suggest the reductive pathway is not suppressed within the contaminant plume, and ORP suggests reductive dechlorination is possible. Manganese and iron results seem to indicate most of the available oxidized states of each metal have been reduced. It was concluded that conditions in 2006 and 2010 were supportive of a reducing environment; therefore, the total and dissolved iron and manganese concentrations observed in 2023 may be indicative of the historical reducing environment. Nitrate/nitrite concentrations indicate it is not inhibiting reductive dechlorination, and nitrate is not a significant presence as an electron receptor at the site. Historically, decreasing sulfate concentrations indicated sulfate reduction was occurring, and concentrations of sulfate have not been great enough to compete with reductive dechlorination, but the latest increases in sulfate in two wells sampled this year may point to this possibility.

5.4.2 MOLAR FRACTION CALCULATIONS

To better evaluate the reductive dechlorination process at this site, molar factions for each chloroethene were calculated, allowing for direct comparison between years despite annual variability in total concentrations (Table 5-5 and Chart 5-1). Over the years, there is a slight downward trend in vinyl chloride concentrations in all sampled monitoring wells and a slight increase in trans-DCE concentrations in all monitoring wells except MW-38S. Studies of reductive dechlorination have found that when conditions for completed dechlorination of PCE or TCE to ethylene are not present, degradation stalls at DCE (Northwind Inc. 2003). The stall at DCE implies the process may not reach complete dechlorination to ethylene soon, if ever. This process has likely converted a substantial fraction of dissolved TCE to cis-DCE and trans-DCE, but the follow-on conversion to vinyl chloride is generally less effective, as evidenced by the relatively static concentrations of vinyl chloride at the monitoring wells.

 Table 5-5

 Chloroethene Molar Fraction Trends for Drainage Pond Site Wells Sampled in 2023

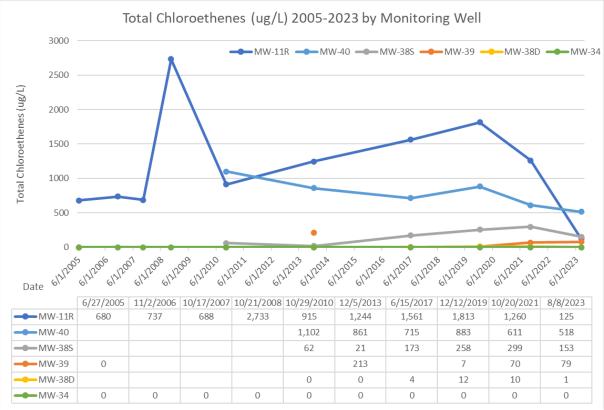
		Total	Molar Fraction ³							
Monitoring Well ID	Sample Date ¹	Chloroethenes ² (µg/L)	PCE	TCE	cis-DCE	trans-DCE	Vinyl Chloride			
	9/27/2005	680	2.40%	1.50%	94.40%	0.60%	1.10%			
	11/2/2006	737	0.80%	0.70%	96.80%	1.10%	0.50%			
	10/17/2007	688	2.20%	0.60%	96.10%	0.70%	0.50%			
	10/21/2008	2,733	0.40%	0.30%	98.40%	0.60%	0.30%			
	10/29/2010	915	1.50%	0.40%	96.20%	0.80%	1.10%			
MW-11R	12/5/2013	1,244	0.70%		98.50%	0.80%				
	6/15/2017	1,561	1.20%	1.20%	96.70%	0.90%				
	12/12/2019	1,813	0.44%	0.30%	97.92%	0.96%	0.38%			
	10/20/2021	1,260	0.54%	0.22%	97.78%	1.09%	0.38%			
	8/8/2023	125	2.84%	0.73%	94.40%	1.20%	0.83%			
MW-34	8/27/2003 through 8/9/23	ND								
	10/29/2010	62	0.50%		95.90%	1.00%	2.60%			
	12/5/2013	21			100%					
	6/15/2017	173	1.50%	0.20%	96.50%	0.60%	1.20%			
MW-38S	12/11/2019	258	1.18%	0.23%	97.03%	0.84%	0.72%			
	10/21/2021	299	0.17%	0.10%	97.85%	0.76%	1.12%			
	8/8/2023	153	0.24%	0.10%	96.65%	1.35%	1.66%			
	10/29/2010	ND								
	12/5/2013	ND								
	6/15/2017	4	9.80%	11.10%	79.10%					
MW-38D	12/11/2019	12		2.62%	97.38%					
	10/21/2021	10		3.83%	96.17%					
	8/8/2023	1		18.74%	81.26%					
MW-39	10/29/2010	213	0.20%	0.30%	93.20%	2.30%	4.00%			
	6/15/2017	7		6.00%	89.10%	4.90%				
10100-39	12/11/2019	70		1.22%	91.75%	4.54%	2.49%			
	10/20/2021	79			92.67%	4.12%	3.21%			

Monitoring	Samula	Total	Molar Fraction ³						
Monitoring Well ID	Sample Date ¹	Chloroethenes ² (µg/L)	PCE	TCE	cis-DCE	trans-DCE	Vinyl Chloride		
	8/8/2023	53		1.63%	88.70%	3.90%	5.77%		
	10/29/2010	1,102	0.10%	0.10%	97.60%	0.70%	1.60%		
	12/5/2013	861			97.40%	0.90%	1.70%		
MW-40	6/15/2017	715	1.80%	0.60%	96.00%	1.00%	0.70%		
10100-40	12/11/2019	883	0.64%	0.26%	97.77%	1.03%	0.30%		
	10/20/2021	611	0.22%	0.28%	97.66%	1.32%	0.52%		
	8/9/2023	518	1.80%	3.76%	92.26%	1.22%	0.96%		

Notes:

¹Pre-2019 sample data obtained from the 2017 Drainage Pond Groundwater Monitoring Report (SLR 2018).

 2 Total chloroethene (µg/L) is calculated as the sum of individual analyte concentrations. For samples having primary and


duplicate sample results, the maximum result from each sample pair for each analyte is used in the calculation.

³Molar fraction is calculated for individual detected chloroethene congeners as the fraction of the total molar concentration.

-- = Molar fractions not calculated for NDs; results below laboratory LODs.

For definitions, refer to the Acronyms and Abbreviations section.

Chart 5-1 Total Chloroethene Trends for Drainage Pond Site Wells Sampled in 2023

Notes:

Chart data taken from Table 5-5.

Total chloroethene (µg/L) is calculated as the sum of individual analyte concentrations. For samples having primary and duplicate sample results, the maximum result from each sample pair for each analyte is used in the calculation. Blank values in table mean analyte was not measured.

0 = Nondetections; results below laboratory LODs.

For definitions, refer to the Acronyms and Abbreviations section.

6.0 CONCEPTUAL SITE MODEL UPDATE

The Human Health Conceptual Site Model (CSM) was revisited and updated based on results the 2023 groundwater monitoring event. The Human Health CSM Scoping and Graphic forms are presented in Appendix G.

PFAS was added to the list of analytes to investigate at the Drainage Pond site in 2021 but was removed from this updated CSM due to its inclusion in the larger FAI PFAS plume and listing as a COC under a different site.

Impacted media at the Drainage Pond site include surface and subsurface soil, groundwater, air, and biota. Receptors considered for potential exposure include construction, industrial, commercial workers and site employees, site visitors, and trespassers. Exposure pathways include incidental soil ingestion, dermal absorption of contaminants from soil, and inhalation of outdoor air for current and future commercial or industrial workers, site employees, site visitors and trespassers, and potential future construction workers. Inhalation of fugitive dust is also considered a complete pathway for current and future site visitors, trespassers, and site employees, as well as for potential future commercial, industrial or construction workers. Ingestion of groundwater and dermal absorption of contaminants in groundwater are considered complete exposure pathways for potential future commercial or industrial workers, future site visitors and trespassers, future construction workers, and future site employees. The rationales behind those impacted media, receptors, and exposure pathways are presented in the scoping and graphic forms (Appendix G).

(intentionally blank)

7.0 CONCLUSIONS

In 2006, the Gore-Sober soil gas survey (Oasis 2007) identified an unknown PCE source area east of MW-11R. There is currently no evidence of a discreet point source of contamination. The site was historically a drainage pond where contaminants could have settled out or been transported by runoff.

The addition of monitoring wells MW-38S, MW-38D, MW-39, and MW-40 in 2010 helped to fill data gaps associated with the Drainage Pond site, increased knowledge of contaminant boundaries, and provided additional information on the natural attenuation that is occurring at the site. Results from the 2021 groundwater monitoring efforts indicated chloroethenes persisted in the groundwater at similar concentrations to those detected in previous studies, and reductive dechlorination may have stalled at DCE. Results from 2023 study decreased by an order of magnitude for cis-DCE at the center of the contaminant plume, and no MNA parameters are no longer conclusive of this stall. Benzene has decreased in concentration and was not found to be in exceedance of the GCL for the past four sample events.

The 2023 sampling event is the sixth in which chloroethene concentrations were less than GCLs or nondetect in samples collected from MW-38D, which has a total well depth of 34.24 feet. This comparatively deep well was installed to determine whether contaminants were present below the groundwater interface, as results from samples collected from MW-11R (installed to 34.5 feet below ground surface [bgs]) might suggest. Unlike MW-11R, which has a screened interval of 5.0 to 34.5 feet bgs, MW-38D is only screened at the interval from 30 to 35 feet bgs. The 2023 groundwater sample results from MW-38D suggest contaminants are not present at depth, while contaminant concentrations detected in MW-11R are likely the result of mixing. The apparent decrease in total chloroethenes in MW-11R is likely due to the deep sampling level of the tubing at this well (19.5 feet bgs), which may not have sampled from the highest concentration of soil contamination. The soil data from the 2010 site investigation support the theory that contaminants are confined to the groundwater interface, extending from the ground surface to 11 feet bgs.

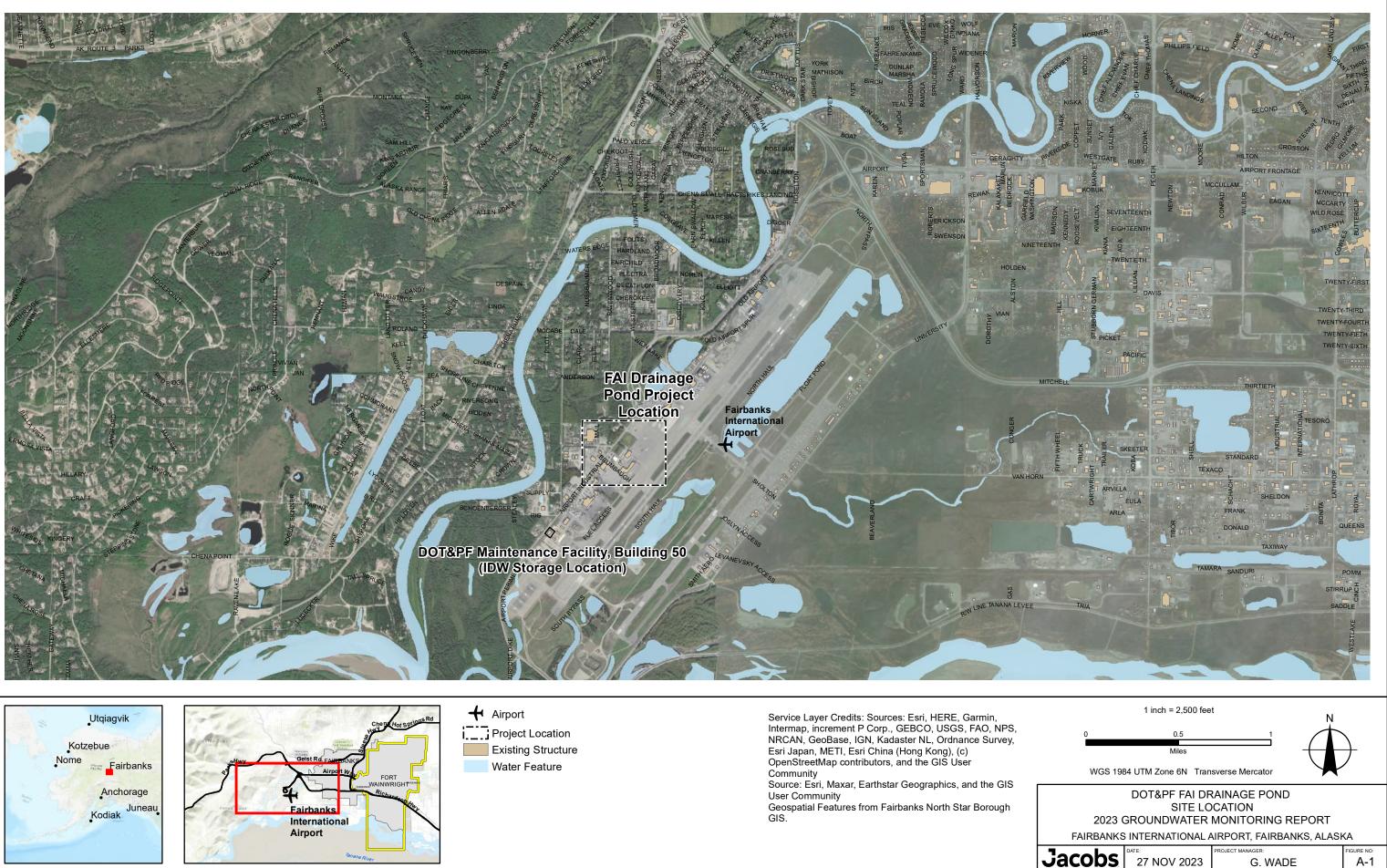
Although the 2023 groundwater monitoring effort provided recent data of the known chloroethene plume, it did not define plume boundaries or verify the plume is not migrating. According to hydrological assessments in 2013 and 2017, the prevailing groundwater flow direction is westerly, away from the 2006 Gore-Sober soil gas plume delineation. However, groundwater flow direction calculated from 2021 survey data conflicts with this information and supports other historical data that indicate groundwater flow is influenced by hydrologic conditions in the Chena and Tanana Rivers. If the flow direction is westerly, as suggested in some historical reports, data from 2003 to 2023 at MW-34 and from 2006 at TW-1 and TW-2 (Figure A-2 in Appendix A) suggest that the plume is likely confined to the east side of Airport Industrial Road. However, if this flow direction has long periods of opposite flow direction, MW-34 may be representative of upgradient groundwater conditions during times of water backup and/or flooding of the Chena River.

MNA parameter evaluation and molar fraction calculations are somewhat inconclusive and indicate geochemical conditions are possibly conducive to reductive dechlorination. It is inconclusive as they may have been in the past, and there was also significant evidence that the reductive dechlorination process may have stalled at DCE.

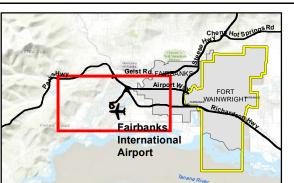
8.0 **RECOMMENDATIONS**

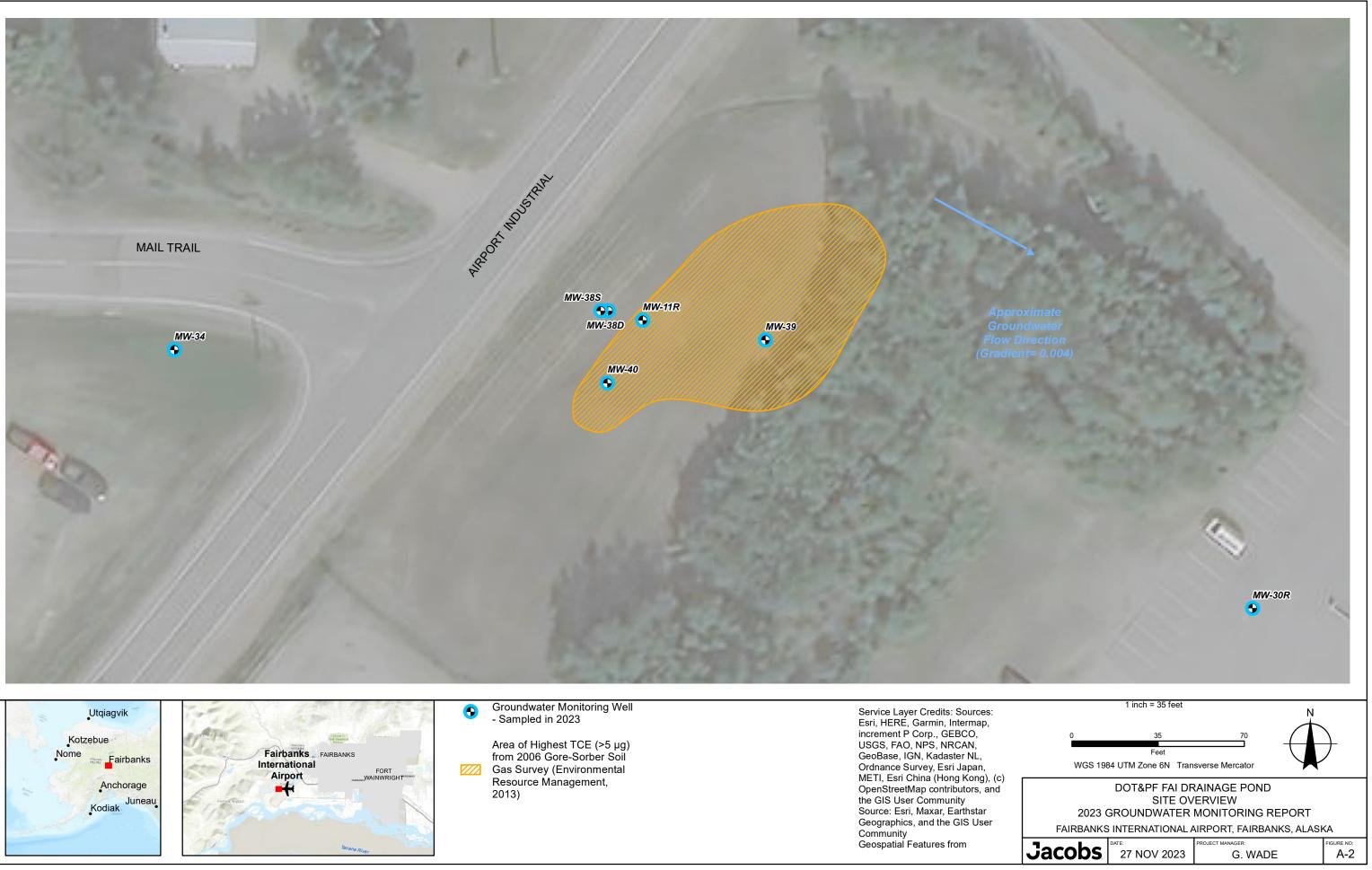
Based on this report, the following actions are recommended for the Drainage Pond site:

- Continue biennial groundwater monitoring of wells MW-11R, MW-34, MW-38S, MW-38D, MW-39, and MW-40.
 - a) It might be beneficial to test for ethylene in future samplings since it is the final stage of the dichlorination process and there seems to be a stall in the DCE conversion. It would be curious to see if ethylene levels are high enough that there may be some conversion back and forth between ethylene and PVC which might be inhibiting electron transfer higher up the chain.
- Continue use of a down-hole bladder pump for sample collection at all monitoring wells.
- Continue monitoring natural attenuation parameters (dissolved and total iron, dissolved and total manganese, TOC, methane, sulfate, and nitrate-nitrite) at the site to evaluate dechlorination. Consider increasing the number and distribution of wells at which MNA parameters are collected to gather a better picture of conditions within the contaminant plume as well as outside the plume.

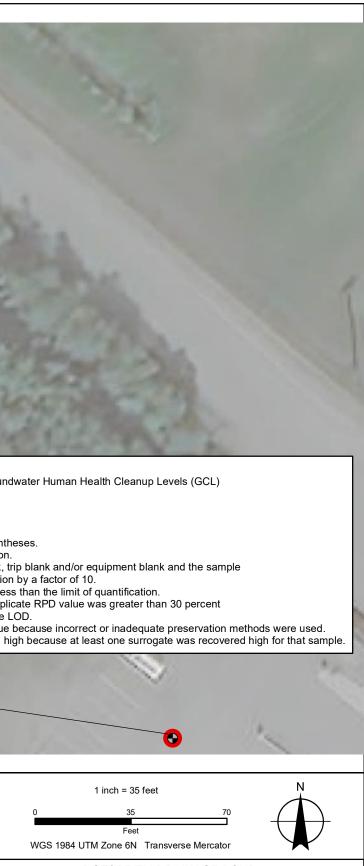

(intentionally blank)

9.0 **REFERENCES**


- ADEC (Alaska Department of Environmental Conservation). 2019 (October). ADEC Contaminated Site Program – FAI – Drainage Pond. <u>https://dec.alaska.gov/Applications/SPAR/PublicMVC/CSP/SiteReport/1923.</u> <u>Accessed on October 2019</u>.
- ADEC. 2022 (January). *Field Sampling Guidance for Contaminated Sites and Leaking Underground Storage Tank Sites*. Final. Division of Spill Prevention and Response, Contaminated Sites Program.
- ADEC. 2023 (October). *Oil and Other Hazardous Substances Pollution Control*. Division of Spill Prevention and Response, Contaminated Sites Program. 18 AAC 75.
- DOT&PF (Alaska Department of Transportation and Public Facilities). 2020. 2019 Drainage Pond Groundwater Monitoring Report. Prepared by Jacobs.
- DOT&PF. 2022 (April). 2021 Drainage Pond Groundwater Monitoring Report. Prepared by Jacobs.
- DOT&PF. 2023 (August). 2023 Drainage Pond Groundwater Monitoring Programmatic Work Plan. Prepared by Jacobs.
- Environmental Resources Management. 2014. 2013 Drainage Pond Groundwater Monitoring Report. Submitted to DOT&PF 19 June 2014.
- Northwind Inc. 2003. DCE/VC Stall at Natural Attenuation Sites, Strategies for Mitigation during Natural Attenuation or Bioremediation of Chlorinated Ethenes. Remediation Innovative Technology Seminar. Naval Facilities Engineering Command.
- Oasis (Oasis Environmental Inc.). 1999. Expedited Site Assessment/Release Investigation Report, Fairbanks International Airport Fuel Hydrant Distribution System, Submitted to DOT&PF on 20 December 1999.
- Oasis. 2006. Work Plan for Former Drainage Pond Area, Fairbanks International Airport, Fairbanks, Alaska. Submitted to DOT&PF 16 October 2006.
- Oasis. 2007 (March). Further VOC Characterization at Former Drainage Pond Area: Fairbanks International Airport. Submitted to DOT&PF 25 March 2007.
- Oasis. 2011. Additional Characterization and Groundwater Monitoring, Former Drainage Pond Site, Fairbanks International Airport. Submitted to DOT&PF on 23 May 2011.
- SLR International Corporation. 2018. 2017 Groundwater Monitoring Report, Former Drainage Pond. Fairbanks, Alaska. Submitted to DOT&PF 23 January 2018.


Wiedemeier, Todd H., Matthew A. Swanson, David E. Moutoux, and E. Kinzie Gordon. 1996. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. Air Force Center for Environmental Excellence, Technology Division. Brooks Air Force Base, San Antonio, Texas. (intentionally blank)

APPENDIX A Site Figures



2023 ADEC GCL Analyte (mg/L) Benzene 0.0046 PCE 0.041	cis-DCE ND [0.0005] B,JP- trans-DCE ND [0.0005] JP- VC ND [0.00075] JP- Total Mn 0.0489 tr Dissolved Mn 0.0411 Dis	PCENDTCE0.0cis-DCE0.00trans-DCEND	[0.0002] [0.0005] 0015 J 0048 J,B [0.0005] [0.0005] 0.00075] Benzene 0.00236 JP- PCE 0.00121 JP- Cis-DCE 1.16 B,JP- trans-DCE 0.00145 JP- VC JD,JP- Total Mn 3.29	Red value indicates value exceeds ADEC GCL GCL = groundwater cleanup level mg/L = milligrams per liter Mn = Manganese ND = Result is nondetect; LODs are listed in par U = Results is below the laboratory limit of detect B = The analyte was detected in the method bla concentration did not exceed the blank concentr J = The result is an estimated value because it i JD = The result was qualified because the field of	ction. nk, trip blank and/or equipment blank and the sample ration by a factor of 10. s less than the limit of quantification. duplicate RPD value was greater than 30 percent
TCE 0.0028 cis-DCE 0.036 trans-DCE 0.36 VC 0.00019 Total Mn 0.43 Dissolved Mn 0.43	I FOUND PROCESS I AND ADDRESS	Occurrence Occurre	PCE ND [0.0005] JP- TCE 0.00121 JP- cis-DCE 0.0487 B,JP- trans-DCE 0.00214 JP- VC 0.00224 JP-	and at least one of the results was greater than JP- = The result was considered an estimated v	the LOD. alue because incorrect or inadequate preservation methods were used. ed high because at least one surrogate was recovered high for that sample.
Utqiagvik Kotzebue Nome Fairbanks Anchorage Juneau	Fairbanks EARBANKS International Airport	Exceedance	,	Soil HERE, Garmin, Intermap, increment P HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community Geospatial Features from Fairbanks	1 inch = 35 feet 0 35 70 Feet Feet Image: Construction of the second of the secon

APPENDIX B Logbook

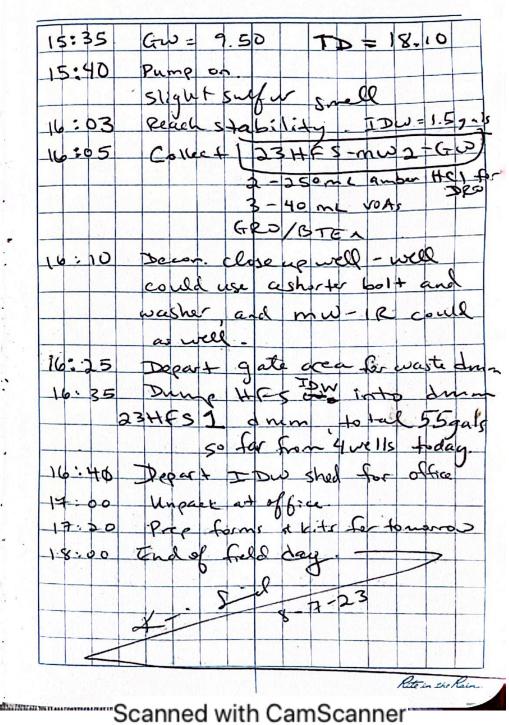
FAIL HES 72 Date 8/7/23 Project / Client HFS ADOT / FAL Gwm PN: 3345200 Weather: 55-72F smoky both Personnel: K. Sicard, G. Wade (Jacobs) REE: Modified level D, N95 misk eptimal Objectives: Gw sampling meet placent pickup accers remote, manage waste 0 800 Safety tailgate at office and Calibrate equipment. See forms Note - very smisky paused work. A Jemison ran to TTT for YSI & turbidimeter 08:50 Calibrate PID - Isobutylene bo the 100ppm B+16 # 23-9778 Exp. 6/22/27 Freshair cal = 0.0ppm Gas cal = 100.0pm Calibrate / check Turbidimeter done by TTT 8/7/27. Calibrate / check - YSI -Cr.f. Sol. = 13EIC 05/02/25 exe : (Miskin) ORP Temp ott 0952 685 17549 23.14 210.4 all within limits with error 0955 Pack vehicle with gear.

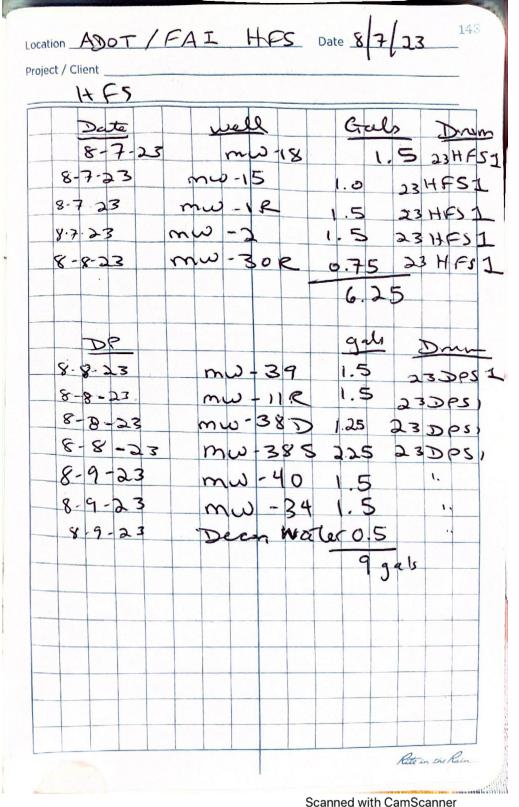
Location FAI/ADOT HES Date 8/7/23 Project/Client HFS Gwm 8N: D3745200 Depart office for Badging C.D.T. 10:12 smoke - law visibility Shi dense Purple Air Schools say 405 to 321 this area. Hogher on hills. blos off by noon, it will Herney 10:40 Arport to meet E Thereis Drive to Depart to have IDw downs at 11:10 bilday. the cool storage Con while at AK Ar Cargo 11.45 Meet Enter area to sample HFS 11:55 well mw-18 Open 12:10 Pump on 1 minor product 12:14 order 40.01 Strong on top. upon removing IF prot hile Small WL = 9.60 TD = 18.88 Collect [23HFS-MW18-GW 12:35 Steplized at 12:33 23HFS-mill8-GWA Dup 12:47 Pump These. 1.5 gab m2-18 mw-15 13:00 Prive PID = 2.6 max 13:08 vell open Rite in the Rain Scanned with CamScanner

Location HES FAI ADOT Date 8723 Project / Client HFS

Location HFS FAI/ADJ Date 8723 Project / Client HFS Pump on at mW-15 13:12 IDW = 1.0 gals 13:28 Stable. 13:30 Collect 23HFS-MW15-GW Gw= 256 at start 3. JAS 2-250 TD = 18.88 ft bqs 13:37 Close up well decon. Packup. Drie to mw- IR Lunch. 14:15 GW = 8.97 TD = 18.55 ft bas 14:30 Punp on Large well - 3.5" 14:50 Stabilized Not: Tubing inwell diameter 14:50 Collect [234FS-mw 1R-Gw] 2-250ml glass. DRO 3 - 40 me VDAR GRO/STEX 14:59 Pump off. Slight smell sulfer Total IDw med IR = 1.5 gals 15:01 Close up well, Decon 15:05 mob out of gate to ballroom.

Return to mw-2 by Akair Corgo


15:15 Talk to representative & she advi-


tomorrow at 30 R

PID = 0.0

sed us to sample before 8 am

15:25 open well mw-2 next to bldg

HFS / 76 Location DPS FALDOT Date 8-8-23 Project / Client 1+FS / DPS PN D3745200 / D3745100 Weather: 58-75 of smaky Personnel 1 K. Sicard G. Wade PRE: mod Level D (ore) Objectives: sample wells at HFS 30R DPS - as many as we can manage waste 0630 Safety tail gate (see ferms) Calibrate equip: callcheck 0638 Turbidimeter: 1000 10.0 / 01 vith check/cal YSI - same standards as yesterday - seep 72 0642 Templic) ptt cond (MS/cm) ORR (mv/1) 24.45 16.79 17855 1212.7 V within limits on cal check bottle 0645 Cal PID w/ 150butylene 100.0 (same , 70) Fresh & = 0.0 ISO = 100.3 ppm Grabice 1 TB's. 0655 pack gear in rehicle 0701 Depart office for mw-30R 0719 Set up comes lagear at HES MW30R mw30R GW = 8.03 TD=17.1 0737 Pump on Drawdown slow pump Drop tubing to 16. 7 max to

Location HES / DP FAI DO'T Date 8-8-23 77 Project / Client HES / DPS

\$7:55Collect 2BHFS-MUSOR 3 vows CRO/BTEX 3 was 250 glass 1+c1 2 + MANA IDW = 0,75 gals + note turbid at end for Filtered Sample due to almost pumper D81 BRick up maintenance - most 08 15 Well needs Nacked. back to cut down mob to Des wells 0823 office for well cutting tools 0835 Qual 0905 par well mw-39 WL= 6.35 0945.KS Run to office for air comparison and TH 0945 Gw replace botts at HES mwlR m-2-2 10:45 Return to mw -39 pump at 11. 42 ft 595 10:58 Punp on 11:16 5Jabilize Collect [23DRS-MW39-GW 11:17 3 VOAS 1 508260D 11:25 Close up well, decon, JDN=15geb 11:34 to new IID mob Rite in the Rein .

Scanned with CamScanner

Location DPS FAI DOT Date 8/8/23 79 78 Location DPS FAIDOT Date 8/8/23. Project / Client DPS Project / Client DP PN: D3745100 PN: D3745100 385 14:51 Pump 0-11:40 Open mw-11R at DPS GN = 5.12 ft btoc red soum IF Stabilize 3 parameter. IDW=2.25. 15:13 Collect (23Dps-mw385-Ge TD= 33.94 15:13 Pump at 19.53 SW82GOD ZVDAS WIHCI -IIR 11:45 Pumpon 15:25 Decor Close well. Rack 12:13 Stablize. DE IDW = 1.5 gab to waste / Jow bldg 15:38 moß 12:15 Collect [23th FS-muliR-GW Dung waste in to down 15:42 12:15 Dup: / 23.445-mw11R-GWA 23DP5 1 office 3 VOAS (SW8260D) 15:50 mos to Unpack + mNA premeters (see forms) 110:05 Love Sar Endof Decon mob to reat well 16: 12:40 da 12:50 Thurder & Lightning. Pack up ge 13:50 for bio break 1)13:00 Return set up at mw-38D 14:15 pump on. Gw = 4.55 TD = 34.24 14:28 Stabilize -Coller 23 DPS-mw38D-Gw 14:30 3 WAS (SW\$260D m. 0 38 D 14:35 Decon. Close up well JDW=1.25 14:4 Open mw-385 Gw= 4.48 +D=14.55 pup at -19.5-00 9.5 ft blac Rite in the Rain Scanned with CamScanner

80 Location DPS FAIDOT Date 8923 Location DRS FAI DOT Date 8-9-23 Project / Client DPS PN: D3745100 PN: D3745100 Weather: 65-70F cloudy smoky 10:24 Stabilize Toral Performel: K. S. cond Cr. wade Collect 123DAS-MW40-Gi 10:25 3-40 m2 VOAS /HCI objective: Finish sampling wells at DPS MW34 MW40 Sur 54082601 collect EB, collect wasterapp 10:35 Decon Durp Well main mw-30R sample summary. 10:45 (-.W. cut down 0900 Calibrate equip et office due to trost packing by 0.06 ft at 1-34 Tur L: dimeter 1000 - 950. 2 10:50 KS m set Lip 4.09 PID = 0.0 Gw = D= 13.24 1. bas calibrate, check again: 1000 mw-34 10.0 11-10 4+ Punp on 0905 0.02 / 11:33 Stabilize Check/Cal YSI : p with accepted ra Teme: End DRP pH 24.94° 7940 × 215:9, 6.91 with a capted range 1.5 IDW -total = Rali 11:35 Collect 23305-mw 34- Gw 7940 / 215.9, 6.91/ 1401 Su\$ 260> 3 voas 0915 cal p.D. same as previday premiters * MNA ell 11:50 Freshart = 0.0 lese 100ppm 150 = 100,0 EB collection for 11:55 0920 pack gear. Safety DowRA. 0930 Depart office out EB from bladder and 12:00 23DPS-FB-G 0950 Setup at DPS MW-40 3-40 mL VOas GN=600 7D=15.87 460. 11441 10: \$5 premp on. Draw down of 1 At for 10 mins Water from Decon into weste drum 23 DPS 1 Ptin the Rein Scanned with CamScanner

82 Location DPS/HFS Date 8/9/23 Project / Client

12:19 mob to I Duo drums Dump waste fran DPS into 23 DPSI drum Collect: 12:30 [23 DPS-ØIW] waste sample 3 VOAS (8260D) 2-352-Lanber/HCI for GROIBTEX (F) 2-HDPE 125mL from Drum 23DPS1 12:45 Collect 23HFS-\$1W 3 VOAS BTEX/GRO 2-250 mL amber HCI for 2. HDPE for PFAS (53.7m) 125mL from Drum 2325 HES 1 13:05 Return Arrfield pass to OPS. 13:10 Depart badging of free for lurch and office unbad of samples (year, 15:' Return gear to TTT. End of Frild day V - rid 8-9-23

				1			Da	te		
Client		-			-					
			1							
	100									
						;				
1								1.31.5		

Location

Project /

Scanned with CamScanner

Rite in the Rain

APPENDIX C Groundwater Monitoring Forms

Groundwater Sampling Data Sheet

Jacobs

Project Nam	e / Client			ite Name /				Project No.	Well IC		
DPS,	ADOT FAI Dramage				ye fond	efond Gwm 2023			20 Mi	>-IIR	
Weather		Total VOCs (p							Date		
70 F, partly cloudy Ambient 0.0					Breathing Z	cone <u>C.C</u> in f	well <u>3.</u> า	K5,600	8-8-	- 23	
Well In							1				
Well Integrity	Ĺ		Stickup (ft a	<u>ags)</u>	Well Casing	Material		meter(in) / Gallon	`	t(gal/ft)	
$\langle \cdot \cdot \rangle$		oor -	0.40			∋) ss		.041 2/0.163	J	6 / 1.47	
Depth to Pro	duct (ft)	Dep	th to GW (ft I	btoc)) Product Th	ckness (ft) and V	olume Recover	red (mL)	
**************************************			5.12		35.90	f (final)	3.				
<u>Max Purge</u>	<u>Volume</u> = ((<u>33,9</u> Previous To	tal Depth	5.(2 Depth to Wate Depth to Top o	ft) * ror G f Filter Pack	0,163 gal/l Sallons per Ft	t = <u>{4</u> <u>1</u> Max Pur	_ gal * 3.785 L/ga ge Vol	al = <u>53.)7</u> Max Purge	L Vol	
Well Pu	urging	Inform	ation								
Start Time			sh Time		Tubing Dep		Equipmen				
11:45			2:13		19.53	-		•	Submersible I	Bladder Pun	
Clear Cl	oudy Bros	Odo WD		Faint	Sheen Yes	Purged Dry Yes	Meters Us	ed /SI Multi Meter	Hach Turhidin	neter	
Other:	Judy DIU			te Stron		No		Vater Level Meter	>=>	~	
Purging rea	iched Sta	ability	x Vol. <u>P</u> u	urge water	•	ed Stored	Approx. volu	<u>me:</u> 1.5 <u>pr</u>	um Name/#: 23	D851	
*****	Volu	ume:	Flow Rate					ity (three must stabilize)			
Time	Gals /	/ Liters	(0.013-0.13	Temp	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% NTU	Drawdowi < 0.3 ft	
(HH:mm)	Change	Total	gpm, 50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoo	
Pump on: 11:45	-	-	Ð	3.20	572-	-+-+-7	7.06	45.5		5.12	
11:50	0.2	٥. ٦	0.04	8.2	572	1.4 2	7.06	45.5	24.32	5.12	
11:55	0.2	0.4	0.04	10.12	587	0.69	7.04	36.5	9.02	5.12	
11:58	0.2	0.6	0.07	10.15	585	6.62	17.03	31.4	7.18	5.11	
12:01	0.2	0.8	0.07	8.74	555	0.61	17.04	130.5	5.03	5.10	
12:044		0. 1.0	0.07	7.51	534	0.45	7.04	130.4	1.60	5.10	
12:07		1.2	0.07	7.11	523		17.05	1 28.1	4.62	5.11	
		1.4	0.07	6.91	511		7.07		2.96	5.11	
12:13	0.7	1,6	0,07	6.80	503	10.27	17.08	122.8	2.49	5.10	
									- • •		
					•						
Sample	e Colle	ction l	ı nformat	ion	,	l	I		<u> </u>	. I	
Start Time Finish Date/ Time									ment Used		
12:15		8-8-2		-:4ø	19.5	3	Peris	altic Pump (Sut	omersible Blade	der Pump	
SAMPLE I	<u>D(s):</u> 23	Des .w	wirk-(GωA	<u>ac:</u> 🚱		Ferrous I	ron (Fe ²⁺) (mg/L)			
	23	DPS-	mwlir	-Gwif	QC Time:	12-204%	Sampler	nitials: ¢S	, GW		

23DPS-MWIIR-GWA <u>QC Time:</u> 124204; <u>Sampler Initials:</u> KS, GW <u>#/Container/Preservative</u> <u>Analyses</u> <u>Notes</u> 3 - 40 mL VOAs/HCI Benzen, PCE, TCE, C.S. DCE, trans DCE, VC (ErASW82402) many others <u>MNA</u> parameters (See sample summary)

Jacobs

	F			ing but						[
	Project Name		. ^		Site Name /				roject No.	Well ID		
	DPS /						3023		23745101		2-34	
	Weather 68F	dense f	vg	I	otal VOCs	(ppm)		S	ampler(s)	Date		
·	687	nosty	cland	4 4	Ambient 0.	Breathing Z	one <u>0.0</u> In W	/ell <u>(). ()</u>	al 0.0 KS GW 85-23-2			
	Well In			J					8-1-6-			
	Well Integrity			Stickup (ft	ags)	Well Casing	Material	Casing Diameter(in) / Gallons per linear foot(gal/ft)				
	Good	Fair Po	or –	0.3	7-	PVC SS			41 (2/0.163)	4 / 0.653	6/1.47	
	Depth to Pro	duct (ft)		th to GW (ft			Total Casing Depth (ft btoc) P		ness (ft) and Vo	olume Recover	ed (mL)	
				4.64		13.3						
	Max Purge	<u>Volume</u> = (13 2 Previous To	Depth ft -	·	≤ 9.\\ ★ ft) ★ ft) ★ G	3 0.163 gal/ft allons per Ft	= <u>4.45</u> Max Purge	gal ∗ 3.785 L/ga ^{Vol}	I = <u>\6.86</u> Max Purge	L Vot	
	Well Pu	Iraina I	nform			T mos T don						
	Start Time			sh Time		Tubing Dept	h (ft btoc)	Equipment L	lsed			
	11:11	3		11:3	3	0.8	5	Bailer Pe	ristaltic Pump	Submersible E	Bladder Pump	
	Color	-	Odo	<u>r</u> ~~		Sheen	Purged Dry	Meters User	L			
	Clear Cl	oudy Brow	vn		Faint	Yes	Yes	(YS	I Multi Meter X	Hach Turbidim	ieter	
	Other:			Modera	te Strong		No No Water Level Meter (Interfa				robe	
	t viuittiot			x Vol. P	urge water	r was: Treated (Stored) A		Approx. volume: 1.5 gals			3 DPS 1	
-		Volu	me:	Flow Rate			Water Qu	ality (three mu	st stabilize)		Water Leve	
	Time	Gals /	Liters	(0.013-0.13		± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% NTU	Drawdown < 0.3 ft	
	(HH:mm)	Change	Total	gpm, 50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)	
· · · ·	Pumpon:	-	-								4.09	
·	11:15	0.2	0.2	0.05	11.22	788	3.03	6.86	66.9	31.17	4.15	
	11:20	0.2	0.4	0.05	8,85	733	2.16	6.70	65.1	16.21	4.12	
	11:25		0.6	0.05	8.20	713	2.07	6.68	62.71	10.59	4.12	
	11:29		0.8	0.05	7.96		1.33	6.701	7	7,71	4.13	
						702						
	11:33	0.2	1.0	0.05	7.63	693/	1,39	6.701	59.5 🗸	6.35	4.15	
											L	
	Sample	e Colle	ction I	nforma	tion							
	Start Time			ate/ Time		Tubing De	pth (ft btoc)	Equipment U	sed			
	11:3	5	8.9.	23 /	11:48	8.0		Peristal	tic Pump (Sub	mersible Blade	ler Pump	
	SAMPLE I	D(s):	• -			QC: -Dup	MS/MSD_>	Ferrous Iro	n (Fe ²⁺) (mg/L) =	المعروبية المحمولين		
		72	DPS	-MW3	4-60			<u> </u>		<u> </u>	<u></u>	
	#	/ Container	/ Preserv	/ative		Analyses		1	$\frac{\text{trais:}}{\text{Notes}}$	<u>, u w</u>		
	3-4	e me	VAS ,	/HCI	Benz	Leve, PCE	TOELS	DCE tran	5-2CE	VC (ES	PA SUBA	

Suggested Notation: "----" = not measured "1" = stable "+" = rising "-" = falling

Jacobs

			-									
Project Nam	,			ite Name				Project No.	Well I	2		
DPS/	ADD	T FA ?	I I	DPS	Gwm	, 703	-3	D37451	00 mu	0-385		
Weather				otal VOCs	(ppm)			Sampler(s)	Date			
Orecc			c5 /	mbient 0	.O Breathing 2		Nell <u>0. 2</u>	KS, GU	2 8-9	8-33		
Well In												
Well Integrity	L	TOC	Stickup (ft	ags)	Well Casing	Material	Casing Dia	Casing Diameter(in) / Gallons per linear foot(gal/ft)				
\bigcirc			-0.6	•	eve eve) ss		.041 2/0.163		6 / 1.47		
Depth to Pro	duct (ft)	1	h to GW (ft						red (mL)			
·····			-48			• •	> (final)					
Max Purge	<u>Volume</u> =	(<u>14.5</u> Previous Tol	s5 ft -	4.48 Depth to Wate Depth to Top of	to.o+x ft) * ft) * of Filter Pack	_ft) *163 gal/ft = 4.92 gal * 3.785 L/gal = <u>18.64</u> L <u>Max Purge Vol</u> <u>Max Purge Vol</u>						
Well Pu	urging	Inform	ation									
Start Time			h Time		Tubing Dep		Equipmen	t Used		····		
14:5	1	1:	5:13		9.5	φ		Peristaltic Pump	Submersible I	Bladder Pump		
Color		Odor			Sheen	Purged Dry	Meters Us					
Clear Cl Other:	oudy Bro	wn		Faint te Strong		Yes						
Purging rea	Purging reached Stability Max Vol. Purge water was: Treated Stored Approx. volume: 2,25 Drum Name/#: DPS 1											
	Volu	ıme:	Flow Rate			Water Q	uality (three r	nust stabilize)		Water Level		
Time	Gals	Liters	(0.013-0.13	Temp (°C)	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% NTU	Drawdown < 0.3 ft		
(HH:mm)	Change	Total	gpm, 50-500 mL/min)		Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)		
Pump on: 14:51	-	-					•			4.48		
14:56	0.25	0.25	0.05	8.05	577	1.33	7.11	39.0	6.74	4.55		
14:59	0.35	ها. 0	0.09	7.27	577	0.65	.J.'oJ	- 30.7	3.93	4.52		
1415:03	0.40	1.0	0.1	7.07	1578	0.49	17.04	22.9	4.70	4.52		
15:07	0_40	1.46	0.1	6.84	1578	0.42	17.08	15.9	2.29	4.52		
15:10	0.40	1.8	0.1	6.81	577	0.32	17.08	9.8	2.71	4.52		
15:13	0.40	2.2	0.1	7.81	/588	0.25	1.08	15.9	2.53	4.50		
	·····							·····				
Sample	Colle	ction Ir	nformat	ion								

Start Time	Finish Date/ T	ime	Tubing Depth (ft btoc)	Equipment Used	
15715	8-8-23	/15:19	44 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Peristaltic Pump	Submersible Bladder Pump
SAMPLE ID(s):			QC: Dup MS/MSD	Ferrous Iron (Fe2+) (n	ng/L) =
23	DPS-Mu	1385-GW	QC Time:	Sampler Initials:	KS, GW
# / Container	/ Preservative		<u>Analyses</u>		Notes
3 - 40 m	L voas,	Hel	(SW8260D)	>	
	2				

 (\mathfrak{W})

Jacobs

				•								
Project Nam	e / Client		S	ite Name /	Event		F	Project No.	Well IC	2		
DRS /	ADOT	FAI		DPS	Gwm	3033	·	D37451	00 mu)-38D		
Weather			Т	otal VOCs	(ppm)			Sampler(s)	Date			
65 F.	rainy	smol	ry A	mbient 0.0	Breathing 2	Zone 0. O In V	vell 0.5	KS, GW	8-8	-23		
Well In	formati											
Well Integrity	L	TOC	Stickup (ft	ags)	Well Casing Material Casing Dia		ameter(in) / Gallons per linear foot(gal/ft)					
\smile			· O. L			sss		.041 (2/0.163)	r			
Depth to Pro	duct (ft)		h to GW (ft					ckness (ft) and V	olume Recover	ed (mL)		
······			4.55	******	$\frac{34.24}{(\text{final})} \qquad $							
Max Purge	<u>Volume</u> = (34 3 Previous Tot	et Depth ft -	4,55 Depth to Water Depth to Top of	or G Filter Pack	3 3 3 3 3 3 3 3 3 3	= <u>14.52</u> Max Pur	L gal • 3.785 L/ga ge Vol	al = <u>54.9</u> Max Purge	L Vol		
Well Pu	urging	Inform	ation									
Start Time			h Time	•	Tubing Dep	th (ft btoc)	Equipment					
14:10 14:				\$	19.4			eristaltic Pump (Submersible I	Bladder Pump		
Color	Clear Cloudy Brown				Sheen	Purged Dry	Meters Us		Llach Turkid			
Clear Cl Other:	oudy Brow	wn		Faint te Strong								
Purging rea	iched: Sta	bility Max	(Vol. <u>P</u>	urge water	<u>was:</u> Treat	ed / Stored	Approx. volu	me: 1, 25 Dr	um Name/#:2	3 1 ps 1		
	Volu	ime:	Flow Rate			Water Q	uality (three n	nust stabilize)		Water Level		
Time	Gals /	Liters	(0.013-0.13		± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% NTU	Drawdown < 0.3 ft		
(HH:mm)	Change	Total	gpm, 50-500 mL/min)	(°C)	Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)		
Pump on:	-	-								4.55		
14:15	0.20	6,2	0.04	8.16	330	3.60	7.19	17.2	2.21	4.60		
14:20	0.24	0.4	0.04	6.53	335	0.90	7.17	9.9	1.63	4.60		
14:25	0.20	0.6	0.04	6.07	336	0.49	7.18	6.1	2.86	4.60		
14:28	0.25	0.80	0.07	5.94	337	0.38	1219	13,7	3.51	4.61		
				++-								
			<u> </u>									
										-		
	L					1			L	1		
Sample	e Colle	ction li	nformat	ion			- <u>-</u>					

Start Time	Finish Date/ Time	Tubing Depth (ft btoc)	Equipment Used
14:30	8-8-23/14:34	19.4	Peristaltic Pump Submersible Bladder Pump
SAMPLE ID(s):	, , ,	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) =
237	ops-mu38D-Gw	QC Time:	Sampler Initials: KS GW
	er / Preservative	Analyses	Notes
3-40mL	VOAS/HCI B.	Enzene PCE, TCE,	Cis-DCE trans DCE, VC
	<i>*</i>	(EPA SW826	
		-	

Jacobs

Project Nam	e / Client			Site Name	/ Event			Project No.	Well II	2	
DPS	/ADO	TF F!	ι [DRS	Gwn	3033		D37451	00 MU	N-39	
Weather	little S	mety	-	Total VOCs	s (ppm)			Sampler(s)	Date		
Weather 7¢°°	ς , _{sc} .π	res cle	nds	Ambient <u>0</u>	O_Breathing 2	zone <u>0,0</u> in ۱	Well 11.8	KS.GW	8-8	-23	
Well In	format										
Well Integrity	Ł	тос	Stickup (ft	ags)	Well Casing	Material	Casing Dia	meter(in) / Gallons per linear foot(gal/ft)			
\searrow			-0.6			c) ss		.041 2/0.163			
Depth to Pro	duct (ft)	Dept	h to GW (fi					ickness (ft) and V	olume Recover	ed (mL)	
·		·	6.3								
Max Purge	<u>Volume</u> =	(<u>16.S</u> Previous Tot	💋 ft –	Construction Depth to Wate Depth to Top	$\frac{5}{10.15} + \frac{10.15}{10} + \frac{10.15}{0}$ er or of Filter Pack	ショーウック <u>クーロス</u> gal/f Sallons per Ft	t = <u>2.48</u> Max Put	_ gal * 3.785 L/ga ^{ge Vol}	al = <u>9, 4</u> <u>Max Purga</u>	L ≆ Vol	
Well Pu	urging	Inform	ation								
Start Time		Finis	<u>h Time</u>		Tubing Dep		Equipmen				
	10:58 11:16					.42		Peristaltic Pump	Submersible I	3ladder Pump	
Color					Sheen	Purged Dry	Meters Us	and the second design of the s			
	Clear Cloudy Brown Mod							/SI Multi Meter			
							<u> </u>	Vater Level Meter	Interface F	robe	
Purging reached: Stability Max Vol. Purge water was: Treated Sto					ed Stored	Approx. volu	<u>ime:</u> 1.5 _{gals}	<u>um Name/#</u> : ີ	3DPS 1		
	Volume: Flow Rate					Water Q	uality (three i	nust stabilize)		Water Level	
Time	Gals	/ Liters	(0.013-0.13		± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV	± 10% NTU	Drawdown < 0.3 ft	
(HH:mm)	Change	Total	gpm, 50-50(mL/min)		Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet btoc)	
Pumpon:	-	-								6.35	
11:03	0.3	0,3	0.06	8.61	944	1.70	6.85	34.4	6.72	7.51	
11:07	0.3	0.6	0.075	8.51	936	0.92	6.86	29.0	5.45	7,52	
11:10	0.3	275	0.1	9.54	969	0.72	16.85	25.4	3.46	7.9	
1143	0.3	1,2	0.1	9.28	962	0.64	16.86	123.4	4.70	8.2	
11:16	0.2	1.4		9.66	1965	0.50	16.86	120.9	3.12	8.4	
	1		1					1			
	•										
Sample	e Colle	ction l	nforma	tion		1			1		
Start Time			ate/ Time	<u>ાગા</u> : ૨)	Tubing De	pth (ft btoc)	Equipment	Used taltic Pump (Sut	moreible Die d	Hor Pump	
	D(-)	03.0	-/ "	····)		<u> </u>					
SAMPLE I	U(s):	_	120	<i>.</i> .	QC: Dup	MS/MSD	+ errous I	ron (Fe ²⁺) (mg/L) :	=	-	

11:17 8.8.	23/11:21	11.4	テ	Peristaltic Pum	p (Subme	ersible Bladder Pump
SAMPLE ID(s):		QC: Dup	MS/MSD-	Ferrous Iron (Fe ²⁺)	(mg/L) =	
23 DPS - M	nW39-GW	QC Time:		Sampler Initials:	K-S,	G W
# / Container / Pres	ervative	Analyses			Notes	
3-40 mL VO	As/HCI B	Sensere, P	CE,TCE, e	(E	N -DCE PASW	- vc 8260D)

Jacobs

Project Nam	-			Site Name				roject No.	Well ID		
DPS	AD	דיני	FAI	Ð	ps Gu) m so	33 2	>37452	Date	0-4¢	
Weather			ב	Fotal VOCs	i (ppm)		, s	ampler(s)	Date	_	
65F.	F= 197	s mo	ry 1	Ambient 🖉 _	O Breathing Z	Zone O. O In V	Nell 5 2	KSG	w 8-9	-73	
Well In	format	ion	/								
Well Integrity	L	TOC	Stickup (ft	ags)	Well Casing	Material	Casing Diam	eter(in) / Gallon) / Gallons per linear foot(gal/ft)		
Good	Fair Po	oor	0.5	Ø							
Depth to Pro	duct (ft)		h to GW (ft								
	,		00.0		987	- (mica)	** <u>*****</u>				
Max Purge	Volume = (Previous Tot	1 ft – lai Depth	Depth to Wate	<u>⊃ft)*</u> eror G	0.163gal/f Sallons per Ft	$t = \frac{4.83}{\text{Max Purge}}$	gal * 3.785 L/ga ^{Vol}	= 18.3 Max Purge	L Vol	
Well Pu	urging										
Start Time	=		h Time		Tubing Dept		Equipment L				
Color	>	V Odor	0.21	-1	IO.9 Sheen	Purged Dry	Bailer Pe Meters Used		Submersible B	ladder Pump	
			None	Faint	Yes	Yes	_		Hach Turbidim	eter	
Other:			Modera	ate Stron				ter Level Meter			
Purging rea	iched: Sta	ability	vol. P	urge water	<u>was:</u> Treat	ed Stored	Approx. volum	e: 1.5gal <u>on</u>	um Name/#: 2	30951	
	Volu	ıme:	Flow Rate			Water Q	uality (three mu	st stabilize)		Water Level	
Time	Gals /	Liters	(0.013-0.13		± 3%	± 10% or 0.1 mg/L	± 0.1 ´	± 10 mV	± 10% NTU	Drawdown < 0.3 ft	
(HH:mm)	Change	Total	gpm, 50-500 mL/min)		Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)	Turbidity (NTU)	(feet bloc)	
Pump on: 10305	-	-								6.00	
10:10	0.1	0.1	0.02	9.84	1270	1.02	6.40	88.8	42.56	6.50	
10:15	0.1	0.2	6.02	8.54	1219	0.67	6.53	84.8	33.04	6.96	
10:18	0.15	0.35	0.05	8.27	1203	0.50	6.60	81.31	29.38	6.88	
10:21	0.15	0.5	0.05	8.30	12081	0.42	6.631	78.81	18.19	6.75	
10:24	0.15	0.65	0.05	8.23	12081	0.38	6.65 v	177.3	16.22	6.78	
				1							
				+ - 1				+			
				+ +							
			 								
	L	L	_					. , , , ,	l		
Comonia											

Sample Collection Information

Start Time	Finish Date/ Time	Tubing Depth (ft btoc)	Equipment Used
10:25	8-9-23 10:29	10.99	Peristaltic Pump Submersible Bladder Pump
SAMPLE ID(s):		QC: _Dup _MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) =
23-	DPS-MW40	QC Time:	Sampler Initials: KS, GW
# / Containe	er / Preservative	Analyses	Notes
3-40~	L VOAS/HCI	5W8260D	
	· · · · · · · · · · · · · · · · · · ·		

Jacobs

Project Name HFS /		CAI	8	ite Name		System Gi	ട മന	Project No.	\	Well ID	3-2-0
· · · · ·						ysien Ol	~~~~	> 3745	100		- 30 K
Neather 59°F		J. cl	pred H	otal VOCs				Sampler(s)		Date	8-23
	Smor	J. d	oculs f	mbient 0	C Breathing 2	Zone <u>C.O</u> In V	Vell <u>0.0</u>	FS. GW		<u> </u>	کړی پ
Well In	format	ion									
Nell Integrity	Frostack	ed TOC	Stickup (ft	ags)	Well Casing	Material	Casing Dia	meter(in) / Gallon	s per lin	ear foot(gal/ft)
Good (Far Po	oor —	0.05	5	(PVC	c) ss		2/0.163	4/0.6	653 6	/ 1.47
Depth to Pro	A	Dept	h to GW (ft	btoc)	Total Casing	g Depth (ft btoc	Product Th	ickness (ft) and V	olume F	Recovere	ed (mL)
	4	8	f.o⊰		(7.	(final)	<u>د</u>	-		_	-
<u>Max Purge '</u>	<u>Volume</u> = ((<u>17.)</u> Previous Tol	ft – al Depth	8.03 Depth to Wate Depth to Top o	ft) *	◆ ス 子 <u>ひ . 0 ↓ </u> gal/f Gallons per Ft	t = Max Pu	gal * 3.785 L/ga rge Vol	al = <u>-4</u> .	Max Purge	Vol
Well PL	irging	Inform	ation		······						
Start Time		Finis	<u>h Time</u>	-	Tubing Dep	,	Equipmen				
Ø7:3	57		7:5	<u> </u>	12.5			eristaltic Pump	Subme	ersible B	ladder Pump
<u>Color</u>		Odoi	None	Faint	Sheen	Purged Dry	Meters Us	the second s	11		
Clear Clo Other:	oudy Brow	wn		te Strong		Yes (No)		YSI Multi Meter) (\sim
			l	•				Water Level Meter	<u> </u>	erface Pr	
Purging rea			<u> </u>	urge water	was: Treat			^{ime:} 0.75 ^{Dri}	um Nam	ne/#: 4	
Time	Volu	ıme:	Flow Rate	┩┣			uality (three	must stabilize)			Water Level
(HH:mm)	Gals /	Liters	(0.013-0.13 gpm, 50-500	Temp (°C)	± 3%	± 10% or 0.1 mg/L	± 0.1	± 10 mV		% NTU	Drawdown < 0.3 ft
(cicianin)	Change	Total	gpm, 50-500 mL/min)		Conductivity (µS/cm)	DO (mg/L)	pH (std units)	ORP (mV)		bidity TU)	(feet btoc)
mp on: 0°7337	-						803				
7:43	0.15	0.15 49			655	\$ 3,90	6.50	106.5	16.4	42	10.35
)7:46		0.30	1	4.71	638	1.24	6.59		19,4		11.80
)7:49	****			4.45	627				1		12-70
					618		16.66		21.		
7:52	0,15	0-60		4.20	فلنها	1.15	6.69	92.6	(7.	৬১	13.45
				┨────┤							
				<u> </u>							
	·			ļ							
									1		
<u></u>	L								†		
	L			<u> </u>		L	- A1 -	turbid at	- 0 -	1	
Sample	Colle	****		ion	15.15	•	•			-	
<u>Start Time</u> 07:5 [・]	-		ate/ Time 3	7 .16		pth (ft btoc)	Equipment			ged a	
		10-0-2		2 . 10				taltic Pump Sub		-	ar h.autib
SAMPLE II			34R-(<u>-</u>)		MS/MSD		ron (Fe ²⁺) (mg/L) :		<u>'/A</u>	
4				-1 ~	QC Time:		<u> Sampler</u>		Gi		~~~
		r / Preserva		TO P	Analyses -=-(AK(62)		HFS well ,	outc	rnah	122 for
3-40	~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	As we t		640	BTEX)		MNA gave	mete	urs fo	-D9
3 - 4.	L VORS	HHCI		(Ario)	(AK (/ B TEX (SUB gody LEPA R	DI		were			
< <u>1</u>	em a.	nber.	444	TOC	LEPA R: (EPA <-	sic (75) مج3105/syu	(A 510P	¥	2500	nl f	itered
2-125	me pol	y unpe	served -	-> 511	fute (EP	A 300.0)	(/V	-	<u>,</u>	ive dis	solved lysis
	Matations	4 11			= stable "+" =		•			ana	Page

.

2-125-14

2-125 ML HDRE/HNO3 -> FE MA total & D.Scolver (EPA 6020A) 2-125 ML Poly/H- coll - Notme Include (EPA 6020A) APPENDIX D Historical and Current (2023) Results

2023 Drainage Pond Groundwater Monitoring Report Appendix D Historical and Current (2023) Results

	Analyte:	Benzene	PCE	TCE	cDCE	tDCE	Vinyl Chloride
	2023 ADEC GCL ¹ (mg/L):	0.0046	0.041	0.0028	0.036	0.36	0.00019
Monitoring Well ID	Sample Date ³			Analytical	Result (mg/L)		
	9/27/2005	0.0095	0.027	0.014	0.63	0.0038	0.0053
	11/2/2006	0.0043	0.0105	0.00684	0.709	0.00828	0.00266
	10/17/2007	0.0051	0.025	0.0055	0.65	0.0046	0.0024
	10/21/2008	0.00499	0.0201	0.0112	2.68	0.0158	0.00614
	10/29/2010	0.00672	0.0235	0.00458	0.873	0.00729	0.00694
MW-11R	12/5/2013	0.00612	0.0147	ND (0.0005)	1.22	0.0094	ND (0.0005)
	6/15/2017	0.00178	0.0327	0.0241	1	0.014	ND (0.000075)
	12/12/2019	0.00128	0.0135	0.0074	1.77	0.0173	0.00491
	10/20/2021	0.00105 J	0.0146	0.0047 J	1.55	0.0172	0.00425
	8/8/2023 (Primary)	0.00236 JP-	0.00596 JP-	0.00121 JP-	0.116 B,JP-	0.00145 JP-	0.00072 JD,JP-
	8/8/2023 (Duplicate)	0.0024	0.00597	0.00116	0.116 B	0.00148	ND [0.000075]JD
	8/27/2003	ND (0.0004)	ND (0.001)				
	8/27/2004	ND (0.0004)	ND (0.001)				
	9/27/2005	ND (0.005)					
	11/2/2006	ND (0.0004)	ND (0.001)				
MW-34	10/7/2007	ND (0.0002)					
	6/15/2017	ND (0.0002)	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.000075)
	12/11/2019	ND (0.0002)	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.000075)
	10/21/2021	ND (0.0002)	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.0005)	ND (0.000075)
	8/9/2023	ND [0.0002] JP-	ND [0.0005] JP-	ND [0.0005] JP-	ND [0.0005] JP-	ND [0.0005] JP-	ND [0.000075] JP-
	10/29/2010	0.00892	0.00054 J	ND (0.00062)	0.0597	0.0006 J	0.00116
	12/5/2013	0.012	ND (0.0005)	ND (0.0005)	0.0209	ND (0.0005)	ND (0.0005)
MW-38S	6/15/2017	0.00365	0.00433	0.000397 J	0.166	0.00108	0.00144
10100-303	12/11/2019	0.00239	0.00305	0.000580 J	0.25	0.00216	0.00186
	10/21/2021	0.00193	0.00089 J	0.00039 J	0.293	0.00227	0.00237
	8/8/2023	0.00319 JP-	0.00062 JP-	0.00021 J,JP-	0.148 B,JP-	0.00207 JP-	0.0018 JP-
	10/29/2010	ND (0.00062)					
	12/5/2013	ND (0.0005)					
MW-38D	6/15/2017	ND (0.0002)	0.000557 J	ND (0.0005)	0.00263	ND (0.0005)	ND (0.000075)
10100-300	12/11/2019	ND (0.0002)	ND (0.0005)	0.000312 J	0.0116	ND (0.0005)	ND (0.000075)
	10/21/2021	ND (0.0002)	ND (0.0005)	0.00049 J	0.00909	ND (0.0005)	ND (0.000075)
	8/8/2023	ND [0.0002]	ND [0.0005]	0.00015 J	0.00048 J,B	ND [0.0005]	ND [0.000075]
	10/29/2010	0.00796	0.00071	0.00079	0.20	0.00501	0.0061
	6/15/2017	ND (0.0005)	ND (0.0005)	0.000593 J	0.00654	0.00036 J	ND (0.000075)
MW-39	12/11/2019	0.000548	ND (0.0005)	0.000852 J	0.0641	0.00317	0.00174
	10/20/2021	0.00136	ND (0.0005)	ND (0.0005)	0.074	0.00329	0.00181
	8/8/2023	0.00148 JP-	ND [0.0005] JP-	0.00121 JP-	0.0487 B,JP-	0.00214 JP-	0.00224 JP-
	10/29/2010	0.0027	0.00114	0.00088	1.08	0.00738	0.0129
	12/5/2013	0.0028	ND (0.005)	ND (0.005)	0.872	0.00785	0.0109
	6/15/2017 (Primary)	0.00102	0.0209	0.00538	0.648	0.0071	0.00333
	6/15/2017 (Duplicate)	0.000998	0.0212	0.00524	0.678	0.00702	0.00306
MW-40	12/11/2019 (Primary)	0.0011	0.00561	0.00227	0.863	0.00909	0.00267
MW-40	12/11/2019 (Duplicate)	0.00102	0.00608	0.00245	0.797	0.00842	0.0025
	10/20/2021 (Primary)	0.00084	0.0023	0.00228	0.558	0.00774	0.00198
	10/20/2021 (Duplicate)	0.00092	0.00194 J	0.00208	0.595	0.00806	0.00222
	8/9/2023	0.0008 JP-	0.0156 JP-	0.0258 JP-	0.467 B,JP-	0.00617 JP-	0.00344 JP-

Notes:

 ${\rm Bold}$ value indicates value exceeds the ADEC GCL for the most recent 2023 ${\rm GCL}^1.$

¹2023 ADEC 18 AAC 75. Table C Groundwater Human Health Cleanup Levels

³Sample data obtained from the 2017 Drainage Pond Groundwater Monitoring Report (SLR 2018)

ADEC = Alaska Department of Environmental Conservation

GCL = groundwater cleanup level

mg/L = miligrams per liter

ND = Results is below the laboratory limit of detection.

U = Results is below the laboratory detection.

J = The result is an estimated value because it is less than the limit of quantitation.

Historical results were obtained from 2017 Groundwater Monitoring Report, Former Drainage Pond (SLR, 2018).

APPENDIX E Data Quality Assessment

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Kari Hagen	CS Site Name:	2023 ADOT Drainage Pond	Lab Name:	EMAX Laboratories , Inc.
Title:	Chemist	ADEC File No.:	100.38.188	Lab Report No.:	1234232
Consulting Firm:	Jacobs Engineering	Hazard ID No.:	1923	Lab Report Date:	9/19/2023

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

- a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses? Yes ⊠ No □ N/A □
 Comments: Samples were submitted to SGS Anchorage, AK.
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

Yes \boxtimes No \square N/A \square Comments: SGS of Anchorage, AK and SGS of Orlando, FL performed all analyses.

2. Chain of Custody (CoC)

a. Is the CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

b. Were the correct analyses requested?

Yes ⊠ No □ N/A □ Analyses requested: SW8260D, RSK 175, SM5310B/SW9060A, EPA 300.0, SM4500 N03-F, EPA 6020A and EPA 537M. Comments: Click or tap here to enter text.

3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

```
Yes 🛛 No 🗆 N/A 🗆
```

Comments: Temperatures were: Fairbanks temperature: 4.8°C Anchorage temperature: <6°C Orlando temperature: 4.0°C

 b. Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

c. Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?

Yes ⊠ No □ N/A □ Comments: SW8260 - A few VOC vials were received with air bubbles possibly affecting the following samples: 23DPS-MW11R-GW 23DPS-MW34-GW 23DPS-MW38S-GW 23DPS-MW39-GW 23DPS-MW40-GW 23DPS-01W

RSK 175 - One methane vial was received with air bubbles possibly affecting sample 23HFS-MW30R-GW.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.

e. Is the data quality or usability affected?

Yes \boxtimes No \square N/A \square Comments: All vials submitted did not contain air bubbles. If the samples were analyzed from one of the vials that contained air bubbles, the results may be biased low. The affected samples results were qualified JP-.

4. Case Narrative

a. Is the case narrative present and understandable? Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

- b. Are there discrepancies, errors, or QC failures identified by the lab?
 Yes ⊠ No □ N/A □
 Comments: QC failures identified by the lab are discussed in the relevant sections of this checklist.
- c. Were all the corrective actions documented?
 Yes □ No □ N/A ⊠
 Comments: Corrective actions were not necessary.
- d. What is the effect on data quality/usability according to the case narrative? Comments: Data quality/usability were not affected.

5. Sample Results

- Are the correct analyses performed/reported as requested on CoC?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- b. Are all applicable holding times met?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- c. Are all soils reported on a dry weight basis?
 Yes □ No □ N/A ⊠
 Comments: Soil samples were not submitted with this project.
- d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

e. Is the data quality or usability affected? Yes □ No ⊠ N/A □

Comments: The data quality and useability are not affected.

6. QC Samples

- a. Method Blank
 - Was one method blank reported per matrix, analysis, and 20 samples? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
 - ii. Are all method blank results less than LOQ (or RL)? Yes ⊠ No □

Comments: EPA 537M – PFHxA was detected in the method blank less than the LOQ.

- iii. If above LoQ or RL, what samples are affected? Comments: Sample 23DPS-01W was affected.
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \boxtimes No \square N/A \square Comments: EPA 537M – The sample result for PFHxA was qualified B to indicate the result may be biased high.

v. Data quality or usability affected?

Yes \boxtimes No \square N/A \square Comments: EPA 537M – The sample result for PFHxA may be biased high.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - Organics Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

CS Site Name: 2023 ADOT Drainage Pond Lab Report No.: 1234232

Comments: No samples were affected.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \Box No \Box N/A \boxtimes Comments: No samples were affected.

vii. Is the data quality or usability affected?
Yes □ No □ N/A ⊠
Comments: Data quality or usability were not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments: MS/MSD were not required for this project. MS/MSDs were only evaluated if the batch MS/MSD was part of this SDG.

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes □ No □ N/A ⊠ Comments: Batch MS/MSDs were not performed on samples from this project.
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes □ No □ N/A ⊠ Comments: Batch MS/MSDs were not performed on samples from this project.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Click or tap here to enter text.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \Box No \Box N/A \boxtimes Comments: No samples were affected.

- vii. Is the data quality or usability affected?
 - Yes \Box No \boxtimes N/A \Box Comments: Data quality of usability were not affected.
- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples?
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

 Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
 Yes □ No □ N/A ⊠
 Comments: All surrogates were in control.
- iv. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality or usability were not affected.

e. Trip Blanks

- Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- ii. Are all results less than LoQ or RL?
 Yes ⊠ No □ N/A □
 Comments: Click or tap here to enter text.
- iii. If above LoQ or RL, what samples are affected? Comments: Click or tap here to enter text.
- iv. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: The data quality and usability were not affected.

CS Site Name: 2023 ADOT Drainage Pond Lab Report No.: 1234232

f. Field Duplicate

i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

Yes ⊠ No □ N/A □

Comments: One field duplicate was submitted with 8 primary samples for this SDG.

ii. Was the duplicate submitted blind to lab?

Yes ⊠ No □ N/A □ Comments: Primary/Field Duplicate IDs: 23DPS-MW11R-GW/23DPS-MW11R-GWA.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$$

Where R_1 = Sample Concentration

R₂ = Field Duplicate Concentration

Is the data quality or usability affected? (Explain)

 $\mathsf{Yes} \ \Box \quad \mathsf{No} \ \boxtimes \quad \mathsf{N/A} \ \Box$

Comments: RPDs were only evaluated if at least one result in the duplicate pair was greater than the LOD. If one result was non-detect, the LOD value was used to calculate the RPD.

SW8260D: The RPD between the primary sample and field duplicate for vinyl chloride (VC) was greater than 30 percent.

All affected results were qualified JD to indicate poor precision with unknown bias.

iv. Is the data quality or usability affected? (Explain)

Yes 🛛 No 🗆 N/A 🗆

Comments: The primary sample (23DPS-MW11R-GW) result exceeded the screening level for VC. The field duplicate (23DPS-MW11R-GWA) was non-detect.

- g. Decontamination or Equipment Blanks
 - i. Were decontamination or equipment blanks collected?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

ii. Are all results less than LoQ or RL?

Yes \boxtimes No \square N/A \square Comments: SW8260D - cis-DCE was detected in the equipment blank less than the LOQ, but greater than the LOD.

iii. If above LoQ or RL, specify what samples are affected.

Comments: The following samples were affected: 23DPS-MW11R-GW 23DPS-MW11R-GWA 23DPS-MW34-GW 23DPS-MW38D-GW 23DPS-MW38S-GW 23DPS-MW39-GW 23DPS-01W 23DPS-MW40-GW

All affected results were qualified B.

iv. Are data quality or usability affected? Yes ⊠ No □ N/A □

Comments: Affected results may be biased high.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Are they defined and appropriate?

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

Laboratory Report of Analysis

To: Jacobs Technology Inc. 794 University Ave #201 Fairbanks, AK 99709

Report Number: **1234232**

Client Project: D3745100/ADOT FAI DrainagePond

Dear Kari Hagen,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Justin Nelson

16:40:55 -08'00'

2023.09.19

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 09/19/2023 10:30:39AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Jacobs Technology Inc. SGS Project: 1234232 Project Name/Site: D3745100/ADOT FAI DrainagePond Project Contact: Kari Hagen

Refer to sample receipt form for information on sample condition.

23DPS-EB-01 (1234232009) PS

8260D - Sample was re-analyzed outside of hold to confirm Cis-1,2-Dichloroethene carryover. Data within hold time is being reported.

1234342002(1729344MS) (1729349) MS

300.0 - Anions - MS recovery for sulfate is outside of QC criteria. Refer to LCS for accuracy requirements. Light Gases by RSK-175 and 537M PFAS List 24 were analyzed by SGS of Orlando, FL.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/19/2023 10:30:41AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
TNTC	Too Numerous To Count
U	Indicates the analyte was analyzed for but not detected.
Sample summaries which i All DRO/RRO analyses are	nclude a result for "Total Solids" have already been adjusted for moisture content. integrated per SOP.

Print Date: 09/19/2023 10:30:44AM

Note:

Samp	le Su	mmary
------	-------	-------

Client Sample ID	Lab Sample ID	Collected	Received	Matrix
23DPS-MW11R-GW	1234232001	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW11R-GWA	1234232002	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23HFS-MW30R-GW	1234232003	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW34-GW	1234232004	08/09/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW38S-GW	1234232005	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW38D-GW	1234232006	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW39-GW	1234232007	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW40-GW	1234232008	08/09/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-EB-01	1234232009	08/09/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-01W	1234232010	08/09/2023	08/11/2023	Water (Surface, Eff., Ground)
23-DPS-TB01	1234232011	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW11R-GW	1234232012	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW11R-GWA	1234232013	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW30R-GW	1234232014	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)
23DPS-MW34-GW	1234232015	08/08/2023	08/11/2023	Water (Surface, Eff., Ground)

Method

SW6020B EPA 300.0 SW6020B SM21 4500NO3-F SM 5310B SW8260D Method Description

Dissolved Metals by ICP-MS Ion Chromatographic Analysis (W) Metals by ICP-MS Nitrate/Nitrite Flow injection Pres. Total Organic Carbon Volatile Organic Compounds(W)Custom List

Print Date: 09/19/2023 10:30:45AM

Detectable Results Summary

_ab Sample ID: 1234232001	Parameter	Result	Unit
Metals by ICP/MS	Iron	32900	ug/L
	Manganese	3420	ug/L
/olatile GC/MS	Benzene	2.36	ug/L
	cis-1,2-Dichloroethene	116	ug/L
	Tetrachloroethene	5.96	ug/L
	trans-1,2-Dichloroethene	1.45	ug/L
	Trichloroethene	1.21	ug/L
	Vinyl chloride	0.720	ug/L
Naters Department	Sulfate	15.7	mg/
-	Total Nitrate/Nitrite-N	0.112J	mg/
	Total Organic Carbon Average	9.29	mg/
Client Sample ID: 23DPS-MW11R-GWA	A		
_ab Sample ID: 1234232002	Parameter	Result	Unit
Metals by ICP/MS	Iron	29600	ug/l
	Manganese	3400	ug/l
/olatile GC/MS	Benzene	2.40	ug/l
	cis-1,2-Dichloroethene	116	ug/l
	Tetrachloroethene	5.97	ug/l
	trans-1.2-Dichloroethene	1.48	ug/l
	Trichloroethene	1.16	ug/l
Waters Department	Sulfate	17.0	mg/
Maters Department	Total Nitrate/Nitrite-N	0.0964J	mg/
	Total Organic Carbon Average	9.27	mg/
Client Sample ID: 23HFS-MW30R-GW			5
_ab Sample ID: 1234232003	Devenueten	Desult	1.1
	Parameter	Result	<u>Uni</u>
Metals by ICP/MS	Iron	13800	ug/L
	Manganese	4930	ug/L
Waters Department	Sulfate	1.08	mg/
	Total Organic Carbon Average	53.4	mg/
Client Sample ID: 23DPS-MW34-GW			
_ab Sample ID: 1234232004	<u>Parameter</u>	<u>Result</u>	Unit
Metals by ICP/MS	Iron	563	ug/l
-	Manganese	48.9	ug/l
Waters Department	Sulfate	37.6	mg/
-	Total Nitrate/Nitrite-N	0.956	mg/
	Total Organic Carbon Average	5.82	mg/

Print Date: 09/19/2023 10:30:47AM

SGS North America Inc.

Detectable Results Summary

Client Sample ID: 23DPS-MW38S-GW			
Lab Sample ID: 1234232005	<u>Parameter</u>	Result	<u>Units</u>
Volatile GC/MS	Benzene	3.19	ug/L
	cis-1,2-Dichloroethene	148	ug/L
	Tetrachloroethene	0.620J	ug/L
	trans-1,2-Dichloroethene	2.07	ug/L
	Trichloroethene	0.210J	ug/L
	Vinyl chloride	1.80	ug/L
Client Sample ID: 23DPS-MW38D-GW			
Lab Sample ID: 1234232006	Parameter	Result	Units
Volatile GC/MS	cis-1,2-Dichloroethene	0.480J	ug/L
	Trichloroethene	0.150J	ug/L
Client Sample ID: 23DPS-MW39-GW			-
Lab Sample ID: 1234232007	<u>Parameter</u>	Result	Units
Volatile GC/MS	Benzene	1.48	ug/L
Volatile Como	cis-1,2-Dichloroethene	48.7	ug/L
	trans-1,2-Dichloroethene	2.14	ug/L
	Trichloroethene	1.21	ug/L
	Vinyl chloride	2.24	ug/L
Client Sample ID: 23DPS-MW40-GW			Ū
Lab Sample ID: 1234232008		D "	
·	Parameter	Result	<u>Units</u>
Volatile GC/MS	Benzene	0.800	ug/L
	cis-1,2-Dichloroethene Tetrachloroethene	467 15.6	ug/L
	trans-1,2-Dichloroethene	6.17	ug/L
	Trichloroethene	25.8	ug/L ug/L
	Vinyl chloride	3.44	ug/L
	Virgi chionde	5.44	ug/L
Client Sample ID: 23DPS-EB-01			
Lab Sample ID: 1234232009	<u>Parameter</u>	Result	<u>Units</u>
Volatile GC/MS	cis-1,2-Dichloroethene	0.790J	ug/L
Client Sample ID: 23DPS-01W			
Lab Sample ID: 1234232010	<u>Parameter</u>	Result	<u>Units</u>
Volatile GC/MS	Benzene	0.380J	ug/L
	cis-1,2-Dichloroethene	45.8	ug/L
	Tetrachloroethene	1.04	ug/L
	trans-1,2-Dichloroethene	0.590J	ug/L
	Trichloroethene	1.44	ug/L
Client Sample ID: 23DPS-MW11R-GW			
Lab Sample ID: 1234232012	<u>Parameter</u>	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Iron	26600	ug/L
	Manganese	3290	ug/L
	-		-

Print Date: 09/19/2023 10:30:47AM

SGS North America Inc.

	Detectable Results Summary		
Client Sample ID: 23DPS-MW11R-GWA			
Lab Sample ID: 1234232013	Parameter	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Iron	26800	ug/L
	Manganese	3460	ug/L
Client Sample ID: 23DPS-MW30R-GW			
Lab Sample ID: 1234232014	Parameter	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Iron	21800	ug/L
	Manganese	5200	ug/L
Client Sample ID: 23DPS-MW34-GW			
Lab Sample ID: 1234232015	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Dissolved Metals by ICP/MS	Iron	243J	ug/L
	Manganese	41.1	ug/L

Print Date: 09/19/2023 10:30:47AM

SGS North America Inc.

Lab Sample ID: 12342320 Lab Project ID: 1234232 Results by Metals by ICP			Solids (Water (Sur %): n: MW-11I		Cround	/	
<u>Parameter</u> ron Manganese	<u>Result</u> <u>Qual</u> 32900 3420	<u>LOQ/CL</u> 500 10.0	<u>DL</u> 150 3.10	<u>LOD</u> 250 5.00	<u>Units</u> ug/L ug/L	<u>DF</u> 5 25	<u>Allowable</u> <u>Limits</u>	<u>Date Analyz</u> 08/22/23 14:5 08/22/23 16:4
Analytical Batch: MMS12 Analytical Method: SW60 Analyst: ACF Analytical Date/Time: 08/ Container ID: 123423200	20B 22/23 14:50		Prep M Prep D Prep In	atch: MXX3 lethod: SW3 ate/Time: 0 iitial Wt./Vol xtract Vol: 2	3010A 8/14/23 13 .: 25 mL	:04		
Analytical Batch: MMS120 Analytical Method: SW600 Analyst: ACF Analytical Date/Time: 08/2 Container ID: 123423200	20B 22/23 16:47		Prep M Prep D Prep In	atch: MXX3 lethod: SW3 ate/Time: 0 nitial Wt./Vol xtract Vol: 2	3010A 8/14/23 13 .: 25 mL	:04		

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

Results of 23DPS-MW11R-GW

Client Sample ID: 23DPS-MW11R-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232001 Lab Project ID: 1234232 Collection Date: 08/08/23 12:15 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-11R

Results by Volatile GC/MS

							Allowable	
Parameter	Result Qual	LOQ/CL	DL	LOD	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	2.36	0.400	0.120	0.200	ug/L	1		08/15/23 17:56
cis-1,2-Dichloroethene	116	1.00	0.310	0.500	ug/L	1		08/15/23 17:56
Tetrachloroethene	5.96	1.00	0.310	0.500	ug/L	1		08/15/23 17:56
trans-1,2-Dichloroethene	1.45	1.00	0.310	0.500	ug/L	1		08/15/23 17:56
Trichloroethene	1.21	0.500	0.150	0.250	ug/L	1		08/15/23 17:56
Vinyl chloride	0.720	0.150	0.0500	0.0750	ug/L	1		08/15/23 17:56
Surrogates								
1,2-Dichloroethane-D4 (surr)	108	81-118			%	1		08/15/23 17:56
4-Bromofluorobenzene (surr)	99.2	85-114			%	1		08/15/23 17:56
Toluene-d8 (surr)	99.6	89-112			%	1		08/15/23 17:56

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 17:56 Container ID: 1234232001-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

SGS	

Results of 23DPS-MW11R-GW								
Client Sample ID: 23DPS-MW11R-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232001 Lab Project ID: 1234232		Collection Date: 08/08/23 12:15 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-11R						
Results by Waters Department	:							
							Allewskie	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Sulfate	15.7	2.00	0.500	1.00	mg/L	10		08/17/23 06:52
Batch Information								
Analytical Batch: WIC6488 Analytical Method: EPA 300.0 Analyst: EBH Analytical Date/Time: 08/17/23 Container ID: 1234232001-I	06:52		Prep Me Prep Da Prep Ini	tch: WXX1 ethod: MET te/Time: 08 tial Wt./Vol. tract Vol: 1	HOD 8/16/23 19 : 10 mL	1:30		
<u>Parameter</u> Total Organic Carbon Average	<u>Result</u> <u>Qual</u> 9.29	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.400	<u>LOD</u> 0.500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/14/23 22:18
Batch Information								
Analytical Batch: WTC3314 Analytical Method: SM 5310B Analyst: EBH Analytical Date/Time: 08/14/23 Container ID: 1234232001-H	22:18						Allowable	
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Result</u> <u>Qual</u> 0.112 J	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>LOD</u> 0.100	<u>Units</u> mg/L	<u>DF</u> 2	Limits	<u>Date Analyzed</u> 08/18/23 12:51
Batch Information								
Analytical Batch: WFI3061 Analytical Method: SM21 4500N Analyst: EBH Analytical Date/Time: 08/18/23 Container ID: 1234232001-K								
Print Date: 09/19/2023 10:30:49AM							J flagging is	activated

SGS North America Inc.

Lab Sample ID: 1234232002 Lab Project ID: 1234232 Results by Metals by ICP/M \$			Solids (Water (Sur %): n: MW-11F		Ground)	
Parameter Iron Manganese	<u>Result</u> <u>Qual</u> 29600 3400	<u>LOQ/CL</u> 500 10.0	<u>DL</u> 150 3.10	<u>LOD</u> 250 5.00	<u>Units</u> ug/L ug/L	<u>DF</u> 5 25	<u>Allowable</u> <u>Limits</u>	<u>Date Analyz</u> 08/22/23 14:5 08/22/23 16:5
Batch Information Analytical Batch: MMS12040 Analytical Method: SW6020E Analytical Date/Time: 08/22/2 Container ID: 1234232002-M Analytical Batch: MMS12040 Analytical Batch: MMS12040 Analytical Batch: SW6020E Analytical Batch: SW6020E Analytical Method: SW6020E Analytical Method: SW6020E Analytical Date/Time: 08/22/2 Container ID: 1234232002-M	3 23 14:52 1 3 23 16:50		Prep M Prep D Prep In Prep E Prep M Prep D Prep In	atch: MXX3 lethod: SW3 ate/Time: 0 itial Wt./Vol. xtract Vol: 2 atch: MXX3 lethod: SW3 ate/Time: 0 itial Wt./Vol. xtract Vol: 2	3010A 8/14/23 13 25 mL 25 mL 66089 3010A 8/14/23 13 .: 25 mL			

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

Results of 23DPS-MW11R-GWA

Client Sample ID: 23DPS-MW11R-GWA Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232002 Lab Project ID: 1234232 Collection Date: 08/08/23 12:15 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-11R

Results by Volatile GC/MS

							Allowable	
Parameter	Result Qual	LOQ/CL	DL	LOD	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	2.40	0.400	0.120	0.200	ug/L	1		08/15/23 18:11
cis-1,2-Dichloroethene	116	1.00	0.310	0.500	ug/L	1		08/15/23 18:11
Tetrachloroethene	5.97	1.00	0.310	0.500	ug/L	1		08/15/23 18:11
trans-1,2-Dichloroethene	1.48	1.00	0.310	0.500	ug/L	1		08/15/23 18:11
Trichloroethene	1.16	0.500	0.150	0.250	ug/L	1		08/15/23 18:11
Vinyl chloride	0.0750 U	0.150	0.0500	0.0750	ug/L	1		08/15/23 18:11
Surrogates								
1,2-Dichloroethane-D4 (surr)	109	81-118			%	1		08/15/23 18:11
4-Bromofluorobenzene (surr)	99.8	85-114			%	1		08/15/23 18:11
Toluene-d8 (surr)	100	89-112			%	1		08/15/23 18:11

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 18:11 Container ID: 1234232002-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

SGS	

Results of 23DPS-MW11R-G	WA							
Client Sample ID: 23DPS-MW11R-GWA Client Project ID: D3745100/ADOT FAI DrainagePond .ab Sample ID: 1234232002 .ab Project ID: 1234232		Collection Date: 08/08/23 12:15 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-11R						
Results by Waters Departme	ent							
							Allowable	
<u>Parameter</u>	<u>Result</u> <u>Qual</u>	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	DF	Limits	Date Analyzed
Sulfate	17.0	1.00	0.250	0.500	mg/L	5		08/17/23 07:10
Batch Information								
Analytical Batch: WIC6488 Analytical Method: EPA 300. Analyst: EBH Analytical Date/Time: 08/17/2 Container ID: 1234232002-I			Prep Me Prep Da Prep Init	tch: WXX1 ethod: MET te/Time: 0 tial Wt./Vol. tract Vol: 1	HOD 8/16/23 19 : 10 mL):30		
<u>Parameter</u> Total Organic Carbon Average	<u>Result</u> <u>Qual</u> 9.27	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.400	<u>LOD</u> 0.500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/14/23 22:32
Analyst: EBH Analytical Date/Time: 08/14/2 Container ID: 1234232002-H Parameter		LOQ/CL	DL	LOD	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.0964 J	0.200	0.0500	0.100	mg/L	2		08/18/23 12:53
Batch Information Analytical Batch: WFI3061 Analytical Method: SM21 450 Analyst: EBH Analytical Date/Time: 08/18/2 Container ID: 1234232002-K	23 12:53							

Client Project ID: D3745100/ADOT FAI DrainagePond _ab Sample ID: 1234232003 _ab Project ID: 1234232			Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-30R					
Results by Metals by ICP/I <u>Parameter</u> Iron Manganese	MS <u>Result</u> <u>Qual</u> 13800 4930	<u>LOQ/CL</u> 500 10.0	<u>DL</u> 150 3.10	<u>LOD</u> 250 5.00	<u>Units</u> ug/L ug/L	<u>DF</u> 5 25	<u>Allowable</u> <u>Limits</u>	<u>Date Analyz</u> 08/22/23 14:5 08/22/23 16:5
Batch Information Analytical Batch: MMS120 Analytical Method: SW602 Analyst: ACF Analytical Date/Time: 08/2 Container ID: 1234232003 Analytical Batch: MMS120 Analytical Batch: MMS120 Analytical Method: SW602 Analytical Date/Time: 08/2 Container ID: 1234232003	0B 2/23 14:55 -J 40 0B 2/23 16:53		Prep M Prep D Prep In Prep E Prep B Prep M Prep D Prep In	atch: MXX3 lethod: SW3 late/Time: 0 nitial Wt./Vol. xtract Vol: 2 atch: MXX3 lethod: SW3 ate/Time: 0 nitial Wt./Vol. xtract Vol: 2	3010A 8/14/23 13 : 25 mL :5 mL 6089 3010A 8/14/23 13 : 25 mL			

Print Date: 09/19/2023 10:30:49AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SGS	

		_						
Results of 23HFS-MW30R-GW Client Sample ID: 23HFS-MW30R-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232003 Lab Project ID: 1234232			Collection Date: 08/08/23 07:55 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-30R					
Results by Waters Department								
Parameter	<u>Result</u> <u>Qual</u>	LOQ/CL	DL	LOD	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Sulfate	1.08	0.200	0.0500	0.100	mg/L	1		08/17/23 20:04
Batch Information								
Analytical Batch: WIC6489 Analytical Method: EPA 300.0 Analyst: EBH Analytical Date/Time: 08/17/23 Container ID: 1234232003-F	20:04		Prep Me Prep Da Prep Init	tch: WXX1 hthod: MET te/Time: 08 ial Wt./Vol. tract Vol: 1	HOD 8/17/23 16 : 10 mL	:20		
<u>Parameter</u> Total Organic Carbon Average	<u>Result</u> <u>Qual</u> 53.4	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.400	<u>LOD</u> 0.500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/14/23 22:46
Analytical Batch: WTC3314 Analytical Method: SM 5310B Analyst: EBH Analytical Date/Time: 08/14/23 Container ID: 1234232003-E	22:46							
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Result</u> <u>Qual</u> 0.100 U	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>LOD</u> 0.100	<u>Units</u> mg/L	<u>DF</u> 2	<u>Allowable</u> <u>Limits</u>	<u>Date Analyzed</u> 08/18/23 12:54
Batch Information Analytical Batch: WFI3061 Analytical Method: SM21 4500N Analyst: EBH Analytical Date/Time: 08/18/23 Container ID: 1234232003-H								
Print Date: 09/19/2023 10:30:49AM							J flagging is	activated

SGS North America Inc.

SGS	

Client Sample ID: 23DPS-MW Client Project ID: D3745100/A Lab Sample ID: 1234232004 Lab Project ID: 1234232	Collection Date: 08/09/23 11:35 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-34							
Results by Metals by ICP/MS Parameter Iron	Result Qual	LOQ/CL 500	<u>DL</u> 150	<u>LOD</u> 250	<u>Units</u> ug/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	Date Analyze
Manganese	48.9	2.00	0.620	1.00	ug/L	5		08/22/23 14:57
Batch Information								
Analytical Batch: MMS12040 Analytical Method: SW6020B Analyst: ACF Analytical Date/Time: 08/22/2: Container ID: 1234232004-M	3 14:57		Prep Me Prep Da Prep Ini	atch: MXX3 ethod: SW3 ate/Time: 0 tial Wt./Vol. tract Vol: 2	3010A 8/14/23 13 .: 25 mL	:04		

Print Date: 09/19/2023 10:30:49AM

SGS North America Inc.

J flagging is activated

Results of 23DPS-MW34-GW

Client Sample ID: 23DPS-MW34-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232004 Lab Project ID: 1234232 Collection Date: 08/09/23 11:35 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-34

Results by Volatile GC/MS

							Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		08/15/23 18:25
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 18:25
Tetrachloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 18:25
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 18:25
Trichloroethene	0.250 U	0.500	0.150	0.250	ug/L	1		08/15/23 18:25
Vinyl chloride	0.0750 U	0.150	0.0500	0.0750	ug/L	1		08/15/23 18:25
Surrogates								
1,2-Dichloroethane-D4 (surr)	114	81-118			%	1		08/15/23 18:25
4-Bromofluorobenzene (surr)	101	85-114			%	1		08/15/23 18:25
Toluene-d8 (surr)	99.3	89-112			%	1		08/15/23 18:25

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 18:25 Container ID: 1234232004-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

SGS	

Client Sample ID: 23DPS-MW34-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232004 Lab Project ID: 1234232		Collection Date: 08/09/23 11:35 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-34						
Results by Waters Department								
<u>Parameter</u> Sulfate	<u>Result</u> <u>Qual</u> 37.6	<u>LOQ/CL</u> 2.00	<u>DL</u> 0.500	<u>LOD</u> 1.00	<u>Units</u> mg/L	<u>DF</u> 10	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/17/23 07:46
Batch Information								
Analytical Batch: WIC6488 Analytical Method: EPA 300.0 Analyst: EBH Analytical Date/Time: 08/17/23 (Container ID: 1234232004-I	07:46		Prep Me Prep Da Prep Init	tch: WXX1 ethod: MET te/Time: 0 iial Wt./Vol. tract Vol: 1	HOD 8/16/23 19 : 10 mL	:30		
<u>Parameter</u> Total Organic Carbon Average	<u>Result</u> <u>Qual</u> 5.82	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.400	<u>LOD</u> 0.500	<u>Units</u> mg/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/14/23 23:01
Analytical Batch: WTC3314 Analytical Method: SM 5310B Analyst: EBH Analytical Date/Time: 08/14/23.2	23.01							
Analytical Method: SM 5310B Analyst: EBH Analytical Date/Time: 08/14/23 2 Container ID: 1234232004-H Parameter	Result Qual	LOQ/CL	DL	LOD	Units	DE	<u>Allowable</u> Limits	-
Analytical Method: SM 5310B Analyst: EBH Analytical Date/Time: 08/14/23 2 Container ID: 1234232004-H Parameter Total Nitrate/Nitrite-N		LOQ/CL 0.200	<u>DL</u> 0.0500	<u>LOD</u> 0.100	<u>Units</u> mg/L	<u>DF</u> 2		<u>Date Analyze</u> 08/18/23 12:56
Analytical Method: SM 5310B Analyst: EBH Analytical Date/Time: 08/14/23 2 Container ID: 1234232004-H Parameter Total Nitrate/Nitrite-N	<u>Result</u> <u>Qual</u> 0.956 IO3-F							-
Analytical Method: SM 5310B Analyst: EBH Analytical Date/Time: 08/14/23 2 Container ID: 1234232004-H Parameter Total Nitrate/Nitrite-N Batch Information Analytical Batch: WFI3061 Analytical Method: SM21 4500N Analyst: EBH Analytical Date/Time: 08/18/23	<u>Result</u> <u>Qual</u> 0.956 IO3-F							-

SGS North America Inc.

Results of 23DPS-MW38S-GW

Client Sample ID: 23DPS-MW38S-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232005 Lab Project ID: 1234232 Collection Date: 08/08/23 15:15 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-38S

Results by Volatile GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	LOD	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	3.19	0.400	0.120	0.200	ug/L	1		08/15/23 18:40
cis-1,2-Dichloroethene	148	1.00	0.310	0.500	ug/L	1		08/15/23 18:40
Tetrachloroethene	0.620 J	1.00	0.310	0.500	ug/L	1		08/15/23 18:40
trans-1,2-Dichloroethene	2.07	1.00	0.310	0.500	ug/L	1		08/15/23 18:40
Trichloroethene	0.210 J	0.500	0.150	0.250	ug/L	1		08/15/23 18:40
Vinyl chloride	1.80	0.150	0.0500	0.0750	ug/L	1		08/15/23 18:40
Surrogates								
1,2-Dichloroethane-D4 (surr)	109	81-118			%	1		08/15/23 18:40
4-Bromofluorobenzene (surr)	101	85-114			%	1		08/15/23 18:40
Toluene-d8 (surr)	99.5	89-112			%	1		08/15/23 18:40

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 18:40 Container ID: 1234232005-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

Results of 23DPS-MW38D-GW

Client Sample ID: 23DPS-MW38D-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232006 Lab Project ID: 1234232 Collection Date: 08/08/23 14:30 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-38D

Results by Volatile GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	LOD	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		08/15/23 18:55
cis-1,2-Dichloroethene	0.480 J	1.00	0.310	0.500	ug/L	1		08/15/23 18:55
Tetrachloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 18:55
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 18:55
Trichloroethene	0.150 J	0.500	0.150	0.250	ug/L	1		08/15/23 18:55
Vinyl chloride	0.0750 U	0.150	0.0500	0.0750	ug/L	1		08/15/23 18:55
Surrogates								
1,2-Dichloroethane-D4 (surr)	108	81-118			%	1		08/15/23 18:55
4-Bromofluorobenzene (surr)	102	85-114			%	1		08/15/23 18:55
Toluene-d8 (surr)	99.5	89-112			%	1		08/15/23 18:55

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 18:55 Container ID: 1234232006-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

Results of 23DPS-MW39-GW

Client Sample ID: 23DPS-MW39-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232007 Lab Project ID: 1234232 Collection Date: 08/08/23 11:17 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-39

Results by Volatile GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	1.48	0.400	0.120	0.200	ug/L	1		08/15/23 19:10
cis-1,2-Dichloroethene	48.7	1.00	0.310	0.500	ug/L	1		08/15/23 19:10
Tetrachloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 19:10
trans-1,2-Dichloroethene	2.14	1.00	0.310	0.500	ug/L	1		08/15/23 19:10
Trichloroethene	1.21	0.500	0.150	0.250	ug/L	1		08/15/23 19:10
Vinyl chloride	2.24	0.150	0.0500	0.0750	ug/L	1		08/15/23 19:10
Surrogates								
1,2-Dichloroethane-D4 (surr)	106	81-118			%	1		08/15/23 19:10
4-Bromofluorobenzene (surr)	98.8	85-114			%	1		08/15/23 19:10
Toluene-d8 (surr)	101	89-112			%	1		08/15/23 19:10

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 19:10 Container ID: 1234232007-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

J flagging is activated

Results of 23DPS-MW40-GW

Client Sample ID: 23DPS-MW40-GW Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232008 Lab Project ID: 1234232 Collection Date: 08/09/23 10:25 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-40

Results by Volatile GC/MS

							Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	0.800	0.400	0.120	0.200	ug/L	1		08/15/23 19:25
cis-1,2-Dichloroethene	467	5.00	1.55	2.50	ug/L	5		08/17/23 23:34
Tetrachloroethene	15.6	1.00	0.310	0.500	ug/L	1		08/15/23 19:25
trans-1,2-Dichloroethene	6.17	1.00	0.310	0.500	ug/L	1		08/15/23 19:25
Trichloroethene	25.8	0.500	0.150	0.250	ug/L	1		08/15/23 19:25
Vinyl chloride	3.44	0.150	0.0500	0.0750	ug/L	1		08/15/23 19:25
Surrogates								
1,2-Dichloroethane-D4 (surr)	109	81-118			%	1		08/15/23 19:25
4-Bromofluorobenzene (surr)	100	85-114			%	1		08/15/23 19:25
Toluene-d8 (surr)	98.7	89-112			%	1		08/15/23 19:25

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 19:25 Container ID: 1234232008-A

Analytical Batch: VMS22677 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/17/23 23:34 Container ID: 1234232008-B Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX40287 Prep Method: SW5030B Prep Date/Time: 08/17/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

SGS North America Inc.

J flagging is activated

Results of 23DPS-EB-01

Client Sample ID: 23DPS-EB-01 Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232009 Lab Project ID: 1234232 Collection Date: 08/09/23 12:00 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: DPS-EB

Results by Volatile GC/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		08/15/23 19:39
cis-1,2-Dichloroethene	0.790 J	1.00	0.310	0.500	ug/L	1		08/15/23 19:39
Tetrachloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 19:39
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 19:39
Trichloroethene	0.250 U	0.500	0.150	0.250	ug/L	1		08/15/23 19:39
Vinyl chloride	0.0750 U	0.150	0.0500	0.0750	ug/L	1		08/15/23 19:39
Surrogates								
1,2-Dichloroethane-D4 (surr)	114	81-118			%	1		08/15/23 19:39
4-Bromofluorobenzene (surr)	99	85-114			%	1		08/15/23 19:39
Toluene-d8 (surr)	98.1	89-112			%	1		08/15/23 19:39

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 19:39 Container ID: 1234232009-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

Results of 23DPS-01W

Client Sample ID: 23DPS-01W Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232010 Lab Project ID: 1234232 Collection Date: 08/09/23 12:30 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: DPS-01W

Results by Volatile GC/MS

							Allowable	
Parameter	Result Qual	LOQ/CL	DL	LOD	<u>Units</u>	DF	Limits	Date Analyzed
Benzene	0.380 J	0.400	0.120	0.200	ug/L	1		08/15/23 19:54
cis-1,2-Dichloroethene	45.8	1.00	0.310	0.500	ug/L	1		08/15/23 19:54
Tetrachloroethene	1.04	1.00	0.310	0.500	ug/L	1		08/15/23 19:54
trans-1,2-Dichloroethene	0.590 J	1.00	0.310	0.500	ug/L	1		08/15/23 19:54
Trichloroethene	1.44	0.500	0.150	0.250	ug/L	1		08/15/23 19:54
Vinyl chloride	0.0750 U	0.150	0.0500	0.0750	ug/L	1		08/15/23 19:54
Surrogates								
1,2-Dichloroethane-D4 (surr)	108	81-118			%	1		08/15/23 19:54
4-Bromofluorobenzene (surr)	101	85-114			%	1		08/15/23 19:54
Toluene-d8 (surr)	99.8	89-112			%	1		08/15/23 19:54

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 19:54 Container ID: 1234232010-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

Results of 23-DPS-TB01

Client Sample ID: 23-DPS-TB01 Client Project ID: D3745100/ADOT FAI DrainagePond Lab Sample ID: 1234232011 Lab Project ID: 1234232 Collection Date: 08/08/23 08:00 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: DPS-TB01

Results by Volatile GC/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	Units	DF	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		08/15/23 17:41
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 17:41
Tetrachloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 17:41
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	0.500	ug/L	1		08/15/23 17:41
Trichloroethene	0.250 U	0.500	0.150	0.250	ug/L	1		08/15/23 17:41
Vinyl chloride	0.0750 U	0.150	0.0500	0.0750	ug/L	1		08/15/23 17:41
Surrogates								
1,2-Dichloroethane-D4 (surr)	108	81-118			%	1		08/15/23 17:41
4-Bromofluorobenzene (surr)	103	85-114			%	1		08/15/23 17:41
Toluene-d8 (surr)	101	89-112			%	1		08/15/23 17:41

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 08/15/23 17:41 Container ID: 1234232011-A Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/23 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:30:49AM

Client Project ID: D3745 1 ab Sample ID: 1234232	: D3745100/ADOT FAI DrainagePond 1234232012									
ab Project ID: 1234232	4232 d Metals by ICP/MS		Solids (Locatior	%): n: MW-11F	२					
Parameter ron	Result Qual	<u>LOQ/CL</u> 500	<u>DL</u> 150	<u>LOD</u> 250	<u>Units</u> ug/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	<u>Date Analyz</u> 08/22/23 15:0		
langanese	3290	10.0	3.10	5.00	ug/L	25		08/22/23 16:5		
Batch Information										
Analytical Batch: MMS12 Analytical Method: SW60 Analyst: ACF Analytical Date/Time: 08/ Container ID: 123423201	20B /22/23 15:00		Prep M Prep Da Prep In	atch: MXX3 ethod: SW3 ate/Time: 0 itial Wt./Vol. ctract Vol: 2	3010A 8/14/23 13: .: 25 mL	:04				
Analytical Batch: MMS12 Analytical Method: SW60 Analyst: ACF Analytical Date/Time: 08/ Container ID: 123423201	20B 22/23 16:55		Prep M Prep Da Prep In	atch: MXX3 ethod: SW3 ate/Time: 0 itial Wt./Vol. ktract Vol: 2	3010A 8/14/23 13: .: 25 mL	:04				

SGS North America Inc.

Client Project ID: D374 Lab Sample ID: 123423 Lab Project ID: 123423	D3745100/ADOT FAI DrainagePond 1234232013 234232		Location: MW-11R							
Results by Dissolved M Parameter ron	<u>Result</u> <u>Qual</u> 26800	LOQ/CL 500	<u>DL</u> 150	<u>LOD</u> 250	<u>Units</u> ug/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	Date Analyze 08/22/23 15:02		
Manganese	3460	10.0	3.10	5.00	ug/L	25		08/22/23 16:5		
Analytical Batch: MMS' Analytical Method: SW6 Analyst: ACF Analytical Date/Time: 0 Container ID: 12342320	6020B 8/22/23 15:02 013-A		Prep M Prep Da Prep In Prep Ea	atch: MXX3 ethod: SW3 ate/Time: 0 itial Wt./Vol xtract Vol: 2	3010A 8/14/23 13 .: 25 mL 25 mL	:04				
Analytical Batch: MMS ⁷ Analytical Method: SW6 Analyst: ACF Analytical Date/Time: 0 Container ID: 12342320	6020B 8/22/23 16:58		Prep M Prep Da Prep In	atch: MXX3 ethod: SW3 ate/Time: 0 itial Wt./Vol xtract Vol: 2	3010A 8/14/23 13 .: 25 mL	:04				

Lab Sample ID: 1234232 Lab Project ID: 1234232	D3745100/ADOT FAI DrainagePond 234232014 234232		Collection Date: 08/08/23 07:55 Received Date: 08/11/23 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: MW-30R							
Results by Dissolved Me Parameter ron Manganese	etals by ICP/MS Result Qual 21800 5200	<u>LOQ/CL</u> 500 10.0	<u>DL</u> 150 3.10	<u>LOD</u> 250 5.00	<u>Units</u> ug/L ug/L	<u>DF</u> 5 25	<u>Allowable</u> <u>Limits</u>	<u>Date Analyze</u> 08/17/23 15:22 08/24/23 15:10		
Batch Information Analytical Batch: MMS12 Analytical Method: SW60 Analytical Date/Time: 08 Container ID: 12342320' Analytical Batch: MMS12 Analytical Date/Time: 08 Container ID: 12342320'	020B /24/23 15:10 14-A 2037 020B /17/23 15:22		Prep M Prep D Prep In Prep E Prep B Prep M Prep D Prep In	atch: MXX3 ethod: SW ate/Time: 0 itial Wt./Vol xtract Vol: 2 ethod: SW ate/Time: 0 itial Wt./Vol xtract Vol: 2	3010A 8/16/23 13 .: 25 mL 25 mL 36103 3010A 8/16/23 13 .: 25 mL					

SGS	

Client Sample ID: 23DPS-MW34 Client Project ID: D3745100/AD0 Lab Sample ID: 1234232015 Lab Project ID: 1234232	OT FAI Drainage	Pond	Receive Matrix: V Solids (9	on Date: 0 d Date: 0 Vater (Sur %): :: MW-34F	3/11/23 09 face, Eff.,):27)	
Results by Dissolved Metals by <u>Parameter</u> Iron	<u>Result</u> <u>Qual</u> 243 J	<u>LOQ/CL</u> 500	<u>DL</u> 150	<u>LOD</u> 250	<u>Units</u> ug/L	<u>DF</u> 5	<u>Allowable</u> <u>Limits</u>	Date Analyzed 08/17/23 15:25
Manganese	41.1	2.00	0.620	1.00	ug/L	5		08/17/23 15:25
Batch Information Analytical Batch: MMS12037 Analytical Method: SW6020B Analyst: HGS Analytical Date/Time: 08/17/23 15 Container ID: 1234232015-A	5:25		Prep Me Prep Da Prep Ini	ttch: MXX3 ethod: SW3 tte/Time: 0 tial Wt./Vol. tract Vol: 2	3010A 8/16/23 13 :25 mL	:37		

SGS North America Inc.

J flagging is activated

Method Blank

Blank ID: MB for HBN 1862142 [MXX/36089] Blank Lab ID: 1728372 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1234232001, 1234232002, 1234232003, 1234232004, 1234232012, 1234232013

<u>'arameter</u> on Ianganese	<u>Results</u> 250U 1.00U	<u>LOQ/CL</u> 500 2.00	<u>DL</u> 150 0.620	<u>LOD</u> 250 1.00	<u>Units</u> ug/L ug/L
tch Information					
Analytical Batch: MMS	12040		Prep Batch	: MXX36089	
Analytical Method: SW			Prep Meth		
Instrument: P7 Agilent	7800			Time: 8/14/202	
Analyst: ACF Analytical Date/Time: 8	3/22/2023 1:48:11PM			Wt./Vol.: 25 m ct Vol: 25 mL	L

Print Date: 09/19/2023 10:30:53AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1234232 [MXX36089] Blank Spike Lab ID: 1728373 Date Analyzed: 08/22/2023 13:50

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1234232001, 1234232002, 1234232003, 1234232004, 1234232012, 1234232013

Results by SW6020B Blank Spike (ug/L) Parameter Rec (%) CL <u>Spike</u> Result 5000 5220 104 (87-118) Iron Manganese 500 537 107 (87-115) **Batch Information** Analytical Batch: MMS12040 Prep Batch: MXX36089 Analytical Method: SW6020B Prep Method: SW3010A Instrument: P7 Agilent 7800 Prep Date/Time: 08/14/2023 13:04 Analyst: ACF Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/19/2023 10:30:56AM

Matrix Spike Summary

Original Sample ID: 1728386 MS Sample ID: 1728387 MS MSD Sample ID: 1728388 MSD

Analysis Date: 08/22/2023 13:53 Analysis Date: 08/22/2023 13:55 Analysis Date: 08/22/2023 13:58 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1234232001, 1234232002, 1234232003, 1234232004, 1234232012, 1234232013

		Ma	itrix Spike ((ug/L)	Spik	e Duplicat	e (ug/L)			
Parameter	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CI
ron	384J	5000	5300	98	5000	5220	97	87-118	1.58	(< 20)
Manganese	66.1	500	555	98	500	561	99	87-115	1.21	(< 20)
Analytical Method: SW60 Instrument: P7 Agilent 78 Analyst: ACF				Prep Prep	Date/Tim Initial Wt				-1010	

Print Date: 09/19/2023 10:30:58AM

SGS North America Inc.

esults by SW6020B		_				
arameter on anganese	<u>Results</u> 250U 1.00U	<u>LOQ/CL</u> 500 2.00	<u>DL</u> 150 0.620	<u>LOD</u> 250 1.00	<u>Units</u> ug/L ug/L	
tch Information Analytical Batch: MMS Analytical Method: SV Instrument: P7 Agilen Analyst: HGS Analytical Date/Time:	V6020B		Prep Meth Prep Date/ Prep Initial	n: MXX36103 od: SW3010A /Time: 8/16/202 I Wt./Vol.: 25 m ct Vol: 25 mL		

Print Date: 09/19/2023 10:31:00AM

ate Analyzed: 08/17/2023 C for Samples: 12342320	14:55	32015		Matrix: Water (Surface, Eff., Ground)
	14, 120420	2013		
Results by SW6020B			_	
oromotor		Blank Spike		
<u>arameter</u> on	<u>Spike</u>	<u>Result</u> 5060	<u>Rec (%)</u> 101	<u>CL</u>
anganese	5000 500	5060 506	101	(87-118) (87-115)
anganese	500	500	101	(07-113)
atch Information				
Analytical Batch: MMS12037 Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: HGS				Prep Batch: MXX36103 Prep Method: SW3010A Prep Date/Time: 08/16/2023 13:37 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1728942 MS Sample ID: 1728943 MS MSD Sample ID: 1728944 MSD

QC for Samples: 1234232014, 1234232015 Analysis Date: 08/17/2023 14:57 Analysis Date: 08/17/2023 15:00 Analysis Date: 08/17/2023 15:07 Matrix: Water (Surface, Eff., Ground)

Results by SW6020B										
		Ma	ıtrix Spike (ug/L)	Spik	e Duplicat	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Iron	643	5000	5510	97	5000	5580	99	87-118	1.27	(< 20)
Manganese	65.9	500	550	97	500	564	100	87-115	2.44	(< 20)
Batch Information										
Analytical Batch: MMS12						MXX36103				

Analytical Method: SW6020B Instrument: P7 Agilent 7800 Analyst: HGS Analytical Date/Time: 8/17/2023 3:00:00PM Prep Method: 3010 H20 Digest for Metals ICP-MS Prep Date/Time: 8/16/2023 1:37:57PM Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 09/19/2023 10:31:05AM

SGS North America Inc.

Method Blank

SG:

Blank ID: MB for HBN 1862539 [VXX/40277] Blank Lab ID: 1729265

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1234232001, 1234232002, 1234232004, 1234232005, 1234232006, 1234232007, 1234232008, 1234232009, 1234232010, 1234232011

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>
Benzene	0.200U	0.400	0.120	0.200	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	0.500	ug/L
Tetrachloroethene	0.500U	1.00	0.310	0.500	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	0.500	ug/L
Trichloroethene	0.250U	0.500	0.150	0.250	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	0.0750	ug/L
Surrogates					
1,2-Dichloroethane-D4 (surr)	118	81-118		0	%
4-Bromofluorobenzene (surr)	99	85-114		0	%
Toluene-d8 (surr)	99.2	89-112		0	%

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Analytical Date/Time: 8/15/2023 1:22:00PM Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 8/15/2023 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/19/2023 10:31:07AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1234232 [VXX40277] Blank Spike Lab ID: 1729266 Date Analyzed: 08/15/2023 13:37 Spike Duplicate ID: LCSD for HBN 1234232 [VXX40277] Spike Duplicate Lab ID: 1729267 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1234232001, 1234232002, 1234232004, 1234232005, 1234232006, 1234232007, 1234232008, 1234232009, 1234232010, 1234232011

Results by SW8260D

(· ·										
			Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)				
	<u>Parameter</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	Spike	<u>Result</u>	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL	
	Benzene	30	30.0	100	30	31.2	104	(79-120)	4.00	(< 20)	
	cis-1,2-Dichloroethene	30	29.5	98	30	29.8	99	(78-123)	0.91	(< 20)	
	Tetrachloroethene	30	31.1	104	30	31.6	105	(74-129)	1.70	(< 20)	
	trans-1,2-Dichloroethene	30	30.7	102	30	31.3	104	(75-124)	2.00	(< 20)	
	Trichloroethene	30	30.5	102	30	31.5	105	(79-123)	3.00	(< 20)	
	Vinyl chloride	30	34.9	116	30	35.7	119	(58-137)	2.20	(< 20)	
s	Surrogates										
	1,2-Dichloroethane-D4 (surr)	30		102	30		102	(81-118)	0.07		
	4-Bromofluorobenzene (surr)	30		97	30		99	(85-114)	1.40		
	Toluene-d8 (surr)	30		102	30		101	(89-112)	0.98		

Batch Information

Analytical Batch: VMS22670 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Prep Batch: VXX40277 Prep Method: SW5030B Prep Date/Time: 08/15/2023 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/19/2023 10:31:09AM

Blank ID: MB for HBN 18629 Blank Lab ID: 1729850	24 [VXX/40287]		Matrix:	Water (Surface	e, Eff., Ground)
QC for Samples: 234232008					
Results by SW8260D		_			
Parameter	Results	LOQ/CL	DL	LOD	<u>Units</u>
cis-1,2-Dichloroethene	0.500U	1.00	0.310	0.500	ug/L
Surrogates					
1,2-Dichloroethane-D4 (surr)	112	81-118		0	%
4-Bromofluorobenzene (surr)	102	85-114		0	%
Toluene-d8 (surr)	98.5	89-112		0	%
Batch Information					
Analytical Batch: VMS22677				h: VXX40287	
Analytical Method: SW82601 Instrument: VPA 780/5975 G				od: SW5030B /Time: 8/17/202	23 6.00.00AM
Analyst: JY	0,110			l Wt./Vol.: 5 mL	
				act Vol: 5 mL	

Print Date: 09/19/2023 10:31:12AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1234232 [VXX40287] Blank Spike Lab ID: 1729851 Date Analyzed: 08/17/2023 14:52 Spike Duplicate ID: LCSD for HBN 1234232 [VXX40287] Spike Duplicate Lab ID: 1729852 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1234232008

Results by SW8260D

		Blank Spike (ug/L)		Spike Duplicate (ug/L)					
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
cis-1,2-Dichloroethene	30	29.7	99	30	29.3	98	(78-123)	1.60	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		101	30		103	(81-118)	1.90	
4-Bromofluorobenzene (surr)	30		99	30		98	(85-114)	0.61	
Toluene-d8 (surr)	30		102	30		100	(89-112)	1.60	

Batch Information

Analytical Batch: VMS22677 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Prep Batch: VXX40287 Prep Method: SW5030B Prep Date/Time: 08/17/2023 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/19/2023 10:31:13AM

Method Blank					
Blank ID: MB for HBN 186 Blank Lab ID: 1729453	32635 (WFI/3061)		Matrix: V	Nater (Surface	e, Eff., Ground)
QC for Samples: 1234232001, 1234232002, 1	234232003, 123423	32004			
Results by SM21 4500NO	3-F				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	0.100	mg/L
Nitrite-N	0.100U	0.200	0.0500	0.100	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	0.100	mg/L
Batch Information					
Analytical Batch: WFI306	31				
Analytical Batch: WFI306 Analytical Method: SM21	4500NO3-F				
Analytical Method: SM21 Instrument: Astoria segm	4500NO3-F				
Analytical Method: SM21	I 4500NO3-F nented flow				

Print Date: 09/19/2023 10:31:15AM

Method Blank						
Blank ID: MB for HBN 186 Blank Lab ID: 1729460	2635 (WFI/3061)		Matrix: \	Water (Surface	e, Eff., Ground)	
QC for Samples: 1234232001, 1234232002, 1	234232003, 123423	2004				
Results by SM21 4500NO						
<u>Parameter</u> Nitrate-N	<u>Results</u> 0.100U	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>LOD</u> 0.100	<u>Units</u> mg/L	
Nitrite-N	0.1000 0.100U	0.200	0.0500	0.100	mg/L	
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	0.100	mg/L	
Batch Information						
Analytical Batch: WFI306 Analytical Method: SM21 Instrument: Astoria segm Analyst: EBH Analytical Date/Time: 8/1	4500NO3-F ented flow	1				

Print Date: 09/19/2023 10:31:15AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1234232 [WFI3061] Blank Spike Lab ID: 1729455 Date Analyzed: 08/18/2023 13:24

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1234232001, 1234232002, 1234232003, 1234232004

Results by SM21 4500NO3-F

	E	3lank Spike	(mg/L)	
Parameter	Spike	Result	<u>Rec (%)</u>	
Nitrate-N	2.5	2.77	111	
Nitrite-N	2.5	2.54	102	
Total Nitrate/Nitrite-N	5	5.31	106	

Batch Information

Analytical Batch: WFI3061 Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow Analyst: EBH

Print Date: 09/19/2023 10:31:18AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1234232 [WFI3061] Blank Spike Lab ID: 1729462 Date Analyzed: 08/18/2023 12:37

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1234232001, 1234232002, 1234232003, 1234232004

Results by SM21 4500NO3-F

Batch Information

Analytical Batch: WFI3061 Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow Analyst: EBH

Print Date: 09/19/2023 10:31:18AM

Matrix Spike Summary

Original Sample ID: 1234240001 MS Sample ID: 1729446 MS MSD Sample ID: 1729447 MSD Analysis Date: 08/18/2023 12:46 Analysis Date: 08/18/2023 12:47 Analysis Date: 08/18/2023 12:49 Matrix: Drinking Water

QC for Samples: 1234232001, 1234232002, 1234232003, 1234232004

		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
arameter	<u>Sample</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	<u>RPD C</u>
otal Nitrate/Nitrite-N	0.200U	5.00	5.07	101	5.00	5.13	103	90-110	1.20	(< 25)
Analytical Batch: WFI30 Analytical Method: SM2										
In a fue una a sete A a fa sia a a su	nented flow									
Instrument: Astoria segr Analyst: EBH Analytical Date/Time: 8/		0PM								

Print Date: 09/19/2023 10:31:20AM

Matrix Spike Summary

Original Sample ID: 1234333001 MS Sample ID: 1729448 MS MSD Sample ID: 1729449 MSD Analysis Date: 08/18/2023 13:29 Analysis Date: 08/18/2023 13:31 Analysis Date: 08/18/2023 13:33 Matrix: Drinking Water

QC for Samples: 1234232001, 1234232002, 1234232003, 1234232004

		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
Parameter .	<u>Sample</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD C
Total Nitrate/Nitrite-N	0.905	5.00	5.51	92	5.00	5.78	98	90-110	4.70	(< 25)
Batch Information Analytical Batch: WFI306 Analytical Method: SM21 Instrument: Astoria segme Analyst: EBH	4500NO3-F									

Print Date: 09/19/2023 10:31:20AM

SGS North America Inc.

Method Blank						
Blank ID: MB for HBN 186227 Blank Lab ID: 1728615	'1 [WTC/3314]		Matrix:			
QC for Samples: 1234232001, 1234232002, 1234	232003, 123423	32004				
Results by SM 5310B						
<u>Parameter</u> Total Organic Carbon Average	<u>Results</u> 0.500U	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.400	<u>LOD</u> 0.500	<u>Units</u> mg/L	
Batch Information						
Analytical Batch: WTC3314 Analytical Method: SM 5310E Instrument: TOC Analyzer 2 Analyst: EBH Analytical Date/Time: 8/14/20						

Print Date: 09/19/2023 10:31:22AM

SGS	

Plank Sniko Summany				
Blank Spike Summary Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1728613 Date Analyzed: 08/14/2023		[WTC3314	-]	
		32002, 1234	1232003, 12342	Matrix: Water (Surface, Eff., Ground) 232004
Results by SM 5310B			_	
		Blank Spike		
<u>Parameter</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>
Total Organic Carbon Average	75	77.3	103	(80-120)
Batch Information				
Analytical Batch: WTC3314 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EBH				
Print Date: 09/19/2023 10:31:25AM				
Sato. 00, 10,2020 10.01.20AM				

Matrix Spike Summary Original Sample ID: 1234189008 Analysis Date: 08/14/2023 20:05 MS Sample ID: 1728617 MS Analysis Date: 08/14/2023 20:18 MSD Sample ID: 1728618 MSD Analysis Date: 08/14/2023 20:33 Matrix: Drinking Water QC for Samples: 1234232001, 1234232002, 1234232003, 1234232004 Results by SM 5310B Matrix Spike (mg/L) Spike Duplicate (mg/L) Parameter Sample <u>Rec (%)</u> <u>RPD (%)</u> Spike Result Rec (%) <u>Spike</u> Result RPD CL CL Total Organic Carbon Average 4.03 10.0 13.6 96 10.0 13.6 96 75-125 0.15 (< 25) **Batch Information** Analytical Batch: WTC3314 Analytical Method: SM 5310B Instrument: TOC Analyzer 2 Analyst: EBH

Print Date: 09/19/2023 10:31:27AM

SGS North America Inc.

Analytical Date/Time: 8/14/2023 8:18:44PM

Blank ID: MB for HBN Blank Lab ID: 172916	I 1862436 [WXX/14903] i3		Matrix: \	Nater (Surface	e, Eff., Ground)
QC for Samples: 234232001, 12342320	02, 1234232004				
Results by EPA 300.(_			
Parameter	<u>Results</u>	LOQ/CL	DL	LOD	<u>Units</u>
Sulfate	0.100U	0.200	0.0500	0.100	mg/L
atch Information					
Analytical Batch: W				: WXX14903	
Analytical Method: E	EPA 300.0 Trohm compact IC flex			od: METHOD Time: 8/16/202	3 7.30.00PM
Analyst: EBH	ionni compactio nex			Wt./Vol.: 10 m	
	: 8/17/2023 4:28:31AM		Prep Extra	ct Vol: 10 mL	

Print Date: 09/19/2023 10:31:29AM

SGS	

Blank Spike Summary			
Blank Spike ID: LCS for HB Blank Spike Lab ID: 172916 Date Analyzed: 08/17/2023	64	903]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 123423	2001, 1234232002, 12	234232004	
Results by EPA 300.0			
	Blank Sp	ike (mg/L)	
<u>Parameter</u>	<u>Spike</u> <u>Result</u>		CL
Sulfate	5 5.34	107	(90-110)
Batch Information			
Analytical Batch: WIC6488 Analytical Method: EPA 300. Instrument: 930 Metrohm co Analyst: EBH			Prep Batch: WXX14903 Prep Method: METHOD Prep Date/Time: 08/16/2023 19:30 Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL Dupe Init Wt./Vol.: Extract Vol:
Print Date: 09/19/2023 10:31:32AM			

Matrix Spike Summar	у											
Original Sample ID: 17 MS Sample ID: 17291 MSD Sample ID:		Analysis Date: 08/17/2023 5:22 Analysis Date: 08/17/2023 6:16 Analysis Date: Matrix: Water (Surface, Eff., Ground)										
QC for Samples: 1234 Results by EPA 300.0	1232001, 12342320	02, 123423	32004									
-			trix Spike (Spike (mg/L) Spike Duplicate (mg/L)								
arameter	<u>Sample</u> 0.200U	<u>Spike</u> 10.0	<u>Result</u> 10.5	<u>Rec (%)</u> 105	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u> 90-110	<u>RPD (%)</u>	<u>RPD (</u>		
ulfate		Batch Information Analytical Batch: WIC6488 Analytical Method: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analyst: EBH Analytical Date/Time: 8/17/2023 6:16:00AM						Prep Batch: WXX14903 Prep Method: EPA 300.0 Extraction Waters/Liquids Prep Date/Time: 8/16/2023 7:30:00PM Prep Initial Wt./Vol.: 10.00mL Prep Extract Vol: 10.00mL				

SGS North America Inc.

SGS Method Blank						
Blank ID: MB for HBN 1 Blank Lab ID: 1729345	862560 [WXX/14906]	Matrix: \	Vater (Surface	e, Eff., Ground)	
QC for Samples: 1234232003 Results by EPA 300.0						
Parameter Sulfate	<u>Results</u> 0.100U	<u>LOQ/CL</u> 0.200	<u>DL</u> 0.0500	<u>LOD</u> 0.100	<u>Units</u> mg/L	
Batch Information Analytical Batch: WIC6 Analytical Method: EP Instrument: 930 Metro Analyst: EBH Analytical Date/Time:	A 300.0		Prep Metho Prep Date/ Prep Initial	: WXX14906 od: METHOD Time: 8/17/202 Wt./Vol.: 10 m ct Vol: 10 mL		

SGS	

Blank Spike Summary			
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1729346 Date Analyzed: 08/17/2023	i	906]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 12342320	003		
Results by EPA 300.0			
	Blank Spil	ke (mg/L)	
Parameter	Spike Result	Rec (%)	CL
Sulfate	5 5.04	101	(90-110)
Batch Information			
Analytical Batch: WIC6489 Analytical Method: EPA 300.0 Instrument: 930 Metrohm con Analyst: EBH			Prep Batch: WXX14906 Prep Method: METHOD Prep Date/Time: 08/17/2023 16:20 Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL Dupe Init Wt./Vol.: Extract Vol:
Print Date: 09/19/2023 10:31:39AM			
	1200 Maat Dat	Han Duive Analas	rage, AK 95518

Original Sample ID: 1	-										
Matrix Spike Summary Original Sample ID: 1729343 MS Sample ID: 1729348 MS MSD Sample ID:				Analysis Date: 08/17/2023 18:52 Analysis Date: 08/17/2023 19:10 Analysis Date: Matrix: Water (Surface, Eff., Ground)							
QC for Samples: 12 Results by EPA 300.	34232003 0										
-			trix Spike (ma/L)	Spike Duplicate (mg/L)						
				5.7	Opine	Duplicate	(IIIg/L)				
<u>Parameter</u> Sulfate	<u>Sample</u> 3.48	<u>Spike</u> 5.00	<u>Result</u> 8.46	<u>Rec (%)</u> 100	<u>Spike</u>	<u>Result</u>		<u>CL</u> 90-110	<u>RPD (%)</u>	<u>RPD C</u>	

SGS										
Matrix Spike Summary										
Original Sample ID: 172 MS Sample ID: 172934 MSD Sample ID: QC for Samples: 12342					Analysis Analysis	a Date: 08 Date:	8/17/2023 8/17/2023 urface, Eff.	19:46)	
12012										
Results by EPA 300.0										
		Ма	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
	<u>Sample</u> 25.0	Ma <u>Spike</u> 5.00	trix Spike (<u>Result</u> 28.5	mg/L) <u>Rec (%</u> 72 *		e Duplicate <u>Result</u>	e (mg/L) <u>Rec (%)</u>	<u>CL</u> 90-110	<u>RPD (%)</u>	RPD CL
Results by EPA 300.0		<u>Spike</u>	<u>Result</u>	<u>Rec (%</u>					<u>RPD (%)</u>	RPD CI

Collection	Organization:	Jacobs			Chain-	Chain-of			Cooler ID:	: DPS		Number:	
Pr	oject Number:			ainage Pond	GWM	Laboratory:	SGS		Bill To:	Jacobs	Re	port To:	Jacobs
COC Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Volume	Preservative	Matrix	Analyses Requested Group	QC	TAT (days)	Notes:
3DPS-MW11R-GW	MW-11R	8/8/2023	1215	KS/GW	3	VOA	40mL	0-6°C, HCl	WG	SW8260D		14 Day	Benzene, PCE, TCE, cis-DCE trans-DCE, VC
3DPS-MW11R-GW	MW-11R	8/8/2023	1215	KS/GW	3	VOA	40mL	0-6°C, HCI	WG	RSK 175		14 Day	Methane
3DPS-MW11R-GW	MW-11R	8/8/2023	1215	KS/GW	2	AG	125mL	0-6°C, HCl	WG	SM5310B/SW9060A		14 Day	тос
3DPS-MW11R-GW	MW-11R	8/8/2023	1215	KS/GW	2	poly	125mL	0-6°C	WG	EPA 300.0		14 Day	Sulfate
3DPS-MW11R-GW	MW-11R	8/8/2023	1215	KS/GW	2 .	poly	125mL	0-6°C, H2SO4	WG	SM4500 N03-F		14 Day	Nitrate/Nitrite
3DPS-MW11R-GW	MW-11R	8/8/2023	1215	KS/GW	2	HDPE	125mL	0-6°C, HN03	WG	EPA 6020A		14 Day	Iron/Manganese (Total)
BDPS-MWIIR-GW	MW-11R	8/8/2023	1215	KS/GW	2	HDPE	125mL	0-6°C, HN03	WG	EPA 6020A		14 Day	Iron/Manganese (Pre-filtered Dissolved)
DPS-MW11R-GWA	MW-11R	8/8/2023	1215	KS/GW	3	VOA	40mL	0-6°C, HCI	WG	SW8260D		14 Day	Benzene, PCE, TCE, cis-DCE trans-DCE, VC
DPS-MW11R-GWA	MW-11R	8/8/2023	1215	KS/GW	3	VOA	40mL	0-6°C, HCl	WG	RSK 175		14 Day	Methane
DPS-MW11R-GWA	MW-11R	8/8/2023	1215	KS/GW	2	AG	125mL	0-6°C, HCl	WG	SM5310B/SW9060A		14 Day	тос
DPS-MW11R-GWA	MW-11R	8/8/2023	1215	KS/GW	2	poly	125mL	0-6°C	WG	EPA 300.0		14 Day	Sulfate
DPS-MW11R-GWA	MW-11R	8/8/2023	1215	KS/GW	2	poly	125mL	0-6°C, H2SO4	WG	SM4500 N03-F		14 Day	Nitrate/Nitrite
DPS-MW11R-GWA	MW-11R	8/8/2023	1215	KS/GW	. 2	HDPE	125mL	0-6°C, HN03	WG	EPA 6020A		14 Day	Iron/Manganese (Total)
DPS-MW11R-GWA	MW-11R	8/8/2023	1215	KS/GW	2	HDPE	125mL	0-6°C, HN03	WG	EPA 6020A		14 Day	Iron/Manganese (Pre-filtered Dissolved)
3HFS-MW30R-GW	MW-30R	8/8/2023	0755	KS/GW	3	VOA	40mL	0-6°C, HCl	WG	RSK 175		14 Day	Methane
3HFS-MW30R-GW	MW-30R	8/8/2023	0755	KS/GW	2	AG	125mL	0-6°C, HCl	WG	SM5310B/SW9060A		14 Day	тос
3HFS-MW30R-GW	MW-30R	8/8/2023	0755	KS/GW	2	poly	125mL	0-6°C	WG	EPA 300.0		14 Day	Sulfate
HFS-MW30R-GW	MW-30R	8/8/2023	0755	KS/GW	2	poly	125mL	0-6°C, H2SO4	WG	SM4500 N03-F		14 Day	Nitrate/Nitrite
3HFS-MW30R-GW	MW-30R	8/8/2023	0755	KS/GW	2	HDPE	125mL	0-6°C, HN03	WG	EPA 6020A		14 Day	Iron/Manganese (Total)
3HFS-MW30R-GW	MW-30R	8/8/2023	0755	KS/GW	2	HDPE	125mL	0-6°C, HN03	WG	EP46020A		14 Day	Iron/Manganese (Pre-filtere Dissolved)
al Instructions:	$\mathbf{\Sigma}$.	$\left[\right]$		(17 X X		0/10/2022	1534		11	1/=- 1	6 -	- µ	+ of 1- 11-
Relinquish By	Signature/Printed Plan	THE C	Jer .		<u> </u>	8/10/2023 Date/Time 3/10/2		Relinquish By:	Signature Printe	Name Cer	nelia 1	-M. 51	Date/Time 8/10/23 [600 Date/Time 08/11/23 0927
Received By:	1 A most	fie	<u>Crecelin</u>	+ 19(:52;1		Date/Time	2 172	L Received by.	gnature/Printed	Name	CLON		Date/Time
234232										Temp: 4.8 75	8	HT)

	1 Organization: roject Number:	D3745100 A		ainage Pond		-of-Custody: Laboratory:		DPS01	Cooler ID: Bill To:	Jacobs		Number: eport To:	
C Sample ID	Loc ID	Collection Date	Collection Time	Sampler	Quantity	Container Type	Volume	Preservative	Matrix	Analyses Requested Group	QC	TAT (days)	Notes:
PS-MW34-GW	MW-34	8/9/2023	1135	KS/GW	3	VOA	40mL	0-6°C, HCl	WG	SW8260D		1 14 Davi	Benzene, PCE, TCE, cis-DCE, trans-DCE, VC
PS-MW34-GW	MW-34	8/9/2023	1135	KS/GW	3	VOA	40mL	0-6°C, HCl	WG	RSK 175		14 Day	Methane
PS-MW34-GW	MW-34	8/9/2023	1135	KS/GW	2	AG	125mL	0-6°C, HCl	WG	SM5310B/SW9060A		14 Day	TOC
PS-MW34-GW	MW-34	8/9/2023	1135	KS/GW	2	poly	125mL	0-6°C	WG	EPA 300.0		14 Day	Sulfate
PS-MW34-GW	MW-34	8/9/2023	1135	KS/GW	2	poly	125mL	0-6°C, H2SO4	WG	SM4500 N03-F		14 Day	Nitrate/Nitrite
PS-MW34-GW	MW-34	8/9/2023	1135	KS/GW	2	HDPE	125mL	0-6°C, HN03	WG	EPA 6020A		14 Day	Iron/Manganese (Total)
PS-MW34-GW	MW-34	8/9/2023	1135	KS/GW	2	HDPE	125mL	0-6°C, HN03	WG	EPA 6020A		11/11/01/	Iron/Manganese (Pre-filtered, Dissolved)
S-MW38S-GW	MW-38S	8/8/2023	1515	KS/GW	3	VOA	40mL	0-6°C, HCl	WG	SW8260D		14 Day	Benzene, PCE, TCE, cis-DCE, trans-DCE, VC
S-MW38D-GW	MW-38D	8/8/2023	1430	KS/GW	3	VOA	40mL	0-6°C, HCl	WG	SW8260D		14 Day	Benzene, PCE, TCE, cis-DCE, trans-DCE, VC
PS-MW39-GW	" MW-39	8/8/2023	1117	KS/GW	3	VOA	40mL	0-6°C, HCI	WG	SW8260D		14 Day	Benzene, PCE, TCE, cis-DCE, trans-DCE, VC
PS-MW40-GW	MW-40	8/9/2023	1025	KS/GW	3	VOA	40mL	0-6°C, HCI	WG	SW8260D		14 Day	Benzene, PCE, TCE, cis-DCE trans-DCE, VC
DPS-EB-01	DPS-EB	8/9/2023	1200	KS/GW	3	VOA	40mL	0-6°C, HCl	WQ	SW8260D	EB	14 Day	Benzene, PCE, TCE, cis-DCE trans-DCE, VC
3DPS-01W	DPS-01W	8/9/2023	1230	KS/GW	3	VOA	40mL	0-6°C, HCl	ww	SW8260D		14 Day	Benzene, PCE, TCE, cis-DCE trans-DCE, VC
3DPS-01W	DPS-01W	8/9/2023	1230	KS/GW	2	HDPE	125mL	0-6°C	ww	EPA 537M		14 Day	
1DPS-TB01	DPS-TB01	8/8/2023	0800	KS/GW	3	VOA	40mL	0-6°C, HCl	WQ	SW8260D	ТВ	14 Day	Benzene, PCE, TCE, cis-DCE trans-DCE, VC
structions: Relinquish By:		-+	per	/Kari Hagen		8/10/2023	1534	Relinquish By		Un o	relia	I.M. 1995	K 8/10/23 160
Received By:	Signature/Printed Nam		Pecel	THE	-: 1C	Date/Time	1534	Received By	Signature/Printed	Natice Joidan Ci	ecch		Date/Time 08/11/23 0927

Tcmp: 4.8 758

SAMPLE RECEIPT FORM

	Project I	Manage	er Com	pletion
Was all necessary information recorded on the COC upon receipt? (temperature, COC seals, etc.?)	Yes	No	N/A	
Was temperature between 0-6° C?	Yes	No	N/A	If "No", are the samples either exempt* or sampled <8 hours prior to receipt?
Were all analyses received within holding time*	? Yes	No	N/A	
Was a method specified for each analysis, where applicable? If no, please note correct methods.	Yes	No	N/A	
Are compound lists specified, where applicable For project specific or special compound lists please note correct analysis code.	? (Yes)	No	N/A	\$260D = VMA8260c.1 97
If rush was requested by the client, was the requested TAT approved?	Yes	No		If "NO", what is the approved TAT?
If SEDD Deliverables are required, were Location ID's and an NPDL Number provided?	Yes	No	N/A	If "NO", contact client for information.
	Sampl	e Logir	Comp	oletion
Do ID's on sample containers match COC?	Yes	No	N/A	
If provided on containers, do dates/times collected match COC?	Yes	No	N/A	Note: If times differ <1 hr., record details below and login per COC.
Were all sample containers received in good condition?	Yes	No	N/A	
Were proper containers (type/mass/volume/preservative) received for a samples? *See form F-083 "Sample Guide"	Yes	No	N/A	Note: If 200.8/6020 Total Metals are received unpreserved, preserve and note HNO3 lot here: If 200.8/6020 Dissolved Metals are received unpreserved, log in for LABFILTER and do not preserve. For all non-metals methods, inform Project Manager.
Were Trip Blanks (VOC, GRO, Low-Level Hg, etc.) received with samples, where applicable*	? Yes) No	N/A	XXXX
Were all VOA vials free of headspace >6mm?	Yes	\mathbb{N}_{0}	N/A	×
Were all soil VOA samples received field extracted with Methanol?	Yes	No	N/A-	
Did all soil VOA samples have an accompanying unpreserved container for % solids?	Yes	No	(N/A)	
If special handling is required, were containers labelled appropriately? e.g. MI/ISM, foreign soils, lab filter, Ref Lab, limited volume	(Yes)	No	N/A	Rex Lab, Limited Value
For Rush/Short Holding time, was the lab notified?	Yes	No	(N/A)	
For any question answered "NO", was the Project Manager notified?	Yes	No	N/A	PM Initials:
Was Peer Review of sample	Yes) No	N/A	Reviewer Initials:
numbering/labelling completed?				MAC
Additional Notes/Clarification where Applicable, X 1C, 3C, 4C, 5C, 7B, 7C,				e MM MendSpace

Sample Containers and Preservatives

Container Id	Preservative	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1234232001-A	HCL to pH < 2	OK	1234232004-K	H2SO4 to pH < 2	ОК
1234232001-B	HCL to pH < 2	OK	1234232004-L	H2SO4 to pH < 2	ОК
1234232001-C	HCL to pH < 2	OK	1234232004-M	HNO3 to pH < 2	ОК
1234232001-D	HCL to $pH < 2$	OK	1234232004-N	HNO3 to $pH < 2$	ОК
1234232001-E	HCL to pH < 2	OK	1234232005-A	HCL to pH < 2	ОК
1234232001-F	HCL to pH < 2	OK	1234232005-B	HCL to pH < 2	ОК
1234232001-G	HCL to pH < 2	OK	1234232005-C	HCL to pH < 2	BU
1234232001-H	HCL to pH < 2	ОК	1234232006-A	HCL to pH < 2	ОК
1234232001-I	No Preservative Required	ОК	1234232006-B	HCL to pH < 2	ОК
1234232001-J	No Preservative Required	ОК	1234232006-C	HCL to pH < 2	ОК
1234232001-K	H2SO4 to pH < 2	ОК	1234232007-A	HCL to pH < 2	ОК
1234232001-L	H2SO4 to pH < 2	OK	1234232007-B	HCL to pH < 2	BU
1234232001-M	HNO3 to pH < 2	ОК	1234232007-C	HCL to pH < 2	BU
1234232001-N	HNO3 to pH < 2	ОК	1234232008-A	HCL to $pH < 2$	ОК
1234232002-A	HCL to pH < 2	OK	1234232008-B	HCL to pH < 2	ОК
1234232002-B	HCL to pH < 2	OK	1234232008-C	HCL to pH < 2	BU
1234232002-C	HCL to pH < 2	OK	1234232009-A	HCL to pH < 2	ОК
1234232002-D	HCL to pH < 2	OK	1234232009-B	HCL to pH < 2	ОК
1234232002-E	HCL to pH < 2	OK	1234232009-C	HCL to pH < 2	ОК
1234232002-F	HCL to pH < 2	OK	1234232010-A	HCL to pH < 2	OK
1234232002-G	HCL to pH < 2	OK	1234232010-B	HCL to pH < 2	ОК
1234232002-H	HCL to pH < 2	OK	1234232010-C	HCL to pH < 2	BU
1234232002-I	No Preservative Required	OK	1234232010-D	No Preservative Required	OK
1234232002-J	No Preservative Required	ОК	1234232010-E	No Preservative Required	OK
1234232002-K	H2SO4 to pH < 2	OK	1234232011-A	HCL to pH < 2	ОК
1234232002-L	H2SO4 to pH < 2	ОК	1234232011-B	HCL to pH < 2	ОК
1234232002-M	HNO3 to pH < 2	OK	1234232011-C	HCL to pH < 2	OK
1234232002-N	HNO3 to pH < 2	ОК	1234232012-A	HNO3 to pH < 2	ОК
1234232003-A	HCL to pH < 2	ОК	1234232012-B	HNO3 to pH < 2	ОК
1234232003-B	HCL to pH < 2	ОК	1234232013-A	HNO3 to pH < 2	ОК
1234232003-C	HCL to pH < 2	BU	1234232013-B	HNO3 to pH < 2	ОК
1234232003-D	HCL to pH < 2	ОК	1234232014-A	HNO3 to pH < 2	ОК
1234232003-E	HCL to pH < 2	ОК	1234232014-B	HNO3 to pH < 2	ОК
1234232003-F	No Preservative Required	ОК	1234232015-A	HNO3 to pH < 2	ОК
1234232003-G	No Preservative Required	ОК	1234232015-B	HNO3 to pH < 2	OK
1234232003-H	H2SO4 to pH < 2	ОК			
1234232003-I	H2SO4 to pH < 2	ОК			
1234232003-J	HNO3 to pH < 2	ОК			
1234232003-K	HNO3 to pH < 2	ОК			
1234232004-A	HCL to pH < 2	ОК			
1234232004-B	HCL to pH < 2	ОК			
1234232004-C	HCL to pH < 2	BU			
1234232004-D	HCL to pH < 2	ОК			
1234232004-E	HCL to pH < 2	BU			
1234232004-F	HCL to pH < 2	BU			
1234232004-G	HCL to pH < 2	ОК			
1234232004-H	HCL to pH < 2	ОК			
1234232004-I	No Preservative Required	ОК			
1234232004-J	No Preservative Required	ОК			

Container Id

<u>Preservative</u>

<u>Container</u> <u>Condition</u> <u>Container Id</u>

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

 $\operatorname{\mathsf{BU}}$ - The container was received with headspace greater than 6mm.

 $\mathsf{D}\mathsf{M}$ - The container was received damaged.

 $\ensuremath{\mathsf{FR}}\xspace$ - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

Technical Report for

SGS North America, Inc

1234232

SGS Job Number: FC8820

Sampling Dates: 08/08/23 - 08/09/23

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 justin.nelson@sgs.com; env.alaska.reflabteam@sgs.com

ATTN: Justin Nelson

Total number of pages in report: 40

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Client Service contact: Andrea Colby 407-425-6700 Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 •

SGS is the sole authority for authorizing edits or modifications to this document. Unauthorized modification of this report is strictly prohibited. Review standard terms at: http://www.sgs.com/en/terms-and-conditions Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 40

FC8820

09/15/23

Automated Report

e-Hardcopy 2.0

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: FC8820-1: 23DPS-MW11R-GW	7
4.2: FC8820-2: 23DPS-MW11R-GWA	8
4.3: FC8820-3: 23DPS-MW30R-GW	9
4.4: FC8820-4: 23DPS-MW34R-GW	10
4.5: FC8820-5: 23DPS-01W	11
Section 5: Misc. Forms	13
5.1: Certification Exceptions	14
5.2: Chain of Custody	15
Section 6: MS Semi-volatiles - QC Data Summaries	17
6.1: Method Blank Summary	18
6.2: Blank Spike Summary	26
6.3: Matrix Spike Summary	28
6.4: Duplicate Summary	30
Section 7: GC Volatiles - QC Data Summaries	32
7.1: Method Blank Summary	33
7.2: Blank Spike/Blank Spike Duplicate Summary	
7.3: Matrix Spike Summary	37
7.4: Duplicate Summary	39

Sample Summary

SGS North America, Inc

1234232

Job No: FC8820

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FC8820-1	08/08/23	12:15	08/16/23	AQ	Ground Water	23DPS-MW11R-GW
FC8820-2	08/08/23	12:15	08/16/23	AQ	Ground Water	23DPS-MW11R-GWA
FC8820-3	08/08/23	07:55	08/16/23	AQ	Ground Water	23DPS-MW30R-GW
FC8820-4	08/09/23	11:35	08/16/23	AQ	Ground Water	23DPS-MW34R-GW
FC8820-5	08/09/23	12:30	08/16/23	AQ	Ground Water	23DPS-01W

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS North America, Inc

1234232

Site:

Job No: FC8820

Report Date: 9/15/2023 4:07:42 PM

On 08/16/2023, 5 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc - Orlando. at a

maximum corrected temperature of 3.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. - Orlando Job Number of FC8820 was assigned to the project.

Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: AQ

Batch ID: OP98676 Sample(s) FC8805-1MS, FC8805-2DUP were used as the QC samples indicated.

RPD(s) for Duplicate for Perfluoropentanoic acid are outside control limits for sample OP98676-DUP. Probable cause is due to sample non-homogeneity.

Sample(s) FC8820-5 have surrogates outside control limits.

FC8820-5: Dilution required (ID recovery standard failure).

GC Volatiles By Method RSKSOP-147/175

Matrix: AQ Batch ID: GLL2929 Sample(s) FC8852-3DUP, FC8852-3MS were used as the QC samples indicated. Batch ID: GLL2930 Matrix: AQ

Sample(s) FC8738-1DUP, FC8738-1MS were used as the QC samples indicated.

SGS North America Inc. - Orlando certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc.- Orlando is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:

Kim Benham, Client Services (Signature on File)

Summary of Hits

Job Number:	FC8820
Account:	SGS North America, Inc
Project:	1234232
Collected:	08/08/23 thru 08/09/23

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	LOQ	LOD	Units	Method
FC8820-1	23DPS-MW11R-C	GW				
Methane		1850	5.0	2.5	ug/l	RSKSOP-147/175
FC8820-2	23DPS-MW11R-C	GWA				
Methane		1670	5.0	2.5	ug/l	RSKSOP-147/175
FC8820-3	23DPS-MW30R-C	GW				
Methane		1030	5.0	2.5	ug/l	RSKSOP-147/175
FC8820-4	23DPS-MW34R-C	GW				
Methane		0.74	0.50	0.25	ug/l	RSKSOP-147/175
FC8820-5	23DPS-01W					
Perfluorobutanoi Perfluoropentano Perfluorohexano Perfluoroheptano Perfluorooctanoi Perfluorononano Perfluorobutanes Perfluorobutanes Perfluorohexanes Perfluorohexanes	bic acid ^a ic acid ^a bic acid ^a c acid ^a ic acid ^a sulfonic acid ^a sulfonic acid ^a sulfonic acid ^a sulfonic acid ^a	0.0719 J 0.0727 0.222 0.252 0.274 1.17 0.221 0.150 0.894 0.0780	0.091 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045	0.045 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	EPA 537M BY ID EPA 537M BY ID
Perfluorooctanes	sulfonic acid ^a	2.63	0.045	0.023	ug/l	EPA 537M BY ID

(a) Dilution required (ID recovery standard failure).

Orlando, FL

4

Sample Results

Report of Analysis

Report of Analysis

Page 1 of 1

Client Sar Lab Samp Matrix: Method: Project:	ole ID: FC882 AQ - Q	Ground Wat DP-147/175	er			Date	e Sampled e Received cent Solids	: 08	8/08/23 8/16/23 a
	File ID	DF	Analyzed	By	Prep	Date	Prep Ba	tch	Analytical Batch
Run #1	LL84420.D	1	08/21/23 10:4	49 SS	n/a		n/a		GLL2929
Run #2	LL84452.D	10	08/22/23 11:	38 SS	n/a		n/a		GLL2930
	Initial Volume	Headspa	ice Volume Vo	lume Inj	jected	Temper	ature		
Run #1	37.5 ml	5.0 ml	50	0 ul		21 Deg.	С		
Run #2	38.0 ml	5.0 ml	50	0 ul		20 Deg.	С		
							T T 1 4	0	
CAS No.	Compound		Result	LOQ	LOD	DL	Units	Q	
CAS No. 74-82-8	Compound Methane		Result	LOQ 5.0	LOD 2.5	DL 1.6	ug/l	Q	
				·				Ų	

(a) Result is from Run# 2

N = Indicates presumptive evidence of a compound

4.1

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sar Lab Samp Matrix: Method: Project:	ole ID: F A F	3DPS-MW11R- C8820-2 AQ - Ground Wa SKSOP-147/17 234232	ater			Dat	e Sampled e Received cent Solids	: 08	//08/23 //16/23 a
	File ID	DF	Analyzed	By	Prep	Date	Prep Ba	tch	Analytical Batch
Run #1	LL84421	.D 1	08/21/23 1	0:57 SS	n/a		n/a		GLL2929
Run #2	LL84453	.D 10	08/22/23 1	1:46 SS	n/a		n/a		GLL2930
	Initial Vo	olume Headsp	oace Volume	Volume In	jected	Temper	ature		
Run #1	38.0 ml	5.0 ml		500 ul		21 Deg.	С		
Run #2	38.0 ml	5.0 ml		500 ul		20 Deg.	С		
CAS No.	Compou	ınd	Result	LOQ	LOD	DL	Units	Q	
74-82-8	Methane		1670 ^a	5.0	2.5	1.6	ug/l		
	Ethane		0.50 U	1.0	0.50	0.32	ug/l		
74-84-0	Linane								

(a) Result is from Run# 2

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sar Lab Samp Matrix: Method: Project:	ole ID: FC882 AQ - C	Ground Wat DP-147/175	er			Dat	e Sampled e Received cent Solids	: 08	8/08/23 8/16/23 a
	File ID	DF	Analyzed	By	Prep	Date	Prep Ba	tch	Analytical Batch
Run #1	LL84422.D	1	08/21/23 11	:05 SS	n/a		n/a		GLL2929
Run #2	LL84466.D	10	08/22/23 14	:03 SS	n/a		n/a		GLL2930
	Initial Volume	Headspa	nce Volume V	olume Inj	ected	Temper	ature		
Run #1	38.0 ml	5.0 ml	50	00 ul		21 Deg.	С		
Run #2	38.0 ml	5.0 ml	50	00 ul		20 Deg.	С		
CAS No.	Compound		Result	LOQ	LOD	DL	Units	Q	
	Methane		1030 ^a	5.0	2.5	1.6	ug/l		
74-82-8	meunane								
74-82-8 74-84-0	Ethane		0.50 U	1.0	0.50	0.32	ug/l		

(a) Result is from Run# 2

4.3

69 of 100

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sar	nple ID:	23DPS-N	MW34R-GW	7							
Lab Samp	le ID:	FC8820-	-4				Date	e Sampled:	08	8/09/23	
Matrix:		AQ - Gr	ound Water				Date	e Received:	: 08	3/16/23	
Method:		RSKSOI	P-147/175				Pere	ent Solids:	n/	a	
Project:		1234232									
	File ID)	DF	Analyzed	By	Prep I	Date	Prep Bat	tch	Analytical Batch	
Run #1	LL8442	28.D	1	08/21/23 12:	15 SS	n/a		n/a		GLL2929	
Run #2											
	Initial	Volume	Headspace	Volume Vo	lume Inj	ected	Temper	ature			
Run #1	Initial 38.0 m		Headspace 5.0 ml		o lume Inj o 0 ul	ected	Temper 21 Deg.				
Run #1 Run #2			-		•	ected	-				
		1	-		•	ected	-		Q		
Run #2	38.0 m	l oound	-	50	0 ul		21 Deg.	С	Q		
Run #2 CAS No.	38.0 m	l bound me	-	50 Result	0 ul	LOD	21 Deg.	C Units	Q		

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: 23DPS-01W Lab Sample ID: FC8820-5 Date Sampled: 08/09/23 Matrix: AQ - Ground Water Date Received: 08/16/23 Method: EPA 537M BY ID EPA 537 MOD Percent Solids: n/a **Project:** 1234232 By File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed Run #1^a 2Q114359.D 5 09/13/23 20:34 LR 08/28/23 11:15 OP98676 S2O1621 Run #2 2Q114360.D 25 09/13/23 20:51 LR 08/28/23 11:15 OP98676 S2Q1621 **Initial Volume Final Volume** Run #1 110 ml 1.0 ml Run #2 110 ml 1.0 ml CAS No. Compound Result LOQ LOD DL Units Q PERFLUOROALKYLCARBOXYLIC ACIDS 375-22-4 Perfluorobutanoic acid 0.0719 0.091 0.045 0.023 ug/l J 0.023 2706-90-3 Perfluoropentanoic acid 0.0727 0.045 0.011 ug/l 307-24-4 Perfluorohexanoic acid 0.222 0.045 0.023 0.011 ug/l 375-85-9 0.023 0.011 ug/l Perfluoroheptanoic acid 0.252 0.045 335-67-1 Perfluorooctanoic acid 0.274 0.045 0.023 0.011 ug/l 375-95-1 Perfluorononanoic acid 1.17 0.045 0.023 0.011 ug/l 0.11 U ^b 335-76-2 Perfluorodecanoic acid 0.23 0.11 0.057 ug/l 0.11 U ^b 2058-94-8 Perfluoroundecanoic acid 0.23 0.11 0.057 ug/l 0.11 U ^b 0.23 307-55-1 Perfluorododecanoic acid 0.11 0.057 ug/l 72629-94-8 Perfluorotridecanoic acid 0.11 U ^b 0.23 0.11 0.057 ug/l 0.023 Perfluorotetradecanoic acid 0.023 U 0.045 0.011 376-06-7 ug/l PERFLUOROALKYLSULFONIC ACIDS 375-73-5 Perfluorobutanesulfonic acid 0.221 0.045 0.023 0.011 ug/l 2706-91-4 0.045 0.023 0.011 Perfluoropentanesulfonic acid 0.150 ug/l 355-46-4 Perfluorohexanesulfonic acid 0.894 0.045 0.023 0.011 ug/l 375-92-8 Perfluoroheptanesulfonic acid 0.0780 0.045 0.023 0.011 ug/l 1763-23-1 Perfluorooctanesulfonic acid 2.63 0.045 0.023 0.011 ug/l 68259-12-1 Perfluorononanesulfonic acid 0.023 U 0.045 0.023 0.011 ug/l Perfluorodecanesulfonic acid 0.11 U b 0.23 335-77-3 0.11 0.057 ug/l PERFLUOROOCTANESULFONAMIDES 754-91-6 PFOSA 0.045 U 0.045 0.045 0.023 ug/l PERFLUOROOCTANESULFONAMIDOACETIC ACIDS 0.23 U ^b 0.45 0.23 2355-31-9 MeFOSAA 0.11 ug/l 0.23 U ^b 2991-50-6 **EtFOSAA** 0.45 0.23 0.11 ug/l FLUOROTELOMER SULFONATES 757124-72-4 4:2 Fluorotelomer sulfonate 0.045 U 0.091 0.045 0.023 ug/l 27619-97-2 6:2 Fluorotelomer sulfonate 0.045 U 0.091 0.045 0.023 ug/l

U = Not detected LOD = Limit of Detection

J = Indicates an estimated value

LOQ = Limit of Quantitation DL = Detection Limit

j indicates an estimated value

it B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

N – indicates presumptive evidence of a co

4.5 4

Report of Analysis

Lab Sample ID: 1 Matrix: . Method: 1		23DPS-01W FC8820-5 AQ - Ground Water EPA 537M BY ID EPA 537 MOD 1234232						Sampled: Received: ent Solids:	
CAS No.	Comp	ound	Result	LOQ	L	OD	DL	Units	Q
39108-34-4	8:2 Fl	uorotelomer sulfonate	0.23 U ^b	0.45	0.	23	0.11	ug/l	
CAS No.	ID Sta	andard Recoveries	Run# 1	Run# 2		Lim	its		
	13C4-	PFBA	73%	88%		35-1	35%		
	13C5-	PFPeA	79%	97%		50-1	50%		
	13C5-	PFHxA	78%	98%		50-1	50%		
	13C4-	PFHpA	80%	100%		50-1	50%		
	13C8-	PFOA	78%	97%		50-1	50%		
	13C9-	PFNA	80%	101%		50-1	50%		
	13C6-	PFDA	0% ^c	99%		50-1	50%		
	13C7-	PFUnDA	0% ^c	81%		40-1	40%		
	13C2-	PFDoDA	0% ^c	69%		40-1	40%		
	13C2-	PFTeDA	85%	105%		30-1	30%		
	13C3-	PFBS	81%	100%		50-1	50%		
	13C3-	PFHxS	83%	109%		50-1	50%		
	13C8-	PFOS	80%	115%		50-1	50%		
	13C8-	FOSA	63%	109%		30-1	30%		
	d3-Me	FOSAA	0% ^c	100%		40-1	40%		
	d5-EtF	FOSAA	0% ^c	106%		40-1	40%		
	13C2-	4:2FTS	74%	103%		50-1	50%		
	13C2-	6:2FTS	81%	97%		50-1	50%		
	13C2-	8:2FTS	0% ^c	89%		50-1	50%		

(a) Dilution required (ID recovery standard failure).

(b) Result is from Run# 2

(c) Outside control limits.

U = Not detected LOD = Limit of Detection

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank

LOQ = Limit of Quantitation DL = Detection Limit E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Page 2 of 2

12 of 40

Orlando, FL

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody

G

Parameter Certification Exceptions

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

The following parameters included in this report are exceptions to NELAC certification. The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
4:2 Fluorotelomer sulfonate	757124-72-4	4EPA 537M BY ID	AQ	Certified by SOP MS014
5:2 Fluorotelomer sulfonate	27619-97-2	EPA 537M BY ID	AQ	Certified by SOP MS014
3:2 Fluorotelomer sulfonate	39108-34-4	EPA 537M BY ID	AQ	Certified by SOP MS014
EtFOSAA	2991-50-6	EPA 537M BY ID	AQ	Certified by SOP MS014
MeFOSAA	2355-31-9	EPA 537M BY ID	AQ	Certified by SOP MS014
PFOSA	754-91-6	EPA 537M BY ID	AQ	Certified by SOP MS014
Perfluorobutanesulfonic acid	375-73-5	EPA 537M BY ID	AQ	Certified by SOP MS014
Perfluorobutanoic acid	375-22-4	EPA 537M BY ID	AQ	Certified by SOP MS014
Perfluorodecanesulfonic acid	335-77-3	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorodecanoic acid	335-76-2	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorododecanoic acid	307-55-1	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluoroheptanesulfonic acid	375-92-8	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluoroheptanoic acid	375-85-9	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorohexanesulfonic acid	355-46-4	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorohexanoic acid	307-24-4	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorononanesulfonic acid	68259-12-1	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorononanoic acid	375-95-1	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorooctanesulfonic acid	1763-23-1	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorooctanoic acid	335-67-1	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluoropentanesulfonic acid	2706-91-4	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluoropentanoic acid	2706-90-3	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorotetradecanoic acid	376-06-7	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluorotridecanoic acid	72629-94-8	EPA 537M BY ID	AQ	Certified by SOP MS014
erfluoroundecanoic acid	2058-94-8	EPA 537M BY ID	AQ	Certified by SOP MS014

<u>5</u>

G

SGS North America Inc. CHAIN OF CUSTODY RECORD

CLIENT: CONTACT: PROJECT NAME: REPORTS TO: J	Justin Nelson 1234232	h America Inc Alaska I PHONE NO: PWSID#:	ivision (907) 56	2-2343	-	_	nce:			GS	Orla	ndo, FL		
PROJECT NAME:	1234232		(907) 56	2-2343	A 4 11		SGS Reference: SGS Orlando, FL Page 1 of 1						Page 1 of 1	
NAME:		PWSID#:			Addi	tional	Comn	nents	: All soils	s repo	rt out	in dry weigh	t unless	i age i di i
					#	Preserv- ative		se.						
REPORTS TO: J	to all blacks a	NPDL#:			c	Used;	*0.	NONE						
1	Justin.Nelson	E-MAIL:	Justin.Nelso	n@sgs.com		TYPE				1				
		Env.Alaska.RefL	abTeam@sgs.	com	N	C = COMP	RSK-	57						
INVOICE TO: S	SGS - Alaska	QUOTE #:			À	G = GRAB	ЪУВ	List						
env.alaska.	.accounting@sgs.com	P.O. #:	1234	232	I N	MI = Multi	Gases	PFAS L						
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	ТІМЕ ННММ	MATRIX/ MATRIX CODE	ER	Incre- mental Soils	Light Gas 175	537M PF/		MS	MSD	SGS lab #	.	ocation ID
1	23DPS-MW11R-GW	08/08/2023	12:15:00	Water	1		X	5				1234232001		MW-11B
2	23DPS-MW11R-GWA	08/08/2023	12:15:00	Water	1		X					1234232002		MW-11R
3	23HFS-MW30R-GW	08/08/2023	07:55:00	Water	1		X					1234232003		MW-30R
4	23DPS-MW34R-GW	08/09/2023	11:35:00	Water	1		X					1234232004		MW-34R
5	23DPS-01W	08/09/2023	12:30:00	Water	1			X				1234232010		OPS-01W
											INI	nal Assessmi		
	ul	Date 9/15	Time AM	Received I	A	- 			DOD Projec Report to D # J- Report as)L (J FI	ags)?		Sector State	able Requirements
Aelinquished By	/: (2)	Date	Time	Received I	By: 1				Cooler ID: Requested Turnaround Time and-or Special Instructions:					
Relinquished By	r: (3)	Date	Time	Received I	By:				Reques	sted T	urnar	ound Time ar	nd-or Spec	ial Instructions:
				1,		/			Temp Blan	k °C: ∠	1.0 5	TK#1	Chain of C	ustody Seal: (Circle
Relinquished By	r: (4)	Date	Time	Received	or lat		By: 10		þ	or A	nbient	[]	INTACT	BROKEN ABSEN
X 200 W. Potter	r Drive Anchorage, AK 9951	18 Tel: (907) 562-2343 F	ax: (907) 561-	5301 //		/	1		http://www	sgs.cc	m/tern	ns and condition	ons.htm	

REVIEWED CTW

Locations Nationwide

Florida

Colorado

Louisiana

North Carolina

Alaska

Virginia

New Jersey Texas

F088_COC_REF_LAB_20190411

FC8820: Chain of Custody Page 1 of 2

5.2

SGS Sample Receipt Summary

Job Number: fc8820 Client		: SGS ALASKA		Project: 1234232	Project: 1234232			
Date / Time Received: 8/16	5/2023 10:00:00 AM	Delivery Method:	FED EX	Airbill #'s: N/A				
Cooler Temps (Raw Measur Cooler Temps (Correct	,							
Cooler Information	Y or N		Sample Infor	<u>mation</u>		or N	N/A	
 Custody Seals Present: Custody Seals Intact: Temp criteria achieved: Cooler temp verification: Cooler media: Trip Blank Information Trip Blank present / cooler: Trip Blank listed on COC: 			 Samples pro Suffiient vol Condition of Sample reco Dates/Times VOCs have Bottles rece Compositing 	,'d within HT s/IDs on COC match sample label				
3. Type of TB Received			11. % Solids J 12. Residual C	ar Received? Chlorine Present?				
Misc Information Number of Encores: 25 Gra Test Strip Lot #s: pH Residual Chlorine Test Strip I	0-3:	pH 10-12:	Nut	mber of Lab Filtered Metals: Other: (Specify)				
Comments SAMPLE #3 HAS (SAMPLE #4 HAS (2	I) VIAL HAS HEADSPACE 2) VIALS HEADSPACE.	:						

SM089-03 Rev. Date 12/7/17

> FC8820: Chain of Custody Page 2 of 2

Orlando, **FL**

Section 6

MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

ົ

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP98676-MB	2Q114275.D	1	09/12/23	LR	08/28/23	OP98676	S2Q1620

Limits

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0040	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0020	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	0.0014	0.0020	0.0010	ug/l	J
375-85-9	Perfluoroheptanoic acid	ND	0.0020	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0020	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0020	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0020	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0020	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0020	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0020	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0020	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0020	0.0010	ug/1	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0020	0.0010	ug/1	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0020	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0020	0.0010	ug/1	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0020	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0020	0.0010	ug/1	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0020	0.0010	ug/1	
754-91-6	PFOSA	ND	0.0040	0.0020	ug/l	
2355-31-9	MeFOSAA	ND	0.0040	0.0020	ug/1	
2991-50-6	EtFOSAA	ND	0.0040	0.0020	ug/l	
757124-72-4	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/1	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No. ID Standard Recoveries

13C4-PFBA	90%	35-135%
13C5-PFPeA	90%	50-150%
13C5-PFHxA	92%	50-150%
13C4-PFHpA	94%	50-150%
13C8-PFOA	94%	50-150%
13C9-PFNA	93%	50-150%
13C6-PFDA	94%	50-150%
13C7-PFUnDA	91%	40-140%

6.1.1

FC8820

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample OP98676-MB	File ID 2Q114275.D	DF 1	Analyzed 09/12/23	By LR	Prep Date 08/28/23	Prep Batch OP98676	Analytical Batch S2Q1620

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

CAS No.	ID Standard Recoveries		Limits		
	13C2-PFDoDA	84%	40-140%		
	13C2-PFTeDA	75%	30-130%		
	13C3-PFBS	90%	50-150%		
	13C3-PFHxS	91%	50-150%		
	13C8-PFOS	92%	50-150%		
	13C8-FOSA	92%	30-130%		
	d3-MeFOSAA	96%	40-140%		
	d5-EtFOSAA	90%	40-140%		
	13C2-4:2FTS	85%	50-150%		
	13C2-6:2FTS	86%	50-150%		
	13C2-8:2FTS	81%	50-150%		
	13C3-HFPO-DA	74%	50-150%		

6.1.1

Page 2 of 2

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP98676-MB	2Q114355.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1621

Limits

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

375-22-4 Perfluorobutanoic acid ND 0.0040 0.0020 ug/l 2706-90-3 Perfluoropentanoic acid ND 0.0020 0.0010 ug/l 307-24-4 Perfluorohexanoic acid 0.0013 0.0020 0.0010 ug/l J 375-85-9 Perfluoroheptanoic acid ND 0.0020 0.0010 ug/l J 335-67-1 Perfluorononanoic acid ND 0.0020 0.0010 ug/l 335-67-1 Perfluorononanoic acid ND 0.0020 0.0010 ug/l 335-67-2 Perfluorononanoic acid ND 0.0020 0.0010 ug/l 335-76-2 Perfluorodecanoic acid ND 0.0020 0.0010 ug/l 307-55-1 Perfluoroundecanoic acid ND 0.0020 0.0010 ug/l 307-55-1 Perfluorotridecanoic acid ND 0.0020 0.0010 ug/l 307-66-7 Perfluorotetradecanoic acid ND 0.0020 0.0010 ug/l 375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
307-24-4Perfluorohexanoic acid0.00130.00200.0010ug/lJ375-85-9Perfluoroheptanoic acidND0.00200.0010ug/l1335-67-1Perfluorooctanoic acidND0.00200.0010ug/l1375-95-1Perfluorononanoic acidND0.00200.0010ug/l1335-76-2Perfluorodecanoic acidND0.00200.0010ug/l12058-94-8Perfluoroundecanoic acidND0.00200.0010ug/l1307-55-1Perfluorodecanoic acidND0.00200.0010ug/l1307-55-1Perfluorotridecanoic acidND0.00200.0010ug/l1376-06-7Perfluorotridecanoic acidND0.00200.0010ug/l1375-73-5Perfluorobutanesulfonic acidND0.00200.0010ug/l12706-91-4Perfluorohexanesulfonic acidND0.00200.0010ug/l1355-46-4Perfluorohexanesulfonic acidND0.00200.0010ug/l375-92-8Perfluoroheptanesulfonic acidND0.00200.0010ug/l
375-85-9Perfluoroheptanoic acidND0.00200.0010ug/l335-67-1Perfluorooctanoic acidND0.00200.0010ug/l375-95-1Perfluorononanoic acidND0.00200.0010ug/l335-76-2Perfluorodecanoic acidND0.00200.0010ug/l2058-94-8Perfluoroddecanoic acidND0.00200.0010ug/l307-55-1Perfluoroddecanoic acidND0.00200.0010ug/l376-06-7Perfluorotridecanoic acidND0.00200.0010ug/l375-73-5Perfluorobutanesulfonic acidND0.00200.0010ug/l375-73-5Perfluorobetanesulfonic acidND0.00200.0010ug/l355-46-4Perfluorohexanesulfonic acidND0.00200.0010ug/l375-92-8Perfluoroheptanesulfonic acidND0.00200.0010ug/l
335-67-1 Perfluorooctanoic acid ND 0.0020 0.0010 ug/l 375-95-1 Perfluorononanoic acid ND 0.0020 0.0010 ug/l 335-76-2 Perfluorodecanoic acid ND 0.0020 0.0010 ug/l 2058-94-8 Perfluoroundecanoic acid ND 0.0020 0.0010 ug/l 307-55-1 Perfluoroddecanoic acid ND 0.0020 0.0010 ug/l 307-55-1 Perfluorotdecanoic acid ND 0.0020 0.0010 ug/l 72629-94-8 Perfluorotridecanoic acid ND 0.0020 0.0010 ug/l 376-06-7 Perfluorotetradecanoic acid ND 0.0020 0.0010 ug/l 375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 2706-91-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid
375-95-1Perfluorononanoic acidND0.00200.0010ug/l335-76-2Perfluorodecanoic acidND0.00200.0010ug/l2058-94-8Perfluoroundecanoic acidND0.00200.0010ug/l307-55-1Perfluorododecanoic acidND0.00200.0010ug/l72629-94-8Perfluorotridecanoic acidND0.00200.0010ug/l776-06-7Perfluorotetradecanoic acidND0.00200.0010ug/l375-73-5Perfluorobutanesulfonic acidND0.00200.0010ug/l2706-91-4Perfluoropentanesulfonic acidND0.00200.0010ug/l355-46-4Perfluorohexanesulfonic acidND0.00200.0010ug/l375-92-8Perfluoroheptanesulfonic acidND0.00200.0010ug/l
335-76-2 Perfluorodecanoic acid ND 0.0020 0.0010 ug/l 2058-94-8 Perfluoroundecanoic acid ND 0.0020 0.0010 ug/l 307-55-1 Perfluorododecanoic acid ND 0.0020 0.0010 ug/l 72629-94-8 Perfluorotridecanoic acid ND 0.0020 0.0010 ug/l 376-06-7 Perfluorotetradecanoic acid ND 0.0020 0.0010 ug/l 375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 2706-91-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid ND 0.0020 0.0010 ug/l
307-55-1 Perfluorododecanoic acid ND 0.0020 0.0010 ug/l 72629-94-8 Perfluorotridecanoic acid ND 0.0020 0.0010 ug/l 376-06-7 Perfluorotetradecanoic acid ND 0.0020 0.0010 ug/l 375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 2706-91-4 Perfluoropentanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid ND 0.0020 0.0010 ug/l
307-55-1 Perfluorododecanoic acid ND 0.0020 0.0010 ug/l 72629-94-8 Perfluorotridecanoic acid ND 0.0020 0.0010 ug/l 376-06-7 Perfluorotetradecanoic acid ND 0.0020 0.0010 ug/l 375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 2706-91-4 Perfluoropentanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid ND 0.0020 0.0010 ug/l
376-06-7 Perfluorotetradecanoic acid ND 0.0020 0.0010 ug/l 375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 2706-91-4 Perfluoropentanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid ND 0.0020 0.0010 ug/l
376-06-7 Perfluorotetradecanoic acid ND 0.0020 0.0010 ug/l 375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 2706-91-4 Perfluoropentanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid ND 0.0020 0.0010 ug/l
375-73-5 Perfluorobutanesulfonic acid ND 0.0020 0.0010 ug/l 2706-91-4 Perfluoropentanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid ND 0.0020 0.0010 ug/l
2706-91-4 Perfluoropentanesulfonic acid ND 0.0020 0.0010 ug/l 355-46-4 Perfluorohexanesulfonic acid ND 0.0020 0.0010 ug/l 375-92-8 Perfluoroheptanesulfonic acid ND 0.0020 0.0010 ug/l
355-46-4Perfluorohexanesulfonic acidND0.00200.0010ug/l375-92-8Perfluoroheptanesulfonic acidND0.00200.0010ug/l
375-92-8Perfluoroheptanesulfonic acidND0.00200.0010ug/l
68259-12-1 Perfluorononanesulfonic acid ND 0.0020 0.0010 ug/l
335-77-3 Perfluorodecanesulfonic acid ND 0.0020 0.0010 ug/l
754-91-6 PFOSA ND 0.0040 0.0020 ug/1
2355-31-9 MeFOSAA ND 0.0040 0.0020 ug/1
2991-50-6 EtFOSAA ND 0.0040 0.0020 ug/l
757124-72-44:2 Fluorotelomer sulfonate ND 0.0080 0.0020 ug/l
27619-97-2 6:2 Fluorotelomer sulfonate ND 0.0080 0.0020 ug/l
39108-34-4 8:2 Fluorotelomer sulfonate ND 0.0080 0.0020 ug/l

CAS No. ID Standard Recoveries

13C4-PFBA	78%	35-135%
13C5-PFPeA	78%	50-150%
13C5-PFHxA	78%	50-150%
13C4-PFHpA	80%	50-150%
13C8-PFOA	81%	50-150%
13C9-PFNA	79%	50-150%
13C6-PFDA	79%	50-150%
13C7-PFUnDA	77%	40-140%

6.1.2

FC8820

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample OP98676-MB	File ID 2Q114355.D	DF 1	Analyzed 09/13/23	By LR	Prep Date 08/28/23	Prep Batch OP98676	Analytical Batch S2Q1621

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

CAS No.	ID Standard Recoveries		Limits
	13C2-PFDoDA	70%	40-140%
	13C2-PFTeDA 13C3-PFBS	60% 77%	30-130% 50-150%
	13C3-PFHxS	78%	50-150%
	13C8-PFOS 13C8-FOSA	79% 76%	50-150% 30-130%
	d3-MeFOSAA	81%	40-140%
	d5-EtFOSAA 13C2-4:2FTS	72% 72%	40-140% 50-150%
	13C2-6:2FTS	71%	50-150%
	13C2-8:2FTS 13C3-HFPO-DA	72% 68%	50-150% 50-150%

6.1.2

Page 2 of 2

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

|--|

Limits

The QC reported here applies to the following samples:

Method: EPA 537M QSM5.3 B-15

FC8820-5

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/l	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/l	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/l	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/l	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/l	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0040	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0040	0.0010	ug/l	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/l	
757124-72-4	4:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No. ID Standard Recoveries

13C4-PFBA	88%	50-150%
13C5-PFPeA	88%	50-150%
13C5-PFHxA	90%	50-150%
13C4-PFHpA	92%	50-150%
13C8-PFOA	90%	50-150%
13C9-PFNA	90%	50-150%
13C6-PFDA	90%	50-150%
13C7-PFUnDA	89%	50-150%

Page 1 of 2

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

SampleFile IDDFAnalyzedByPrep DatePrep BatchAnalyticaS2Q1621-IBLK2Q114348.D109/13/23LRn/an/aS2Q1621

The QC reported here applies to the following samples:

Method: EPA 537M QSM5.3 B-15

FC8820-5

CAS No.	ID Standard Recoveries		Limits	
	13C2-PFDoDA	89%	50-150%	
	13C2-PFTeDA 13C3-PFBS	89% 90%	50-150% 50-150%	
	13C3-PFHxS	89%	50-150%	
	13C8-PFOS 13C8-FOSA	91% 93%	50-150% 50-150%	
	d3-MeFOSAA	93%	50-150%	
	d5-EtFOSAA 13C2-4:2FTS	87% 81%	50-150% 50-150%	
	13C2-6:2FTS	82%	50-150%	
	13C2-8:2FTS	81%	50-150%	

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

SampleFile IDDFAnalyzedByPrep DatePrep BatchAnalyticS2Q1620-IBLK2Q114253.D109/12/23LRn/an/aS2Q162	
---	--

Limits

The QC reported here applies to the following samples:

OP98676-BS, OP98676-DUP, OP98676-MS

CAS No.	Compound	Result	RL	MDL	Units	Q
375-22-4	Perfluorobutanoic acid	ND	0.0080	0.0020	ug/l	
2706-90-3	Perfluoropentanoic acid	ND	0.0040	0.0010	ug/1	
307-24-4	Perfluorohexanoic acid	ND	0.0040	0.0010	ug/l	
375-85-9	Perfluoroheptanoic acid	ND	0.0040	0.0010	ug/1	
335-67-1	Perfluorooctanoic acid	ND	0.0040	0.0010	ug/1	
375-95-1	Perfluorononanoic acid	ND	0.0040	0.0010	ug/1	
335-76-2	Perfluorodecanoic acid	ND	0.0040	0.0010	ug/1	
2058-94-8	Perfluoroundecanoic acid	ND	0.0040	0.0010	ug/l	
307-55-1	Perfluorododecanoic acid	ND	0.0040	0.0010	ug/l	
72629-94-8	Perfluorotridecanoic acid	ND	0.0040	0.0010	ug/l	
376-06-7	Perfluorotetradecanoic acid	ND	0.0040	0.0010	ug/1	
375-73-5	Perfluorobutanesulfonic acid	ND	0.0040	0.0010	ug/l	
2706-91-4	Perfluoropentanesulfonic acid	ND	0.0040	0.0010	ug/l	
355-46-4	Perfluorohexanesulfonic acid	ND	0.0040	0.0010	ug/1	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.0040	0.0010	ug/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.0040	0.0010	ug/l	
68259-12-1	Perfluorononanesulfonic acid	ND	0.0040	0.0010	ug/l	
335-77-3	Perfluorodecanesulfonic acid	ND	0.0040	0.0010	ug/l	
754-91-6	PFOSA	ND	0.0040	0.0010	ug/l	
2355-31-9	MeFOSAA	ND	0.0080	0.0020	ug/l	
2991-50-6	EtFOSAA	ND	0.0080	0.0020	ug/1	
757124-72-	44:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	0.0080	0.0020	ug/l	

CAS No. ID Standard Recoveries

13C4-PFBA	93%	50-150%
13C5-PFPeA	93%	50-150%
13C5-PFHxA	94%	50-150%
13C4-PFHpA	96%	50-150%
13C8-PFOA	95%	50-150%
13C9-PFNA	95%	50-150%
13C6-PFDA	95%	50-150%
13C7-PFUnDA	92%	50-150%

Method: EPA 537M QSM5.3 B-15

Page 1 of 2

ດ

CAS No.

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample S2Q1620-IBLK	File ID 2Q114253.D	DF 1	Analyzed 09/12/23	By LR	Prep Date n/a	Prep Batch n/a	Analytical Batch S2Q1620

The QC reported here applies to the following samples:

OP98676-BS, OP98676-DUP, OP98676-MS

ID Standard Recoveries		Limits
13C2-PFDoDA	91%	50-150%
13C2-PFTeDA	93%	50-150%
13C3-PFBS	94%	50-150%
13C3-PFHxS	95%	50-150%
13C8-PFOS	94%	50-150%
13C8-FOSA	102%	50-150%
d3-MeFOSA	94%	50-150%
d3-MeFOSAA	96%	50-150%
d5-EtFOSAA	97%	50-150%
13C2-4:2FTS	86%	50-150%
13C2-6:2FTS	86%	50-150%
13C2-8:2FTS	85%	50-150%
13C3-HFPO-DA	94%	50-150%

Method: EPA 537M QSM5.3 B-15

Page 2 of 2

Blank Spike Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample OP98676-BS	File ID 2Q114274.D	DF 1	Analyzed 09/12/23	By LR	Prep Date 08/28/23	Prep Batch OP98676	Analytical Batch S2Q1620

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
CAS III.	Compound	ug/1	ug/1	/0	Linits
375-22-4	Perfluorobutanoic acid	0.08	0.0841	105	70-130
2706-90-3	Perfluoropentanoic acid	0.08	0.0829	104	70-130
307-24-4	Perfluorohexanoic acid	0.08	0.0841	105	70-130
375-85-9	Perfluoroheptanoic acid	0.08	0.0812	102	70-130
335-67-1	Perfluorooctanoic acid	0.08	0.0829	104	70-130
375-95-1	Perfluorononanoic acid	0.08	0.0818	102	70-130
335-76-2	Perfluorodecanoic acid	0.08	0.0827	103	70-130
2058-94-8	Perfluoroundecanoic acid	0.08	0.0815	102	70-130
307-55-1	Perfluorododecanoic acid	0.08	0.0854	107	70-130
72629-94-8	Perfluorotridecanoic acid	0.08	0.0755	94	60-140
376-06-7	Perfluorotetradecanoic acid	0.08	0.0865	108	70-130
375-73-5	Perfluorobutanesulfonic acid	0.08	0.0834	104	70-130
2706-91-4	Perfluoropentanesulfonic acid	0.08	0.0846	106	70-130
355-46-4	Perfluorohexanesulfonic acid	0.08	0.0838	105	70-130
375-92-8	Perfluoroheptanesulfonic acid	0.08	0.0875	109	70-130
1763-23-1	Perfluorooctanesulfonic acid	0.08	0.0797	100	70-130
68259-12-1	Perfluorononanesulfonic acid	0.08	0.0812	102	65-130
335-77-3	Perfluorodecanesulfonic acid	0.08	0.0791	99	60-130
754-91-6	PFOSA	0.08	0.0840	105	70-130
2355-31-9	MeFOSAA	0.08	0.0832	104	70-130
2991-50-6	EtFOSAA	0.08	0.0808	101	70-130
757124-72-4	44:2 Fluorotelomer sulfonate	0.08	0.0801	100	70-130
27619-97-2	6:2 Fluorotelomer sulfonate	0.08	0.0852	107	70-130
39108-34-4	8:2 Fluorotelomer sulfonate	0.08	0.0809	101	70-130

CAS No.	ID Standard Recoveries	BSP	Limits
	13C4-PFBA	100%	35-135%
	13C5-PFPeA	100%	50-150%
	13C5-PFHxA	101%	50-150%
	13C4-PFHpA	102%	50-150%
	13C8-PFOA	102%	50-150%
	13C9-PFNA	103%	50-150%
	13C6-PFDA	103%	50-150%
	13C7-PFUnDA	103%	40-140%

* = Outside of Control Limits.

6.2.1

Blank Spike Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample OP98676-BS	File ID 2Q114274.D	DF 1	Analyzed 09/12/23	By LR	Prep Date 08/28/23	Prep Batch OP98676	Analytical Batch S2Q1620

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

6.2.1

の

FC8820-5

CAS No.	ID Standard Recoveries	BSP	Limits
	13C2-PFDoDA	91%	40-140%
	13C2-PFTeDA	81%	30-130%
	13C3-PFBS	99%	50-150%
	13C3-PFHxS	101%	50-150%
	13C8-PFOS	103%	50-150%
	13C8-FOSA	85%	30-130%
	d3-MeFOSAA	97%	40-140%
	d5-EtFOSAA	98%	40-140%
	13C2-4:2FTS	106%	50-150%
	13C2-6:2FTS	101%	50-150%
	13C2-8:2FTS	104%	50-150%
	13C3-HFPO-DA	81%	50-150%

* = Outside of Control Limits.

FC8820

Matrix Spike Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP98676-MS	2Q114298.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620
FC8805-1	2Q114297.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

		FC8805-1	Spike	MS	MS	
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	Limits
375-22-4	Perfluorobutanoic acid	0.016 U	0.16	0.154	96	70-130
2706-90-3	Perfluoropentanoic acid	0.0080 U	0.16	0.158	99	70-130
307-24-4	Perfluorohexanoic acid	0.0080 U	0.16	0.160	100	70-130
375-85-9	Perfluoroheptanoic acid	0.0080 U	0.16	0.156	98	70-130
335-67-1	Perfluorooctanoic acid	0.0080 U	0.16	0.159	99	70-130
375-95-1	Perfluorononanoic acid	0.0080 U	0.16	0.158	99	70-130
335-76-2	Perfluorodecanoic acid	0.0080 U	0.16	0.154	96	70-130
2058-94-8	Perfluoroundecanoic acid	0.0080 U	0.16	0.155	97	70-130
307-55-1	Perfluorododecanoic acid	0.0080 U	0.16	0.162	101	70-130
72629-94-8	Perfluorotridecanoic acid	0.0080 U	0.16	0.149	93	60-140
376-06-7	Perfluorotetradecanoic acid	0.0080 U	0.16	0.162	101	70-130
375-73-5	Perfluorobutanesulfonic acid	0.0080 U	0.16	0.159	99	70-130
2706-91-4	Perfluoropentanesulfonic acid	0.0080 U	0.16	0.154	96	70-130
355-46-4	Perfluorohexanesulfonic acid	0.0080 U	0.16	0.161	101	70-130
375-92-8	Perfluoroheptanesulfonic acid	0.0080 U	0.16	0.169	106	70-130
1763-23-1	Perfluorooctanesulfonic acid	0.0080 U	0.16	0.155	97	70-130
68259-12-1	Perfluorononanesulfonic acid	0.0080 U	0.16	0.154	96	65-130
335-77-3	Perfluorodecanesulfonic acid	0.0080 U	0.16	0.149	93	60-130
754-91-6	PFOSA	0.0080 U	0.16	0.159	99	70-130
2355-31-9	MeFOSAA	0.016 U	0.16	0.154	96	70-130
2991-50-6	EtFOSAA	0.016 U	0.16	0.151	94	70-130
757124-72-4	44:2 Fluorotelomer sulfonate	0.016 U	0.16	0.153	96	70-130
27619-97-2	6:2 Fluorotelomer sulfonate	0.016 U	0.16	0.163	102	70-130
39108-34-4	8:2 Fluorotelomer sulfonate	0.016 U	0.16	0.149	93	70-130
CAS No.	ID Standard Recoveries	MS	FC8805	-1 Lin	nits	

CAS No.	ID Standard Recoveries	MS	FC8805-1	Limits
		0.00 (000/	
	13C4-PFBA	98%	90%	35-135%
	13C5-PFPeA	98%	91%	50-150%
	13C5-PFHxA	96%	90%	50-150%
	13C4-PFHpA	96%	91%	50-150%
	13C8-PFOA	98%	95%	50-150%
	13C9-PFNA	97%	92%	50-150%
	13C6-PFDA	98%	91%	50-150%
	13C7-PFUnDA	93%	86%	40-140%

* = Outside of Control Limits.

6.3.1

Matrix Spike Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP98676-MS	2Q114298.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620
FC8805-1	2Q114297.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

CAS No.	ID Standard Recoveries	MS	FC8805-1	Limits
CAS No.	13C2-PFDoDA 13C2-PFTeDA 13C3-PFBS 13C3-PFHxS 13C8-PFOS 13C8-FOSA d3-MeFOSAA	88% 78% 95% 93% 93% 72% 97%	84% 72% 88% 88% 87% 72% 95%	40-140% 30-130% 50-150% 50-150% 50-150% 30-130% 40-140%
	d5-EtFOSAA 13C2-4:2FTS 13C2-6:2FTS 13C2-8:2FTS 13C3-HFPO-DA	97% 99% 100% 100% 82%	93% 81% 85% 82%	40-140% 50-150% 50-150% 50-150% 50-150%

6.3.1

の

Page 2 of 2

Duplicate Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP98676-DUP	2Q114300.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620
FC8805-2	2Q114299.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620

The QC reported here applies to the following samples:

Method: EPA 537M BY ID

FC8820-5

CAS No.	Compound	FC8805-2 ug/l Q	DUP ug/l Q	RPD	Limits
375-22-4	Perfluorobutanoic acid	0.016 U	ND	nc	30
2706-90-3	Perfluoropentanoic acid	0.0080 U	0.0024 J	200*	30
307-24-4	Perfluorohexanoic acid	0.0080 U	ND	nc	30
375-85-9	Perfluoroheptanoic acid	0.0080 U	ND	nc	30
335-67-1	Perfluorooctanoic acid	0.0080 U	ND	nc	30
375-95-1	Perfluorononanoic acid	0.0080 U	ND	nc	30
335-76-2	Perfluorodecanoic acid	0.0080 U	ND	nc	30
2058-94-8	Perfluoroundecanoic acid	0.0080 U	ND	nc	30
307-55-1	Perfluorododecanoic acid	0.0080 U	ND	nc	30
72629-94-8	Perfluorotridecanoic acid	0.0080 U	ND	nc	30
376-06-7	Perfluorotetradecanoic acid	0.0080 U	ND	nc	30
375-73-5	Perfluorobutanesulfonic acid	0.0080 U	ND	nc	30
2706-91-4	Perfluoropentanesulfonic acid	0.0080 U	ND	nc	30
355-46-4	Perfluorohexanesulfonic acid	0.0080 U	ND	nc	30
375-92-8	Perfluoroheptanesulfonic acid	0.0080 U	ND	nc	30
1763-23-1	Perfluorooctanesulfonic acid	0.0080 U	ND	nc	30
68259-12-1	Perfluorononanesulfonic acid	0.0080 U	ND	nc	30
335-77-3	Perfluorodecanesulfonic acid	0.0080 U	ND	nc	30
754-91-6	PFOSA	0.0080 U	ND	nc	30
2355-31-9	MeFOSAA	0.016 U	ND	nc	30
2991-50-6	EtFOSAA	0.016 U	ND	nc	30
757124-72-	44:2 Fluorotelomer sulfonate	0.016 U	ND	nc	30
27619-97-2	6:2 Fluorotelomer sulfonate	0.016 U	ND	nc	30
39108-34-4	8:2 Fluorotelomer sulfonate	0.016 U	ND	nc	30
CAS No.	ID Standard Recoveries	DUP	FC8805-2	Limits	
	13C4-PFBA	90%	88%	35-135	%
	13C5-PFPeA	90%	89%	50-150	%
	13C5-PFHxA	90%	88%	50-150	%
	13C4-PFHpA	91%	88%	50-150	
	13C8-PFOA	94%	91%	50-150	
	13C9-PFNA	91%	90%	50-150	
	13C6-PFDA	90%	90%	50-150	
	13C7-PFUnDA	87%	89%	40-140	%

* = Outside of Control Limits.

6.4.1

Duplicate Summary

FC8820-5

CAS No.

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP98676-DUP	2Q114300.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620
FC8805-2	2Q114299.D	1	09/13/23	LR	08/28/23	OP98676	S2Q1620

FC8805-2

84%

81%

88%

85%

89%

42%

93%

88%

81%

86%

82%

Limits

40-140% 30-130%

50-150%

50-150%

50-150%

30-130%

40-140%

40-140%

50-150%

50-150%

50-150%

50-150%

DUP

83%

72%

87%

89%

90%

38%

90%

89%

84%

89%

82%

74%

The QC reported here applies to the following samples:

ID Standard Recoveries

13C2-PFDoDA

13C2-PFTeDA

13C3-PFBS

13C3-PFHxS

13C8-PFOS

13C8-FOSA

d3-MeFOSAA

d5-EtFOSAA

13C2-4:2FTS

13C2-6:2FTS

13C2-8:2FTS

13C3-HFPO-DA

Method: EPA 537M BY ID

Metho

Page 2 of 2

6.4.1

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

FC8820

Method Blank Summary

Job Number: Account: Project:	FC8820 SGSAKA SGS N 1234232	North Ame	erica, Inc				
Sample GLL2929-MB	File ID LL84419.D	DF 1	Analyzed 08/21/23	By SS	Prep Date n/a	Prep Batch n/a	Analytical Batch GLL2929
The QC report	ted here applies to	o the follo	owing samples:			Method: RSKS	OP-147/175

FC8820-1, FC8820-2, FC8820-3, FC8820-4

CAS No.	Compound	Result	RL	MDL	Units Q
74-82-8	Methane	ND	0.50	0.16	ug/l
74-84-0	Ethane	ND	1.0	0.32	ug/l
74-85-1	Ethene	ND	1.0	0.43	ug/l

Page 1 of 1

Method Blank Summary Job Number: FC8820

Account: Project:	SGSAKA SGS N 1234232	Jorth Ame	rica, Inc					
Sample GLL2930-MB	File ID LL84451.D	DF 1	Analyzed 08/22/23	By SS	Prep I n/a		Prep Batch n/a	Analytical Batch GLL2930
	rted here applies to 8820-2, FC8820-3) the follo	wing samples	:		Me	thod: RSKS	OP-147/175
CAS No. C	ompound		Result	RL	MDL U	Jnits Q		
74-82-8 M	lethane		ND	0.50	0.16 u	.g/1		

Page 1 of 1

7.1.2 7

_

Blank Spike/Blank Spike Duplicate Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GLL2929-BS	LL84416.D	1	08/21/23	SS	n/a	n/a	GLL2929
GLL2929-BSD	LL84417.D	1	08/21/23	SS	n/a	n/a	GLL2929

The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FC8820-1, FC8820-2, FC8820-3, FC8820-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
74-82-8	Methane	108	105	97	106	98	1	62-139/30
74-84-0	Ethane	219	188	86	187	85	1	67-141/30
74-85-1	Ethene	290	232	80	235	81	1	68-141/30

7.2.1

Blank Spike/Blank Spike Duplicate Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample GLL2930-BS GLL2930-BSD	File ID LL84448.D LL84449.D	DF 1 1	Analyzed 08/22/23 08/22/23	By SS SS	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GLL2930 GLL2930		
The QC reported	The QC reported here applies to the following samples:Method: RSKSOP-147/175								
FC8820-1, FC882	20-2, FC8820-3								

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
74-82-8	Methane	108	116	107	113	105	3	62-139/30

Page 1 of 1

* = Outside of Control Limits.

FC8820

Matrix Spike Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FC8852-3MS	LL84442.D	25	08/21/23	SS	n/a	n/a	GLL2929
FC8852-3	LL84439.D	1	08/21/23	SS	n/a	n/a	GLL2929
FC8852-3	LL84440.D	25	08/21/23	SS	n/a	n/a	GLL2929

The QC reported here applies to the following samples:

FC8820-1, FC8820-2, FC8820-3, FC8820-4

CAS No.	Compound	FC8852-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits
74-82-8	Methane	20600 a	2700	24300	137	62-139
74-84-0	Ethane	2240 a	5480	7510	96	67-141
74-85-1	Ethene	840 ^a	7250	7470	91	68-141

(a) Result is from Run #2.

Method: RSKSOP-147/175

Page 1 of 1

Matrix Spike Summary Job Number: FC8820

Account: Project:	SGSAKA SGS N 1234232	orth Ame	erica, Inc				
Sample FC8738-1MS FC8738-1	File ID LL84465.D LL84457.D	DF 1 1	Analyzed 08/22/23 08/22/23	By SS SS	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GLL2930 GLL2930
	ted here applies to 3820-2, FC8820-3) the follo	owing samples:		:	Method: RSKS	OP-147/175

CAS No.	Compound	FC8738-1 ug/l Q	Spike ug/l		MS %	Limits
74-82-8	Methane	31.7	108	142	102	62-139

FC8820

Duplicate Summary

Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FC8852-3DUP	LL84441.D	25	08/21/23	SS	n/a	n/a	GLL2929
FC8852-3	LL84439.D	1	08/21/23	SS	n/a	n/a	GLL2929
FC8852-3	LL84440.D	25	08/21/23	SS	n/a	n/a	GLL2929

The QC reported here applies to the following samples:

FC8820-1, FC8820-2, FC8820-3, FC8820-4

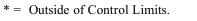
CAS No.	Compound	FC8852-3 ug/l Q	DUP ug/l Q	RPD	Limits
74-82-8	Methane	20600 a	23800	14	30
74-84-0	Ethane	2240 a	2560	13	30
74-85-1	Ethene	840 ^a	920	9	30

(a) Result is from Run #2.

Method: RSKSOP-147/175

Page 1 of 1

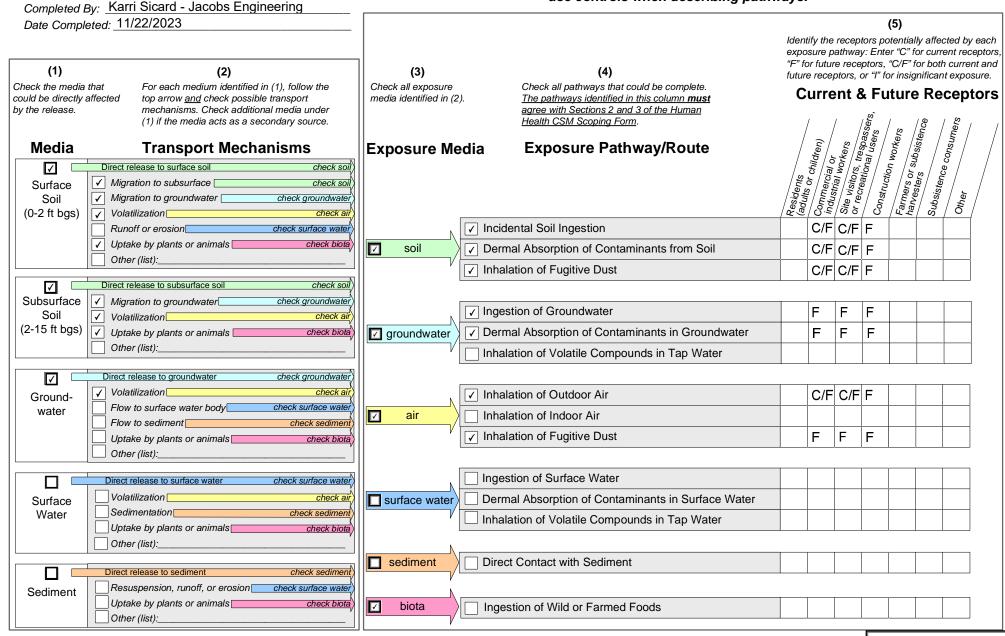
Duplicate Summary


Job Number:	FC8820
Account:	SGSAKA SGS North America, Inc
Project:	1234232

Sample FC8738-1DUP FC8738-1	File ID LL84464.D LL84457.D	DF 1 1	Analyzed 08/22/23 08/22/23	By SS SS	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GLL2930 GLL2930
The QC reported	d here applies to	the follo	owing samples:			Method: RSKS	OP-147/175
FC8820-1, FC882	20-2, FC8820-3						

CAS No.	Compound	FC8738-1 ug/l Q	DUP ug/l Q	RPD	Limits
74-82-8	Methane	31.7	32.5	2	30

Page 1 of 1



APPENDIX F Human Health CSM Scoping and Graphic Forms

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: FIA - Drainage Pond - ADEC File: 100.38.188 Hazard ID: 1923

<u>Instructions</u>: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

Revised, 10/01/2010

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	FIA - Drainage Pond
File Number:	ADEC File: 100.38.188 Hazard ID: 1923
Completed by:	Karri Sicard, Jacobs Engineering

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

🗖 USTs	☐ Vehicles
☐ ASTs	Landfills
Dispensers/fuel loading racks	Transformers
Drums	Other: Unconfirmed source of chlorinated solvents.
Release Mechanisms (check potential release mech	hanisms at the site)
⊠ Spills	Direct discharge
🗵 Leaks	Burning
	Other: Chlorinated solvents from unknown source.
Impacted Media (check potentially-impacted media ⊠ Surface soil (0-2 feet bgs*)	a at the site)
\boxtimes Subsurface soil (>2 feet bgs)	☐ Surface water
⊠ Air	🗵 Biota
☐ Sediment	□ Other:
Receptors (check receptors that could be affected b	y contamination at the site)
Residents (adult or child)	⊠ Site visitor
Commercial or industrial worker	⊠ Trespasser
Construction worker	Recreational user
Subsistence harvester (i.e. gathers wild foods)	Farmer
Subsistence consumer (i.e. eats wild foods)	Other:

* bgs - below ground surface

- **2. Exposure Pathways:** (*The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".*)
- a) Direct Contact -

b)

1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

If the box is checked, label this pathway complete:	Complete	
Comments:		
This site is located in an industrial area near the airport primarily restrict or workers. The area has no development planned for the foreseeable fu recreational areas, or subsistence activities.		
2. Dermal Absorption of Contaminants from Soil		
Are contaminants present or potentially present in surface soil	between 0 and 15 feet below	the ground surface?
(Contamination at deeper depths may require evaluation on a s	site specific basis.)	X
Can the soil contaminants permeate the skin (see Appendix B i	in the guidance document)?	
If both boxes are checked, label this pathway complete:	Incomplete	
Comments:		
Based on results from the 2010 Oasis study, concentrations of benzene, exceeded Table B1. Method Two Migration to Groundwater (GW) levels Cleanup Levels (CULs) for the Under 40-inch Zone at depth between 0 a surface. However, these contaminants are not listed in Appendix B.	and 1/10 Human Health (HH)	
Ingestion - 1. Ingestion of Groundwater		
Have contaminants been detected or are they expected to be de or are contaminants expected to migrate to groundwater in the	-	X
Could the potentially affected groundwater be used as a curren source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source of to 18 AAC 75.350.	determined the ground-	X
If both boxes are checked, label this pathway complete:	Complete	
Comments:		
2023 results indicate contaminant concentrations greater than 1/10 AD CULs. Groundwater is currently not used for drinking water and area-wid by ADEC should prohibit future use as such. However, ADEC has not ma under 18 AAC 75.350 that it is not a current or reasonably expected futu	de contamination widely known de a formal determination	

2. Ingestion of Surface Water

c)

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:	Incomplete
Comments:	
No surface water bodies are present at the former Drainage Pond site nor documented or predicted.	r is migration to surface water
3. Ingestion of Wild and Farmed Foods	
Is the site in an area that is used or reasonably could be used for harvesting of wild or farmed foods?	r hunting, fishing, or
Do the site contaminants have the potential to bioaccumulate (se document)?	ee Appendix C in the guidance
Are site contaminants located where they would have the potent biota? (i.e. soil within the root zone for plants or burrowing dep groundwater that could be connected to surface water, etc.)	-
If all of the boxes are checked, label this pathway complete:	Incomplete
Comments:	
Trees and shrubs are present, but the small lot size and its proximity to th providing habitat for animals. The site is not used for hunting or harvestir	
Inhalation- 1. Inhalation of Outdoor Air	
Are contaminants present or potentially present in surface soil b ground surface? (Contamination at deeper depths may require e	
Are the contaminants in soil volatile (see Appendix D in the g	guidance document)?
If both boxes are checked, label this pathway complete:	Complete
Comments:	

Volatile contaminants of concern (from Appendix D) that have been found in soil between 0 and 15 feet below ground surface include: benzene, PCE, TCE, cis-DCE, and VC.

 \square

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Incomplete

Comments:

No buildings are currently located within the identified Drainage Pond contaminant plume. There is a chance commercial buildings could be built here in the future, but it is not reasonably expected; therefore this pathway is considered incomplete. Volatile chemicals of concern (from Appendix D) in groundwater and surface soil at this site are: benzene, PCE, TCE, cis-DCE, trans-DCE, and VC.

 \overline{X}

Г

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:

Comments:

Groundwater depth is approximately 10-feet below ground surface. Exposure during construction activities during the summer is possible but not likely. No construction is currently planned for the site. There is no surface water body and no wells are used for household purposes.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Exposure to groundwater is considered for a future scenario only since no drinking water wells currently exist and this is in a commercial area and not a residential zone. Development of new water wells for drinking or household purposes is unlikely given the known groundwater contamination status of the region.

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Site is covered in grass, shrubs, trees, and asphalt. Fugitive dust is possible during construction, but no construction is currently planned on the site.

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

There is no sediment at this site because no surface water is present and vegetation and asphalt cover the site.

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

APPENDIX G ADEC Transport, Treatment, and Disposal Approval Form for Contaminated Media

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites and Prevention Preparedness and Response Programs

Contaminated Media Transport and Treatment or Disposal Approval Form

· ·				
HAZARD ID # or SPILL ID # NAME OF CONTAMINATED SITE OR SPILL				
CONTAMINATED SITE OR SPILL LOCATION	N - AD	DRESS OR OTHER AP	PROPRIATE DESCRIPTION	
CURRENT PHYSICAL LOCATION OF MEDIA	4	SOURCE OF THE CO	ONTAMINATION	
		(DAY TANK, FIRE T	RAINING PIT, LUST, ETC.)	
CONTAMINANTS OF CONCERN	ESTI	MATED VOLUME	DATE(S) GENERATED	
POST TREATMENT ANALYSIS REQUIRED (S	such as	GRO, DRO, RRO, VOCs,	metals, PFAS, and/or Chlorinated Solvents)	
COMMENTS OR OTHER IMPORTANT INFORMATION				

TREATMENT FACILITY, LANDFILL, AND/OR FINAL DESTINATION OF MEDIA	PHYSICAL ADDRESS/PHONE NUMBER
RESPONSIBLE PARTY	ADDRESS/PHONE NUMBER
WASTE MANAGEMENT CO. / ORGANIZER	ADDRESS/PHONE NUMBER

*Note, disposal of polluted soil in a landfill requires prior approval from the landfill operator and ADEC Solid Waste Program.

Jake Matter

Name of the Person Requesting Approval (printed)

cob Matter

Signature

FIA Environmental Manager

Title/Association

Date

907-474-2598

Phone Number

-----DEC USE ONLY-----

Based on the information provided, ADEC approves transport of the above mentioned material. The Responsible Party or their consultant must submit to the DEC Project Manager a copy of weight receipts of the loads transported and a post treatment analytical report, if disposed of at an approved treatment facility. The contaminated soil shall be transported as a covered load in compliance with 18 AAC 60.015.

Rebekah Reams

DEC Project Manager Name (printed)

Rebebah Reams

Digitally signed by Rebekah Reams Date: 2024.02.06 15:42:47 -09'00'

Signature

Environmental Program Specialist

Project Manager Title

2/6/2024 Date 907-451-2144

Phone Number

Appendix G: I	IDW Table
---------------	-----------

Drainage Pond 2023 IDW Analytical Results

Appendix G: IL		Drainage Pond 2023 IDW A		-		
			Location ID: Sample ID: Lab Sample ID: SDG: Sample Date/Time: QA/QC:		DPS-01W 23DPS-01W 1234232010/FC8820- 5 1234232/FC8820 08/09/2023 12:30 Primary Sample	DPS-TB01 23-DPS-TB01 1234232011 1234232 08/08/2023 08:00 Trip Blank
CAS Number	Method	Analyte	Screening Level ¹ (ug/L)	TCLP Action Level ² (ug/L)	Result (ug/L)	Result (ug/L)
71-43-2	SW8260D	Benzene	4.6	500	0.38 [0.2] J,JP-	ND [0.2]
156-59-2	SW8260D	cis-DCE	36	-	45.8 [0.5] B,JP-	ND [0.5]
127-18-4	SW8260D	PCE	41	700	1.04 [0.5] JP-	ND [0.5]
79-01-6	SW8260D	TCE	2.8	500	1.44 [0.25] JP-	ND [0.25]
156-60-5	SW8260D	trans-DCE	360	-	0.59 [0.5] J,JP-	ND [0.5]
75-01-4	SW8260D	VC	0.19	200	ND [0.075] JP-	ND [0.075]
757124-72-4	EPA 537M BY ID	4:2 Fluorotelomer sulfonate	-	-	ND [0.045]	-
27619-97-2	EPA 537M BY ID	6:2 Fluorotelomer sulfonate	-	-	ND [0.045]	-
39108-34-4	EPA 537M BY ID	8:2 Fluorotelomer sulfonate	-	-	ND [0.23]	-
2991-50-6	EPA 537M BY ID	EtFOSAA	-	-	ND [0.23]	-
2355-31-9	EPA 537M BY ID	MeFOSAA	-	-	ND [0.23]	-
335-77-3	EPA 537M BY ID	Perfluorodecanesulfonic acid	-	-	ND [0.11]	-
68259-12-1	EPA 537M BY ID	Perfluorononanesulfonic acid	-	-	ND [0.023]	-
2706-91-4	EPA 537M BY ID	Perfluoropentanesulfonic acid	-	-	0.15 [0.023]	-
2706-90-3	EPA 537M BY ID	Perfluoropentanoic acid	-	-	0.0727 [0.023]	-
376-06-7	EPA 537M BY ID	Perfluorotetradecanoic acid	-	-	ND [0.023]	-
72629-94-8	EPA 537M BY ID	Perfluorotridecanoic acid	-	-	ND [0.11]	-
375-22-4	EPA 537M BY ID	PFBA	-	-	0.0719 [0.045] J	-
375-73-5	EPA 537M BY ID	PFBS	-	-	0.221 [0.023]	-
335-76-2	EPA 537M BY ID	PFDA	-	-	ND [0.11]	-
307-55-1	EPA 537M BY ID	PFDoA	-	-	ND [0.11]	-
375-85-9	EPA 537M BY ID	PFHpA	-	-	0.252 [0.023]	-
375-92-8	EPA 537M BY ID	PFHPS	-	-	0.078 [0.023]	-
307-24-4	EPA 537M BY ID	PFHxA	-	-	0.222 [0.023] B	-
355-46-4	EPA 537M BY ID	PFHxS -		-	0.894 [0.023]	-
375-95-1	EPA 537M BY ID	PFNA	-	-	1.17 [0.023]	-
335-67-1	EPA 537M BY ID	PFOA	0.4	-	0.274 [0.023]	-
1763-23-1	EPA 537M BY ID	PFOS	0.4	-	2.63 [0.023]	-
754-91-6	EPA 537M BY ID	PFOSA	-		ND [0.045]	-
2058-94-8	EPA 537M BY ID	PFUnA	-		ND [0.11]	-

Notes:

¹18 AAC 75. Table C Groundwater Human Health Cleanup Levels (ADEC 2023)

²40 CFR 261, Appendix II, 1993 ed., as amended by 58 FR 46040, August 31, 1993. **bold** = exceeds PSL

- = not analyzed or not applicable

[] = limit of detection (LOD)

ug/L = micrograms per liter

B = The analyte was detected in the method blank, trip blank and/or equipment blank and the sample

concentration did not exceed the blank concentration by a factor of 10.

J = The result is an estimated value because it is less than the limit of quantitation.

JP- = The result was considered an estimated value because incorrect or inadequate preservation methods were used.

ND = nondetect

PSL = project screening level SDG = sample delivery group QA/QC = quality assurance/quality control APPENDIX H ADEC Response Letter and Response to Comments

Department of Environmental Conservation

SPILL PREVENTION & RESPONSE Contaminated Sites Program

> P.O. Box 1535 Haines, Alaska 99827 Main: 907.451.2144 www.dec.alaska.gov

File: 100.38.188

January 17, 2024

Fairbanks International Airport ATTN: Jake Matter 6450 Airport Way, Suite 1 Fairbanks, AK 99709

RE: FIA – Drainage Pond

Dear Mr. Matter:

The Alaska Department of Environmental Conservation (DEC) has reviewed the 2023 Drainage Pond Groundwater Monitoring Report submitted on December 26, 2023. This report documents groundwater sampling conducted in August 2023 at monitoring wells MW-11R, MW-34, MW-38S, MW-38D, MW-39, and MW-40 and the evaluation of monitored natural attenuation (MNA) parameters at the site.

The DEC concurs with the recommendations outlined in Section 8 of the report to continue biennial groundwater monitoring, evaluate the presence of ethylene to better assess the dechlorination process occurring at the site, and expand the well network where MNA parameters are evaluated to provide a better understanding of site conditions. In addition to these recommendations, please note the outstanding requests for site characterization that are summarized below:

- Based on the groundwater cleanup level exceedances observed at monitoring wells MW-38S, MW-39, MW-40, and MW-11R, DEC does not consider the extent of the groundwater plume to be fully delineated. Additional groundwater monitoring wells should be installed to fully delineate the extent of the plume and to monitor contaminant trends.
- Current soil analytical data available for the site indicates that the extent of soil contamination has not been fully defined. Additional site characterization should be completed to address this data gap and may help determine whether there is an ongoing source of contamination at this site.

Please submit a work plan that details the next biennial groundwater sampling event and proposes additional site characterization efforts to address remaining data gaps at the site.

Do not hesitate to contact me at (907) 451-2144 or <u>rebekah.reams@alaska.gov</u> if you have any questions or concerns regarding the contents of this letter or if you would like the discuss the path forward at this site.

Sincerely,

Rebebah Reams

Digitally signed by Rebekah Reams Date: 2024.01.17 16:34:29 -09'00'

Rebekah Reams Environmental Program Specialist

cc (via email): Angie Spear, FIA Robert Burgess, DEC Guy Wade, Jacobs Karii Sicard, Jacobs

DEC Comments to 2023 Drainage Pond Groundwater Monitoring Report

ADEC File: 100.38.188 Hazard ID: 1923

Reviewer: Rebekah Reams, Alaska Department of Environmental Conservation, Contaminated Sites Program

Response to comments by Jacobs, on behalf of ADOT & PF Fairbanks International Airport; February 14, 2024

Comment	Pg.	Section	Comment / Recommendations	Response
1.		General	"Based on the groundwater cleanup level exceedances observed at monitoring wells MW- 38S, MW-39, MW-40, and MW-11R, DEC does not consider the extent of the groundwater plume to be fully delineated. Additional groundwater monitoring wells should be installed to fully delineate the extent of the plume and to monitor contaminant trends."	Accepted; ADEC and FIA discussed drilling and installing additional wells, some temporary well points, to provide more confidence that the extent of the groundwater contamination is defined (especially to the north of MW-38S, MW-11R, MW-39, and former TW-3, and to the south of MW-40 and MW-39). The well locations will also be chosen to determine if contamination is confined to the lot boundary, and to pinpoint where a permanent well may be needed for ongoing monitoring. ADEC agreed that MW-34 has had non-detect results since 2003 and can be removed from the upcoming monitoring plan.
2.	-	General	"Current soil analytical data available for the site indicates that the extent of soil contamination has not been fully defined. Additional site characterization should be completed to address this data gap and may help determine whether there is an ongoing source of contamination at this site."	Accepted; the extent of soil contamination was not fully delineated. ADEC and FAI discussed advancing four step-out borings to define the extent of contamination, and ADEC recommended completing additional soil investigation in the vicinity of MW-38 to evaluate current concentrations in soil, assess attenuation, and help determine if there is a potential source in this area (buried asphalt was identified here in the 2011 SC Report).
3.		General	"Please submit a work plan that details the next biennial groundwater sampling event and proposes additional site characterization efforts to address remaining data gaps at the site."	Accepted; FIA to submit a work plan addressing these data gaps. ADEC agreed the work can be spaced out over multiple years to account for budget constraints.