

May 30, 2024

Marshall Farris
Environmental Specialist
Hilcorp Alaska, LLC
3800 Centerpoint Drive, Ste. 1400
Anchorage, AK 99503
Marshall.Farris@hilcorp.com

Subject: 2023 Site Characterization and Groundwater Sampling Report, Beluga River Unit

Mr. Farris,

Susitna Environmental, LLC (Susitna) is pleased to submit the referenced report to Hilcorp Alaska LLC (Hilcorp) for site investigation work completed at Beluga River Unit. This report summarizes the site characterization and groundwater monitoring services conducted by Susitna in 2023.

If you have any questions or concerns, please contact me at (907) 350-7952 or m.mayer@susitna.com.

Thank you,

M. May

Melissa Mayer, Qualified Environmental Professional

Susitna Environmental, LLC

cc: Peter Campbell, ADEC

Angela Matz, USFWS Sharon Yarawsky, BLM

SITE CHARACTERIZATION AND GROUNDWATER SAMPLING REPORT Beluga River Unit

Beluga River, Alaska

Prepared by

TABLE OF CONTENTS

<u>S</u> E	CTION		<u>PAGE</u>	
1	Introduction		5	
2	Field Work.		5	
	2.1 Monitoring Well Installation			
	2.2 Groundwater Monitoring			
		oring Installation & Soil Sampling		
		y of Soil Borings & Monitoring Wells		
3	Site Specific Reports			
	3.1 Beluga	a River 221-23 (L Pad)	8	
	3.1.1	Summary of Previous Site Activities	8	
	3.1.2	9		
	3.1.3 Results		10	
	3.1.4	Conclusion and Recommendation	10	
	3.2 Beluga	a River 224-13 (M Pad)	10	
	3.2.1	Summary of Previous Site Activities	10	
	3.2.2 Monitoring Well Installation		12	
	3.2.3	Groundwater Sampling	12	
	3.2.4	Soil Boring Installation & Soil Sampling	13	
	3.2.5	Results	13	
	3.2.6	Conclusions and Recommendations	13	
	3.3 Beluga	a River Abandoned Diesel Tank Farm (A Pad)	13	
	3.3.1	Summary of Previous Site Activities	14	
	3.3.2	Soil Boring Installation & Soil Sampling	14	
	3.3.3	Results	15	
	3.3.4	Conclusion and Recommendation	15	
	3.4 Beluga	a River Pump Area Assessment (E Pad)	15	
	3.4.1	Summary of Previous Site Activities	15	
	3.4.2	Groundwater Monitoring	16	
	3.4.3	Results	16	
	3.4.4	Conclusions and Recommendations	16	
4	Quality Con	trol Samples	16	
5	Investigative Derived Waste1			
6	Data Quality Assessment1			
7	References			

Figures

Figure 1	Location Map
Figure 2	Site Vicinity Locations
Figure 3	Beluga River Unit 221-23 (L Pad) Boring Locations
Figure 4	Beluga River Unit 224-13 (M Pad) Temporary Well Locations
Figure 5	Beluga River Abandoned Diesel Tank Farm (A Pad) Boring Location
Figure 6	Beluga River Unit Pump Area Assessment (E Pad) Groundwater Results

<u>Tables</u>

Table 1	Site Results and Recommendations Summary
Table 2	L Pad Soil Borings and Sample Collection
Table 3	BRU Groundwater Results – 224-13 (M Pad) & Abandoned Diesel Tank Farm (A Pad)
Table 4	BRU Soil Results – 221-23 (L Pad), 224-13 (M Pad), & Abandoned Diesel Tank Farm (A Pad),

ii

Attachments

Attachment A	Groundwater Sampling Forms
Attachment B	Boring Logs
Attachment C	Field Notes
Attachment D	Photographic Log
Attachment E	Survey Data Table
Attachment F	Analytical Laboratory Reports
Attachment G	ADEC Laboratory Data Review Checklist and Data Quality Memorandums

Acronyms and Abbreviations

μg/L micrograms per liter

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

ARCO Atlantic Richfield Company

bgs below ground surface
BRU Beluga River Unit

BTEX benzene, toluene, ethylbenzene, and total xylenes

btoc below the top of casing COC contaminant of concern

CoC chain-of-custody cy cubic yard(s)

DPS direct push system

DQR data quality review

DRO diesel range organics

ENSR ENSR Consulting Engineers, Inc

EPA U.S. Environmental Protection Agency EPH extractable petroleum hydrocarbons

ft feet/foot gal gallons

GeoTek GeoTek Alaska Inc.
GRO gasoline range organics
Hilcorp Alaska, LLC

ID identification

mg/kg milligrams per kilogram

MS/MSD matrix spike/matrix spike duplicate

MTGW migration to groundwater
OilRisk OilRisk Consultants

PAH polycyclic aromatic hydrocarbon

PAL project action limit

PID photoionization detector

PVC polyvinyl chloride

QA/QC quality assurance/quality control

RCRA Resource Conservation and Recovery Act

RPD relative percent difference
RRO residual range organics
SDG sample delivery group
SGS SGS Environmental

Susitna Susitna Environmental, LLC USGS U.S. Geological Survey

iii May 2024

VOC volatile organic compound Weston Weston Solutions, Inc.

iv

1 INTRODUCTION

This document has been prepared on behalf of Hilcorp Alaska, LLC (Hilcorp) by Susitna Environmental, LLC (Susitna). It summarizes the site characterization and groundwater monitoring results from the 2023 fieldwork conducted at four Hilcorp Beluga River Unit (BRU) sites in Beluga, Alaska (Figure 1 and Figure 2). Each site is listed as an active site in the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Program Database and is listed below:

- Beluga River 221-23 ADEC Hazard Identification (ID): 656 | ADEC File Number: 2337.38.026 | Status: Active (Figure 3)
- Beluga River 224-13 ADEC Hazard ID: 989 | ADEC File Number: 2337.38.021 | Status: Active (Figure 4)
- Beluga River Abandoned Diesel Tank Farm ADEC Hazard ID: 1000 | ADEC File Number: 2337.38.015 | Status: Active (Figure 5)
- Beluga River Pump Area Assessment ADEC Hazard ID: 990 | ADEC File Number: 2337.38.031 | Status: Active (Figure 6)

Historical groundwater contamination has been documented at each of the above-listed sites. Groundwater monitoring was conducted in 2021 to assess the condition of the existing groundwater well network and the condition of contaminant plumes at each site, and additional groundwater samples were collected in 2022. This report summarizes the 2023 soil and groundwater monitoring results. Each site location is shown in Figure 2, and site-specific information is shown in Figures 3 through 6. Groundwater Monitoring Forms (Attachment A), Boring Logs (Attachment B), Field Notes (Attachment C), a Photographic Log (Attachment D), Monitoring Well Survey Data (Attachment E), Analytical Laboratory Reports (Attachment F) and ADEC Laboratory Data Review Checklists and Data Quality Memorandums (Attachment G) are provided at the end of this report.

2 FIELD WORK

Field activities occurred in October 2023. Qualified environmental professional field personnel were on-site at BRU to install groundwater wells & soil borings and to collect groundwater & soil samples. To meet project objectives, soil borings and soil samples were collected at 221-23 (L Pad), new wells were installed, and the new and existing monitoring wells were sampled at Beluga River 224-13 (M Pad), one boring was installed, and soil was sampled at the Abandoned Diesel Tank Farm (A Pad). An existing monitoring well was sampled at Beluga River Pump Area Assessment (E Pad). Fieldwork was performed under the ADEC-approved *Beluga River Unit Groundwater Sampling Work Plan* (Susitna, 2023).

Sections 2.1 through 2.4 describe general field procedures for monitoring well installation, groundwater monitoring, soil boring installation, soil sampling and boring/well survey. Details specific to fieldwork conducted at each site are presented in the site-specific report Sections 3.1 through 3.4.

2.1 MONITORING WELL INSTALLATION

In 2023, temporary monitoring wells were installed at 224-13 (M Pad) using a Geoprobe[™] 6620DT direct-push hydraulic percussion drill rig. The temporary monitoring wells comprised ¾-inch diameter polyvinyl chloride (PVC) well casing. The wells were not developed after installation. However, groundwater was purged from the wells until the turbidity levels were significantly reduced. The temporary wells were installed outside the driving lanes as much as practicable.

The wells were surveyed using a level loop to determine groundwater surface elevation contours. This is described in more detail in Section 2.4, and survey data is provided in Attachment E. Figure 4 shows the locations of the two new temporary wells, and one (existing) permanent well at 224-13 and the calculated groundwater gradient.

2.2 GROUNDWATER MONITORING

Groundwater samples were collected from three monitoring wells at 224-13 and at one monitoring well at the Pump Area Assessment.

The temporary wells at 224-13 were sampled via a Geoprobe SP-16 groundwater sampler. This point-in-time groundwater sampler is a proprietary direct push system (DPS) tool that uses a protected-screen installation method and is advanced using a Geoprobe DPS drill rig.

Groundwater samples collected from the new temporary monitoring wells at 224-13 were collected using a peristaltic pump due to the ¾-inch diameter SP-16 sampler. All other groundwater samples were collected using a submersible pump. Depth to groundwater was measured from a marked measuring point on the top of each inner PVC well casing and documented on groundwater field forms before purging the well. Casing height is provided in the survey table in Attachment E. The field team purged each monitoring well per low-flow techniques outlined in the U.S Environmental Protection Agency (EPA) Low Stress (low flow) Purging and Sampling Procedures for the Collection of Ground Water Samples from Monitoring Wells published in 2017 (EPA, 2017) and the ADEC Field Sampling Guidance (ADEC, 2022a). All water quality parameters were recorded on Groundwater Sample Forms and are provided in Attachment A.

Groundwater samples were analyzed for site-specific analytes as described for each site in Section 3. Groundwater sample results were compared to ADEC 18 Alaska Administrative Code

(AAC) 75 Table C, Groundwater cleanup levels (ADEC, 2023), and are presented in Table 3. In this report, project-specific cleanup levels are called project action limits (PALs). Groundwater samples were submitted to SGS Environmental, LLC (SGS) in Anchorage, Alaska, under chain-of-custody (CoC) for laboratory analyses. In 2023, all development and purge water (approximately 11 gallons (gal)) was containerized in one 55-gal drum of purge water. Investigative-derived waste is discussed in Section 5. Groundwater monitoring forms are provided in Attachment A. Analytical results are presented by site in Section 3.

2.3 SOIL BORING INSTALLATION & SOIL SAMPLING

Four soil borings were installed at Beluga River 221-23, two soil borings were installed at 224-13 for groundwater monitoring, and one soil boring was installed at Beluga River Abandoned Diesel Tank Farm (A Pad). Boring logs are provided in Attachment B.

Soil borings were advanced using a track mounted Geoprobe™ hydraulic percussion drill rig operated by GeoTek Alaska Inc. (GeoTek). GeoTek advanced soil borings using direct push drilling technologies with the Macro-core soil sampling system. The soil cuttings were logged to identify soil types, field screening results and observations, and analytical sample collection data. The photoionization detector (PID) was used for field screening to detect the presence or absence of volatile hydrocarbon compounds in the soil. In 2023, two 5-gal buckets of soil cuttings were generated and staged at M Pad (224-13). Investigative-derived waste is discussed in Section 5.

Soil samples were analyzed for site-specific analytes as described for each site in Section 3. Soil sample results were compared to ADEC 18 AAC 75 Method Two migration to groundwater (MTGW) soil cleanup levels (ADEC, 2023) and are presented in Table 4. Project-specific cleanup levels are referred to as PALs in this report. Soil samples were submitted to SGS in Anchorage, Alaska, under CoC for laboratory analyses.

2.4 SURVEY OF SOIL BORINGS & MONITORING WELLS

A soil boring and monitoring well survey was performed for all the monitoring wells and borings installed. The temporary monitoring wells at 224-13 (M Pad) were surveyed to determine locations and groundwater gradients. A location survey was conducted at the soil borings at 221-23 (L Pad) and Abandoned Diesel Tank Farm (A Pad). An EOS Positioning Systems Arrow100 Submeter Global Navigation Satellite System receiver was used to perform the location survey for all features of interest. Differential leveling was performed at M Pad to determine temporary and permanent well elevations. One control point was established on the M Pad to control the differential leveling survey. The overall accuracy goals of the study for the monitoring wells were better than 1.0 feet (ft) for the X and Y (horizontal) coordinates and 0.01 ft for the Z coordinate (elevation). This accuracy was achieved for the monitoring well survey. The survey accuracy for other features of interest was sub-meter. Survey results are provided in Attachment E.

3 SITE SPECIFIC REPORTS

The following sections describe the four sites visited in 2023. Details about each site, including the history, fieldwork, results, and conclusions for each site, are described in Sections 3.1 to 3.4. A summary of scope, exceedances, and recommendations for the sites is shown in Table 1.

Table 1: Site Results and Recommendations Summary

Site	Scope of Work	PAL	Recommendations
		Exceedances	
Beluga River 221-23	Four soil borings	No exceedances	Closure
(L Pad)	Eight soil samples		
Beluga River 224-13	Two temp wells	DRO and RRO in	Install permanent wells at
(M Pad)	Four groundwater	groundwater and	locations 224-13-3 and 224-13-4;
	samples	DRO, VOCs,	add VOCs and PAHs as
	One waste	PAHs in soil in	contaminants of concern based
	characterization soil	boring/temp well	on soil results and monitor every
	sample	224-13-4.	three years.
Beluga River	One soil boring	No exceedances	Closure
Abandoned Diesel	One soil sample		
Tank Farm (A Pad)			
Beluga River Pump	One groundwater	DRO in	Monitor every three years
Area Assessment	sample	groundwater	
(E Pad)			

DRO = Diesel Range Organics

VOC = Volatile Organic Compounds

RRO = Residual Range Organics

PAH = Polycyclic Aromatic Hydrocarbons

3.1 BELUGA RIVER 221-23 (L PAD)

Well Beluga River 221-23 is located on L Pad (Figure 3), 2.6 miles northeast of the airstrip and 2.5 miles west of Beluga River at latitude 61°12'31.60" N and longitude 151°01'22.28" W. Currently, the well is out-of-production, and the gravel pad is used for materials storage to support activities throughout the BRU.

3.1.1 Summary of Previous Site Activities

In June 1989, diesel fuel was found seeping from the toe of the gravel pad along the east side near the dehydrator building contactor sump (ADEC Spill No. 1989-23-01-180-02). The sump was removed in July 1989. In June 1990, approximately 650 cubic yards (cy) of impacted soil were excavated and placed into a lined and bermed containment area along the northern edge of the pad (Former North Stockpile Site, ADEC File # 2337.38.026). Based on a review of historical imagery, the outline of the Former North Stockpile site is shown in an inset in Figure 3.

In 1991, in-situ bioremediation was implemented to treat impacted soils under the contactor building at the east end of the pad. Based on a sampling and analysis report, the system successfully remediated soils under the contactor building, and the system was shut off (ADEC, 2013b). Beluga River Field, Atlantic Richfield Company (ARCO) Alaska, Inc. #90-23-01-151-01 Approval of Clean Closure for Former Contactor Sump BRU 221-23 was issued by ADEC on June 2, 1992 (ADEC, 1992). The Former North Stockpile was approved for land spreading on the Beluga Airstrip, stipulating that the soils below the stockpiles be assessed to determine if contamination migrated to underlying or adjacent soils (ADEC, 2013b).

Samples collected from the Former North Stockpile site in 1992 identified DRO concentrations up to 725 milligrams per kilogram (mg/kg) and total petroleum hydrocarbons concentrations from 6.0 to 1,100 mg/kg between 0 and 2 ft below ground surface (bgs). Based on the 1992 soil sampling results, confirmation samples were collected from the Former North Stockpile site in 1993. Results detected DRO in soil from 4 to 5 ft bgs at concentrations between 161 and 3,600 mg/kg and DRO in groundwater between 400 and 2,500 micrograms per liter (µg/L). Results of the June 1993 sampling event indicate that DRO contamination exists in the area of the Former North Stockpile and is probably the result of past drilling or well workover activities in the 1970s and early 1980s (ARCO, 1994).

On 28 December 1995, ADEC issued *Beluga River 221-23 Contactor Sump Spill # 90-23-01-151-01 Site Closure*; however, this closure did not include the contamination encountered beneath the Former North Stockpile site (ADEC, 1995).

3.1.2 Soil Boring Installation & Soil Sampling

Four soil borings were installed around the wellhead location to investigate whether subsurface soil impacts exist on the pad. Two samples were collected from the locations of the highest PID readings from each boring. Eight primary samples, one duplicate, and one matrix spike/matrix spike duplicate (MS/MSD) were collected. Samples were analyzed for gasoline range organics (GRO), DRO/RRO, petroleum-VOCs, PAHs, and Resource Conservation and Recovery Act (RCRA) metals. No groundwater grab samples were collected since no staining or odor was noted. Table 2 outlines the soil boring and sample collection from the L Pad site.

Table 2: L Pad Soil Borings & Sample Collection

Soil	Installation	Groundwater	Samples Collected	Notes
Boring	Depth	Smear Zone Depth	(2023)	
SB-01	15 ft bgs	14 to 15 ft bgs	5 to 7 ft bgs	No odor or staining was
			(LPAD-SB01-5.0-7.0)	noted, and all PID
			14 to 15 ft bgs	readings were <1 ppm.
			(LPAD-SB01-14.0-15.0)	

Soil	Installation	Groundwater	Samples Collected	Notes
Boring	Depth	Smear Zone Depth	(2023)	
SB-02	15 ft bgs	13.5 to 15 ft bgs	9 to 9.5 ft bgs	No odor or staining was
			(LPAD-SB02-9.0-9.5)	noted, and all PID
			13.5 to 15 ft bgs	readings were <1 ppm.
			(LPAD-SB02-13.5-15.0)	
SB-03	15 ft bgs	13 to 15 ft bgs	5 to 7 ft bgs	No odor or staining was
			(LPAD-SB03-5.0-7.0)	noted, and PID readings
			13 to 15 ft bgs	were <1.4 ppm.
			(LPAD-SB03-13.0-15.0)	
SB-04	15 ft bgs	13 to 15 ft bgs	5 to 7 ft bgs	No odor or staining was
			(LPAD-SB04-5.0-7.0)	noted, and PID readings
			13 to 15 ft bgs	were <1.1 ppm.
			(LPAD-SB04-13.0-15.0)	

3.1.3 Results

Samples were analyzed for GRO, DRO/RRO, petroleum-VOCs, PAHs, and RCRA metals. Soil samples were collected from 5 to 13 ft bgs based on PID results in the soil borings. All analytes were below PALs. Arsenic was present in all L Pad borings within background concentrations but above PALs. Soil samples from the L pad also contained non-detect levels of 1,2-Dibromoethane and Naphthalene above PALs ("U" flagged). Analytical results are reported in Table 4 and Attachment F.

3.1.4 Conclusion and Recommendation

Limited contamination was discovered in the smear zone near the well at 221-23, and no impacts exist near the surface. No surface or near-surface contamination is present; therefore, no further action and site closure is recommended.

3.2 BELUGA RIVER 224-13 (M PAD)

Beluga River 224-13 is located on M Pad (Figure 4), approximately 3.25 miles northeast of the airstrip and approximately 0.85 miles west of Beluga River at latitude 61°21'26.03" N and longitude 150°99'18.70" W. This is an active producing pad. The access road and well pad were constructed in 1974, and surface facilities were completed in 1982.

3.2.1 Summary of Previous Site Activities

Before production commenced in 1983, tubing leaks were identified in the contactor sump, which required the replacement of the annular diesel heating system, which was replaced with a gas heat system (OilRisk Consultants [OilRisk], 2003). Although no spill documentation has been located, contamination at the former 224-13 contactor sump and the 224-13 diesel spill probably occurred before the installation of the gas heat system (OilRisk, 2003). ARCO reported the 224-

13 diesel spill to ADEC after assuming operatorship in 1986, and a 1987 memo mentions the operation of a diesel recovery trench (Bristol, 1996).

On May 24, 1990, the contactor sump at the dehydrator building was inspected, and several samples were collected at the toe of the pad north and west of the facility. In addition, samples were collected from the toe of the pad in an area south of the wellhead building. This location was identified as the site of an unreported diesel spill believed to have occurred in the early to mid-1980s. Results confirmed the presence of diesel in gravels at both locations (ARCO, 1991).

Subsequently, the contactor sump was removed, and approximately 100 to 200 cy of contaminated material was excavated from the north side of the well pad and adjacent wetland area. Six soil borings were advanced in 1990, and DRO was detected in multiple samples, with one location having a DRO result of 9,000 mg/kg (OilRisk, 2003). The contaminated material was stockpiled for remediation.

One monitoring well (224-13-2) was installed at the former contactor sump in August 2000, near where DRO was detected at 9,000 mg/kg. The well was screened from 4 to 14 ft bgs, and groundwater was encountered at approximately 7 ft bgs (OilRisk, 2003). A soil sample collected from 7 ft bgs contained a naphthalene concentration of 0.075 mg/kg, which at the time was below applicable cleanup levels but is above the current 2023 MTGW cleanup level of 0.038 mg/kg, which suggested adding naphthalene to the list of contaminants of concern (COC) for site characterization. A groundwater sample was not collected, and the groundwater flow direction was not determined. A surface water sample was collected from a pond adjacent to the contactor sump site in 2000; naphthalene, 1,2,3- and 1,2,4- trichlorobenzene, and methylene chloride were detected in the sample; only naphthalene was detected above the 2003 ADEC Table C cleanup level of 1.6 μ g/L. Methylene chloride was detected in associated method blanks, and its presence was attributed to laboratory contamination (OilRisk, 2003).

Approximately 2,000 cy of contaminated soil were excavated from the south pad edge and adjacent wetland in 1990, and eight soil borings were drilled in 1991. The highest contaminant concentration in soil was 1,300 mg/kg DRO (depth unknown) and was located midway between the 224-13 wellhead and the heater building (OilRisk, 2003).

One monitoring well (224-13-1) was installed at the DRO exceedance location in August 2000. The well was screened from 3 to 13 ft bgs, and groundwater was encountered at approximately 6.5 ft bgs. A soil sample was collected from this location at 5 ft bgs, and DRO was detected (370 mg/kg) above the Method Two cleanup level for DRO (250 mg/kg); all other analytes were below ADEC MTGW cleanup levels. One groundwater sample was collected from monitoring well 224-13-1, and no analytes were detected above current Table C cleanup levels (Figure 4). In addition, one surface water sample was collected from a pond adjacent to the diesel spill, and no analytes

were detected except methylene chloride, which was attributed to laboratory contamination (OilRisk, 2003).

Only one well, 224-13-2, was located and sampled during the 2021 and 2022 sampling events. The well's GRO, DRO/RRO, benzene, toluene, ethylbenzene, total xylenes (BTEX), and PAHs concentrations were below cleanup levels during these events.

3.2.2 Monitoring Well Installation

Two temporary groundwater wells were installed at 224-13 (M Pad) to determine the groundwater flow gradient and direction. The groundwater wells were placed to triangulate the groundwater direction with the existing well 224-13-2 and were installed out of traffic lanes as much as possible. Well 224-13-3 was installed to a total depth of 13.32 ft bgs, with 5 ft of the screen and 1.7 ft stickup. Well 224-13-4 was installed to a total depth of 15.02 ft bgs, with a 5 ft screen and a 1.91 ft stickup. These two newly installed wells were not developed because they were temporary wells. The locations of the two temporary and one permanent wells and the calculated groundwater gradient are shown in Figure 4.

Permanent monitoring well 224-13-2 had a depth to groundwater of 7.25 ft below the top of the casing (btoc).

Temporary monitoring well 224-13-3 was installed southeast of the water supply well and had a depth to groundwater of 5.35 ft btoc. The first installation of well 224-13-3 experienced heaving and was redrilled nearby with success.

Temporary monitoring well 224-13-4 was installed at the eastern portion of the pad. The first location did not recharge during sampling, so it was reinstalled approximately 10 ft WSW of the original location. The new location could be sampled and had a depth to groundwater of 4.97 ft btoc. No odor or sheen was noted in any water from the wells; however, sheen and odor were observed within the soil cuttings between 7.5 and 8.5 ft bgs and 10 and 12 ft bgs in the boring for well 224-13-4. These cuttings were placed in a separate bucket and sampled for waste characterization, which is detailed in Section 5.

3.2.3 Groundwater Sampling

Three monitoring wells at 224-13 were sampled for GRO, DRO/RRO, BTEX, and PAHs. The permanent monitoring well 224-13-2 was sampled using a submersible pump. The new temporary wells were sampled using a peristaltic pump due to their smaller ³/₄ inch diameter.

3.2.4 Soil Boring Installation & Soil Sampling

Two soil borings were installed at M Pad to install the temporary monitoring wells. Soil logging and soil samples were not planned for these borings, but due to staining and odor discovered in boring SB02, one sample was collected (MPAD-SB02-7.5-8.5) for waste characterization.

3.2.5 Results

Groundwater and soil samples were collected and submitted to SGS for laboratory analysis. At 224-13 (M Pad), samples were submitted for GRO, DRO, RRO, BTEX, and PAHs analysis based on site-specific requirements.

The two newly installed temporary wells and the one existing permanent well at 224-13 were sampled for GRO, DRO/RRO, BTEX, and PAHs in 2023. Well 224-13-2 and temporary well 224-13-3 had all analytes in groundwater below PALs. Temporary well 224-13-4 contained DRO and RRO in groundwater above PALs. The DRO result was 2,270 μ g/L which is above the PAL of 1,500 μ g/L, and the RRO result was 1,720 μ g/L which is above the PAL of 1,100 μ g/L. In addition, one soil characterization sample collected from this boring at 7.5 to 8.5 ft bgs contained concentrations of DRO, 1,2,4- and 1,3,5-trimethylbenzene, naphthalene, and 1-methylnaphthalene above PALs. Analytical results are reported in Tables 3 and 4 and Attachment F.

3.2.6 Conclusions and Recommendations

Due to continued low levels of DRO and RRO above PALs in groundwater and VOCs and PAHs present in soil, it is recommended to convert 224-13-3 and 224-13-4 to permanent wells and to add VOCs and PAHs as COCs in groundwater. The existing well layout is adequate to address data quality objectives because data from a source-area well, a cross-gradient well, and a downgradient well are captured. Additional wells are not recommended. Groundwater monitoring is recommended once every three years, starting in 2025, to monitor the potential migration of groundwater contaminants.

3.3 BELUGA RIVER ABANDONED DIESEL TANK FARM (A PAD)

Beluga River Abandoned Diesel Tank Farm is located on A Pad (Figure 5), one mile southwest of the airstrip at latitude 61°15'83.28" N and longitude 151°05'51.27" W. The site comprised two 44,000-gal aboveground storage tanks in a bermed impoundment area measuring approximately 50 by 80 ft (Weston Solutions, Inc. [Weston], 2013a). These tanks were taken out of service in 1988; however, it is unclear when they were removed from the site. The pad is in good condition and is used to store various equipment and supplies. There are no active production wells on this pad.

3.3.1 Summary of Previous Site Activities

In 1991, ARCO contracted ENSR Consulting Engineers, Inc. (ENSR) to conduct an initial subsurface assessment of the area. The evaluation involved installing 18 soil borings to a maximum depth of 16 ft bgs. Groundwater was encountered at a depth of approximately 13 ft bgs. Soil samples were analyzed for extractable petroleum hydrocarbons (EPH) and BTEX (Weston, 2013a).

Analytical results from this investigation indicated there may have been two sources of diesel impact on subsurface soils. One source appears to have been the dispenser lines immediately east of the tanks. The other is unknown but occurred roughly 30 ft north of the former tank farm impoundment. The extent of the above releases appears to cover approximately 6,000 square ft. EPH concentrations were analyzed in soil collected at the water table; the sample just east of the north tank had EPH concentrations of 2,000 mg/kg, and the sample at the southeast corner of the south tank had 1,300 mg/kg concentrations. Hydrocarbon impacts were detected in all soil borings collected within the tank impoundment area. EPH values at the water table ranged from 690 to 2,000 mg/kg within the impoundment and measured at 90 mg/kg at the eastern impoundment dike. EPH contamination of 270 mg/kg was found north of the tank impoundment (Weston, 2013a).

In 1993, ARCO submitted a work plan to verify earlier site assessment data, complete delineation of impacted soil and groundwater at the site and collect the data necessary to evaluate the feasibility of in situ bioremediation for future area treatment. ARCO proposed three rounds of sampling and analysis, including installing 12 monitoring wells. Soil and groundwater collected from these wells were to be analyzed for GRO, DRO, and BTEX. In addition, three soil samples were to be analyzed for total organic carbon, sieve analysis, microbial populations, total phosphate and ammonium, and pH. It is not known when these work plan activities were conducted. However, a letter dated 5 October 1994 from ARCO to ADEC's Mr. Don Fritz indicated that concentrations of DRO impact on subsurface soil were lower than reported by ENSR. A letter dated 21 June 1994 in the ConocoPhillips Alaska, Inc. file indicated DRO was detected up to 13,000 µg/L in groundwater below the tank farm. GRO and BTEX impacts were evident but below the cleanup criteria at the time (Weston, 2013a).

Three wells (ATF-3, ATF-8, and ATF-10) were sampled in June 2021 and May 2022. The 2021 and 2022 groundwater sample results were below PALs for all analytes. DRO concentrations had decreased significantly at this site compared with previous sampling event results (Susitna, 2023).

3.3.2 Soil Boring Installation & Soil Sampling

One soil boring was installed at the Abandoned Diesel Tank Farm (A Pad) to evaluate the presence of contaminated soil or groundwater. The soil boring was installed in the source area (southwest end of A Pad) to 15 ft bgs. The groundwater smear zone was present at 14 to 15 ft

bgs. No odor or staining was noted, and all PID readings were below one ppm. Samples were collected at 14.0 to 15.0 ft bgs (APAD-SB01-14.0-15.0). The boring location was backfilled with bentonite from 15 ft bgs to one ft bgs and native soil from one ft bgs to 0 ft bgs.

3.3.3 Results

One in-source boring was installed at the Abandoned Diesel Tank Farm (A Pad) to ensure no soil contamination remained. Boring APAD-SB01-14.0-15.0 was sampled for GRO, DRO, BTEX, and PAHs at 14 to 15 ft bgs; no analytes were detected above the PALs. Analytical results are reported in Table 4 and Attachment F.

3.3.4 Conclusion and Recommendation

No source soil contamination remains on the site, and no indication of groundwater contamination above PALs remains; therefore, no further action and site closure is recommended.

3.4 BELUGA RIVER PUMP AREA ASSESSMENT (E PAD)

The Beluga River Pump Area Assessment Site (also known as the Former Beluga River Fuel Pump Area) is located on E Pad (Figure 6), along the eastern side of Beluga Airstrip runway 18-36, at the BRU Office Building Pad and entrance to E Pad (Drill Site 212-35). The site is approximately 61°10'38.14" N latitude and 151°2'13.12" W longitude (Weston, 2013b). The Beluga River Pump Area Assessment Site is a set of former fuel (gasoline and diesel) dispenser pumps connected by pipelines to the former Fuel Tank Farm (the current location of the Heated Oil Storage Building) (Weston, 2013b).

3.4.1 Summary of Previous Site Activities

In 1991, the fuel lines were removed, and a limited excavation was conducted along with soil and groundwater characterization in October 1991 and January 1992. Groundwater was encountered at approximately 7.5 ft bgs (Weston, 2013b).

In 1992, an air sparging and vapor extraction system comprised 66 sparge wells, 32 vapor extraction wells, and 24 groundwater monitoring wells (FG-01 through FG-24). The system operated until 1998, and routine groundwater monitoring was conducted until 1999 (Weston, 2013b).

In 2005, groundwater samples were collected at ten existing wells, and one newly installed well (FG-25). Groundwater monitoring wells FG-03 and FG-08 defined DRO and benzene's impact on groundwater. Two groundwater plumes were previously identified at the site: one beginning near monitoring well FG-03 (western plume) and another in the vicinity of monitoring wells FG-24 and FG-25 (eastern plume) (Weston, 2013b).

In 2021, seven monitoring wells were sampled at the Pump Area Assessment (FG-3, FG-10, FG-14, FG-20, FG-21, FG-23, and FG-24), and in 2022, eight monitoring wells were sampled (previous list plus FG-25). In 2021, all seven monitoring wells sampled had detectable DRO concentrations below the PAL of 1,500 μ g/L. In 2022, one well (FG-24) contained DRO above the PAL. Concentrations of all other analytes in all site monitoring wells were below applicable PALs. The 2021 DRO concentration in FG-24 (1,110 μ g/L) was below the PAL of 1,500 μ g/L, and the 2022 DRO concentration (3,120 μ g/L) was above the PAL. These results were both below the 2005 result of 31,000 μ g/L. Monitoring well FG-24 also exhibited detectable levels of GRO (45.3 μ g/L in 2021 and 52.2 μ g/L in 2022), but both concentrations are below the PAL of 2,200 μ g/L (Susitna, 2023).

3.4.2 Groundwater Monitoring

The Beluga River Pump Area Assessment Site (known as the Former Beluga River Fuel Pump Area) is located on E Pad (Figure 6). Monitoring well FG-24 (duplicate sample ID FG-28) was sampled for DRO and PAHs. In 2023, the depth to groundwater was 16.26 ft btoc. The purged water did not have an odor or sheen.

3.4.3 Results

At the Beluga River Pump Area Assessment, groundwater samples were submitted for analysis of DRO and PAHs.

In 2023, the one well with remaining DRO concentrations above PAL was sampled for DRO and PAHs. In 2023, well FG-24 contained DRO at 2,380 (2,140 duplicate) μ g/L, above the PAL of 1,100 μ g/L. All PAHs were below PALs. Analytical results are reported in Table 3 and Attachment F.

3.4.4 Conclusions and Recommendations

It is recommended that well FG-24 be monitored every three years for DRO, starting in 2025.

4 QUALITY CONTROL SAMPLES

Analytical sampling included a collection of duplicate samples at a frequency of ten percent and MS/MSD samples at a frequency of twenty percent. For the soil samples (sample delivery group [SDG] 1235845), one primary/duplicate pair, LPAD-SB03-5.0-7.0/LPAD-SB05-5.0-7.0, was submitted as part of this data quality review (DQR). All primary/duplicate relative percent differences (RPDs) were within control limits.

For the groundwater samples (SDG 1235846), two primary/duplicate pairs, 224-13-5-101323/224-13-5-101323 and FG24-101223/FG28-101223 are part of this DQR. The 2-methylnaphthalene RPD (42%) exceeded the FG24-101223/FG28-101223 primary/duplicate pair

criteria. 2-Methylnaphthalene results in both samples were flagged "J" to indicate an indeterminate bias. Both results were below the ADEC Table C groundwater cleanup level, and data quality/usability is unaffected. All other primary/duplicate RPDs were within control limits.

5 INVESTIGATIVE DERIVED WASTE

Waste generated during this project included monitoring well purge water, soil cuttings, and trash, such as nitrile gloves and paper towels. Trash was disposed of as household waste.

During groundwater monitoring, 11 gals of purge water were purged. While analytical results were pending, one 55-gallon drum was used to containerize the purge water, which was staged at M Pad (224-13). Groundwater monitoring results were used for waste characterization; DRO and RRO were the only analytes above PALs.

Two 5-gal buckets of soil cuttings were generated and staged at M Pad (224-13).

In addition to the L pad boring sample results, a waste characterization sample was collected from the M pad to characterize the soil cuttings fully. The soil cutting sample was collected from the boring installation for temporary well 224-13-4 at 224-13 (M Pad), where sheen and odor were noted (7.5 to 8.5 ft bgs and 10 to 12 ft bgs). The soil results contained 1-methylnaphthalene, naphthalene, DRO, 1,2,4-Trimethylbenzene, 1,2-Dibromoethane (U flagged), and 1,3,5-Trimethylbenzene above PALs. Based on the results of the waste characterization, Hilcorp injected the water into the Class I Well BRU 232-9, and the soil will be disposed of appropriately by Hilcorp.

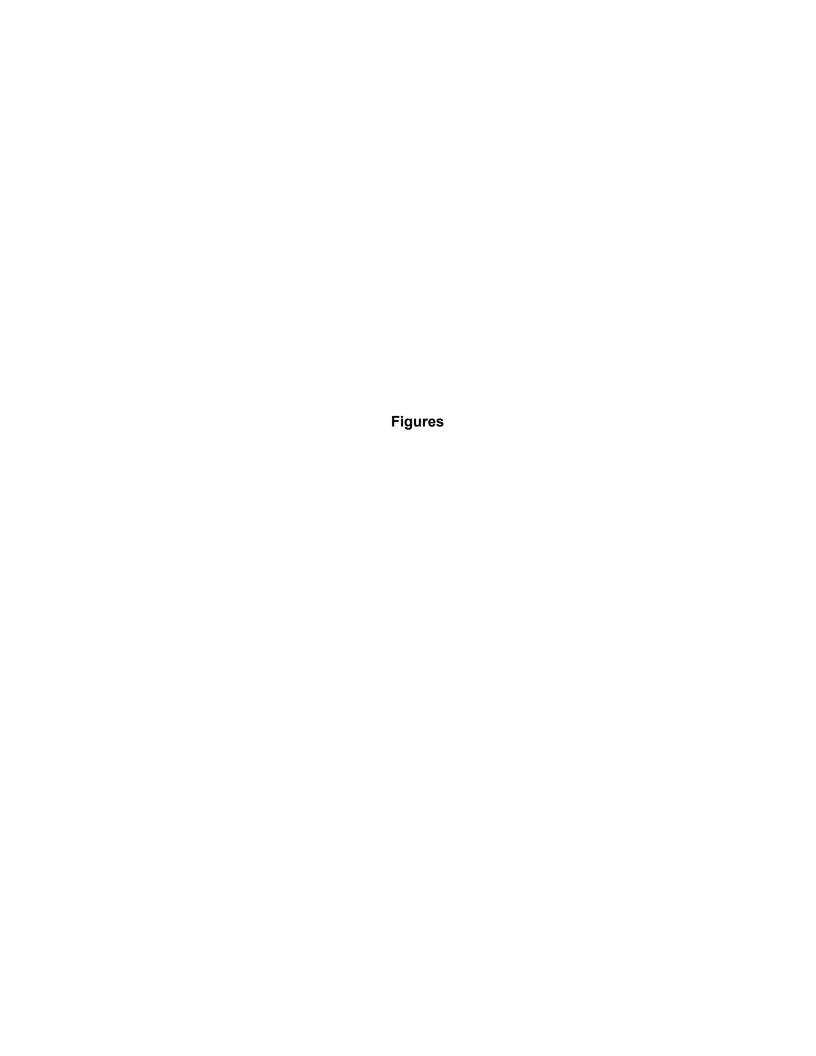
Arsenic was sampled for and detected in 2023 samples at Beluga River L Pad above the PAL of 0.2 mg/kg but at levels consistent with naturally occurring background levels published in the U.S. Geological Survey (USGS) Element Concentrations in Soil and Other Surficial Materials of Alaska (USGS, 1988). The USGS document reported arsenic was between 0 and 20 mg/kg. These values are based on three sampling sites located near Kenai (Site 095), Swanson River (Site 185), and Skilak Lake (Site 94).

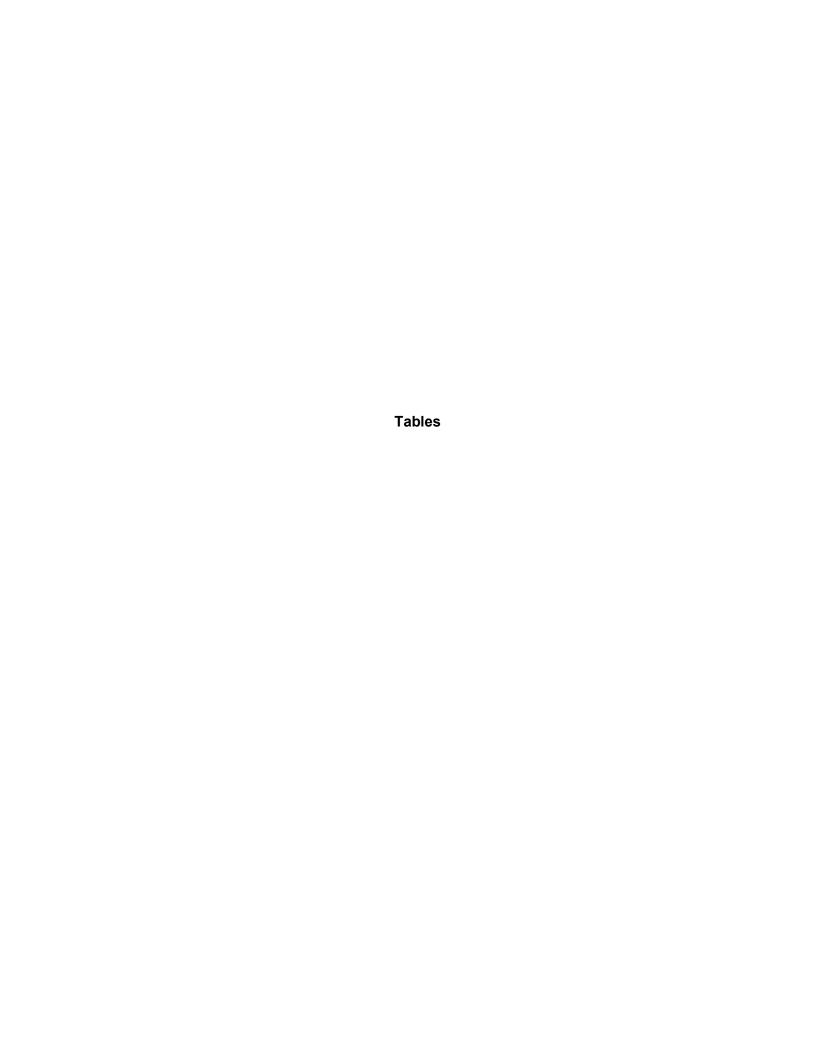
6 DATA QUALITY ASSESSMENT

The data's precision, accuracy, sensitivity, representativeness, comparability, and completeness were evaluated by reviewing laboratory-supplied quality assurance/quality control (QA/QC) information and conducting independent QC checks on the data. The laboratory SDGs associated with this project were 1235845 (soil) and 1235846 (groundwater).

In general, the overall quality of the project data was acceptable. Quality control issues that required results to be qualified included blank contamination, surrogate and lab control spike

recoveries, MS/MSD RPDs, and field duplicate imprecision. No results were rejected, and qualified data are considered acceptable for use, with the limitations discussed within this QA report and as indicated with the appropriate qualifiers. Additional details on data quality are included in the Data Quality Assessment report in Attachment G. The ADEC laboratory data review checklist is also included in Attachment G.

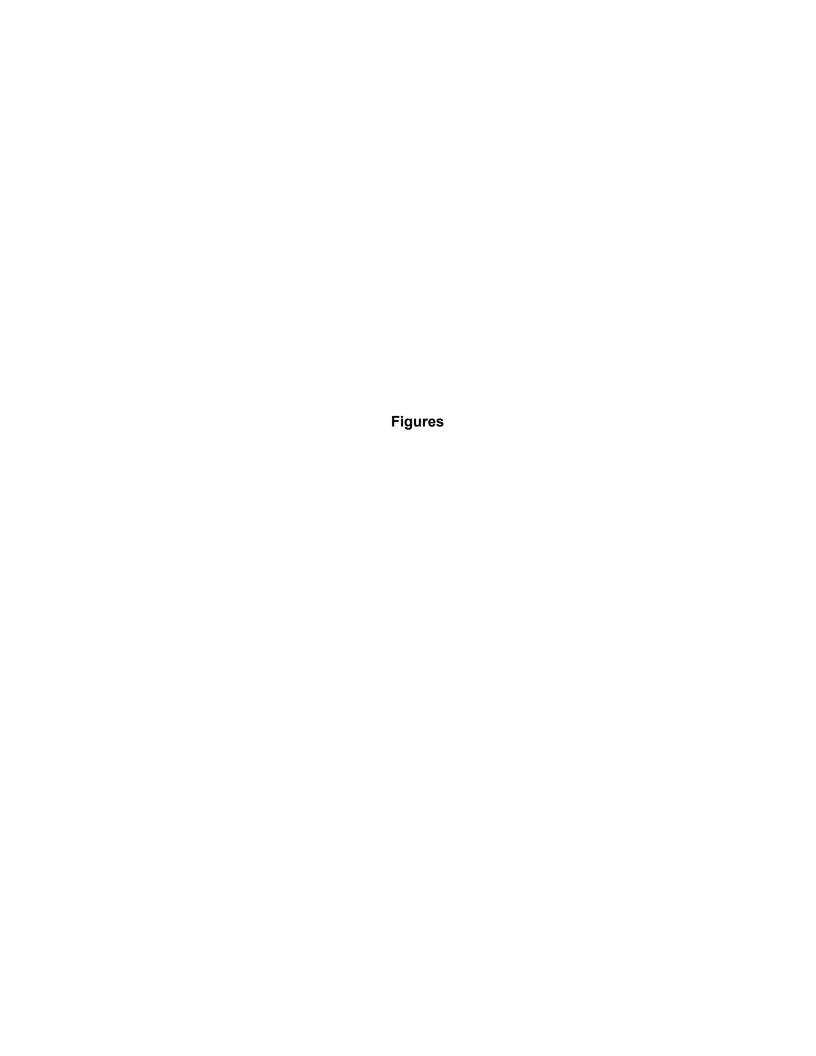

7 REFERENCES

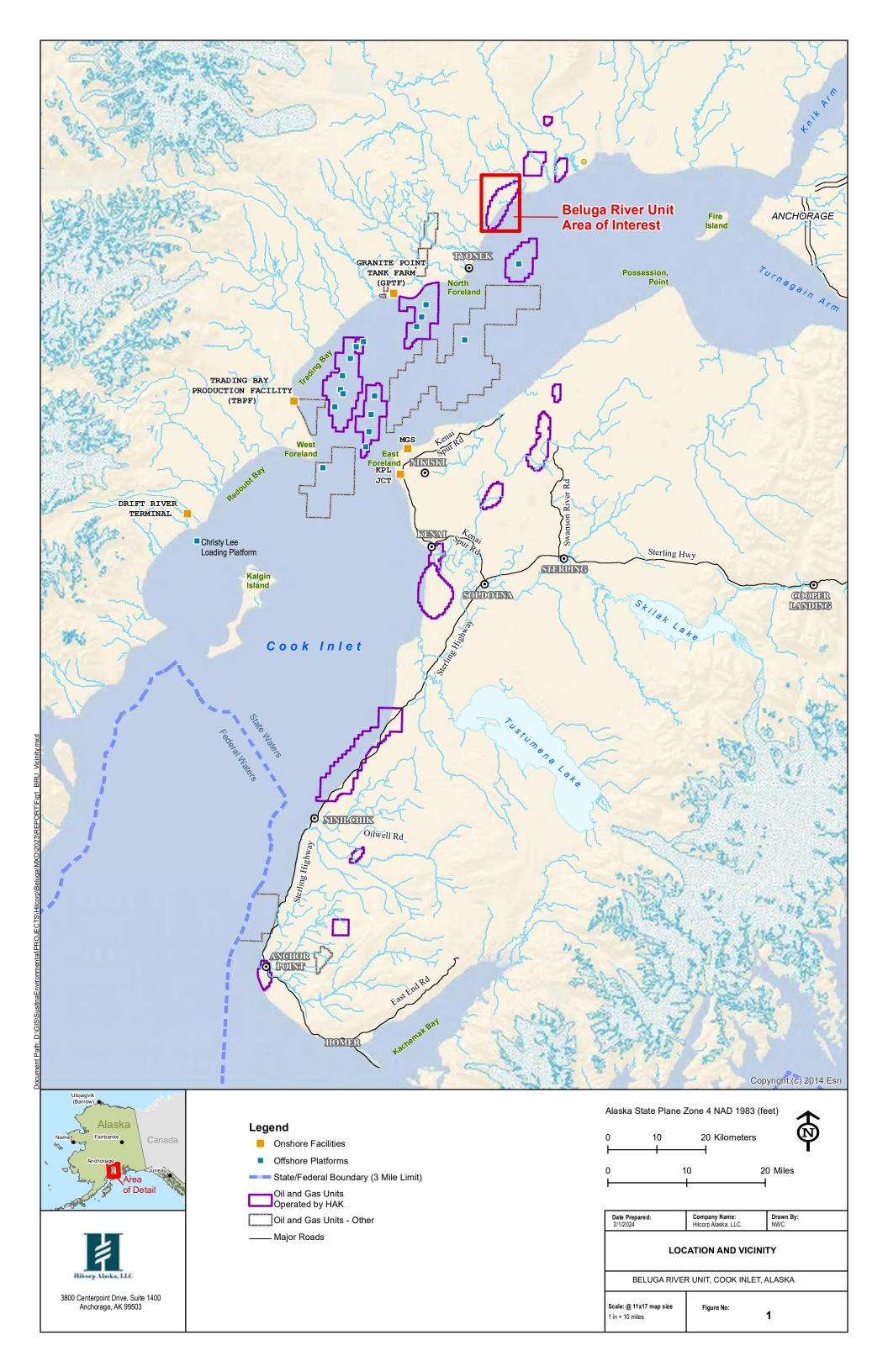

- Alaska Department of Environmental Conservation (ADEC), 1992. Beluga River Field, Atlantic Richfield Company (ARCO) Alaska, Inc. #90-23-01-151-01 Approval of Clean Closure for Former Contactor Sump BRU 221-23. Letter from ADEC Contaminated Sites to ARCO Alaska, Inc. June 2.
- ADEC, 1995. Beluga River 221-23, Contactor Sump Spill # 90-23-01-151-01 Site Closure. Letter from ADEC Contaminated Sites to ARCO Alaska, Inc. December 28.
- ADEC, 2013a. *Monitoring Well Guidance*. Division of Spill Prevention and Response, Contaminated Sites Program. 18 AAC 75. September.
- ADEC, 2013b. Beluga River Pad 221-23, Requirement for Additional Site Characterization. Letter from ADEC Contaminated Sites to ConocoPhillips. May 6
- ADEC, 2022a. Field Sampling Guidance. January.
- ADEC, 2022b. ADEC Technical Memorandum 22-001: Guidelines for Data Reporting. August.
- ADEC, 2023. Title 18 Alaska Administrative Code (AAC), Chapter 75, Table B1 and Table B2.

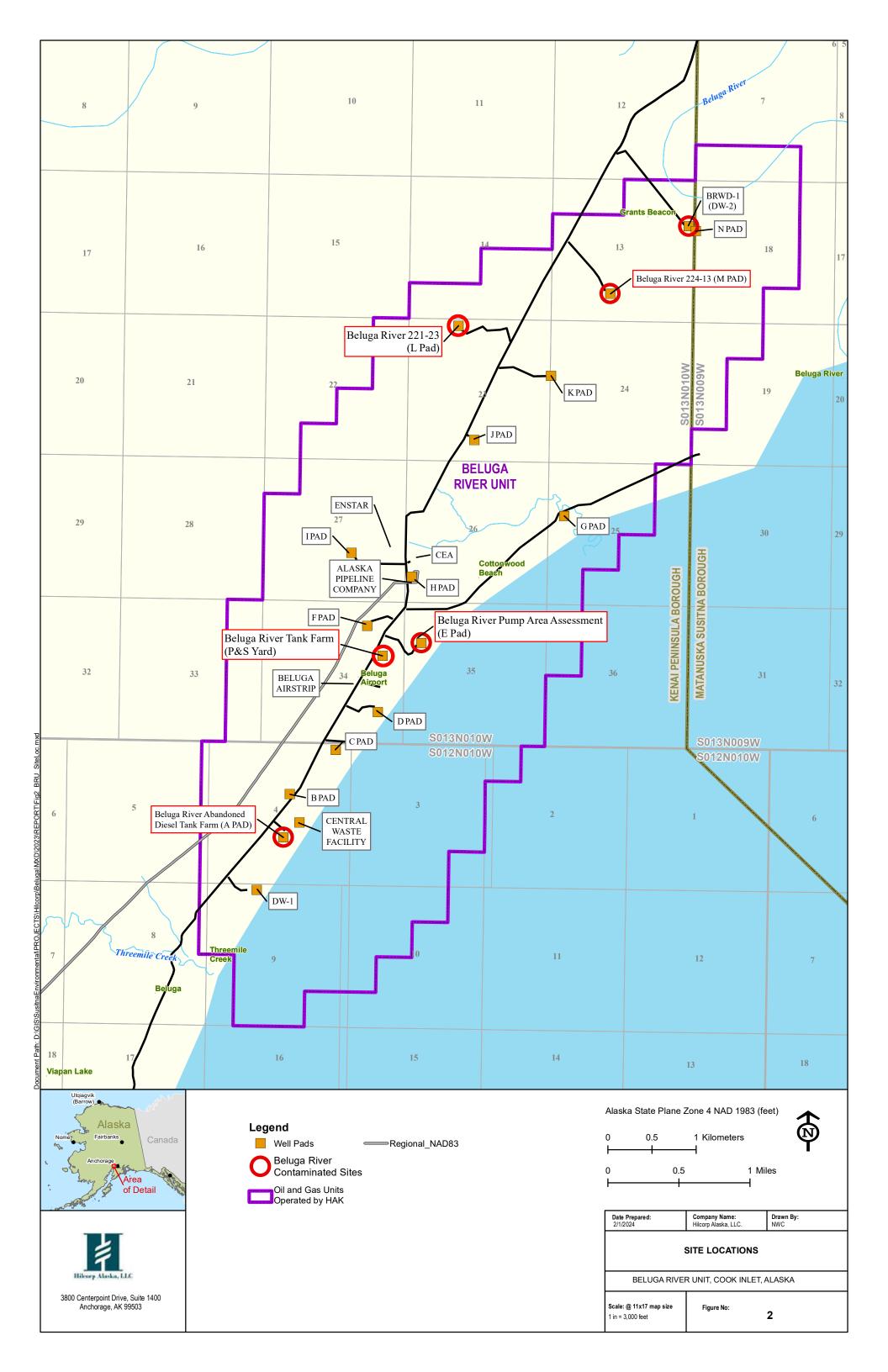
 Method Two Soil Cleanup Levels Table and Table C Groundwater Cleanup Levels.

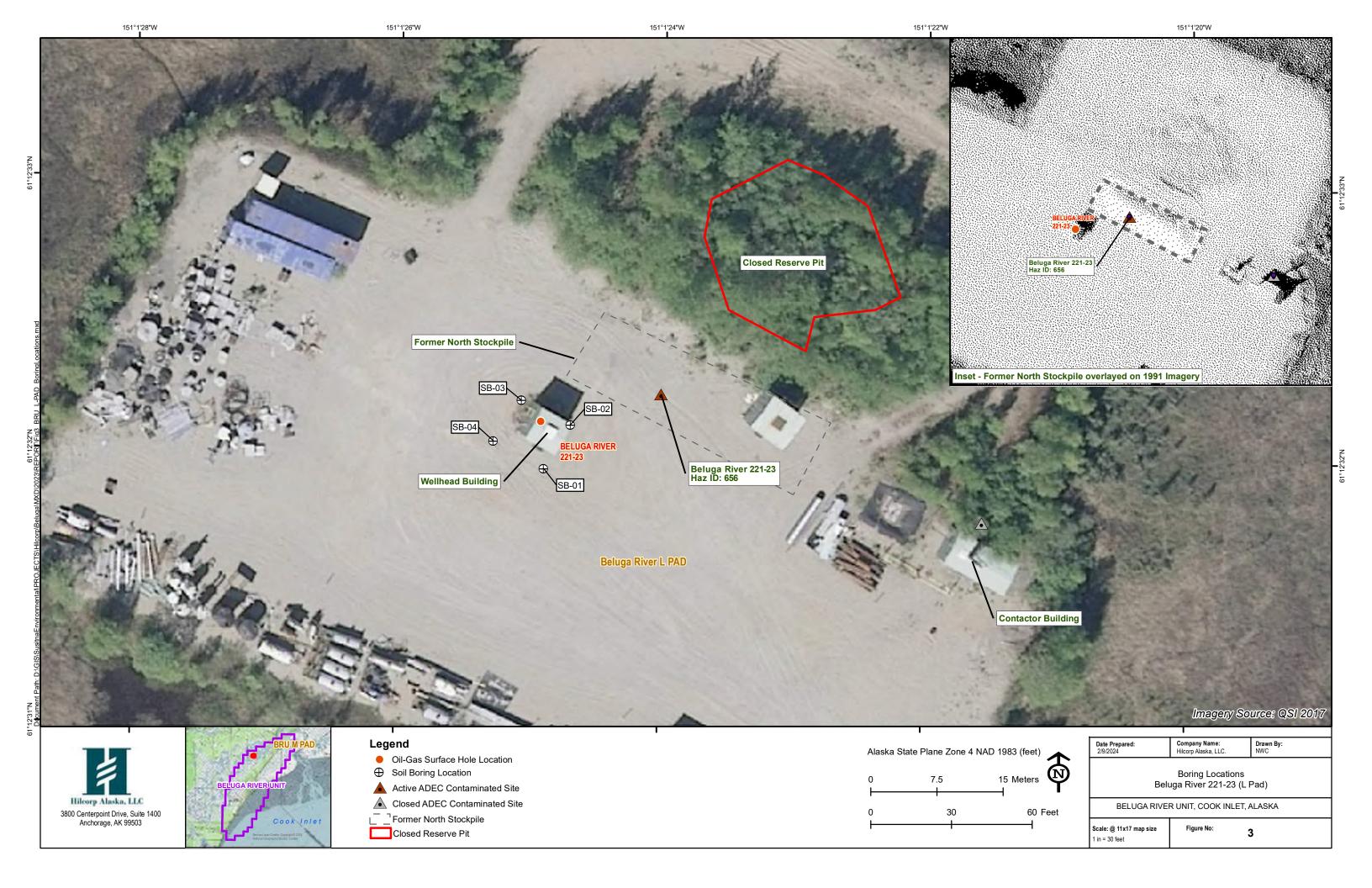
 November 18.
- ARCO, 1991. "Spill Remediation Programs, Beluga River Unit." Letter to Mike Franger, Land Manager, Cook Inlet Region Inc.
- ARCO, 1994. Site Investigation Report, BRU 221-23 Former North Stockpile Site, Beluga River Field, Alaska. June.
- OilRisk Consultants [OilRisk], 2003. Site Characterization Report, 10 Sites at Beluga River Field. April.
- Susitna Environmental, LLC. (Susitna), 2021. Beluga River Unit Site Characterization and Groundwater Sampling Work Plan. June.
- Susitna, 2023. Groundwater Monitoring Report, Beluga River Unit. August.
- U.S. Environmental Protection Agency (EPA) Region I, 2017. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. September.
- U.S. Geological Survey (USGS), 1988. *Element Concentrations in Soil and Other Surficial Materials of Alaska*. Gough, L. P., Severson, R. C., Shacklette, H. T., USGS Professional Paper 1458, 58 pp., https://pubs.usgs.gov/pp/1458/.
- Weston Solutions, Inc. (Weston), 2013a. *Memorandum for Beluga River Abandoned Diesel Tank Farm; Beluga River Unit; ADEC File No. 2337.38.015; Hazard ID: 1000.* April 29.

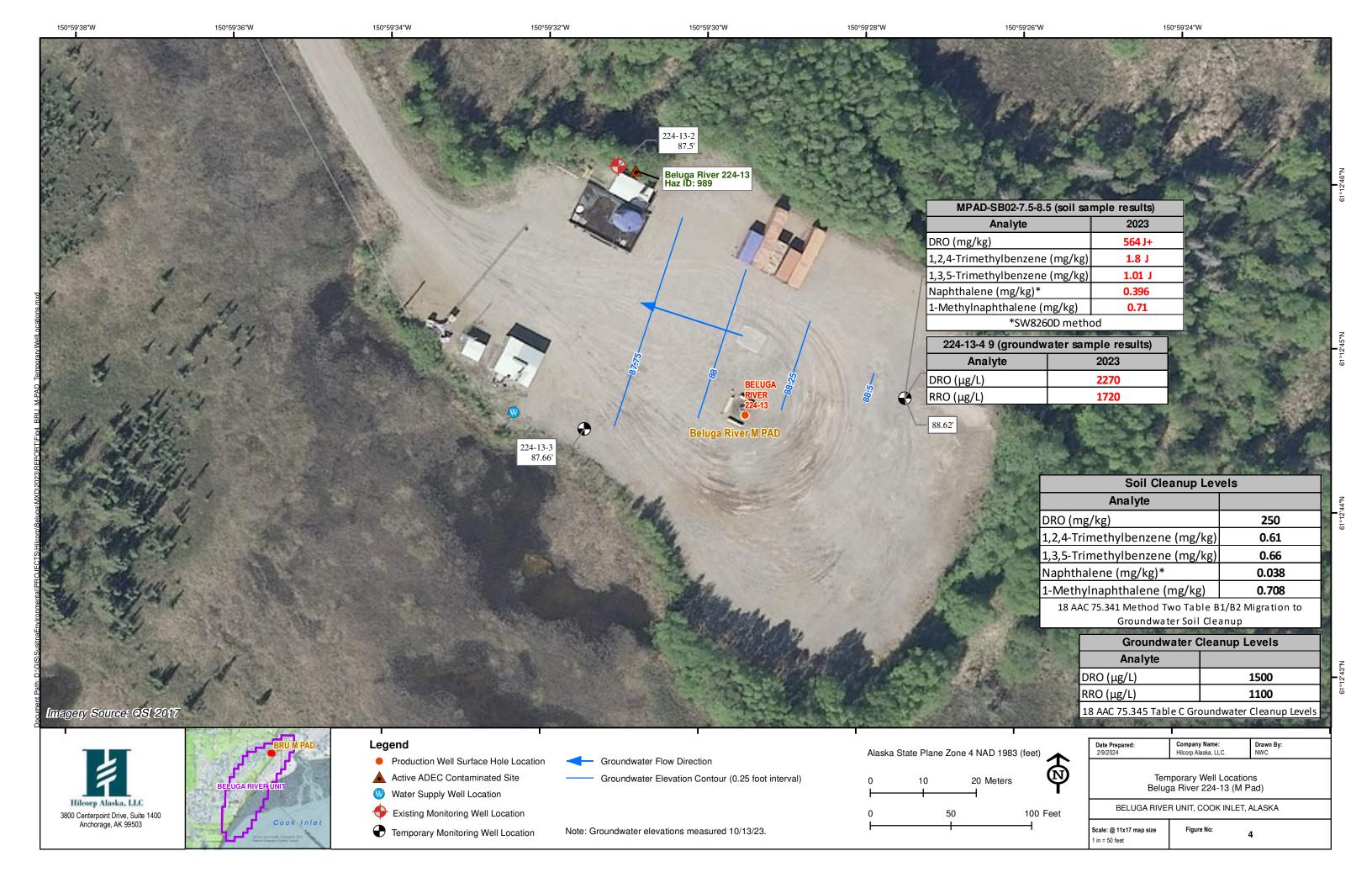
- Weston, 2013b. *Memorandum for Beluga River Pump Area Assessment Site, Beluga River Unit; ADEC File No. 2337.38.031; Hazard ID: 990.* April 29.
- Weston, 2013c. *Memorandum for Former Beluga River Tank Farm Site; Beluga River Unit; ADEC File No.* 2337.38.029; Hazard ID: 991. April 29.
- Weston, 2019. Sample Results from Installation of Beluga River Unit Produced Water Line, Cook Inlet, Alaska. February 8.

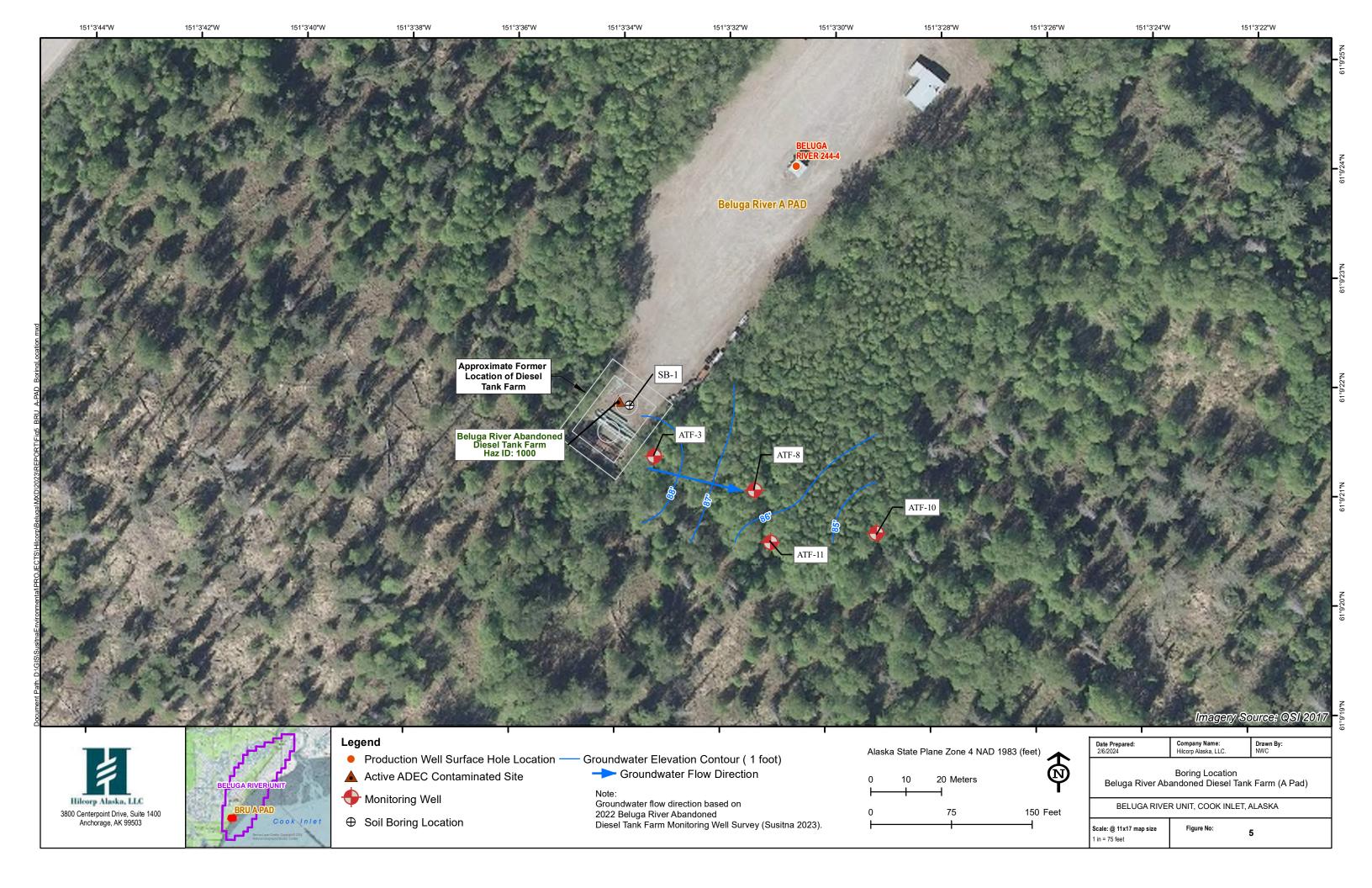


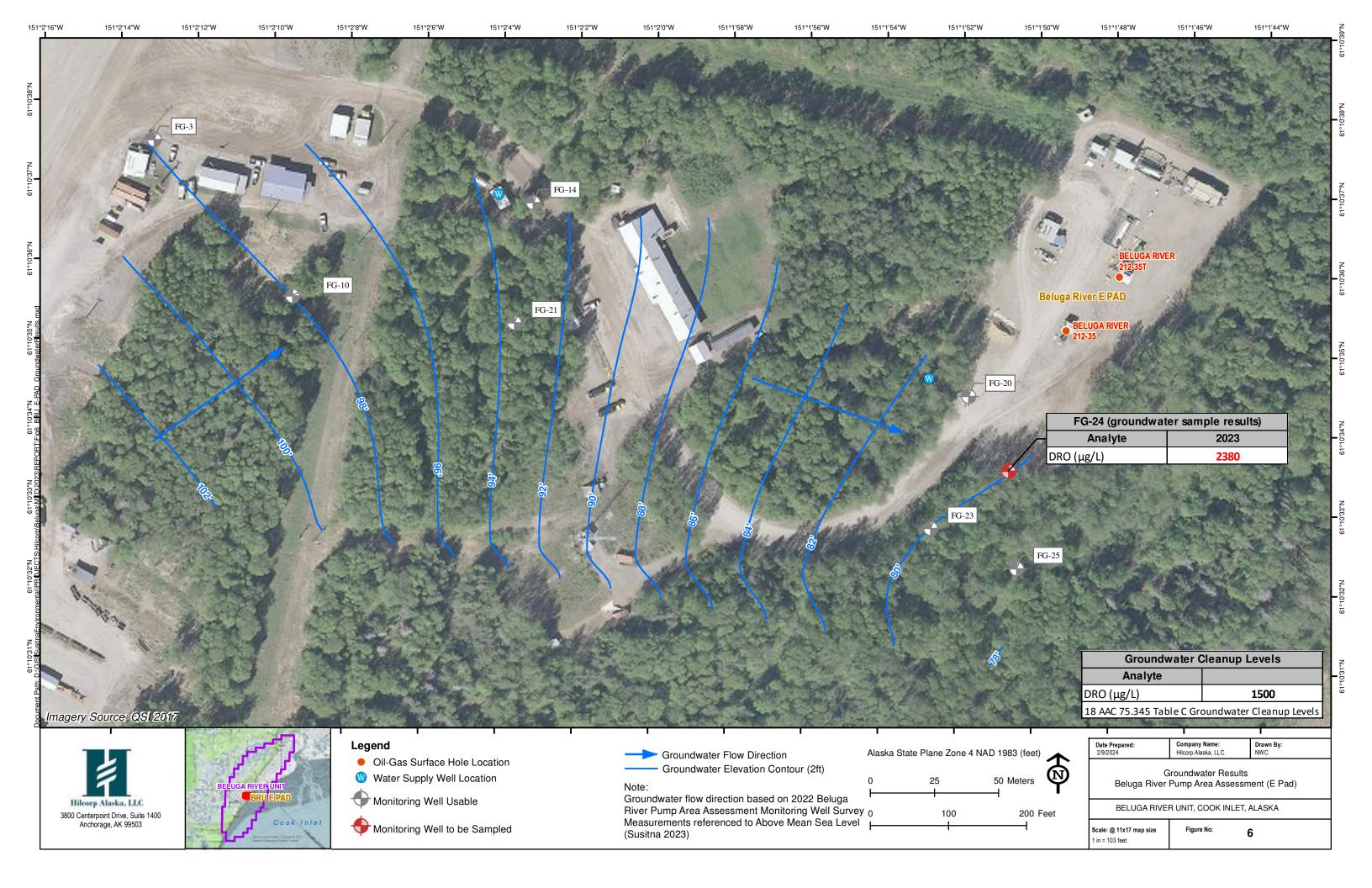







Attachment G ADEC Laboratory Data Review Checklist and Data Quality Memorandums





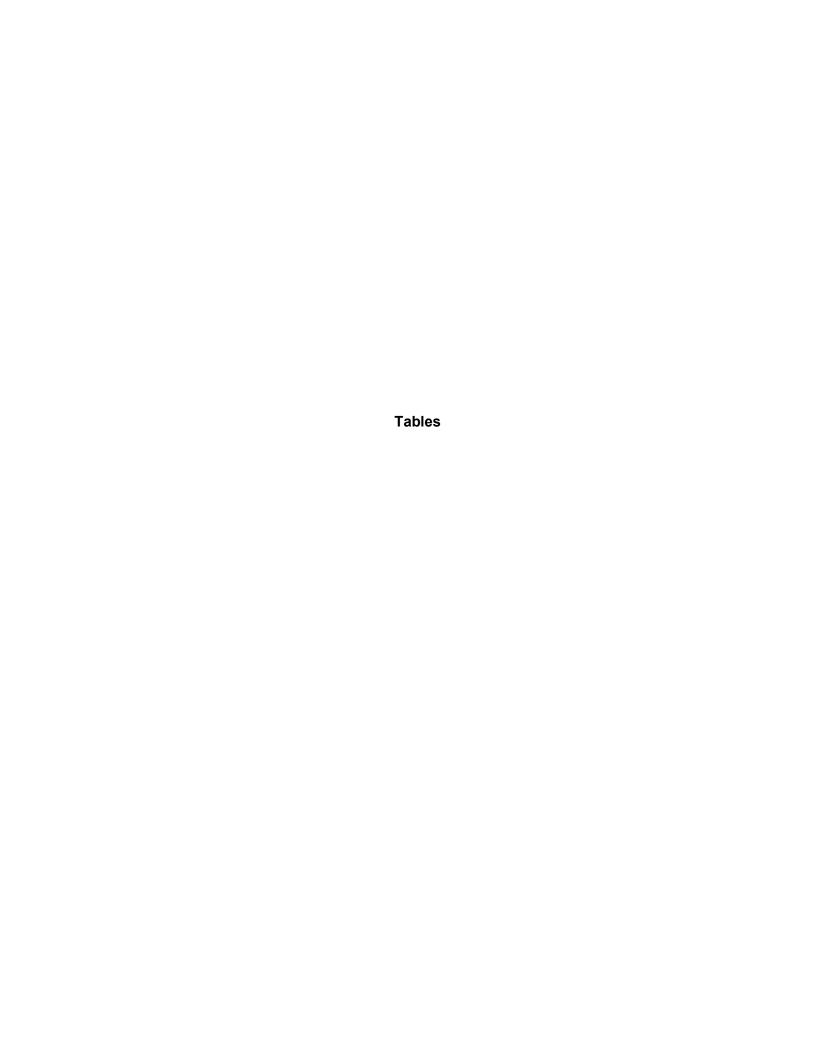


TABLE 3. BELUGA RIVER UNIT GROUNDWATER SAMPLE ANALYTICAL RESULTS

Sample ID Lab Sample ID SDG QC Type Sample Date/Time Matrix			224-13-2-101223 1235846003 1235846 Primary 10/12/23 09:31 GW	224-13-3-101323 1235846004 1235846 Primary 10/13/23 09:13 GW	224-13-4-101323 1235846006 1235846 MS/MSD 10/13/23 15:32 GW	224-13-5-101323 1235846005 1235846 Dup of 224-13-3 10/13/23 11:58 GW	FG24-101223 1235846001 1235846 Primary 10/12/23 14:06 GW	FG28-101223 1235846002 1235846 Dup of FG24 10/12/23 11:45 GW	Trip Blank 1235846009 1235846 TB 10/12/23 00:00 GW	
Method	Analyte	ADEC Cleanup Level ¹	Units							
AK101	GRO	2200	ug/L	50 U	50 U	88.2 J	50 U			50 U
AK102	DRO	1500	ug/L	801	841	2270	720	2380	2140	
AK103	RRO	1100	ug/L	983	982	1720	755			
SW8260D	Benzene	4.6	ug/L	0.2 U	0.2 U	0.79	0.2 U			0.2 U
SW8260D	Ethylbenzene	15	ug/L	0.5 U	0.5 U	0.42 J	0.5 U			0.5 U
SW8260D	m,p-Xylenes	NA	ug/L	1 U	1 U	2.81	1 U			1 U
SW8260D	o-Xylene	NA	ug/L	0.5 U	0.5 U	1.94	0.5 U			0.5 U
SW8260D	Toluene	1100	ug/L	0.5 U	0.5 U	0.69 J	0.5 U	-		0.5 U
SW8260D	Xylenes	10000	ug/L	1.5 U	1.5 U	4.75	1.5 U			1.5 U
SW8270D SIM (PAH)	1-Methylnaphthalene	11	ug/L	0.0266 U	0.0764 B	0.358	0.0722 B	2.06	1.83	
SW8270D SIM (PAH)	2-Methylnaphthalene	36	ug/L	0.0266 U	0.0792 B	0.372	0.0729 B	0.126 J, B	0.0821 J, B	
SW8270D SIM (PAH)	Acenaphthene	530	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.279	0.317	
SW8270D SIM (PAH)	Acenaphthylene	260	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0253 J	0.025 U	
SW8270D SIM (PAH)	Anthracene	43	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Benzo[a]anthracene	0.30	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Benzo[a]pyrene	0.25	ug/L	0.0107 U	0.0111 U	0.0107 U	0.0111 U	0.0102 U	0.01 U	
SW8270D SIM (PAH)	Benzo[b]fluoranthene	2.5	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Benzo[g,h,i]perylene	0.26	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Benzo[k]fluoranthene	0.80	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Chrysene	2.0	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Dibenzo[a,h]anthracene	0.25	ug/L	0.0107 U	0.0111 U	0.0107 U	0.0111 U	0.0102 U	0.01 U	
SW8270D SIM (PAH)	Fluoranthene	260	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Fluorene	290	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.467	0.518	
SW8270D SIM (PAH)	Indeno[1,2,3-cd]pyrene	0.19	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	
SW8270D SIM (PAH)	Naphthalene	1.7	ug/L	0.053 U	0.0905 J	0.595	0.0746 J	1.65	1.59	
SW8270D SIM (PAH)	Phenanthrene	170	ug/L	0.0333 J, B	0.0555 U	0.053 U	0.0555 U	0.0476 J, B	0.0317 J, B	
SW8270D SIM (PAH)	Pyrene	120	ug/L	0.0266 U	0.0278 U	0.0266 U	0.0278 U	0.0255 U	0.025 U	

Notes:

BOLD Result exceeds the ADEC migration to groundwater cleanup level.

micrograms per liter

μg/L Β estimated; analyte was detected in an associated blank

Dup field duplicate identification ID

J estimated; indeterminate bias

LOD limit of detection SDG sample delivery group

SO

U not detected; value presented is the LOD

¹ 18 AAC 75, Table C groundwater cleanup levels (ADEC 2023)

TABLE 4. BELUGA RIVER UNIT SOIL SAMPLE ANALYTICAL RESULTS

		Sa	Sample ID Lab Sample ID SDG QC Type ample Date/Time	APAD-SB01-14.0-15.0 1235845001 1235845 Primary 10/12/23 16:55	LPAD-SB01-5.0-7.0 1235845002 1235845 Primary 10/13/23 09:30	LPAD-SB01-14.0-15.0 1235845003 1235845 Primary 10/13/23 09:35	LPAD-SB02-9.0-9.5 1235845004 1235845 Primary 10/13/23 10:20	LPAD-SB02-13.5-15.0 1235845005 1235845 MS/MSD 10/13/23 10:15	LPAD-SB03-5.0-7.0 1235845008 1235845 Primary 10/13/23 11:00	LPAD-SB03-13.0-15.0 1235845010 1235845 Primary 10/13/23 11:10	LPAD-SB04-5.0-7.0 1235845011 1235845 Primary 10/13/23 11:40	LPAD-SB04-13.0-15.0 1235845012 1235845 Primary 10/13/23 11:45	LPAD-SB05-5.0-7.0 1235845009 1235845 Dup of LPAD-SB04-5.0-7.0 10/13/23 11:05	MPAD-SB02-7.5-8.5 1235845013 1235845 Primary 10/13/23 15:00	TRIP BLANK 1235845014 1235845 TB 10/12/23 12:00
			Matrix	SO	SO	so	SO	so	so	so	SO	SO	SO	so	so
Method	Analyte	ADEC Cleanup Leve	el ¹ Units												
AK101	GRO	300	mg/kg	1.79 J, B	2.14 J, B	2.28 J, B	4.21 J, B	4.06 J, B	1.57 J, B	1.47 J, B	1.62 J, B	1.3 J, B	1.17 J, B	18.8 J+	1.29 J
AK102	DRO	250	mg/kg	20.7 J, B	18.4 J, B	28.7 J+, B	123 J+	18.8 J, B	19.2 J, B	17.8 J, B	38.3 J+, B	19.9 J, B	18.8 J, B	564 J+	
AK103	RRO	10000	mg/kg		57.5 U	150 J+	1510 J+	87.7 J	49.1 J	53.4 J	72 J	64.4 J	57 U	506 J+	
SW6020B	Arsenic	0.2	mg/kg		2.32 44.5	5.93 41.1	0.658 J	3.56 30.8	2.18	9.1 37.9	1.59 39.5	19.6 86.2	2.23 47.5		
SW6020B SW6020B	Barium Cadmium	2100 9.1	mg/kg mg/kg		0.108 U	0.077 J	26 0.0908 J	0.186 J	51.1 0.0732 J	0.111 U	0.0855 J	0.0787 J	0.107 U		
SW6020B	Chromium	100000	mg/kg		12.2	12.1	3.6	12	12.6	12.3	9.21	11.7	11.5		
SW6020B	Lead	400	mg/kg		3.48	3.24	5.98	2.73	3.82	3	3.27	3.2	3.17		
SW6020B	Mercury	0.36	mg/kg		0.108 U	0.109 U	0.14 U	0.112 U	0.107 U	0.111 U	0.111 U	0.109 U	0.107 U		
SW6020B	Selenium	6.9	mg/kg		1.08 U	1.09 U	1.4 U	1.12 U	1.06 U	1.11 U	1.11 U	1.09 U	1.07 U		
SW6020B	Silver	11	mg/kg		0.27 U	0.273 U	0.349 U	0.28 U	0.267 U	0.277 U	0.277 U	0.273 U	0.268 U		
SW8260D	1,2,4-Trimethylbenzene	0.61	mg/kg		0.0655 U	0.0715 U	0.154 U	0.0865 U	0.0575 U	0.056 U	0.055 U	0.048 U	0.0485 U	1.8 J	0.05 U
SW8260D	1,2-Dibromoethane	0.00024	mg/kg		0.000985 U	0.00107 U	0.00231 U	0.00129 U	0.00086 U	0.00084 U	0.00083 U	0.00072 U	0.00073 U	0.00084 U	0.000755 U
SW8260D	1,2-Dichloroethane	0.0055	mg/kg		0.00131 U	0.00143 U	0.00308 U	0.00173 U	0.00115 U	0.00112 U	0.00111 U	0.00096 U	0.00097 U	0.00112 U	0.001 U
SW8260D SW8260D	1,3,5-Trimethylbenzene	0.66 0.022	mg/kg	0.0050511	0.0164 U 0.0082 U	0.0178 U 0.0089 U	0.0384 U 0.0192 U	0.0216 U 0.0108 U	0.0144 U 0.0072 U	0.014 U 0.007 U	0.0138 U 0.0069 U	0.012 U 0.006 U	0.0122 U 0.00605 U	1.01 J 0.007 U	0.0126 U 0.0063 U
SW8260D SW8260D	Benzene Cumene	5.6	mg/kg mg/kg	0.00505 U	0.0082 U 0.0164 U	0.0089 U 0.0178 U	0.0192 U 0.0384 U	0.0108 U 0.0216 U	0.0072 U 0.0144 U	0.007 U 0.014 U	0.0069 U 0.0138 U	0.006 U 0.012 U	0.00605 U 0.0122 U	0.007 0	0.0063 U 0.0126 U
SW8260D	Cyclohexane	77	mg/kg		0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.283 0.0101 J	0.0126 U
SW8260D	Ethylbenzene	0.13	mg/kg	0.0101 U	0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.0576	0.0126 U
SW8260D	m,p-Xylenes	NA	mg/kg	0.0202 U	0.0329 U	0.0356 U	0.077 U	0.0431 U	0.0287 U	0.0281 U	0.0276 U	0.024 U	0.0243 U	0.188	0.0251 U
SW8260D	MTBE	0.4	mg/kg		0.0655 U	0.0715 U	0.154 U	0.0865 U	0.0575 U	0.056 U	0.055 U	0.048 U	0.0485 U	0.056 U	0.05 U
SW8260D	Naphthalene	0.038	mg/kg		0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.396	0.0126 U
SW8260D	n-Butylbenzene	20	mg/kg		0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.0139 U	0.0126 U
SW8260D	N-Hexane	130	mg/kg		0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.0139 U	0.0126 U
SW8260D	o-Xylene	NA	mg/kg	0.0101 U	0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.232	0.0126 U
SW8260D	Propylbenzene	9.1	mg/kg		0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.546	0.0126 U
SW8260D SW8260D	sec-Butylbenzene	28 11	mg/kg		0.0164 U 0.0164 U	0.0178 U 0.0178 U	0.0384 U 0.0384 U	0.0216 U 0.0216 U	0.0144 U 0.0144 U	0.014 U 0.014 U	0.0138 U 0.0138 U	0.012 U	0.0122 U 0.0122 U	0.127 0.014	0.0126 U 0.0126 U
SW8260D SW8260D	tert-Butylbenzene Toluene	6.7	mg/kg mg/kg	0.0101 U	0.0164 U	0.0178 U	0.0384 U	0.0216 U	0.0144 U 0.0144 U	0.014 U	0.0138 U	0.012 U 0.012 U	0.0122 U	0.014 0.0264 J	0.0126 U
SW8260D	Xvlenes	1.5	mg/kg	0.0303 U	0.0104 U	0.0535 U	0.116 U	0.0210 U	0.043 U	0.014 U	0.0138 U	0.012 U	0.0122 U	0.0204 3	0.0120 U
SW8270D SIM (PAH)	1-Methylnaphthalene	0.41	mg/kg	0.00715 J	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.708	
SW8270D SIM (PAH)	2-Methylnaphthalene	1.3	mg/kg	0.00693 J	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.708	
SW8270D SIM (PAH)	Acenaphthene	37	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Acenaphthylene	18	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.00928 J	
SW8270D SIM (PAH)	Anthracene	390	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.00928 J	
SW8270D SIM (PAH)	Benzo[a]anthracene	0.7	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Benzo[a]pyrene	1.5	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Benzo[b]fluoranthene	15	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Benzo[g,h,i]perylene	2300	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Benzo[k]fluoranthene	150	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Chrysene	600	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Dibenzo[a,h]anthracene	1.5	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Fluoranthene	590	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Fluorene	36	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0231 J	
SW8270D SIM (PAH)	Indeno[1,2,3-cd]pyrene	15	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
SW8270D SIM (PAH)	Naphthalene	0.038	mg/kg	0.00777 J	0.0116 U	0.0119 U	0.0143 U	0.0116 U	0.0114 U	0.0115 U	0.0119 U	0.0113 U	0.0114 U	0.335	
SW8270D SIM (PAH)	Phenanthrene	39	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.00876 J	
SW8270D SIM (PAH)	Pyrene	87	mg/kg	0.0134 U	0.0144 U	0.0148 U	0.0179 U	0.0144 U	0.0142 U	0.0144 U	0.0148 U	0.0141 U	0.0143 U	0.0143 U	
Notes:	1 *	1	0, 0					-				-			

¹18 AAC 75, Tables B1 and B2 migration to groundwater and human health cleanup levels for the under 40-inch zone (ADEC 2023).

Result exceeds the ADEC cleanup level. BOLD **Bold italics**

ND result with LOD that exceeds the cleanup level. estimated; analyte was detected in an associated blank

Dup field duplicate

ID identification

J / J+ estimated; bias indeterminate/high

limit of detection mg/kg SDG SO U milligrams per kilogram sample delivery group

not detected; value presented is the LOD

SUSITNA ENVIRONMENTAL, LLC	Groundwater Sampling Record
Project Name: BROL CS Well ID:	224-13-2
Project Location: BPU M Pad Sample No.: 2	24-13-2-101223
Project Number: Sampler(s)://	a /cm
Date/Time: 19/12/2028 v	Veather: Snow ~35° F
Water Level Measurements and Purge Data	
Time Depth of Well Depth to Water (TOC) (TOC)	Feet of Water Gallons per Well Volume in Well (2" dia. = 0.163 gal/ft, 4" dia.=0.653 gal/ft)
0825 17.34 7.25	10.09 1.64 x3=4.92gal
0825 17,34 7.25 Meas. Hist. Initial	9.24
Water Level Measurement Method:	Other:
Well Evacuation Method: Peristaltic Pump Subm	nersible Pump Bailer Other:
Purge Rate: 6.49 L/Min	
Begin Purge: Time: 0903 77min	Total Volume Purged:
End Purge: Time: 0930	Well Volumes Purged:
Purge Water Disposed: 55-gal Drum Storage	Tank Ground Liquabin Other:
Sample Collection Method & Analysis	
Sample Type: Groundwater Surface Water	Other:
Sample Time: 0931 nini	
Sample Collection Method: Pump Type: Mansoon	Dedicated TY DIN D Bailer D Other:
Decon Procedure: N/A Alconox Wash	ap Rinse DI Water D Other:
Sample Description (color, turbidity, odor, sheen, etc.):	range W/Sulfur odor
Sample Containers	
Quantity Size Bottle Type	Laboratory Analysis
3 40 m L Glass Plastic	GRO HCI
2 250 mL Glass Plastic	DRO/RRO HCI
3 40mL pagas Plastic	BTEX HCI
2 Z50 mL Glass Plastic	PAHs none
Glass ☐ Plastic	
Glass □ Plastic	
Notes: Pump Set @ 81 btoc.	
Final DTW = 7.28 bto	no odor/sheen
Final TD = 17.39	

17.34

	vacuati		eld Parar		2+ 2:			
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	pH	OPR (mV)	Color/ Turbidity
equirements (must meet 4 or	more)	+/- 2 °C	+/- 3%	+/- 10%	+/- 0.1	+/- 10 mV	+/- 10%
0910	7.31	1	8,05	51	4.98	5.26	116.2	81.7
0917	T, 25	2.25	7.85	71	2.52	5.52	115.5	28.1
0922	7.25	3	7.79	77	2.37	5.60	13.7	20,0
0928	7.24	3.5	8.01	77	2.27	5.59	113.6	2.38
						100		
		-			-	The la		
		_			-			-
				1			1	
		8						
-	-			7 7 1				
_		_		_		-3-		-
							_	_
								_
		-	5 10mm					
	_				-	_	_	-
	- 1	- Jacob		_				_
							_	_
-								
	_		100					1
Notes:		1						747 9
itotes.								
					-			

SUSITNA	Groundwater Sampling Record
Project Name: BRU PAA	Well ID:FG-24
Project Location: Beluga	
Project Number:	Sample No.: <u>FG 24 - 101223</u> 1145 FG 28 - 101223 (dup) Sampler(s): <u>Myn 1no</u> C
Date/Time: 10/2/23 /300	Weather: Overcast, ~ 32°F
	OC) in Well (2° dia 20.163 gal/ft, 4° dia,=0.853 gal/ft) 26 8.89 1.45 +3 = 4.35 qal
Water Level Measurement Method: D Electric	Tape Other:
Well Evacuation Method: Peristaltic Pump	Submersible Pump Bailer Other:
Purge Rate:	
Begin Purge: Time: 1326 38min	Total Volume Purged: 4 gap
End Purge: Time: 1404	Well Volumes Purged:
Purge Water Disposed: 55-gal Drum	Storage Tank Ground Liquabin Other:
Sample Collection Method & Analysis	
Sample Type: M Groundwater Surface	
	11 F.1
Sample Collection Method: Pump Type:	
Decon Procedure: N/A Alconox Wash	
Sample Description (color, turbidity, odor, sheen, e	Mc.): Clear, no odov
Sample Containers	
4 25001	le Type Laboratory Analysis
D Glass	Plastic DRO (tcl) - dup
250mL M Glass	Plastic PAHs - dup
Glass	□ Plastic
	□ Plastic
Glass	☐ Plastic
	□ Plastic
Notes: Pump set @ 16.5 bto	c
Final DTW: 16,27	
Final TD: 25.05	

Date: _ /	0/12/23	-		Well ID:	FG-2	4		
Well I	Evacuati	ion / Fi	eld Para	meters				
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm) (- 3%	DO (mg/L) +/-10%	pH t/-0.1	OPR (mV) +/-/0m/	Color/ Turbidit */- /09
1333	16.28	1	6.08	76	1.98	5.54	123.4	22.4
1340	16.29	1.75	6.38	82	1:40	5.60	120.8	124
1345	16:27	2.5	6.18	83	1.12	5.60	117.5	8.33
1352	16.29	_3	6.64	84	1.06	5.60	115.0	6.96
1402	16.28	4	6.22	861	1.14	5.61	112.0	6.65
							-	-
		-						
		100						0.5085
								1
		_				Dilar		bertold
-								-
	_				- (3 m)			-
		-						
						-		-
					-		The same of the sa	-
					-			
otes:				1	107		He"A	

/	Ź		
SI	JSI	TN	JA
ENVI	RONME	NTAL	LLC

Groundwater Sampling Record

Project Name: <u>BRU 224-13</u> Well ID: <u>224-13-3</u> 224-13-3 - 101323 0913	
Project Location: M Pad Sample No.: 224-13-3-101323 0913 224-13-5-101323 1158(dap)	
Project Number: Sampler(s):/ CM	
Date/Time: 10/13/23 Weather: Overcast, no precip, 42°F	
J. D.	
Water Level Measurements and Purge Data Time Depth of Well Depth to Water Feet of Water Gallons per Well Volume	
(TOC) (TOC) in Well (2" dia. = 0.163 gal/ft, 4" dia. =0.653 gal/ft)	
0831 15.62 5:35 9.67 Initial	
Water Level Measurement Method: D Electric Tape Other:	
Well Evacuation Method: Peristaltic Pump Submersible Pump Bailer Other:	
Purge Rate:	
Begin Purge: Time: 0846 Total Volume Purged: 3 gallons	
End Purge: Time: 0942 Well Volumes Purged:	
Purge Water Disposed: 55-gal Drum Storage Tank Ground Liquabin Other:	_
Sample Collection Method & Analysis	
Sample Type: Groundwater Surface Water Other:	
Sample Time:	
Sample Collection Method: Pump Type: Peri Dedicated Y N Baller, Other:	
Decon Procedure: N/A Alconox Wash Tap Rinse DI Water Other:	
Sample Description (color, turbidity, odor, sheen, etc.):	
Sample Containers	
Quantity Size Bottle Type Laboratory Analysis	
12 40 ml Glass Plastic GRO/BTEX (dup)	
4 250 ml Gass Plastic DRO/RRO (HCI: dup)	
4 250 mL Glass Plastic PAHS (dup)	
Glass □ Plastic	
Glass □ Plastic	
D Glass D Flastic	
ALTERNATION OF STREET STREET STREET STREET STREET STREET	
Glass □ Plastic	
O Glass Plastic	
Glass □ Plastic	

Date:	0/13/23			Well ID:	224-	13-3		
Well E	vacuat	ion / Fie	ld Parai	meters				
Time	Depth to Water (TOC)	Volume (gallons)	Temp (*C)	Cond (µS/cm)	DO (mg/L)	pH	OPR (mV)	Color/ Turbidity
equirements	(must meet 4 or	more)	+/- 2 °C	+/- 3%	+/- 10%	+/- 0.1	+/- 10 mV	+/- 10%
0856	_	0.5	6.96	227	2.04	5.72	92.6	71.3
0904		1.2	7.09	190	1,40	5.78	85.6	25.9
					1911	-		
10	- 39					1		
	-				-			
544775		120 17 - 1						
			_	_				_
_	- 531	2/11/21	CHANGE.				-	
	A)			1 8				
		12 12 14 16	_		-			
		2445		150 100				
	-	-ele-					ME .	
						-		-
		Total						
lotes:		JAT.	2112	16-7				
	FDTW		TE					
	FDTW 53	*	15	.03				100
				pro-				

_	7		
SU	SITN	A	Groundwater Sampling Record
Project Name:	2V ZZ4-13	Well ID:	224-13-4
Project Location:	n Pad	Sample No.: 2	-24-13-4-101323 ms/msD
Project Number:		Sampler(s):	mm/cm
Date/Time:	10/13/23	1055	Weather: Overcast, drizzle, 45°F
Water Level Meas	Depth of W (TOC)	ell Depth to War	
Water Level Meas	urement Method:	Electric Tape	Other:
Well Evacuation M	Method: D-Peri	staltic Pump 🗖 s	Submersible Pump Bailer Other:
Purge Rate:			
Begin Purge:	Time: Way	1514	Total Volume Purged: 1.5 gal
End Purge:	Time: 160	2	Well Volumes Purged:
Purge Water Dispo	osed: 0 55-9	al Drum 🗖 Stor	rage Tank Ground Liquabin Other:
Sample Collection	Carried Agents and the Control of th	-	
		☐ Surface Wate	er Other:
Sample Time:	The second secon	- 04/0	
		Alconox Weeh	Dedicated
		odor, sheen, etc.):	
Sample Containe		odor, sneem, etc.).	
Quantity	Size	Bottle Ty	ype Laboratory Analysis
12	40mL	Glass Pla	lastic <u>GRO/BTEX</u>
4	250mL	Ø Glass □ Pla	lastic DRO/RRO (HCI)
_4 2	50mL	Glass Pla	lastic PAHs
	100	☐ Glass ☐ Pla	lastic
		☐ Glass ☐ Pla	lastic
		☐ Glass ☐ Pla	lastic
Notes:	o odor	/ ho she	een 3/4-inch well

Soil band Sheen + odor @ 7.5-8.5' and from
10-12' bgs Collected a waste Characterization
Soil sample

	/ ₁₃ /23 Evacuati	on / Fie	ld Parai		224-1.		American States	
Time	Depth to Water (TOC)	Volume (gallons)	Temp (°C)	Cond (µS/cm)	DO (mg/L)	рН	OPR (mV)	Color/ Turbidit
equirements	equirements (must meet 4 or more)			+/- 3%	+/- 10%	+/- 0.1	+/- 10 mV	+/- 10%
1526	_	0.75	8.54	302	4.40	6.26	64.2	Clear
1530			8.69		5.79	6.31	72.5	Clean
1776								
			1					
98	1.41	10.17			111			
	167							
		27.74			1 50 0		0.1	
		-191				1000		
otes:	- 4							
	Final D	TW = 9	1.03					
100	T	D=12.						

Project Name:	BRU	L PAD
Project/Contract	Number:	Boring Location ID SB-01
Date: 10/13/		
Logged By: M. Company: Su Driller: Thoy	sitna	Boring Start Time: 825 Boring Completion Time: 850
Company: Ge	OTEK A)	Total Depth: 15
Depth Below Ground Surface (Feet)	Insitu PID Reading (ppm)	Lithology Notes
	0.0	0-5 Coarse grain sand; no gravel grey/orange (dry) in o odor/staining
79 (6.1 -	5-9. Coarse grain sand; no gravel g-10 wood present (no sand) (damp) & no PIP * no odor/staining
10-12 (0.6	10-11,5 Peat material (wet) (small lens of sand ontop) 11.5-140 Silt, brown (wet) (of peat. 14-15 sand po gravel (wet) some
	-	

Analytical :	Samples
Sample ID Time Depth Interval (feet bgs)	LPAD - 5801 - 14.0 - 15.0

Project Name:		PAD Paring Location ID CB 02
Project/Contract	Number:	Boring Location ID SB02
Date: 10/13		
Logged By: M		Boring Start Time: 900
Company: SA		Boring Completion Time: 1000
Driller: Tho		Total Depth: 15
Company: Ger	otek	
Depth Below Ground Surface (Feet)	Insitu PID Reading (ppm)	Lithology Notes
0-24		coarsesand no gravel dry
2-4	0.2	0-5 no odor or staining
4-5 <	0.2	grey orange
5-7	0,2	\$ 5-8 course sand nogravel grey (duy)
7.9 <	0.8	8-9 - Peat material (dry)
9-102	0 -1	9-to 9,5 sitt (day 9.5-10 Peat staining
10-12	0.7	10-13.5 Peat material (damp to wet)
12-14	6.5	13.5-15 Sand w/ asme avaul 1 sin day
	0.9	13.5-15 Sand w/ some gravel & no odor/ coarse garey (wet) staining
	1	

Marie Company	Analytical Samples							
Sample ID	Time	Depth Interval (feet bgs)	Analyses					
	10 55	13.5-15.0	LPAD-5B02-13.5-15.0 (MS/D) 10					
	1020	9.0-9.5	LPAD-5802- 9.0-9.5 10:					

Project Name:	Beluga	River LPAD	
Project/Contract	Number:		Boring Location ID SB03
Date: 10 13			
Logged By: M			Boring Start Time: 1030
	isitna		Boring Completion Time: 1/00
	mas		Total Depth: 5
Company: Ge	OTEK		
Depth Below Ground Surface (Feet)	Insitu PID Reading (ppm)		Lithology Notes
0-2 <	0.6	0-5 coarse sand	, no grave / (ly)
4-5	0.5	grey forange	alpin
5-7	40	5-7 coarsesand/	rograve ans
7.9	1.4	7-9 Peat (dry)	* no odor/staining
9-10		9.5-10 Pent	
10-12	0.9	10-13 Peat Way	
12-14	6,5	13-15 Gray gra san	dw/gravel (wet)
14-15		* no odor	or staining
			Ŏ.
	1		
		A Did not sample pe	ent as it can seem pro results
9 11			

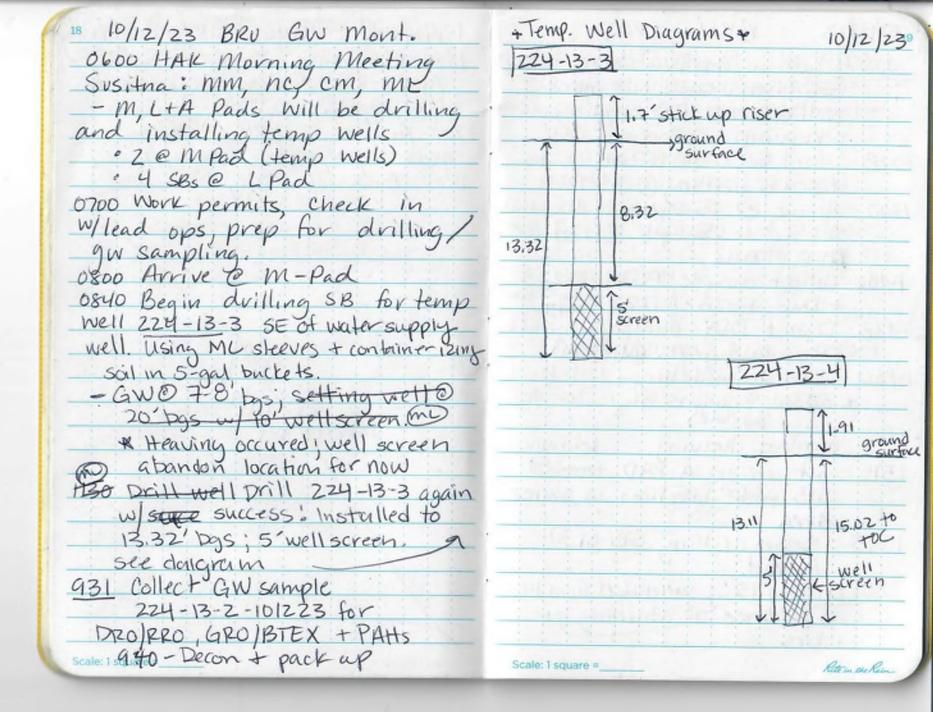
Committee ID	le-	Analytical Samples	
LPAD - S	B03-5:0-	Depth Interval (feet bgs) 1.0 II:00 1.0 II:05 PWP	Analyses
LVAD -	SB 03 13.01	SIS.0 1110	

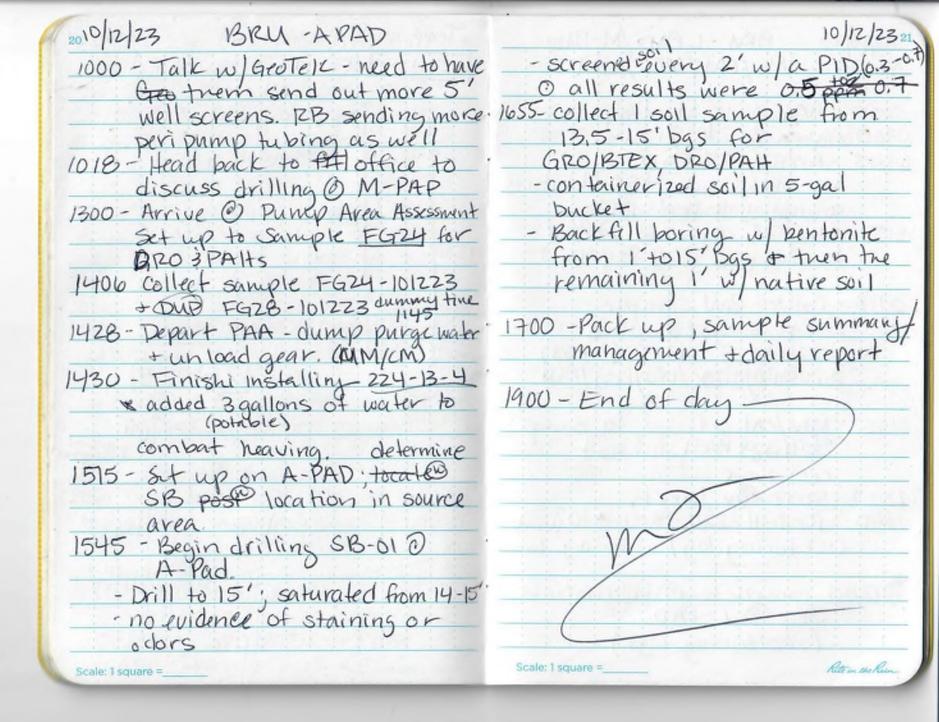
roject/Contract Number	a River LPAD	Boring Location ID SB04
ate: 10 13 23		3604
ompany: Susitua ompany: Susitua riller: Thomas ompany: GeoTek		Boring Start Time: 1110 Boring Completion Time: 1150 Total Depth: 15
Depth Below Ground Surface (Feet) Insitu Reading		Lithology Notes
0-2 (0.5 2-4 0.7 4-5 0.4	3.09701	sand/nogravel (dny) ange *no odor/sheen
5-7 1.0 7-9 1.0 9-10 6.7	3-+ coause	ry no odor/sheen
12-14 0.5	10-19 peat	(dry) grey sand /some grave (wet)

Sample ID	Time	Analytical Samples	
LPAD	1140	Depth Interval (feet bgs) LPRD - SBOY - 5.0 - 7.0	Analyses
	1145	LPAD-5804-13.0-150	
Mary Control			

Project Name:	Berna	a Piver A-PAD	Davidson I and the		
Project/Contract	Number:		Boring Location ID SB-01		
Date: 10/12					
Logged By: M			Boring Start Time:		
Company: 5u			Boring Completion Time:		
	mas		Total Depth: 15		
Company: Ca	eotek A	X			
Depth Below Ground Surface (Feet)	Insitu PID Reading (ppm)		Lithology Notes		
0-1	\	0-5 course sound w/ so	one akasel (med)		
	10.5	(dry) no odor/stai			
F1	,0.5		C C C C C C C C C C C C C C C C C C C		
4-5 5		Grey/light brow			
5-76	015	5-7 same as abou	re (0-5)		
7.97	0.3	7-10 Ly. coarse xin	id; large gravel		
9-10 9	7	exidized; oran	ise in color (dry)		
		no cdor stai	ning in color (dry)		
10-121		10-15 same as-inte	rual from 7-10) dry		
12-14/3	10.7	14-15 Saturated			
14-15 14			A STATE OF THE STA		
11015	1010	1 - 10			
		The same of the sa			
		-15	Same waster		
100					
-			A Comment of the Comm		
		1			
No. Committee	THE PARTY	The state of the s			
	PAS .				
			THE RESERVE OF THE PARTY OF THE		
-					

		Analytic	al Samples
Sample ID	Time	Depth Interval (feet bgs)	Analyses
APAD	1655	+.0-15.0 14-15°	Smear zone
	1005		




Project Name:	Beluga R	iver M Pad	Paris at a satis at IR	2211-12 4	
Project/Contract			Boring Location ID 224-13-4 Boring Start Time: 1340		
Date:	0/13/2	3			
Logged By: γ	1 . Mayer				
Company:	ugitna		Boring Completion Time:	1440	
Driller:	momas		Total Depth:	1440 5	
Company:	Geotek.	AK	_		
Depth Below Ground Surface (Feet)	Insitu PID Reading (ppm)		Lithology Notes		
0-5'		Ory			
5-10°	279.6	7.5ft = wet, sh	een + mod odar	set well screen ~5.4 -10.4' bys	
101.51	117.3	wet, sheen	mod odo	1	
10-15'			silt layers product		
				7	

Sample ID Time Depth Interval (feet bgs) Analyses MPAD - 5802-7.5-8.5 10/13/23 1500 GPD, ORD, PAH, VOC,		Analytical	Samples		
mPAD-5802-7.5-8.5 10/13/23 1500 GPD, ORD, PRD, PAH, VOC,	Depth Interval (fe	et bgs)		Analyses	
	1.5-8.5 10/13/3	13 1500	G120, ORD. A	2920, PAH, VOC,	
			1 1 1 1 1		
		Depth Interval (fe 7.5-8.5 /0/13/3	Depth Interval (feet bgs)		Depth Interval (feet bgs) Analyses

== 10/13/23 BRU - LPAD/M-PAD 10/13/23 WELL susitna MU/CM/NC /MM 224-13-4 Details 0600 - HAK Daily Meeting -0-5 dry 0700 - Work Permits /JSA --5-10 Wet @ 7.5' (sneen, Mod odor) 7.5-8.5 PID = 279.6 6745 - Arrive @ LPAD NC marks out 45B locations 10-11.5 = 17.3 - 10-15 Wet, sheen, mod odor around well Head Blog 0815 - MM/CM arrive @ M Pad to sample well 224-13-3 -10-12 Sitt layers product @ 11.5 0913 - Collect GW sample 224-13-3-101323 plus 1440 - Set well screen 45.4-10.4 bgs (Dup) 224-13-5-10/323 (@ 1158) for GRO/BTEX/DRO/PRO/PAH 1532 - Collect GW sample 224-13-4-101323 W/ (MS/D) 1055 - MM/CM set up to sample 224-13-4. Well did not 1630 - Pack up + Prep to recharge leave BRU 1200 - STOP For lunch 1730 - Leave Berga 1340 - Redrill 224-13-4 =10 WSW (no boring log) of org. locale 01200 Complete installation of SBS D L-PAD (see boring logs) Scale: 1 square = Reto in exo Rain

Photo 1, October 12, 2023 – Conducting groundwater monitoring at permanent well 224-13-2, looking southeast.

Photo 2, October 12, 2023 – Installing temporary groundwater monitoring well 224-13-4, looking southwest.

Photo 3, October 12, 2023 – Logging a soil core at Abandoned Diesel Tank Farm, looking southeast.

Photo 4, October 12, 2023 – Installing soil boring at Abandoned Diesel Tank Farm, looking southwest.

Photo 5, October 13, 2023 – Conducting groundwater sampling at 224-13-3, looking southeast.

Photo 6, October 13, 2023 – Temporary well 223-13-3 location with cone on top, looking northwest.

Photo 7, October 13, 2023 – Reinstalling temporary monitoring well 224-13-4, looking southeast.

Photo 8, October 13, 2023 – Conducting groundwater monitoring at temporary well 224-13-4, looking east.

Photo 9, October 13, 2023 – Installing soil boring at 221-23, looking southeast.

Photo 10, October 13, 2023: Waste staged at 224-13 (M Pad), looking southeast.

Photo 11, October 13, 2023 – Waste staged at 224-13 (M Pad) pending analysis, looking southwest.

Beluga River Unit 2023 Survey Data Table

POINT ID	Latitude (WGS84)	Longitude (WGS84)	Top of Casing Elev (NAVD88)	Ground Elevation (NAVD88)	Casing Height	Depth to Water	Groundwater Elevation (NAVD88)	Date
ATF 3	61.15590893	-151.0592537	102.77	102.03	0.74	14.43	88.34	5/16/2022
ATF 8	61.15582680	-151.0587225	99.64	96.48	3.16	13.09	86.55	5/16/2022
ATF 10	61.15572219	-151.058078	99.76	97.07	2.69	15.76	84.00	5/16/2022
ATF 11	61.15569486	-151.0586339	99.23	95.87	3.36	13.85	85.38	5/16/2022
ATF X	61.15609545	-151.0584909	100.58	97.13	3.45	13.65	86.93	5/16/2022
ATF 6	61.15582683	-151.0593185	102.20	-	-	13.86	88.34	5/16/2022
FG 21	61.17643576	-151.0345212	99.59	-	-	-	-	5/16/2022
FG 14	61.17684809	-151.0343682	100.68	97.49	3.19	7.30	93.38	5/16/2022
FG 15	61.17688771	-151.0337052	97.41	-	-	-	-	5/16/2022
FG 03	61.17705020	-151.0370356	104.20	102.33	1.88	6.21	97.99	5/16/2022
FG 20	61.17631356	-151.0311239	93.58	91.48	2.10	12.20	81.38	5/16/2022
FG 24	61.17596000	-151.0305601	94.04	90.73	3.32	14.25	79.79	5/16/2022
FG 25	61.17529673	-151.0308395	92.07	89.68	2.39	14.10	77.97	5/16/2022
FG 23	61.17559314	-151.0314677	94.86	90.96	3.90	15.09	79.77	5/16/2022
FG 10	61.17654433	-151.0359970	92.92	92.09	0.83	3.65	89.27	5/16/2022
224-13-2	61.21277796	-150.9920010	94.75	92.18	2.57	7.29	87.46	5/16/2022
HOS 5	61.17592527	-151.0375155	113.03	110.49	2.54	9.07	103.96	5/17/2022
HOS 10	61.17577472	-151.0361703	106.87	105.70	1.17	5.55	101.32	5/17/2022
FG 24	61.17596000	-151.0305601	94.04	90.73	3.32	16.26	77.78	10/12/2023
SB-1 (A-PAD)	61.15604261	-151.0594286	-	104.92	-	-	-	10/12/2023
SB-1 (L-PAD)	61.20887549	-151.0235954	-	110.37	-	-	-	10/13/2023
SB-2 (L-PAD)	61.20892032	-151.0235398	-	105.45	-	-	-	10/13/2023
SB-3 (L-PAD)	61.20894467	-151.0236442	-	98.72	-	-	-	10/13/2023
SB-4 (L-PAD)	61.20890284	-151.0237020	-	104.17	-	-	-	10/13/2023
224-13-2	61.21277796	-150.9920010	94.75	92.19	2.56	7.25	87.50	10/13/2023
224-13-3	61.2123529	-150.9920903	93.01	91.39	1.62	5.35	87.66	10/13/2023
224-13-4	61.21267271	-150.9914892	93.59	91.80	1.79	4.97	88.62	10/13/2023

Note:

Latitude and a Longitude are in units of decimal degrees

Top of Casing, Depth to Water, and Groundwater Elevation are in units of feet.

Laboratory Report of Analysis

To: Hilcorp Alaska, LLC

2419 McKenzie Drive Anchorage, AK 99517 (907)350-7952

Report Number: 1235845

Client Project: Beluga River Unit

Dear Nelson Crone,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson
Project Manager
Justin.Nelson@sgs.com

Date

Print Date: 11/03/2023 10:59:01AM Results via Engage

Case Narrative

SGS Client: Hilcorp Alaska, LLC SGS Project: 1235845 Project Name/Site: Beluga River Unit Project Contact: Nelson Crone

Refer to sample receipt form for information on sample condition.

LPAD-SB01-14.0-15.0 (1235845003) PS

AK102/103 - LCSD recovery for DRO, RRO, 5a-androstane, and n-triacontane does not meet QC criteria.

LPAD-SB02-9.0-9.5 (1235845004) PS

AK102/103 - LCSD recovery for DRO, RRO, 5a-androstane, and n-triacontane does not meet QC criteria.

LPAD-SB02-1...(1235845005BMSD) (1235845007) BMSD

8260D - BMS/BMSD RPD for n-hexane does not meet QC criteria. This analyte was not detected above the LOQ in the associated PS.

6020B - Metals BMSD recovery for Barium does not meet QC criteria. The post digestion spike was successful.

LPAD-SB04-5.0-7.0 (1235845011) PS

AK102/103 - LCSD recovery for DRO, RRO, 5a-androstane, and n-triacontane does not meet QC criteria.

MPAD-SB02-7.5-8.5 (1235845013) PS

AK101 - Surrogate recovery for 4-bromofluorobenzene does not meet QC criteria due to matrix interference. AK102/103 - LCSD recovery for DRO, RRO, 5a-androstane, and n-triacontane does not meet QC criteria.

LCSD for HBN 1866350 [XXX/4890 (1742206) LCSD

AK102/103 - LCSD recovery for DRO/RRO does not meet QC criteria.

AK102/103 - Surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria.

MB for HBN 1866354 [MXX/36293] (1742225) MB

6020B - Metals - No MS/MSD in , æ Áş & å å å Ás Ásatch due to a laboratory error.

1236055014(1743800MS) (1743803) MS

6020B - Metals MS recoveries for Barium and Chromium do not meet QC criteria. The post digestion spike was successful.

1236055014(1743800MSD) (1743804) MSD

6020B - Metals MSD recoveries for Barium and Chromium do not meet QC criteria. The post digestion spike was successful.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/03/2023 10:59:02AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 11/03/2023 10:59:05AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
APAD-SB01-14.0-15.0	1235845001	10/12/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB01-5.0-7.0	1235845002	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB01-14.0-15.0	1235845003	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB02-9.0-9.5	1235845004	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB02-13.5-15.0	1235845005	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB02-13(1235845005BM	1235845006	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB02-1(1235845005BMS	1235845007	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB03-5.0-7.0	1235845008	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB05-5.0-7.0	1235845009	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB03-13.0-15.0	1235845010	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB04-5.0-7.0	1235845011	10/13/2023	10/16/2023	Soil/Solid (dry weight)
LPAD-SB04-13.0-15.0	1235845012	10/13/2023	10/16/2023	Soil/Solid (dry weight)
MPAD-SB02-7.5-8.5	1235845013	10/13/2023	10/16/2023	Soil/Solid (dry weight)
TRIPBLANK	1235845014	10/12/2023	10/16/2023	Soil/Solid (dry weight)

Method Description

8270D SIM (PAH) 8270 PAH SIM Semi-Volatiles GC/MS

AK102 Diesel Range Organics (S)
AK102 Diesel/Residual Range Organics
AK103 Diesel/Residual Range Organics
AK101 Gasoline Range Organics (S)

SW6020B Metals by ICP-MS (S)
SM21 2540G Percent Solids SM2540G
SW8260D VOC 8260 (S) Field Extracted

SW8260D Volatile Organic Compounds (S) FIELD EXT

Detectable Results Summary

Client Sample ID: APAD-SB01-14.0-15.0			
Lab Sample ID: 1235845001	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	7.15J	ug/kg
-	2-Methylnaphthalene	6.93J	ug/kg
	Naphthalene	7.77J	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	20.7J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.79J	mg/kg
Client Sample ID: LPAD-SB01-5.0-7.0			
Lab Sample ID: 1235845002	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	2.32	mg/kg
•	Barium	44.5	mg/kg
	Chromium	12.2	mg/kg
	Lead	3.48	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	18.4J	mg/kg
Volatile Fuels	Gasoline Range Organics	2.14J	mg/kg
Client Sample ID: LPAD-SB01-14.0-15.0			
Lab Sample ID: 1235845003	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	5.93	mg/kg
•	Barium	41.1	mg/kg
	Cadmium	0.0770J	mg/kg
	Chromium	12.1	mg/kg
	Lead	3.24	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	28.7	mg/kg
	Residual Range Organics	150	mg/kg
Volatile Fuels	Gasoline Range Organics	2.28J	mg/kg
Client Sample ID: LPAD-SB02-9.0-9.5			
Lab Sample ID: 1235845004	Parameter	Result	Units
Metals by ICP/MS	Arsenic	0.658J	mg/kg
	Barium	26.0	mg/kg
	Cadmium	0.0908J	mg/kg
	Chromium	3.60	mg/kg
	Lead	5.98	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	123	mg/kg
-	Residual Range Organics	1510	mg/kg
Volatile Fuels	Gasoline Range Organics	4.21J	mg/kg

Print Date: 11/03/2023 10:59:09AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518
t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: LPAD-SB02-13.5-15.0			
Lab Sample ID: 1235845005	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	3.56	mg/kg
	Barium	30.8	mg/kg
	Cadmium	0.186J	mg/kg
	Chromium	12.0	mg/kg
	Lead	2.73	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	18.8J	mg/kg
	Residual Range Organics	87.7J	mg/kg
Volatile Fuels	Gasoline Range Organics	4.06J	mg/kg
Client Sample ID: LPAD-SB03-5.0-7.0			
Lab Sample ID: 1235845008	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	2.18	mg/kg
•	Barium	51.1	mg/kg
	Cadmium	0.0732J	mg/kg
	Chromium	12.6	mg/kg
	Lead	3.82	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	19.2J	mg/kg
	Residual Range Organics	49.1J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.57J	mg/kg
Client Sample ID: LPAD-SB05-5.0-7.0			
Lab Sample ID: 1235845009	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	2.23	mg/kg
•	Barium	47.5	mg/kg
	Chromium	11.5	mg/kg
	Lead	3.17	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	18.8J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.17J	mg/kg
Client Sample ID: LPAD-SB03-13.0-15.0			
Lab Sample ID: 1235845010	Parameter	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	9.10	mg/kg
	Barium	37.9	mg/kg
	Chromium	12.3	mg/kg
	Lead	3.00	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	17.8J	mg/kg
•	Residual Range Organics	53.4J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.47J	mg/kg

Print Date: 11/03/2023 10:59:09AM

lnc. 200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: LPAD-SB04-5.0-7.0			
Lab Sample ID: 1235845011	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Arsenic	1.59	mg/kg
	Barium	39.5	mg/kg
	Cadmium	0.0855J	mg/kg
	Chromium	9.21	mg/kg
	Lead	3.27	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	38.3	mg/kg
	Residual Range Organics	72.0J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.62J	mg/kg
Client Sample ID: LPAD-SB04-13.0-15.0			
Lab Sample ID: 1235845012	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Arsenic	19.6	mg/kg
	Barium	86.2	mg/kg
	Cadmium	0.0787J	mg/kg
	Chromium	11.7	mg/kg
	Lead	3.20	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	19.9J	mg/kg
	Residual Range Organics	64.4J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.30J	mg/kg
Client Sample ID: MPAD-SB02-7.5-8.5			
Lab Sample ID: 1235845013	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	708	ug/kg
	2-Methylnaphthalene	708	ug/kg
	Acenaphthylene	9.28J	ug/kg
	Fluorene	23.1J	ug/kg
	Naphthalene	335	ug/kg
	Phenanthrene	8.76J	ug/kg
Semivolatile Organic Fuels	Diesel Range Organics	564	mg/kg
•	Residual Range Organics	506	mg/kg
Volatile Fuels	Gasoline Range Organics	18.8	mg/kg
Volatile GC/MS- Petroleum VOC Group	1,2,4-Trimethylbenzene	1800	ug/kg
•	1,3,5-Trimethylbenzene	1010	ug/kg
	Cyclohexane	10.1J	ug/kg
	Ethylbenzene	57.6	ug/kg
	Isopropylbenzene (Cumene)	283	ug/kg
	Naphthalene	396	ug/kg
	n-Propylbenzene	546	ug/kg
	o-Xylene	232	ug/kg
	P & M -Xylene	188	ug/kg
	sec-Butylbenzene	127	ug/kg
	tert-Butylbenzene	14.0J	ug/kg
	Toluene	26.4J	ug/kg
	Xylenes (total)	420	ug/kg

Print Date: 11/03/2023 10:59:09AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518
t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: **TRIPBLANK** Lab Sample ID: 1235845014

Lab Sample ID: 1235845014ParameterResultUnitsVolatile FuelsGasoline Range Organics1.29Jmg/kg

Print Date: 11/03/2023 10:59:09AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: APAD-SB01-14.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845001

Lab Project ID: 1235845

Collection Date: 10/12/23 16:55 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):92.3 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1-Methylnaphthalene	7.15 J	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
2-Methylnaphthalene	6.93 J	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Acenaphthene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Acenaphthylene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Anthracene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Benzo(a)Anthracene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Benzo[a]pyrene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Benzo[b]Fluoranthene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Benzo[g,h,i]perylene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Benzo[k]fluoranthene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Chrysene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Dibenzo[a,h]anthracene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Fluoranthene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Fluorene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Indeno[1,2,3-c,d] pyrene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Naphthalene	7.77 J	21.5	5.38	10.8	ug/kg	1		10/30/23 15:13
Phenanthrene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Pyrene	13.4 U	26.9	6.72	13.4	ug/kg	1		10/30/23 15:13
Surrogates								
2-Methylnaphthalene-d10 (surr)	93.3	58-103			%	1		10/30/23 15:13
Fluoranthene-d10 (surr)	86.5	54-113			%	1		10/30/23 15:13

Batch Information

Analytical Batch: XMS14052 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 10/30/23 15:13

Container ID: 1235845001-A

Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.672 g

Prep Extract Vol: 5 mL

Client Sample ID: **APAD-SB01-14.0-15.0**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235845001
Lab Project ID: 1235845

Collection Date: 10/12/23 16:55 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):92.3 Location:

Results by Semivolatile Organic Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	20.7 J	21.5	9.68	10.8	mg/kg	1		10/28/23 11:26
Surrogates								
5a Androstane (surr)	91.3	50-150			%	1		10/28/23 11:26

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 11:26 Container ID: 1235845001-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45

Prep Initial Wt./Vol.: 22.672 g Prep Extract Vol: 5 mL

Client Sample ID: **APAD-SB01-14.0-15.0**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235845001
Lab Project ID: 1235845

Collection Date: 10/12/23 16:55 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):92.3 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	1.79 J	2.02	0.606	1.01	mg/kg	1	Limits	10/27/23 21:27
Surrogates 4-Bromofluorobenzene (surr)	109	50-150			%	1		10/27/23 21:27

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/27/23 21:27 Container ID: 1235845001-B Prep Batch: VXX40707 Prep Method: SW5035A

Prep Date/Time: 10/12/23 16:55 Prep Initial Wt./Vol.: 84.593 g Prep Extract Vol: 31.532 mL

Client Sample ID: **APAD-SB01-14.0-15.0**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235845001

Lab Project ID: 1235845

Collection Date: 10/12/23 16:55 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):92.3 Location:

Results by Volatile GC/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	5.05 U	10.1	3.15	5.05	ug/kg	1		10/24/23 17:52
Ethylbenzene	10.1 U	20.2	6.30	10.1	ug/kg	1		10/24/23 17:52
o-Xylene	10.1 U	20.2	6.30	10.1	ug/kg	1		10/24/23 17:52
P & M -Xylene	20.2 U	40.4	12.1	20.2	ug/kg	1		10/24/23 17:52
Toluene	10.1 U	20.2	6.30	10.1	ug/kg	1		10/24/23 17:52
Xylenes (total)	30.3 U	60.6	18.4	30.3	ug/kg	1		10/24/23 17:52
Surrogates								
1,2-Dichloroethane-D4 (surr)	93.6	71-136			%	1		10/24/23 17:52
4-Bromofluorobenzene (surr)	97.1	55-151			%	1		10/24/23 17:52
Toluene-d8 (surr)	102	85-116			%	1		10/24/23 17:52

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 17:52 Container ID: 1235845001-B Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/12/23 16:55 Prep Initial Wt./Vol.: 84.593 g Prep Extract Vol: 31.532 mL

Client Sample ID: LPAD-SB01-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845002

Lab Project ID: 1235845

Collection Date: 10/13/23 09:30 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	2.32	1.08	0.334	0.540	mg/kg	10		10/25/23 18:03
Barium	44.5	0.324	0.101	0.162	mg/kg	10		10/25/23 18:03
Cadmium	0.108 U	0.216	0.0669	0.108	mg/kg	10		10/25/23 18:03
Chromium	12.2	1.08	0.334	0.540	mg/kg	10		10/25/23 18:03
Lead	3.48	0.216	0.0669	0.108	mg/kg	10		10/25/23 18:03
Mercury	0.108 U	0.216	0.0755	0.108	mg/kg	10		10/25/23 18:03
Selenium	1.08 U	2.16	0.669	1.08	mg/kg	10		10/25/23 18:03
Silver	0.270 U	0.539	0.162	0.270	mg/kg	10		10/25/23 18:03

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:03 Container ID: 1235845002-A Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.073 g Prep Extract Vol: 50 mL

Client Sample ID: LPAD-SB01-5.0-7.0 Client Project ID: Beluga River Unit

Lab Sample ID: 1235845002 Lab Project ID: 1235845 Collection Date: 10/13/23 09:30 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
2-Methylnaphthalene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Acenaphthene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Acenaphthylene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Anthracene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Benzo(a)Anthracene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Benzo[a]pyrene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Benzo[b]Fluoranthene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Benzo[g,h,i]perylene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Benzo[k]fluoranthene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Chrysene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Dibenzo[a,h]anthracene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Fluoranthene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Fluorene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Indeno[1,2,3-c,d] pyrene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Naphthalene	11.6 U	23.1	5.77	11.6	ug/kg	1		10/30/23 15:33
Phenanthrene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Pyrene	14.4 U	28.8	7.21	14.4	ug/kg	1		10/30/23 15:33
Surrogates								
2-Methylnaphthalene-d10 (surr)	92	58-103			%	1		10/30/23 15:33
Fluoranthene-d10 (surr)	76.6	54-113			%	1		10/30/23 15:33

Batch Information

Analytical Batch: XMS14052 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 10/30/23 15:33 Container ID: 1235845002-A Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.587 g

Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB01-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845002 Lab Project ID: 1235845 Collection Date: 10/13/23 09:30 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Diesel Range Organics	18.4 J	23.1	10.4	11.6	mg/kg	1		10/28/23 11:39
Surrogates								
5a Androstane (surr)	89.8	50-150			%	1		10/28/23 11:39

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 11:39 Container ID: 1235845002-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45

Prep Initial Wt./Vol.: 22.587 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	57.5 U	115	49.6	57.5	mg/kg	1		10/28/23 11:39
Surrogates								
n-Triacontane-d62 (surr)	92.7	50-150			%	1		10/28/23 11:39

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 11:39 Container ID: 1235845002-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.587 g Prep Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:10AM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: LPAD-SB01-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845002 Lab Project ID: 1235845 Collection Date: 10/13/23 09:30 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Volatile Fuels

<u>Allowable</u> Result Qual LOQ/CL DL LOD Units <u>DF</u> Parameter <u>Limits</u> **Date Analyzed** Gasoline Range Organics 2.14 J 0.986 3.29 1.65 mg/kg 1 10/27/23 21:46 **Surrogates** 4-Bromofluorobenzene (surr) 105 50-150 1 10/27/23 21:46

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/27/23 21:46 Container ID: 1235845002-B Prep Batch: VXX40707 Prep Method: SW5035A

Prep Date/Time: 10/13/23 09:30 Prep Initial Wt./Vol.: 57.893 g Prep Extract Vol: 32.8794 mL

Client Sample ID: LPAD-SB01-5.0-7.0
Client Project ID: Beluga River Unit

Lab Sample ID: 1235845002 Lab Project ID: 1235845 Collection Date: 10/13/23 09:30 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	65.5 U	131	39.4	65.5	ug/kg	1		10/24/23 18:08
1,2-Dibromoethane	0.985 U	1.97	0.986	0.985	ug/kg	1		10/24/23 18:08
1,2-Dichloroethane	1.31 U	2.63	0.920	1.31	ug/kg	1		10/24/23 18:08
1,3,5-Trimethylbenzene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
Benzene	8.20 U	16.4	5.13	8.20	ug/kg	1		10/24/23 18:08
Cyclohexane	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
Ethylbenzene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
Isopropylbenzene (Cumene)	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
Methyl-t-butyl ether	65.5 U	131	40.8	65.5	ug/kg	1		10/24/23 18:08
Naphthalene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
n-Butylbenzene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
n-hexane	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
n-Propylbenzene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
o-Xylene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
P & M -Xylene	32.9 U	65.7	19.7	32.9	ug/kg	1		10/24/23 18:08
sec-Butylbenzene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
tert-Butylbenzene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
Toluene	16.4 U	32.9	10.3	16.4	ug/kg	1		10/24/23 18:08
Xylenes (total)	49.3 U	98.6	30.0	49.3	ug/kg	1		10/24/23 18:08
Surrogates								
1,2-Dichloroethane-D4 (surr)	93.2	71-136			%	1		10/24/23 18:08
4-Bromofluorobenzene (surr)	100	55-151			%	1		10/24/23 18:08
Toluene-d8 (surr)	102	85-116			%	1		10/24/23 18:08

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 18:08 Container ID: 1235845002-B Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 09:30 Prep Initial Wt./Vol.: 57.893 g Prep Extract Vol: 32.8794 mL

Client Sample ID: LPAD-SB01-14.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845003

Lab Project ID: 1235845

Collection Date: 10/13/23 09:35 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.0 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	5.93	1.09	0.338	0.545	mg/kg	10		10/25/23 18:05
Barium	41.1	0.327	0.103	0.164	mg/kg	10		10/25/23 18:05
Cadmium	0.0770 J	0.218	0.0677	0.109	mg/kg	10		10/25/23 18:05
Chromium	12.1	1.09	0.338	0.545	mg/kg	10		10/25/23 18:05
Lead	3.24	0.218	0.0677	0.109	mg/kg	10		10/25/23 18:05
Mercury	0.109 U	0.218	0.0764	0.109	mg/kg	10		10/25/23 18:05
Selenium	1.09 U	2.18	0.677	1.09	mg/kg	10		10/25/23 18:05
Silver	0.273 U	0.546	0.164	0.273	mg/kg	10		10/25/23 18:05

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:05 Container ID: 1235845003-A Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.091 g Prep Extract Vol: 50 mL

Client Sample ID: LPAD-SB01-14.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845003

Lab Project ID: 1235845

Collection Date: 10/13/23 09:35 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.0 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
2-Methylnaphthalene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Acenaphthene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Acenaphthylene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Anthracene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Benzo(a)Anthracene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Benzo[a]pyrene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Benzo[b]Fluoranthene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Benzo[g,h,i]perylene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Benzo[k]fluoranthene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Chrysene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Dibenzo[a,h]anthracene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Fluoranthene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Fluorene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Indeno[1,2,3-c,d] pyrene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Naphthalene	11.9 U	23.7	5.92	11.9	ug/kg	1		10/30/23 15:54
Phenanthrene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Pyrene	14.8 U	29.6	7.40	14.8	ug/kg	1		10/30/23 15:54
Surrogates								
2-Methylnaphthalene-d10 (surr)	87.4	58-103			%	1		10/30/23 15:54
Fluoranthene-d10 (surr)	83.4	54-113			%	1		10/30/23 15:54

Batch Information

Analytical Batch: XMS14052 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 10/30/23 15:54 Container ID: 1235845003-A Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.611 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB01-14.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845003 Lab Project ID: 1235845 Collection Date: 10/13/23 09:35 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.0 Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	28.7	23.7	10.7	11.9	mg/kg	1		10/28/23 11:52
Surrogates								
5a Androstane (surr)	103	50-150			%	1		10/28/23 11:52

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 11:52 Container ID: 1235845003-A Prep Batch: XXX48904
Prep Method: SW3550C
Prep Date/Time: 10/22/23 0

Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.611 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	150	118	50.9	59.0	mg/kg	1		10/28/23 11:52
Surrogates								
n-Triacontane-d62 (surr)	109	50-150			%	1		10/28/23 11:52

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 11:52 Container ID: 1235845003-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.611 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB01-14.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845003 Lab Project ID: 1235845 Collection Date: 10/13/23 09:35 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.0 Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	<u>Date Analyzed</u>
Gasoline Range Organics	2.28 J	3.56	1.07	1.78	mg/kg	1		10/27/23 22:05
Surrogates								
_								
4-Bromofluorobenzene (surr)	93.6	50-150			%	1		10/27/23 22:05

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/27/23 22:05 Container ID: 1235845003-B Prep Batch: VXX40707 Prep Method: SW5035A

Prep Date/Time: 10/13/23 09:35 Prep Initial Wt./Vol.: 57.011 g Prep Extract Vol: 34.1257 mL

Client Sample ID: LPAD-SB01-14.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845003

Lab Project ID: 1235845

Collection Date: 10/13/23 09:35 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.0 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	71.5 U	143	42.8	71.5	ug/kg	1		10/24/23 18:23
1,2-Dibromoethane	1.07 U	2.14	1.07	1.07	ug/kg	1		10/24/23 18:23
1,2-Dichloroethane	1.43 U	2.85	0.998	1.43	ug/kg	1		10/24/23 18:23
1,3,5-Trimethylbenzene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
Benzene	8.90 U	17.8	5.56	8.90	ug/kg	1		10/24/23 18:23
Cyclohexane	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
Ethylbenzene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
Isopropylbenzene (Cumene)	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
Methyl-t-butyl ether	71.5 U	143	44.2	71.5	ug/kg	1		10/24/23 18:23
Naphthalene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
n-Butylbenzene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
n-hexane	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
n-Propylbenzene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
o-Xylene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
P & M -Xylene	35.6 U	71.3	21.4	35.6	ug/kg	1		10/24/23 18:23
sec-Butylbenzene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
tert-Butylbenzene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
Toluene	17.8 U	35.6	11.1	17.8	ug/kg	1		10/24/23 18:23
Xylenes (total)	53.5 U	107	32.5	53.5	ug/kg	1		10/24/23 18:23
Surrogates								
1,2-Dichloroethane-D4 (surr)	95	71-136			%	1		10/24/23 18:23
4-Bromofluorobenzene (surr)	92	55-151			%	1		10/24/23 18:23
Toluene-d8 (surr)	104	85-116			%	1		10/24/23 18:23

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 18:23 Container ID: 1235845003-B Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 09:35 Prep Initial Wt./Vol.: 57.011 g Prep Extract Vol: 34.1257 mL

Client Sample ID: LPAD-SB02-9.0-9.5 Client Project ID: Beluga River Unit Lab Sample ID: 1235845004

Lab Project ID: 1235845

Collection Date: 10/13/23 10:20 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):69.3 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	0.658 J	1.40	0.433	0.700	mg/kg	10		10/25/23 18:15
Barium	26.0	0.419	0.131	0.209	mg/kg	10		10/25/23 18:15
Cadmium	0.0908 J	0.279	0.0866	0.140	mg/kg	10		10/25/23 18:15
Chromium	3.60	1.40	0.433	0.700	mg/kg	10		10/25/23 18:15
Lead	5.98	0.279	0.0866	0.140	mg/kg	10		10/25/23 18:15
Mercury	0.140 U	0.279	0.0977	0.140	mg/kg	10		10/25/23 18:15
Selenium	1.40 U	2.79	0.866	1.40	mg/kg	10		10/30/23 20:56
Silver	0.349 U	0.698	0.209	0.349	mg/kg	10		10/25/23 18:15

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:15 Container ID: 1235845004-A

Analytical Batch: MMS12122 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/30/23 20:56 Container ID: 1235845004-A Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.034 g Prep Extract Vol: 50 mL

Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.034 g Prep Extract Vol: 50 mL

Client Sample ID: LPAD-SB02-9.0-9.5 Client Project ID: Beluga River Unit

Lab Sample ID: 1235845004 Lab Project ID: 1235845

Collection Date: 10/13/23 10:20 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):69.3 Location:

Results by Polynuclear Aromatics GC/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
2-Methylnaphthalene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Acenaphthene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Acenaphthylene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Anthracene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Benzo(a)Anthracene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Benzo[a]pyrene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Benzo[b]Fluoranthene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Benzo[g,h,i]perylene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Benzo[k]fluoranthene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Chrysene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Dibenzo[a,h]anthracene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Fluoranthene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Fluorene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Indeno[1,2,3-c,d] pyrene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Naphthalene	14.3 U	28.6	7.15	14.3	ug/kg	1		10/30/23 16:14
Phenanthrene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Pyrene	17.9 U	35.8	8.94	17.9	ug/kg	1		10/30/23 16:14
Surrogates								
2-Methylnaphthalene-d10 (surr)	90.2	58-103			%	1		10/30/23 16:14
Fluoranthene-d10 (surr)	79.5	54-113			%	1		10/30/23 16:14

Batch Information

Analytical Batch: XMS14052 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 10/30/23 16:14

Container ID: 1235845004-A

Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.707 g

Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB02-9.0-9.5 Client Project ID: Beluga River Unit Lab Sample ID: 1235845004

Lab Sample ID: 12358450 Lab Project ID: 1235845 Collection Date: 10/13/23 10:20 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):69.3 Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	123	28.6	12.9	14.3	mg/kg	1		10/28/23 12:05
Surrogates								
5a Androstane (surr)	80.5	50-150			%	1		10/28/23 12:05

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 12:05 Container ID: 1235845004-A Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.707 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1510	143	61.5	71.5	mg/kg	1		10/28/23 12:05
Surrogates								
n-Triacontane-d62 (surr)	98.9	50-150			%	1		10/28/23 12:05

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 12:05 Container ID: 1235845004-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.707 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB02-9.0-9.5 Client Project ID: Beluga River Unit Lab Sample ID: 1235845004 Lab Project ID: 1235845 Collection Date: 10/13/23 10:20 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):69.3 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Gasoline Range Organics	4.21 J	7.68	2.31	3.84	mg/kg	1	Limits	10/27/23 23:39
Surrogates 4-Bromofluorobenzene (surr)	88.9	50-150			%	1		10/27/23 23:39

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/27/23 23:39 Container ID: 1235845004-B Prep Batch: VXX40708 Prep Method: SW5035A

Prep Date/Time: 10/13/23 10:20 Prep Initial Wt./Vol.: 33.016 g Prep Extract Vol: 35.1458 mL

Client Sample ID: LPAD-SB02-9.0-9.5 Client Project ID: Beluga River Unit

Lab Sample ID: 1235845004 Lab Project ID: 1235845 Collection Date: 10/13/23 10:20 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):69.3 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	154 U	307	92.2	154	ug/kg	1		10/24/23 18:39
1,2-Dibromoethane	2.31 U	4.61	2.31	2.31	ug/kg	1		10/24/23 18:39
1,2-Dichloroethane	3.08 U	6.15	2.15	3.08	ug/kg	1		10/24/23 18:39
1,3,5-Trimethylbenzene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
Benzene	19.2 U	38.4	12.0	19.2	ug/kg	1		10/24/23 18:39
Cyclohexane	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
Ethylbenzene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
Isopropylbenzene (Cumene)	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
Methyl-t-butyl ether	154 U	307	95.3	154	ug/kg	1		10/24/23 18:39
Naphthalene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
n-Butylbenzene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
n-hexane	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
n-Propylbenzene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
o-Xylene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
P & M -Xylene	77.0 U	154	46.1	77.0	ug/kg	1		10/24/23 18:39
sec-Butylbenzene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
tert-Butylbenzene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
Toluene	38.4 U	76.8	24.0	38.4	ug/kg	1		10/24/23 18:39
Xylenes (total)	116 U	231	70.1	116	ug/kg	1		10/24/23 18:39
Surrogates								
1,2-Dichloroethane-D4 (surr)	94.7	71-136			%	1		10/24/23 18:39
4-Bromofluorobenzene (surr)	89.8	55-151			%	1		10/24/23 18:39
Toluene-d8 (surr)	104	85-116			%	1		10/24/23 18:39

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 18:39 Container ID: 1235845004-B Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 10:20 Prep Initial Wt./Vol.: 33.016 g Prep Extract Vol: 35.1458 mL

Client Sample ID: LPAD-SB02-13.5-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845005 Collection Date: 10/13/23 10:15 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):85.9 Location:

Results by Metals by ICP/MS

Lab Project ID: 1235845

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	3.56	1.12	0.347	0.560	mg/kg	10		10/31/23 12:23
Barium	30.8	0.336	0.105	0.168	mg/kg	10		10/31/23 12:23
Cadmium	0.186 J	0.224	0.0694	0.112	mg/kg	10		10/31/23 12:23
Chromium	12.0	1.12	0.347	0.560	mg/kg	10		10/31/23 12:23
Lead	2.73	0.224	0.0694	0.112	mg/kg	10		10/31/23 12:23
Mercury	0.112 U	0.224	0.0783	0.112	mg/kg	10		10/31/23 12:23
Selenium	1.12 U	2.24	0.694	1.12	mg/kg	10		10/31/23 14:59
Silver	0.280 U	0.559	0.168	0.280	mg/kg	10		10/31/23 12:23

Batch Information

Analytical Batch: MMS12123 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/31/23 12:23 Container ID: 1235845005-A

Analytical Batch: MMS12124 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/31/23 14:59 Container ID: 1235845005-A Prep Batch: MXX36311 Prep Method: SW3050B Prep Date/Time: 10/30/23 13:06 Prep Initial Wt./Vol.: 1.041 g Prep Extract Vol: 50 mL

Prep Batch: MXX36311 Prep Method: SW3050B Prep Date/Time: 10/30/23 13:06 Prep Initial Wt./Vol.: 1.041 g Prep Extract Vol: 50 mL

Client Sample ID: LPAD-SB02-13.5-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845005

Lab Project ID: 1235845

Collection Date: 10/13/23 10:15 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):85.9 Location:

Results by Polynuclear Aromatics GC/MS

Parameter 1-Methylnaphthalene	Result Qual 14.4 U	LOQ/CL	<u>DL</u>					
1 Mothylpaphthalana	1/// 11		<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
r-ivietriyiriapritrialerie	14.4 0	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
2-Methylnaphthalene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Acenaphthene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Acenaphthylene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Anthracene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Benzo(a)Anthracene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Benzo[a]pyrene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Benzo[b]Fluoranthene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Benzo[g,h,i]perylene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Benzo[k]fluoranthene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Chrysene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Dibenzo[a,h]anthracene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Fluoranthene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Fluorene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Indeno[1,2,3-c,d] pyrene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Naphthalene	11.6 U	23.1	5.79	11.6	ug/kg	1		10/30/23 16:34
Phenanthrene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Pyrene	14.4 U	28.9	7.23	14.4	ug/kg	1		10/30/23 16:34
Surrogates								
2-Methylnaphthalene-d10 (surr)	91.1	58-103			%	1		10/30/23 16:34
Fluoranthene-d10 (surr)	84	54-113			%	1		10/30/23 16:34

Batch Information

Analytical Batch: XMS14052 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 10/30/23 16:34 Container ID: 1235845005-A Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.642 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB02-13.5-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845005

Lab Project ID: 1235845

Collection Date: 10/13/23 10:15 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):85.9 Location:

Results by Semivolatile Organic Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	18.8 J	23.1	10.4	11.6	mg/kg	1		10/28/23 12:18
Surrogates								
5a Androstane (surr)	96	50-150			%	1		10/28/23 12:18
ou / marociano (oum)	00	00 100			70	•		10/20/20 12:10

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 12:18

Container ID: 1235845005-A

Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.642 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Residual Range Organics	87.7 J	116	49.8	58.0	mg/kg	1		10/28/23 12:18
Surrogates								
n-Triacontane-d62 (surr)	100	50-150			%	1		10/28/23 12:18

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 12:18 Container ID: 1235845005-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.642 g

Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB02-13.5-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845005 Lab Project ID: 1235845

Collection Date: 10/13/23 10:15 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):85.9 Location:

Results by Volatile Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	4.06 J	4.32	1.29	2.16	mg/kg	1		10/27/23 19:54
Surrogates								
4-Bromofluorobenzene (surr)	105	50-150			%	1		10/27/23 19:54

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/27/23 19:54 Container ID: 1235845005-C

Prep Batch: VXX40707 Prep Method: SW5035A

Prep Date/Time: 10/13/23 10:15 Prep Initial Wt./Vol.: 41.665 g Prep Extract Vol: 30.8839 mL

Print Date: 11/03/2023 10:59:10AM J flagging is activated

SGS North America Inc.

Client Sample ID: LPAD-SB02-13.5-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845005

Lab Project ID: 1235845

Collection Date: 10/13/23 10:15 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):85.9 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	86.5 U	173	51.8	86.5	ug/kg	1		10/24/23 17:21
1,2-Dibromoethane	1.29 U	2.59	1.29	1.29	ug/kg	1		10/24/23 17:21
1,2-Dichloroethane	1.73 U	3.45	1.21	1.73	ug/kg	1		10/24/23 17:21
1,3,5-Trimethylbenzene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
Benzene	10.8 U	21.6	6.73	10.8	ug/kg	1		10/24/23 17:21
Cyclohexane	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
Ethylbenzene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
Isopropylbenzene (Cumene)	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
Methyl-t-butyl ether	86.5 U	173	53.5	86.5	ug/kg	1		10/24/23 17:21
Naphthalene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
n-Butylbenzene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
n-hexane	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
n-Propylbenzene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
o-Xylene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
P & M -Xylene	43.1 U	86.3	25.9	43.1	ug/kg	1		10/24/23 17:21
sec-Butylbenzene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
tert-Butylbenzene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
Toluene	21.6 U	43.2	13.5	21.6	ug/kg	1		10/24/23 17:21
Xylenes (total)	64.5 U	129	39.4	64.5	ug/kg	1		10/24/23 17:21
Surrogates								
1,2-Dichloroethane-D4 (surr)	94.2	71-136			%	1		10/24/23 17:21
4-Bromofluorobenzene (surr)	95.1	55-151			%	1		10/24/23 17:21
Toluene-d8 (surr)	103	85-116			%	1		10/24/23 17:21

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 17:21 Container ID: 1235845005-C

Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 10:15 Prep Initial Wt./Vol.: 41.665 g Prep Extract Vol: 30.8839 mL

Client Sample ID: LPAD-SB03-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845008

Lab Project ID: 1235845

Collection Date: 10/13/23 11:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	2.18	1.07	0.330	0.535	mg/kg	10		10/25/23 18:18
Barium	51.1	0.320	0.100	0.160	mg/kg	10		10/25/23 18:18
Cadmium	0.0732 J	0.213	0.0660	0.107	mg/kg	10		10/25/23 18:18
Chromium	12.6	1.07	0.330	0.535	mg/kg	10		10/25/23 18:18
Lead	3.82	0.213	0.0660	0.107	mg/kg	10		10/25/23 18:18
Mercury	0.107 U	0.213	0.0746	0.107	mg/kg	10		10/25/23 18:18
Selenium	1.06 U	2.13	0.660	1.06	mg/kg	10		10/30/23 20:59
Silver	0.267 U	0.533	0.160	0.267	mg/kg	10		10/25/23 18:18

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:18 Container ID: 1235845008-A

Analytical Batch: MMS12122 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/30/23 20:59 Container ID: 1235845008-A Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.087 g Prep Extract Vol: 50 mL

Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.087 g Prep Extract Vol: 50 mL

Print Date: 11/03/2023 10:59:10AM

J flagging is activated

Client Sample ID: LPAD-SB03-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845008

Lab Project ID: 1235845

Collection Date: 10/13/23 11:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Polynuclear Aromatics GC/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
2-Methylnaphthalene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Acenaphthene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Acenaphthylene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Anthracene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Benzo(a)Anthracene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Benzo[a]pyrene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Benzo[b]Fluoranthene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Benzo[g,h,i]perylene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Benzo[k]fluoranthene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Chrysene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Dibenzo[a,h]anthracene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Fluoranthene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Fluorene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Indeno[1,2,3-c,d] pyrene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Naphthalene	11.4 U	22.7	5.66	11.4	ug/kg	1		10/30/23 17:36
Phenanthrene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Pyrene	14.2 U	28.3	7.08	14.2	ug/kg	1		10/30/23 17:36
Surrogates								
2-Methylnaphthalene-d10 (surr)	89.3	58-103			%	1		10/30/23 17:36
Fluoranthene-d10 (surr)	85.6	54-113			%	1		10/30/23 17:36

Batch Information

Analytical Batch: XMS14052 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 10/30/23 17:36 Container ID: 1235845008-A Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.992 g

Prep Extract Vol: 5 mL

Client Sample ID: **LPAD-SB03-5.0-7.0**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235845008

Lab Project ID: 1235845

Collection Date: 10/13/23 11:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Semivolatile Organic Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	19.2 J	22.7	10.2	11.4	mg/kg	1		10/28/23 12:57
Surrogates								
5a Androstane (surr)	95	50-150			%	1		10/28/23 12:57
ou / marostano (oun)	50	00 100			70	•		10/20/20 12:01

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 12:57 Container ID: 1235845008-A Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.992 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	49.1 J	113	48.7	56.5	mg/kg	1		10/28/23 12:57
Surrogates								
n-Triacontane-d62 (surr)	98.1	50-150			%	1		10/28/23 12:57

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 12:57 Container ID: 1235845008-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.992 g Prep Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:10AM J flagging is activated

SGS North America Inc.

Client Sample ID: LPAD-SB03-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845008 Lab Project ID: 1235845 Collection Date: 10/13/23 11:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.57 J	2.87	0.861	1.44	mg/kg	1		10/27/23 23:57
Surrogates								
4-Bromofluorobenzene (surr)	95.6	50-150			%	1		10/27/23 23:57

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/27/23 23:57 Container ID: 1235845008-B Prep Batch: VXX40708
Prep Method: SW5035A

Prep Date/Time: 10/13/23 11:00 Prep Initial Wt./Vol.: 69.475 g Prep Extract Vol: 34.4647 mL

Client Sample ID: LPAD-SB03-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845008

Lab Project ID: 1235845

Collection Date: 10/13/23 11:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.4 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	57.5 U	115	34.5	57.5	ug/kg	1		10/24/23 18:54
1,2-Dibromoethane	0.860 U	1.72	0.861	0.860	ug/kg	1		10/24/23 18:54
1,2-Dichloroethane	1.15 U	2.30	0.804	1.15	ug/kg	1		10/24/23 18:54
1,3,5-Trimethylbenzene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
Benzene	7.20 U	14.4	4.48	7.20	ug/kg	1		10/24/23 18:54
Cyclohexane	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
Ethylbenzene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
Isopropylbenzene (Cumene)	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
Methyl-t-butyl ether	57.5 U	115	35.6	57.5	ug/kg	1		10/24/23 18:54
Naphthalene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
n-Butylbenzene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
n-hexane	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
n-Propylbenzene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
o-Xylene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
P & M -Xylene	28.7 U	57.4	17.2	28.7	ug/kg	1		10/24/23 18:54
sec-Butylbenzene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
tert-Butylbenzene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
Toluene	14.4 U	28.7	8.96	14.4	ug/kg	1		10/24/23 18:54
Xylenes (total)	43.0 U	86.1	26.2	43.0	ug/kg	1		10/24/23 18:54
Surrogates								
1,2-Dichloroethane-D4 (surr)	101	71-136			%	1		10/24/23 18:54
4-Bromofluorobenzene (surr)	95.3	55-151			%	1		10/24/23 18:54
Toluene-d8 (surr)	102	85-116			%	1		10/24/23 18:54

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 18:54 Container ID: 1235845008-B Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 11:00 Prep Initial Wt./Vol.: 69.475 g Prep Extract Vol: 34.4647 mL

Client Sample ID: LPAD-SB05-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845009

Lab Project ID: 1235845

Collection Date: 10/13/23 11:05 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	2.23	1.07	0.332	0.535	mg/kg	10		10/25/23 18:20
Barium	47.5	0.321	0.101	0.161	mg/kg	10		10/25/23 18:20
Cadmium	0.107 U	0.214	0.0663	0.107	mg/kg	10		10/25/23 18:20
Chromium	11.5	1.07	0.332	0.535	mg/kg	10		10/25/23 18:20
Lead	3.17	0.214	0.0663	0.107	mg/kg	10		10/25/23 18:20
Mercury	0.107 U	0.214	0.0749	0.107	mg/kg	10		10/25/23 18:20
Selenium	1.07 U	2.14	0.663	1.07	mg/kg	10		10/30/23 21:01
Silver	0.268 U	0.535	0.161	0.268	mg/kg	10		10/25/23 18:20

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:20 Container ID: 1235845009-A

Analytical Batch: MMS12122 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/30/23 21:01 Container ID: 1235845009-A

Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.077 g Prep Extract Vol: 50 mL

Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.077 g Prep Extract Vol: 50 mL

Client Sample ID: LPAD-SB05-5.0-7.0 Client Project ID: Beluga River Unit

Lab Sample ID: 1235845009 Lab Project ID: 1235845 Collection Date: 10/13/23 11:05 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
2-Methylnaphthalene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Acenaphthene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Acenaphthylene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Anthracene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Benzo(a)Anthracene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Benzo[a]pyrene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Benzo[b]Fluoranthene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Benzo[g,h,i]perylene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Benzo[k]fluoranthene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Chrysene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Dibenzo[a,h]anthracene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Fluoranthene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Fluorene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Indeno[1,2,3-c,d] pyrene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Naphthalene	11.4 U	22.8	5.71	11.4	ug/kg	1		11/01/23 15:25
Phenanthrene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Pyrene	14.3 U	28.6	7.14	14.3	ug/kg	1		11/01/23 15:25
Surrogates								
2-Methylnaphthalene-d10 (surr)	84.3	58-103			%	1		11/01/23 15:25
Fluoranthene-d10 (surr)	85.5	54-113			%	1		11/01/23 15:25

Batch Information

Analytical Batch: XMS14059 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 11/01/23 15:25 Container ID: 1235845009-A Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.7 g

Prep Extract Vol: 5 mL

Client Sample ID: **LPAD-SB05-5.0-7.0**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235845009

Lab Project ID: 1235845

Collection Date: 10/13/23 11:05 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Semivolatile Organic Fuels

						Allowable	<u>.</u>
Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
18.8 J	22.8	10.3	11.4	mg/kg	1		10/28/23 13:10
90.7	50-150			%	1		10/28/23 13:10
	18.8 J	18.8 J 22.8	18.8 J 22.8 10.3	18.8 J 22.8 10.3 11.4	18.8 J 22.8 10.3 11.4 mg/kg	18.8 J 22.8 10.3 11.4 mg/kg 1	Result QualLOQ/CLDLLODUnitsDFLimits18.8 J22.810.311.4mg/kg1

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 13:10 Container ID: 1235845009-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45

Prep Initial Wt./Vol.: 22.7 g Prep Extract Vol: 5 mL

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	57.0 U	114	49.1	57.0	mg/kg	1		10/28/23 13:10
Surrogates								
n-Triacontane-d62 (surr)	94	50-150			%	1		10/28/23 13:10

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 13:10 Container ID: 1235845009-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.7 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB05-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845009 Lab Project ID: 1235845 Collection Date: 10/13/23 11:05 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.17 J	2.43	0.728	1.22	mg/kg	1		10/28/23 00:16
Surrogates								
4-Bromofluorobenzene (surr)	101	50-150			%	1		10/28/23 00:16

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/28/23 00:16 Container ID: 1235845009-B Prep Batch: VXX40708 Prep Method: SW5035A

Prep Date/Time: 10/13/23 11:05 Prep Initial Wt./Vol.: 86.515 g Prep Extract Vol: 36.4481 mL

Client Sample ID: LPAD-SB05-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845009

Lab Project ID: 1235845

Collection Date: 10/13/23 11:05 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.8 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,2,4-Trimethylbenzene	48.5 U	97.1	29.1	48.5	ug/kg	1		10/24/23 19:10
1,2-Dibromoethane	0.730 U	1.46	0.728	0.730	ug/kg	1		10/24/23 19:10
1,2-Dichloroethane	0.970 U	1.94	0.680	0.970	ug/kg	1		10/24/23 19:10
1,3,5-Trimethylbenzene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
Benzene	6.05 U	12.1	3.79	6.05	ug/kg	1		10/24/23 19:10
Cyclohexane	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
Ethylbenzene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
Isopropylbenzene (Cumene)	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
Methyl-t-butyl ether	48.5 U	97.1	30.1	48.5	ug/kg	1		10/24/23 19:10
Naphthalene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
n-Butylbenzene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
n-hexane	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
n-Propylbenzene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
o-Xylene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
P & M -Xylene	24.3 U	48.6	14.6	24.3	ug/kg	1		10/24/23 19:10
sec-Butylbenzene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
tert-Butylbenzene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
Toluene	12.2 U	24.3	7.57	12.2	ug/kg	1		10/24/23 19:10
Xylenes (total)	36.4 U	72.8	22.1	36.4	ug/kg	1		10/24/23 19:10
Surrogates								
1,2-Dichloroethane-D4 (surr)	99.8	71-136			%	1		10/24/23 19:10
4-Bromofluorobenzene (surr)	96.5	55-151			%	1		10/24/23 19:10
Toluene-d8 (surr)	102	85-116			%	1		10/24/23 19:10

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 19:10 Container ID: 1235845009-B

Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 11:05 Prep Initial Wt./Vol.: 86.515 g Prep Extract Vol: 36.4481 mL

Client Sample ID: LPAD-SB03-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845010 Lab Project ID: 1235845 Collection Date: 10/13/23 11:10 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	9.10	1.11	0.343	0.555	mg/kg	10		10/25/23 18:23
Barium	37.9	0.332	0.104	0.166	mg/kg	10		10/25/23 18:23
Cadmium	0.111 U	0.221	0.0686	0.111	mg/kg	10		10/25/23 18:23
Chromium	12.3	1.11	0.343	0.555	mg/kg	10		10/25/23 18:23
Lead	3.00	0.221	0.0686	0.111	mg/kg	10		10/25/23 18:23
Mercury	0.111 U	0.221	0.0775	0.111	mg/kg	10		10/25/23 18:23
Selenium	1.11 U	2.21	0.686	1.11	mg/kg	10		10/30/23 21:04
Silver	0.277 U	0.554	0.166	0.277	mg/kg	10		10/25/23 18:23

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:23 Container ID: 1235845010-A

Analytical Batch: MMS12122 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/30/23 21:04 Container ID: 1235845010-A Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.044 g Prep Extract Vol: 50 mL

Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.044 g Prep Extract Vol: 50 mL

Client Sample ID: LPAD-SB03-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845010

Lab Project ID: 1235845

Collection Date: 10/13/23 11:10 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1-Methylnaphthalene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
2-Methylnaphthalene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Acenaphthene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Acenaphthylene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Anthracene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Benzo(a)Anthracene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Benzo[a]pyrene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Benzo[b]Fluoranthene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Benzo[g,h,i]perylene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Benzo[k]fluoranthene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Chrysene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Dibenzo[a,h]anthracene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Fluoranthene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Fluorene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Indeno[1,2,3-c,d] pyrene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Naphthalene	11.5 U	23.0	5.76	11.5	ug/kg	1		11/01/23 15:41
Phenanthrene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Pyrene	14.4 U	28.8	7.20	14.4	ug/kg	1		11/01/23 15:41
Surrogates								
2-Methylnaphthalene-d10 (surr)	82.2	58-103			%	1		11/01/23 15:41
Fluoranthene-d10 (surr)	83.3	54-113			%	1		11/01/23 15:41

Batch Information

Analytical Batch: XMS14059 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 11/01/23 15:41 Container ID: 1235845010-A

Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.583 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB03-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845010 Lab Project ID: 1235845 Collection Date: 10/13/23 11:10 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	17.8 J	23.0	10.4	11.5	mg/kg	1		10/28/23 13:23
Surrogates								
5a Androstane (surr)	86.6	50-150			%	1		10/28/23 13:23

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 13:23 Container ID: 1235845010-A Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.583 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	53.4 J	115	49.5	57.5	mg/kg	1		10/28/23 13:23
Surrogates								
n-Triacontane-d62 (surr)	89.6	50-150			%	1		10/28/23 13:23

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 13:23 Container ID: 1235845010-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.583 g Prep Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:10AM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: LPAD-SB03-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845010 Lab Project ID: 1235845 Collection Date: 10/13/23 11:10 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.47 J	2.80	0.841	1.40	mg/kg	1		10/28/23 00:35
Surrogates								
4-Bromofluorobenzene (surr)	104	50-150			%	1		10/28/23 00:35

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/28/23 00:35 Container ID: 1235845010-B Prep Batch: VXX40708 Prep Method: SW5035A

Prep Date/Time: 10/13/23 11:10 Prep Initial Wt./Vol.: 71.357 g Prep Extract Vol: 34.6247 mL

Client Sample ID: LPAD-SB03-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845010

Lab Project ID: 1235845

Collection Date: 10/13/23 11:10 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	56.0 U	112	33.7	56.0	ug/kg	1		10/24/23 19:25
1,2-Dibromoethane	0.840 U	1.68	0.841	0.840	ug/kg	1		10/24/23 19:25
1,2-Dichloroethane	1.12 U	2.24	0.785	1.12	ug/kg	1		10/24/23 19:25
1,3,5-Trimethylbenzene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
Benzene	7.00 U	14.0	4.37	7.00	ug/kg	1		10/24/23 19:25
Cyclohexane	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
Ethylbenzene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
Isopropylbenzene (Cumene)	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
Methyl-t-butyl ether	56.0 U	112	34.8	56.0	ug/kg	1		10/24/23 19:25
Naphthalene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
n-Butylbenzene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
n-hexane	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
n-Propylbenzene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
o-Xylene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
P & M -Xylene	28.1 U	56.1	16.8	28.1	ug/kg	1		10/24/23 19:25
sec-Butylbenzene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
tert-Butylbenzene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
Toluene	14.0 U	28.0	8.75	14.0	ug/kg	1		10/24/23 19:25
Xylenes (total)	42.0 U	84.1	25.6	42.0	ug/kg	1		10/24/23 19:25
Surrogates								
1,2-Dichloroethane-D4 (surr)	99.6	71-136			%	1		10/24/23 19:25
4-Bromofluorobenzene (surr)	97.8	55-151			%	1		10/24/23 19:25
Toluene-d8 (surr)	102	85-116			%	1		10/24/23 19:25

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 19:25 Container ID: 1235845010-B Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 11:10 Prep Initial Wt./Vol.: 71.357 g Prep Extract Vol: 34.6247 mL

Client Sample ID: LPAD-SB04-5.0-7.0 Client Project ID: Beluga River Unit

Lab Sample ID: 1235845011 Lab Project ID: 1235845 Collection Date: 10/13/23 11:40 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.3 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	1.59	1.11	0.343	0.555	mg/kg	10		10/25/23 18:26
Barium	39.5	0.332	0.104	0.166	mg/kg	10		10/25/23 18:26
Cadmium	0.0855 J	0.221	0.0686	0.111	mg/kg	10		10/25/23 18:26
Chromium	9.21	1.11	0.343	0.555	mg/kg	10		10/25/23 18:26
Lead	3.27	0.221	0.0686	0.111	mg/kg	10		10/25/23 18:26
Mercury	0.111 U	0.221	0.0775	0.111	mg/kg	10		10/25/23 18:26
Selenium	1.11 U	2.21	0.686	1.11	mg/kg	10		10/30/23 21:06
Silver	0.277 U	0.553	0.166	0.277	mg/kg	10		10/25/23 18:26

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:26 Container ID: 1235845011-A

Analytical Batch: MMS12122 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/30/23 21:06 Container ID: 1235845011-A Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.072 g Prep Extract Vol: 50 mL

Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.072 g Prep Extract Vol: 50 mL

Client Sample ID: **LPAD-SB04-5.0-7.0** Client Project ID: **Beluga River Unit**

Lab Sample ID: 1235845011 Lab Project ID: 1235845 Collection Date: 10/13/23 11:40 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.3 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
2-Methylnaphthalene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Acenaphthene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Acenaphthylene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Anthracene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Benzo(a)Anthracene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Benzo[a]pyrene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Benzo[b]Fluoranthene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Benzo[g,h,i]perylene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Benzo[k]fluoranthene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Chrysene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Dibenzo[a,h]anthracene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Fluoranthene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Fluorene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Indeno[1,2,3-c,d] pyrene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Naphthalene	11.9 U	23.7	5.91	11.9	ug/kg	1		11/01/23 15:58
Phenanthrene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Pyrene	14.8 U	29.6	7.39	14.8	ug/kg	1		11/01/23 15:58
Surrogates								
2-Methylnaphthalene-d10 (surr)	86.3	58-103			%	1		11/01/23 15:58
Fluoranthene-d10 (surr)	88.2	54-113			%	1		11/01/23 15:58

Batch Information

Analytical Batch: XMS14059 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 11/01/23 15:58 Container ID: 1235845011-A Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.577 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB04-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845011

Lab Project ID: 1235845

Collection Date: 10/13/23 11:40 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.3 Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	38.3	23.7	10.6	11.9	mg/kg	1		10/28/23 13:35
Sumanatas								
Surrogates								
5a Androstane (surr)	93.8	50-150			%	1		10/28/23 13:35

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 13:35 Container ID: 1235845011-A Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.577 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	72.0 J	118	50.9	59.0	mg/kg	1		10/28/23 13:35
Surrogates								
n-Triacontane-d62 (surr)	96.2	50-150			%	1		10/28/23 13:35

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 13:35 Container ID: 1235845011-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.577 g

Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB04-5.0-7.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845011

Lab Project ID: 1235845

Collection Date: 10/13/23 11:40 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.3 Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.62 J	2.76	0.828	1.38	mg/kg	1		10/28/23 00:54
Surrogates								
4-Bromofluorobenzene (surr)	102	50-150			%	1		10/28/23 00:54

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/28/23 00:54 Container ID: 1235845011-B Prep Batch: VXX40708 Prep Method: SW5035A

Prep Date/Time: 10/13/23 11:40 Prep Initial Wt./Vol.: 81.221 g Prep Extract Vol: 37.7784 mL

Client Sample ID: **LPAD-SB04-5.0-7.0** Client Project ID: **Beluga River Unit**

Lab Sample ID: 1235845011 Lab Project ID: 1235845 Collection Date: 10/13/23 11:40 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):84.3 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	55.0 U	110	33.1	55.0	ug/kg	1		10/24/23 19:41
1,2-Dibromoethane	0.830 U	1.66	0.828	0.830	ug/kg	1		10/24/23 19:41
1,2-Dichloroethane	1.11 U	2.21	0.773	1.11	ug/kg	1		10/24/23 19:41
1,3,5-Trimethylbenzene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
Benzene	6.90 U	13.8	4.31	6.90	ug/kg	1		10/24/23 19:41
Cyclohexane	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
Ethylbenzene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
Isopropylbenzene (Cumene)	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
Methyl-t-butyl ether	55.0 U	110	34.2	55.0	ug/kg	1		10/24/23 19:41
Naphthalene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
n-Butylbenzene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
n-hexane	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
n-Propylbenzene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
o-Xylene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
P & M -Xylene	27.6 U	55.2	16.6	27.6	ug/kg	1		10/24/23 19:41
sec-Butylbenzene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
tert-Butylbenzene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
Toluene	13.8 U	27.6	8.61	13.8	ug/kg	1		10/24/23 19:41
Xylenes (total)	41.4 U	82.8	25.2	41.4	ug/kg	1		10/24/23 19:41
Surrogates								
1,2-Dichloroethane-D4 (surr)	102	71-136			%	1		10/24/23 19:41
4-Bromofluorobenzene (surr)	93.2	55-151			%	1		10/24/23 19:41
Toluene-d8 (surr)	102	85-116			%	1		10/24/23 19:41

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 19:41 Container ID: 1235845011-B

Prep Method: SW5035A
Prep Date/Time: 10/13/23 11:40
Prep Initial Wt./Vol.: 81.221 g
Prep Extract Vol: 37.7784 mL

Prep Batch: VXX40683

Client Sample ID: LPAD-SB04-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845012 Lab Project ID: 1235845 Collection Date: 10/13/23 11:45 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):88.8 Location:

Results by Metals by ICP/MS

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	19.6	1.09	0.339	0.545	mg/kg	10		10/25/23 18:28
Barium	86.2	0.328	0.103	0.164	mg/kg	10		10/25/23 18:28
Cadmium	0.0787 J	0.218	0.0677	0.109	mg/kg	10		10/25/23 18:28
Chromium	11.7	1.09	0.339	0.545	mg/kg	10		10/25/23 18:28
Lead	3.20	0.218	0.0677	0.109	mg/kg	10		10/25/23 18:28
Mercury	0.109 U	0.218	0.0764	0.109	mg/kg	10		10/25/23 18:28
Selenium	1.09 U	2.18	0.677	1.09	mg/kg	10		10/30/23 21:09
Silver	0.273 U	0.546	0.164	0.273	mg/kg	10		10/25/23 18:28

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/25/23 18:28 Container ID: 1235845012-A

Analytical Batch: MMS12122 Analytical Method: SW6020B

Analyst: HGS

Analytical Date/Time: 10/30/23 21:09 Container ID: 1235845012-A Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.031 g Prep Extract Vol: 50 mL

Prep Batch: MXX36293 Prep Method: SW3050B Prep Date/Time: 10/22/23 12:52 Prep Initial Wt./Vol.: 1.031 g Prep Extract Vol: 50 mL

Client Sample ID: LPAD-SB04-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845012

Lab Project ID: 1235845

Collection Date: 10/13/23 11:45 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):88.8 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
2-Methylnaphthalene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Acenaphthene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Acenaphthylene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Anthracene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Benzo(a)Anthracene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Benzo[a]pyrene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Benzo[b]Fluoranthene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Benzo[g,h,i]perylene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Benzo[k]fluoranthene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Chrysene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Dibenzo[a,h]anthracene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Fluoranthene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Fluorene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Indeno[1,2,3-c,d] pyrene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Naphthalene	11.3 U	22.5	5.62	11.3	ug/kg	1		11/01/23 16:14
Phenanthrene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Pyrene	14.1 U	28.1	7.02	14.1	ug/kg	1		11/01/23 16:14
Surrogates								
2-Methylnaphthalene-d10 (surr)	83.2	58-103			%	1		11/01/23 16:14
Fluoranthene-d10 (surr)	83.7	54-113			%	1		11/01/23 16:14

Batch Information

Analytical Batch: XMS14059 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 11/01/23 16:14 Container ID: 1235845012-A Prep Batch: XXX48905 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50 Prep Initial Wt./Vol.: 22.542 g Prep Extract Vol: 5 mL

Client Sample ID: LPAD-SB04-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845012 Lab Project ID: 1235845 Collection Date: 10/13/23 11:45 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):88.8 Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	19.9 J	22.5	10.1	11.3	mg/kg	1		10/28/23 13:48
Surrogates								
5a Androstane (surr)	89.9	50-150			%	1		10/28/23 13:48

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 13:48 Container ID: 1235845012-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45

Prep Date/Time: 10/22/23 09:48 Prep Initial Wt./Vol.: 22.542 g Prep Extract Vol: 5 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	64.4 J	112	48.3	56.0	mg/kg	1		10/28/23 13:48
Surrogates								
n-Triacontane-d62 (surr)	92.9	50-150			%	1		10/28/23 13:48

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 13:48 Container ID: 1235845012-A Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.542 g Prep Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:10AM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: LPAD-SB04-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845012 Lab Project ID: 1235845 Collection Date: 10/13/23 11:45 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):88.8 Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.30 J	2.40	0.719	1.20	mg/kg	1		10/28/23 01:31
Surrogates								
4-Bromofluorobenzene (surr)	81.2	50-150			%	1		10/28/23 01:31

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/28/23 01:31 Container ID: 1235845012-B

Prep Batch: VXX40708 Prep Method: SW5035A

Prep Date/Time: 10/13/23 11:45 Prep Initial Wt./Vol.: 79.564 g Prep Extract Vol: 33.8935 mL

Client Sample ID: LPAD-SB04-13.0-15.0 Client Project ID: Beluga River Unit Lab Sample ID: 1235845012

Lab Project ID: 1235845

Collection Date: 10/13/23 11:45 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):88.8 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1,2,4-Trimethylbenzene	48.0 U	95.9	28.8	48.0	ug/kg	1		10/24/23 19:56
1,2-Dibromoethane	0.720 U	1.44	0.719	0.720	ug/kg	1		10/24/23 19:56
1,2-Dichloroethane	0.960 U	1.92	0.671	0.960	ug/kg	1		10/24/23 19:56
1,3,5-Trimethylbenzene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
Benzene	6.00 U	12.0	3.74	6.00	ug/kg	1		10/24/23 19:56
Cyclohexane	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
Ethylbenzene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
Isopropylbenzene (Cumene)	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
Methyl-t-butyl ether	48.0 U	95.9	29.7	48.0	ug/kg	1		10/24/23 19:56
Naphthalene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
n-Butylbenzene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
n-hexane	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
n-Propylbenzene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
o-Xylene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
P & M -Xylene	24.0 U	48.0	14.4	24.0	ug/kg	1		10/24/23 19:56
sec-Butylbenzene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
tert-Butylbenzene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
Toluene	12.0 U	24.0	7.48	12.0	ug/kg	1		10/24/23 19:56
Xylenes (total)	36.0 U	71.9	21.9	36.0	ug/kg	1		10/24/23 19:56
Surrogates								
1,2-Dichloroethane-D4 (surr)	101	71-136			%	1		10/24/23 19:56
4-Bromofluorobenzene (surr)	77.6	55-151			%	1		10/24/23 19:56
Toluene-d8 (surr)	101	85-116			%	1		10/24/23 19:56

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 19:56

Container ID: 1235845012-B

Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 11:45 Prep Initial Wt./Vol.: 79.564 g Prep Extract Vol: 33.8935 mL

Client Sample ID: MPAD-SB02-7.5-8.5 Client Project ID: Beluga River Unit Lab Sample ID: 1235845013

Lab Project ID: 1235845

Collection Date: 10/13/23 15:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	708	143	35.7	71.5	ug/kg	5		11/01/23 21:37
2-Methylnaphthalene	708	143	35.7	71.5	ug/kg	5		11/01/23 21:37
Acenaphthene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Acenaphthylene	9.28 J	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Anthracene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Benzo(a)Anthracene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Benzo[a]pyrene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Benzo[b]Fluoranthene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Benzo[g,h,i]perylene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Benzo[k]fluoranthene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Chrysene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Dibenzo[a,h]anthracene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Fluoranthene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Fluorene	23.1 J	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Indeno[1,2,3-c,d] pyrene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Naphthalene	335	22.9	5.71	11.4	ug/kg	1		10/30/23 19:18
Phenanthrene	8.76 J	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Pyrene	14.3 U	28.6	7.14	14.3	ug/kg	1		10/30/23 19:18
Surrogates								
2-Methylnaphthalene-d10 (surr)	100	58-103			%	1		10/30/23 19:18
Fluoranthene-d10 (surr)	81.5	54-113			%	1		10/30/23 19:18

Batch Information

Analytical Batch: XMS14052 Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 10/30/23 19:18

Container ID: 1235845013-A

Analytical Batch: XMS14059

Analytical Method: 8270D SIM (PAH)

Analyst: HMW

Analytical Date/Time: 11/01/23 21:37 Container ID: 1235845013-A

70D SIM (PAH) Prep Method: SW3550C Prep Date/Time: 10/22/23 09:50

Prep Initial Wt./Vol.: 22.762 g Prep Extract Vol: 5 mL

Prep Batch: XXX48905

Prep Method: SW3550C

Prep Extract Vol: 5 mL

Prep Batch: XXX48905

Prep Date/Time: 10/22/23 09:50

Prep Initial Wt./Vol.: 22.762 g

Client Sample ID: MPAD-SB02-7.5-8.5 Client Project ID: Beluga River Unit Lab Sample ID: 1235845013 Lab Project ID: 1235845 Collection Date: 10/13/23 15:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	564	22.9	10.3	11.4	mg/kg	1		10/28/23 14:01
Surrogates								
5a Androstane (surr)	92.8	50-150			%	1		10/28/23 14:01

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/28/23 14:01 Container ID: 1235845013-A

Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.762 g Prep Extract Vol: 5 mL

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u>	<u>Date Analyzed</u>
Residual Range Organics	506	114	49.1	57.0	mg/kg	1	<u>Limits</u>	10/28/23 14:01
Surrogates n-Triacontane-d62 (surr)	98.6	50-150			%	1		10/28/23 14:01

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/28/23 14:01 Container ID: 1235845013-A

Prep Batch: XXX48904 Prep Method: SW3550C Prep Date/Time: 10/22/23 09:45 Prep Initial Wt./Vol.: 22.762 g Prep Extract Vol: 5 mL

Client Sample ID: MPAD-SB02-7.5-8.5 Client Project ID: Beluga River Unit Lab Sample ID: 1235845013

Lab Project ID: 1235845

Collection Date: 10/13/23 15:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Volatile Fuels

<u>Allowable</u> LOQ/CL DL LOD Units <u>DF</u> Parameter Result Qual <u>Limits</u> **Date Analyzed** Gasoline Range Organics 18.8 0.838 2.79 1.40 mg/kg 1 10/28/23 01:50 **Surrogates** 4-Bromofluorobenzene (surr) 223 50-150 1 10/28/23 01:50

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/28/23 01:50 Container ID: 1235845013-B Prep Batch: VXX40708 Prep Method: SW5035A

Prep Date/Time: 10/13/23 15:00 Prep Initial Wt./Vol.: 71.699 g Prep Extract Vol: 34.6698 mL

Client Sample ID: MPAD-SB02-7.5-8.5 Client Project ID: Beluga River Unit Lab Sample ID: 1235845013

Lab Project ID: 1235845

Collection Date: 10/13/23 15:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%):86.5 Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	1800	112	33.5	56.0	ug/kg	1		10/24/23 20:12
1,2-Dibromoethane	0.840 U	1.68	0.838	0.840	ug/kg	1		10/24/23 20:12
1,2-Dichloroethane	1.12 U	2.24	0.782	1.12	ug/kg	1		10/24/23 20:12
1,3,5-Trimethylbenzene	1010	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
Benzene	7.00 U	14.0	4.36	7.00	ug/kg	1		10/24/23 20:12
Cyclohexane	10.1 J	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
Ethylbenzene	57.6	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
Isopropylbenzene (Cumene)	283	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
Methyl-t-butyl ether	56.0 U	112	34.7	56.0	ug/kg	1		10/24/23 20:12
Naphthalene	396	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
n-Butylbenzene	13.9 U	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
n-hexane	13.9 U	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
n-Propylbenzene	546	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
o-Xylene	232	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
P & M -Xylene	188	55.9	16.8	27.9	ug/kg	1		10/24/23 20:12
sec-Butylbenzene	127	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
tert-Butylbenzene	14.0 J	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
Toluene	26.4 J	27.9	8.72	13.9	ug/kg	1		10/24/23 20:12
Xylenes (total)	420	83.8	25.5	41.9	ug/kg	1		10/24/23 20:12
Surrogates								
1,2-Dichloroethane-D4 (surr)	105	71-136			%	1		10/24/23 20:12
4-Bromofluorobenzene (surr)	91.9	55-151			%	1		10/24/23 20:12
Toluene-d8 (surr)	99.9	85-116			%	1		10/24/23 20:12

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 20:12 Container ID: 1235845013-B Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/13/23 15:00 Prep Initial Wt./Vol.: 71.699 g Prep Extract Vol: 34.6698 mL

Results of TRIPBLANK

Client Sample ID: **TRIPBLANK**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235845014

Lab Project ID: 1235845

Collection Date: 10/12/23 12:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.29 J	2.51	0.753	1.26	mg/kg	1		10/27/23 14:53
Surrogates								
4-Bromofluorobenzene (surr)	99.3	50-150			%	1		10/27/23 14:53

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/27/23 14:53 Container ID: 1235845014-A Prep Batch: VXX40707 Prep Method: SW5035A

Prep Date/Time: 10/12/23 12:00 Prep Initial Wt./Vol.: 49.797 g Prep Extract Vol: 25 mL

Results of TRIPBLANK

Client Sample ID: **TRIPBLANK**Client Project ID: **Beluga River Unit**

Lab Sample ID: 1235845014 Lab Project ID: 1235845 Collection Date: 10/12/23 12:00 Received Date: 10/16/23 14:03 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS- Petroleum VOC Group

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,2,4-Trimethylbenzene	50.0 U	100	30.1	50.0	ug/kg	1		10/24/23 16:50
1,2-Dibromoethane	0.755 U	1.51	0.753	0.755	ug/kg	1		10/24/23 16:50
1,2-Dichloroethane	1.00 U	2.01	0.703	1.00	ug/kg	1		10/24/23 16:50
1,3,5-Trimethylbenzene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
Benzene	6.30 U	12.6	3.92	6.30	ug/kg	1		10/24/23 16:50
Cyclohexane	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
Ethylbenzene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
Isopropylbenzene (Cumene)	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
Methyl-t-butyl ether	50.0 U	100	31.1	50.0	ug/kg	1		10/24/23 16:50
Naphthalene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
n-Butylbenzene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
n-hexane	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
n-Propylbenzene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
o-Xylene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
P & M -Xylene	25.1 U	50.2	15.1	25.1	ug/kg	1		10/24/23 16:50
sec-Butylbenzene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
tert-Butylbenzene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
Toluene	12.6 U	25.1	7.83	12.6	ug/kg	1		10/24/23 16:50
Xylenes (total)	37.6 U	75.3	22.9	37.6	ug/kg	1		10/24/23 16:50
Surrogates								
1,2-Dichloroethane-D4 (surr)	94.7	71-136			%	1		10/24/23 16:50
4-Bromofluorobenzene (surr)	96	55-151			%	1		10/24/23 16:50
Toluene-d8 (surr)	103	85-116			%	1		10/24/23 16:50

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/24/23 16:50 Container ID: 1235845014-A Prep Batch: VXX40683 Prep Method: SW5035A Prep Date/Time: 10/12/23 12:00 Prep Initial Wt./Vol.: 49.797 g Prep Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1866354 [MXX/36293]

Blank Lab ID: 1742225

QC for Samples:

1235845002, 1235845003, 1235845004, 1235845008, 1235845009, 1235845010, 1235845011, 1235845012

Results by SW6020B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>
Arsenic	0.500U	1.00	0.310	0.500	mg/kg
Barium	0.150U	0.300	0.0940	0.150	mg/kg
Cadmium	0.100U	0.200	0.0620	0.100	mg/kg
Chromium	0.500U	1.00	0.310	0.500	mg/kg
Lead	0.100U	0.200	0.0620	0.100	mg/kg
Mercury	0.100U	0.200	0.0700	0.100	mg/kg
Selenium	1.00U	2.00	0.620	1.00	mg/kg
Silver	0.250U	0.500	0.150	0.250	mg/kg

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/25/2023 5:45:35PM

Prep Batch: MXX36293 Prep Method: SW3050B

Prep Date/Time: 10/22/2023 12:52:00PM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [MXX36293]

Blank Spike Lab ID: 1742226 Date Analyzed: 10/25/2023 17:48

Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845002, 1235845003, 1235845004, 1235845008, 1235845009, 1235845010, 1235845011,

1235845012

Results by SW6020B

Blank Spike (mg/kg)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	CL					
Arsenic	50	48.1	96	(82-118)					
Barium	50	47.7	96	(86-116)					
Cadmium	5	5.06	101	(84-116)					
Chromium	20	21.0	105	(83-119)					
Lead	50	46.1	92	(84-118)					
Mercury	0.5	0.454	91	(74-126)					
Selenium	50	47.4	95	(80-119)					
Silver	5	4.83	97	(83-118)					

Batch Information

Analytical Batch: MMS12113 Analytical Method: SW6020B Instrument: P7 Agilent 7800

Analyst: HGS

Prep Batch: MXX36293 Prep Method: SW3050B

Prep Date/Time: 10/22/2023 12:52

Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Method Blank

Blank ID: MB for HBN 1866775 [MXX/36311]

Blank Lab ID: 1743794

QC for Samples: 1235845005

Matrix: Soil/Solid (dry weight)

Results by SW6020B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>
Arsenic	0.500U	1.00	0.310	0.500	mg/kg
Barium	0.150U	0.300	0.0940	0.150	mg/kg
Cadmium	0.100U	0.200	0.0620	0.100	mg/kg
Chromium	0.500U	1.00	0.310	0.500	mg/kg
Lead	0.100U	0.200	0.0620	0.100	mg/kg
Mercury	0.100U	0.200	0.0700	0.100	mg/kg
Selenium	1.00U	2.00	0.620	1.00	mg/kg
Silver	0.250U	0.500	0.150	0.250	mg/kg

Batch Information

Analytical Batch: MMS12123 Analytical Method: SW6020B

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 12:03:00PM

Analytical Batch: MMS12124 Analytical Method: SW6020B

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 2:40:08PM

Prep Batch: MXX36311 Prep Method: SW3050B

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Prep Batch: MXX36311 Prep Method: SW3050B

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [MXX36311]

Blank Spike Lab ID: 1743795 Date Analyzed: 10/31/2023 12:06

Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845005

Results by SW6020B

Blank Spike (mg/kg)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>					
Arsenic	50	44.4	89	(82-118)					
Barium	50	49.7	100	(86-116)					
Cadmium	5	4.95	99	(84-116)					
Chromium	20	19.3	96	(83-119)					
Lead	50	47.7	95	(84-118)					
Mercury	0.5	0.451	90	(74-126)					
Selenium	50	56.4	113	(80-119)					
Silver	5	4.96	99	(83-118)					

Batch Information

Analytical Batch: MMS12123 Analytical Method: SW6020B

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Batch: MMS12124 Analytical Method: SW6020B Instrument: P7 Agilent 7800

Analyst: HGS

Prep Batch: MXX36311 Prep Method: SW3050B

Prep Date/Time: 10/30/2023 13:06

Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Prep Batch: MXX36311 Prep Method: SW3050B

Prep Date/Time: 10/30/2023 13:06

Spike Init Wt./Vol.: 50 mg/kg Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1743800 MS Sample ID: 1743803 MS MSD Sample ID: 1743804 MSD

QC for Samples: 1235845005

Analysis Date: 10/31/2023 12:09 Analysis Date: 10/31/2023 12:11 Analysis Date: 10/31/2023 12:13 Matrix: Solid/Soil (Wet Weight)

Results by SW6020B

		Matrix Spike (mg/kg)		Spike Duplicate (mg/kg)						
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Arsenic	2.94	49.2	49.5	95	47.9	46.5	91	82-118	6.28	(< 20)
Barium	1960	49.2	2030	161 *	47.9	2190	496 *	86-116	7.51	(< 20)
Cadmium	0.313	4.92	5.52	106	4.79	4.98	97	84-116	10.30	(< 20)
Chromium	37.3	19.7	62.6	129 *	19.2	55.1	93	83-119	12.70	(< 20)
Lead	11.7	49.2	60.6	100	47.9	56.4	93	84-118	7.13	(< 20)
Mercury	0.0910U	0.492	.482	98	0.479	0.467	97	74-126	3.20	(< 20)
Selenium	0.910U	49.2	51.4	105	47.9	52.5	109	80-119	2.12	(< 20)
Silver	0.227U	4.92	5.22	106	4.79	4.71	98	83-118	10.30	(< 20)

Batch Information

Analytical Batch: MMS12123 Analytical Method: SW6020B

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 12:11:00PM

Analytical Batch: MMS12124 Analytical Method: SW6020B Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 2:47:00PM

Prep Batch: MXX36311

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1.02g Prep Extract Vol: 50.00mL

Prep Batch: MXX36311

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1.02g Prep Extract Vol: 50.00mL

Bench Spike Summary

Original Sample ID: 1235845005 MS Sample ID: 1743796 BND

MSD Sample ID:

QC for Samples: 1235845005

Analysis Date: 10/31/2023 12:23 Analysis Date: 10/31/2023 12:35

Analysis Date:

Matrix: Soil/Solid (dry weight)

Results by SW6020B

Matrix Spike (mg/kg) Spike Duplicate (mg/kg)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Barium 30.8 279 299 **96** 75-125

Batch Information

Analytical Batch: MMS12123 Analytical Method: SW6020B

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 12:35:00PM

Prep Batch: MXX36311

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1.04g Prep Extract Vol: 50.00mL

Bench Spike Summary

Original Sample ID: 1743800 MS Sample ID: 1743801 BND

MSD Sample ID:

QC for Samples: 1235845005

Analysis Date: 10/31/2023 12:48 Analysis Date: 10/31/2023 12:55

Analysis Date:

Matrix: Solid/Soil (Wet Weight)

Results by SW6020B

		Matrix Spike (mg/kg)			Spike Duplicate (mg/kg)					
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Barium	1960	1140	3210	111				75-125		
Chromium	37.3	114	142	92				75-125		

Batch Information

Analytical Batch: MMS12123 Analytical Method: SW6020B

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 12:16:00PM

Prep Batch: MXX36311

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1.10g Prep Extract Vol: 50.00mL

Billable Matrix Spike Summary

Original Sample ID: 1235845005 MS Sample ID: 1235845006 BMS MSD Sample ID: 1235845007 BMSD

QC for Samples:

Analysis Date: 10/31/2023 12:23 Analysis Date: 10/31/2023 12:25 Analysis Date: 10/31/2023 12:33 Matrix: Soil/Solid (dry weight)

Results by SW6020B

		Matrix Spike (mg/kg)			Spike Duplicate (mg/kg)					
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Arsenic	3.56	57.5	52.5	85	56.1	54.8	91	82-118	4.34	(< 20)
Barium	30.8	57.5	95.2	112	56.1	96.9	118 *	86-116	1.72	(< 20)
Cadmium	0.186J	5.75	5.69	96	5.61	6.05	105	84-116	6.10	(< 20)
Chromium	12.0	22.9	33.3	92	22.5	31.7	88	83-119	4.83	(< 20)
Lead	2.73	57.5	52.7	87	56.1	57.3	97	84-118	8.23	(< 20)
Mercury	0.112U	0.575	0.531	92	0.561	0.565	101	74-126	6.28	(< 20)
Selenium	1.12U	57.5	61.9	108	56.1	63.6	113	80-119	2.49	(< 20)
Silver	0.280U	5.75	5.63	98	5.61	5.86	104	83-118	3.91	(< 20)

Batch Information

Analytical Batch: MMS12123 Analytical Method: SW6020B Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 12:25:00PM

Analytical Batch: MMS12124 Analytical Method: SW6020B Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/31/2023 3:09:00PM

Prep Batch: MXX36311

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1.01g Prep Extract Vol: 50.00mL

Prep Batch: MXX36311

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 10/30/2023 1:06:44PM

Prep Initial Wt./Vol.: 1.01g Prep Extract Vol: 50.00mL

Method Blank

Blank ID: MB for HBN 1866334 [SPT/11946]

Blank Lab ID: 1742146

QC for Samples:

1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009, 1235845010, 1235845011, 1235

Matrix: Soil/Solid (dry weight)

1235845012, 1235845013

Results by SM21 2540G

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>LOD</u> <u>Units</u>

Total Solids 99.9

Batch Information

Analytical Batch: SPT11946 Analytical Method: SM21 2540G

Instrument: Analyst: APS

Analytical Date/Time: 10/19/2023 9:38:00PM

Duplicate Sample Summary

Original Sample ID: 1235800012 Analysis Date: 10/19/2023 21:38
Duplicate Sample ID: 1742148 Matrix: Soil/Solid (dry weight)

QC for Samples:

1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009, 1235845010,

1235845011, 1235845012, 1235845013

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	84.5	84.1	%	0.42	(< 15)

Batch Information

Analytical Batch: SPT11946 Analytical Method: SM21 2540G

Instrument: Analyst: APS

Print Date: 11/03/2023 10:59:29AM

Method Blank

Blank ID: MB for HBN 1866477 [VXX/40683]

Blank Lab ID: 1742686

QC for Samples:

1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009, 1235845010, 1235845011,

1235845012, 1235845013, 1235845014

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
1,2,4-Trimethylbenzene	50.0U	100	30.0	50.0	ug/kg
1,2-Dibromoethane	0.750U	1.50	0.750	0.750	ug/kg
1,2-Dichloroethane	1.00U	2.00	0.700	1.00	ug/kg
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	12.5	ug/kg
Benzene	6.25U	12.5	3.90	6.25	ug/kg
Cyclohexane	12.5U	25.0	7.80	12.5	ug/kg
Ethylbenzene	12.5U	25.0	7.80	12.5	ug/kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	12.5	ug/kg
Methyl-t-butyl ether	50.0U	100	31.0	50.0	ug/kg
Naphthalene	12.5U	25.0	7.80	12.5	ug/kg
n-Butylbenzene	12.5U	25.0	7.80	12.5	ug/kg
n-hexane	12.5U	25.0	7.80	12.5	ug/kg
n-Propylbenzene	12.5U	25.0	7.80	12.5	ug/kg
o-Xylene	12.5U	25.0	7.80	12.5	ug/kg
P & M -Xylene	25.0U	50.0	15.0	25.0	ug/kg
sec-Butylbenzene	12.5U	25.0	7.80	12.5	ug/kg
tert-Butylbenzene	12.5U	25.0	7.80	12.5	ug/kg
Toluene	12.5U	25.0	7.80	12.5	ug/kg
Xylenes (total)	37.5U	75.0	22.8	37.5	ug/kg
Surrogates					
1,2-Dichloroethane-D4 (surr)	93.4	71-136		0	%
4-Bromofluorobenzene (surr)	94.7	55-151		0	%
Toluene-d8 (surr)	102	85-116		0	%

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 10/24/2023 12:59:00PM

Prep Batch: VXX40683 Prep Method: SW5035A

Prep Date/Time: 10/24/2023 6:00:00AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/03/2023 10:59:33AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [VXX40683]

Blank Spike Lab ID: 1742687 Date Analyzed: 10/24/2023 13:15

Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009,

1235845010, 1235845011, 1235845012, 1235845013, 1235845014

Results by SW8260D

		Blank Spike	· (ua/ka)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1,2,4-Trimethylbenzene	750	752	100	(75-123)
1,2-Dibromoethane	750	760	101	(78-122)
1,2-Dichloroethane	750	623	83	(73-128)
1,3,5-Trimethylbenzene	750	729	97	(73-124)
Benzene	750	754	101	(77-121)
Cyclohexane	750	744	99	(70-130)
Ethylbenzene	750	749	100	(76-122)
Isopropylbenzene (Cumene)	750	741	99	(68-134)
Methyl-t-butyl ether	1130	1030	91	(73-125)
Naphthalene	750	783	104	(62-129)
n-Butylbenzene	750	746	100	(70-128)
n-hexane	750	753	100	(70-130)
n-Propylbenzene	750	750	100	(73-125)
o-Xylene	750	759	101	(77-123)
P & M -Xylene	1500	1510	101	(77-124)
sec-Butylbenzene	750	747	100	(73-126)
tert-Butylbenzene	750	728	97	(73-125)
Toluene	750	760	101	(77-121)
Xylenes (total)	2250	2270	101	(78-124)
Surrogates				
1,2-Dichloroethane-D4 (surr)	750		85	(71-136)
4-Bromofluorobenzene (surr)	750		93	(55-151)
Toluene-d8 (surr)	750		102	(85-116)

Batch Information

Analytical Batch: VMS22916
Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Prep Batch: VXX40683
Prep Method: SW5035A

Prep Date/Time: 10/24/2023 06:00

Spike Init Wt./Vol.: 750 ug/kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/03/2023 10:59:35AM

Matrix Spike Summary

 Original Sample ID: 1742691
 Analysis Date: 10/24/2023 17:21

 MS Sample ID: 1742692 MS
 Analysis Date: 10/24/2023 15:32

 MSD Sample ID: 1742693 MSD
 Analysis Date: 10/24/2023 15:48

 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009,

1235845010, 1235845011, 1235845012, 1235845013, 1235845014

Results by SW8260D

		Mat	rix Spike (ι	ug/kg)	Spike	Duplicate	(ug/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2,4-Trimethylbenzene	74.0U	1120	1190	106	1120	1110	99	75-123	6.80	(< 20)
1,2-Dibromoethane	1.11U	1120	1190	106	1120	1120	100	78-122	6.20	(< 20)
1,2-Dichloroethane	1.48U	1120	964	86	1120	895	80	73-128	7.40	(< 20)
1,3,5-Trimethylbenzene	18.6U	1120	1150	103	1120	1080	97	73-124	6.50	(< 20)
Benzene	9.25U	1120	1170	105	1120	1080	97	77-121	7.60	(< 20)
Ethylbenzene	18.6U	1120	1200	107	1120	1100	98	76-122	8.70	(< 20)
Isopropylbenzene (Cumene)	18.6U	1120	1200	108	1120	1100	98	68-134	9.00	(< 20)
Methyl-t-butyl ether	74.0U	1670	1630	97	1670	1520	91	73-125	7.00	(< 20)
Naphthalene	18.6U	1120	1270	114	1120	1210	108	62-129	4.60	(< 20)
n-Butylbenzene	18.6U	1120	1180	106	1120	1090	98	70-128	7.60	(< 20)
n-Propylbenzene	18.6U	1120	1200	107	1120	1110	100	73-125	7.40	(< 20)
o-Xylene	18.6U	1120	1200	107	1120	1100	99	77-123	8.30	(< 20)
P & M -Xylene	37.0U	2230	2400	108	2230	2220	99	77-124	8.00	(< 20)
sec-Butylbenzene	18.6U	1120	1190	107	1120	1100	99	73-126	7.70	(< 20)
tert-Butylbenzene	18.6U	1120	1150	103	1120	1070	96	73-125	7.40	(< 20)
Toluene	18.6U	1120	1200	107	1120	1100	99	77-121	8.30	(< 20)
Xylenes (total)	55.5U	3350	3600	107	3350	3320	99	78-124	8.10	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		1120	948	85	1120	946	85	71-136	0.18	
4-Bromofluorobenzene (surr)		1500	1380	92	1500	1380	92	55-151	0.37	
Toluene-d8 (surr)		1120	1140	102	1120	1140	102	85-116	0.31	

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 10/24/2023 3:32:00PM

Prep Batch: VXX40683

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 10/24/2023 6:00:00AM

Prep Initial Wt./Vol.: 41.67g Prep Extract Vol: 30.88mL

Print Date: 11/03/2023 10:59:37AM

Billable Matrix Spike Summary

Original Sample ID: 1235845005 MS Sample ID: 1235845006 BMS MSD Sample ID: 1235845007 BMSD

QC for Samples:

Analysis Date: 10/24/2023 17:21 Analysis Date: 10/24/2023 15:32 Analysis Date: 10/24/2023 15:48 Matrix: Soil/Solid (dry weight)

Results by SW8260D

		Mat	rix Spike (ug/kg)	Spike	Duplicate	(ug/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1,2,4-Trimethylbenzene	86.5U	1304	1385	106	1304	1292	99	75-123	6.80	(< 20)
1,2-Dibromoethane	1.29U	1304	1385	106	1304	1304	100	78-122	6.20	(< 20)
1,2-Dichloroethane	1.73U	1304	1122	86	1304	1042	80	73-128	7.40	(< 20)
1,3,5-Trimethylbenzene	21.6U	1304	1339	103	1304	1257	97	73-124	6.50	(< 20)
Benzene	10.8U	1304	1362	105	1304	1257	97	77-121	7.60	(< 20)
Cyclohexane	21.6U	1304	1444	111	1304	1327	102	70-130	8.40	(< 20)
Ethylbenzene	21.6U	1304	1397	107	1304	1281	98	76-122	8.70	(< 20)
Isopropylbenzene (Cumene)	21.6U	1304	1397	108	1304	1281	98	68-134	9.00	(< 20)
Methyl-t-butyl ether	86.5U	1944	1898	97	1944	1769	91	73-125	7.00	(< 20)
Naphthalene	21.6U	1304	1478	114	1304	1409	108	62-129	4.60	(< 20)
n-Butylbenzene	21.6U	1304	1374	106	1304	1269	98	70-128	7.60	(< 20)
n-hexane	21.6U	1304	1513	116	1304	1199	93	70-130	22.50 *	(< 20)
n-Propylbenzene	21.6U	1304	1397	107	1304	1292	100	73-125	7.40	(< 20)
o-Xylene	21.6U	1304	1397	107	1304	1281	99	77-123	8.30	(< 20)
P & M -Xylene	43.1U	2596	2794	108	2596	2584	99	77-124	8.00	(< 20)
sec-Butylbenzene	21.6U	1304	1385	107	1304	1281	99	73-126	7.70	(< 20)
tert-Butylbenzene	21.6U	1304	1339	103	1304	1246	96	73-125	7.40	(< 20)
Toluene	21.6U	1304	1397	107	1304	1281	99	77-121	8.30	(< 20)
Xylenes (total)	64.5U	3900	4191	107	3900	3865	99	78-124	8.10	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		1304	1104	85	1304	1101	85	71-136	0.18	
4-Bromofluorobenzene (surr)		1746	1607	92	1746	1607	92	55-151	0.37	
Toluene-d8 (surr)		1304	1327	102	1304	1327	102	85-116	0.31	

Batch Information

Analytical Batch: VMS22916 Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 10/24/2023 3:32:00PM

Prep Batch: VXX40683

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 10/13/2023 10:15:00AM

Prep Initial Wt./Vol.: 41.67g Prep Extract Vol: 30.88mL

Print Date: 11/03/2023 10:59:37AM

Method Blank

Blank ID: MB for HBN 1866750 [VXX/40707]

Blank Lab ID: 1743661

QC for Samples:

1235845001, 1235845002, 1235845003, 1235845005, 1235845014

Matrix: Soil/Solid (dry weight)

Results by AK101

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
Gasoline Range Organics	1.48J	2.50	0.750	1.25	mg/kg
Surrogates					
4-Bromofluorobenzene (surr)	91.4	50-150		0	%

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: CWD

Analytical Date/Time: 10/27/2023 1:22:00PM

Prep Batch: VXX40707 Prep Method: SW5035A

Prep Date/Time: 10/27/2023 6:00:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/03/2023 10:59:39AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [VXX40707]

Blank Spike Lab ID: 1743662

Date Analyzed: 10/27/2023 12:45

Spike Duplicate ID: LCSD for HBN 1235845

[VXX40707]

Spike Duplicate Lab ID: 1743663 Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845001, 1235845002, 1235845003, 1235845005, 1235845014

Results by AK101

	E	Blank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	12.5	12.2	97	12.5	12.1	97	(60-120)	0.68	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25		90	1.25		92	(50-150)	2.00	

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: CWD

Prep Batch: VXX40707 Prep Method: SW5035A

Prep Date/Time: 10/27/2023 06:00

Spike Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL

Print Date: 11/03/2023 10:59:41AM

Billable Matrix Spike Summary

Original Sample ID: 1235845005 MS Sample ID: 1235845006 BMS MSD Sample ID: 1235845007 BMSD

QC for Samples:

Analysis Date: 10/27/2023 19:54 Analysis Date: 10/27/2023 20:12 Analysis Date: 10/27/2023 20:31 Matrix: Soil/Solid (dry weight)

Results by AK101

		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			
Parameter Gasoline Range Organics	<u>Sample</u> 4.06J	<u>Spike</u> 21.5	Result 25.1	Rec (%) 98	<u>Spike</u> 21.5	Result 25.5	Rec (%) 100	<u>CL</u> 60-120	RPD (%) 1.30	RPD CL (< 20)
Surrogates 4-Bromofluorobenzene (surr)		1.75	1.92	110	1.75	1.91	109	50-150	0.63	

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID

Analyst: CWD

Analytical Date/Time: 10/27/2023 8:12:00PM

Prep Batch: VXX40707

Prep Method: AK101 Extraction (S)
Prep Date/Time: 10/13/2023 10:15:00AM

Prep Initial Wt./Vol.: 41.67g Prep Extract Vol: 30.88mL

Print Date: 11/03/2023 10:59:43AM

Method Blank

Blank ID: MB for HBN 1866751 [VXX/40708]

Blank Lab ID: 1743664

QC for Samples:

1235845004, 1235845008, 1235845009, 1235845010, 1235845011, 1235845012, 1235845013

Results by AK101

<u>Parameter</u> Gasoline Range Organics	<u>Results</u> 1.43J	<u>LOQ/CL</u> 2.50	<u>DL</u> 0.750	<u>LOD</u> 1.25	<u>Units</u> mg/kg
Surrogates					
4-Bromofluorobenzene (surr)	87.7	50-150		0	%

Batch Information

Analytical Batch: VFC16669 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: CWD

Analytical Date/Time: 10/27/2023 11:20:00PM

Prep Batch: VXX40708 Prep Method: SW5035A

Prep Date/Time: 10/27/2023 6:00:00AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/03/2023 10:59:44AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [VXX40708]

Blank Spike Lab ID: 1743665 Date Analyzed: 10/27/2023 22:42 Spike Duplicate ID: LCSD for HBN 1235845

[VXX40708]

Spike Duplicate Lab ID: 1743666 Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845004, 1235845008, 1235845009, 1235845010, 1235845011, 1235845012, 1235845013

Results by AK101

	E	Blank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	12.5	13.4	107	12.5	11.8	94	(60-120)	13.00	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25		89	1.25		90	(50-150)	0.89	

Batch Information

Analytical Batch: VFC16669
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: CWD

Prep Batch: VXX40708
Prep Method: SW5035A

Prep Date/Time: 10/27/2023 06:00

Spike Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1.25 mg/kg Extract Vol: 25 mL

Print Date: 11/03/2023 10:59:47AM

Method Blank

Blank ID: MB for HBN 1866350 [XXX/48904]

Blank Lab ID: 1742204

QC for Samples:

1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009, 1235845010, 1235845011,

Matrix: Soil/Solid (dry weight)

1235845012, 1235845013

Results by AK102

LOQ/CL LOD DL <u>Parameter</u> Results Units Diesel Range Organics 9.11J 20.0 9.00 10.0 mg/kg **Surrogates**

5a Androstane (surr) 103 60-120 0 %

Batch Information

Analytical Batch: XFC16718 Prep Batch: XXX48904 Analytical Method: AK102 Prep Method: SW3550C

Prep Date/Time: 10/22/2023 9:45:45AM Instrument: Agilent 7890B R

Analyst: T.L Prep Initial Wt./Vol.: 22.5 g Analytical Date/Time: 10/28/2023 9:17:00AM Prep Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:50AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [XXX48904]

Blank Spike Lab ID: 1742205

Date Analyzed: 10/28/2023 09:30

Spike Duplicate ID: LCSD for HBN 1235845

[XXX48904]

Spike Duplicate Lab ID: 1742206 Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009,

 $1235845010,\,1235845011,\,1235845012,\,1235845013$

Results by AK102

	E	Blank Spike	(mg/kg)	S	Spike Duplic	ate (mg/kg)	1		
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	1110	1270	114	1110	1470	132	* (75-125)	14.60	(< 20)
Surrogates									
5a Androstane (surr)	22.2		112	22.2		127	* (60-120)	12.30	

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102

Instrument: Agilent 7890B R

Analyst: T.L

Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/2023 09:45

Spike Init Wt./Vol.: 22.2 mg/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 22.2 mg/kg Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:53AM

Billable Matrix Spike Summary

Original Sample ID: 1235845005 MS Sample ID: 1235845006 BMS MSD Sample ID: 1235845007 BMSD

QC for Samples:

Analysis Date: 10/28/2023 12:18 Analysis Date: 10/28/2023 12:31 Analysis Date: 10/28/2023 12:44 Matrix: Soil/Solid (dry weight)

Results by AK102

		Mat	rix Spike (r	mg/kg)	Spike	Duplicate	(mg/kg)			
Parameter Diesel Range Organics	<u>Sample</u> 18.8J	<u>Spike</u> 1281	Result 1455	<u>Rec (%)</u> 113	<u>Spike</u> 1292	Result 1478	Rec (%) 113	<u>CL</u> 60-140	RPD (%) 1.70	RPD CL (< 50)
Surrogates	10.00	1201	1433	113	1292	1470	113	00-140	1.70	(< 30)
5a Androstane (surr)		25.5	27.2	107	25.8	27.7	108	50-150	1.80	

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: T.L

Analytical Date/Time: 10/28/2023 12:31:00PM

Prep Batch: XXX48904

Prep Method: Sonication Extraction Soil AK102 Prep Date/Time: 10/22/2023 9:45:45AM

Prep Initial Wt./Vol.: 22.83g Prep Extract Vol: 5.00mL

Print Date: 11/03/2023 10:59:54AM

Method Blank

Blank ID: MB for HBN 1866350 [XXX/48904]

Blank Lab ID: 1742204

QC for Samples:

1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009, 1235845010, 1235845011,

1235845012, 1235845013

Results by AK103

<u>Parameter</u> Residual Range Organics	Results 50.0U	<u>LOQ/CL</u> 100	<u>DL</u> 43.0	<u>LOD</u> 50.0	<u>Units</u> mg/kg
Surrogates					
n-Triacontane-d62 (surr)	109	60-120		0	%

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: T.L

Analytical Date/Time: 10/28/2023 9:17:00AM

Prep Batch: XXX48904 Prep Method: SW3550C

Prep Date/Time: 10/22/2023 9:45:45AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:56AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [XXX48904]

Blank Spike Lab ID: 1742205

Date Analyzed: 10/28/2023 09:30

Spike Duplicate ID: LCSD for HBN 1235845

[XXX48904]

Spike Duplicate Lab ID: 1742206 Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009,

 $1235845010,\,1235845011,\,1235845012,\,1235845013$

Results by AK103

	E	Blank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	1110	1250	112	1110	1450	130	* (60-120)	14.80	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	22.2		109	22.2		128	* (60-120)	15.70	

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: T.L

Prep Batch: XXX48904
Prep Method: SW3550C

Prep Date/Time: 10/22/2023 09:45

Spike Init Wt./Vol.: 22.2 mg/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 22.2 mg/kg Extract Vol: 5 mL

Print Date: 11/03/2023 10:59:59AM

Billable Matrix Spike Summary

Original Sample ID: 1235845005 MS Sample ID: 1235845006 BMS MSD Sample ID: 1235845007 BMSD

QC for Samples:

Analysis Date: 10/28/2023 12:18 Analysis Date: 10/28/2023 12:31 Analysis Date: 10/28/2023 12:44 Matrix: Soil/Solid (dry weight)

Results by AK103

		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			
Parameter Residual Range Organics	<u>Sample</u> 87.7J	<u>Spike</u> 1281	Result 1502	<u>Rec (%)</u> 110	<u>Spike</u> 1292	Result 1548	Rec (%) 113	<u>CL</u> 60-140	RPD (%) 3.30	RPD CL (< 50)
Surrogates n-Triacontane-d62 (surr)		25.5	26.7	105	25.8	28.5	111	50-150	6.60	

Batch Information

Analytical Batch: XFC16718 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: T.L

Analytical Date/Time: 10/28/2023 12:31:00PM

Prep Batch: XXX48904

Prep Method: Sonication Extraction Soil AK102 Prep Date/Time: 10/22/2023 9:45:45AM

Prep Initial Wt./Vol.: 22.83g Prep Extract Vol: 5.00mL

Print Date: 11/03/2023 11:00:00AM

Method Blank

Blank ID: MB for HBN 1866351 [XXX/48905]

Blank Lab ID: 1742207

QC for Samples:

1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009, 1235845010, 1235845011,

1235845012, 1235845013

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
1-Methylnaphthalene	12.5U	25.0	6.25	12.5	ug/kg
2-Methylnaphthalene	12.5U	25.0	6.25	12.5	ug/kg
Acenaphthene	12.5U	25.0	6.25	12.5	ug/kg
Acenaphthylene	12.5U	25.0	6.25	12.5	ug/kg
Anthracene	12.5U	25.0	6.25	12.5	ug/kg
Benzo(a)Anthracene	12.5U	25.0	6.25	12.5	ug/kg
Benzo[a]pyrene	12.5U	25.0	6.25	12.5	ug/kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	12.5	ug/kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	12.5	ug/kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	12.5	ug/kg
Chrysene	12.5U	25.0	6.25	12.5	ug/kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	12.5	ug/kg
Fluoranthene	12.5U	25.0	6.25	12.5	ug/kg
Fluorene	12.5U	25.0	6.25	12.5	ug/kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	12.5	ug/kg
Naphthalene	10.0U	20.0	5.00	10.0	ug/kg
Phenanthrene	12.5U	25.0	6.25	12.5	ug/kg
Pyrene	12.5U	25.0	6.25	12.5	ug/kg
Surrogates					
2-Methylnaphthalene-d10 (surr)	90.6	58-103		0	%
Fluoranthene-d10 (surr)	93.3	54-113		0	%

Batch Information

Analytical Batch: XMS14059 Analytical Method: 8270D SIM (PAH) Instrument: Agilent 8890 GC/MS SYA

Analyst: HMW

Analytical Date/Time: 11/1/2023 2:53:00PM

Prep Batch: XXX48905 Prep Method: SW3550C

Prep Date/Time: 10/22/2023 9:50:56AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 11/03/2023 11:00:02AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235845 [XXX48905]

Blank Spike Lab ID: 1742208 Date Analyzed: 11/01/2023 15:09

Matrix: Soil/Solid (dry weight)

QC for Samples: 1235845001, 1235845002, 1235845003, 1235845004, 1235845005, 1235845008, 1235845009,

 $1235845010,\,1235845011,\,1235845012,\,1235845013$

Results by 8270D SIM (PAH)

		Blank Spike	(ug/kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	111	97.7	88	(43-111)
2-Methylnaphthalene	111	103	93	(39-114)
Acenaphthene	111	107	96	(44-111)
Acenaphthylene	111	93.9	85	(39-116)
Anthracene	111	102	92	(50-114)
Benzo(a)Anthracene	111	110	99	(54-122)
Benzo[a]pyrene	111	120	108	(50-125)
Benzo[b]Fluoranthene	111	132	118	(53-128)
Benzo[g,h,i]perylene	111	126	114	(49-127)
Benzo[k]fluoranthene	111	119	107	(56-123)
Chrysene	111	114	103	(57-118)
Dibenzo[a,h]anthracene	111	120	108	(50-129)
Fluoranthene	111	108	97	(55-119)
Fluorene	111	104	94	(47-114)
Indeno[1,2,3-c,d] pyrene	111	126	114	(49-130)
Naphthalene	111	94.7	85	(38-111)
Phenanthrene	111	112	101	(49-113)
Pyrene	111	111	100	(55-117)
urrogates				
2-Methylnaphthalene-d10 (surr)	111		90	(58-103)
Fluoranthene-d10 (surr)	111		94	(54-113)

Batch Information

Analytical Batch: XMS14059 Analytical Method: 8270D SIM (PAH)

Instrument: Agilent 8890 GC/MS SYA

Analyst: HMW

Prep Batch: XXX48905 Prep Method: SW3550C

Prep Date/Time: 10/22/2023 09:50

Spike Init Wt./Vol.: 111 ug/kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/03/2023 11:00:04AM

Billable Matrix Spike Summary

Original Sample ID: 1235845005 MS Sample ID: 1235845006 BMS MSD Sample ID: 1235845007 BMSD

QC for Samples:

Analysis Date: 10/30/2023 16:34 Analysis Date: 10/30/2023 16:55 Analysis Date: 10/30/2023 17:15 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Mat	rix Spike (ι	ug/kg)	Spike	Duplicate	(ug/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	14.4U	128	111	87	129	123	96	43-111	10.90	(< 20)
2-Methylnaphthalene	14.4U	128	112	87	129	123	96	39-114	10.20	(< 20)
Acenaphthene	14.4U	128	116	90	129	126	97	44-111	8.00	(< 20)
Acenaphthylene	14.4U	128	109	85	129	118	91	39-116	7.70	(< 20)
Anthracene	14.4U	128	113	88	129	127	98	50-114	11.10	(< 20)
Benzo(a)Anthracene	14.4U	128	112	88	129	126	97	54-122	11.20	(< 20)
Benzo[a]pyrene	14.4U	128	112	87	129	123	95	50-125	9.50	(< 20)
Benzo[b]Fluoranthene	14.4U	128	122	95	129	127	98	53-128	3.80	(< 20)
Benzo[g,h,i]perylene	14.4U	128	116	91	129	128	99	49-127	9.00	(< 20)
Benzo[k]fluoranthene	14.4U	128	115	90	129	134	103	56-123	14.40	(< 20)
Chrysene	14.4U	128	114	89	129	125	97	57-118	9.50	(< 20)
Dibenzo[a,h]anthracene	14.4U	128	118	92	129	129	100	50-129	9.20	(< 20)
Fluoranthene	14.4U	128	118	91	129	121	94	55-119	3.30	(< 20)
Fluorene	14.4U	128	110	86	129	123	96	47-114	11.40	(< 20)
Indeno[1,2,3-c,d] pyrene	14.4U	128	119	92	129	130	101	49-130	9.30	(< 20)
Naphthalene	11.6U	128	108	85	129	118	91	38-111	7.90	(< 20)
Phenanthrene	14.4U	128	118	92	129	127	98	49-113	7.30	(< 20)
Pyrene	14.4U	128	116	91	129	126	97	55-117	7.90	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		128	118	92	129	126	98	58-103	7.10	
Fluoranthene-d10 (surr)		128	114	89	129	118	91	54-113	2.90	

Batch Information

Analytical Batch: XMS14052

Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: HMW

Analytical Date/Time: 10/30/2023 4:55:00PM

Prep Batch: XXX48905

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 10/22/2023 9:50:56AM

Prep Initial Wt./Vol.: 22.69g Prep Extract Vol: 5.00mL

Print Date: 11/03/2023 11:00:06AM

SGS North America Inc. **CHAIN OF CUSTODY RECORD**

SGS North America Inc.

200 West Potter Driv
Anchorage, AK 9951

Profile #: 304/60 Int. 9 Instructions: Sections 1 - 5 must be filled out. Hilcorp co Susitna CLIENT: Omissions may delay the onset of analysis. Page _1__ of _1__ Melissa Mayer PHONE #: 907-350-7952 CONTACT: Section 3 Preservative Beluga River Unit Project/Parmit Number: * PROJECT NAME: ¢ YC, ,4c, NPDL Number(DOD): 0 Analysis* E-MAIL: m.mayer@susitna.com Sample REPORTS TO: Melissa Mayer m.mayer@susitna.com Type The following analyses require AK102/103 DRO/RRO 235-02460.15.10.28 QUOTE #: Comp INVOICE TO: Hilcorp Alaska specific method and/or composing G/L 60005000 Amy Peloza P.O. #: Grab list: BTEX, Metals. PFAS 8270 SIM PAH AK102 DRO 4K101 GRO 6250 BTEX DRO/RRO, M MATRIX/ E TIME RESERVED DATE MATRIX SAMPLE IDENTIFICATION R mm/dd/yy HH:MM for lab use CODE REMARKS/LOC ID 10/12/2023 1655 s 1 Grab APAD-SB01-14.0-15.0 х X APAD-S801-14.0-15.0 10/12/2023 1655 S 1 Grab 10/13/2023 930 s 1 Grab Х LPAO-SB01-5.0-7.0 10/13/2023 930 s 1 Grab х LPAD-SB01-5.0-7.0 10/13/2023 935 S Grab Х LPAD-S801-14.0-15.0 935 Grab х 10/13/2023 S 1 LPAD-SB01-14.0-15.0 Х 1020 s Grab LPAD-SB02-9.0-9.5 10/13/2023 10/13/2023 1020 s 1 Grab х LPAD-SB02-9.0-9.5 MS/0/acol Aco' 2 Grab Х 10/13/2023 1015 S LPAD-SS02-13.5-15.0 Grab 10/13/2023 1015 s 2 Х LPAD-SB02-13.5-15.0 S Grab х 1100 1 10/13/2023 LPAD-SB03-5.0-7.0 х S Grab 10/13/2023 1100 1 LPAD-SB03-5.0-7.0 1105 S Grab Х 10/13/2023 1 LPAD-SB05-5.0-7.0 х 1105 s 1 Grab 10/13/2023 LPAD-SB05-5,0-7.0 10/13/2023 1110 s X LPAD-SB03-13.0-15.0 10/13/2023 1110 ŝ 1 Grab LPAD-SB03-13.0-15.0 10 14 10/13/2023 1140 5 1 Grab х LPAD-SB04-5.0-7.0 10/13/2023 1140 8 1 Grab х II A LPAD-SB04-5.0-7.0 х 10/13/2023 1145 S 1 Grab LPAD-SB04-13.0-15.0 Х LPAD-SB04-13.0-15.0 10/13/2023 1145 S 1 Grab s Х 10/13/2023 1500 1 Grab MPAD-SB02-7.5-8.5 Х Grab 10/13/2023 1500 MPAD-S802-7.5-8.5 S 1200 1 TB Х 10/12/2023 TΒ TRIPBLANK

ı										
	DOD Project?	YES NO X				Turnaround Time Requested		SGS Sample Rece	pt (Lab Uşa D	niy)
١£		Onto Dollverables Requests	di				Delivery Method: (Cilent)	Commercial	1 7	tody Seal Condition:
ΙŘ	DataView	SEDD	EQUIS		Rust	1	Old each cooler have	Yes No	INTA	
Section	Level 4	ERPIMS	Other:		Regs	uested Rush Report Date:	corresponding COC		COC Seal Lo	cation(s):
-		RELINQUISHED BY:	D/	ATE:	TIME:	RECEIVED BY:	Cooler ID	Temperature (°C)	Therm. iD	
ļ		Melissa Mayer	10/1	16/2023	1300		1.	-0-1	055	If more than three coolers are received, or for documentation of non-
É							2			compliant coolers, use form FS-0029.
Section		<i>U</i>					3.			
S		······································	10/	16/2	403	465	Note: Il temp. is outside 0-6" and s weste samples, Client or PM snout proceed with analysis. If ice is pres	d initial here of attach an em ent, note on form F102B.	ail change order to	intials:
1	1			7 8 41	Lab	ocatory Use Opty	http://www.sqs.	com/terms-and-conditi	ens	

SAMPLE RECEIPT FORM

	roject	Manage	er Com	pletion
Was all necessary information recorded on the	Yes	No	N/A	
COC upon receipt? (temperature, COC seals,				
etc.?)	أحسرا			
Was temperature between 0-6° C? (Yes	No	N/A	If "No", are the samples either exempt* or sampled <8
, ,				hours prior to receipt?
				1.01.10.100.00.
Were all analyses received within holding time*?	Yes	No	N/A	
Trate an analyses reserved maint nexturing time .	<u> </u>	,,,	10,, (
Was a method specified for each analysis,	Yes	No	N/A	
where applicable? If no, please note correct	100	140	1 N/C	
methods.				
Are compound lists specified, where applicable?	Ves	No	N/A	
For project specific or special compound lists	1 (65)	NO	IV/A	
please note correct analysis code.	1			
	V		100A	IZ SNIO"L .4 : .4L
If rush was requested by the client, was the	Yes	No	N/A)	If "NO", what is the approved TAT?
requested TAT approved?				V 504008
If SEDD Deliverables are required, were	Yes	No (N/A	If "NO", contact client for information.
Location ID's and an NPDL Number provided?		I		
	Sample			pletion
Do ID's on sample containers match COC?	(kes)	· No	N/A	
If provided on containers, do dates/times	(Yes)	No	N/A	Note: If times differ <1 hr., record details below and
collected match COC?				login per COC.
Were all sample containers received in good	Yes	Νo	N/A	
condition?				
Were proper containers	Yes	No	N/A	Note: If 200.8/6020 Total Metals are received unpreserved,
(type/mass/volume/preservative) received for all				preserve and note HNO3 lot here:
samples?	_			If 200.8/6020 Dissolved Metals are received unpreserved, log
*See form F-083 "Sample Guide"	}			in for LABFILTER and do not preserve.
,				For all non-metals methods, inform Project Manager.
Were Trip Blanks (VOC, GRO, Low-Level Hg,	Yes	No	N/A	
etc.) received with samples, where applicable*?		110	1807	
Were all VOA vials free of headspace >6mm?	Yes	No	N/A	
vvere all vOA vials free of fleadspace zorning	162	1110	(MA)	
Were all soil VOA samples received field	Yes	No No	N/A	
extracted with Methanol?	Ces	י איני פ	IW/A	
Did all soil VOA samples have an	(Yes)	No	N/A	
accompanying unpreserved container for %				
solids?				· · · · · · · · · · · · · · · · · · ·
If special handling is required, were containers	Yes	Νo	(N/A	
labelled appropriately? e.g. Mi/ISM, foreign				
soils, lab filter, Ref Lab, limited volume	ļ			
For Rush/Short Holding time, was the lab	Yes	No	N/A	>
notified?			${} \subset$	
For any question answered "NO", was the	Yes	Νo	(N/A)	PM Initials:
Project Manager notified?				
Was Peer Review of sample	Yes	No	N/A	Reviewer Initials: 110 _/
numbering/labelling completed?	\sim			#16 6
Additional Notes/Clarification where Applicable, inc	luding re	esolutio	n of "N	o" answers when a change order is not attached:

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1235845001-A	No Preservative Required	ОК			
1235845001-B	Methanol field pres. 4 C	OK			
1235845002-A	No Preservative Required	OK			
1235845002-B	Methanol field pres. 4 C	OK			
1235845003-A	No Preservative Required	OK			
1235845003-B	Methanol field pres. 4 C	OK			
1235845004-A	No Preservative Required	OK			
1235845004-B	Methanol field pres. 4 C	OK			
1235845005-A	No Preservative Required	OK			
1235845005-B	No Preservative Required	OK			
1235845005-C	Methanol field pres. 4 C	OK			
1235845005-D	No Preservative Required	OK			
1235845006-A	No Preservative Required	OK			
1235845006-B	No Preservative Required	OK			
1235845006-C	Methanol field pres. 4 C	OK			
1235845006-D	No Preservative Required	OK			
1235845007-A	No Preservative Required	OK			
1235845007-B	No Preservative Required	OK			
1235845007-C	Methanol field pres. 4 C	OK			
1235845007-D	No Preservative Required	OK			
1235845008-A	No Preservative Required	OK			
1235845008-B	Methanol field pres. 4 C	OK			
1235845009-A	No Preservative Required	OK			
1235845009-B	Methanol field pres. 4 C	OK			
1235845010-A	No Preservative Required	OK			
1235845010-B	Methanol field pres. 4 C	OK			
1235845011-A	No Preservative Required	OK			
1235845011-B	Methanol field pres. 4 C	OK			
1235845012-A	No Preservative Required	OK			
1235845012-B	Methanol field pres. 4 C	OK			
1235845013-A	No Preservative Required	OK			
1235845013-B	Methanol field pres. 4 C	OK			
1235845014-A	Methanol field pres. 4 C	OK			

<u>Container Id Preservative Container Id Preservative Container Id Cont</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Report of Analysis

To: Hilcorp Alaska, LLC

2419 McKenzie Drive Anchorage, AK 99517 (907)350-7952

Report Number: 1235846

Client Project: Beluga River Unit

Dear Nelson Crone,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson
Project Manager
Justin.Nelson@sgs.com

Date

Print Date: 11/15/2023 10:31:47AM Results via Engage

Case Narrative

SGS Client: Hilcorp Alaska, LLC SGS Project: 1235846 Project Name/Site: Beluga River Unit Project Contact: Nelson Crone

Refer to sample receipt form for information on sample condition.

FG24-101223 (1235846001) PS

AK102/103 - MB surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. Sample was re-extracted outside of hold-time and results confirmed. In-hold data is reported.

FG28-101223 (1235846002) PS

AK102/103 - MB surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. Sample was re-extracted outside of hold-time and results confirmed. In-hold data is reported.

224-13-2-101223 (1235846003) PS

AK102/103 - MB surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. Sample was re-extracted outside of hold-time and results confirmed. In-hold data is reported.

224-13-3-101323 (1235846004) PS

AK102/103 - MB surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. Sample was re-extracted outside of hold-time and results confirmed. In-hold data is reported.

224-13-5-101323 (1235846005) PS

AK102/103 - MB surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. Sample was re-extracted outside of hold-time and results confirmed. In-hold data is reported.

224-13-4-101323 (1235846006) PS

AK102/103 - MB surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. Sample was re-extracted outside of hold-time and results confirmed. In-hold data is reported.

LCSD for HBN 1866301 [VXX/4066 (1742053) LCSD

8260D - LCSD surrogate recovery for toluene-d8 does not meet QC criteria. Surrogate meets QC criteria in all other instrument and batch QC.

MB for HBN 1866309 [XXX/48897] (1742079) MB

AK102/103 - Surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/15/2023 10:31:49AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification

J The quantitation is an estimation.

LCS(D) Laboratory Control Spike (Duplicate)

LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 11/15/2023 10:31:53AM

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
FG24-101223	1235846001	10/12/2023	10/16/2023	Water (Surface, Eff., Ground)
FG28-101223	1235846002	10/12/2023	10/16/2023	Water (Surface, Eff., Ground)
224-13-2-101223	1235846003	10/12/2023	10/16/2023	Water (Surface, Eff., Ground)
224-13-3-101323	1235846004	10/13/2023	10/16/2023	Water (Surface, Eff., Ground)
224-13-5-101323	1235846005	10/13/2023	10/16/2023	Water (Surface, Eff., Ground)
224-13-4-101323	1235846006	10/13/2023	10/16/2023	Water (Surface, Eff., Ground)
224-13-4-101323(1235846006BM	1235846007	10/13/2023	10/16/2023	Water (Surface, Eff., Ground)
224-13-4-10(1235846006BMSC	1235846008	10/13/2023	10/16/2023	Water (Surface, Eff., Ground)
Trip Blank	1235846009	10/12/2023	10/16/2023	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK102DRO Low Volume (W)

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water
AK101 Gasoline Range Organics (W)
SW8260D Volatile Organic Compounds (W)

Print Date: 11/15/2023 10:31:54AM

Detectable Results Summary

Client Sample ID: FG24-101223			
Lab Sample ID: 1235846001	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	2.06	ug/L
	2-Methylnaphthalene	0.126	ug/L
	Acenaphthene	0.279	ug/L
	Acenaphthylene	0.0253J	ug/L
	Fluorene	0.467	ug/L
	Naphthalene	1.65	ug/L
	Phenanthrene	0.0476J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.38	mg/L
Client Sample ID: FG28-101223			
Lab Sample ID: 1235846002	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	1.83	ug/L
•	2-Methylnaphthalene	0.0821	ug/L
	Acenaphthene	0.317	ug/L
	Fluorene	0.518	ug/L
	Naphthalene	1.59	ug/L
	Phenanthrene	0.0317J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.14	mg/L
Client Sample ID: 224-13-2-101223			
Lab Sample ID: 1235846003	Parameter	Result	Units
Polynuclear Aromatics GC/MS	Phenanthrene	0.0333J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.801	mg/L
3	Residual Range Organics	0.983	mg/L
Client Sample ID: 224-13-3-101323			
Lab Sample ID: 1235846004	Parameter	Result	Units
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.0764	ug/L
1 diyiladical Albinatics Comic	2-Methylnaphthalene	0.0792	ug/L
	Naphthalene	0.0905J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.841	mg/L
Commodatile Organie i dele	Residual Range Organics	0.982	mg/L
Client Sample ID: 224-13-5-101323	0 0		Ü
Lab Sample ID: 1235846005	Danamatan	Decemb	1.1
•	Parameter	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.0722	ug/L
	2-Methylnaphthalene	0.0729	ug/L
	Naphthalene	0.0746J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.720	mg/L
	Residual Range Organics	0.755	mg/L

Print Date: 11/15/2023 10:31:56AM

Detectable Results Summary

Client Sample ID: 224-13-4-101323			
Lab Sample ID: 1235846006	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.358	ug/L
	2-Methylnaphthalene	0.372	ug/L
	Naphthalene	0.595	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	2.27	mg/L
	Residual Range Organics	1.72	mg/L
Volatile Fuels	Gasoline Range Organics	0.0882J	mg/L
Volatile GC/MS	Benzene	0.790	ug/L
	Ethylbenzene	0.420J	ug/L
	o-Xylene	1.94	ug/L
	P & M -Xylene	2.81	ug/L
	Toluene	0.690J	ug/L
	Xylenes (total)	4.75	ug/L

Print Date: 11/15/2023 10:31:56AM

Results of FG24-101223

Client Sample ID: **FG24-101223**Client Project ID: **Beluga River Unit**

Lab Sample ID: 1235846001 Lab Project ID: 1235846 Collection Date: 10/12/23 14:06 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

D	D # 0 1	1.00/01	DI		11. 11	D.F.	Allowable	D (A)
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	2.06	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
2-Methylnaphthalene	0.126	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Acenaphthene	0.279	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Acenaphthylene	0.0253 J	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Anthracene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Benzo(a)Anthracene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Benzo[a]pyrene	0.0102 U	0.0204	0.00633	0.0102	ug/L	1		10/28/23 01:03
Benzo[b]Fluoranthene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Benzo[g,h,i]perylene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Benzo[k]fluoranthene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Chrysene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Dibenzo[a,h]anthracene	0.0102 U	0.0204	0.00633	0.0102	ug/L	1		10/28/23 01:03
Fluoranthene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Fluorene	0.467	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Indeno[1,2,3-c,d] pyrene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Naphthalene	1.65	0.102	0.0316	0.0510	ug/L	1		10/28/23 01:03
Phenanthrene	0.0476 J	0.102	0.0316	0.0510	ug/L	1		10/28/23 01:03
Pyrene	0.0255 U	0.0510	0.0153	0.0255	ug/L	1		10/28/23 01:03
Surrogates								
2-Methylnaphthalene-d10 (surr)	41.5	38-100			%	1		10/28/23 01:03
Fluoranthene-d10 (surr)	68.7	30-111			%	1		10/28/23 01:03

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH)

Analyst: HMW

Analytical Date/Time: 10/28/23 01:03 Container ID: 1235846001-C Prep Batch: XXX48878
Prep Method: SW3535A
Prep Date/Time: 10/18/23 10:00
Prep Initial Wt./Vol.: 245 mL

Prep Extract Vol: 1 mL

Results of FG24-101223

Client Sample ID: **FG24-101223** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846001

Lab Project ID: 1235846

Collection Date: 10/12/23 14:06 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	2.38	0.600	0.200	0.300	mg/L	1		10/26/23 19:01
Surrogates								
5a Androstane (surr)	74.5	50-150			%	1		10/26/23 19:01

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/26/23 19:01 Container ID: 1235846001-A Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Results of FG28-101223

Client Sample ID: FG28-101223 Client Project ID: Beluga River Unit

Lab Sample ID: 1235846002 Lab Project ID: 1235846

Collection Date: 10/12/23 11:45 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	LOD	Units	<u>DF</u>	Allowable Limits	Date Analyzed
1-Methylnaphthalene	1.83	0.0500	0.0150	0.0250	ug/L	1	Lillito	10/28/23 01:19
2-Methylnaphthalene	0.0821	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Acenaphthene	0.317	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Acenaphthylene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Anthracene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	0.0100	ug/L	1		10/28/23 01:19
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Chrysene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	0.0100	ug/L	1		10/28/23 01:19
Fluoranthene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Fluorene	0.518	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Naphthalene	1.59	0.100	0.0310	0.0500	ug/L	1		10/28/23 01:19
Phenanthrene	0.0317 J	0.100	0.0310	0.0500	ug/L	1		10/28/23 01:19
Pyrene	0.0250 U	0.0500	0.0150	0.0250	ug/L	1		10/28/23 01:19
Surrogates								
2-Methylnaphthalene-d10 (surr)	42.5	38-100			%	1		10/28/23 01:19
Fluoranthene-d10 (surr)	73.6	30-111			%	1		10/28/23 01:19

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH)

Analyst: HMW

Analytical Date/Time: 10/28/23 01:19

Container ID: 1235846002-C

Prep Batch: XXX48878 Prep Method: SW3535A Prep Date/Time: 10/18/23 10:00 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Results of FG28-101223

Client Sample ID: **FG28-101223**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235846002
Lab Project ID: 1235846

Collection Date: 10/12/23 11:45 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	2.14	0.600	0.200	0.300	mg/L	1		10/26/23 19:13
Surrogates								
5a Androstane (surr)	79.5	50-150			%	1		10/26/23 19:13

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/26/23 19:13 Container ID: 1235846002-A Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Results of 224-13-2-101223

Client Sample ID: 224-13-2-101223 Client Project ID: Beluga River Unit

Lab Sample ID: 1235846003 Lab Project ID: 1235846 Collection Date: 10/12/23 09:31 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_		1.00/01					Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
2-Methylnaphthalene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Acenaphthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Acenaphthylene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Anthracene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Benzo(a)Anthracene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Benzo[a]pyrene	0.0107 U	0.0213	0.00660	0.0107	ug/L	1		10/28/23 01:35
Benzo[b]Fluoranthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Benzo[g,h,i]perylene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Benzo[k]fluoranthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Chrysene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Dibenzo[a,h]anthracene	0.0107 U	0.0213	0.00660	0.0107	ug/L	1		10/28/23 01:35
Fluoranthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Fluorene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Indeno[1,2,3-c,d] pyrene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Naphthalene	0.0530 U	0.106	0.0330	0.0530	ug/L	1		10/28/23 01:35
Phenanthrene	0.0333 J	0.106	0.0330	0.0530	ug/L	1		10/28/23 01:35
Pyrene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 01:35
Surrogates								
2-Methylnaphthalene-d10 (surr)	62.8	38-100			%	1		10/28/23 01:35
Fluoranthene-d10 (surr)	70.2	30-111			%	1		10/28/23 01:35

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH)

Analyst: HMW

Analytical Date/Time: 10/28/23 01:35

Container ID: 1235846003-I

Prep Batch: XXX48878 Prep Method: SW3535A Prep Date/Time: 10/18/23 10:00

Prep Initial Wt./Vol.: 235 mL Prep Extract Vol: 1 mL

Results of 224-13-2-101223

Client Sample ID: **224-13-2-101223**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235846003
Lab Project ID: 1235846

Collection Date: 10/12/23 09:31 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.801	0.682	0.227	0.341	mg/L	1		10/26/23 19:26
Surrogates								
5a Androstane (surr)	77.5	50-150			%	1		10/26/23 19:26

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/26/23 19:26 Container ID: 1235846003-G Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25

Prep Date/Time: 10/20/23 16:2
Prep Initial Wt./Vol.: 220 mL
Prep Extract Vol: 1 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.983	0.568	0.227	0.284	mg/L	1		10/26/23 19:26
Surrogates								
n-Triacontane-d62 (surr)	98.1	50-150			%	1		10/26/23 19:26

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/26/23 19:26 Container ID: 1235846003-G Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25 Prep Initial Wt./Vol.: 220 mL Prep Extract Vol: 1 mL

Results of 224-13-2-101223

Client Sample ID: **224-13-2-101223**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235846003
Lab Project ID: 1235846

Collection Date: 10/12/23 09:31 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	0.0500	mg/L	1		10/21/23 06:25
Surrogates								
4-Bromofluorobenzene (surr)	91	50-150			%	1		10/21/23 06:25
4-Biomondorobenzene (sum)	91	30-130			70	ı		10/21/23 00.23

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/21/23 06:25 Container ID: 1235846003-A Prep Batch: VXX40673
Prep Method: SW5030B
Prep Date/Time: 10/20/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: **224-13-2-101223** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846003

Lab Project ID: 1235846

Collection Date: 10/12/23 09:31 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

							<u>Allowable</u>		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed	
Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		10/19/23 21:33	
Ethylbenzene	0.500 U	1.00	0.310	0.500	ug/L	1		10/19/23 21:33	
o-Xylene	0.500 U	1.00	0.310	0.500	ug/L	1		10/19/23 21:33	
P & M -Xylene	1.00 U	2.00	0.620	1.00	ug/L	1		10/19/23 21:33	
Toluene	0.500 U	1.00	0.310	0.500	ug/L	1		10/19/23 21:33	
Xylenes (total)	1.50 U	3.00	1.00	1.50	ug/L	1		10/19/23 21:33	
Surrogates									
1,2-Dichloroethane-D4 (surr)	105	81-118			%	1		10/19/23 21:33	
4-Bromofluorobenzene (surr)	97.9	85-114			%	1		10/19/23 21:33	
Toluene-d8 (surr)	100	89-112			%	1		10/19/23 21:33	

Batch Information

Analytical Batch: VMS22911 Analytical Method: SW8260D

Analyst: JY

Analytical Date/Time: 10/19/23 21:33 Container ID: 1235846003-D Prep Batch: VXX40662
Prep Method: SW5030B
Prep Date/Time: 10/19/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 224-13-3-101323 Client Project ID: Beluga River Unit

Lab Sample ID: 1235846004 Lab Project ID: 1235846

Collection Date: 10/13/23 09:13 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
1-Methylnaphthalene	0.0764	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
2-Methylnaphthalene	0.0792	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Acenaphthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Acenaphthylene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Anthracene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Benzo(a)Anthracene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Benzo[a]pyrene	0.0111 U	0.0222	0.00689	0.0111	ug/L	1		10/28/23 01:51
Benzo[b]Fluoranthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Benzo[g,h,i]perylene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Benzo[k]fluoranthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Chrysene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Dibenzo[a,h]anthracene	0.0111 U	0.0222	0.00689	0.0111	ug/L	1		10/28/23 01:51
Fluoranthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Fluorene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Indeno[1,2,3-c,d] pyrene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Naphthalene	0.0905 J	0.111	0.0344	0.0555	ug/L	1		10/28/23 01:51
Phenanthrene	0.0555 U	0.111	0.0344	0.0555	ug/L	1		10/28/23 01:51
Pyrene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 01:51
Surrogates								
2-Methylnaphthalene-d10 (surr)	70.5	38-100			%	1		10/28/23 01:51
Fluoranthene-d10 (surr)	78.9	30-111			%	1		10/28/23 01:51

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH)

Analyst: HMW

Analytical Date/Time: 10/28/23 01:51

Container ID: 1235846004-I

Prep Batch: XXX48878 Prep Method: SW3535A Prep Date/Time: 10/18/23 10:00 Prep Initial Wt./Vol.: 225 mL

Prep Extract Vol: 1 mL

Client Sample ID: **224-13-3-101323**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235846004
Lab Project ID: 1235846

Collection Date: 10/13/23 09:13 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.841	0.652	0.217	0.326	mg/L	1		10/26/23 19:38
Surrogates								
5a Androstane (surr)	80.6	50-150			%	1		10/26/23 19:38

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/26/23 19:38 Container ID: 1235846004-G Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25

Prep Date/Time: 10/20/23 16:2 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.982	0.543	0.217	0.272	mg/L	1		10/26/23 19:38
Surrogates								
n-Triacontane-d62 (surr)	103	50-150			%	1		10/26/23 19:38

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/26/23 19:38 Container ID: 1235846004-G Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

Client Sample ID: **224-13-3-101323** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846004 Collection Date: 10/13/23 09:13 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Lab Project ID: 1235846

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Gasoline Range Organics	0.0500 U	0.100	0.0450	0.0500	mg/L	1	Limits	10/21/23 06:44
Surrogates 4-Bromofluorobenzene (surr)	93.8	50-150			%	1		10/21/23 06:44

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/21/23 06:44 Container ID: 1235846004-D Prep Batch: VXX40673
Prep Method: SW5030B
Prep Date/Time: 10/20/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: **224-13-3-101323** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846004

Lab Project ID: 1235846

Collection Date: 10/13/23 09:13 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

							Allowable		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed	
Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		10/23/23 23:01	
Ethylbenzene	0.500 U	1.00	0.310	0.500	ug/L	1		10/23/23 23:01	
o-Xylene	0.500 U	1.00	0.310	0.500	ug/L	1		10/23/23 23:01	
P & M -Xylene	1.00 U	2.00	0.620	1.00	ug/L	1		10/23/23 23:01	
Toluene	0.500 U	1.00	0.310	0.500	ug/L	1		10/23/23 23:01	
Xylenes (total)	1.50 U	3.00	1.00	1.50	ug/L	1		10/23/23 23:01	
Surrogates									
1,2-Dichloroethane-D4 (surr)	104	81-118			%	1		10/23/23 23:01	
4-Bromofluorobenzene (surr)	101	85-114			%	1		10/23/23 23:01	
Toluene-d8 (surr)	96.2	89-112			%	1		10/23/23 23:01	

Batch Information

Analytical Batch: VMS22922 Analytical Method: SW8260D

Analyst: JY

Analytical Date/Time: 10/23/23 23:01 Container ID: 1235846004-F Prep Batch: VXX40691
Prep Method: SW5030B
Prep Date/Time: 10/23/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 224-13-5-101323 Client Project ID: Beluga River Unit

Lab Sample ID: 1235846005 Lab Project ID: 1235846 Collection Date: 10/13/23 11:58 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Danamatan	Describ Occal	1.00/01	DI	1.00	1124	DE	Allowable	Data Arrahanad
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0722	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
2-Methylnaphthalene	0.0729	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Acenaphthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Acenaphthylene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Anthracene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Benzo(a)Anthracene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Benzo[a]pyrene	0.0111 U	0.0222	0.00689	0.0111	ug/L	1		10/28/23 02:07
Benzo[b]Fluoranthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Benzo[g,h,i]perylene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Benzo[k]fluoranthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Chrysene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Dibenzo[a,h]anthracene	0.0111 U	0.0222	0.00689	0.0111	ug/L	1		10/28/23 02:07
Fluoranthene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Fluorene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Indeno[1,2,3-c,d] pyrene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Naphthalene	0.0746 J	0.111	0.0344	0.0555	ug/L	1		10/28/23 02:07
Phenanthrene	0.0555 U	0.111	0.0344	0.0555	ug/L	1		10/28/23 02:07
Pyrene	0.0278 U	0.0556	0.0167	0.0278	ug/L	1		10/28/23 02:07
Surrogates								
2-Methylnaphthalene-d10 (surr)	59.2	38-100			%	1		10/28/23 02:07
Fluoranthene-d10 (surr)	77.7	30-111			%	1		10/28/23 02:07

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH)

Analyst: HMW

Analytical Date/Time: 10/28/23 02:07

Container ID: 1235846005-I

Prep Batch: XXX48878 Prep Method: SW3535A Prep Date/Time: 10/18/23 10:00

Prep Initial Wt./Vol.: 225 mL Prep Extract Vol: 1 mL

Client Sample ID: **224-13-5-101323**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235846005
Lab Project ID: 1235846

Collection Date: 10/13/23 11:58 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.720	0.652	0.217	0.326	mg/L	1		10/26/23 19:50
Surrogates								
5a Androstane (surr)	78.6	50-150			%	1		10/26/23 19:50
Sa Androstane (sun)	70.0	50-150			70	1		10/20/23 19.50

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/26/23 19:50 Container ID: 1235846005-G Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25

Prep Date/Time: 10/20/23 16:2 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.755	0.543	0.217	0.272	mg/L	1		10/26/23 19:50
Surrogates								
n-Triacontane-d62 (surr)	106	50-150			%	1		10/26/23 19:50

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/26/23 19:50 Container ID: 1235846005-G Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25 Prep Initial Wt./Vol.: 230 mL Prep Extract Vol: 1 mL

Client Sample ID: **224-13-5-101323** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846005

Lab Project ID: 1235846

Collection Date: 10/13/23 11:58 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

							Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	0.0500	mg/L	1		10/21/23 07:02
Surrogates								
4-Bromofluorobenzene (surr)	94.8	50-150			%	1		10/21/23 07:02

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/21/23 07:02 Container ID: 1235846005-B Prep Batch: VXX40673
Prep Method: SW5030B
Prep Date/Time: 10/20/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: **224-13-5-101323** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846005

Lab Project ID: 1235846

Collection Date: 10/13/23 11:58 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

l								<u>Allowable</u>	
l	<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
	Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		10/23/23 23:16
	Ethylbenzene	0.500 U	1.00	0.310	0.500	ug/L	1		10/23/23 23:16
	o-Xylene	0.500 U	1.00	0.310	0.500	ug/L	1		10/23/23 23:16
	P & M -Xylene	1.00 U	2.00	0.620	1.00	ug/L	1		10/23/23 23:16
	Toluene	0.500 U	1.00	0.310	0.500	ug/L	1		10/23/23 23:16
	Xylenes (total)	1.50 U	3.00	1.00	1.50	ug/L	1		10/23/23 23:16
	Surrogates								
	1,2-Dichloroethane-D4 (surr)	102	81-118			%	1		10/23/23 23:16
	4-Bromofluorobenzene (surr)	101	85-114			%	1		10/23/23 23:16
	Toluene-d8 (surr)	97.3	89-112			%	1		10/23/23 23:16

Batch Information

Analytical Batch: VMS22922 Analytical Method: SW8260D

Analyst: JY

Analytical Date/Time: 10/23/23 23:16 Container ID: 1235846005-E Prep Batch: VXX40691 Prep Method: SW5030B Prep Date/Time: 10/23/23 06:00 Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Client Sample ID: 224-13-4-101323 Client Project ID: Beluga River Unit

Lab Sample ID: 1235846006 Lab Project ID: 1235846

Collection Date: 10/13/23 15:32 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

		1.00/01	-				Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.358	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
2-Methylnaphthalene	0.372	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Acenaphthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Acenaphthylene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Anthracene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Benzo(a)Anthracene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Benzo[a]pyrene	0.0107 U	0.0213	0.00660	0.0107	ug/L	1		10/28/23 02:23
Benzo[b]Fluoranthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Benzo[g,h,i]perylene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Benzo[k]fluoranthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Chrysene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Dibenzo[a,h]anthracene	0.0107 U	0.0213	0.00660	0.0107	ug/L	1		10/28/23 02:23
Fluoranthene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Fluorene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Indeno[1,2,3-c,d] pyrene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Naphthalene	0.595	0.106	0.0330	0.0530	ug/L	1		10/28/23 02:23
Phenanthrene	0.0530 U	0.106	0.0330	0.0530	ug/L	1		10/28/23 02:23
Pyrene	0.0266 U	0.0532	0.0160	0.0266	ug/L	1		10/28/23 02:23
Surrogates								
2-Methylnaphthalene-d10 (surr)	54.8	38-100			%	1		10/28/23 02:23
Fluoranthene-d10 (surr)	76	30-111			%	1		10/28/23 02:23

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH)

Analyst: HMW

Analytical Date/Time: 10/28/23 02:23

Container ID: 1235846006-I

Prep Batch: XXX48878 Prep Method: SW3535A Prep Date/Time: 10/18/23 10:00 Prep Initial Wt./Vol.: 235 mL

Prep Extract Vol: 1 mL

Client Sample ID: **224-13-4-101323** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846006

Lab Sample ID: 1235846006 Lab Project ID: 1235846 Collection Date: 10/13/23 15:32 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	2.27	0.625	0.208	0.313	mg/L	1		10/26/23 20:03
Surrogates								
5a Androstane (surr)	85.7	50-150			%	1		10/26/23 20:03

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Analyst: T.L

Analytical Date/Time: 10/26/23 20:03 Container ID: 1235846006-G Prep Batch: XXX48897 Prep Method: SW3520C

Prep Date/Time: 10/20/23 16:25 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

							<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1.72	0.521	0.208	0.261	mg/L	1		10/26/23 20:03
Surrogates								
n-Triacontane-d62 (surr)	100	50-150			%	1		10/26/23 20:03

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK103

Analyst: T.L

Analytical Date/Time: 10/26/23 20:03 Container ID: 1235846006-G Prep Batch: XXX48897 Prep Method: SW3520C Prep Date/Time: 10/20/23 16:25 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

Client Sample ID: **224-13-4-101323** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846006

Lab Project ID: 1235846

Collection Date: 10/13/23 15:32 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						Allowable	
Result Qual	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
0.0882 J	0.100	0.0450	0.0500	mg/L	1		10/21/23 00:54
104	50-150			%	1		10/21/23 00:54
		0.0882 J 0.100	0.0882 J 0.100 0.0450	0.0882 J 0.100 0.0450 0.0500	0.0882 J 0.100 0.0450 0.0500 mg/L	0.0882 J 0.100 0.0450 0.0500 mg/L 1	Result Qual LOQ/CL DL LOD Units DF Limits 0.0882 J 0.100 0.0450 0.0500 mg/L 1

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/21/23 00:54 Container ID: 1235846006-A Prep Batch: VXX40672
Prep Method: SW5030B
Prep Date/Time: 10/20/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: **224-13-4-101323** Client Project ID: **Beluga River Unit** Lab Sample ID: 1235846006

Lab Project ID: 1235846

Collection Date: 10/13/23 15:32 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

l								<u>Allowable</u>	
l	<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
	Benzene	0.790	0.400	0.120	0.200	ug/L	1		10/23/23 23:30
	Ethylbenzene	0.420 J	1.00	0.310	0.500	ug/L	1		10/23/23 23:30
	o-Xylene	1.94	1.00	0.310	0.500	ug/L	1		10/23/23 23:30
	P & M -Xylene	2.81	2.00	0.620	1.00	ug/L	1		10/23/23 23:30
	Toluene	0.690 J	1.00	0.310	0.500	ug/L	1		10/23/23 23:30
	Xylenes (total)	4.75	3.00	1.00	1.50	ug/L	1		10/23/23 23:30
	Surrogates								
	1,2-Dichloroethane-D4 (surr)	99.1	81-118			%	1		10/23/23 23:30
	4-Bromofluorobenzene (surr)	101	85-114			%	1		10/23/23 23:30
	Toluene-d8 (surr)	97.4	89-112			%	1		10/23/23 23:30

Batch Information

Analytical Batch: VMS22922 Analytical Method: SW8260D

Analyst: JY

Analytical Date/Time: 10/23/23 23:30 Container ID: 1235846006-E Prep Batch: VXX40691
Prep Method: SW5030B
Prep Date/Time: 10/23/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235846009

Collection Date: 10/12/23 00:00 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Lab Project ID: 1235846

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Gasoline Range Organics	0.0500 U	0.100	0.0450	0.0500	mg/L	1	Limits	10/20/23 22:46
Surrogates 4-Bromofluorobenzene (surr)	90.5	50-150			%	1		10/20/23 22:46

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101 Analyst: CWD

Analytical Date/Time: 10/20/23 22:46 Container ID: 1235846009-A Prep Batch: VXX40672
Prep Method: SW5030B
Prep Date/Time: 10/20/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of Trip Blank

Client Sample ID: **Trip Blank**Client Project ID: **Beluga River Unit**Lab Sample ID: 1235846009

Lab Project ID: 1235846

Collection Date: 10/12/23 00:00 Received Date: 10/16/23 14:03 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

							Allowable		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed	
Benzene	0.200 U	0.400	0.120	0.200	ug/L	1		10/19/23 18:00	
Ethylbenzene	0.500 U	1.00	0.310	0.500	ug/L	1		10/19/23 18:00	
o-Xylene	0.500 U	1.00	0.310	0.500	ug/L	1		10/19/23 18:00	
P & M -Xylene	1.00 U	2.00	0.620	1.00	ug/L	1		10/19/23 18:00	
Toluene	0.500 U	1.00	0.310	0.500	ug/L	1		10/19/23 18:00	
Xylenes (total)	1.50 U	3.00	1.00	1.50	ug/L	1		10/19/23 18:00	
Surrogates									
1,2-Dichloroethane-D4 (surr)	100	81-118			%	1		10/19/23 18:00	
4-Bromofluorobenzene (surr)	105	85-114			%	1		10/19/23 18:00	
Toluene-d8 (surr)	95.4	89-112			%	1		10/19/23 18:00	

Batch Information

Analytical Batch: VMS22911 Analytical Method: SW8260D

Analyst: JY

Analytical Date/Time: 10/19/23 18:00 Container ID: 1235846009-B Prep Batch: VXX40662
Prep Method: SW5030B
Prep Date/Time: 10/19/23 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1866301 [VXX/40662]

Blank Lab ID: 1742051

QC for Samples:

1235846003, 1235846009

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>
Benzene	0.200U	0.400	0.120	0.200	ug/L
Ethylbenzene	0.500U	1.00	0.310	0.500	ug/L
o-Xylene	0.500U	1.00	0.310	0.500	ug/L
P & M -Xylene	1.00U	2.00	0.620	1.00	ug/L
Toluene	0.500U	1.00	0.310	0.500	ug/L
Xylenes (total)	1.50U	3.00	1.00	1.50	ug/L
Surrogates					
1,2-Dichloroethane-D4 (surr)	97.8	81-118		0	%
4-Bromofluorobenzene (surr)	104	85-114		0	%
Toluene-d8 (surr)	93.9	89-112		0	%

Batch Information

Analytical Batch: VMS22911 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: JY

Analytical Date/Time: 10/19/2023 1:26:00PM

Prep Batch: VXX40662 Prep Method: SW5030B

Prep Date/Time: 10/19/2023 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:01AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235846 [VXX40662]

Blank Spike Lab ID: 1742052

Date Analyzed: 10/19/2023 13:41

Spike Duplicate ID: LCSD for HBN 1235846

[VXX40662]

Spike Duplicate Lab ID: 1742053 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1235846003, 1235846009

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	30	30.8	103	30	30.2	101	(79-120)	2.10	(< 20)
Ethylbenzene	30	32.4	108	30	31.7	106	(79-121)	2.20	(< 20)
o-Xylene	30	32.4	108	30	30.4	101	(78-122)	6.30	(< 20)
P & M -Xylene	60	63.2	105	60	61.3	102	(80-121)	3.10	(< 20)
Toluene	30	28.2	94	30	25.1	84	(80-121)	11.60	(< 20)
Xylenes (total)	90	95.6	106	90	91.7	102	(79-121)	4.20	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		92	30		94	(81-118)	1.50	
4-Bromofluorobenzene (surr)	30		114	30		103	(85-114)	10.40	
Toluene-d8 (surr)	30		92	30		84	* (89-112)	9.00	

Batch Information

Analytical Batch: VMS22911 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: **JY**

Prep Batch: VXX40662
Prep Method: SW5030B

Prep Date/Time: 10/19/2023 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:05AM

Method Blank

Blank ID: MB for HBN 1866370 [VXX/40672]

Blank Lab ID: 1742292

QC for Samples:

1235846006, 1235846009

Matrix: Water (Surface, Eff., Ground)

Results by AK101

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
Gasoline Range Organics	0.0500U	0.100	0.0450	0.0500	mg/L
Surrogates					
4-Bromofluorobenzene (surr)	83.8	50-150		0	%

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: CWD

Analytical Date/Time: 10/20/2023 2:20:00PM

Prep Batch: VXX40672 Prep Method: SW5030B

Prep Date/Time: 10/20/2023 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:08AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235846 [VXX40672]

Blank Spike Lab ID: 1742293 Date Analyzed: 10/20/2023 14:56

QC for Samples: 1235846006, 1235846009 Spike Duplicate ID: LCSD for HBN 1235846

[VXX40672]

Spike Duplicate Lab ID: 1742294 Matrix: Water (Surface, Eff., Ground)

Results by AK101

		Blank Spike	(mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.966	97	1.00	1.00	100	(60-120)	3.50	(< 20)
Surrogates									

Surrogates

4-Bromofluorobenzene (surr) 0.0500 93 0.0500 97 (50-150) 4.20

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: CWD

Prep Batch: VXX40672 Prep Method: SW5030B

Prep Date/Time: 10/20/2023 06:00

Spike Init Wt./Vol.: 0.0500 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 0.0500 mg/L Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:11AM

Billable Matrix Spike Summary

Original Sample ID: 1235846006 MS Sample ID: 1235846007 BMS MSD Sample ID: 1235846008 BMSD

QC for Samples:

Analysis Date: 10/21/2023 0:54 Analysis Date: 10/21/2023 1:13 Analysis Date: 10/21/2023 1:31 Matrix: Water (Surface, Eff., Ground)

Results by AK101

		Mat	rix Spike (ı	mg/L)	Spike	Duplicate	e (mg/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	0.0882J	1.00	1.03	95	1.00	1.05	96	60-120	1.10	(< 20)
Surrogates										
4-Bromofluorobenzene (surr)		0.0500	0.0533	107	0.0500	0.0529	106	50-150	0.68	

Batch Information

Analytical Batch: VFC16660 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: CWD

Analytical Date/Time: 10/21/2023 1:13:00AM

Prep Batch: VXX40672

Prep Method: Volatile Fuels Extraction (W) Prep Date/Time: 10/20/2023 6:00:00AM

Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 11/15/2023 10:32:12AM

Method Blank

Blank ID: MB for HBN 1866371 [VXX/40673]

Blank Lab ID: 1742295

QC for Samples:

1235846003, 1235846004, 1235846005

Matrix: Water (Surface, Eff., Ground)

Results by AK101

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
Gasoline Range Organics	0.0500U	0.100	0.0450	0.0500	mg/L
Surrogates					
4-Bromofluorobenzene (surr)	90.7	50-150		0	%

Batch Information

Analytical Batch: VFC16660
Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: CWD

Analytical Date/Time: 10/20/2023 11:22:00PM

Prep Batch: VXX40673 Prep Method: SW5030B

Prep Date/Time: 10/20/2023 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:14AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235846 [VXX40673]

Blank Spike Lab ID: 1742296 Date Analyzed: 10/21/2023 05:31 Spike Duplicate ID: LCSD for HBN 1235846

[VXX40673]

Spike Duplicate Lab ID: 1742297 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1235846003, 1235846004, 1235846005

Results by AK101

	ı	Blank Spike	(mg/L)	8	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.968	97	1.00	0.938	94	(60-120)	3.10	(< 20)
Surregates									

Surrogates

4-Bromofluorobenzene (surr) 0.0500 **98** 0.0500 **95** (50-150) **2.90**

Batch Information

Analytical Batch: VFC16660
Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: CWD

Prep Batch: VXX40673
Prep Method: SW5030B

Prep Date/Time: 10/20/2023 06:00

Spike Init Wt./Vol.: 0.0500 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 0.0500 mg/L Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:17AM

Method Blank

Blank ID: MB for HBN 1866523 [VXX/40691]

Blank Lab ID: 1742870

QC for Samples:

1235846004, 1235846005, 1235846006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	<u>Units</u>
Benzene	0.200U	0.400	0.120	0.200	ug/L
Ethylbenzene	0.500U	1.00	0.310	0.500	ug/L
o-Xylene	0.500U	1.00	0.310	0.500	ug/L
P & M -Xylene	1.00U	2.00	0.620	1.00	ug/L
Toluene	0.500U	1.00	0.310	0.500	ug/L
Xylenes (total)	1.50U	3.00	1.00	1.50	ug/L
Surrogates					
1,2-Dichloroethane-D4 (surr)	102	81-118		0	%
4-Bromofluorobenzene (surr)	103	85-114		0	%
Toluene-d8 (surr)	97.2	89-112		0	%

Batch Information

Analytical Batch: VMS22922 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JY

Analytical Date/Time: 10/23/2023 3:53:00PM

Prep Batch: VXX40691 Prep Method: SW5030B

Prep Date/Time: 10/23/2023 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:20AM

Leaching Blank

Blank ID: LB for HBN 1866289 [TCLP/12741

Blank Lab ID: 1742008

QC for Samples:

1235846004, 1235846005, 1235846006

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	Units
Benzene	10.0U	20.0	6.00	10.0	ug/L
Surrogates					
1,2-Dichloroethane-D4 (surr)	99.9	81-118		0	%
4-Bromofluorobenzene (surr)	101	85-114		0	%
Toluene-d8 (surr)	97.7	89-112		0	%

Batch Information

Analytical Batch: VMS22922 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JY

Analytical Date/Time: 10/23/2023 11:45:00PM

Prep Batch: VXX40691 Prep Method: SW5030B

Prep Date/Time: 10/23/2023 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:20AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235846 [VXX40691]

Blank Spike Lab ID: 1742871 Date Analyzed: 10/23/2023 16:08 Spike Duplicate ID: LCSD for HBN 1235846

[VXX40691]

Spike Duplicate Lab ID: 1742872 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1235846004, 1235846005, 1235846006

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	30	30.5	102	30	30.3	101	(79-120)	0.53	(< 20)
Ethylbenzene	30	29.0	97	30	29.1	97	(79-121)	0.28	(< 20)
o-Xylene	30	29.2	97	30	29.0	97	(78-122)	0.45	(< 20)
P & M -Xylene	60	58.0	97	60	58.1	97	(80-121)	0.19	(< 20)
Toluene	30	29.1	97	30	28.8	96	(80-121)	0.93	(< 20)
Xylenes (total)	90	87.1	97	90	87.1	97	(79-121)	0.02	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		96	30		95	(81-118)	1.20	
4-Bromofluorobenzene (surr)	30		100	30		101	(85-114)	0.69	
Toluene-d8 (surr)	30		100	30		99	(89-112)	0.07	

Batch Information

Analytical Batch: VMS22922 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JY

Prep Batch: VXX40691
Prep Method: SW5030B

Prep Date/Time: 10/23/2023 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/15/2023 10:32:24AM

Billable Matrix Spike Summary

Original Sample ID: 1235846006 MS Sample ID: 1235846007 BMS MSD Sample ID: 1235846008 BMSD

QC for Samples:

Analysis Date: 10/23/2023 23:30 Analysis Date: 10/24/2023 0:29 Analysis Date: 10/24/2023 0:44 Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

		Ma	trix Spike ((ug/L)	Spik	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	0.790	30.0	32.2	105	30.0	31.9	104	79-120	0.75	(< 20)
Ethylbenzene	0.420J	30.0	29.9	98	30.0	29.4	97	79-121	1.80	(< 20)
o-Xylene	1.94	30.0	31.7	99	30.0	31.0	97	78-122	2.30	(< 20)
P & M -Xylene	2.81	60.0	61.4	98	60.0	61.1	97	80-121	0.56	(< 20)
Toluene	0.690J	30.0	30.6	100	30.0	30.1	98	80-121	1.70	(< 20)
Xylenes (total)	4.75	90.0	93.1	98	90.0	92.0	97	79-121	1.10	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		30.0	28	93	30.0	27.6	92	81-118	1.60	
4-Bromofluorobenzene (surr)		30.0	30.5	102	30.0	30.8	103	85-114	1.20	
Toluene-d8 (surr)		30.0	29.9	100	30.0	29.9	100	89-112	0.00	

Batch Information

Analytical Batch: VMS22922 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: JY

Analytical Date/Time: 10/24/2023 12:29:00AM

Prep Batch: VXX40691

Prep Method: Volatiles Extraction 8240/8260 Prep Date/Time: 10/23/2023 6:00:00AM

Prep Initial Wt./Vol.: 5.00mL Prep Extract Vol: 5.00mL

Print Date: 11/15/2023 10:32:26AM

Method Blank

Blank ID: MB for HBN 1866196 [XXX/48878]

Blank Lab ID: 1741491

QC for Samples:

1235846001, 1235846002, 1235846003, 1235846004, 1235846005, 1235846006

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	LOD	Units
1-Methylnaphthalene	0.0154J	0.0500	0.0150	0.0250	ug/L
2-Methylnaphthalene	0.0273J	0.0500	0.0150	0.0250	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	0.0250	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	0.0250	ug/L
Anthracene	0.0250U	0.0500	0.0150	0.0250	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	0.0250	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	0.0100	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	0.0250	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	0.0250	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	0.0250	ug/L
Chrysene	0.0250U	0.0500	0.0150	0.0250	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	0.0100	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	0.0250	ug/L
Fluorene	0.0250U	0.0500	0.0150	0.0250	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	0.0250	ug/L
Naphthalene	0.0500U	0.100	0.0310	0.0500	ug/L
Phenanthrene	0.0469J	0.100	0.0310	0.0500	ug/L
Pyrene	0.0250U	0.0500	0.0150	0.0250	ug/L
Surrogates					
2-Methylnaphthalene-d10 (surr)	63.2	38-100		0	%
Fluoranthene-d10 (surr)	81.6	30-111		0	%

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent 8890 GC/MS SYA

Analyst: HMW

Analytical Date/Time: 10/27/2023 10:54:00PM

Prep Batch: XXX48878 Prep Method: SW3535A

Prep Date/Time: 10/18/2023 10:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/15/2023 10:32:27AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235846 [XXX48878]

Blank Spike Lab ID: 1741492

Date Analyzed: 10/27/2023 23:10

Spike Duplicate ID: LCSD for HBN 1235846

[XXX48878]

Spike Duplicate Lab ID: 1741493 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1235846001, 1235846002, 1235846003, 1235846004, 1235846005, 1235846006

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.52	76	2	1.31	65	(41-115)	14.80	(< 20)
2-Methylnaphthalene	2	1.67	83	2	1.36	68	(39-114)	19.90	(< 20)
Acenaphthene	2	1.79	89	2	1.67	83	(48-114)	6.90	(< 20)
Acenaphthylene	2	1.72	86	2	1.65	82	(35-121)	4.20	(< 20)
Anthracene	2	1.70	85	2	1.58	79	(53-119)	7.40	(< 20)
Benzo(a)Anthracene	2	1.72	86	2	1.69	85	(59-120)	1.70	(< 20)
Benzo[a]pyrene	2	1.89	95	2	1.88	94	(53-120)	0.67	(< 20)
Benzo[b]Fluoranthene	2	1.97	99	2	1.97	99	(53-126)	0.19	(< 20)
Benzo[g,h,i]perylene	2	1.99	100	2	2.00	100	(44-128)	0.54	(< 20)
Benzo[k]fluoranthene	2	1.95	98	2	1.92	96	(54-125)	1.90	(< 20)
Chrysene	2	1.77	88	2	1.81	91	(57-120)	2.30	(< 20)
Dibenzo[a,h]anthracene	2	1.85	92	2	1.87	94	(44-131)	1.50	(< 20)
Fluoranthene	2	1.80	90	2	1.78	89	(58-120)	0.63	(< 20)
Fluorene	2	1.79	90	2	1.70	85	(50-118)	5.10	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.97	99	2	1.95	98	(48-130)	0.78	(< 20)
Naphthalene	2	1.60	80	2	1.33	67	(43-114)	18.50	(< 20)
Phenanthrene	2	1.89	94	2	1.87	93	(53-115)	1.10	(< 20)
Pyrene	2	1.83	91	2	1.84	92	(53-121)	0.67	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2		71	2		62	(38-100)	13.30	
Fluoranthene-d10 (surr)	2		81	2		82	(30-111)	0.44	

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent 8890 GC/MS SYA

Analyst: HMW

Prep Batch: XXX48878
Prep Method: SW3535A

Prep Date/Time: 10/18/2023 10:00

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 11/15/2023 10:32:30AM

Billable Matrix Spike Summary

Original Sample ID: 1235846006 MS Sample ID: 1235846007 BMS MSD Sample ID: 1235846008 BMSD

QC for Samples:

Analysis Date: 10/28/2023 2:23 Analysis Date: 10/28/2023 2:39 Analysis Date: 10/28/2023 2:55

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Ма	trix Spike (ug/L)	Spike	e Duplicat	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.358	2.13	1.79	68	2.04	1.81	71	41-115	0.70	(< 20)
2-Methylnaphthalene	0.372	2.13	1.9	72	2.04	1.91	76	39-114	0.51	(< 20)
Acenaphthene	0.0266U	2.13	1.68	79	2.04	1.65	81	48-114	1.60	(< 20)
Acenaphthylene	0.0266U	2.13	1.62	76	2.04	1.57	77	35-121	3.00	(< 20)
Anthracene	0.0266U	2.13	1.6	75	2.04	1.57	77	53-119	2.00	(< 20)
Benzo(a)Anthracene	0.0266U	2.13	1.83	86	2.04	1.69	83	59-120	8.20	(< 20)
Benzo[a]pyrene	0.0107U	2.13	1.89	89	2.04	1.70	83	53-120	10.60	(< 20)
Benzo[b]Fluoranthene	0.0266U	2.13	1.91	90	2.04	1.69	83	53-126	12.20	(< 20)
Benzo[g,h,i]perylene	0.0266U	2.13	1.73	81	2.04	1.58	77	44-128	9.00	(< 20)
Benzo[k]fluoranthene	0.0266U	2.13	2.04	96	2.04	1.86	91	54-125	9.10	(< 20)
Chrysene	0.0266U	2.13	1.83	86	2.04	1.62	80	57-120	12.20	(< 20)
Dibenzo[a,h]anthracene	0.0107U	2.13	1.76	83	2.04	1.62	79	44-131	8.10	(< 20)
Fluoranthene	0.0266U	2.13	1.83	86	2.04	1.70	83	58-120	7.20	(< 20)
Fluorene	0.0266U	2.13	1.73	81	2.04	1.68	83	50-118	2.50	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0266U	2.13	1.78	84	2.04	1.63	80	48-130	8.70	(< 20)
Naphthalene	0.595	2.13	2.17	74	2.04	2.10	74	43-114	3.20	(< 20)
Phenanthrene	0.0530U	2.13	1.86	88	2.04	1.81	89	53-115	2.80	(< 20)
Pyrene	0.0266U	2.13	1.9	89	2.04	1.76	86	53-121	7.50	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		2.13	1.34	63	2.04	1.35	66	38-100	0.80	
Fluoranthene-d10 (surr)		2.13	1.69	79	2.04	1.57	77	30-111	7.30	

Batch Information

Analytical Batch: XMS14050

Analytical Method: 8270D SIM LV (PAH) Instrument: Agilent 8890 GC/MS SYA

Analyst: HMW

Analytical Date/Time: 10/28/2023 2:39:00AM

Prep Batch: XXX48878

Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV

Prep Date/Time: 10/18/2023 10:00:00AM

Prep Initial Wt./Vol.: 235.00mL Prep Extract Vol: 1.00mL

Print Date: 11/15/2023 10:32:32AM

Method Blank

Blank ID: MB for HBN 1866309 [XXX/48897]

Blank Lab ID: 1742079

QC for Samples:

1235846001, 1235846002, 1235846003, 1235846004, 1235846005, 1235846006

Results by AK102

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
Diesel Range Organics	0.300U	0.600	0.200	0.300	mg/L
Surrogates					
5a Androstane (surr)	11.3*	60-120		0	%

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: T.L

Analytical Date/Time: 10/26/2023 5:22:00PM

Prep Batch: XXX48897 Prep Method: SW3520C

Prep Date/Time: 10/20/2023 4:25:00PM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/15/2023 10:32:34AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235846 [XXX48897]

Blank Spike Lab ID: 1742080

Date Analyzed: 10/26/2023 17:34

Spike Duplicate ID: LCSD for HBN 1235846

[XXX48897]

Spike Duplicate Lab ID: 1742081 Matrix: Water (Surface, Eff., Ground)

QC for Samples: $1235846001,\,1235846002,\,1235846003,\,1235846004,\,1235846005,\,1235846006$

Results by AK102

	В	lank Spike ((mg/L)	S	pike Duplica	ate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	22.3	112	20	21.4	107	(75-125)	4.20	(< 20)
Surrogates									
5a Androstane (surr)	0.4		107	0.4		109	(60-120)	1.60	

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: T.L

Prep Batch: XXX48897 Prep Method: SW3520C

Prep Date/Time: 10/20/2023 16:25

Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL

Print Date: 11/15/2023 10:32:37AM

Billable Matrix Spike Summary

Original Sample ID: 1235846006 MS Sample ID: 1235846007 BMS MSD Sample ID: 1235846008 BMSD

QC for Samples:

Analysis Date: 10/26/2023 20:03 Analysis Date: 10/26/2023 20:15 Analysis Date: 10/26/2023 20:27 Matrix: Water (Surface, Eff., Ground)

Results by AK102

Teomic By Fitting		Ma	trix Spike (mg/L)	Spike	e Duplicate	e (mg/L)			
<u>Parameter</u> Diesel Range Organics	Sample 2.27	<u>Spike</u> 21.7	Result 22.7	<u>Rec (%)</u> 94	<u>Spike</u> 21.7	Result 25.8	Rec (%) 108	<u>CL</u> 75-125	RPD (%) 12.80	RPD CL (< 30)
Surrogates 5a Androstane (surr)		0.435	.458	105	0.435	0.470	108	50-150	2.40	

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK102

Instrument: Agilent 7890B R Analyst: T.L

Analytical Date/Time: 10/26/2023 8:15:00PM

Prep Batch: XXX48897

Prep Method: Cnt. Liq/Liq Ext. for AK102/3 Low Vol

Prep Date/Time: 10/20/2023 4:25:00PM

Prep Initial Wt./Vol.: 230.00mL Prep Extract Vol: 1.00mL

Print Date: 11/15/2023 10:32:39AM

Method Blank

Blank ID: MB for HBN 1866309 [XXX/48897]

Blank Lab ID: 1742079

QC for Samples:

1235846001, 1235846002, 1235846003, 1235846004, 1235846005, 1235846006

Results by AK103

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>LOD</u>	<u>Units</u>
Residual Range Organics	0.250U	0.500	0.200	0.250	mg/L
Surrogates n-Triacontane-d62 (surr)	18.1*	60-120		0	%

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: T.L

Analytical Date/Time: 10/26/2023 5:22:00PM

Prep Batch: XXX48897 Prep Method: SW3520C

Prep Date/Time: 10/20/2023 4:25:00PM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 11/15/2023 10:32:41AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1235846 [XXX48897]

Blank Spike Lab ID: 1742080

Date Analyzed: 10/26/2023 17:34

Spike Duplicate ID: LCSD for HBN 1235846

[XXX48897]

Spike Duplicate Lab ID: 1742081 Matrix: Water (Surface, Eff., Ground)

QC for Samples: $1235846001,\,1235846002,\,1235846003,\,1235846004,\,1235846005,\,1235846006$

Results by AK103

		Blank Spike (mg/L)			Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	22.1	111	20	21.6	108	(60-120)	2.60	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4		106	0.4		109	(60-120)	3.20	

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: T.L

Prep Batch: XXX48897 Prep Method: SW3520C

Prep Date/Time: 10/20/2023 16:25

Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL

Print Date: 11/15/2023 10:32:44AM

Billable Matrix Spike Summary

Original Sample ID: 1235846006 MS Sample ID: 1235846007 BMS MSD Sample ID: 1235846008 BMSD

QC for Samples:

Analysis Date: 10/26/2023 20:03 Analysis Date: 10/26/2023 20:15 Analysis Date: 10/26/2023 20:27 Matrix: Water (Surface, Eff., Ground)

Results by AK103

Titouino By Filtrio		Matrix Spike (mg/L)			Spike	e Duplicate	e (mg/L)			
ParameterSampResidual Range Organics1.72		<u>Spike</u> 21.7	Result 24.7	Rec (%) 106	<u>Spike</u> 21.7	Result 24.8	Rec (%) 106	<u>CL</u> 60-140	RPD (%) 0.73	RPD CL (< 30)
Surrogates n-Triacontane-d62 (surr)		0.435	.452	104	0.435	0.449	103	50-150	0.70	

Batch Information

Analytical Batch: XFC16715 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: T.L

Analytical Date/Time: 10/26/2023 8:15:00PM

Prep Batch: XXX48897

Prep Method: Cnt. Liq/Liq Ext. for AK102/3 Low Vol

Prep Date/Time: 10/20/2023 4:25:00PM

Prep Initial Wt./Vol.: 230.00mL Prep Extract Vol: 1.00mL

Print Date: 11/15/2023 10:32:45AM

SGS

SGS North America Inc. CHAIN OF CUSTODY RECORD

SGS North America Inc 200 West Potter Drive Anchorage, AK 99518 1235846

#: 304/60 Int.: Wengage.sgs.com

CLIENT: HECOTO CO SUSTINA									ons: Sections 1 - 5 must be med out. ons may delay the onset of analysis.									8-4-	1 1	1
4	ONTACT:	Melissa Mayer	PHONE #:	907-350-7952		Sec	tion 3					Pro	servat	ive				lage .	_1,,,,, of _1	_
	PROJECT NAME:	Beluga River Unit	Project/Permit NPDL Number(ĐOD):		# C 0	Samala	No.	s Jac	r /sci	, KC	, kCl	ysis*	, ko			$\overline{\angle}$			
L	REPORTS TO:	Melissa Mayer m.mayer@susitha.com Hilcorp Afaska Amy Peloza	E-MAIL; QUOTE #: P.O. #:	m.mayer@sus 235-92460 G/L 600	,15.10.28	N T A !	Sample Type Comp Grab	AH, RCRA	PVOC)RO/RRO		Aridi		_				NOTE: *The following specific meth compound lis	od and/or	1
1	RESERVED for lab use	SAMPLE IDENTIFICATION	DAT:		MATRIX MATRIX CODE	N E R 8	MI	DRO/RRO, PAH, RCRA	GRO/BTEX/PVOC	AK102/103 DRO/RRO	AK101 GRO	8260 BTEX	8270 SIM PAH	AK182 DRO				PFAS REMA	RKS/LOC I	B
ſ	IAB	FG24-101223 è	10/12/	2023 140	6 W	2	Grab	<u> </u>			ļ		<u> </u>	×						
I	1001	FG24-101223 •	10/12/	2023 140	6 W	2	Grab		<u> </u>		<u> </u>	<u> </u>	X		<u></u>			<u> </u>		
	200	FG28-101223 ¢	10/12/	2023 114	5 W	2	Grab				<u> </u>	ļ <u> </u>	<u> </u>	X						
ì	2001	FG28-101223 &	10/12/	2023 114	5 W	2	Grab	ļ	<u> </u>	<u> </u>	ļ	ļ	×	ļ	ļ					
	3 HF	224-13-2-101223 3	10/12/	2023 93	1 W	6	Grab	<u> </u>	<u> </u>		×	X	ļ		ļ					
١	3 GH	224-13-2-101223	10/12/	2023 93	11 W	2	Grab	<u> </u>	<u> </u>	X	<u> </u>	ļ <u> </u>	<u> </u>	ļ	ļ <u> </u>					
9	(5 IS)	224-13-2-101223 🍛	10/12/	2023 93	11 W	2	Grab	ļ		<u> </u>	ļ	ļ	×		<u> </u>					
ž	(4AF)	224-13-3-101323 ¢	10/13/	2023 91	3 W	6	Grab	<u> </u>		<u> </u>	X	X	ļ	L	<u> </u>					
	4 GH	224-13-3-191323 2	10/13/	2023 91	13 W	2	Grab	<u> </u>		X			<u> </u>	<u> </u>					,	
I	427	224-13-3-101323	10/13/	2023 9°	13 W	2	Grab	<u> </u>		<u> </u>	<u> </u>		X	<u> </u>	<u> </u>					
ı	5 AF	224-13-5-101323 🖈	10/13/	2023 115	58 W	6	Grab	<u> </u>			X	X	<u> </u>	<u> </u>	ļ	<u> </u>				
1	5 GH	224-13-5-101323 ->	10/13/	2023 11	58 W	2	Grab	<u> </u>		X	ļ	ļ	<u> </u>	<u> </u>	ļ					
	をエク	224-13-5-101323 -	10/13/	2023 11	58 W	2	Grab	ļ		_			X	<u> </u>	ļ					<u></u>
П	GAFT	224-13-4-101323+	10/13	2023 15	32 W	12	Grab			<u> </u>	X	×		<u> </u>		<u> </u>		MS/MSD		
I	le GYN	224-13-4-101323 >	10/13	2023 15	32 W	4	Grab		ļ	X		<u> </u>	<u> </u>	<u> </u>	<u> </u>			MS/MSD		D
IJ	(OTT)	224-13-4-101323 .	10/13	2023 15	32 W	4	Grab	<u> </u>	<u> </u>		<u> </u>		X		<u> </u>	<u> </u>		MS/MSD	3 1 8	
ior (is pravidi			Turnaround T	ime Res	niasted		T			_	SGS	Samo	le Rece	îpt (Lab	Use C	Only)		
=	DOD Project?	YES NO X Data Deliverables Requested	·····		Turnar ourse	ance tree	1043444		Deliver	ry Metho	ıd: (Client		mercial				tody Seal Co	indition:	
ĕ	DataView	SEDD EQL	is	Rush						Did e	ach cool			2)	No	Ì	INTA		EN ABS	ENT
Š	Level 4	ERPIMS Other	er:	Requ	ested Rush R	eport Da	≱te:		<u> </u>	con	respond	ng COC						cation(s):		
	F	ELINQUISHED BY:	DATE:	TIME:	RE	CEIVE	SY:		╄	Coc	oler ID		Ten	<u> </u>	ite (°C)	Them				
	N^{2}	Mellsga Mayer	10/16/2023	1300					1.		(17	<u>. 9</u>		1031	2	received, or	an three cool r for documer	ntation of
on 5		1	<u> </u>)			2.				_			<u> </u>		non-compliar	it coolers, us 0029.	e form FS-
ection					α		_/	7	3.											
(S)			10/6/22	1403) ,		\	Note: If temp, is outside 0.8° and samples were not taken <8 hours ag- are waste samples, Client or PM should initial here or attach un arnell order to proceed with analysis. If ice is present, note on form F1028.					un omail c		Intials	;				
Labbratory Use								/_	http://www.sgs.com/terms-and-conditions											

SAMPLE RECEIPT FORM

	Project	Manaq	or Com	pletion
Was all necessary information recorded on the	Yes	No	N/A	Metiois
	(res	180	IWA	
COC upon receipt? (temperature, COC seals,				
etc.?)				
Was temperature between 0-6° C?	(Yes)	No	N/A	If "No", are the samples either exempt* or sampled <8
				hours prior to receipt?
				' '
Were all analyses received within holding time*?	Yes	No	N/A	
· · · · · · · · · · · · · · · · · · ·		1.0		
Was a method specified for each analysis,	Yes	No	N/A	
where applicable? If no, please note correct		110	1107	
methods.				·
Are compound lists specified, where applicable?	Yes	No	A E / A	
	198	NO	N/A	
For project specific or special compound lists				
please note correct analysis code.			,	
If rush was requested by the client, was the	Yes	No ((N/A)	If "NO", what is the approved TAT?
requested TAT approved?				
If SEDD Deliverables are required, were	Yes	No	N/A)f "NO", contact client for information.
Location ID's and an NPDL Number provided?	1			
	Sampl	e Logir	Comp	pletion
Do ID's on sample containers match COC?	Yes)	No	N/A	
			1,117	
If provided on containers, do dates/times	Yes	No	N/A	Note: If times differ <1 hr., record details below and
collected match COC?	100	140	ראוו	
	A.	-14 V	N. I A	login per COC.
Were all sample containers received in good	Yes) No	N/A	
condition?	$\vdash \prec$			
Were proper containers	(Yes) No	N/A	Note: If 200.8/6020 Total Metals are received unpreserved,
(type/mass/volume/preservative) received for all				preserve and note HNO3 lot here:
samples?				If 200.8/6020 Dissolved Metals are received unpreserved, log
*See form F-083 "Sample Guide"				in for LABFILTER and do not preserve.
·				For all non-metals methods, inform Project Manager.
•				limited Vol. for ms/mBDX &
Were Trip Blanks (VOC, GRO, Low-Level Hg,	(Yes) No	N/A	ortanica ioc. Any presimilary
etc.) received with samples, where applicable*?	160	140	IV/A	
		N. 1 -	B1(A	
Were all VOA vials free of headspace >6mm?	(Yes')	No	N/A	
Were all soil VOA samples received field	Yes	No	M/A-	h)
extracted with Methanol?			<u> </u>	
Did all soil VOA samples have an	Yes	No	N/A	
accompanying unpreserved container for %				
solids?	_			
If special handling is required, were containers	Yes	No	N/A	
labelled appropriately? e.g. MI/ISM, foreign		7		Links and Source
soils, lab filter, Ref Lab, limited volume			_	Cimited Volume, SAKE
For Rush/Short Holding time, was the lab	Yes	No	(V/A	
notified?	103	140	(C	
For any question answered "NO", was the	Yes	No	(1)	OAR Industry
Project Manager notified?	168	NO	(N/A)	PM Initials:
		/ * * ***		
Was Peer Review of sample	Yes	No	N/A	Reviewer Initials:
numbering/labelling completed?	1		اا	NOI)
Additional Notes/Clarification where Applicable, inc	luding <u>r</u>	esolutic	n of "N	o" answers when a change order is not attached:

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1235846001-A	HCL to pH < 2	OK	1235846007-B	HCL to pH < 2	OK
1235846001-B	HCL to pH < 2	OK	1235846007-C	HCL to pH < 2	OK
1235846001-C	HCL to pH < 2	OK	1235846007-D	HCL to pH < 2	OK
1235846001-D	HCL to pH < 2	OK	1235846007-E	No Preservative Required	OK
1235846002-A	HCL to pH < 2	OK	1235846008-A	HCL to pH < 2	OK
1235846002-B	HCL to pH < 2	OK	1235846008-B	HCL to pH < 2	OK
1235846002-C	HCL to pH < 2	OK	1235846008-C	HCL to pH < 2	OK
1235846002-D	HCL to pH < 2	OK	1235846008-D	HCL to pH < 2	OK
1235846003-A	HCL to pH < 2	OK	1235846008-E	No Preservative Required	OK
1235846003-B	HCL to pH < 2	OK	1235846009-A	HCL to pH < 2	OK
1235846003-C	HCL to pH < 2	OK	1235846009-B	HCL to pH < 2	OK
1235846003-D	HCL to pH < 2	OK	1235846009-C	HCL to pH < 2	OK
1235846003-E	HCL to pH < 2	OK			
1235846003-F	HCL to pH < 2	OK			
1235846003-G	HCL to pH < 2	OK			
1235846003-H	HCL to pH < 2	OK			
1235846003-I	No Preservative Required	OK			
1235846003-J	No Preservative Required	OK			
1235846004-A	HCL to pH < 2	OK			
1235846004-B	HCL to pH < 2	OK			
1235846004-C	HCL to pH < 2	OK			
1235846004-D	HCL to pH < 2	OK			
1235846004-E	HCL to pH < 2	OK			
1235846004-F	HCL to pH < 2	OK			
1235846004-G	HCL to pH < 2	OK			
1235846004-H	HCL to pH < 2	OK			
1235846004-I	No Preservative Required	OK			
1235846004-J	No Preservative Required	OK			
1235846005-A	HCL to pH < 2	OK			
1235846005-B	HCL to pH < 2	OK			
1235846005-C	HCL to pH < 2	OK			
1235846005-D	HCL to pH < 2	OK			
1235846005-E	HCL to pH < 2	OK			
1235846005-F	HCL to pH < 2	OK			
1235846005-G	HCL to pH < 2	OK			
1235846005-H	HCL to pH < 2	OK			
1235846005-I	No Preservative Required	OK			
1235846005-J	No Preservative Required	OK			
1235846006-A	HCL to pH < 2	OK			
1235846006-B	HCL to pH < 2	OK			
1235846006-C	HCL to pH < 2	OK			
1235846006-D	HCL to pH < 2	OK			
1235846006-E	HCL to pH < 2	ОК			
1235846006-F	HCL to pH < 2	ОК			
1235846006-G	HCL to pH < 2	ОК			
1235846006-H	HCL to pH < 2	ОК			
1235846006-I	No Preservative Required	ОК			
1235846006-J	No Preservative Required	ОК			
1235846007-A	HCL to pH < 2	OK			

<u>Container Id</u> <u>Preservative</u> <u>Container Gontainer Id</u> <u>Preservative</u> <u>Container Id</u> <u>Container </u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Attachment G ADEC Laboratory Data Review Checklist and Data Quality Memorandums

February 3, 2024

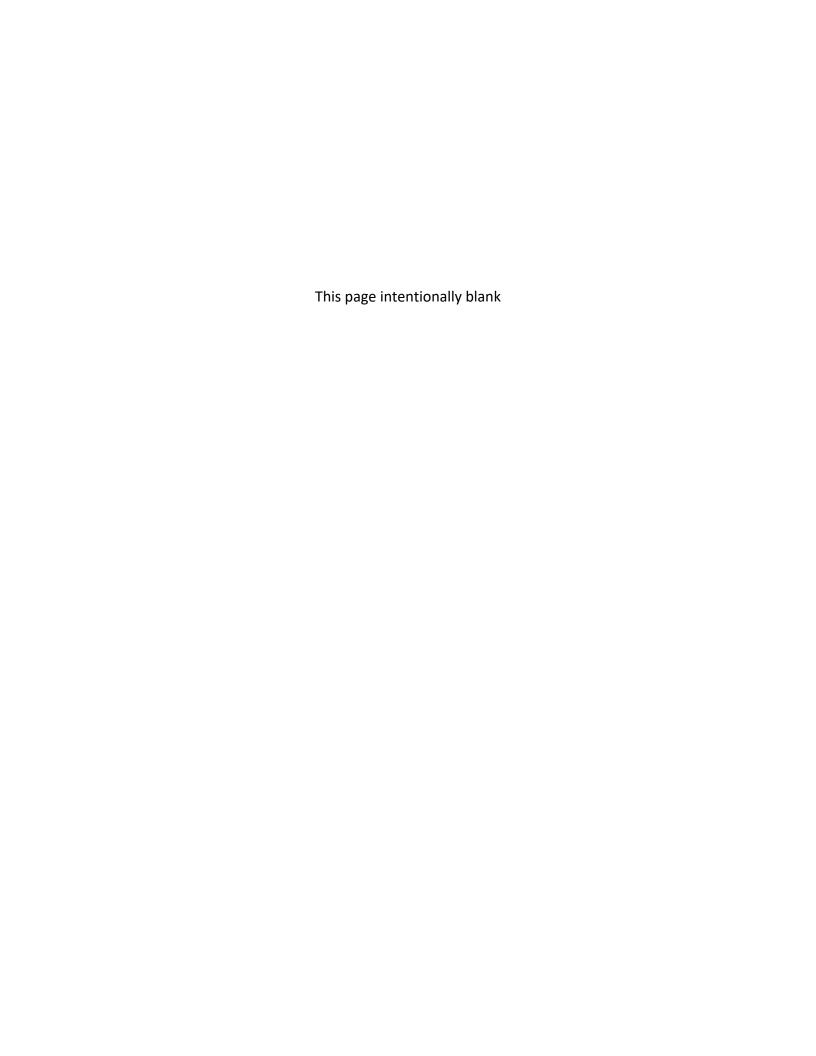
Ms. Melissa Mayer Susitna Environmental, LLC 8361 Petersburg Street Anchorage, AK 99507

Subject: Hilcorp Alaska, LLC – 2023 Beluga River Unit Soil Characterization and Groundwater Sampling Quality Assurance Review, SDGs 1235845, and 1235846.

Ms. Mayer,

Attached is the quality assurance review of the laboratory data from soil and groundwater samples collected during field activities at several sites at the Beluga River Unit in October 2023.

In general, the overall quality of the project data was acceptable. Quality control issues that required results to be qualified included blank contamination, surrogate and LCS recoveries, MS/MSD RPDs, and field duplicate imprecision. No results were rejected and qualified data are considered acceptable for use, with the limitations discussed within this QA report and as indicated with the appropriate qualifiers.


If you have questions, please do not hesitate to let me know.

Sincerely,

Kelly Carson

Senior Chemist

ARS Aleut Remediation, LLC

TABLE OF CONTENTS

ACRON	_		BREVIATIONS		
1.			ON		
2. 3.			ATION PROCEDURES ITY REVIEW AND ASSESSMENT		
э.					
	3.1		Sampling Quality Control		
	3.2	-	e Condition Upon Receipt		
	3.3		ng Time Compliance		
	3.4	Precision			
		3.4.1	Field Duplicate Precision		
		3.4.2	Laboratory Control Sample Duplicate	5	
		3.4.3	Matrix Spike Duplicate	5	
	3.5	Accura	acy	5	
		3.5.1	Blank Sample Analysis	5	
		3.5.2	Laboratory Control Sample Recoveries	6	
		3.5.3	Matrix Spike Recoveries	6	
		3.5.4	Surrogate Recoveries	6	
		3.5.5	Trip Blanks	6	
	3.6	Repre	sentativeness	6	
	3.7	Comp	arability	7	
	3.8	Comp	leteness	7	
	3.9	Sensit	ivity	7	
4.	OVER/	ALL DAT	FA QUALITY AND USABILITY ASSESSMENT	8	
5.	REFER	ENCES.		8	
TABLES	5				
Table 1	L	Valida	tion Qualifiers	2	
Table 2		Field (Quality Control Sample Summary	3	

ATTACHMENTS

Attachment 1 Sample Summary

Attachment 2 ADEC Laboratory Data Review Checklists

This page intentionally blank

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

% percent

AAC Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

Aleut ARS Aleut Remediation

BRU Beluga River Unit
CoC chain-of-custody
DL detection limit

DRO diesel range organics
DQO data quality objective
DQR data quality report

EPA U.S. Environmental Protection Agency

GRO gasoline range organics
LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection
LOQ limit of quantitation

MB method blank
MS matrix spike

MSD matrix spike duplicate

ND non-detect

QA quality assurance QC quality control

RPD relative percent difference RRO residual range organics SDG sample delivery group

SGS SGS North America, Inc. in Anchorage, AK

TB trip blank

This page intentionally blank

1. INTRODUCTION

This data quality report (DQR) summarizes the findings of the validation of laboratory data collected during soil characterization and groundwater monitoring at multiple sites at the Beluga River Unit (BRU), Tyonek, Alaska, in October 2023. ARS Aleut Remediation (Aleut) reviewed and validated these data for compliance with quality assurance (QA)/quality control (QC) measures implemented to fulfill quality objectives (DQOs) in the Beluga River Unit 2023 Site Characterization and Groundwater Sampling Work Plan, herein referred to as the Work Plan (Susitna Environmental 2023).

This DQR includes the following supporting documentation:

- Attachment 1: Sample summary
- Attachment 2: Alaska Department of Environmental Conservation (ADEC) Laboratory Data Review Checklists

2. DATA VALIDATION PROCEDURES

The Stage 2A data validation was performed by an experienced chemist independent of the analytical laboratory and included a completeness check of the electronic data to verify that data packages and electronic files included all the requested information. Project data were reviewed on an analytical-batch basis by assessing QC samples and associated field sample results. Laboratory reporting and data validation were consistent with the ADEC Technical Memorandum Guidelines for Data Reporting (ADEC 2022).

Analytical results outside QC parameters are discussed in Section 3.0 and in the associated ADEC Laboratory Data Review Checklist completed for each sample delivery group (SDG) (Attachment 2). Analytical DQOs were considered met when the quality of the sample data met precision, accuracy, representativeness, completeness, comparability, and sensitivity requirements. Laboratory data were evaluated using the QC criteria in the Work Plan, the ADEC Guidelines for Data Reporting (ADEC 2022), specific method guidance, and laboratory control limits for precision and accuracy.

The following information was reviewed as part of the Stage 2A data validation:

- Sample handling and chain-of-custody (CoC)
- Sample preservation and holding time compliance
- Field QC samples, including trip blanks (TBs) and field duplicates
- Sample reporting limits, including limits of detection (LOD) and limits of quantitation (LOQ), compared to project requirements
- Method blanks (MBs)

- Laboratory control sample (LCS) and LCS duplicate (LCSD) recoveries
- Surrogate spike recoveries
- Matrix spike (MS) and MS duplicate (MSD) recoveries
- Precision, including relative percent difference (RPD) values for duplicate analyses
- Laboratory case narrative and laboratory qualifiers

The data validation identified results requiring qualification based on the definitions provided in Table 1.

Table 1 Validation Qualifiers

QUALIFIER	DESCRIPTION
U	Analyte was not detected and the value shown is the LOD.
UJ	Analyte was not detected and the LOD is an estimated value due to a QC failure.
J (±)	Analyte result is considered an estimated value biased high/low/indeterminate.
В	Analyte result is considered a high estimated value due to contamination present in an associated blank (e.g., MB or TB).
Н	Analyte result is considered an estimated value, biased low, due to a holding time exceedance.
R	Analyte result is rejected and considered not usable.

Notes:

For definitions, see the Acronyms and Abbreviations section.

Qualification was not required in the following circumstances:

- Analyte was detected in the associated blank, with no detection in the associated sample(s).
- MS/MSD or LCS/LCSD recoveries exceeded upper control limits with no detection in the associated sample(s).
- Surrogate recovery exceeded the upper control limit and there were no detections for associated analytes in the sample.
- Surrogate or MS recoveries outside QC limits, and the sample was diluted by a factor of 5 or greater.
- MS recoveries outside QC limits, and the concentration of spike added was less than the parent sample concentration.

Data were considered for rejection if any of the following occurred:

• LCS recovery is less than 10 percent (%), and the associated sample result is non-detect (ND).

- The result is ND and missed holding time greater than two times the method-specified holding time.
- Surrogate recovery is less than 10 %, and the associated sample result is ND (dilution factor less than 5).

3. DATA QUALITY REVIEW AND ASSESSMENT

SGS North America, Inc. (SGS) in Anchorage, Alaska, was the primary laboratory for this project and held current ADEC laboratory approval and U.S. Department of Defense Environmental Laboratory Accreditation Program certifications for all requested methods at the time of analysis. Samples were prepared and analyzed in accordance with the analytical methods in Test Methods for Evaluating Solid Waste SW-846 (U.S. Environmental Protection Agency [EPA] 2020); ADEC Underground Storage Tanks Procedures Manual (ADEC 2017); and laboratory standard operating procedures.

The following sections summarize the findings of the data validation, including non-conformances of data that required results to be qualified. Qualified results are considered estimated, and whenever possible, the direction of potential bias was assigned, and effects, if any, on usability are discussed therein. Results that were not qualified are considered valid and usable based on the QA/QC criteria that were reviewed.

3.1 Field Sampling Quality Control

Ten primary soil samples, one soil field duplicate sample, four primary groundwater samples, two groundwater field duplicate samples, and two trip blanks were shipped to Anchorage and delivered to SGS for analysis. Table 2 summarizes the numbers of samples, QC samples, and analytical methods for the project.

Table 2 Field Quality Control Sample Summary

ANALYTICAL METHOD	MATRIX	PRIMARY SAMPLES	FIELD DUPLICATES	MS/MSD	TRIP BLANK
AK 101 GRO	SO	10	1	1	1
AK102 DRO	so	10	1	1	
AK103 RRO	so	9	1	1	
SW8260D	SO	10	1	1	1
SW8270D-SIM PAH	so	10	1	1	
SW6020B	SO	8	1	1	
AK 101 GRO	GW	3	1	1	1
AK102 DRO	GW	4	2	1	
AK103 RRO	GW	3	1	1	

Table 3 Field Quality Control Sample Summary

ANALYTICAL METHOD	MATRIX	PRIMARY SAMPLES	FIELD DUPLICATES	MS/MSD	TRIP BLANK	
SW8260D	GW	3	1	1	1	
SW8270D-SIM PAH	GW	4	2	1		

Notes:

For definitions, see the Acronyms and Abbreviations section.

3.2 Sample Condition Upon Receipt

The laboratory cooler receipt form, submitted CoC form, and report case narrative were reviewed to assess sample documentation and handling procedures that may affect the integrity of the samples and the quality of the resulting data. The CoC was appropriately signed and dated by field and laboratory personnel. All samples were received intact and chilled with gel ice.

The temperature blank for Cooler 1, associated with SDG 1235845, was -0.1 degrees Celsius (°C); however, the laboratory noted that no samples were frozen. All other coolers associated with this DQR were within the required temperature range of 0 to 6 °C. Custody seals were noted as intact upon arrival by SGS.

3.3 Holding Time Compliance

All samples were extracted and analyzed within method-specified holding times.

3.4 Precision

Precision was assessed by evaluating the RPD between LCS/LCSD, MS/MSD, and primary/duplicate samples.

3.4.1 Field Duplicate Precision

For the soil samples (SDG 1235845), one primary/duplicate pair was submitted, LPAD-SB03-5.0-7.0/ LPAD-SB05-5.0-7.0, as part of this DQR. All primary/duplicate RPDs were within control limits.

For the groundwater samples (SDG 1235846), two primary/duplicate pairs, 224-13-5-101323/224-13-5-101323 and FG24-101223/FG28-101223, are part of this DQR. The 2-methylnaphthalene RPD (42%) exceeded the criteria for the FG24-101223/FG28-101223 primary/duplicate pair. 2-Methylnaphthalene results in both samples were flagged "J" to indicate an indeterminate bias. Both results were below the ADEC Table C groundwater cleanup level, and data quality/usability is unaffected. All other primary/duplicate RPDs were within control limits.

3.4.2 Laboratory Control Sample Duplicate

All LCS/LCSD RPDs were within control limits.

3.4.3 Matrix Spike Duplicate

For SDG 1235845, one MS/MSD was submitted, based on sample LPAD-SB02-13.5-15.0 for 10 primary samples. The MS/MSD RPD for n-hexane (22.5%) exceeded the criterion of 20% in the sample; the parent sample result was ND and qualification was not required. All other MS/MSD RPDs were within control limits.

For SDG 1235846, one MS/MSD was submitted, based on sample 224-13-4-101323 for four primary samples. All MS/MSD RPDs were within control limits.

Data quality and usability are unaffected.

3.5 Accuracy

Accuracy was assessed by reviewing blank results, LCS/LCSD recoveries, MS/MSD recoveries, and surrogate recoveries.

3.5.1 Blank Sample Analysis

For SDG 1235846, 1-methylnaphthalene, 2-methylnaphthalene, and phenanthrene were detected in the method blank for SW8270D-SIM prep batch XXX48878, associated with this DQR. For SDG 1235845, Gasoline range organics (GRO) were detected in the method blanks for AK101 prep batches VXX40707 and VXX40708; diesel range organics (DRO) were detected in the method blank for AK102 prep batch XXX48904. All method blank detections were below the LOQ.

Detected results in the following associated samples were within 10 times the amount found in the method blank and were qualified as estimated "B": 1-Methylnaphthalene in samples 224-13-3-101323 and 224-13-5-101323; 2-Methylnaphthalene in samples 224-13-3-101323, 224-13-5-101323, FG24-101223, and FG28-101223; Phenanthrene in samples 224-13-2-101223, FG24-101223, and FG28-101223; GRO in samples APAD-SB01-14.0-15.0, LPAD-SB01-14.0-15.0, LPAD-SB02-13.5-15.0, LPAD-SB02-9.0-9.5, LPAD-SB03-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB04-5.0-7.0, and LPAD-SB05-5.0-7.0; DRO, APAD-SB01-14.0-15.0, LPAD-SB01-14.0-15.0, LPAD-SB03-13.0-15.0, LPAD-SB03-13.0-15.0, LPAD-SB03-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB03-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB03-5.0-7.0, LPAD-SB03-5.0-7.0.

These blank detections had no impact on data quality or usability. The concentration of the target analytes in all project samples was below the ADEC cleanup levels.

3.5.2 Laboratory Control Sample Recoveries

For SDG 1235845, the recoveries of DRO (132%) exceeded the upper control limit of 125%.; the recoveries of residual range organics (RRO) (130%) exceeded the upper control limit of 120%. DRO results for samples AK102: LPAD-SB05-5.0-7.0, LPAD-SB04-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB03-13.0-15.0, LPAD-SB03-13.5-15.0, LPAD-SB01-5.0-7.0, LPAD-SB01-14.0-15.0, and APAD-SB01-14.0-15.0, and RRO results for samples LPAD-SB04-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB03-13.0-15.0, and LPAD-SB02-13.5-15.0 were qualified J+. The LCS recovery exceedances had no impact on data quality or usability. J+ qualification indicates a potential high bias, and all affected results were below project screening levels.

All other LCS and LCSD recoveries were within control limits.

3.5.3 Matrix Spike Recoveries

All recoveries for MS/MSD prepared and analyzed from project samples were within control limits. Data quality and usability are unaffected.

3.5.4 Surrogate Recoveries

For SDG 1235845, the recoveries of 1-Bromo-4-fluorobenzene (223%) for method AK101 were above the upper control limit (150%) for sample MPAD-SB02-7.5-8.5. GRO results for MPAD-SB02-7.5-8.5 were qualified J+. The surrogate recovery exceedance had no impact on data quality or usability. J+ qualification indicates a potential high bias, and all affected results were below project screening levels.

All other surrogate recoveries were within control limits. Data quality and usability are unaffected.

3.5.5 Trip Blanks

GRO was detected in the trip blank associated with SDG 1235846. GRO in the following samples were less than 10x the amounts found in the trip blank and were qualified as estimated, "B", for potential high bias: APAD-SB01-14.0-15.0, LPAD-SB01-14.0-15.0, LPAD-SB01-5.0-7.0, LPAD-SB02-13.5-15.0, LPAD-SB02-9.0-9.5, LPAD-SB03-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB04-5.0-7.0, and LPAD-SB05-5.0-7.0. Data quality and usability are unaffected, as all affected samples had GRO concentrations well below the ADEC cleanup levels.

3.6 Representativeness

Representativeness is a qualitative parameter used to assess whether sample results are representative of true site conditions. Representativeness relative to analytical measurements is influenced primarily by the application of consistent sampling and analytical methodology.

Samples were collected following established procedures, and samples were analyzed using standard methods. Project samples are considered to be representative of true site conditions.

3.7 Comparability

Comparability is a qualitative indicator of the confidence with which one dataset can be compared to another. Project data set comparability is considered acceptable based on the following:

- Project samples were analyzed using standard methods, and results were reported in standard units in accordance with the Work Plan and consistent with prior sampling events.
- Laboratory analyses were performed in accordance with the analytical methods and laboratory QA/QC procedures. The same laboratory was used as in prior sampling events.

3.8 Completeness

Completeness is a measure of the amount of valid data obtained compared with the amount that was expected to be obtained under correct, normal conditions. No results were rejected or were otherwise determined to be unusable as qualified. Completeness for sample results from this site was calculated at 100%. The calculated completeness meets the minimum goal of 85% in ADEC's Underground Storage Tank Procedures Manual (ADEC 2017) and is considered acceptable for this project.

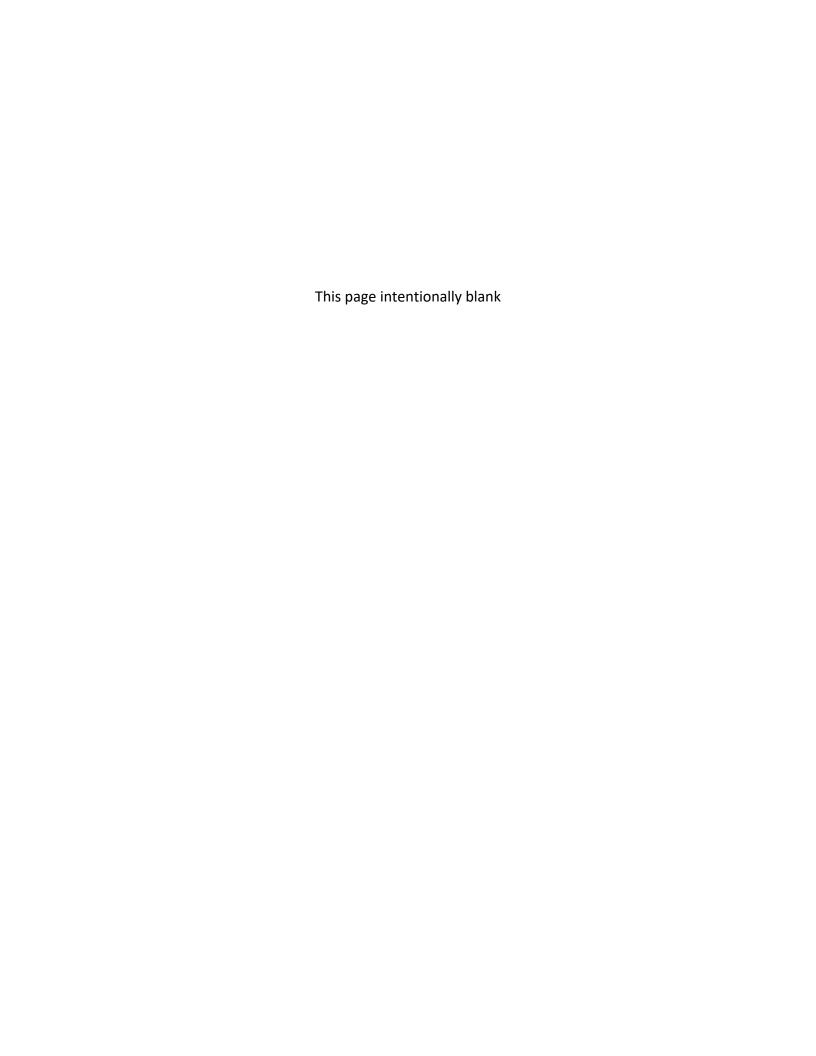
3.9 Sensitivity

Sensitivity describes the lowest concentration that the analytical method can reliably quantify and is evaluated by verifying that detected results and sample reporting limits meet the regulatory criteria. SGS reported ND results at the LOD and detected results below the LOQ and greater than or equal to the detection limit (DL), which are flagged as estimated ("J").

For ND groundwater results, the LOD was compared to the 18 AAC 75 Table C groundwater cleanup level (ADEC 2024). For ND soil results, the LOD was compared to the 18 Alaska Administrative Code (AAC) 75, Table B1 human health and Table B2 most conservative of ingestion and inhalation cleanup levels for the under 40-inch zone (ADEC 2024) and 18 AAC 75, Tables B1 and B2 migration to groundwater cleanup levels (ADEC 2024) to determine if the sensitivity was adequate to meet the DQOs. For SDG 1235845, the LOD for 1,2-dibromoethane was greater than ADEC migration to groundwater cleanup levels for all soil samples due to limitations in the sensitivity of the analytical method. The sensitivity requirements for ADEC human health cleanup levels for the under 10-inch zone were achieved.

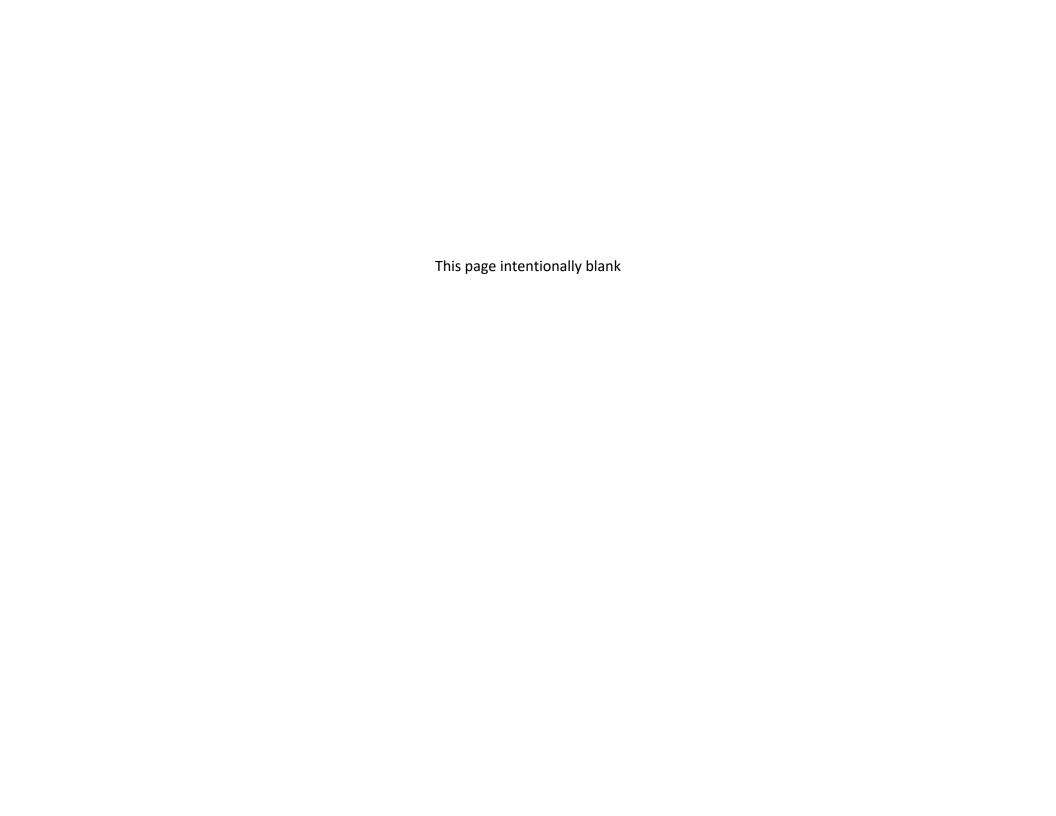
The LOD for naphthalene exceeded 18 AAC 75, Tables B1 and B2 migration to groundwater cleanup levels (ADEC 2024) cleanup levels for sample LPAD-SB02-9.0-9.5, likely due to matrix

interference. However, naphthalene was also assessed via SW8270D-SIM. Sensitivity requirements were achieved, and the result was also ND.

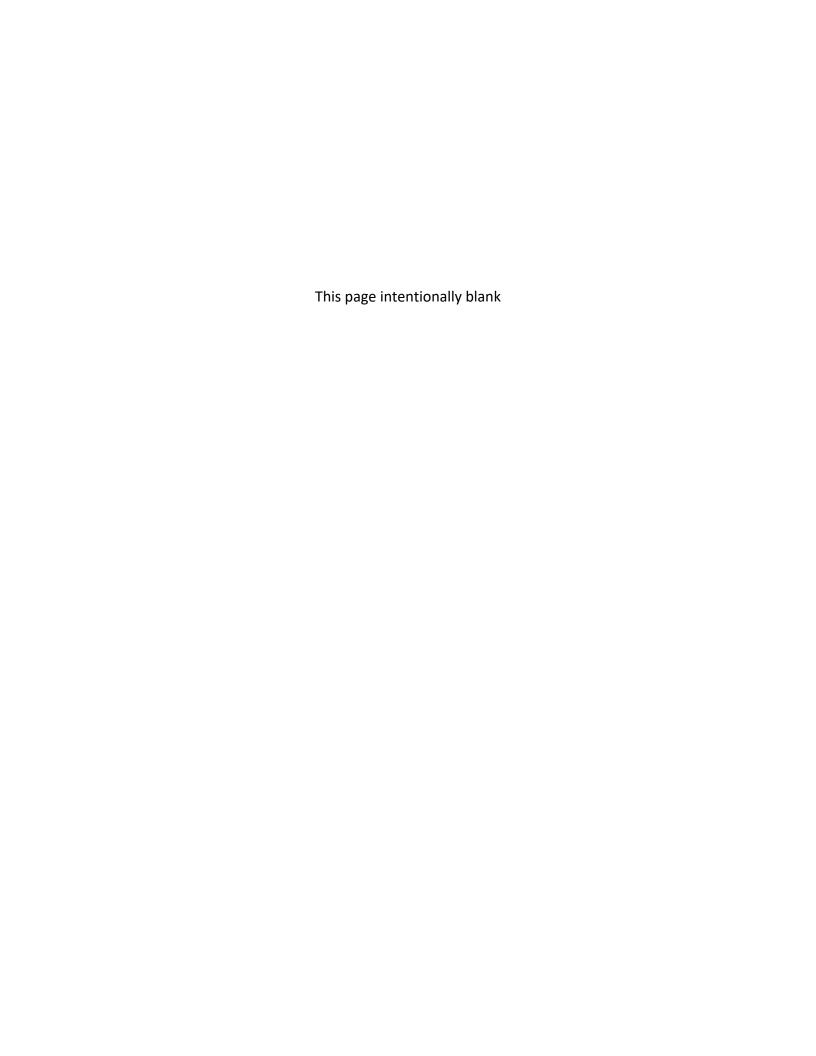

4. OVERALL DATA QUALITY AND USABILITY ASSESSMENT

In general, the overall quality of the project data was acceptable. No data were rejected, and completeness met project objectives. All project data are considered acceptable for use within the limitations discussed within this DQR and as indicated by any validation qualifiers that were applied to the results.

5. REFERENCES


- ADEC (Alaska Department of Environmental Conservation). 2023 (October). Oil and Other Hazardous Substances Pollution Control. 18 AAC 75.
- ADEC. 2022 (August). Guidelines for Data Reporting. Technical Memorandum 22-001.
- ADEC. 2017 (March). Underground Storage Tanks Procedures Manual. Division of Spill Prevention and Response. Contaminated Sites Program.
- EPA (U.S. Environmental Protection Agency) 2020 (June). Test Methods for Evaluating Solid Waste. SW846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), Update VI (2018), and Update VII (2020).
- Susitna Environmental. 2023 (September). Beluga River Unit 2023-2024 Site Characterization and Groundwater Sampling Work Plan.

ATTACHMENT 1 SAMPLE SUMMARY



ATTACHMENT 1 - SAMPLE SUMMARY 2023 BELUGA RIVER UNIT SOIL CHARACTERIZATION AND GROUNDWATER SAMPLING

Site	LocationID	COCSampleID	Collection Date	Collect Time	Matrix	QCType	Qty	Cont. Vol.	Container Type	Preservative	Analytical Method Requested	TAT	Sample Depth (ft bgs)	Lab	SDG
ADTF	SB01	APAD-SB01-14.0-15.0	10/12/2023	1655	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (BTEX)	STD	14.0-15.0	SGS	1235845
ADTF	SB01	APAD-SB01-14.0-15.0	10/12/2023	1655	SO		1	4 oz	amber glass jar	0-6°C	AK102, SW8270D SIM	STD	14.0-15.0	SGS	1235845
221-23	SB01	LPAD-SB01-5.0-7.0	10/13/2023	0930	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	5.0-7.0	SGS	1235845
221-23	SB01	LPAD-SB01-5.0-7.0	10/13/2023	0930	so		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	5.0-7.0	SGS	1235845
221-23	SB01	LPAD-SB01-14.0-15.0	10/13/2023	0935	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	14.0-15-0	SGS	1235845
221-23	SB01	LPAD-SB01-14.0-15.0	10/13/2023	0935	so		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	14.0-15-0	SGS	1235845
221-23	SB02	LPAD-SB02-9.0-9.5	10/13/2023	1020	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	9.0-9.5	SGS	1235845
221-23	SB02	LPAD-SB02-9.0-9.5	10/13/2023	1020	so		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	9.0-9.5	SGS	1235845
221-23	SB02	LPAD-SB02-13.5-15.0	10/13/2023	1015	SO	MS/MSD	2	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	13.5-15.0	SGS	1235845
221-23	SB02	LPAD-SB02-13.5-15.0	10/13/2023	1015	so	MS/MSD	2	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	13.5-15.0	SGS	1235845
221-23	SB03	LPAD-SB03-5.0-7.0	10/13/2023	1100	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	5.0-7.0	SGS	1235845
221-23	SB03	LPAD-SB03-5.0-7.0	10/13/2023	1100	so		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	5.0-7.0	SGS	1235845
221-23	SB03	LPAD-SB03-13.0-15.0	10/13/2023	1110	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	13.0-15.0	SGS	1235845
221-23	SB03	LPAD-SB03-13.0-15.0	10/13/2023	1110	so		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	13.0-15.0	SGS	1235845
221-23	SB04	LPAD-SB04-5.0-7.0	10/13/2023	1140	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	5.0-7.0	SGS	1235845
221-23	SB04	LPAD-SB04-5.0-7.0	10/13/2023	1140	so		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	5.0-7.0	SGS	1235845
221-23	SB04	LPAD-SB04-13.0-15.0	10/13/2023	1145	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	13.0-15.0	SGS	1235845
221-23	SB04	LPAD-SB04-13.0-15.0	10/13/2023	1145	so		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	13.0-15.0	SGS	1235845
221-23	SB03	LPAD-SB05-5.0-7.0	10/13/2023	1105	SO	DUP	1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	5.0-7.0	SGS	1235845
221-23	SB03	LPAD-SB05-5.0-7.0	10/13/2023	1105	so	DUP	1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM, RCRA metals	STD	5.0-7.0	SGS	1235845
224-13	SB02	MPAD-SB02-7.5-8.5	10/13/2023	1500	SO		1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD	7.5-8.5	SGS	1235845
224-13	SB02	MPAD-SB02-7.5-8.5	10/13/2023	1500	SO		1	4 oz	amber glass jar	0-6°C	AK102/AK103, SW8270D SIM	STD	7.5-8.5	SGS	1235845
		TRIP BLANK	10/12/2023	1200	SO	ТВ	1	4 oz	amber glass jar w/septa	MeOH, 0-6°C	AK101, SW8260D (Petroleum VOCs)	STD		SGS	1235845
Pump Area Assess.	FG-24	FG24-101223	10/12/2023	1406	GW		2	250 mL	amber glass jar	HCl to pH<2, 0-6°C	AK102	STD		SGS	1235846
Pump Area Assess.	FG-24	FG24-101223	10/12/2023	1406	GW		2	250 mL	amber glass jar	0-6°C	SW8270D SIM	STD		SGS	1235846
Pump Area Assess.	FG-24	FG28-101223	10/12/2023	1145	GW	DUP	2	250 mL	amber glass jar	HCl to pH<2, 0-6°C	AK102	STD		SGS	1235846
Pump Area Assess.	FG-24	FG28-101223	10/12/2023	1145	GW	DUP	2	250 mL	amber glass jar	0-6°C	SW8270D SIM	STD		SGS	1235846
224-13	224-13-2	224-13-2-101223	10/12/2023	0931	GW		6	40-ml	VOA vial	HCl to pH<2, 0-6°C	AK101, SW8260D (BTEX)	STD		SGS	1235846
224-13	224-13-2	224-13-2-101223	10/12/2023	0931	GW		2	250 mL	amber glass jar	HCl to pH<2, 0-6°C	AK102/AK103	STD		SGS	1235846
224-13	224-13-2	224-13-2-101223	10/12/2023	0931	GW		2	250 mL	amber glass jar	0-6°C	SW8270D SIM	STD		SGS	1235846
224-13	224-13-3	224-13-3-101323	10/13/2023	0913	GW		6	40-ml	VOA vial	HCl to pH<2, 0-6°C	AK101, SW8260D (BTEX)	STD		SGS	1235846
224-13	224-13-3	224-13-3-101323	10/13/2023	0913	GW		2	250 mL	amber glass jar	HCl to pH<2, 0-6°C	AK102/AK103	STD		SGS	1235846
224-13	224-13-3	224-13-3-101323	10/13/2023	0913	GW	DUD	6	250 mL	amber glass jar	0-6°C	SW8270D SIM	STD		SGS	1235846
224-13	224-13-3	224-13-5-101323	10/13/2023	1158	GW	DUP	6	40-ml	VOA vial	HCl to pH<2, 0-6°C	AK101, SW8260D (BTEX)	STD		SGS	1235846
224-13	224-13-3	224-13-5-101323	10/13/2023	1158	GW GW	DUP	2	250 mL	amber glass jar	HCl to pH<2, 0-6°C	AK102/AK103	STD		SGS	1235846
224-13	224-13-3	224-13-5-101323	10/13/2023	1158			12	250 mL	amber glass jar		SW8270D SIM	STD		SGS	1235846
224-13 224-13	224-13-4 224-13-4	224-13-4-101323	10/13/2023	1532	GW GW	MS/MSD	12	40-ml 250 mL	VOA vial	HCl to pH<2, 0-6°C	AK101, SW8260D (BTEX)	STD		SGS	1235846 1235846
224-13	224-13-4	224-13-4-101323 224-13-4-101323	10/13/2023	1532 1532	GW	MS/MSD MS/MSD	4	250 mL	amber glass jar	HCl to pH<2, 0-6°C 0-6°C	AK102/AK103 SW8270D SIM	STD		SGS	1235846
	224-13-4	TRIP BLANK	1	1200	GW	TB	2	40-ml	amber glass jar	HCl to pH<2, 0-6°C		STD		SGS	
	224-15-4	INIT BLAINK	10/12/2023	1200	GW	מו	3	40-1111	VOA vial	nci to pn<2, 0-6 C	AK101, SW8260D (BTEX)	טונ		SGS	1235846

ATTACHMENT 2 ADEC LABORATORY DATA REVIEW CHECKLISTS

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Jordan M. Couture	CS Site Name:	Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm	Lab Name:	SGS
Title:	Chemist	ADEC File No.:	2337.38.026 / 2337.38.015	Lab Report No.:	1235845
Consulting Firm:	ARS Aleut Remediation	Hazard ID No.:	656 / 1000	Lab Report Date:	11/03/23

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses? Yes No N/A Comments: All samples were analyzed by SGS North America, Inc. in Anchorage, AK.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

Yes No N/A S
Comments: All samples were analyzed by SGS North America, Inc. in Anchorage, AK

2. Chain of Custody (CoC)

a.	Is the CoC information completed, signed, and dated (including
	released/received by)?
	Yes ⊠ No □ N/A □
	Comments: Click or tap here to enter text.

1

b. Were the correct analyses requested?

Revision 9/2022

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm

Lab Report No.: 1235845

3. Laboratory Sample Receipt Documentation

	a.	Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)? Yes \square No \boxtimes N/A \square Cooler temperature(s): Click or tap here to enter text. Sample temperature(s): Cooler #1: -0.1 ° C Comments: Although the temperature blank temperature was outside of the
		criterion, SGS noted that all samples were received in good condition.
	b.	Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)? Yes \boxtimes No \square N/A \square
		Comments: Click or tap here to enter text.
	C.	Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.? Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.
	d.	If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.? Yes \square No \square N/A \boxtimes Comments: All samples were received in good condition.
	e.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Data quality or usability was unaffected.
4.	Case I	Narrative
	a.	Is the case narrative present and understandable? Yes ☑ No □ N/A □ Comments: Click or tap here to enter text.
	b.	Are there discrepancies, errors, or QC failures identified by the lab? Yes ⊠ No □ N/A □
		Comments: : QC issues identified in the case narrative are discussed in the relevant sections of this checklist
	C.	Were all the corrective actions documented? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm **Lab Report No.**: 1235845

d. What is the effect on data quality/usability according to the case narrative?

Comments: No systemic effects on data quality were noted in the case narrative.

The lab noted the following in the case narrative:

Additional effects on data quality and usability are discussed in the relevant sections of this checklist.

5. Sample Results

ПР	ic nesults
a.	Are the correct analyses performed/reported as requested on CoC? Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.
b.	Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
C.	Are all soils reported on a dry weight basis? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
d.	Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project? Yes $\hfill \hfill \hfi$
e.	Is the data quality or usability affected? Yes \(\text{No} \) \(\text{N/A} \) \(Comments: Data quality or usability is minimally affected. In samples LPAD-SB01-14.0-15.0, LPAD-SB01-5.0-7.0, LPAD-SB02-13.5-15.0, LPAD-SB02-9.0-9.5, LPAD-SB03-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB04-5.0-7.0, LPAD-SB05-5.0-7.0, and MPAD-SB02-7.5-8.5 it cannot be determined with certainty whether 1,2-dibromoethane is absent at concentrations below the cleanup level. It cannot be determined with certainty whether naphthalene in sample LPAD-SB02-9.0-9.5 is absent at concentrations below the cleanup level; however, naphthalene was also non-detect when analyzed via SW8270D-SIM PAH, where sensitivity requirements were met.

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm **Lab Report No.:** 1235845

6. QC Samples

a. l	Met	hod	В	lan	k

i.	Was one method blank re Yes ⊠ No □ N/A □ Comments: Click or tap h		sis, and 20 samples?
ii.	Are all method blank result Yes ⊠ No □ Comments: No target and method blanks. However, method blank at concentrative LOQ	alytes were detected abo , the following analytes v	ove the LOQ or RL in the vere detected in the qual to the DL and below
	Prep Batch	Method	Analyte
	VXX40708	AK101	GRO
	VXX40707	AK101	GRO
	XXX48904	AK102	DRO
iii.	If above LoQ or RL, what Comments: No target and method blanks. The followmethod blank and were quarter - AK101: APAD-SB01-14 5.0-7.0, LPAD-SB03-5.0-7.0 and LPAD-SB05-5.0-7.0 - AK102: APAD-SB01-14 5.0-7.0, LPAD-SB02-13.5 7.0, LPAD-SB04-13.0-15 7.0.	alytes were detected aboving samples had detect pualified as estimated, "B.0-15.0, LPAD-SB01-14.5-15.0, LPAD-SB04-13.0-15.0, LPAD-SB04-13.0-14.5-15.0, LPAD-SB01-14.5-15.0, LPAD-SB03-13.0	cions within 10 times the 3": .0-15.0, LPAD-SB01- .9.5, LPAD-SB03-13.0- ., LPAD-SB04-5.0-7.0, .0-15.0, LPAD-SB01- 15.0, LPAD-SB03-5.0-
iv.	Do the affected sample(s defined? Yes ⋈ No □ N/A □ Comments: Affected resurrequired for results that we method blank.	ılts were qualified "B". Q	ualification was not
V.	Data quality or usability a Yes □ No ⋈ N/A □ Comments: Data quality of indicated a potential high project cleanup levels.	or usability was unaffecte	

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm

Lab Report No.: 1235845

b. Laboratory Control Sample/Duplicate (LCS/LCSD)
i. Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes ⋈ No ⋈ N/A ⋈

Comments: Click or tap here to enter text.
ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes ⋈ No ⋈ N/A ⋈

Comments: Click or tap here to enter text.
iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes ⋈ No ⋈ N/A ⋈

iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Comments: AK102: The recoveries of DRO (132%) exceeded the upper control limit of 125% (batch XXX48904). AK103 The recoveries of RRO (130%) exceeded the upper control limit of 120% (batch XXX48904).

Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: AK102: LPAD-SB05-5.0-7.0, LPAD-SB04-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB03-13.0-15.0, LPAD-SB02-13.5-15.0, LPAD-SB01-5.0-7.0, LPAD-SB01-14.0-15.0, and APAD-SB01-14.0-15.0.

AK103: LPAD-SB04-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB03-5.0-7.0,

AK103: LPAD-SB04-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB03-13.0-15.0, and LPAD-SB02-13.5-15.0.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes ⊠ No □ N/A □

Comments: Detect results in the following samples were flagged "J+" due to LCSD recoveries greater than the criterion. AK102: LPAD-SB05-5.0-7.0, LPAD-SB04-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB03-13.0-15.0, LPAD-SB02-13.5-15.0, LPAD-SB01-5.0-7.0, LPAD-SB01-14.0-15.0, and APAD-SB01-14.0-15.0.

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm **Lab Report No.:** 1235845

AK103: LPAD-SB01-14.0-15.0, TLPAD-SB02-13.5-15.0, LPAD-SB02-9.0-9.5, LPAD-SB03-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB04-5.0-7.0, and MPAD-SB02-7.5-8.5. Non-detect results did not require a data flag. vii. Is the data quality or usability affected? Yes □ No □ N/A □ Comments: Data quality or usability is unaffected. Samples flagged "J+" indicate a potential high bias, and all affected results were below project screening levels. Samples with detect results greater than the LOD but less than the LOQ were flagged "J" to c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes ⊠ No □ N/A □ Comments: One MS/MSD, based on parent sample LPAD-SB02-13.5-15.0, was submitted for nine project samples as part of this SDG. MS/MSD samples were reported from non-project samples for batch QC: these samples were not evaluated. ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes ⊠ No □ N/A □ Comments: One MS/MSD, based on parent sample LPAD-SB02-13.5-15.0, was submitted for 10 project samples as part of this SDG. An MS/MSD set was reported from a non-project sample for batch QC; this MS/MSD set was not evaluated. iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes □ No ⊠ N/A □ Comments: For the non-project sample based MS/MSD 1236055014(1743800MS)/ 1236055014(1743800MSD), metals MS recoveries for Barium and Chromium do not meet QC criteria. The post digestion spike was successful. iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes □ No ⋈ N/A □

the criterion of 20%.

Comments: SW8260D: The MS/MSD RPD for n-hexane (22.5) exceeded

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm Lab Report No.: 1235845

	V.	If %R or RPD is outside of acceptable limits, what samples are affected? Comments: LPAD-SB02-13.5-15.0
	vi.	Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \(\subseteq \text{No} \subseteq \text{N/A} \text{ \subseteq} Comments: SW6020B: Parent sample and MS/MSD samples were diluted by a factor greater than 5; therefore, qualification was not required. SW8260D: The parent sample result for N-hexane was non-detect, and qualification was not required.
	vii.	Is the data quality or usability affected? Yes \square No \boxtimes N/A \square Comments: Qualification was not required, and data quality or usability is unaffected.
d.	_	pates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution ds Only
	i.	Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples? Yes No N/A Comments: Click or tap here to enter text.
	ii.	Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes □ No □ N/A □ Comments: For LCSD for HBN 1866350 [XXX/4890 the AK102/103 - Surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. AK101: Recoveries of 1-Bromo-4-fluorobenzene (223%) were above the upper control limit (150%) for sample MPAD-SB02-7.5-8.5.
	iii.	Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: Qaulification was not required for surrogate recovery failures associated with non-project samples. AK101:GRO results for MPAD-SB02-7.5-8.5 were flagged J+.
	iv.	Is the data quality or usability affected? Yes □ No □ N/A □

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm

Lab Report No.: 1235845

Comments: Data quality or usability is unaffected. All results flagged "J+" were either significantly above or below the ADEC migration to groundwater screening levels.

e.	Trip	В	lan	ks

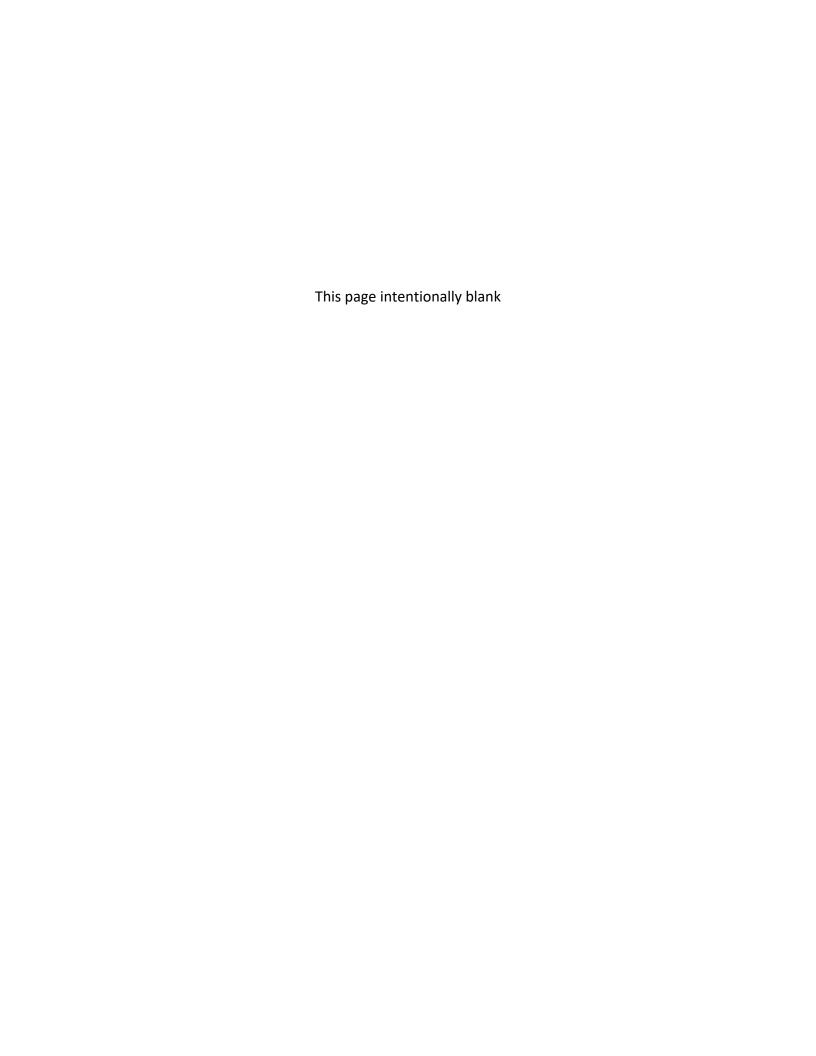
С.	ום קווו	amo
	i.	Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes ⊠ No □ N/A □ Comments: No target analytes were detected above the LOQ or RL in the trip blank. However, the GRO was detected in the trip blank at concentrations greater than or equal to the DL and below the LOQ.
	ii.	Are all results less than LoQ or RL? Yes ⋈ No □ N/A □ Comments: No target analytes were detected above the LOQ or RL in the trip blank. However, the GRO was detected in the trip blank at concentrations greater than or equal to the DL and below the LOQ.
	iii.	If above LoQ or RL, what samples are affected? Comments: No target analytes were detected above the LOQ or RL in the trip blank. The following samples had detections within 10 times the trip blank. AK101: APAD-SB01-14.0-15.0, LPAD-SB01-14.0-15.0,LPAD-SB01-5.0-7.0, LPAD-SB02-13.5-15.0, LPAD-SB02-9.0-9.5, LPAD-SB03-13.0-15.0, LPAD-SB03-5.0-7.0, LPAD-SB04-13.0-15.0, LPAD-SB04-5.0-7.0, and LPAD-SB05-5.0-7.0. No flag was required for sample MPAD-SB02-7.5-8.5 as the GRO results were greater than 10 times the trip blank concentration.
	iv.	Is the data quality or usability affected? Yes No N/A Comments: Data quality or usability was unaffected. Blank detection indicated a potential high bias, and all affected results were below the project cleanup levels.
f.	Field [Duplicate
	i.	Are one field duplicate submitted per matrix, analysis, and 10 project samples? Yes No N/A Comments: One primary/duplicate pair LPAD-SB03-5.0-7.0/ LPAD-SB05-5.0-7.0 was submitted for 10 parent samples are as part of this SDG.
	ii.	Was the duplicate submitted blind to lab? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.

CS Site Name: Beluga River Unit 221-23 / Beluga River Abandoned Diesel Tank Farm

Lab Report No.: 1235845

iii. Precision - All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X 100$$


$RPD \ (\%) = \left \frac{R_1 + R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right X \ 100$
Where R ₁ = Sample Concentration
R ₂ = Field Duplicate Concentration
Is the data quality or usability affected? (Explain)
Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
 iv. Is the data quality or usability affected? (Explain) Yes □ No ⋈ N/A □ Comments: Data quality or usability is unaffected.
g. Decontamination or Equipment Blanks
 i. Were decontamination or equipment blanks collected? Yes □ No ⋈ N/A □ Comments: Equipment blanks were not collected or submitted with this SDG.
 ii. Are all results less than LoQ or RL? Yes □ No □ N/A ☒ Comments: Equipment blanks were not collected or submitted with this SDG.
iii. If above LoQ or RL, specify what samples are affected.Comments: Equipment blanks were not collected or submitted with this SDG.
 iv. Are data quality or usability affected? Yes □ No ⋈ N/A □ Comments: Data quality or usability is unaffected. Strict adherence to standard operating procedures mitigated the risk of cross-contamination
ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

7. Other Da

a. Are they defined and appropriate?

Yes □ No □ N/A ⊠

Comments: There were no additional laboratory-specific qualifiers applied.

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Jordan M. Couture	CS Site Name:	Beluga River Pump Area Assessment (E Pad) / Beluga River 221-23	Lab Name:	SGS
Title:	Chemist	ADEC File No.:	2337.38.031 / 2337.38.021	Lab Report No.:	1235846
Consulting Firm:	ARS Aleut Remediation	Hazard ID No.:	990 / 989	Lab Report Date:	11/15/23
Note: Any N/A or . 1. Laborator		must have an ехр	olanation in the con	mments box.	
app Yes Cor	roved laboratory □ No □ N/A	γ receive and perfo	boratory Approval I orm all of the submed	itted sample a	-
to a app Yes Cor	n alternate labor roved? □ No □ N/A	ratory, was the lab	other "network" labe poratory performing ed by SGS North A	the analyses	
2. Chain of C	custody (CoC)				
rele Yes	ased/received b □ No □ N/A	y)?	gned, and dated (in text.	cluding	
Yes Ana	s⊠ No□ N/A		? PAH), AK102, SW	8260D (BTEX)	, AK101,

Comments: Click or tap here to enter text.

Revision 9/2022

CS Site Name: Beluga River Pump Area Assessment (E Pad) / Beluga River 221-23

Lab Report No.: 1235846

3. Laboratory Sample Receipt Documentation

	a.	Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?
		Yes ⊠ No □ N/A □ Cooler temperature(s): Click or tap here to enter text. Sample temperature(s): Cooler #1: 1.9 ° C Comments: Click or tap here to enter text.
	b.	Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)? Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.
	C.	Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.? Yes \boxtimes No \square N/A \square Comments: All samples were received in good condition.
	d.	If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.? Yes \boxtimes No \square N/A \square Comments: All samples were received in good condition.
	e.	Is the data quality or usability affected? Yes ⊠ No □ N/A □ Comments: Data quality or usability is unaffected.
4.	Case I	Narrative
	a.	Is the case narrative present and understandable? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
	b.	Are there discrepancies, errors, or QC failures identified by the lab? Yes \boxtimes No \square N/A \square Comments: QC issues identified in the case narrative are discussed in the relevant sections of this checklist
	C.	Were all the corrective actions documented? Yes ⊠ No □ N/A □ Comments: No corrective actions were required as part of this SDG.

CS Site Name: Beluga River Pump Area Assessment (E Pad) / Beluga River 221-23
Lab Report No.: 1235846

d. What is the effect on data quality/usability according to the case narrative?

Comments: No systemic effects on data quality were noted in the case narrative.

Additional effects on data quality and usability are discussed in the relevant sections of this

a. Are the correct analyses performed/reported as requested on CoC?

5. Sample Results

Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

checklist.

6. QC

b.	Yes ⊠	applicable holding No □ N/A □ ents: Click or tap h		
c.	Are all soils reported on a dry weight basis? Yes □ No □ N/A ⊠ Comments: No soil samples were submitted or analyzed in this SDG.			ed in this SDG.
d.	Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project? Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.			
e.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Data quality or usability is unaffected.			
Sa	mples			
a.	Method	d Blank		
	i.	Yes □ No ⊠ N	blank reported per matrix, an I/A □ or tap here to enter text.	alysis, and 20 samples?
	ii.	Yes ⊠ No □ Comments: No ta method blanks. H	rget analytes were detected a owever, the following analyte concentrations greater than or	above the LOQ or RL in the s were detected in the
		Prep Batch	Method	Analyte
		XXX48878	8270D SIM LV (PAH)	1-Methylnaphthalene
		XXX48878	8270D SIM LV (PAH)	2-Methylnaphthalene

CS Site Name: Beluga River Pump Area Assessment (E Pad) / Beluga River 221-23

Lab Report No.: 1235846

XXX48878	8270D SIM LV (PAH)	Phenanthrene

		XXX48878 8270D SIM LV (PAH) Phenanthrene
	iii.	If above LoQ or RL, what samples are affected? Comments: No target analytes were detected above the LOQ or RL in the method blanks. The following samples had detections within 10 times the method blank: 224-13-2-101223, 224-13-3-101323, 224-13-5-101323, FG24-101223, and FG28-101223.
	iv.	Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes ⋈ No ⋈ N/A ⋈ Comments: Detected results within 10 times the method blank concentration were qualified as estimated, "B", for potential high bias. 8270D SIM LV (PAH): 1-Methylnaphthalene in samples 224-13-3-101323 and 224-13-5-101323. 2-Methylnaphthalene in samples 224-13-3-101323, 224-13-5-101323, FG24-101223, and FG28-101223. Phenanthrene in samples 224-13-2-101223, FG24-101223, and FG28-101223.
	V.	Data quality or usability affected? Yes □ No ☒ N/A □ Comments: Data quality or usability was unaffected. Blank detection indicated a potential high bias, and all affected results were below the project cleanup levels.
b.	Labora	tory Control Sample/Duplicate (LCS/LCSD)
	i.	Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes No N/A Comments: Click or tap here to enter text.
	ii.	Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes \square No \square N/A \boxtimes Comments: No metal/inorganic samples were submitted as part of this SDG.
	iii.	Accuracy – Are all percent recoveries (%R) reported and within method of laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

CS Site Name: Beluga River Pump Area Assessment (E Pad) / Beluga River 221-23 Lab Report No.: 1235846

	iv.	Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes \boxtimes No \square N/A \square
		Comments: Click or tap here to enter text.
	V.	If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable
	vi.	Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: Not applicable.
	vii.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Data quality or usability is unaffected. All QC criteria were met.
c.	Matrix	Spike/Matrix Spike Duplicate (MS/MSD)
	i.	Organics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes No N/A Comments: Click or tap here to enter text.
	ii.	Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No □ N/A ☒ Comments: No metal/inorganic samples were submitted as part of this SDG.
	iii.	Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text.
	iv.	Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes No N/A Comments: Click or ten bere to enter text.
		Comments: Click or tap here to enter text.

CS Site Name: Beluga River Pump Area Assessment (E Pad) / Beluga River 221-23 Lab Report No.: 1235846

V.	If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable.
vi.	Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: Not applicable.
vii.	Is the data quality or usability affected? Yes No N/A Comments: Data quality or usability is unaffected. All QC criteria were met.
 d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only 	
i.	Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
ii.	Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes No N/A
	Comments: For all AK102/103 samples, the method blank surrogate recoveries for 5a-androstane and n-triacontane do not meet QC criteria. The samples were re-extracted outside of hold-time, the results were confirmed, and the in-hold data was reported. SW8260D: For LCSD for HBN 1866196 [XXX/4887 the surrogate recovery for toluene-d8 does not meet QC criteria. The surrogate meets QC criteria in all other instruments and batch QC
iii.	Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: Data flags are not required for non-project samples.
iv.	Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: Data quality or usability is unaffected.
	vi. Vii. Surrog Metho i.

CS Site Name: Beluga River Pump Area Assessment (E Pad) / Beluga River 221-23 **Lab Report No.:** 1235846 e. Trip Blanks i. Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes \boxtimes No \square N/A \square Comments: Click or tap here to enter text. ii. Are all results less than LoQ or RL? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text. iii. If above LoQ or RL, what samples are affected? Comments: Not applicable. iv. Is the data quality or usability affected? Yes □ No ⊠ N/A □ Comments: Data quality or usability is unaffected. All QC criteria were met. f. Field Duplicate i. Are one field duplicate submitted per matrix, analysis, and 10 project samples? Yes ⊠ No □ N/A □ Comments: Two primary/duplicate pairs, 224-13-3-101323/224-13-5-101323 and FG24-101223/FG28-101223, were submitted for four primary samples as part of this SDG. ii. Was the duplicate submitted blind to lab? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text. iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil) $RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration Is the data quality or usability affected? (Explain)

iv. Is the data quality or usability affected? (Explain)

the FG24-101223/FG28-101223 primary/duplicate pair.

Yes □ No ⋈ N/A □

Comments: The 2-Methylnaphthalene RPD (42%) exceeded the criteria in

CS Site Name: Bo	eluga River Pump Area Assessment (E Pad) / Beluga River 221-23 1235846
	Yes □ No □ N/A □ Comments: 2-Methylnaphthalene results in samples FG24-101223/FG28-101223 were flagged "J" to indicate an indeterminate bias. Both results were below the ADEC Table C groundwater cleanup level, and data quality/usability is unaffected.
g. D	econtamination or Equipment Blanks
	i. Were decontamination or equipment blanks collected? Yes \square No \square N/A \square
S	Comments: Equipment blanks were not collected or submitted with this DG.
	 ii. Are all results less than LoQ or RL? Yes □ No □ N/A ☒ Comments: Equipment blanks were not collected or submitted with this SDG.
	iii. If above LoQ or RL, specify what samples are affected. Comments: Equipment blanks were not collected or submitted with this SDG.
	 iv. Are data quality or usability affected? Yes □ No □ N/A ☒ Comments: Data quality or usability is unaffected.
7. Other Da	eta Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. A	re they defined and appropriate? Yes □ No □ N/A ☒ Comments: There were no additional laboratory-specific qualifiers applied.