

Ms. Rebekah Reams Alaska Department of Environmental Conservation Spill Prevention and Response, Contaminated Sites Program P.O. Box 1535 Haines, Alaska 99827

Date: May 30, 2024 Our Ref: 30063668

Subject: First Half 2024 Groundwater Monitoring Report

Chevron #8557 (Chevron-Branded Service Station #98557)

415 Muldoon Road, Anchorage, Alaska

ADEC File No.: 2100.26.006 ADEC Hazard ID: 23831 Arcadis U.S., Inc. 213 Court Street Middletown Connecticut 06457 Phone:860 503 1427 Fax: 860 346 2853

www.arcadis.com

Dear Ms. Reams,

On behalf of Chevron Environmental Management Company, Arcadis U.S., Inc. (Arcadis), has prepared this report to document the first half 2024 groundwater monitoring activities of for Chevron #8557, located at 415 Muldoon Road, Anchorage, Alaska (site). This work was conducted under the direction of a "Qualified Environmental Professional" by a "Qualified Sampler" (18 Alaska Administrative Code [AAC] 75.333).

If you have any questions, please do not hesitate to contact me.

Sincerely,

Arcadis U.S., Inc.

Jill M. Settle

Certified Project Manager Email: jill.settle@arcadis.com Direct Line: 860.503.1427

Copies

James Kiernan, Chevron Environmental Management Company (electronic copy) Mark Engelke, Cook Inlet Marketing Group, Inc. (electronic copy)

Date: May 30, 2024

FIRST HALF 2024 GROUNDWATER MONITORING REPORT

Work Conducted This Period [First Half 2024]:

- 1. Conducted first half 2024 groundwater monitoring activities on April 2, 2024.
- 2. Prepared the First Half 2024 Groundwater Monitoring Report.
- 3. Submitted a Site Investigation Work Plan on May 17, 2024.

Work Proposed Next Period [Second Half 2024]:

- 1. Conduct the second half 2024 groundwater monitoring activities.
- 2. Prepare the Second Half 2024 Groundwater Monitoring Report.

Site Description

Chevron #8557 (the site) is located at 415 Muldoon Road in Anchorage, Alaska. The site is in south central Alaska, between the Knik Arm of Cook Inlet to the north and the Turnagain Arm to the south. The regional area is dominated by glacial deposits from middle or older Pleistocene as well as alluvial deposits. Argillite, greywacke, chert, basic igneous rocks, and metamorphosed limestone make up most of the pre-Cretaceous rocks in the area (U.S. Department of the Interior 1959). Subsurface activities completed at the site indicate the geology at the site consists of alluvium from a series of abandoned stream channels consisting of sandy gravel to gravely sand with scattered cobbles, fill material such as pea gravel, and trace silt (RZA 1990 and RZA AGRA 1992). Static groundwater depths have historically ranged between approximately 16.5 and 20 feet below top of casing. Historic groundwater flow is to the northwest. The site is an active service station with four underground storage tanks (USTs) and six dispenser islands with product piping, and a station building. The site formerly operated as a small bulk fuel storage facility until 1965, when it was converted to a service station. In 1991, four USTs were excavated and replaced at the southern edge of the property. During the excavation, approximately 2,100 cubic yards of impacted soil was removed and thermally treated. In 2006, the existing USTs and station building were removed and replaced with the current facilities. Approximately 3,390 cubic yards of impacted soil was removed and thermally treated or transported off site for disposal.

On March 23, 2023, the Alaska Department of Environmental Conservation (ADEC) approved a *Groundwater Sampling Analyte Reduction Request – Groundwater Sampling Work Plan Addendum*, which included monitoring and sampling of monitoring wells MW-1, MW-3, MW-13, MW-14, and RW-1 on a semi-annual basis. The surrounding land use is commercial and residential. The site is bordered by businesses to the north, south, and west and by residences to the east. A site location map and site plan are shown as Figures 1 and 2, respectively.

Alaska Department of Environmental Conservation

Date: May 30, 2024

Site Activities this Reporting Period

Current phase of project:	Monitoring
Frequency of monitoring and sampling:	Semi-annual
Monitoring wells containing light non-aqueous phase liquid (LNAPL):	None
Cumulative LNAPL recovered to date: (gallons)	0.00
Approximate depth to groundwater: (feet below top of casing)	17.52 (MW-14) to 18.44 (MW-13)
Approximate groundwater elevation: (feet relative to NAVD88)	234.28 (MW-1) to 234.42 (MW-13)
Groundwater flow direction	West-southwest (on the south side of the site) to West- northwest (on the north side of the site)
Groundwater gradient (feet per foot)	0.004
Current remediation techniques:	None
Summary of unusual activity:	None
Agency directive requirements:	None

Groundwater Gauging and Sampling Methods

On April 2, 2024, the first half 2024 groundwater monitoring and sampling activities were conducted. Groundwater monitoring wells scheduled to be gauged and/or sampled are summarized in Table 1. Monitoring wells were gauged with an oil/water interface probe in the order of lowest to highest historical petroleum hydrocarbon concentrations in groundwater to determine groundwater elevations and ascertain if LNAPL was present. Following gauging, groundwater was purged and sampled using low flow purge technology via bladder pump in accordance with the Field Sampling Guidance (ADEC 2022a) and *Arcadis Standard Groundwater Sampling and Monitoring Wells* (Arcadis 2022a). Non-disposable groundwater gauging equipment was decontaminated prior to and after each use with a detergent solution and rinsed in potable water. Groundwater table drawdown was continuously monitored during purging with an oil/water interface probe and the flow rate of the pump was adjusted to limit drawdown to 0.3 feet. Groundwater quality parameters were monitored during purging with a Horiba U-52 multi-parameter water quality meter equipped with a flow through cell and turbidity meter. Parameters were recorded every 3 to 5 minutes until a minimum of three (minimum of four if using temperature as an indicator) of the parameters listed below stabilized. Groundwater quality parameters were considered stable when three successive readings were within the following ADEC limits:

Alaska Department of Environmental Conservation

Date: May 30, 2024

- ± 3% for temperature (minimum of ± 0.2 °C),
- ± 0.1 for pH,
- ± 3% for conductivity,
- ± 10 mV for redox potential,
- ± 10% for dissolved oxygen, and
- ± 10% for turbidity.

Following well stabilization, the flow rate was reduced to approximately 200 milliliters per minute and groundwater samples were collected into laboratory sample bottles. Groundwater samples were collected from the top foot of the groundwater column in monitoring wells per the sampling schedule (Table 1). The groundwater potentiometric surface elevation and a rose diagram of historical groundwater flow directions are illustrated on Figure 3.

In the letter dated March 23, 2023, ADEC approved a reduction of analytes for the site. Groundwater samples collected were analyzed by Pace Analytical National Center for Testing & Innovation (Pace) of Mt. Juliet, Tennessee for the following constituents:

- Lead and Dissolved Lead by United States Environmental Protection Agency (USEPA) Method 6010D.
- Total petroleum hydrocarbons as diesel range organics (DRO) by Alaska Method AK102.

A groundwater duplicate sample (BD-1) was collected from monitoring well MW-13 and submitted blind to Pace. Additionally, an equipment blank sample (EQB-1) was collected and included in sample coolers for quality assurance purposes. Field notes collected during groundwater monitoring activities including monitoring well purge rates and drawdown are presented in Attachment A.

Groundwater Sampling Results

Groundwater analytical results obtained during this event indicate constituents of potential concern (COPCs) do not exceed the ADEC Oil Pollution Prevention Requirements (18 AAC 75) identified in Table C - Groundwater Cleanup Levels (GCLs). Laboratory analytical data from the most recent monitoring event are summarized in Table 2. The laboratory report is included as Attachment B.

• The COPCs analyzed were reported as not detected above ADEC GCLs.

Historical analytical results (pre-2023) are presented in Attachment C.

Laboratory Data Review

As required by the ADEC Guidelines for Data Reporting (ADEC 2022b), Arcadis completed a laboratory data review checklist for the laboratory report generated for this event. The data review checklist is included as Attachment D. Quality assurance and quality control parameters related to the precision, accuracy, representativeness, comparability, completeness, and sensitivity of the data presented in this report suggest that the data quality objectives have been met with the following exceptions:

- Accuracy:
 - Surrogate recovery was less than the control limit in sample location MW-1 for Alaska method AK102. Target compound in the associated sample location was qualified as estimated.

Alaska Department of Environmental Conservation

Date: May 30, 2024

Precision:

 Based on the laboratory control sample and laboratory control sample duplicate relative percent differences, the data meets precision objectives.

· Comparability:

- Compound DRO was detected above the laboratory reporting limit in the equipment blank for Alaska Method AK102. Based on blank evaluation, the results for DRO in sample locations MW-1, MW-13, and BD-1 were qualified as non-detect.
- Sensitivity:
 - o The laboratory detection limit for lead exceeded the ADEC GCL in sample location MW-1.
- Representativeness:
 - The data appears to be representative of site conditions and are generally consistent with expected groundwater concentrations.
- Completeness:
 - The results appear to be valid and usable, and thus, the laboratory results have 100 percent completeness.

Investigation Derived Waste

Purge and decontamination water was collected and is currently stored in U.S. Department of Transportation-approved 55-gallon steel drums onsite. Each drum was labelled with the contents, generator, date generated, and generator contact information. Following waste characterization and ADEC approval, the investigation derived waste will be transported offsite for treatment and/or disposal.

Conclusion and Recommendations

The observed groundwater flow direction and hydraulic gradient during this event are generally consistent with historical data, with the exception of the southern portion of the site where groundwater flow appears to shift in a west-southwesterly direction. Laboratory analytical results from the monitoring wells are generally consistent with historical data.

Arcadis recommends groundwater sampling continues in accordance with the current semi-annual schedule. The second half sampling event will be conducted in fall of 2024.

Alaska Department of Environmental Conservation

Date: May 30, 2024

References

- ADEC. 2022a Field Sampling Guidance. ADEC, Division of Spill Prevention and Response Contaminated Sites Program. August.
- ADEC. 2022b. Technical Memorandum 22-001; Guidelines for Data Reporting. ADEC, Division of Spill Prevention and Response Contaminated Sites Program. August 15.
- ADEC. 2023. 18-AAC-75 Oil and Other Hazardous Substances Pollution Control. ADEC. Amended February 5th.
- Arcadis. 2022a. Standard Groundwater Sampling for Monitoring Well. April
- RZA. 1990. Supplemental Subsurface Petroleum Hydrocarbon Evaluation, Chevron Service Station No. 8557, January.
- RZA AGRA. 1992. Remediation Workplan for Chevron Station No. 8557. April.
- U.S. Department of the Interior. 1959. Surficial Geology of Anchorage and Vicinity Alaska.

Alaska Department of Environmental Conservation

Date: May 30, 2024

Should you have any questions or concerns regarding this submittal please do not hesitate to contact us.

Sincerely,

Arcadis U.S., Inc.

Nathan Polen

Associate Project Manager

Jill M. Settle

Certified Project Manager

Enclosures:

Figure 1. Site Location Map

Figure 2. Site Plan

Figure 3. Groundwater Elevation Map

Table 1. Groundwater Monitoring Schedule

Table 2. Current Groundwater Gauging and Primary Analytical Results

Table 3. Historical Groundwater Gauging and Primary Analytical Results

Attachment A. Field Notes

Attachment B. Laboratory Analytical Results

Attachment C. Historical Groundwater Analytical Results Second Quarter 2003 through 2022

Attachment D. ADEC Data Review Checklist

Figures

Tables

Table 1
Groundwater Monitoirng Schedule
First Half 2024
Chevron #8557
415 Muldoon Road,
Anchorage, Alaska

Well ID	Sample Schedule	Gauge	Sample	Comment
MW-1	Semi- Annual	Y	Υ	
MW-3	Semi- Annual	Υ	Υ	
MW-13	Semi- Annual	Y	Υ	
MW-14	Semi- Annual	Y	Υ	
RW-1	Semi- Annual	Y	Υ	
BD-1	Semi- Annual	N	Υ	

Note:

Wells sampled for Total Lead and Dissolved Lead by United States Environmental Protection Agency (USEPA) Method 6010D and total petroleum hydrocarbons diesel range organics by Alaska AK102.

Table 2 **Current Groundwater Gauging and Primary Analytical Results** First Half 2024 Chevron #8557 415 Muldoon Road,

Well ID	Sample Date	тос	DTW	GW Elev.	DRO	Lead	Dissolved Lead	Comments
		(feet bTOC)	(feet bTOC)	(feet)				
ADI	EC Groundwate	er Cleanup Le	vels		1,500	15	15	
MW-1	04/02/24	252.38	18.10	234.28	<872 B J	<30.0	<30.0	
MW-3	04/02/24	252.69	18.38	234.31		<6.00	<6.00	
MW-13	04/02/24	252.86	18.44	234.42	<864 B	9.35	<6.00	
Duplicate (MW-13)	04/02/24				<912 B	8.84	<6.00	
MW-14	04/02/24	251.82	17.52	234.30	<800	8.27	<6.00	
RW-1	04/02/24	252.55	18.25	234.30		<6.00	<6.00	

- DRO analyzed by Alaska Method AK102.
- 2. Lead and Lead, Dissolved analyzed by United States Environmental Protection Agency (USEPA) Method 6010D.
- 3. ADEC Groundwater Cleanup Levels and constituent concentrations reported in $\mu g/L$.
 - Bold = Detected above laboratory method detection limit (MDL)

Bold and Italicized = Constituent considered non-detect, however Laboratory RDL is greater than the ADEC Groundwater Cleanup Level

Acronyms and Abbreviations: --- = Not Available or Not Analyzed

Anchorage, Alaska

- [] = Blind Duplicate Sample Result
 <1.00 = Not detected at or above the reported detection limit (RDL)
- µg/L = Micrograms per liter

 ADEC = Alaska Department of Environmental Conservation

 B = The same analyte is found in the associated blank
- bTOC = Below top of casing
- DTW = Depth to groundwater
- DRO = Total petroleum hydrocarbons, diesel range organics
- GW Elev. = Groundwater elevation
 - ID = Identification
 - J = The associated numerical value is an estimated concentration only
- MW = Groundwater monitoring well
 NAVD 88= North American Vertical Datum of 1988
- TOC = Top of casing
 USEPA = United States Environmental Protection Agency

Reference:

18 AAC 75. Department of Environmental Conservation, State of Alaska, Oil and Other Hazardous Substances Pollution Control, Table C. Groundwater Cleanup Levels, as amended through February 5, 2023.

Table 3 Historical Groundwater Gauging and Primary Analytical Results First Half 2023 through First Half 2024 Chevron #8557 415 Muldoon Road, Anchorage, Alaska

MA II IB	Commis Data	тос	DTW	GW Elev.	DRO	Local	Land Biomeland	Otr
Well ID	Sample Date				DRU	Lead	Lead, Dissolved	Comments
		(feet bTOC)	(feet bTOC)	(feet)				
A	DEC Groundwa				1,500	15	15	
MW-1	04/10/23	252.38	18.35	234.03	1,590	<6.00		
MW-1	08/17/23	252.38	17.34	235.04	<800	<6.00 B		
MW-1	04/02/24	252.38	18.10	234.28	<872 B J	<30.0	<30.0	
MW-3	04/10/23	252.69	18.64	234.05		15.6		
MW-3	08/17/23	252.69	17.72	234.97		<6.97 B		
MW-3	04/02/24	252.69	18.38	234.31		<6.00	<6.00	
MW-13	04/10/23	252.86	18.81	234.05	<800 B	7.94		
MW-13	08/17/23	252.86	17.84	235.02	<800	<13.2 B		
MW-13	04/02/24	252.86	18.44	234.42	<864 B	9.35	<6.00	
Duplicate (MW-13)	04/02/24				<912 B	8.84	<6.00	
MW-14	04/10/23	251.82	17.80	234.02	<800 B	10.6		
Duplicate (MW-14)	04/10/23				<840 B J	6.37		
MW-14	08/17/23	251.82	16.84	234.98	<840 J	<6.39 B		
Duplicate (MW-14)	08/17/23				<800 J	<6.00 B		
MW-14	04/02/24	251.82	17.52	234.30	<800	8.27	<6.00	
RW-1	04/10/23	252.55	19.53	233.02		<6.00		
RW-1	08/17/23	252.55	17.57	234.98		<6.00		
RW-1	04/02/24	252.55	18.25	234.30		<6.00	<6.00	

- 1. DRO analyzed by Alaska Method AK102.
- 2. Lead and Lead, Dissolved analyzed by United States Environmental Protection Agency (USEPA) Method 6010D.
- 3. ADEC Groundwater Cleanup Levels and constituent concentrations reported in µg/L.
 - **Bold** = Detected above laboratory method detection limit (MDL)
- Bold and Italicized = Constituent considered non-detect, however Laboratory RDL is greater than the ADEC Groundwater Cleanup Level
- Bold and Shaded = Value exceeds ADEC Groundwater Cleanup Level
 - feet = Relative to NAVD88 for TOC and GW Elevation

Acronyms and Abbreviations:

- -- = Not Available or Not Analyzed
 [] = Blind Duplicate Sample Result
- <1.00 = Not detected at or above the reported detection limit (RDL)
- μg/L = Micrograms per liter

 ADEC = Alaska Department of Environmental Conservation
- B = The same analyte is found in the associated blank
- bTOC = Below top of casing
- DTW = Depth to groundwater
- DRO = Total petroleum hydrocarbons, diesel range organics GW Elev. = Groundwater elevation
- - ID = Identification
- J = The associated numerical value is an estimated concentration only
- MW = Groundwater monitoring well
- NAVD 88= North American Vertical Datum of 1988
- TOC = Top of casing
- USEPA = United States Environmental Protection Agency

18 AAC 75. Department of Environmental Conservation, State of Alaska, Oil and Other Hazardous Substances Pollution Control, Table C. Groundwater Cleanup Levels, as amended through October 18, 2023.

Attachment A

Field Notes

Daily Log

Project Number: 30063668 Prepared By: Evan Wujcik

Site ID: 98557 Site Name: Retail Outlet 98557

City: Anchorage State: Alaska

Project Manager: Jill Settle Portfolio: COP 3.0 Subportfolio: West

Inside Chevron Operational Control? Yes \square No \boxtimes

Staff on Site		
Evan Wujcik		

Weather(°F)	PPE	Equipment
SNOW, T:23.27 °F, rH:67%, Clouds: 100%, Wind:6.91mph SW		Water Quality Meter (i.e. YSI), Water Level Meter (WLM), Bladder Pump, Photoionization Detector (PID)

Date	Time	Description of Activities
04/02/2024	6:30	Arrive on site Locate Wells
04/02/2024	7:30	Sample MW1 Decon equipment See COC for analysis
04/02/2024	8:15	Sample MW3 Decon equipment See COC for analysis
04/02/2024	9:00	Sample RW1 Decon equipment See COC for analysis
04/02/2024	9:45	Sample MW14 MS/MSD samples collected at this location Decon equipment See COC for analysis
04/02/2024	10:30	Sample MW13 BD samples collected at this location Decon equipment See COC for analysis
04/02/2024	11:00	Load vehicle Mobilize offsite

Signature

£ Z--

Groundwater Gauging Log

Project Num	ber				30063	668						
Client:					Chevi	on						
Site ID:					9855	57						
Site Location	1:				Anchorage	, Alaska						
Measuring P	oint:				Top of C	asing						
Date(s):			04/02/2024									
Sampler(s):			Evan Wujcik									
Gauging Equ	ipment:		Water Level Meter									
Well ID	Date	Gauging Time	Static Water Level (ft bmp)	Depth to Product (ft bmp)	Total Depth (ft bmp)	PID Reading (ppm)	LNAPL Removed (gal)	Comments				
MW-1	04/02/2024	06:54	18.10	ND	24.00	0						
RW-1	04/02/2024	06:55	18.25	ND	26.00	0						
MW-3	04/02/2024	06:46	06:46 18.38 ND 23.70 0									
MW-13	04/02/2024	06:51	18.44 ND 27.10 0 No									
MW-14	04/02/2024	06:39	17.52	ND	27.10	0						

ft-bmp = feet below measuring point

ND = Not Detected

PID = Photoionization Detector Reading

ppm = parts per million

-- = Not Recorded

Project Num	ber	30063668	Well ID	RW-1		Date		4/2/202	24	
Site Locatio	n	Anchorage, Alaska	Site ID	98557		Weather (°F)	Clear	Sample	ed by Evan Wujcik	
Measuring F Description	oint	Top of Casing	Screen Depth Inter	val (ft-bmp)	to	Casing Diameter (in.)	2	Well C		
Static Water Level (ft-bm		18.25	Total Depth	n (ft-bmp) 2	6	Water Column (ft)	7.75	Gallon Well	s in 1.26	
Water Qualit Make/Model		Horiba U-52	Purge Meth	nod L	ow-Flow		Collecti	ion Type	Grab	
Sample Time	е	09:00	Well Volum Purged	nes 0.50		Sample ID	RW-1-W 2024040			er
Purge Start		08:30	Gallons Pu	rged 0.63		Duplicate ID		Sample		er
Purge End		08:50	Total Purge (h:m)	e Time 0:20		ID		Equipr	nent	
Time	Rate (ml/min)	Depth to Water (ft)	pH (standard units)	Conductivity (mS/cm)	Turbidit (NTU)) Ox	solved ygen ng/L)	Temperature (°C)	Redox (mV)	Color
08:33	200	18.25	7.89	1.01	8.1	4	.54	2.66	-27	
08:36	200	18.25	7.78	0.907	2.2	4	.84	2.97	-12	
08:39	200	18.25	7.69	0.878	2.1	5	5.00	3.15	-8	
08:42	200	18.25	7.63	0.871	2.0	5	5.04	3.22	-4	

Comments: None

Well Casing Volume Conversion

Well diameter (in.) = 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47

 $1.25 = 0.06 \ 2 = 0.16 \ 3 = 0.37 \ 4 = 0.65$ gallons per foot

Sample Information

Sample Depth (ft-bmp) RW-1-W-20240402 09:00 Sample ID: Sample Time: 18.5 (e.g. pump intake):

Depth to Water at Time of 18.25

Analytes and Methods: See Chain-of-Custody. Sampling

Project Num	nber	30063668	Well ID	MW-3		Date		4/2/20	24	
Site Locatio	n	Anchorage, Alask	a Site ID	98557		Weather (°F)	Clear	Samp	led by Evar	
Measuring F Description		Top of Casing	Screen Depth Inter	val (ft-bmp)	to I	Casing Diameter (in.)	2	Well (Mater	Casing PVC	:
Static Water Level (ft-bm		18.38	Total Depth	n (ft-bmp) 2	3.7	Water Column (ft)	5.32	Galloi Well	n s in 0.86	
Water Qualit Make/Model		Horiba U-52	Purge Meth	nod L	ow-Flow		Collect	ion Type	Grab)
Sample Time	е	08:15	Well Volum Purged	nes 0.74	;	Sample ID	MW-3-V 2024040			der
Purge Start		07:50	Gallons Pu	rged 0.63		Duplicate		Samp	le Blad	der
Purge End		08:10	Total Purge (h:m)	e Time 0:20		ID		Equip	ment	
Time	Rate (ml/min)	Depth to Water (ft)	pH (standard units)	Conductivity (mS/cm)	Turbidity (NTU)	Ox	olved ygen ng/L)	Temperature (°C)	Redox (mV)	Color
07:53	200	18.38	7.73	9.57	61.2	9	.29	2.55	-41	
07:56	200	18.38	7.83	4.54	50.9	8	.98	2.78	-48	
07:59	200	18.38	7.85	2.81	46.4	8	.73	2.82	-70	
08:02	200	18.38	7.81	2.16	43.0	8	.48	2.86	-74	
08:05	200	18.38	7.76	1.75	44.4	8	.56	2.88	-78	

Comments: None

Well Casing Volume Conversion

Well diameter (in.) = 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47

gallons per foot 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65

Sample Information

Sample Depth (ft-bmp) Sample ID: MW-3-W-20240402 Sample Time: 08:15 18.5

(e.g. pump intake):

Depth to Water at Time of Analytes and Methods: See Chain-of-Custody. 18.38

Project Num	ber	30063668	Well ID	MW-1		Date		4/2/202	24	
Site Location	n	Anchorage, Alaska	Site ID	98557		Weather (°F)	Clear	Sampl	ed by Evan Wujc	
Measuring P Description	oint	Top of Casing	Screen Depth Inter	val (ft-bmp)	to	Casing Diameter (in.)	4	Well C Materia		
Static Water Level (ft-bm		18.1	Total Depth	n (ft-bmp) 24		Water Column (ft)	5.9	Gallon Well	s in 3.83	
Water Qualit Make/Model		Horiba U-52	Purge Meth	od Lo	ow-Flow		Collecti	on Type	Grab	
Sample Time	е	07:30	Well Volum Purged	es 0.17		Sample ID	MW-1-W 2024040		Riado	ler
Purge Start		07:00	Gallons Pu	rged 0.63		Duplicate ID		Sampl		ler
Purge End		07:20	Total Purge (h:m)	e Time 0:20		טו		Equipr	ment	
Time	Rate (ml/min)	Depth to Water (ft)	pH (standard units)	Conductivity (mS/cm)	Turbidit (NTU)	Ox	solved ygen ng/L)	Temperature (°C)	Redox (mV)	Color
07:03	200	18.1	7.53	59.2	15.9	6	5.46	2.96	167	
07:06	200	18.1	7.46	58.6	9.9	5	5.72	3.25	184	
07:09	200	18.1	7.42	58.6	10.5	5	5.45	3.37	179	
07:12	200	18.1	7.38	58.4	14.5	5	5.09	3.41	175	
07:09	200	18.1	7.42	58.6	10.5	5	i.45	3.37	179	

Comments:

Well Casing Volume Conversion

Well diameter (in.) = $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$

gallons per foot $1.25 = 0.06\ 2 = 0.16\ 3 = 0.37\ 4 = 0.65$

None

Sample Information

Sample Depth (ft-bmp) Sample ID: MW-1-W-20240402 Sample Time: 07:30 18.5 (e.g. pump intake):

Depth to Water at Time of 18.1 Analytes and Methods: See Chain-of-Custody.

Project Num	nber	30063668	Well ID	MW-14		Date		4/2/202	24	
Site Locatio	n	Anchorage, Alaska	Site ID	98557		Weather (°F)	Clear	Sampl	ed by Evan Wujcik	
Measuring F Description	Point	Top of Casing	Screen Depth Inter	val (ft-bmp)	to	Casing Diameter (in.)	2	Well C Materi		
Static Water Level (ft-bm		17.52	Total Depth	n (ft-bmp) 2	7.1	Water Column (ft)	9.58	Gallon Well	s in 1.56	
Water Quali Make/Model		Horiba U-52	Purge Meth	nod L	ow-Flow		Collecti	ion Type	Grab	
Sample Time	е	09:45	Well Volum Purged	nes 0.41		Sample ID	MW-14-1 2024040		ment Bladde	r
Purge Start		09:20	Gallons Pu	rged 0.63		Duplicate	MS/MSE	Sampi		r
Purge End		09:40	Total Purge (h:m)	e Time 0:20		ID		Equip	nent	
Time	Rate (ml/min)	Depth to Water (ft)	pH (standard units)	Conductivity (mS/cm)	Turbidit (NTU)	Oxy	olved /gen g/L)	Temperature (°C)	Redox (mV)	Color
09:23	200	17.54	7.82	0.267	1000	7	.19	3.81	64	
09:26	200	17.55	7.76	0.262	1000	7	.17	3.87	70	
09:29	200	17.56	7.74	0.257	1000	7	.21	3.95	76	
09:32	200	17.57	7.70	0.254	730	7	.20	3.98	78	

Comments: None

Well Casing Volume Conversion

Well diameter (in.) = $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$

gallons per foot $1.25 = 0.06\ 2 = 0.16\ 3 = 0.37\ 4 = 0.65$

Sample Information

Sample Depth (ft-bmp) Sample ID: MW-14-W-20240402 Sample Time: 09:45 18

(e.g. pump intake):

Depth to Water at Time of 17.57 Analytes and Methods: See Chain-of-Custody.

Project Num	ber	300	063668	Well ID	MW-13		Date	9		4/2/202	24		
Site Location	n	And	chorage, Alaska	Site ID	98557		Wea (°F)	ather	Clear	Sampl	ed by	Evan Wujcik	
Measuring P Description	oint	Тор	o of Casing	Screen Depth Inter				ing neter	2	Well C Materi		PVC	
Static Water Level (ft-bm		18.	44	Total Depth				er umn	8.66 Gallons in Well		s in	1.41	
Water Qualit Make/Model		Hor	riba U-52	Purge Meth	Purge Method Low-Flow				Collecti	on Type		Grab	
Sample Time	е	10:	30	Well Volum Purged				ple ID	MW-13-W- Purge 20240402 Equipment			Bladdei	
Purge Start		10:0	00	Gallons Pu	rged 0.95		Dup ID	licate	BD	Sampl Equipi		Bladdei	
Purge End		10:	20	Total Purge (h:m)	e Time 0:20					Equipi	nem		
Time	Rate (ml/min)		Depth to Water (ft)	pH (standard units)	Conductivity (mS/cm)	Turbidi (NTU		Ox	olved ygen ng/L)	Temperature (°C)		dox nV)	Color
10:03	200		18.46	7.14	11.5	32.4		2	.93	2.41	14	40	
10:06	200		18.46	7.25	11.2	34.4		2	.46	2.37	14	42	
10:09	200		18.47	7.29	10.5	19.0		2	.28	2.38	1;	38	
10:12	200		18.48	7.31	9.81	10.6		10	0.18	2.34	13	36	
10:15	200		18.48	7.32	9.55	9.9		10).24	2.36	1:	33	
10:18	200		18.48	7.32	9.28	8.9		10	0.09	2.37	12	29	
				2	0.20	0.0							

Comments: None.

Well Casing Volume Conversion

1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 Well diameter (in.) =

gallons per foot $1.25 = 0.06 \ 2 = 0.16 \ 3 = 0.37 \ 4 = 0.65$

Sample Information

Sample Depth (ft-bmp) Sample ID: MW-13-W-20240402 Sample Time: 10:30 (e.g. pump intake):

Depth to Water at Time of 18.48 Analytes and Methods: See Chain-of-Custody.

Attachment B

Laboratory Analytical Results

Pace Analytical® ANALYTICAL REPORT

Arcadis - Chevron - AK

Sample Delivery Group: L1722866

Samples Received: 04/05/2024

Project Number: 30063668.19.45

98557 Description:

415 MULDOON RD, Site: ANCHORAGE, AK

Report To: Jill Settle

880 H St.

Anchorage, AK 99501

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT:

Arcadis - Chevron - AK

PROJECT: 30063668.19.45

SDG: L1722866

DATE/TIME: 04/19/24 13:01

1 of 19

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1-W-20240402 L1722866-01	5
MW-3-W-20240402 L1722866-02	6
RW-1-W-20240402 L1722866-03	7
MW-14-W-20240402 L1722866-04	8
MW-13-W-20240402 L1722866-05	9
BD-1-W-20240402 L1722866-06	10
EQB-1-W-20240402 L1722866-07	11
Qc: Quality Control Summary	12
Metals (ICP) by Method 6010D	12
Semi-Volatile Organic Compounds (GC) by Method AK102	15
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

SAMPLE SUMMARY

MW 1 W 20240402 14722966 04 CW			Collected by E. Wujcik	Collected date/time 04/02/24 07:30	Received da 04/05/24 09	
MW-1-W-20240402 L1722866-01 GW	Batch	Dilution				
Method	Balcii	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG2263311	5	04/10/24 08:35	04/11/24 12:17	JTM	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG2268774	5	04/18/24 10:37	04/18/24 13:37	JTM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG2262054	1.09	04/08/24 16:01	04/09/24 14:17	KAP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3-W-20240402 L1722866-02 GW			E. Wujcik	04/02/24 08:15	04/05/24 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG2263311	1	04/10/24 08:35	04/11/24 00:46	DJS	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG2268774	1	04/18/24 10:37	04/18/24 13:19	JTM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
RW-1-W-20240402 L1722866-03 GW			E. Wujcik	04/02/24 09:00	04/05/24 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG2263311	1	04/10/24 08:35	04/11/24 00:47	DJS	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG2268774	1	04/18/24 10:37	04/18/24 13:22	JTM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-14-W-20240402 L1722866-04 GW			E. Wujcik	04/02/24 09:45	04/05/24 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG2263313	1	04/10/24 08:41	04/11/24 01:23	DJS	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG2268774	1	04/18/24 10:37	04/18/24 13:01	JTM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG2266304	1	04/13/24 20:17	04/16/24 00:19	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-13-W-20240402 L1722866-05 GW			E. Wujcik	04/02/24 10:30	04/05/24 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG2263311	1	04/10/24 08:35	04/11/24 00:49	DJS	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG2268774	1	04/18/24 10:37	04/18/24 13:26	JTM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG2262054	1.08	04/08/24 16:01	04/09/24 14:37	KAP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BD-1-W-20240402 L1722866-06 GW			E. Wujcik	04/02/24 00:00	04/05/24 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG2263311	1	04/10/24 08:35	04/11/24 00:54	DJS	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG2268774	1	04/18/24 10:37	04/18/24 12:40	JTM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG2262054	1.14	04/08/24 16:01	04/09/24 14:58	KAP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EQB-1-W-20240402 L1722866-07 GW			E. Wujcik	04/02/24 11:00	04/05/24 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG2263311	1	04/10/24 08:35	04/11/24 00:56	DJS	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG2268774	1	04/18/24 10:37	04/18/24 12:43	JTM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method AK102	WG2262054	1.15	04/08/24 16:01	04/09/24 15:18	KAP	Mt. Juliet, TN

ACCOUNT: Arcadis - Chevron - AK

PROJECT: 30063668.19.45

SDG: L1722866

DATE/TIME: 04/19/24 13:01 PAGE: 3 of 19

²Tc

Ss

^⁴Cn

Sr

[°]Qc

GI

Sc

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOQ) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Buar Ford

Semi-Volatile Organic Compounds (GC) by Method AK102

Surrogate recovery limits have been exceeded; values are outside lower control limits.

Batch	Analyte	Lab Sample ID
WG2262054	o-Terphenyl	L1722866-01
WG2266304	o-Terphenyl	(LCS) R4057997-2

SAMPLE RESULTS - 01

L1722866

Metals (ICP) by Method 6010D

Collected date/time: 04/02/24 07:30

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		15.0	30.0	5	04/11/2024 12:17	WG2263311
Lead, Dissolved	U		15.0	30.0	5	04/18/2024 13:37	WG2268774

³Ss

Semi-Volatile Organic Compounds (GC) by Method AK102

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
AK102 DRO C10-C25	376	<u>J</u>	185	872	1.09	04/09/2024 14:17	WG2262054
(S) o-Terphenyl	44.9	<u>J2</u>		50.0-150		04/09/2024 14:17	WG2262054

⁵Sr

Sample Narrative:

L1722866-01 WG2262054: Sample produced emulsion during Extraction process, low surr/spike recoveries due to matrix.

MW-3-W-20240402

SAMPLE RESULTS - 02

L1722866

Metals (ICP) by Method 6010D

Collected date/time: 04/02/24 08:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		2.99	6.00	1	04/11/2024 00:46	WG2263311
Lead, Dissolved	U		2.99	6.00	1	04/18/2024 13:19	WG2268774

RW-1-W-20240402

SAMPLE RESULTS - 03

L1722866

Metals (ICP) by Method 6010D

Collected date/time: 04/02/24 09:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		2.99	6.00	1	04/11/2024 00:47	WG2263311
Lead.Dissolved	U		2.99	6.00	1	04/18/2024 13:22	WG2268774

MW-14-W-20240402

Collected date/time: 04/02/24 09:45

SAMPLE RESULTS - 04

L1722866

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	8.27		2.99	6.00	1	04/11/2024 01:23	WG2263313
Lead, Dissolved	U		2.99	6.00	1	04/18/2024 13:01	WG2268774

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
AK102 DRO C10-C25	U		170	800	1	04/16/2024 00:19	WG2266304
(S) o-Terphenyl	60.0			50.0-150		04/16/2024 00:19	WG2266304

Ss

MW-13-W-20240402 Collected date/time: 04/02/24 10:30

SAMPLE RESULTS - 05

L1722866

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	9.35		2.99	6.00	1	04/11/2024 00:49	WG2263311
Lead, Dissolved	U		2.99	6.00	1	04/18/2024 13:26	WG2268774

Semi-Volatile Organic Compounds (GC) by Method AK102 $\,$

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
AK102 DRO C10-C25	266	<u>J</u>	184	864	1.08	04/09/2024 14:37	WG2262054
(S) o-Terphenyl	64.4			50.0-150		04/09/2024 14:37	WG2262054

Ss

BD-1-W-20240402

SAMPLE RESULTS - 06

Metals (ICP) by Method 6010D

Collected date/time: 04/02/24 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	8.84		2.99	6.00	1	04/11/2024 00:54	WG2263311
Lead, Dissolved	U		2.99	6.00	1	04/18/2024 12:40	WG2268774

Semi-Volatile Organic Compounds (GC) by Method AK102

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
AK102 DRO C10-C25	332	<u>J</u>	194	912	1.14	04/09/2024 14:58	WG2262054
(S) o-Terphenyl	68.8			50.0-150		04/09/2024 14:58	WG2262054

Ss

EQB-1-W-20240402

SAMPLE RESULTS - 07

1722866

Metals (ICP) by Method 6010D

Collected date/time: 04/02/24 11:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		2.99	6.00	1	04/11/2024 00:56	WG2263311
Lead, Dissolved	U		2.99	6.00	1	04/18/2024 12:43	WG2268774

Semi-Volatile Organic Compounds (GC) by Method AK102

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
AK102 DRO C10-C25	254	<u>J</u>	196	920	1.15	04/09/2024 15:18	WG2262054
(S) o-Terphenyl	64.2			50.0-150		04/09/2024 15:18	WG2262054

WG2263311

QUALITY CONTROL SUMMARY

L1722866-01,02,03,05,06,07

Metals (ICP) by Method 6010D

Method Blank (MB) (MB) R4056331-6 04/11/24 00:34

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead	U		2.99	6.00

Ср

Laboratory Control Sample (LCS)

(LCS) R4056331-7 04/11/24 00:36

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead	1000	968	96.8	80.0-120	

(OS) L1722876-02 04/11/24 00:37 • (MS) R4056331-9 04/11/24 00:41 • (MSD) R4056331-10 04/11/24 00:42

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Lead	1000	U	957	951	95.7	95.1	1	75 0-125			0.699	20	

QUALITY CONTROL SUMMARY

L1722866-04

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R4056334-1	04/11/24 01:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead	П		2 99	6.00

³Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R4056334-2 04/11/24 01:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead	1000	949	94.9	80.0-120	

⁶Qc

L1722866-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1722866-04 04/11/24 01:23 • (MS) R4056334-4 04/11/24 01:27 • (MSD) R4056334-5 04/11/24 01:29

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead	1000	8 27	947	952	93.9	94.4	1	75.0-125			0.509	20

QUALITY CONTROL SUMMARY

L1722866-01,02,03,04,05,06,07

Metals (ICP) by Method 6010D

(MB) R4059272-1 04/18/24 12:54

Method Blank (MB)

,		MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte		ug/l		ug/l	ug/l	
Lead Dissolved	I	П		2 99	6.00	

³Ss

Laboratory Control Sample (LCS)

(LCS) R4059272-2 04/18/24 12:57

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead, Dissolved	1000	953	95.3	80.0-120	

⁶Qc

(OS) L1722866-04 04/18/24 13:01 • (MS) R4059272-4 04/18/24 13:08 • (MSD) R4059272-5 04/18/24 13:11

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Lead Dissolved	1000	Ш	972	944	97.2	94.4	1	75 0-125			2 93	20	

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method AK102

L1722866-01,05,06,07

Method Blank (MB)

(MB) R4055785-1 04/09/	/24 10:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
AK102 DRO C10-C25	U		170	800
(S) o-Terphenyl	63.0			60.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4055785-2	04/09/24 10:55 • ((LCSD) R4055785-3	04/09/24 11:16

(LC3) K4033763-2 04	709/24 10.55 • (LC.	3D) K403376	3-3 04/03/24 1	1.10						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
AK102 DRO C10-C25	6000	5240	5430	87.3	90.5	75.0-125			3.56	20
(S) o-Terphenyl				73.5	72.5	60.0-120				

L1720691-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS.	11720691-01	04/09/24 11:36 •	(MS) R4055785-4	04/09/24 11:56 • (MSD	R4055785-5	04/09/24 12:16
١.	\circ	, 11, 20031 01	0-7/03/2-11.50	(1415) 114055705 4	0-7/03/2-11.30 - (IVIOD	11140337033	0-7/03/2-12.10

(O3) L1/20031-01 04/03/2	4 11.30 • (IVIS) K	4033703-4 0-	1/03/24 11.30	(IVISD) K40337	03-3 04/03/2	+ 12.10						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
AK102 DRO C10-C25	7220	856	7380	6510	90.4	80.1	1.2	75.0-125			12.5	20
(S) o-Terphenyl					63.8	55.0		50.0-150				

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method AK102

L1722866-04

Method Blank (MB)

(MB) R4057997-1 04/15/2	4 23:17					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
AK102 DRO C10-C25	U		170	800		
(S) o-Terphenyl	60.5			60.0-120		

³ Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4057997-2 04/15/24 23:39 • (LCSD) R4057997-3 04/15/24 23:59	(LCS) R4057997-2	04/15/24 23:39	(LCSD) R4057997-3	04/15/24 23:59
--	------------------	----------------	-------------------	----------------

(ECS) 1(+05/55/ 2 04/18	5/2+25.55 · (LC.	3D) K+03/33/	5 04/15/24 25							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
AK102 DRO C10-C25	6000	5060	5180	84.3	86.3	75.0-125			2.34	20
(S) o-Terphenyl				59.4	60.8	60.0-120	<u>J2</u>			

7

L1722866-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

10	AS) I 1722866-04	04/16/24 00:19 •	(MS) R4057997-4	04/16/24 00:39 • ((MSD	\ R4057997-5	04/16/24 00:59
('	JJ) L1/22000-04	04/10/24 00.13	(1013) 1403/33/=4	04/10/24 00.33	(17130	/ N 4 03/33/-3	04/10/24 00.33

(OS) L1/22866-04 04/	16/24 00:19 • (IVIS)	R405/99/-4 (J4/16/24 UU:3	9 • (MSD) R405	7997-5 04/1	5/24 00:59							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
AK102 DRO C10-C25	6600	U	5460	5150	82.7	78.0	1.1	75.0-125			5.84	20	
(S) o-Terphenyl					62.5	57.0		50.0-150					

PAGE:

16 of 19

L1722917-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1722917-06 04/16/24 01:19 • (MS) R4057997-6 04/16/24 01:40 • (MSD) R4057997-7 04/16/24 02:00

(OS) L1/2231/-00 O4/	10/24 01.13 (1013) 10	403/33/-0 0-	7/10/27 01.70	(IVISD) 1(405)	JJ7-7 O T /10/2	24 02.00							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
AK102 DRO C10-C25	6740	394	6340	5970	88.2	85.5	1.12	75.0-125			6.01	20	
(S) o-Terphenyl					64.0	54.9		50.0-150					

L1722876-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1722876-02 04/16/24 02:20 • (MS) R4057997-8 04/16/24 02:40 • (MSD) R4057997-9 04/16/24 03:00

(O3) L1/226/0-02 04/	10/24 02.20 • (1013)	K403/33/-6	04/10/24 02.4	+U • (IVISD) K4U	3/99/-9 04/1	0/24 03.00						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
AK102 DRO C10-C25	7220	686	6620	7270	82.2	89.9	1.2	75.0-125			9.36	20
(S) o-Terphenyl					53.7	56.1		50.0-150				

Sample Narrative:

OS: Dilution due to sample volume.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

	· · · · · · · · · · · · · · · · · · ·
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

PAGE:

18 of 19

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

company Name/Address:			Dilling Is	. K									AND THE RESERVE OF THE PERSON	
Arcadis - Chevron - A	K		1	nformation:					Analys	is / Container	Preservation	VP.	Chain of Custo	ody Page of
			Attn: A	Acounts Payal	ole	Pre	2250.00		1					rage _ of _
880 H St.				aza Dr Ste 600		Chl	K						l	7
Anchorage, AK 99501			Highla	nds Ranch, CC	80129			130	3				F	ace.
Report to:			Fil T-					Filtered					PEO	PLE ADVANCING SCIENCE
Gerald Robinson			Email To Alaura.G	: onzalez@arcadis	com:iesse.w	nod@ar		A Press					МТ	JULIET, TN
Project Description: 98557		City/State			^ !·	Circle:		Leta L					12065 Lebanon Rd I	Mount Juliet, TN 37122 e via this chain of custody
	Client	Collected:	Machora		PT MI	CT ET		E23	103				Pace Terms and Con-	edgment and acceptance of the
Phone: 907-276-8095		3668.19.45		Lab Project # CHEVARCA		5		250mlHDPE-NoPres	250mlHDPE-HNO				terms.pdf	s.com/hubfs/pas-standard-
Collected by (print):	Site/Fa	acility ID #		P.O. #				NoF	P				SDG # 61	72 2866
E. Wycik	415 N	MULDOON RD,		1.0.0			HC	PE	E I				F	H042
Collected by (signature):		ish? (Lab MUST Be		Quote #			Amb	무	25(Acctnum: CH	EVARCAK
E 20-	-	Same Day Five	Day				A	E O	6010				Template: T23	34772
Immediately Packed on Ice N YX		Next Day Two Day Three Day	ay (Rad Only)	Date Resu	ılts Needed	No.	100ml		9 9				Prelogin: P10	
Sample ID			1			of	2 10	Lead	Lead				PM: 110 - Bria	n Ford
	Comp	'Grab Matrix *	Depth	Date	Time	Cntrs	(102	Diss	Total				Shipped Via:	
MW-1-W-20240402	Gra	d GW		4,2,24	0730	1 10	AK	1	AND DESCRIPTION OF THE PARTY OF				Remarks	Sample # (lab only)
MW-3-W-20240402)	GW	_	1100		1	X	X	×					-01
FW-1-W- 20240402		GW	_		0915	4	EW	X	X					- 02
MW-14-W-20240902		GW	_		0900	9	*	X	X					- 03
MN-13-W- 20240402			_		0945	12	X	X	X			100/19	MS/MSD	- 04
BD-1-W- 2024 04 02	-	GW			1030	4	×	X	×				7 30	
EQB-1- W- 20240402		GW	-		-	14	X	×	X					- 05
	Ψ	GW	-	V	1100	4	X	X	X					- 06
Trip Blank		GW	6	-	-	3		de I						- 07
		GW	de.		Mary Inc.									
* Make:														
S - Soil AIR - Air F - Filter	emarks:				1.7	1		7 70						
GW - Groundwater B - Bioassay WW - WasteWater		1 - 12	The state of the s						рН	Temp		COC Seal	mple Receipt Chec Present/Intact:	cklist NP VV N
OW - Drinking Water	amples retur	nod uto							Flow_	Other	¥.	Bottles an	d/Accurate: rrive intact:	ZY _N
	_UPS _XFe	dEx Courier _		Trackin	g# 791	03	83	266	191			correct bo	ottles used: t volume sent:	N N
Relinquished by : (Signature)		Date:	Time:	Receive	ed b y : (Signatu	7 J		0	.			VOA Zero H	If Applicable Headspace:	V
9/W		4.4.24	13	200	, (8.141				Trip Blank		L/MeoH	Preservati	ion Correct/Check n <0.5 mR/hr:	ced: Y N
del in quished by : (Signature)		Date:	Time:	Receive	d by: (Signatu	re)		Market	200	TE	R			Z1 _N
elinquished by : (Signature)					_				Temp:	C Bottles	Received:	PH-10BDH5 CR6-20221V	5021 TRC-2352382	Date/Time
- (Signature)		Date:	Time:	Received	d for lab by: (5	Signature	2)	7.7	Date:	- 1. L	P	Hald		H.
		I		(ha	ress	TOVE	205	20	14-5-21	1	9:00	Hold:		Condition: NCF / OK
					-				-					NCF // UK

Attachment C

Historical Groundwater Analytical Results – Second Quarter 2003 through 2022

Table 1. Historical Groundwater Gauging and Analytical Results Second Quarter 2003 through 2022

		Screen			LNAPL											
	Sample	Interval		DTW	thickness		DRO	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Lead	Naphthalene	Comments
Well ID	Date	(ft bTOC)	(ft amsl)	(ft bTOC)	(ft)	(ft amsl)	(μg/L) 1,500	(μg/L) 2,200	(μg/L) 4.6	(µg/L) 1,100	(μg/L) 15	(μg/L) 190	(μg/L) 140	(μg/L) 15	(µg/L) 1.7	
	ADEC	Giounawa	iter Cleanup	Leveis			1,500	2,200	4.0	1,100	10	130	140	10	1.7	
MW-1	05/23/03	16-26	98.73	19.00	0.00	79.73	550		-							
MW-1	10/08/03	16-26	98.73	19.38	0.00	79.35	280		-			-		-		Laboratory report indicates the observed sample pattern is not typical of diesel/#2 fuel oil.
MW-1	06/04/04	16-26	98.73	19.61	0.00	79.12	1,900		-			-		-		
MW-1	09/28/04	16-26	98.73	19.50	0.00	79.23	740 [670]									
MW-1 MW-1	05/13/05 09/26/05	16-26 16-26	98.73 98.73	18.54 18.67	0.00	80.19 80.06	830 <24						 	 		
MW-1	05/17/06	16-26	98.73	19.54	0.00	79.19	140	 		 		 	 	 		
MW-1	09/25/06	16-26	98.73	18.76	0.00	79.97	8,500		-			_		_		
MW-1	05/15/07	16-26	98.73	18.91	0.00	79.82	500		-							
MW-1	09/24/07	16-26	98.73	18.40	0.00	80.33	3,500		-					-		
MW-1	05/14/08	16-26	98.73	18.37	0.00	80.36	350									
MW-1	09/16/08	16-26	98.73	18.02	0.00	80.71	1,600		-							
MW-1 MW-1	06/18/09 09/07/09	16-26 16-26	98.73 98.73	18.53 18.76	0.00	80.20 79.97	270 2,500									
MW-1	04/21/10	16-26	98.73	19.46	0.00	79.37	1,500	 					 	 		
MW-1	07/22/10	16-26	98.73	19.08	0.00	79.65	1,400									
MW-1	04/19/11	16-26	98.73	19.35	0.00	79.38	1,600									
MW-1	08/22/11	16-26	252.78	19.09	0.00	233.69	170 J							< 4.7 J		
MW-1	05/22/12	16-26	252.78	18.22	0.00	234.56	200 J							< 2.2		
MW-1 MW-1	07/30/12 05/14/13	16-26	252.78 252.78	17.55 17.90	0.00	235.23 234.88	100 J 620				-			7.1 J		
MW-1	05/14/13	16-26 16-26	252.78	17.90	0.00	234.88	1,600	 			-		 	< 1.9 < 1.9		Sample Collected via hydrasleeve
MW-1	09/17/13	16-26	252.78	17.57	0.00	235.21	-						<u></u>	- 1.5		Cample Collected Via Hydraciec V
MW-1	09/18/13	16-26	-	-	0.00	-	380 J							9.6 J		
MW-1	05/02/14	16-26	252.78	19.95	0.00	232.83	130 J							1		
MW-1	11/08/14	16-26	252.78	18.48	0.00	234.10	260 J							7.7 J		
MW-1	05/06/15	16-26	252.78	19.12	0.00	233.66	370 J		-	-		-	-	4.7	-	
MW-1 MW-1	10/21/15 06/03/16	16-26 16-26	252.78 252.78	18.68 18.69	0.00 0.00	234.10 234.09	350 3,700	 					 	26 29.3 J		
MW-1	10/14/16	16-26	252.78	18.57	0.00	234.21	2,400							13.7		
MW-1	05/23/17	16-26	252.78	18.29	0.00	234.49	3,500							98.3		
MW-1	09/01/17	16-26	252.78	18.85	0.00	233.93	800 J / 520 J							10.3 J / 15.1 J		
MW-1	05/21/18	16-26	252.78	19.10	0.00	233.68	1,900 J / 1,500 J					-	-	48.4		
MW-1	09/25/18	16-26	252.58*	19.02	0.00	233.76	1,000		-	-		-	-	24.1	-	Depth to water taken from Recent Survey Notes dated 6/6/2019, TOC Data from Survey
MW-1	04/10/19	16-26	252.38	18.30	0.00	234.08	<260 B		-		-			<7.1		report by McLane Consulting dated 6/14/19 (Rev 2)
MW-1	09/10/19	16-26	252.38	18.51	0.00	233.87	320							8.3 J		
MW-1	04/03/20	16-26	252.38	18.66	0.00	233.72	1,110		<1.00	<1.00	<1.00	<3.00	<1.00	9.35	<5.00 J	
MW-1	09/30/20	16-26	252.38	18.10	0.00	234.28	392 J [359 J]		<1.00 [<1.00]	<1.00 [<1.00]	<1.00 [<1.00]	<3.00 [<3.00]	<1.00 [<1.00]	<9.09 B [<6.00 B]	<0.500 [<0.500]	
MW-1 MW-1	04/08/21 08/27/21	16-26 16-26	252.38 252.38	18.55 17.62	0.00	233.83 234.76	<800 <800 B [<800 B]	 	 				 	8.90 B 7.40 [7.69]		
MW-1	04/05/22	16-26	252.38	18.25	0.00	234.13	<800 B						<u></u>	4.99 J		
MW-1	08/17/22	16-26	252.38	17.80	0.00	234.58	573 J							3.57 J		
MW-3	05/23/03	14-24	98.52	19.19	0.00	79.33	<24							-		
MW-3 MW-3	10/08/03 06/04/04	14-24 14-24	98.52 98.52	19.55 19.78	0.00 0.00	78.97 78.74	43 [45] 62							 		
MW-3	09/28/04	14-24	98.52	19.76	0.00	78.64	<20				-		 	 		
MW-3	05/13/05	14-24	98.52	18.86	0.00	79.66	84 [67]									ודח-u. Laboratory report indicates the observed sample pattern is not typical of dieseli#2 luer
MW-3	09/26/05	14-24	98.52	18.52	0.00	80.00	<24 [<24]					-			-	~"
MW-3	05/17/06	14-24	98.52	19.63	0.00	78.89	<25									
MW-3	09/25/06	14-24	98.52	18.73	0.00	79.79	220									
MW-3 MW-3	05/15/07	14-24 14-24	98.52	18.78	0.00 0.00	79.74 80.09	130		-					 		
MW-3	09/24/07 05/14/08	14-24 14-24	98.52 98.52	18.43 18.42	0.00	80.09 80.10	1,600 84 [87]	 					 	 		
MW-3	09/16/08	14-24	98.52	18.06	0.00	80.46	<50 [53]					<u></u>	<u></u>	<u></u>		
MW-3	06/18/09	14-24	98.52	18.65	0.00	79.87	<50						ND			
MW-3	09/07/09	14-24	98.52	18.88	0.00	79.64	<48		-		-		ND			
MW-3	04/21/10	14-24	98.52	19.60	0.00	78.92	<53 J		<0.5	<0.5	<0.5		ND			
MW-3	07/22/10	14-24	98.52	19.18	0.00	79.34	55 J						ND		-	

98557 Page 1 of 5

Table 1. Historical Groundwater Gauging and Analytical Results Second Quarter 2003 through 2022

		Screen			LNAPL											
	Sample	Interval	TOC	DTW	thickness	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Lead	Naphthalene	Comments
Well ID	Date	(ft bTOC)	(ft amsl)	(ft bTOC)	(ft)	(ft amsl)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
MW-3	04/19/11	Groundwate 14-24	98.52	19.47	0.00	79.05	1,500 84 J	2,200	4.6	1,100	15	190	140 ND	15	1.7	
MW-3	08/22/11	14-24	253.02	19.47	0.00 0.00	233.85	120 J						ND	 <2.2		
MW-3	05/22/11	14-24	253.02	18.34	0.00	234.68	<48			-		-	ND	<2.2		
MW-3	07/30/12	14-24	253.02	17.69	0.00	235.33	96 J						ND	<5.1		
MW-3	05/14/13	14-24	253.02	18.04	0.00	234.98										
MW-3	09/17/13	14-24	253.02	17.69	0.00	235.33										
MW-3	05/02/14	14-24	253.02	18.06	0.00	234.96										
MW-3	11/08/14	14-24	253.02	18.60	0.00	234.42				-						
MW-3	05/06/15	14-24	253.02	19.24	0.00	233.78										
MW-3	10/21/15	14-24	253.02	18.79	0.00	234.23										
MW-3	06/03/16	14-24	253.02	18.81	0.00	234.21										
MW-3	10/14/16	14-24	253.02	18.69	0.00	234.33										
MW-3	05/23/17	14-24	253.02	18.35	0.00	234.67										
MW-3	09/01/17	14-24	253.02	18.84	0.00	234.18	-	-					-	-		
MW-3	05/21/18	14-24	253.02	19.11	0.00	233.91				-						
MW-3	09/25/18	14-24	252.92*	19.12	0.00	233.90				-						
MW-3	04/10/19	14-24	252.69	18.63	0.00	234.06			-	-	-					Depth to water taken from Recent Survey Notes dated 6/6/2019, TOC Data from Surve report by McLane Consulting dated 6/14/19 (Rev 2)
MW-3	09/10/19	14-24	252.69	18.86	0.00	233.83				_						report by McLane Consulting dated 0/14/19 (Nev 2)
MW-3	04/03/20	14-24	252.69	19.00	0.00	233.69			 			- -				
MW-3	10/01/20	14-24	252.69	18.46	0.00	234.23						_				
MW-3	04/08/21	14-24	252.69	18.82	0.00	233.87				-						
MW-3	08/27/21	14-24	252.69													Could not gauge due to continuous flooding.
MW-3	04/05/22	14-24	252.69	18.34	0.00	234.35										
MW-3	08/17/22	14-24	252.69	17.90	0.00	234.79										Not sampled
MW-4R	05/23/03	15-24.5		18.17	0.00			<80 [220]	<0.5	<0.5	<0.5	<1	<2			
MW-4R	10/08/03	15-24.5		18.55	0.00			200	<0.5	<0.5	<0.5	<1.0	<0.5			
MW-4R	06/04/04	15-24.5		18.76	0.00			120	<0.5	<0.5	<0.5	<1.0	<2	-		
MW-4R	09/28/04	15-24.5		18.65	0.00			30	<0.5	<0.5	<0.5	<1.0	<2			
MW-4R	05/13/05	15-24.5		17.69	0.00			<10	<0.5	<0.5	<0.5	<1.0	<2			
MW-4R	09/26/05	15-24.5		17.50	0.00			30	<0.5	<0.5	<0.5	<1.0	<2			
MW-4R	05/17/06	15-24.5		18.61	0.00			<10	<0.5	<0.5	<0.5	<1.0	<2			
MW-4R	09/25/06	15-24.5		17.85	0.00			340	<0.5	<0.7	<0.8	<1.6	<2			
MW-4R	05/15/07	15-24.5							-							
MW-4R	09/24/07	15-24.5							-							Unable to locate
MW-4R	05/14/08	15-24.5							-							Unable to locate
MW-4R	09/16/08	15-24.5							-	-						Unable to locate
BBM 44	40/00/00	44.04	07.70	70.00												
MW-11	10/08/03	14-24	97.76	79.23												
MW-11 MW-11	06/04/04	14-24 14-24	97.76 97.76	79.00												Inaccessible due to flooding
MW-11	09/28/04	14-24 14-24		 80 11					-							maccessible due to hooding
MW-11	05/13/05 09/26/05	14-24 14-24	97.76 97.76	80.11 DRY					-		 -					
MW-11	05/17/06	14-24 14-24	97.76 97.76	DRY			 		 			 				Abandoned July 2006
10100-11	03/17/00	14-24	31.10	DIXI	-				-							Abandoned July 2000
MW-12	05/23/03	15-24.5	98.52	18.71	0.00	79.81		<10	<0.5	<0.5	<0.5	<1	<0.5			
MW-12	10/08/03	15-24.5	98.52	19.06	0.00	79.46	<u></u>	<10	<0.5	<0.5	<0.5	<1	<2			
MW-12	06/04/04	15-24.5	98.52	19.28	0.00	79.40	 	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<1 [<1]	<2 [<2]	 		
MW-12	09/28/04	15-24.5	98.52	19.23	0.00	79.29		<10	<0.5	<0.5	<0.5	<1	<2			
MW-12	05/13/05	15-24.5	98.52	18.27	0.00	80.25		<10	<0.5	<0.5	<0.5	<1	<2			
MW-12	09/26/05	15-24.5	98.52	DRY								-		_		
MW-12	05/17/06	15-24.5	98.52	19.23	0.00	79.29		<10	<0.5	<0.7	<0.8	<1.6	<2			
MW-13	07/30/12		252.83	17.86	0.00	234.97	6,600 J / 17,000 J	1,700 / 1,500	9.8 / 10	12.0 / 12.0	3.6 / 3.7	190 / 190	4.0 / 4.0	490 / 443		
MW-13	05/14/13		252.83	18.15	0.00	234.68	1,000 / 730	380 / 370	1.2 / 1.2	0.87 J / 0.88 J	9.8 / 10	28 / 30	ND / ND	740 / 570		
MW-13	05/14/13		252.83	18.15	0.00	234.68	3,500 J / 1,600 J	270 / 310	1.2 / 1.2	0.93 J / 0.97 J	8.7 / 8.5	26 / 26		1400 / 970		
MW-13	09/17/13		252.83	17.82	0.00	235.01										
MW-13	09/18/13		252.83		0.00		710 / 770	170 / 180	0.98 J / 0.97 J	0.59 J / 0.63 J	5.7 / 5.7	15 / 15		210 J / 1,200 J		
MW-13	05/02/14		252.83	18.20	0.00	234.63	620 / 540	160 / 140	0.90 J / 0.77 J	0.41 J / <0.36	4.9 / 4.1	3.4 / 2.8 J		25 / 18		
MW-13	11/08/14		252.83	18.70	0.00	234.13	550 J / 500 J	89 J / 87 J	0.54 J / 0.46 J	<0.19 J / <0.18 J	1.8 / 1.8	1.1 J / 1.2 J		33 / 20		

98557 Page 2 of 5

Table 1. Historical Groundwater Gauging and Analytical Results Second Quarter 2003 through 2022

		Screen			LNAPL											
	Sample	Interval	TOC	DTW	thickness	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Lead	Naphthalene	Comments
Well ID	Date	(ft bTOC)	(ft amsl)	(ft bTOC)	(ft)	(ft amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
		Groundwat	<u> </u>				1,500	2,200	4.6	1,100	15	190	140	15	1.7	
MW-13	05/06/15		252.83	19.38	0.00	233.45	390 J / 350 J							673 / 875		
MW-13	10/21/15		252.83	18.93	0.00	233.90	1,100 / 4,100 J		-	-	-			74.8 / 53.9	-	
MW-13	06/03/16		252.83	18.94	0.00	233.89	5,300 J / 5,200 J		-	-	-			223 / 219		
MW-13	10/14/16 05/23/17		252.83 252.83	18.83 18.53	0.00	234.00 234.30	710 / 650 360 J / 1900 J		-					74.7 / 69.6 298 J / 226 J		
MW-13 MW-13	09/01/17		252.83	19.11	0.00	233.72	590 J	 	-	-				137		
MW-13	05/21/18		252.83	19.23	0.00	233.60	5,100 J		-	_				1,240 / 910		
MW-13	09/25/18		252.83	19.27	0.00	233.56	9,100 / 7,400							193 / 265		
MW-13	04/10/19		252.86	18.76	0.00	234.10	5,100							90.7		Depth to water taken from Recent Survey Notes dated 6/6/2019, TOC Data from Survey report by McLane Consulting dated 6/14/19 (Rev 2)
MW-13	09/10/19		252.86	19.00	0.00	233.86	2,800 [2,800]							48 [50]		
MW-13	04/03/20		252.86	19.13	0.00	233.73	1,240		2.14	0.495 J	4.55	3.39	<1.00	83.4	<5.00	
MW-13	10/01/20		252.86	18.61	0.00	234.25	536 J [627 J]		1.40 [1.26]	<1.00 [<1.00]	2.23 [2.10]	0.195 J [<3.00]	<1.00 [<1.00]	25.3 [28.6]	<0.500 [<0.500]	
MW-13	04/08/21		252.86	19.03	0.00	233.83	567 J [526 J]							23.5 B [17.8 B]		
MW-13	08/27/21		252.86							-			-			Could not gauge due to continuous flooding. Oil observed on surface water entering.
MW-13	04/05/22		252.86	18.70	0.00	234.16										Could not sample due to ice down well and could not pump down well.
MW-13	08/17/22		252.86	18.08	0.00	234.78	606 J [400 J]						-	25.2 [25.2]		
MW-14	08/22/2011		251.41	17.99	0.00	233.42	<49	43 J	<0.5	<0.5	<0.5	<1.5	- ND	<0.0026 J		
MW-14	05/22/12		251.41	17.11	0.00	234.30	<49 J	<10	<0.5	<0.5	<0.5	<1.5	- ND	<0.0022		
MW-14	07/30/12		251.41	16.51 16.81	0.00	234.90	<48	<10	< 0.5	<0.5	< 0.5	<1.5	- ND	<0.0051		
MW-14 MW-14	05/14/13 05/14/13		251.41 251.41	16.81	0.00	234.60 234.60	<63 J <120 J	<50 <50	<0.24 <0.24	<0.23 <0.23	<0.24 <0.24	<0.72 <0.72		0.020 0.10		Sample Collected via hydrasleeve
MW-14	09/17/13		251.41	16.45	0.00	234.00	- 120 3	-50	-0.24		-0.24	-0.72			 	Sample Collected via mydrasieeve
MW-14	09/18/13				0.00		<230	<50	<0.24	<0.23	<0.24	<0.72		18		
MW-14	05/02/14		251.41	16.88	0.00	234.53	<68	<50	<0.15	<0.11	<0.16	<0.40		0.18		
MW-14	11/08/14		251.41	17.37	0.00	234.04	91 J	<50 J	<0.15	<0.11	<0.16	<0.40		0.18 J		
MW-14	05/06/15		251.41	18.01	0.00	233.40	<51 J							5.3 J		
MW-14	10/21/15		251.87	18.04	0.00	233.83	<51 J							56.1 J		
MW-14	06/03/16		251.41	18.07	0.00	233.34	<51		-					<5.1		
MW-14	10/14/16		251.41	17.98	0.00	233.43	1,200							<6.2		
MW-14	05/23/17		251.41	17.65	0.00	233.76	<53			-				<6.2		
MW-14	09/01/17		251.41	18.23	0.00	233.18	<50 J			-				12.5 J		
MW-14	05/21/18		251.41	19.36	0.00	232.05	<50 J							30		
MW-14	09/25/18		251.41	18.41	0.00	233.00	<51		-	-	-			<7.1		Depth to water taken from Recent Survey Notes dated 6/6/2019, TOC Data from Survey
MW-14	04/10/19		251.82	17.79	0.00	234.03	<250 B [<260 B]		-					9 J [9.2 J]		report by McLane Consulting dated 6/14/19 (Rev 2)
MW-14 MW-14	09/10/19	 	251.82 251.82	18.02 18.20	0.00 0.00	233.80	< 78		 <1.00 [<1.00]	 -1 00 [-1 00]	 <1.00 [<1.00]	 <3.00 [<3.00]	 -1 00 [-1 00]	2.7 J	 -5 00 [/5 00]	
MW-14	04/03/20 09/30/20		251.82	17.65	0.00	233.62 234.17	<800 B [<872 B] <800	 	<1.00 [<1.00]	<1.00 [<1.00] <1.00	<1.00 [<1.00] <1.00	<3.00 [<3.00] <3.00	<1.00 [<1.00] <1.00	12.2 [11.1] <6.00	<5.00 [<5.00] < 0.500	
MW-14	04/08/21		251.82	18.02	0.00	233.80	<800 <800		<1.00 	<1.00	<1.00 	~3.00 		<6.00	<0.500 	
MW-14	08/27/21		251.82	17.52	0.00	234.30	<800 B							14.6		
MW-14	04/05/22		251.82	17.70	0.00	234.12	<800 [<800]							<6.00 [<6.00]		
MW-14	08/17/22		251.82	17.08	0.00	234.74	201 J						-	20.4		
RW-1	05/23/03	15-29.5		18.71	0.00			56	<0.5	<0.5	<0.5	<1	<0.5			
RW-1	10/08/03	15-29.5		19.09	0.00			19	<0.5	<0.5	<0.5	<1	<2	-		
RW-1	06/04/04	15-29.5		19.30	0.00			34	<0.5	<0.5	<0.5	<1	<2			
RW-1 RW-1	09/28/04 05/13/05	15-29.5 15-29.5		19.27 18.20	0.00 0.00			<10 23	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1 <1	<2 <2			
RW-1	09/26/05	15-29.5		18.04	0.00			14 [57]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<1 [<1]	<2 [<2]		 	
RW-1	05/15/07	15-29.5		18.56	0.00		<120 [<120]	<10 [<10]	<0.5 [<0.5]	<0.7 [<0.7]	<0.8 [<0.8]	<1.6 [<1.6]	<2 [<2]			
RW-1	09/24/07	15-29.5		18.57	0.00		83 [98]	20 [20]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<1 [<1]	<2 [<2]			
RW-1	05/14/08	15-29.5		18.52			83	20	<0.5	<0.7	<0.8	<1.6	<2			
RW-1	09/16/08	15-29.5		18.19	0.00		61	60	<0.5	<0.5	<0.5	<0.5	<2			
RW-1	06/18/09	15-29.5		18.54	0.00		200 J / 130 J	39 J / 34 J	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<1.5 / <1.5				
RW-1	09/07/09	15-29.5		18.77	0.00		180 J / 140 J	53 J / 54 J	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<1.5 / <1.5	-			
RW-1	04/21/10	15-29.5		19.49	0.00		520 J / <510		<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<0.5				
RW-1	07/22/10	15-29.5		19.11	0.00		<510 / <510	10 J / <10	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<1.5 / <1.5				
RW-1	04/19/11	15-29.5	 252.95	19.41	0.00	 222.76	99 J / 89 J	19 J / <10	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<1.5 / <1.5		 -0 6 1/-0 0		
RW-1	08/22/11	15-29.5	252.85	19.09	0.00	233.76	<48 / <49	19 J / 11 J	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<1.5 / <1.5		<2.6 J/<2.2		

98557 Page 3 of 5

Table 1. Historical Groundwater Gauging and Analytical Results Second Quarter 2003 through 2022

	Sample	Screen Interval	TOC	DTW	LNAPL thickness	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Lead	Naphthalene	Comments
Well ID	Date	(ft bTOC)	(ft amsl)	(ft bTOC)	(ft)	(ft amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
		Groundwate	•				1,500	2,200	4.6	1,100	15	190	140	15	1.7	
RW-1	05/22/12	15-29.5	252.85	18.23	0.00	234.62	51 J / 56 J	<10 / <10	<0.5 / <0.5	<0.5 / <0.5	<0.5 / <0.5	<1.5 / <1.5		<2.2/<2.2		
RW-1	07/30/12	15-29.5	252.85	17.63	0.00	235.22	<51	<10	<0.5	<0.5	<0.5	<1.5		<5.1		
RW-1	05/14/13	15-29.5	252.85	17.95	0.00	234.90				-						
RW-1	09/17/13	15-29.5	252.85	17.58	0.00	235.27										
RW-1	05/02/14	15-29.5	252.85	18.00	0.00	234.85										
RW-1	11/08/14	15-29.5	252.85	18.47	0.00	234.38										
RW-1	05/06/15	15-29.5	252.85	20.13	0.00	232.72										
RW-1	10/21/15	15-29.5	252.85	18.87	0.00	233.98										
RW-1	06/03/16	15-29.5	252.85	18.71	0.00	234.14										
RW-1	10/14/16	15-29.5	252.85	18.61	0.00	234.24										
RW-1	05/23/17	15-29.5	252.85	18.28	0.00	234.57										
RW-1	09/01/17	15-29.5	252.85	18.87	0.00	233.98										
RW-1	05/21/18	15-29.5	252.85	18.48	0.00	234.37										
RW-1	09/25/18	15-29.5	252.85	19.03	0.00	233.82										D 11 4 4 4 4 6 D 40 N4 14 10/0/0040 TOO D 4 6 0
RW-1	04/10/19	15-29.5	252.55	18.51	0.00	234.04										Depth to water taken from Recent Survey Notes dated 6/6/2019, TOC Data from Sureport by McLane Consulting dated 6/14/19 (Rev 2)
RW-1	09/10/19	15-29.5	252.55	18.41	0.00	234.14	-	-	-	-		-	-	-	-	
RW-1	04/03/20	15-29.5	252.55												-	Unable to locate well
RW-1	09/30/20	15-29.5	252.55	18.34	0.00	234.21										
RW-1	04/08/21	15-29.5	252.55													Not located due to ice
RW-1	08/27/21	15-29.5	252.55	18.24	0.00	234.31										
RW-1	04/05/22	15-29.5	252.55	18.46	0.00	234.09			-					-		
RW-1	08/17/22	15-29.5	252.55	17.81	0.00	234.74			-	-				-		Not sampled
													_		-	
QA	10/08/03						-	<10	<0.5	<0.5	<0.5	<0.5	<2	-		
QA	06/04/04						-		<0.5	<0.5	<0.5	<0.5	<2	-	-	
QA	09/28/04							<10	<0.5	<0.5	<0.5	<0.5	<2			
QA	05/13/05							<10	<0.5	<0.5	<0.5	<0.5	<2			
QA	09/26/05							<10	<0.5	<0.5	<0.5	<0.5	<2	-		
QA	05/15/07						-	<10	<0.5	<0.7	<0.8	<1.6	<2	-	-	
QA	09/24/07							<10	<0.5	<0.5	<0.5	<0.5	<2			
QA	05/14/08			-			-	<10	<0.5	<0.5	<0.5	<0.5	<2	-		
QA	05/14/08			-			-	<10	<0.5	<0.5	<0.5	<0.5	<2	-		
QA	09/16/08						-	<10						-		
QA	09/16/08							<10					-			
QA (EQB)	04/03/20						174 J		<1.00	<1.00	<1.00	<3.00	<1.00	<6.00	<5.00	
QA (EQB)	09/30/20						<800		<1.00	<1.00	<1.00	<3.00	<1.00	4.45 J	<0.500	
QA (EQB)	04/08/21						<800							6.40 B		
QA (EQB)	08/27/21						695 J							<6.00		
QA (EQB)	04/05/22						231 J	<6.00								
QA (EQB)	08/17/22						<800							<6.00		
rip Blank	04/03/20								<1.00	<1.00	<1.00	<3.00	<1.00		<5.00	
rip Blank	09/30/20								<1.00	<1.00	<1.00	<3.00	<1.00			

98557 Page 4 of 5

Table 1. Historical Groundwater Gauging and Analytical Results Second Quarter 2003 through 2022

Chevron Service Station 9-8557 415 Muldoon Road, Anchorage, Alaska

		Screen			LNAPL											
	Sample	Interval	TOC	DTW	thickness	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Lead	Naphthalene	Comments
Well ID	Date	(ft bTOC)	(ft amsl)	(ft bTOC)	(ft)	(ft amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
	ADE	C Groundwate	er Cleanup	Levels			1,500	2,200	4.6	1,100	15	190	140	15	1.7	

Notes:

ID = Identification

MW, RW = Groundwater monitoring well

TOC = Top of casing

DTW = Depth to groundwater

ft bTOC = Feet below top of casing

ft = Feet relative to NAVD88

GW Elev = Groundwater elevation

μg/L = Micrograms per liter

-- = Not analyzed/ Not available

QA (EQB) = Quality Assurance (Equipment Blank)

[] = Duplicate Result

< 6.00 = Not detected at or above the Reported Detection Limit (RDL)

Bold = Value exceeds Method Detection Limit (MDL)

Bold and Shaded = Value exceeds ADEC Groundwater Cleanup Level

Bold and *Italicized*: Constituent considered non-detect, however Laboratory RDL

is greater than the ADEC Groundwater Cleanup Level

J = The associated numerical value is an estimated concentration only

B = Compound considered non-detect at the listed value due to associated blank contamination.

The laboratory for this site was changed from Eurofins Calscience to Pace Analytical prior to the first quarter 2020 groundwater monitoring event. Prior to this date, Eurofins Calscience was using the carbon ranges as follows: TPH-d as C13-C22. Pace Analytical reports the following carbon ranges: TPH-d as C12-C22.

GRO = Total petroleum hydrocarbons, gasoline range by LUFT GC/MS according to AK 102-SV 4/8/02

DRO = Total petroleum hydrocarbons, diesel range by LUFT GC/MS according to USEPA Method AK 102

Samples analyzed by United States Environmental Protection Agency (USEPA) Method 8260C

Benzene, Toluene, Ethylbenzene and Total xylenes (collectively BTEX)

MTBE = Methyl tert-butyl ether

Naphthalene analyzed by EPA Method 8270E-SIM

Lead analyzed by EPA Method 6010D

ADEC = Alaska Department of Environmental Conservation

NAVD88 = North American Vertical Datum of 1988

LUFT = Leaking Underground Fuel Tank

LNAPL = Light non-aqueous phase liquid

ND = Not detected

98557 Page 5 of 5

Attachment D

ADEC Data Review Checklist

Laboratory Data Review Checklist

Completed By:	
Bhagyashree A Fulzele	
Title:	
Project Chemist	
Date:	
April 25, 2024	
Consultant Firm:	
ARCADIS U.S., Inc	
Laboratory Name:	
Pace Analytical	
Laboratory Report Number:	
L1722866	
Laboratory Report Date:	
04/19/2024	
CS Site Name:	
First Half 2024 Groundwater Monitoring Report	
ADEC File Number:	
2100.26.001	
Hazard Identification Number:	
23595	

Note: Any N/A or No box checked must have an explanation in the comments box.

1	Laboratory

a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes \boxtimes No \square N/A \square Comments:
Yes.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS-LAP approved?
Yes□ No□ N/A⊠ Comments:
Not applicable.
2. Chain of Custody (CoC)
a. Is the CoC information completed, signed, and dated (including released/received by)?
Yes⊠ No□ N/A□ Comments:
Yes.
b. Were the correct analyses requested?
$Yes \boxtimes No \square N/A \square$ Comments:
Yes.
3. <u>Laboratory Sample Receipt Documentation</u>
a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes \boxtimes No \square N/A \square Comments:
Yes.
b. Is the sample preservation acceptable – acidified waters, methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
$Yes \boxtimes No \square N/A \square$ Comments:
Yes.
c. Is the sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials); canister vacuum/pressure checked and no open valves etc?
Yes \boxtimes No \square N/A \square Comments:
Yes.
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
$Yes \boxtimes No \square N/A \square$ Comments:
Yes, no discrepancies.

e.	Is the data quality or usability affe	ected?
	(Comments:
Dat	nta quality or usability was not affe	cted.
4. <u>C</u>	Case Narrative	
a.	Is the case narrative present and	understandable?
	$Yes \boxtimes No \square N/A \square$	Comments:
Ye	es.	
b.	. Are there discrepancies, errors, o	or QC failures identified by the lab?
	Yes⊠ No□ N/A□	Comments:
Ye	es.	
c.	Were all corrective actions docu	mented?
	Yes⊠ No□ N/A□	Comments:
Ye	es.	
d.	. What is the effect on data quality	y/usability according to the case narrative?
		Comments:
Da	ata quality/usability was not affect	red.
5. <u>Sa</u>	amples Results	
a.	Are the correct analyses perform	ned/reported as requested on COC?
	Yes⊠ No□ N/A□	Comments:
Ye	es.	
b.	. Are all applicable holding times	met?
	Yes⊠ No□ N/A□	Comments:
Ye	es.	
c.	Are all soils reported on a dry we	eight basis?
	Yes□ No⊠ N/A□	Comments:
No	o soil samples were submitted for	analysis.
d.	. Are the reported limit of quantita less than the Cleanup Level for t	ation (LOQs) or limits of detection (LOD), or reporting limits (RL) he project?
	Yes⊠ No□ N/A□	Comments:
Ye	es.	

	e. Is the data quality or usability affected?
	Data quality/usability was not affected.
6.	QC Samples
	a. Method Blank
	i. Was one method blank reported per matrix, analysis and 20 samples?
	$Yes \boxtimes No \square N/A \square$ Comments:
	Yes.
	ii. Are all method blank results less than limit of quantitation LOQ (or RL)?
	Yes \boxtimes No \square N/A \square Comments:
	Yes.
	iii. If above LOQ or RL, what samples are affected? Comments:
	None of the samples were affected.
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Г	Yes \square No \square N/A \boxtimes Comments:
	Not applicable.
-	v. Data quality or usability affected? Comments:
	Data quality or usability was not affected.
	b. Laboratory Control Sample/Duplicate (LCS/LCSD)
	 Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Г	Yes \boxtimes No \square N/A \square Comments:
	Yes.
	ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
г	Yes⊠ No□ N/A□ Comments:
	Yes.
	iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
	Yes⊠ No□ N/A□ Comments:
	Yes.

iv. Precision –Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:
Yes.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
None of the samples were affected.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
Not applicable.
vii. Is the data quality or usability affected? (Use comment box to explain.)
Comments:
Data quality or usability was not affected.
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□ Comments:
The MS/MSD analysis was performed on the sample ID MW-14-W-20240402.
 ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments:
The MS/MSD analysis was performed on the sample ID MW-14-W-20240402.
The Months analysis was performed on the sample to MW-14-W-20240402.

iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)						
$Yes \boxtimes No \square N/A \square$ Comments:						
Yes.						
iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)						
$Yes \boxtimes No \square N/A \square$ Comments:						
Yes.						
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:						
None of the samples were affected.						
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?						
Yes□ No□ N/A⊠ Comments:						
Not applicable.						
vii. Is the data quality or usability affected? (Use comment box to explain.) Comments:						
Data quality or usability was not affected.						
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only						
i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?						
Yes⊠ No□ N/A□ Comments:						
Yes.						
ii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples 60-120% R for QC samples; all other analyses see the laboratory report pages)						
Yes□ No⊠ N/A□ Comments:						
No.						

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample ID	Method	Surrogate	Recovery
MW-1-W-20240402	AK102	o-Terphenyl	< LL but > 10%

Notes:

UCL Upper control limit LL Lower control limit

D Diluted

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
	Non-detect	No Action
> UL	Detect	J
.11.1 (100/	Non-detect	UJ
< LL but > 10%	Detect	J
.100/	Non-detect	R
< 10%	Detect	J
Surrogates diluted below the calibration curve due to the high	Non-detect	UJ
concentration of a target compounds	Detect	J

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?						
Yes \boxtimes No \square N/A \square Comments:						
Yes.						
iv. Is the data quality or usability affected?						
Comments:						
The surrogate recovery exceedances are considered minor and would result in the estimation of associated data. The reported data should still consider as usable.						
e. Trip Blanks						
 i. Is one trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 						
Yes \square No \boxtimes N/A \square Comments:						
Trip blank sample was not collected from this SDG.						
ii. Are all results less than LOQ or RL?						
Yes \square No \square N/A \boxtimes Comments:						
Not applicable.						

Data quality or usability was not affected.							
f. Field Duplicate							
i. Are one field duplicate submitted per matrix, analysis and 10 project samples?							
Yes \boxtimes No \square N/A \square Comments:							
Yes.							
ii. Was the duplicate submitted blind to lab?							
Yes \boxtimes No \square N/A \square Comments:							
Yes.							
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$							

Where $R_1 = Sample Concentration$

 R_2 = Field Duplicate Concentration

Results for duplicate samples are summarized in the following table.

iii. If above LOQ or RL, what samples are affected?

None of the samples were affected.

iv. Is data quality or usability affected?

Comments:

Comments:

Sample ID / Duplicate ID	Method	Compounds / Analytes	Sample Result	Duplicate Result	RPD
MW-13-W-20240402 / BD-1-W- 20240402	6010D	Lead	9.35	8.84	AC

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

Data quality or usability was not affected.

 $Yes \boxtimes No \square N/A \square$

	g. Decontamination or Equipment Blank								
	i. Were decontamination or equipment blanks collected?								
	Yes \boxtimes No \square N/A \square Comments:								
	Equipment blank sample was collected as EQB-1-W-20240402.								
_	ii. Are all results less than LOQ or RL?								
	Yes \square No \boxtimes N/A \square Comments:								
	No.								
L	iii. If above LOQ or RL, specify what samples are affected? Comments:								
	Sample ID	Compound	Sample Result	Qualification					
	MW-1-W-20240402 MW-13-W-20240402 BD-1-W-20240402	AK102 DRO C10-C25	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL					
	Note: RL Reporting limit iv. Are data quality or usability affected?								
Г	Comments:								
	The equipment blank contamination is considered minor and would result in the non-detect of the associated data. The reported data should still consider as usable.								
7.									
	a. Are they defined and appropriate?								
	Yes \square No \square N/A \boxtimes Comments:								
	Not applicable.								
L									