SUBMITTED TO: The Krausz Companies LLC 3065 Jones Boulevard, Suite 100 Las Vegas, NV 89146

^{BY:} Shannon & Wilson 2355 Hill Road Fairbanks, AK 99709

(907)479-0600 www.shannonwilson.com

FINAL

REPORT Bentley Mall East Satellite 2021 Groundwater Monitoring and Vapor Intrusion FAIRBANKS, ALASKA

March 2022 Shannon & Wilson No: 107889-001

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Submitted To: The Krausz Companies LLC 3065 Jones Boulevard, Suite 100 Las Vegas, NV 89146 Attn: Daniel Krausz

Subject: FINAL REPORT, BENTLEY MALL EAST SATELLITE 2021 GROUNDWATER MONITORING AND VAPOR INTRUSION, FAIRBANKS, ALASKA

Shannon & Wilson prepared this report and participated in this project as a consultant to The Krausz Companies LLC. Our scope of services was specified in our proposal dated October 4, 2021. Our services are provided under Master Services Agreement Number KCI-2016 and the Task Order signed by you on November 8, 2021.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON

Dana Fjare Environmental Scientist

Christopher Darrah, C.P.G. Vice President

DHF:CBD/kdm

1	Intr	oduction1
	1.1	Project Purpose and Objectives1
	1.2	Scope of Services
	1.3	Site Description
2	Proj	ect History2
	2.1	Costco Sub-Slab Investigations
3	Con	taminants of Potential Concern and Regulatory Levels4
4	Fiel	d Activities5
	4.1	Groundwater Gradient5
	4.2	Annual Monitoring Well Sampling5
	4.3	2021 Costco Sampling6
	4.4	Investigation-Derived Waste6
	4.5	Sample Custody, Storage, and Transport7
	4.6	Analytical Laboratory and Methods7
	4.7	Deviations from the Work Plan7
5	Rest	ults
	5.1	Groundwater Sampling
		5.1.1 Trend Analysis
	5.2	Costco Sub-Slab Soil-Gas Sampling10
	5.3	Updated BIQ Results
6	Qua	lity Assurance / Quality Control
7	Con	ceptual Site Model
	7.1	Description of Potential Receptors
	7.2	Potential Exposure Pathways
		7.2.1 Direct Contact with Soil
		7.2.2 Direct Contact with Groundwater
		7.2.3 Inhalation
8	Disc	cussion
9	Rec	ommendations15

10	Closure	.15
11	References	17

Exhibits

Exhibit 3-1: Contaminants of Potential Concern and Regulatory Levels	4
Exhibit 5-1. Trend Analysis Decision Matrix	9
Exhibit 8-1: MW-1/MW-1R — Historical Results and Exceedances (µg/L)	14

Tables

Table 1:	December 2021 Groundwater Elevation Summary
Table 2:	December 2021 Field Parameters
Table 3:	December 2021 Groundwater Results
Table 4:	December 2021 Groundwater Detected Results and Exceedances
Table 5:	December 2021 Costco Soil-Gas Results
Table 6:	Mann-Kendall Trend Analysis Summary

Figures

Figure 1:	Site Vicinity and Sampling Locations
Figure 2:	2021 Groundwater and Sub-Slab Soil-Gas Results Exceeding Regulatory Limits
Figure 3:	Mann-Kendall Trend Analysis Results for PCE
Figure 4:	Mann-Kendall Trend Analysis Results for TCE

Appendices

Appendix A: Groundwater Gradient Calculation

Appendix B: Field Forms

Appendix C: Building Inventory and Indoor Air Sampling Questionnaire

Appendix D: Laboratory Reports

Appendix E: Laboratory Data Review Checklists

Appendix F: Quality Assurance and Quality Control Summary

Appendix G: Conceptual Site Model

Important Information

AAC	Alaska Administrative Code
ARES	Alaska Resources and Environmental Services, LLC
BIQ	Building Inventory and Indoor Air Sampling Questionnaire
BMES	Bentley Mall East Satellite
cis-1,2-DCE	cis-1,2-dichloroethene
COC	chain-of-custody
COPC	contaminant of potential concern
Costco	Costco Wholesale
CSIA	compound-specific isotope analysis
CSM	conceptual site model
CCV	continuing calibration verification
°C	degrees Celsius
DEC	Alaska Department of Environmental Conservation
EPA	U.S. Environmental Protection Agency
ERG	Environmental Resource Group
Eurofins	Eurofins Air Toxics, LLC
GeoTek	GeoTek Alaska, Inc.
LCS/LCSD	laboratory control sample / laboratory control sample duplicate
LDRC	Laboratory Data Review Checklist
LOD	limit of detection
LOQ	limit of quantitation
PAN	parcel account number
PCE	tetrachloroethene
PPA	prospective purchaser agreement
QA/QC	quality assurance/quality control
RPD	relative percent difference
SGS	SGS North America, Inc.
SVE	soil vapor extraction
TCE	trichloroethene
trans-1,2-DCE	trans-1,2-dichloroethene
µg/L	microgram per liter
μg/m³	microgram per cubic meter
VIP	VIP Cleaners Inc.
VOC	volatile organic compound
Work Plan	Bentley Mall East Satellite Groundwater Monitoring and Vapor
	Intrusion Work Plan REV01
1,2-DCA	1,2-dichloroethane
1,1,1,2-PCA	1,1,1,2-tetrachloroethane

ACRONYMS

1 INTRODUCTION

This report summarizes our 2021 field efforts associated with the Bentley Mall East Satellite (BMES) building, located at 20 College Road in Fairbanks, Alaska (Figure 1). The BMES building is in the southeast corner of the Bentley Mall property (Parcel Account Number [PAN] 93181); it is listed by the Alaska Department of Environmental Conservation (DEC) as an active contaminated site (DEC File Number 102.38.122, Hazard ID 4033) as a result of chlorinated solvent contamination in soil and groundwater at the site. Solvent-contaminated groundwater extends west from the BMES building to the Charles Slater residential subdivision.

Shannon & Wilson prepared this report in compliance with DEC regulations Title 18 Chapter 75 of the Alaska Administrative Code (18 AAC 75) and applicable DEC guidance.

1.1 Project Purpose and Objectives

The project purpose is to monitor groundwater quality within the chlorinated solventcontaminated groundwater plume originating from the BMES building and to monitor the potential for vapor intrusion at commercial and residential properties within the project area. The project area includes the suspected source area near the BMES building and extends west across College Road and into the Charles Slater residential subdivision. Our objectives for 2021 were to collect groundwater samples from the existing monitoring well network and sample sub-slab soil-gas at Costco Wholesale (Costco).

1.2 Scope of Services

Our scope of services included implementing our December 2021 *Bentley Mall East Satellite Groundwater Monitoring and Vapor Intrusion Work Plan REV01* (Work Plan), approved by DEC on December 7, 2021, and preparing this report.

Our 2021 field and reporting activities included:

- Groundwater sampling from the 13 existing monitoring wells;
- Soil-gas sampling from three existing sub-slab ports in the Costco warehouse;
- Submitting groundwater samples to SGS North America, Inc. (SGS) for analysis of volatile organic compounds (VOCs);
- Submitting soil-gas samples to Eurofins Air Toxics, LLC (Eurofins) for analysis of select VOCs;

- Performing analytical data review and validation;
- Calculating groundwater gradient and flow direction; and
- Providing this summary report.

1.3 Site Description

The BMES building is located at 20 College Road in Fairbanks, Alaska, situated on the southeast corner of the Bentley Mall property (PAN 93181, latitude 64.8503 north, longitude 147.7004 west). Tetrachloroethene (PCE) and trichloroethene (TCE) have been detected in groundwater at and downgradient from the BMES property. The DEC considers the source of contamination at this site to be a former dry-cleaning business in the BMES building, although an additional suspected source has been identified. The groundwater contaminant plume extends west of the BMES building into the Charles Slater residential subdivision. The area is served by public water and sewer. Groundwater flow direction is generally to the west.

The site is located on Tanana and Chena River alluvial sand and gravel deposits. Groundwater is present at approximately 12 to 15 feet below ground surface with a westerly flow direction. The closest surface water body, Noyes Slough, is located approximately 900 feet west of the BMES building.

2 PROJECT HISTORY

A detailed project history is included in our April 2021 *Bentley Mall East Satellite 2020 Vapor Intrusion and Groundwater Assessment Report*. An abbreviated project timeline is presented below.

- April 2003 The BMES site was added to the DEC's Contaminated Sites Database after PCE and TCE were discovered in soil and groundwater samples collected on the Bentley Mall property as part of a Phase II Environmental Site Assessment. The results of subsequent site characterization by Environmental Resource Group (ERG) indicated the historical dry-cleaning operation at the BMES building appeared to be the source of PCE and TCE at the Bentley Mall property, and the wastewater line from the BMES building may have been a preferential pathway for PCE movement in the subsurface.
- April 2005 PCE and TCE exceeded DEC commercial target levels in indoor air samples collected from the BMES building and Wells Fargo Bank.
- Fall 2005 Thirteen monitoring wells (MW-1 to MW-13) were installed and sampled. Sample results suggested a PCE and TCE plume extending off-site in a westerly direction.

- September 2006 Soil vapor extraction (SVE) systems were installed in the BMES and Wells Fargo Bank buildings and remained active for five years. PCE and TCE concentrations in the source area decreased during this time.
- August 2011 ADEC approved ERG's request to shut down the SVE systems.
 Groundwater PCE and TCE concentrations at the site still exceeded DEC cleanup levels and continued semi-annual groundwater sampling was a condition of the site closure.
- February 2013 DEC met with ERG to discuss the recent groundwater monitoring
 results that reported an increase in PCE concentration in MW-1, a monitoring well
 upgradient of the BMES building. DEC subsequently sent letters to the owners of the
 adjacent, upgradient property (VIP Cleaners, Inc. [VIP], a dry-cleaner) and Bentley Mall.
 DEC reopened BMES as a contaminated site and required further evaluation of vapor
 intrusion risks associated with the groundwater contaminant plume.
- September 2015 ERG began residential vapor intrusion sampling in the Charles Slater subdivision.
- Winter 2016 –Shannon & Wilson, Inc. was retained by The Krausz Companies LLC to continue the monitoring well and vapor intrusion sampling. In addition to collecting residential soil-gas and indoor air samples, Shannon & Wilson collected commercial indoor air samples from several business near the BMES building.
- September 2019 the concentration of PCE detected at MW-1R increased nearly six times the concentration measured previously. Additionally, this was the first sampling event where 1,1,1,2-tetrachloroethane (1,1,1,2-PCA) had exceeded its cleanup level in any of the monitoring wells. We suggested in our 2019 report that the substantial increase in PCE at MW-1R may be due to PCE migration onto the BMES site from an upgradient source. MW-1R is located along the BMES eastern property line and is hydrologically downgradient from the active VIP business.

2.1 Costco Sub-Slab Investigations

The Costco warehouse was partially evaluated for vapor intrusion by Pacific Crest Environmental between 2017 and 2019. In 2017, Pacific Crest Environmental identified the migration of chlorinated solvents in groundwater onto the subject property during a prepurchase investigation. Costco entered a prospective purchaser agreement (PPA) with DEC in regard to the chlorinated solvent contamination. In accordance with Section III of the PPA, Pacific Crest Environmental conducted a walkthrough of the Costco warehouse with DEC and completed an updated building survey, recorded the monthly air pressure differential for the building during the first year of Costco warehouse operations, installed three sub-slab soil-gas sampling points in Costco, and sampled sub-slab soil-gas for chlorinated solvents. They found that the building maintained a positive air pressure throughout the year, with the greatest positive pressure during the coldest winter months. TCE and/or PCE were detected in the three sub-slab sampling points at concentrations less than the DEC commercial sub-slab soil-gas target levels.

3

CONTAMINANTS OF POTENTIAL CONCERN AND REGULATORY LEVELS

The contaminants of potential concern (COPCs) for groundwater at this site are VOCs, which include chlorinated solvents. COPCs for air are VOC contaminants previously detected at the site including 1,2-dichloroethane (1,2-DCA), PCE and PCE-degradation products (TCE, cis-1,2-dichloroethene [cis-1,2-DCE], and trans-1,2-dichloroethene (trans-1,2-DCE), 1,1,1,2-PCA, and chloroform. Chloroform is not a chlorinated solvent but has been detected in exceedance of the DEC groundwater cleanup level in several monitoring wells at the site.

Our analytical approach and performance criteria comply with DEC's *Minimum Quality Assurance Requirements for Sample Handling, Reports, and Laboratory Data Technical Memorandum,* dated October 2019. We sampled groundwater and soil-gas for analysis of select VOCs listed below in Exhibit 3-1 below.

Analyte	Groundwater Cleanup Level	Soil-Gas Target Level (Commercial)
Chloroform	2.2 µg/L	53 µg/m³
Tetrachloroethene (PCE)	41 µg/L	1,800 µg/m³
Trichloroethene (TCE)	2.8 µg/L	84 µg/m³
cis-1,2-dichloroethene (cis-1,2-DCE)	36 µg/L	N/A
trans-1,2-dichloroethene (trans-1,2-DCE)	360 µg/L	N/A
1,2-dichloroethane (1,2-DCA)	1.7 µg/L	47 μg/m³
1,1,1,2-tetrachloroethane (1,1,1,2-PCA)	5.7 µg/L	170 µg/m³

Exhibit 3-1: Contaminants of Potential Concern and Regulatory Levels

NOTES:

Groundwater cleanup levels are from 18 AAC 75.345, Table C. Groundwater Cleanup Levels

Soil-gas target levels are from the DEC Vapor Intrusion Guidance for Contaminated Sites (November 2017) Appendix E. Target Levels for Exterior or Subslab Soil Gas (Commercial)

µg/L = microgram per liter; µg/m³ = microgram per cubic meter; N/A = not applicable; DEC target level not yet established

Groundwater samples were analyzed by U.S. Environmental Protection Agency (EPA) Method SW8260D. We compared groundwater analytical data to the cleanup levels in 18 AAC 75.345, Table C. *Groundwater Cleanup Levels*. Soil-gas samples were analyzed by modified EPA Method TO-15. We compared soil-gas data with DEC target levels listed in the November 2017 *Vapor Intrusion Guidance for Contaminated Sites,* Appendix E: *Target Levels for Exterior or Subslab Soil Gas (Commercial).*

4 FIELD ACTIVITIES

This section summarizes our field activities performed in December 2021 to implement the Work Plan. Field activities included monitoring well sampling near the Bentley Mall and soil-gas sampling at Costco (Figure 1). The data for our groundwater gradient calculation are presented in Table 1 and in Appendix A. Monitoring well water-quality parameters are presented in Table 2. Field activity and sample collection logs are included in Appendix B. An updated DEC *Building Inventory and Indoor Air Sampling Questionnaire* (BIQ) is included in Appendix C.

4.1 Groundwater Gradient

We used the survey information from September 2020 and our December 2021 depth-towater measurements from the monitoring well network as inputs to calculate groundwater gradient using the EPA's *On-line Tools for Site Assessment Calculation* website. The results indicate that groundwater flow direction at the time of sampling was southwest with a heading of 235 degrees from north and a gradient of 0.0006 feet per foot (Appendix A).

4.2 Annual Monitoring Well Sampling

We sampled the site's thirteen monitoring wells on December 9 and 10, 2021, following the procedures described in the Work Plan. Prior to sampling at each well location, we measured depth to the water table and total well depth from the top of the well casing. We purged each well using a stainless-steel submersible pump with new, nonreusable sampling tubing. We set the pump within the screened interval of the well and purged using the low-flow method, collecting water quality parameters at least three minutes apart using a YSI

Photo 4-1: Purging monitoring well MW-9, in the Charles-Slater subdivision across Noyes Slough from the Bentley Mall.

Professional-Plus multi-parameter meter until water quality parameters (conductivity, pH, dissolved oxygen, and oxidation/reduction potential) stabilized. We collected groundwater samples into laboratory-provided containers. Copies of our monitoring well sampling logs are included in Appendix B.

4.3 2021 Costco Sampling

We sampled soil-gas from three previously installed sub-slab sample ports in the Costco warehouse on December 13, 2021. We performed shut-in and leak tests prior to sampling in accordance with the Work Plan; sampling trains were proven to be leak-free prior to collection of each sample. The soil-gas samples were collected over an approximately sixminute period using laboratory-provided 1-liter Summa canisters with soil-gas manifold flow controllers set to sample at a rate of 100 to 200 milliliters per minute.

Soil-gas sample logs are included in Appendix B. Our updated BIQ is presented in Appendix C.

Photo 4-2: Collecting soil-gas sample SSV-2 and duplicate sample SSV-12 near the south end of the Costco warehouse.

Photo 4-3: Collecting soil-gas sample SSV-1 near the south end of the Costco warehouse.

4.4 Investigation-Derived Waste

Purge water and decontamination water generated during groundwater sampling activities was collected in one 55-gallon drum and four 5-gallon locking-lid buckets and temporarily stored on-site. The drum and buckets were collected from the BMES site by US Ecology on December 14, 2021. US Ecology consolidated the four buckets into one additional drum for transport to the US Ecology facility in Grand View, Idaho for disposal as F- listed waste (Appendix B). Non-reusable sampling equipment (nitrile gloves, pump-discharge tubing, air sampling tubing, etc.) was disposed of at the Fairbanks North Star Borough landfill.

4.5 Sample Custody, Storage, and Transport

We collected, handled, and stored samples in a manner consistent with our Work Plan and the DEC October 2019 *Field Sampling Guidance*. Groundwater samples were kept in coolers on artificial ice to maintain a temperature range of 0 to 6 degrees Celsius (°C) and were immediately transferred to a refrigerator upon arrival at Shannon & Wilson's Fairbanks office. Air samples do not require temperature preservation and were stored at room temperature. A laboratory-provided trip blank and temperature blank accompanied the coolers with water samples throughout the duration of our custody. We completed chain-ofcustody (COC) forms to accompany the groundwater and air samples. Shannon & Wilson maintained custody of the samples until submitting them to the laboratory for analysis.

We hand-delivered water samples to the SGS sample receiving office in Fairbanks on December 13, 2021. SGS received the samples at their analytical laboratory in Anchorage on December 16, 2021, with a requested standard result-turnaround time of two weeks.

We shipped the air samples to the Eurofins laboratory in Folsom, California on December 13, 2021, via FedEx. The samples were received by the laboratory on December 17, 2021, with a requested standard result-turnaround time of two weeks.

4.6 Analytical Laboratory and Methods

The contract laboratories SGS and Eurofins provided sample containers for each analysis listed in Exhibit 3-1. For quality assurance purposes, we collected two field-duplicate sample pairs for groundwater analysis (*MW-1R* and *MW-100R*; *MW-4R* and *MW-104R*) and one field-duplicate sample pair for soil-gas analysis (*SSV-2* and *SSV-12*). In addition, we collected one equipment blank with our groundwater samples (*BMES-EB*).

Groundwater samples were analyzed for VOCs by method 8260D. Soil-gas samples were analyzed for select VOCs by modified method TO-15. The SGS laboratory report 1218012 was provided to Shannon & Wilson on December 28, 2021. The Eurofins laboratory report 2112475 was provided on January 4, 2022.

4.7 Deviations from the Work Plan

There were no deviations from the Work Plan during our December 2021 field activities.

5 RESULTS

The groundwater and vapor intrusion laboratory reports are provided in Appendix D. Corresponding DEC Laboratory Data-Review Checklists (LDRCs) are provided in Appendix E. The groundwater results are presented in Table 3 and Table 4. The Costco soilgas sample results are presented in Table 5.

5.1 Groundwater Sampling

Eight VOCs were detected in one or more project samples during the December 2021 sampling event (Table 4) and four VOCs were reported in one or more project sample in exceedance of DEC groundwater cleanup levels (Figure 2).

PCE was detected in all monitoring wells and PCE exceeded the DEC cleanup level in monitoring wells MW-1R, MW-2R, MW-4R, MW-5, MW-6, MW-10, and MW-12. TCE was detected in all monitoring wells except for MW-3R and MW-13 and TCE exceeded the DEC cleanup level in monitoring wells MW-5, MW-6, MW-10, and MW-12. 1,2-DCA was detected in exceedance of the DEC cleanup level in monitoring well MW-1R and chloroform exceeded the DEC cleanup level in monitoring well MW-1R and MW-2R. Other VOC analytes detected in the monitoring well network are included in Table 4.

These detections and exceedances are consistent with historical results with the following exceptions:

- The MW-1R concentrations of 1,1,1,2-PCA, 1,2-DCA, PCE, and TCE decreased from 2020 to 2021. 1,1,1,2-PCA and TCE were detected in MW-1R less than the DEC groundwater cleanup levels in 2021.
- PCE and TCE increased in concentration in the downgradient wells MW-5, MW-6, MW-10, and MW-12.
- The MW-9 concentration of TCE decreased from 2020 to 2021 such that it was less than the DEC groundwater cleanup level in 2021.

5.1.1 Trend Analysis

We performed a Mann-Kendall test for trends in the monitoring wells, where applicable, using ProUCL software version 5.1. The level of significance needed to identify a trend was set at 95%. The data used for the trend test were limited to contaminants of concern detected in the monitoring wells from a minimum of four sample events between 2011 and 2021. We did not include groundwater data prior to 2011, when the SVE system was in operation. ERG collected the groundwater data prior to 2016 and Shannon & Wilson collected the groundwater data after 2016; we have no reason to believe the data are not comparable.

Estimated results (below the laboratory limit of quantitation [LOQ]) and not-detected results were excluded from the dataset. For each monitoring well, we did not evaluate a trend for analytes that have not been detected above the LOQ within the past three years. We interpreted the results of the trend analysis using the decision matrix listed below. Trend analysis results are summarized in Table 6.

Mann-Kendall Statistic (S)	Confidence in Trend	Concentration in Trend		
	> 95 percent	Increasing		
S > 0	90 – 95 percent	Probably Increasing		
-	< 90 percent	No Trend		
0 < 0	<90 percent and COV \geq 1	No Trend		
S ≤ 0	<90 percent and COV < 1	Stable		
0 < 0	90 – 95 percent	Probably decreasing		
S < 0	> 95 percent	Decreasing		

NOTES:

1 Decision matrix adopted from Airforce Center for Environmental Excellence, February 2007 *Monitoring And Remediation Optimization System Software, Appendix A.2.*

COV = coefficient of variation

Decreasing or probably decreasing trends were observed for the following analyte/well pairs:

- PCE in MW-4R, MW-5, MW-8, MW-9, MW-11, and MW-12;
- TCE in MW-4R, MW-5, MW-9, MW-11, and MW-12;
- Chloroform in MW-1R;
- cis-1,2-DCE in MW-2R, MW-5, MW-6, and MW-7; and
- trans-1,2-DCE in MW-4R, MW-8, and MW-11.

Probably increasing trends were observed for the following analyte/well pairs:

- PCE in MW-6 and MW-13; and
- TCE in MW-8.

Stable trends were observed for the following analyte/well pairs:

• PCE in MW-2R and MW-10;

- TCE in MW-1R, MW-2R, MW-7, and MW-10;
- 1,1,1,2-TCA in MW-1R;
- 1,2-DCA in MW-5;
- Chloroform in MW-5; and
- cis-1,2-DCE in MW-8, MW-9, MW-10, and MW-11.

No trend was identified for the remaining monitoring well and analyte combinations tested. MW-3R has not had sufficient detections of COPCs to perform a trend analysis for this well.

5.2 Costco Sub-Slab Soil-Gas Sampling

We collected soil-gas samples from three sub-slab ports previously installed in the Costco Warehouse (Figure 2). PCE was detected at a concentration less than the DEC commercial target level in sample *SSV-2* and its duplicate. Target analytes were not detected in the other samples. The laboratory diluted sample *SSV-3* due to high concentrations of non-target analytes; as a result, laboratory limits of detection (LODs) were elevated for this sample and the LOD for 1,1,1,2-PCA exceeded the DEC target level.

5.3 Updated BIQ Results

We updated the BIQ previously completed by Pacific Crest Environmental on December 14, 2021. We did not find changes to the building that would negate portions of the previous BIQ, but we did add more detail where warranted. The previous BIQ had omitted page H-7; during the BIQ interview we learned that some employee uniforms are regularly laundered using a local dry-cleaning service, and that the tire shop routinely uses non-chlorinated mechanical maintenance solvents.

The building differential air pressure generally increases with decreasing outdoor air temperature. The differential pressure reading was 0.078 inches of water column and the outdoor air temperature was -42 degrees Fahrenheit on the morning the soil-gas samples were collected.

6 QUALITY ASSURANCE / QUALITY CONTROL

Shannon & Wilson staff performed a quality assurance/quality control (QA/QC) assessment for the laboratory reports provided by SGS and Eurofins, summarized in Appendix F.

Shannon & Wilson personnel conducted field activities in accordance with our standard QA/QC procedures and we consider the samples we collected to be representative of the site conditions at the locations and times they were obtained. Our QA assessment, summarized in the LDRCs in Appendix E, identified analytical results that were qualified due to QC failures reported by the laboratory. Based on our QA review, no data was rejected as unusable due to QC failures, and the completeness goal of obtaining 85-percent useable data was met.

Laboratory reporting limits were obtained prior to the groundwater and soil-gas sampling event and were compared to their respective regulatory limits. The SGS laboratory LOD met the groundwater cleanup level for all requested analytes except for 1,2,3-trichloropropane. The Eurofins reporting limits met vapor intrusion target levels for all requested analytes except for 1,1,1,2-TCA in sample *SSV-3* due to dilution of that sample. We cannot assess whether 1,2,3-trichloropropane in the groundwater samples or 1,1,1,2-TCA in *SSV-3* are present at a concentration less than the LOD or reporting limit but greater than the DEC regulatory level. Non-detect results where LODs or the reporting limit exceed their respective regulatory limits are displayed in Table 3 through Table 5 as "<Bold".

Benzene was detected in several groundwater field samples at an estimated concentration roughly equivalent to the concentration of benzene detected in our equipment blank. This suggests that these results are artifacts of equipment contamination or ambient conditions during sampling. Consequently, the affected results are considered false-positives and are flagged 'B' at the LOQ in the analytical data tables.

7 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) describes potential pathways between a contaminant source and possible receptors (i.e., people, animals, and plants) and is used to determine who may be at risk of exposure to those contaminants. We summarize the suspected contaminant sources, migration and exposure pathways, and potential receptors on the DEC *Human Health Conceptual Site Model Scoping and Graphic Forms* included in Appendix G. We previously completed an updated CSM in our December 2021 Work Plan. Based on our 2021 groundwater and soil-gas sample results, we do not propose any changes to the CSM at this time.

7.1 Description of Potential Receptors

We consider commercial/industrial workers, site visitors, construction workers, and residents in the project area to be current and future potential receptors for one or more

exposure pathways. The contaminants of potential concern at this site are 1,2-DCA, PCE and PCE-degradation products, 1,1,1,2-PCA, and chloroform. Chloroform was added as a contaminant of potential concern at the request of DEC in 2017. We note that 1,1,1,2-PCA has exceeded the groundwater cleanup level in MW-1R since 2019. Because this analyte was not detected in MW-1R up until 2018, we do not believe this release is attributable to the BMES site. However, 1,1,1,2-PCA must be considered a contaminant of potential concern because it has exceeded the DEC groundwater cleanup level at the site.

7.2 Potential Exposure Pathways

Potential human exposure pathways include incidental soil and groundwater ingestion, dermal exposure to contaminants in groundwater, inhalation of volatile compounds in tap water, and inhalation of outdoor and indoor air.

7.2.1 Direct Contact with Soil

Contact with the contaminated subsurface soil at the site is unlikely at present, considering the site near the BMES building is covered in pavement. However, future excavation near the BMES building may result in incidental dermal contact or ingestion of soil by commercial workers, site visitors, trespassers, or construction workers. We do not know if soil contamination exists in the Charles Slater subdivision.

7.2.2 Direct Contact with Groundwater

Commercial businesses and residents in the Charles Slater subdivision are connected to the municipal water supply; therefore, contact with groundwater below the site is unlikely at present. However, we did observe a private well pump in the basement of one of the residences (we were unable to get a response from this resident as to whether there is a functioning well at the property). It is possible there are water wells remaining on properties that were used before the municipal water utility existed. As a result, we chose to include dermal absorption of contaminants in groundwater and inhalation of tap water as potential current and future exposure routes for residents.

Because depth to groundwater is shallow, industrial workers, site visitors, or construction workers could be exposed to contaminated groundwater through dermal absorption during future excavation and construction projects. The groundwater below the area cannot be ruled out as a potential future drinking water source, so ingestion of groundwater must be considered a future exposure pathway.

7.2.3 Inhalation

Inhalation of indoor air is a potential future exposure pathway for residents in the Charles Slater subdivision. PCE has been detected at concentrations less than DEC target levels in the four residences where we have collected indoor air samples, and PCE and TCE have exceeded the soil-gas target level in near-slab and sub-slab samples at two residential locations. While the current vapor intrusion threat appears to be insignificant in the residences where we have collected indoor air samples, because PCE and TCE were less than DEC target levels, that could change in the future if the concentration of PCE in groundwater below the project area increases. The PCE concentration in the monitoring well MW-1R has increased significantly since 2018. Until a stable or decreasing contaminant trend is identified for the monitoring well network, we cannot be certain about the future vapor intrusion risk to residents within the solvent-contaminated groundwater plume.

Outdoor air is a potential future pathway if contaminated soil is exposed during excavation activities.

8 DISCUSSION

The increase in the PCE concentration in groundwater at MW-1R since 2018 indicates that contaminated groundwater is likely migrating onto the BMES site from an upgradient source. The contaminant levels detected in MW-1R decreased for all detected analytes between 2020 and 2021 but remain generally consistent with recent historic contaminant levels (see Exhibit 8-1 below).

Analyte	DEC Groundwater Cleanup Level (µg/L)	MW-1 2017	MW-1R 2018	MW-1R 2019	MW-1R 2020	MW-1R 2021
PCE	41	159	217	1,230 E	1,980	1,150
TCE	2.8	0.960J	1.08	2.24	2.92J	2.36
cis-1,2-DCE	36	<0.500	<0.500	<0.500	<2.50	<0.500
trans-1,2-DCE	360	<0.500	<0.500	<0.500	<2.50	<0.500
1,1,1,2-PCA	5.7	<0.250	1.05	9.25	7.66	3.11
1,2-DCA	1.7	3.28	2.46	3.57	5.43	2.64
Chloroform	2.2	15.9	18.8	12.7	6.34 JH*	4.33

Exhibit 8-1: MW-1/MW-1R — Historical Results and Exceedances (µg/L)

NOTES: For each field duplicate pair, only the highest result is reported.

< Analyte not detected; listed as less than the limit of detection.

J Estimated concentration, greater than the detection limit and less than the limit of quantitation. Flag applied by the laboratory.

Bold Detected concentration exceeds regulatory limits in 18 AAC 75.345 Table C. Groundwater Cleanup Levels

E Exceeded laboratory calibration range. Flag applied by the laboratory.

JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson.

Decreasing contaminant trends for PCE and TCE were identified for several downgradient monitoring wells (Figure 3 and Figure 4). The wells closest to the source, MW-1R and MW-2R, identified a stable trend for TCE. MW-2R identified a stable trend for PCE but no trend for PCE was identified in MW-1R. This may be due to the rapid increase in PCE concentration in MW-1R that occurred after 2018. Probably increasing contaminant trends for PCE were identified in monitoring wells MW-6 and MW-13, which are within the middle portion of the chlorinated solvent plume below the commercial businesses and east from the residential subdivision. Other monitoring wells within this same portion of the plume have exhibited decreasing PCE concentrations, so it is unclear why these two wells have seen an increase.

A probably increasing trend for TCE was identified in MW-8, at the downgradient edge of the plume. The TCE concentration in MW-8 is currently less than the DEC groundwater cleanup level but if the increasing trend continues, it is possible that TCE could exceed the groundwater cleanup level in the future. The increasing TCE in this well could be the result of PCE degrading into the daughter product TCE. More monitoring will be needed to identify contaminant trends near the source and at the edge of the plume.

Sub-slab soil-gas results from the 2021 sampling event differed from the 2018 sampling results in that TCE was not detected in 2021 soil-gas samples but had previously been detected in two of the 2018 samples. Additionally, PCE was detected at only one sub-slab location (*SSV-2*), near the warehouse south side, at a concentration of 20 μ g/m³ which was

less than the 2018 result of $32 \ \mu g/m^3$. Both sampling events occurred when the Costco warehouse pressure differential was high due to cold outdoor air temperatures; the positive building pressure inhibits vapor intrusion into the building through stack effect. Because contaminants of concern have repeatedly been detected in the sub-slab soil-gas less than DEC target levels, and because the building has been shown to maintain a positive pressure throughout the year (Pacific Crest Environmental, 2020), vapor intrusion is not likely a complete exposure pathway in the Costco warehouse under those conditions.

9 RECOMMENDATIONS

Based on our overall project understanding, the 2021 analytical results, and recommendations from our previous reports, we recommend the following:

- Continued annual groundwater monitoring from the existing monitoring well network.
- Perform an annual contaminant trend analysis for the monitoring well network to evaluate whether contaminants in the groundwater are increasing, decreasing, or stable.
- We recommend residential vapor intrusion sampling remain on a three-year frequency until groundwater sample results for the monitoring well network within the Charles Slater subdivision are less than DEC cleanup levels or contaminant trends are shown to be decreasing in the vicinity of the residences. The next residential vapor intrusion sampling event would be in Fall 2023.
- We do not recommend further vapor intrusion sampling at the Costco warehouse unless contaminant trends increase in nearby monitoring wells.
- Site characterization efforts should be performed by VIP at the VIP property as recommended in previous reports.

10 CLOSURE

This report was prepared for the exclusive use of The Krausz Companies LLC and their representatives for evaluating remaining chlorinated-solvent contamination near the BMES building in Fairbanks, Alaska. Our conclusions and recommendations are based on:

- The limitations of our approved scope, schedule, and budget described in our proposal dated October 4, 2021 and our DEC-approved Work Plan dated December 2021.
- Our understanding of the project based on information provided by DEC and the Owner.
- Site conditions we observed during our visits in December 2021.

- The results of the analytical testing performed on groundwater and sub-slab air samples we collected.
- The regulations in Alaska's 18 AAC 75.345 Table C. *Groundwater Cleanup Levels* (November 2021).
- The regulations in DEC's Vapor Intrusion Guidance for Contaminated Sites, Appendix E: Target Levels for Exterior or Subslab Soil Gas (November 2017).

Our observations are specific to the locations, depths, and times noted on the field logs (Appendix B) and the BIQ (Appendix C) and may not be applicable to all areas of the site. No amount of sampling can precisely predict the characteristics, quality, or distribution of subsurface and site conditions. Potential sources of variation include, but are not limited to:

- The passage of time or intervening causes (natural and manmade) may result in changes to site and subsurface conditions.
- The different conditions between sampling locations.
- Variations in the presence, distribution, and concentration of contaminants at our sampling locations; our tests may not represent the highest contaminant concentrations at the site.
- Contaminant concentrations may change in response to natural conditions, chemical reactions, and/or other events.

If substantial time has elapsed between submission of this report and the start of activities or action based upon it, we should retain to review the applicability of the conclusions and recommendations, considering the lapsed time or changed conditions.

This report should not be used for other purposes without our review, and it should not be used without our approval if any of the following occurs:

- Conditions change due to natural forces or human activity under, at, or adjacent to the site.
- Assumptions stated in this report have changed.
- Project details change, or new information becomes available such that our conclusions may be affected.
- The site ownership or land use has changed.
- Regulations, laws, or cleanup levels change.
- The site's regulatory status has changed.

If any of these occurs, we should be retained to review the applicability of our recommendations.

State and/or federal agencies may require reporting of the information included in this report. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study unless specifically requested and authorized by KE Bentley One, LLC and KGC Bentley Two, LLC., or as required by law. Regulatory agencies may reach different conclusions than Shannon & Wilson. We have prepared the attachment, *Important Information about Your Environmental Report*, to assist you and others in understanding the uses and limitations of our reports.

11 REFERENCES

- Airforce Center for Environmental Excellence, February 2007, Monitoring And Remediation Optimization System Software, Appendix A.2
- Alaska Administrative Code 18 AAC 75, November 2021, Oil and Other Hazardous Substances *Pollution Control.*
- Alaska Department of Environmental Conservation, October 2019, Field Sampling Guidance.
- Alaska Department of Environmental Conservation, October 2019, *Minimum Quality Assurance requirements for Sample Handling, Reports, and Laboratory Data Technical Memorandum.*
- Alaska Department of Environmental Conservation, November 2017, Vapor Intrusion Guidance for Contaminated Sites.
- Pacific Crest Environmental, January 2020, Vapor Intrusion Investigation Differential Air Pressure Monitoring Technical Memorandum, Costco Wholesale Warehouse.
- Shannon & Wilson, Inc., October 2018, Annual Groundwater Monitoring and 3-Year Vapor Intrusion Evaluation Work Plan.
- Shannon & Wilson, Inc., April 2018, Bentley Mall East Satellite 2017 Soil Gas and Groundwater Assessment Report.
- Shannon & Wilson, Inc., July 2019, Bentley Mall East Satellite Annual Groundwater Monitoring and 2018 Vapor Intrusion Report.
- Shannon & Wilson, Inc., August 2020, Bentley Mall East Satellite 2019 Annual Groundwater Monitoring Report.
- Shannon & Wilson, Inc., June 2019, Bentley Mall East Satellite Investigation Environmental Report.

- Shannon & Wilson, Inc., August 2020, 2019 Bentley Mall East Satellite Investigation Summary Report.
- Shannon & Wilson, Inc., April 2021, Bentley Mall East Satellite 2020 Vapor Intrusion and Groundwater Final Assessment Report.
- Shannon & Wilson, Inc., December 2021, Bentley Mall East Satellite Groundwater Monitoring and Vapor Intrusion REV01 Work Plan.
- United States Environmental Protection Agency, August 2021, *On-line Tools for Site Assessment Calculation Hydraulic Gradient – Magnitude and Direction*. Accessed at <u>https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/gradient4plus-</u><u>ns.html</u>, January 2022.

Monitoring Well	Date Measured	Total Well Depth (feet below TOC)	Depth-to-Water (feet below TOC)	TOC Elevation (feet above MSL)	Groundwater Elevation (feet above MSL)	Northing	Easting
MW-1R	12/9/2021	21.31	16.13	446.25	432.59	3968800.00	1375862.06
MW-2R	12/10/2021	21.95	15.93	445.97	432.51	3968848.89	1375709.75
MW-3R	12/10/2021	45.74	15.96	446.01	432.47	3968850.74	1375708.13
MW-4R	12/10/2021	20.21	14.74	444.80	432.49	3968943.56	1375723.21
MW-5	12/9/2021	29.53	18.02	447.77	432.03	3969118.40	1374819.90
MW-6	12/9/2021	20.79	17.84	447.61	432.05	3969124.45	1374818.59
MW-7	12/9/2021	23.75	20.15	449.74	431.86	3969410.57	1374417.21
MW-8	12/9/2021	20.27	12.55	441.65	431.56	3969218.39	1373663.25
MW-9	12/9/2021	20.52	12.10	441.47	431.68	3969203.76	1374201.91
MW-10	12/9/2021	19.94	13.50	443.03	431.91	3968967.07	1374612.88
MW-11	12/9/2021	20.19	12.59	441.82	431.67	3968941.18	1374060.37
MW-12	12/9/2021	20.31	15.56	445.49	432.32	3968917.64	1375316.66
MW-13	12/9/2021	20.55	15.88	445.89	432.39	3968766.05	1375576.75

Table 1 - December 2021 Groundwater Elevation Summary

NOTES:

Monitoring well survey completed by Design Alaska, Inc. on September 25, 2020.

MSL = mean sea level; TOC = top of casing

Table 2 - December 2021 Field Parameters

		Groundwater-Quality Parameters								
Sample	Monitoring			Temperature	e Conductivity	DO	рН	ORP	Turbidity	
Date	Well	TWD (feet)	DTW (feet)	(°C)	(µS/cm)	(mg/L)	(s.u.)	(mV)	(visual)	Stabilization Criteria*
12/9/2021	MW-1R	21.31	16.13	6.0	484.7	5.72	6.8	189.0	Clear	Parameters Stabilized
12/10/2021	MW-2R	21.95	15.93	4.4	548.0	0.40	6.86	113.0	Clear	Parameters Stabilized
12/10/2021	MW-3R	45.74	15.96	3.5	347.4	0.40	6.87	59.2	Clear	Parameters Stabilized
12/10/2021	MW-4R	20.21	14.74	4.0	626.0	0.58	6.68	210.8	Clear	Parameters Stabilized
12/9/2021	MW-5	29.53	18.02	3.7	525.0	0.32	6.84	1.5	Clear	Parameters Stabilized
12/9/2021	MW-6	20.79	17.84	2.6	504.0	0.41	6.86	5.2	Clear	Three Well Volumes Purged
12/9/2021	MW-7	23.75	20.15	3.9	578.0	1.15	6.91	51.8	Clear	Three Well Volumes Purged
12/9/2021	MW-8	20.27	12.55	5.5	562.0	2.50	6.84	204.6	Clear	Parameters Stabilized
12/9/2021	MW-9	20.52	12.10	3.7	548.0	4.42	6.95	234.3	Clear	Parameters Stabilized
12/9/2021	MW-10	19.94	13.50	3.8	414.5	0.44	6.92	-31.7	Clear	Parameters Stabilized
12/9/2021	MW-11	20.19	12.59	4.5	456.9	3.32	6.79	230.0	Slightly Turbid	Parameters Stabilized
12/9/2021	MW-12	20.31	15.56	4.7	742.0	1.06	6.68	154.0	Clear	Parameters Stabilized
12/9/2021	MW-13	20.55	15.88	4.9	634.0	0.38	6.61	166.1	Clear	Parameters Stabilized

NOTES:

* Three consecutive readings for conductivity, DO, pH, and ORP were within stabilization criteria prior to sample collection.

°C = degrees Celsius; DO = dissolved oxygen; DTW = depth to water from top of casing; μ S/cm = microSiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; ORP = oxidation-reduction potential; s.u. = standard units; TWD = total well depth

Table 3 - December 2021 Groundwater Results

nalytical		Cleanup		МИ	V-1R			М	N-4R									
Method	Analyte	Level	Units	Primary	Duplicate	MW-2R	MW-3R	Primary	Duplicate	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13
_	1,1,1,2-Tetrachloroethane	5.7	µg/L	3.09	3.11	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250
_	1,1,1-Trichloroethane	8,000	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,1,2,2-Tetrachloroethane	0.76	µg/L	<0.250	<0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250
_	1,1,2-Trichloroethane	0.41	µg/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
_	1,1-Dichloroethane	28	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,1-Dichloroethene	280	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,1-Dichloropropene	NA	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,2,3-Trichlorobenzene	7	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,2,3-Trichloropropane	0.0075	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500
_	1,2,4-Trichlorobenzene	4	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,2,4-Trimethylbenzene	56	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,2-Dibromo-3-chloropropane	NA	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
_	1,2-Dibromoethane	0.075	µg/L	<0.0375	<0.0375	<0.0375	< 0.0375	<0.0375	< 0.0375	<0.0375	<0.0375	<0.0375	<0.0375	< 0.0375	<0.0375	<0.0375	<0.0375	<0.0375
_	1,2-Dichlorobenzene	300	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,2-Dichloroethane	1.7	µg/L	2.53	2.64	<0.250	<0.250	0.388J	0.393J	0.422J	0.404J	<0.250	<0.250	<0.250	0.456J	<0.250	<0.250	< 0.250
_	1,2-Dichloropropane	8.2	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,3,5-Trimethylbenzene	60	µg/L	<0.500	<0.500	<0.500	< 0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	1,3-Dichlorobenzene	300	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
_	1,3-Dichloropropane	NA	µg/L	<0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	<0.250
	1,4-Dichlorobenzene	4.8	µg/L	<0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	< 0.250
-	2,2-Dichloropropane	NA	µg/L	<0.500	<0.500	<0.500	<0.500	< 0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500
-	2-Butanone (MEK)	5,600	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
260D	2-Chlorotoluene	NA	µg/L	<0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500
VOC)	2-Hexanone	38	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
	4-Chlorotoluene	NA	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	< 0.500
-	Benzene	4.6	µg/L	<0.200	<0.200	<0.400B*	<0.400B*	<0.200	<0.200	<0.400B*	<0.400B*	<0.200	< 0.200	<0.200	<0.400B*	<0.200	<0.400B*	< 0.200
-	Bromobenzene	62	µg/L	<0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500
-	Bromochloromethane	NA	µg/L	< 0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	<0.500
-	Bromodichloromethane	1.3	µg/L	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250
-	Bromoform	33	µg/L	< 0.500	<0.500	<0.500	< 0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500
-	Bromomethane	7.5	µg/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
-	Carbon disulfide	810	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
-	Carbon tetrachloride	4.6	µg/L	<0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500
-	Chlorobenzene	78	µg/L	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250
-	Chloroethane	21,000	µg/L	< 0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500
-	Chloroform	2.2	µg/L	4.16	4.33	8.16	< 0.500	< 0.500	< 0.500	0.373J	0.474J	<0.500	1.12	< 0.500	<0.500	<0.500	<0.500	2.15
-	Chloromethane	190	µg/L	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500
-	cis-1,2-Dichloroethene	36	µg/L	< 0.500	< 0.500	1.41	0.606J	0.498J	0.437J	1.14	1.59	1.07	1.11	2.23	3.60	1.11	2.77	< 0.500
-	cis-1,3-Dichloropropene	4.7	µg/L	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250
-	Dibromochloromethane	8.7	µg/L	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250
-	Dibromomethane	8.3	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	< 0.500
-	Dichlorodifluoromethane	200	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500
-	Ethylbenzene	15	μg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
-	Hexachlorobutadiene	1.4	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
-	Isopropylbenzene	450	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
	m,p-xylenes	190	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00

Bentley Mall East Satellite 2021 Groundwater Monitoring and Vapor Intrusion Report

March 2022

Table 3 - December 2021 Groundwater Results

Analytical		Cleanup		МИ	/-1R			MV	V-4R									
Method	Analyte	Level	Units	Primary	Duplicate	MW-2R	MW-3R	Primary	Duplicate	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13
	Methyl isobutyl ketone	6,300	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
	Methylene chloride	110	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
	Methyl-t-butyl ether (MTBE)	140	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
	Naphthalene	1.7	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	n-Butylbenzene	1,000	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	n-Propylbenzene	660	µg/L	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	o-Xylene	190	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	p-Isopropyltoluene	NA	µg/L	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	sec-Butylbenzene	2,000	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
8260D	Styrene	1,200	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
(VOC)	tert-Butylbenzene	690	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
(000)	Tetrachloroethene	41	µg/L	1,150	1,150	187	0.364J	39.1	42.6	60.4	91.3	4.21	3.21	9.62	43.0	5.60	117	31.9
	Toluene	1,100	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	Total Xylenes	190	µg/L	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50
	trans-1,2-Dichloroethene	360	µg/L	<0.500	<0.500	<0.500	<0.500	1.22	1.05	0.381J	<0.500	<0.500	5.95	8.82	0.374J	8.05	<0.500	<0.500
	trans-1,3-Dichloropropene	4.7	µg/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
	Trichloroethene	2.8	µg/L	2.36	2.42	1.56	<0.500	1.02	0.923J	7.03	9.29	1.79	1.94	2.58	7.61	2.23	5.32	<0.500
-	Trichlorofluoromethane	5,200	µg/L	41.3	40.3	16.8	1.84	5.41	5.47	6.12	3.99	0.749J	<0.500	<0.500	0.682J	6.09	1.92	2.95
-	Trichlorotrifluoroethane	10,000	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
-	Vinyl acetate	410	µg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
	Vinyl chloride	0.19	µg/L	<0.0750	< 0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750	<0.0750

NOTES: DEC Cleanup Levels obtained from 18 AAC 75.345 Table C. Groundwater Cleanup Levels.

Field duplicate sample pairs MW-1R/MW-101R and MW-4R/MW-104R submitted with this work order.

J Estimated concentration, detected greater than the limit of detection (LOD) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.

B* Result is considered not detected due to quality control failures; see checklist for details. Flag applied by Shannon & Wilson, Inc.

< Analyte not detected; listed as less than the limit of detection (LOD) unless otherwise flagged due to quality control failures.

<Bold LOD exceeds DEC Cleanup Level

Bold Detected concentration exceeds DEC Cleanup Level

DEC = Alaska Department of Environmental Conservation; LOD = limit of detection; LOQ = limit of quantitation; NA = not applicable; DEC Cleanup Level not yet established; VOC = volatile organic compound; µg/L = microgram per liter

Bentley Mall East Satellite 2021 Groundwater Monitoring and Vapor Intrusion Report

Table 4 - December 2021 Groundwater Detected Results and Exceedances

Analytical		Cleanup		MV	V-1R			MV	V-4R									
Method	Analyte	Level	Units	Primary	Duplicate	MW-2R	MW-3R	Primary	Duplicate	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13
	1,1,1,2-Tetrachloroethane	5.7	µg/L	3.09	3.11	<0.250	< 0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	<0.250
	1,2-Dichloroethane	1.7	µg/L	2.53	2.64	<0.250	< 0.250	0.388J	0.393J	0.422J	0.404J	<0.250	< 0.250	<0.250	0.456J	<0.250	<0.250	<0.250
	Chloroform	2.2	µg/L	4.16	4.33	8.16	<0.500	< 0.500	<0.500	0.373J	0.474J	<0.500	1.12	<0.500	<0.500	<0.500	<0.500	2.15
8260D	cis-1,2-Dichloroethene	36	µg/L	<0.500	<0.500	1.41	0.606J	0.498J	0.437J	1.14	1.59	1.07	1.11	2.23	3.60	1.11	2.77	<0.500
(VOC)	Tetrachloroethene	41	µg/L	1,150	1,150	187	0.364J	39.1	42.6	60.4	91.3	4.21	3.21	9.62	43.0	5.60	117	31.9
	trans-1,2-Dichloroethene	360	µg/L	<0.500	<0.500	<0.500	< 0.500	1.22	1.05	0.381J	<0.500	<0.500	5.95	8.82	0.374J	8.05	<0.500	<0.500
	Trichloroethene	2.8	µg/L	2.36	2.42	1.56	<0.500	1.02	0.923J	7.03	9.29	1.79	1.94	2.58	7.61	2.23	5.32	<0.500
	Trichlorofluoromethane	5,200	µg/L	41.3	40.3	16.8	1.84	5.41	5.47	6.12	3.99	0.749J	<0.500	<0.500	0.682J	6.09	1.92	2.95

NOTES: DEC Cleanup Levels obtained from 18 AAC 75.345 Table C. Groundwater Cleanup Levels.

Field duplicate sample pairs MW-1R/MW-101R and MW-4R/MW-104R submitted with this work order.

J Estimated concentration, detected greater than the limit of detection (LOD) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.

< Analyte not detected; listed as less than the LOD unless otherwise flagged due to quality control failures.</p>

Bold Detected concentration exceeds DEC Cleanup Level

DEC = Alaska Department of Environmental Conservation; LOD = limit of detection; LOQ = limit of quantitation; NA = not applicable; DEC Cleanup Level not yet established; VOC = volatile organic compound; µg/L = microgram per liter

Bentley Mall East Satellite 2021 Groundwater Monitoring and Vapor Intrusion Report

Analytical					SS	SV-2	
Method	Analyte	Target Level	Units	SSV-1	Primary	Duplicate	SSV-3
_	1,1,1,2-Tetrachloroethane	170	μg/m³	<54.0	<28.0	<27.0	<220
-	1,2-Dichloroethane	47	μg/m ³	<8.00	<4.10	<4.00	<32.0
	Chloroform	53	μg/m ³	<9.70	<5.00	<4.80	<39.0
TO-15	cis-1,2-Dichloroethene	NA	μg/m ³	<7.90	<4.00	<3.90	<32.0
	Tetrachloroethene	1,800	μg/m ³	<13.0	18.0	20.0	<55.0
	trans-1,2-Dichloroethene	NA	μg/m ³	<7.90	<4.00	<3.90	<32.0
	Trichloroethene	84	$\mu g/m^3$	<11.0	<5.40	<5.30	<43.0

Table 5 - December 2021 Costco Soil-Gas Results

NOTES: Regulatory levels are from the DEC November 2017 Vapor Intrusion Guidance, Appendix E: Target Levels for Exterior or Subslab Soil Gas (Commercial). Field duplicate sample pair SSV-2 and SSV-12 was submitted with this work order.

< Analyte not detected; listed as less than the limit of detection (LOD) unless otherwise flagged due to quality control failures.

<Bold LOD exceeds DEC Cleanup Level

DEC = Alaska Department of Environmental Conservation; LOD = limit of detection; $\mu g/m^3$ = micrograms per cubic meter; NA = not applicable; DEC Target Level not yet established

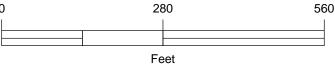
Table 6 - Mann-Kendall Trend Analysis Summary

Well	Analyte	Ν	S	p-value	Confidence	COV	Trend?
	1,1,1,2-TCA	4	0	0.625	38%	0.73	Stable
	1,2-DCA	7	7	0.191	81%	0.38	No Trend
MW-1R	PCE	13	10	0.295	71%	0.93	No Trend
	TCE	8	-9	0.119	88%	0.85	Stable
	Chloroform	12	-28	0.031	97%	0.51	Decreasing
	cis-1,2-DCE	10	-17	0.078	92%	0.77	Probably Decreasing
	PCE	12	-6	0.369	63%	0.29	Stable
MW-2R —	TCE	12	-7	0.274	73%	0.36	Stable
	Chloroform	12	17	0.109	89%	0.52	No Trend
	trans-1,2-DCE	8	-12	0.089	91%	1.55	Probably Decreasing
MW-4R	PCE	13	-26	0.064	94%	0.36	Probably Decreasing
	TCE	13	-44	0.001	100%	1.36	Decreasing
	cis-1,2-DCE	10	-41	0	100%	0.78	Decreasing
_	1,2-DCA	4	0	0.625	38%	0.15	Stable
MW-5	PCE	11	-39	0.001	100%	0.72	Decreasing
	TCE	11	-43	0	100%	0.81	Decreasing
_	Chloroform	11	-7	0.136	86%	0.61	Stable
	cis-1,2-DCE	8	-21	0.007	99%	0.74	Decreasing
MW-6	PCE	11	21	0.06	94%	0.47	Probably Increasing
_	TCE	10	11	0.19	81%	0.37	No Trend
	cis-1,2-DCE	9	-22	0.012	99%	0.66	Decreasing
MW-7	PCE	10	1	0.5	50%	0.45	No Trend
	TCE	10	-2	0.431	57%	0.60	Stable
	cis-1,2-DCE	4	-2	0.375	63%	0.19	Stable
MW-8	trans-1,2-DCE	7	-15	0.015	99%	0.27	Decreasing
	PCE	9	-16	0.06	94%	0.19	Probably Decreasing

Table 6 - Mann-Kendall Trend Analysis Summary

Well	Analyte	N	S	p-value	Confidence	COV	Trend?
MW-8	TCE	7	11	0.068	93%	0.18	Probably Increasing
	cis-1,2-DCE	9	-12	0.13	87%	0.69	Stable
MW-9 —	trans-1,2-DCE	8	8	0.119	88%	0.55	No Trend
10100-9	PCE	10	-23	0.023	98%	0.46	Decreasing
_	TCE	10	-20	0.036	96%	0.54	Decreasing
	cis-1,2-DCE	5	0	0.592	41%	0.86	Stable
MW-10	PCE	10	-9	0.242	76%	0.74	Stable
_	TCE	10	-5	0.364	64%	0.89	Stable
	cis-1,2-DCE	8	-11	0.138	86%	0.36	Stable
	trans-1,2-DCE	6	-9	0.068	93%	0.57	Probably Decreasing
	PCE	10	-23	0.023	98%	0.86	Decreasing
—	TCE	9	-22	0.012	99%	0.73	Decreasing
	cis-1,2-DCE	5	2	0.408	59%	0.37	No Trend
MW-12	PCE	10	-29	0.005	100%	0.56	Decreasing
	TCE	10	-33	0.001	100%	0.90	Decreasing
MW-13 —	PCE	10	17	0.078	92%	0.38	Probably Increasing
10100-13	Chloroform	5	2	0.408	59%	0.20	No Trend

NOTES:

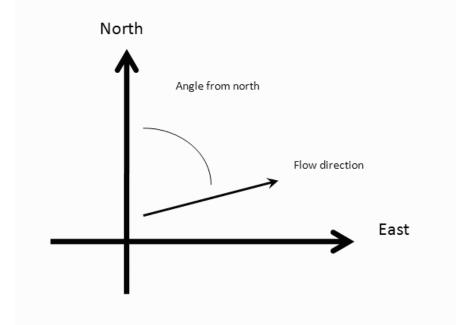

COV = coefficient of variation; N = number of observations; S = Mann-Kendall Statistic

SHANNON & WILSON, INC. Figure 1

Appendix A Groundwater Gradient Calculation

EPA On-line Tools for Site Assessment Calculation

Hydraulic Gradient -- Magnitude and Direction


Gradient Calculation from fitting a plane to as many as thirty points

where $(\boldsymbol{x}_{i},\boldsymbol{y}_{j})$ are the coordinates of the well and \boldsymbol{h}_{i} is the head

i = 1,2,3, ... , 30

The coefficients a, b, and c are calculated by a least-squares fitting of the the data to a plane

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Inputs

Example Data Set	1 Example Data	Set 2 Cal	culate Clear
Save Data	Recall Data	Go Back	
Site Name	Bentley Mall E	ast Satellite	
Date	12/10/21	Cu	rrent Date
Calculation basis	Head	~	
Coordinates ft 🗸	•		
I.D.	x-coordinate	y-coordinate	head ft 🗸
1) MW-1R	1375862.06	3968800.00	430.12
2) MW-2R	1375709.75	3968848.89	430.04
3) MW-3R	1375708.13	3968850.74	430.05
4) MW-4R	1375723.21	3968943.56	430.06
5) MW-5	1374819.90	3969118.40	429.75
6) MW-6	1374818.59	3969124.45	429.77
7) MW-7	1374417.21	3969410.57	429.59
8) MW-8	1373663.25	3969218.39	429.1
9) MW-9	1374201.91	3969203.76	429.37
10) MW-10	1374612.88	3968967.07	429.53
11) MW-11	1374060.37	3968941.18	429.23
12) MW-12	1375316.66	3968917.64	429.93
13) MW-13	1375576.75	3968766.05	430.01
14)			
15)			
16)			

17)	
18)	
19)	
20)	
21)	
22)	
23)	
24)	
25)	
26)	
27)	
28)	
29)	
30)	
Results	
Number of Points Used in Calculation	13

30)	
Results	
Number of Points Used in Calculation	13
Max. Difference Between Head Values	0.3109
Gradient Magnitude (i)	0.0006456
Flow direction as degrees from North (positive y axis) 235.0
Coefficient of Determination (R ²)	0.988
WCMS	

Last updated on 8/31/2021

Appendix B Field Forms

CONTENTS

- Field Activities Daily Log
- Monitoring Well Sampling Log
- Soil-Gas Sampling Log
- Uniform Hazardous Waste Manifest

	Date 12/9/21 Sheet 1 of 1
	Project No. <u>107889-as</u>)
Project Name: BMES Annual Brownal water sampling	10/201-05
Field activity subject: montoning well sampling	
Description of daily activities and events!	
1000 DHF and APW pick up rental Monsson	puno tran TT
1020 Arrive at Monroe Catholic School and set 110 -	to sample MW-8
1105 Head to MW-9 at other end of Ellingson, Bur	ied under forszen Soul
and needed to diaput.	
1200 Cannot locate New-9, head to New-11 instead a	at Inn & Fultan
Spoke w/Richard (resident) about project	and pave him our
contract, He wanted to know the results.	
1300 RLW arrive and switch out with DHF For fir	eld sampling with
April. DHE Leave to I scote offer wells in netw	euric.
1580 Assist VTY and MSC with set-up at MW-10.	
1600 boure site and return to SEW office.	
1400 RLW and APW start at MW-9	
1630 PLW and ARW Senin purping MW-12	
1825 Rew and APW begin purping MUI-13	
	ollect duplicate.
2140 Return to se waterce and unback samples	the second se
the second secon	
Visitors on site:	
Changes from plans/specifications and other special orders and important decision	ons:
•	71054
Weather conditions:	
Weather conditions: <u>Clear O°F</u>	
Weather conditions: Important telephone calls:	
Important telephone calls:	
	Date: 12/9/21

1

Date <u>12-9-20</u> Sheet <u>1</u> of <u>1</u>	121
Project No. 127-889-	100
Project Name: BHE>	_
Field activity subject: MW Sampling	_
Description of daily activities and events:	_
	-
1530 VTY and MSC arrive on site @ MW-10 1720 MW-10 Arrished	-
That five to this and	-
1725 Arrive Q. MW-6, set up and start sampting 1815 Start sampting MW-5 1915 Janiah MW-5	_
1935 attive @ MW-7, start sampling 2030 Amish MW-7	
2035 meet RUW and APW @ Starbucks drive through to hourd purge water over and help find new-4.	R
2120 back @ Syw office unpack	-
	2
	-
	_
	_
	-
	-
	_
	-
Visitors on site: h/9	-
Changes from plans/specifications and other special orders and important decisions:	
N19	_
	4
Weather conditions: clear, 10 F	-
Important telephone calls: <u> </u>	-
Personnel on site: VTY, MSC	
Signature: Date: 2 M-9-2	1

Project Name: <u>Bentley Mall East Satellite</u> Field activity subject: <u>Goundwater Sampling</u> Description of daily activities and events:	Date $12/10/21$ Sheet 1 of 1 oject No. $107889-001$
1230 Arrive at MW. 2R and puge well.	site,
Visitors on site:	
Changes from plans/specifications and other special orders and important decisions:	
Weather conditions: and 9°F	
Important telephone calls:	
Personnel on site: <u>Rw</u> and Apw Signature:	Date: 12/10/21

	Date 12/13/21 Sheet 1 of 1
	Project No. 107889 -00
Project Name: BMES Costos Soil-gas Sampling	
Field activity subject:	
Sou DHE Arrive at Cester and portfy 12100	the the test
	inde- pailets in out of the way
from coste manager Justin.	
840 Coute SSV-1 and set up to Sample	
930 Anive at SSV-2 and get up to sample	
1030 Amire at SSV-3 and set up to sample.	COL NY ROTA
115 clean up at SSV-3 and Low for manager to as	
BIQ and that he is not working today. They will	
get in contact with me to reschedule.	1 let Jason Know to
1125 leave site.	
Visitors on site:	
Changes from plans/specifications and other special orders and important decision	ons:
Weather conditions: Clear-35F	
Important telephone calls:	
Personnel on site: Dava Fine	
	Data: (a/a)
Signature:	Date: 12/13/21

Owner/Client-	MellinulSzcompanies	Project No	. 107889-00
Location	Sterbucks Drive through	Date	12/9/21
Sampling Personnel	APW RLW	We	1 MIN-18
Weather Conditions	Partly Cloudy	Air Temp. (°F) 10. Time started	
		Time completed	2120
Sample No.	MW-IR	Time 2100	
Duplicate	MW-100R	Time 2050	
Equipment Blank	-	Time 🗕 🛶	
Pump	Mega Monsoon Pro		
and the second se	(portable) / dedicated pump	Diameter and Type of Casing	2"
Pumping Start		Approximate Total Depth of Well Below MP (ft.	
Purge Rate (gal./min.)		Measured Total Depth of Well Below MP (ft.	the local data and the local dat
Pumping End		Depth to Water Below MP (ft.	
		Depth to Ice (if frozen) Below MP (ft.	
Pump Set Depth Bel	ow MP (ft.) 20	Feet of Water in We	
KuriTec	Tubing (ft.)	Gallons per foo	t 0.17
TruPoly	Tubing (ft.)	Gallons in We	0.88
		Purge Water Volume (gal.) 6.6
		Purge Water Disposal	
Monument Condition	Good		
Casing Condition	Good		
Wiring Condition (dedicated pumps)	NIA		
Measuring Point (MP)	Top of Casing (TOC)	Monument type: Stickup / Elushmoun Measurement method: Rod & level / Tape meas	
Top-of-casing to mor	nument (ft.)0.3	Datalogger type n/a	
이 가는 것은 사람이 가 있었다. 이 것은 것이 있는 것 같아요. 가지 않는 것이 같아요. 이 것	surface (ft.)0.0	Datalogger serial # n/a	
Monument to ground a		Measured cable length (ft.) n/a	
	nt and operational		
	legible on outside of well		
	f frost-jacking		
Notes			

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	11/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

She

Well No.

Field Parameter Instrument YSI Pro Plus Circle one Parameters stabilized) or >3 well volumes purged

Sample Observations

Notes

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
2038	Purge	stort				
2041	6.0	7.05	490.6	6.83	136 9	slightly turbid
2044	6.0	6.20	490.1	6.82	187.8	clear
2047	60	5.98	488.6	6.31	188.1	t
20 50	10.0	5.84	486 8	6.31	138.3	
2053	6.1	5.80	485.9	6.81	188.5	
2056	6.0	575	- 484.9	6.31	1887	
2059	6.0	5.72	484.2	6.80	195.0	
2100	Samo	He				
					1	
				· · · · · · · ·		
	1					
				(<u> </u>		
			-			

Laboratory SGS

Analysis	Sample Containers	Preservatives	Du
VOCS	3 × VDAS	HCL	X
			므
			旦
			므
			므
			므

Location	The Krausz Compo	mies		Project No.	107889-0
Location	Starbucks Park			Date	12/10/21
Sampling Personnel	APW / RLW	2		Well	MW-2R
Weather Conditions	Snow	Air Temp. (°F)	90	Time started	1230
1012 Dec 1910 de 192				Time completed	1330
Sample No.	MW-2R	Time	1300		
Duplicate	MW - AL	Time	1500		
Equipment Blank		Time			
Equipment Blank_					
Pump	Mega Monsoon	Pro			
	(portable) / dedicated		Diamete	er and Type of Casing	2"
Pumping Start				of Well Below MP (ft.)	20
Purge Rate (gal./min.)				of Well Below MP (ft.)	21.95
Pumping End	1200			Water Below MP (ft.)	15.93
r uniping thu	1500			frozen) Below MP (ft.)	14:12
Pump Set Depth Belo	ow MP (ft.) 20		have a state of the state of th	Feet of Water in Well	6.02
	Fubing (ft.) 25			Gallons per foot	0.17
	Tubing (ft.)			Gallons in Well	1.02
i ful oly i			Puro	e Water Volume (gal.)	5.2
		Purgo Mat	er Disposal B		2.00
Monument Condition	6000	ruige war		sucher	
wonument condition_	6000				
Casing Condition _	6000				
Wiring Condition	NIA				
(dedicated pumps)					
(dedicated pumps)	Top of Casing (TOC)	Monum Measuremen	ent type: Stici method: Rod	kup /Elushmount) & level /Tape measu	
(dedicated pumps)			method: Rod	& level / Tape measu	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon	ument (ft.) <u>0.39</u>	Measuremen	method: <i>Rod</i> Datalog	& level /Tape measu	
(dedicated pumps)	ument (ft.)39	Measuremen	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground s	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u>	Measuremen	method: <i>Rod</i> Datalog	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground si □ Lock preser	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground so Lock preser U Well name I	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational legible on outside of well	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground si □ Lock preser □ Well name I	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground si Lock preser U Well name I E Evidence of	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational legible on outside of well frost-jacking	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground si Lock preser U Well name I E Evidence of	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational legible on outside of well	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground s □ Lock preser □ Well name I □ Evidence of	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational legible on outside of well frost-jacking	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground si □ Lock preser □ Well name I □ Evidence of	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational legible on outside of well frost-jacking	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	
(dedicated pumps) Measuring Point (MP) Top-of-casing to mon Monument to ground si Lock preser U Well name I E Evidence of	ument (ft.) <u>0.39</u> urface (ft.) <u>0.0</u> nt and operational legible on outside of well frost-jacking	Measuremen Me	method: <i>Rod</i> Datalogy Datalogger	& level /Tape measu ger typen/a serial #n/a	

0.000253

0.08

0.17

0.38

0.66

1.5

2.6

Gallons per lineal foot

Field Parameter Instrument VSI Pro Plus Circle one: Parameters stabilized or >3 well volumes purged

Sample Observations

PUPAP

stort

4

Notes turbid

FIELD PARAMETERS [stabilization criteria]

STOWN.

pale

Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
OUTER	stort				
3.8	1.34	518	6.81	82.4	slightly turbid
4.1	0.89	\$37	6.80	90.1	clear
4.1	0.66	543	6.84	96.5	s ń
4.3	0.55	547	6.85	100.5	, 18 - Ar
4.2	0.50	546	685	104.5	\$ h
4.3	0.45	5 47	6.83	107.7	28 29
4.5	0.40	548			NY KA
4.4	0.40	548	626		ss //
Sample	time				
			- 24		
	(°C) <u>psrge</u> <u>3.8</u> <u>4.</u> <u>4.</u> <u>4.</u> <u>7.</u> <u>4.</u> <u>7.</u> <u>4.</u> <u>7.</u> <u>4.</u> <u>7.</u> <u>4.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u> <u>7.</u>	Temp. Oxygen (mg/L) (°C) [±0.1] purge stort 3.8 1.34 4.1 0.89 4.1 0.66 4.3 0.55 4.2 0.50 4.3 0.45 4.5 0.40	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Laboratory SGS

Analysis	Sample Containers	Preservatives	Dup
VOCS	VOA VIALS X3	HCI	므
			므
			旦
			旦
			
(and the second s			

Owner/Client	The Krausz	Companies					Project No.	107889-001
Location		is Partsin		+		2	Date	12/10/21
Sampling Personnel		LW	2			2	Well	MW-3R
Weather Conditions	Quercas	+ / snow	A	ir Temp. (°F)	90	2 - G.S	Time started	1130
						– Tir	ne completed	1230
		a		220	OLUM-			
Sample No.	MW-3	R		_ Time _	1215	÷.		
Duplicate				Time	-	<u> </u>		
Equipment Blank	BMES	- EB		Time	1230	-		
Pump	Mass	onsoon Pro						
Purging Method		dedicated p			р	iameter and T	ype of Casing	21
Pumping Start	1151	ueurcated pr	ump	Approvima			Below MP (ft.)	45
Purge Rate (gal./min.)						Depth of Well I		45.74
Pumping End	0.2			Weasure		epth to Water I		15.96
Pumping End	12.15					ce (if frozen)		12.16
Duran Cat Danth Bal	NAD (ft.)	teres .			Depth to		Water in Well	
Pump Set Depth Bel		44					8	29.78
	Tubing (ft.)	50					allons per foot allons in Well	0.17
i ruPoly	Tubing (ft.)							5.06
				Duran Mate	Disease		Volume (gal.)	4.8
Monument Condition	Good		_	Furge wate	T Dispuse	Bucket		
Casing Condition	Good	_					_	
Wiring Condition (dedicated pumps)	NIA							
Measuring Point (MP)	Top of Casin	g (TOC)		Monum Measurement	ent type: method:	Stickup Rod & level	/Flushmount /Tape measu	
Top-of-casing to mor	ument (ft)	0.34			D	atalogger type	n/a	
Monument to ground s		0.0	_	-		ogger serial #		
Monument to ground a		0.0	-	- Mes		ble length (ft.)		
- Look proco	nt and operati	anal		IVICE	isuleu ca	bie lengui (it.)	104	
The second second								
	legible on out f frost-jacking							
Evidence o	r nost-jacking							
Notes			-		-		_	
			_					
+			50.5		5.100			
			_	CASING VOLU		1		
Diameter of Well [ID-inches]			11/4	(2)	3	4	6	8
Gallons per lineal foot		0.000253 0	80.0	0.17	0.38	0.66	1.5	2.6

Field Parameter Instrument YSI Pro Plus Circle one: Carameters stabilized or >3 well volumes purged

Sample Observations Notes

FIE	LD PARAM	ETERS	Istabilization	criteria]

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1151	PULSE	start				
1154	3.2	1.15	348.3	6.75	36.2	CIRONT
1157	36	U.F.Y	348.7	6.32	76.3	
1200	3.6	0.61	344.3	10.84	7116	
1203	35	0.57	343.1	6.85	67.5	
1206	3.6	0.45	345.0	6.35	64.5	
1209	3.6	0.44	346.0	6.36	62.1	
1212	3.5	0,40	347,4	6.87	59.2	L.
1215	Sample	time				5.5.4.
-			1			· · · · · · · · · · · · · · · · · · ·
	-					
					1	
			Ng	A	1	
					1	
	-					
					·	
		Contraction of Contraction			1.1	

Laboratory SGS

OBK

Analysis	Sample Containers	Preservatives	-Du
VOCS	VOA X3	HCI	英
			므

Owner/Client	The Krones	2 Companie	5				Project No.	107889-001
Location	BMES D					5	Date	12/10/21
Sampling Personnel	APW	RLW				1	Well_	MW-YR
Weather Conditions	QUELS	ast	A	ir Temp. (°F)	.go	1	Time started	10:20
						Tir	ne completed	11:30
Sample No.	Mu)-4R		Time	1116			
Duplicate		-104R			110%	-		
Equipment Blank	1	-		Time	-	-		
Pump	Mean	Monsoon	Pro					
Purging Method		/ dedicated			Di	ameter and T	vpe of Casing	2"
Pumping Start	10.37	/ dedicated	pump	Approxima		epth of Well I		20
Purge Rate (gal./min.)	0,15					epth of Well I		20.21
Pumping End	1116			modelli		pth to Water I		14.74
r ampnig Ena -	11.10					ce (if frozen) I		
Pump Set Depth Belo	w MP (ft)	19			- opinio .		Water in Well	5.47
the second se	Tubing (ft.)	25					allons per foot	0.17
	Tubing (ft.)	-					allons in Well	0.93
						Purge Water	Volume (gal.)	5.5
				Purge Wate	r Disposa			
Monument Condition	Goo	9						
		1						
Casing Condition	600	d						
Wiring Condition (dedicated pumps)	NIA		_				1200	
Measuring Point (MP)	Top of Ca	sing (TOC)		Monum Measurement	ent type: method:	Stickup Rod & level	/Elushmount) (Tape measu	
Top-of-casing to mor	ument (ft.)	0.35			Da	atalogger type	n/a	
Monument to ground s	and the second se			-		ogger serial #	n/a	
Wondinent to ground a	surrace (n.)	0.0		— Mea		ble length (ft.)		
Lock prese	nt and oner	ational		Wiec	iourea ou	olo longui (iu)		
	CALCULATION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI	outside of we	P					
<u>a</u> Evidence o	THOSE JACKI							
Notes								
			-U					
	_	-	_					
		1.20	WELL	CASING VOLU	IMES			
Diameter of Well [ID-inches]		CMT	11/4	2	3	4	6	8
Gallons per lineal foot		0.000253	0.08	(0.17)	0.38	0,66	1.5	2.6

Well No.

DHE

Field Parameter Instrument YSI Pro Plus Circle one: Parameters stabilized or >3 well volumes purged Sample Observations

Notes

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
10 37	purse	stort				
1040	3.1	4.81	615	6.66	212.6	clear
10 43	3.6	4.06	612	6,66	215.8	
10 46	3.7	2.13	626	6.67	770.7	
10 49	3.7	1,66	625	6.68	224.0	
10.52	3.7	1.26	625	667	223.7	
10 55	3.7	1,02	625	6.67	227.0	
1058	37	092	624	6.67	2716	
1101	3.9	0.841	626	6.68	2196	
1104	4.0	0.74	627	6.68	218.4	
IIDF	4.0	0.66	626	6.68	716-2	
1110	4.0	0.63	677	666	213.8	
1113	4.0	0.58	1026	6.68	210,8	V
1116	Samply					
-		-				
					-	
						Que and a second

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

Analysis	Sample Containers	Preservatives	Du
NOCS	3×NOA	HCI	这
			旦
			旦
			旦
			旦

Owner/Client	the second se	Transz Companies	Project No.	107889-001
Location	Behfind Key	Bayk	Date	12-5-21
Sampling Personnel	WTY, MSC 0 overcast	Air Temp. (°F) 🦼	Well Time started	18/5
Weather Conditions	BVE CAST		Time completed	1915
Sample No.	MW-5	Time 1902	3	
Duplicate		Time —		101
Equipment Blank	-	Time	_	~ .
Pump	Hega Monsoc	'n		di suc
	portable / dedicated		Diameter and Type of Casing	2" PVC
Pumping Start			Depth of Well Below MP (ft.)	25
Purge Rate (gal./min.)			Depth of Well Below MP (ft.)	28.34+1.19
Pumping End	1902	D	epth to Water Below MP (ft.)	18.02
	005	Depth to	Ice (if frozen) Below MP (ft.)	-
Pump Set Depth Below			Feet of Water in Well	
KuriTec Tu			Gallons per foot	the second se
TruPoly Tu	ubing (ft.)		Gallons in Well	2
		2 mar 20 Bar 2 and	Purge Water Volume (gal.)	
Same contrain and	0	Purge Water Dispos	al prum	
Monument Condition	<u>Rood</u>			
Casing Condition	good			
				1
(dedicated pumps)	/			
Measuring Point (MP)	Top of Casing (TOC)	Monument type: Measurement method:		re
Top-of-casing to monu	ment (ft.) 0.51	D	atalogger type n/a	
Monument to ground su			logger serial #n/a	
		Measured ca	able length (ft.)n/a	
	and operational MI9			
	gible on outside of we	II contractor		
Evidence of f	rost-jacking	none		
Notes				
(E				

WELL CASING VOLUMES

Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8							
Diameter of Well [ID-inches]	GIVIT	174	14	3	4	0	0
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

DHE

Well No. MW-5

Field Parameter Instrument	451	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations	- 1 A	
Notes		

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
18:29	2.8	1.05	531	6.84	76.6	V. tailid
1832	2.9	0,79	529	6.83	64.6	tubid
1835	3.2	0.59	528	6.82	49.4	Sl. feir bro
18 38	3.3	0.50	526	6.62	39.1	cloudy
1841	3.3	0.46	524	6.83		scloudy
1844	3.2	0.42	521	6.83	27.5	cloudy
1847	3.2	0.39	520	6.83		clear
1859	3.2	0,35	518	6.84	9.4	clear
1656	3.2	0.36	518	6.84	6.0	clear
1853	3.7	0.32	525	6.84	1.5	clear
1902	Samp	Ce.			(
	1					
-						the second s

Laboratory SGS

Sample Containers	Preservatives	Dup
3×40ml	Hee	
		므
		旦
		므
	3×40ml	3×40ml HCC

Well No. NW-5

DHE

Owner/Client	from 52 mehr	zusz Companies	Project No.	the second s
Location _	ehind key Bank		Date	
Sampling Personnel	VYY Risco		Well	
Weather Conditions	cleas 1	Air Temp. (°F) 🧹	Time started	
(Carlos Constantino de Carlos		Time completed	1815
Sample No.	MW-6	Time 1808		
Duplicate	-	Time 🦟		
Equipment Blank	-	Time		
Pump <	States Meg	a Honsoon		
	portable / dedicated pump	Dia	ameter and Type of Casing	2" PVC
	1744	Approximate Total De	epth of Well Below MP (ft.)	20
Purge Rate (gal./min.)		Measured Total De	epth of Well Below MP (ft.)	19.60+1.19=207
Pumping End		Der	oth to Water Below MP (ft.)	17.84
	1008		e (if frozen) Below MP (ft.)	11.01
Pump Set Depth Below	MD (ft) 10	Depth to le	Feet of Water in Well	2.95
	bing (ft.) 25		Gallons per foot	
			Gallons in Well	
TruPoly Tu	bing (π.)			
			Purge Water Volume (gal.)	1.0
Manufactor in the Minth	1	Purge Water Disposal	Drum	78
Monument Condition	900			
Casing Condition	good			
	-V			
Wiring Condition	/			
Measuring Point (MP)	Top of Casing (TOC)	Monument type:	Stickup / Flushmount	
		Measurement method:	Rod & level / Tape measu	ire
Top-of-casing to monun	nent (ft.) 0.42	Dat	alogger type n/a	
Monument to ground sur		and the second se	gger serial # n/a	
wonument to ground sur		Measured cab		
144.5000	A Martin Contractor	weasured cap		
	and operational broken			
	gible on outside of well			
Evidence of fr	ost-jacking <u>nIG</u>			
/				
(and the second s				
Notes	and the second second			
· · · · · · · · · · · · · · · · · · ·				
		and the street		
	WELL	CASING VOLUMES		

Diameter of Well [ID-inches]	CMT	11/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW-Ø6

Field Parameter Instrument	YSIC	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations		
Notes		
Children -		

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1744	2.4	1.40	483.5	7.05	120.8	turberd
1747	2.0	0.63	477.2	6.90	112.2	sl. tertod
1750	2.5	0.51	487.9	6.88	91.9	chandy
1753	2.6	0.49	491.9	6.87	79.3	cloudy
1756	3.0	0.44	502.0	6.86		cloudy
1759	3.0	0.44	506.0	6.85		clear J
1802	2.8	0,43	505.0	6.85	10.3	elear
1805	d.6	6.41	504	686	5.2	ctear
1808	saurp	le				
					·	
					-	
1						
	-					
		1				

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

Analysis	Sample Containers	Preservatives	Du
VOC	3×40me	Hee	므
			旦
			旦

Owner/Client_	franse The Koun	52 Companies			107889-001
Location_	BHES			Date	10-9-21
Sampling Personnel	VAY, MSC			Well	MW-+
Weather Conditions	overcast	Air Temp. (°F)		Time started	1935 2030
Sample No Duplicate _ Equipment Blank _	<u>µw</u> -7	Time Time Time	2018		
	2045	Approxima Measur	Ga	Below MP (ft.) Below MP (ft.) Below MP (ft.) Below MP (ft.) Water in Well Ilons per foot allons in Well	2"PUC 20 22.56+1.19 20.15 20.15 3.6 0.16 0.6
		Purge Wate	r Disposal Drum	1. 200 10 1 10 Da -	
Monument Condition _ Casing Condition _					
Wiring Condition _ (dedicated pumps) _	/				
Measuring Point (MP)_	Top of Casing (TOC)	Monum Measurement		/ Flushmount / Tape measu	re
Top-of-casing to mon	ument (ft.) 0.39		Datalogger type	n/a	
그 같은 것 같은 것 같은 것 같은 것 같은 것이 있었다. 것 같은 것 같	urface (ft.) 2.47		Datalogger serial #		
Monument to ground s		Me	asured cable length (ft.)		
🛫 Well name I	at and operational h / 9 egible on outside of well frost-jacking	ene		11/a	
Notes					
	WEI	L CASING VOLL	IMES		

WEEL CASING VOLOMES							
Diameter of Well [ID-inches]	CMT	17	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No. $\mathcal{M}W-\mathcal{F}$

Field Parameter Instrument	YSIC	Circle one: Parameters stabilized or S well volumes purged
Sample Observations		
Notes		

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1951	3.2	3.06	548	7.06	127.0	tatherd
1957	3.6	2.25	567	6.96	113.2	Cloudy Slightly (londy
2000	3.0	1,78	573	6.94	97.3	st. cloudy
2003	3.0	1.63	574	6.93	87.0	clear 0
2006	5.5	1.57	576	6.92	66.8	clear
2012	3.9	1.24	578	6.92	58.0	clear
2015	3.9	1.15	578	6.91	51.8	clear
2010	sample	-				
	1.1.1.1.1.1					
-						
					1.0	

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

Analysis	Sample Containers	Preservatives	Dup
VOC	3×40 me	Hee	⊒
			므
1			
			旦
			므

Well No.

Ph-

Owner/Client	The Krausz C	iompenies				Project No.	107889-00
Location		polic School				Date	and the second se
Sampling Personnel	DHE				-	Well	MW-8
Weather Conditions	Cliar 5°F	A	lir Temp. (°F)	5		Time started	1020
					Tim	e completed	1145
Sample No.	MW-8		Time	1134			
Duplicate		-	Time		3		
Equipment Blank	-		Time	-	-		
Pump	SS Mons	oon					
Purging Method		ledicated pump		D	iameter and Ty	ne of Casing	2"PVC
Pumping Start		iounoutou pump			Depth of Well B		
Purge Rate (gal./min.)					Depth of Well B		21.22
Pumping End			medec		pth to Water B		
r uniping End	112-1				ce (if frozen) B		14,32
Pump Set Depth Bel	OW MP (ft)	0		Deptilio		Vater in Well	2.00
	Tubing (ft.)	Er				a construction of the construction of the	
		2				lons per foot Illons in Well	
TuPoly	Tubing (ft.)						1.31
			D 144		Purge Water V	olume (gal.)	4
here and a second second			Purge wa	er Disposa	Drin		<u> </u>
Monument Condition	Good						
Carls Lating 1	9						
Casing Condition	good						and the second second
Wiring Condition	/						
(dedicated pumps)	/						
Measuring Point (MP)	Top of Casing	(TOC)	Monur	nent type:	Stickup	Flushmount	2
	, op or journing		Measuremen	and the second	Rod & level /	and the second sec	
			meddarenner	r mounou.	nou a lovor a	Tupo modou	19
Top-of-casing to mor	umont (ft)	47		De	telegger ture	2/2	
	and the second		_		atalogger type_	n/a	
Monument to ground s	surface (ft.)		_		ogger serial #_	n/a	
		100	Me	asured cal	ble length (ft.)	n/a	
Lock prese	nt and operation	nal NA					
Well name	legible on outsi	de of well Yes					
	f frost-jacking	NO					
	1	110					
Notes							
Alexandre -							
-							
		WELLO	ASING VOL	UMES			
Diameter of Well [ID-inches]		CMT 11/4	2	3	4	6	8
Gallons per lineal foot	0.0	000253 0.08	0.17	0.38	0.66	1.5	2.6

Field Parameter Instrument XSI D Circle one: Parameters stabilized or >3 well volumes purged Sample Observations Notes FIELD PARAMETERS [stabilization criteria] Dissolved Temp. Oxygen (mg/L) Conductivity (µS/cm) pH ORP (mV) (°C) [± 3%] [± 0.1] [± 10 mV] Water Clarity (visual) [±0.1] Time 1055 wit DUMD 4.1 5.50 6,82 279.0 opaque, slight neller 1 brown 1056 900 55 1.0 0 1059 4.8 558 269.2 6 82 2420 5.2 1106 3.70 6.82 MOSTLyclear 560 3,47 3,30 52 236,6 1109 561 5.4 563 6.83 1108 230.1 dear 324 223.K 1115 564 6,82 5.4 565 6.83 217.9 1118 5,5 3.64 215.0 2.95 564 5,4 6.83 1121 1125 2.72 515 6.84 210.2 5.5 6.84 1128 562 206.7 Sila 2 69 V 6.84 5.5 Sangl 562 204.6 1.31 2.50 1134

Laboratory SGS

Sample Containers	Preservatives	Dup
		므
		므
	Sample Containers	Sample Containers Preservatives

Owner/Client	The Kraus	2 Compo	nies				Project No.	107889-00
Location	the second se	1 ANDre:			1.000	2	Date	
Sampling Personnel	APW	RLW	1			1	Well	MW-9
Weather Conditions	Cloudy		A	r Temp. (°F)	6	Ξ	Time started	1410
and the second	,					Ξ Ti	me completed	16:00
Sample No.	MW	-9		Time	1525			
Duplicate		-		Time	-			
Equipment Blank		-		Time	+	-		
Purging Method Pumping Start Purge Rate (gal./min.) Pumping End Pump Set Depth Belo KuriTec	1421 0,08 1521	ledicated	Pro pump	Measure	te Total I ed Total I De Depth to	Depth of Well Depth of Well Pepth to Water Ice (if frozen) Feet of G Purge Water	ype of Casing Below MP (ft.) Below MP (ft.) Below MP (ft.) Water in Well allons per foot Sallons in Well Volume (gal.)	2" 20.52 12.10 - 8,42 0.17 1.43 18
Measuring Point (MP)	Top of Casi	ng (TOC)	r	Monume Measurement i	20 Ch 19 P C 10 C 10 C	Stickup Rod & level	/ Flushmount / Tape measu	B
Top-of-casing to mon	(import (ft))	0.75			D		-1-	
		0119		-		atalogger type	n/a	
Monument to ground s	unace (n.) _	0.0		-		ogger serial #	n/a	
in the states	er sina a incent	da in int		iviea	sured ca	ble length (ft.)	n/a	
161-11	nt and operat							
	legible on ou							
Evidence of	frost-jacking				_			
Notos								
Notes					_			
)								
()		-						
C								
			NELLO		MES			
Diameter of Wall UD lask1	T	CMT		ASING VOLU			0	1
Diameter of Well [ID-inches]	-		11/4		3	4	6	8
Gallons per lineal foot		0.000253	0.08	0.17	0.38	0.66	1.5	2.6

OKE

Field Parameter Instrument YSI Pro Plus Circle one: Parameters stabilized or >3 well volumes purged Sample Observations

Notes

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Cla	arity (visual)
1421	PLUMP	Stor4					
1424	2.3	7.25	556	6.97	270.8	+ur bei	0
1427	0.5	6,50	559	6.97	266.4	10	4,
1430	2.9	6,15	564	6.97	263.1	slightly	turbid
1433	3.2	5,98	568	6.97	240.5	14	11
1436	3.3	5,87	571	6.96	258.5	*	11
1439	3.4	5.70	571	6.97	756.8	Clea	5
1442	3.5	5.63	572	6.96	255.4		*4
1445	3.4	5.58	570	6.96	254.3	6.1	H
1448	3.5	5.45	569	696	252.6		- A
1451	3.6	5.29	567	6.96	251.0	53.	11
1454	3.6	5.25	564	6.96	249.5	34	9
1957	3.7	5.12	543	6.96	247.9	1	19 T
1500	3.6	5.01	560	6.96	246.3	56.	N
1503	3.6	4.90	557	6.96	299.4		
1506	3.6	4.80	555	6.96	248.7	0	- Q
1509	3.7	H. 71	P22	6.95	240.8	-46	<i>b</i>
1512	3.6	4.56	558	6.95	204.3	15	181
1515	3.2	4.52	552	6.95	287.7		4
15 18	3.7	4.44	550	6.95	235.0	11.	
1521	3.7	4.42	548	6.95	234-3	45.	17

EIEL D DADAMETERS [stabilization criteria]

Laboratory SGS

nalysis	Sample Containers	Preservatives	Duj
VOCS	VOA vials × 3	HCI	□
			므
			<u>_</u>

Well No.

Owner/Client	Krau	The	Gransz	compani	es		Project No.	107889-001
Location	Ina +		10.00	and the			Date	12-9-21
Sampling Personnel	MSLIVT	· Y		1.			Well	MW-10
Weather Conditions	Cloudy		Air	Temp. (°F)	-	Tir	Time started me completed	
Sample No Duplicate	MW-	10		Time	1705			
Equipment Blank	~			Time	~			
Pump	and	RAPER M	legg 1	Monsoer				~"
Purging Method	portable	/ dedicated	pump				ype of Casing	a
Pumping Start	1635						Below MP (ft.)	
Purge Rate (gal./min.)	0.08			Measur			Below MP (ft.)	
Pumping End	1705				the second s		Below MP (ft.)	13.50
	1.	10			Depth to lo		Below MP (ft.)	
Pump Set Depth Bel	ow MP (ft.)	19					Water in Well	
KuriTec	Tubing (ft.)	25					allons per foot	
TruPoly	Tubing (ft.)						allons in Well	No. of Concession, Name of Con
							Volume (gal.)	2.5
	1.1			Purge Wate	r Disposal	Drum		
Monument Condition	fair			11/12/12/22				
	0							
Casing Condition	Jead							
and a start of starting the	0							
Wiring Condition (dedicated pumps)								
Measuring Point (MP)	Top of Ca	sing (TOC)	Ν	Monum Aeasurement	ent type: method:	Stickup Rod & level	/Flushmount /Tape-measu	
Top-of-casing to mor	umont (ft)	0.58			Da	talogger type	n/a	
				-		ogger serial #		
Monument to ground s	sunace (ii.)			- Mor		ble length (ft.)		
(100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ational		Mea	asured car	sie length (it.)	Tiza	
Lock prese								
The second se	1	outside of wel						
Evidence o	t frost-jacki	ng _					-	
Notes								
			_		-			
				lydtr fyr				
			WELL C	ASING VOLU	IMES			
Diameter of Well [ID-inches]		CMT	11/4	2	3	4	6	8
Gallons per lineal foot		0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No.

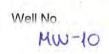
MW-10

DHE

Field Parameter Instrument <u>951 C</u> Sample Observations

Circle one: Parameters stabilized or >3 well volumes purged

Notes



Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1635	2.9	1.30	407.3	6.80	4.3	turbad
1638	3.2	0.87	410.5	6.86	-11.0	furbid
1641	3.5	0.91	412.5	6.87	-13.0	sl-turb?d
1644	3.6	1.14	415.6	6.89	-20.0	cloudy
1647	3.7	1.00	414.0	6.90	-22.9	cloudy
1650	3.6	0.76	412.5	6.91	-25.7	cloudy
1653	3.7	0,60	413.0	6.91	-27.8	
1656	3.7	0.54	413.3	6.93	-29.7	clear
1659	3.7	0.49	413.7	6-91	-30.6	clear
1702	3.8	0.44	414.5	6.92	-31.7	clear
1705	Sourp	e				
						-
					-	
-						
			1			

FIELD PARAMETERS [stabilization criteria]

Laboratory	SGS	
		_

	Analysis	Sample Containers	Preservatives	Dup
X	VOC	3×40 me	Hee	<u>_</u>
				므
				므
				므

1

OXe

	The Krausz Comp	panies.		F	roject No.	the Color of the C
	NEW Ina and Fuls	ton St.			Date /	
Sampling Personnel						MW-11
Weather Conditions	mastly clear	Air Temp), (°F) ≲		ne started	1220
				Time	completed_	1320
Sample No.	MW-11		Time 1300	4		
Duplicate	-		Time	_		
Equipment Blank	-		Time	-		
Pump	55 MONSOON					
the second se	portable / dedicated	pump	Di	ameter and Type	of Casing	2" pvc
Pumping Start				epth of Well Belo		
Purge Rate (gal./min.)	0.08	N	Aeasured Total D	epth of Well Belo	w MP (ft.)	20119
Pumping End			De	pth to Water Belo	w MP (ft.)	12.59
				ce (if frozen) Belo		
Pump Set Depth Belo	ow MP (ft.) 19		1.15	Feet of Wa		7.6
	Tubing (ft.) 25				ns per foot	0.17
	Tubing (ft.)				ons in Well	1.3
1147 019	·			Purge Water Vol		4.6
		Pura	e Water Disposa	이 이상 풍경이 있는 것 같아? 것 같아? 것 같아?		
Monument Condition	apoorl					
Casing Condition	muddy					
Wiring Condition (dedicated pumps)	nta.					
Measuring Point (MP)	Top of Casing (TOC)		Monument type: rement method:	Stickup /F Rod & level / T	lushmount ape measui	
Top-of-casing to mor	ument (ft) 5 7		Da	atalogger type	n/a	
Monument to ground s				ogger serial #	n/a	
Wondment to ground a				ble length (ft.)	n/a	
	nt and operational		measured out		10.04	
	legible on outside of well					
	f frost-jacking					
Evidence o	most-jacking					
(inter-						
Notes					-	
				-		
			VOLUMER			
Diameter of Wall (ID inchas)		VELL CASING	2 2 2		6	8

Field Parameter Instrument YSI Pro Plus Circle one: Parameters stabilized or >3 well volumes purged Sample Observations

Notes

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
237	RUMD St	text +			1	Very turbel brown
238	5,3	3,37	- War 9	6.82	238.5	
241	3.7	3.28	445.4	6.81	237.6	turbid
1244	4.0	2.91	450.8	6.81	235.7	turbid
247	4.3	3.18	453.8	6.80	234.2	turbid
250	9.4	3.29	455.6	6.80	232.8	Stightly turkid
1253	4.6	3.34	457-0	6.79	231.2	
1256	4.5	3.32	456.9	679	230.0	6 (r
1300	Samale	time				
	1		· · · · · · · · · · · · · · · · · · ·			
				_	1	
					1	1
	-					
_				_		

FIELD PARAMETERS (stabilization criteria)

Laboratory SGS

Analysis	Sample Containers	Preservatives	Dup
. VOCS	VOA vials x3	HCI	므
			므
			므
-			

Well No.

Owner/Client	nekraust	z Com	ponies				Project No.	107889-001
	NEWS RE:		ege R	al		<u>è</u> n i i	Date_	12/9/21
Sampling Personnel	APW 1	RLW	0	Lieber and		1	Well	MW-12
Weather Conditions	Partly	Cloudy	Ai	r Temp. (°F)	0°		Time started	16 35
						Tir	me completed	18:25
Sample No.	MW	-12		Time	1810			
Duplicate		-		Time	- 14			
Equipment Blank		-		Time	÷	-		
Pump	Mega M	ansoon Pr	TO					
Purging Method	portable) /				Di	ameter and T	ype of Casing	2"
Pumping Start	17:25		1 contr	Approxima			Below MP (ft.)	20
Purge Rate (gal./min.)	0.08						Below MP (ft.)	20.31
Pumping End						[1] A. M.	Below MP (ft.)	15.56
							Below MP (ft.)	-
Pump Set Depth Bel	ow MP (ft.)	19			990.997 . 1299		Water in Well	4.75
	Tubing (ft.)	25					allons per foot	0.17
TruPoly	Tubing (ft.)	-				G	allons in Well	0.81
						Purge Water	Volume (gal.)	13.5
Monument Condition	Good			Purge Wate	r Disposa	Drum		
Casing Condition	Good				_	_		
Wiring Condition (dedicated pumps)	NIA							
Measuring Point (MP)	Top of Casir	ng (TOC)	Ν	Monum Aeasurement	ent type: method:	Stickup Rod & level	/Flushmount) /Tape measur	Ð
Top-of-casing to mor	ument (ft.)	0.46			Da	talogger type	n/a	
Monument to ground s	and the second					ogger serial #	n/a	
monument to ground t	, and be (iii)	0.0		- Mea		ble length (ft.)	n/a	
u Well name	nt and operat legible on out f frost-jacking	side of well						
Notes								
-								
		V	VELL C.	ASING VOLU	MES			
Diameter of Well [ID-inches]		CMT	11/4	2	3	4	6	8
Gallons per lineal foot		0.000253	0.08	(0.17)	0.38	0.66	1.5	2.6

OWE

Field Parameter Instrument YSI Pro Plas Circle one: Parameters stabilized or >3 well volumes purged

Sample Observations Notes

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C)	Dissolved Oxygen (mg/L) [±0.1]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1725	pump	start				
1728	4.4	4.07	954	6.63	2238	Clear
1731	4.6	2.57	908	6.64	198.1	N 10
17 34	4.6	206	872	6.67	187.2	- 44
1737	4.7	1.74	843	6.66	179.8	AN 19
1740	4.6	1.48	224	6.66	174.7	N 41
1743	4.7	1.36	810	6.67	170.3	6 7i
1746	4.7	1.32	798	6.66	167.2	
1749	4.7	1. 20	7.84	6.67	164.2	0. 2
1752	4.7	1.15	776	6.68	161.9	xx. 4
1755	4.7	1.09	764	6.62	160.1	A. 14
1758	4.7	1.11	762	6.68	158.8	8 11
1801	4.7	1,00	749	6.68	151.2	
1804	4.6	1.10	751	6.68	155. D	· · · · · ·
1807	4.7	1.06	742	6.68	154.0	(s. 2)
1810	Sample		1			
				-		
_					1-2-1	

Laboratory SGS

Analysis	Sample Containers	Preservatives	Du
VOCS	LK ZLAIV AOL	HCI	
			旦
			旦
100			
			D

Owner/Client	hekraus	sz Com	oni=s				Project No.	107889-001
Location		allene Rel	-from	Starbuc	hs	2	Date	12/9/21
Sampling Personnel	APW	RLW				1	Well	MW-13
Weather Conditions	Portly	cloudy	Ai	r Temp. (°F)	0.		Time started	18:25
						— Tir	ne completed	19:30
	1.1			-				
Sample No.	Mu	1-13		Time	19:07			
Duplicate		-		_ Time	-	<u>_</u>		
Equipment Blank		-		_ Time_		-		
Pump	Mega	Monsoon	Pro-					
Purging Method		/ dedicated			D	iameter and T	vpe of Casing	2"
Pumping Start	1840	the second se	Leave b	Approxima		Depth of Well I		20
Purge Rate (gal./min.)	0.0%					Depth of Well I		20.55
Pumping End	1907					epth to Water I		15.88
r amping End	1.107					Ice (if frozen) I		12100
Pump Set Depth Belo	WIP (ft)	19			Deptilito		Water in Well	4.67
	Tubing (ft.)						allons per foot	0.17
	Tubing (ft.)						allons in Well	0.79
The Oly	ubing (it.)						Volume (gal.)	8
				Purge Wate	r Dianona		volume (gal.)_	<u> </u>
Monument Condition	Goo	d		r uige wate	i Dispose	Drum		
Casing Condition	Good						<u> </u>	
1.1.1.1.1.1.1.1				-				
Wiring Condition (dedicated pumps)	NIA						6	
(dedicated pumps)		00000	-				1.0	
Measuring Point (MP)	Top of Ca	sing (TOC)		Monum	ent type:	Stickup	/Elushmount	
			r	Measurement	method:	Rod & level	Tape measur	Ð
Top-of-casing to mon	ument (ft.)	0.5			Da	atalogger type	n/a	
Monument to ground s	the state of the state of the state of the			-		ogger serial #	n/a	
monument to ground e	andoo (n.)	0,0	-	- Mea		ble length (ft.)		
Lock prese	at and oner	ational		Wee	isureu ca	bie length (it.)	Ti/a	
	Contraction of the second s	outside of wel						
	· · · · · · · · · · · · · · · · · · ·							
Evidence of	HOST-JACKI	ng _						
Notes					_			
		_						
			WELL C	ASING VOLL	MES			
Diameter of Well [ID-inches]		CMT	11/4	(2)	3	4	6	8
Gallons per lineal foot		0.000253	0.08	0.17	0.38	0.66	1.5	2.6

OHR

Field Parameter Instrument YSI Pro Plus Circle one: Parameters stabilized or >3 well volumes purged

Sample Observations Notes

Purge		[± 3%]	[± 0.1]	[± 10 mV]	Water Clarity (visual)
	2 Start				
4.7	2.83	662	6.54	168.4	Clear
4.7	1.06	659	6.55	168.3	- 0
4.1	0.81	642	6.56	167 3	90 U
4.8	0.60	650	6.57	166.9	N 77
5.0	0.50	647	6.58	166.1	10 VI
4.8	0.45	637	6.60	166.2	90
4.8	0,39	635	6.60	166.1	5. X
4.9	0.38	634	6.61	166.1	(c 1)
Somp	e lime				
	4.1 7.8 7.8 7.8 7.8 7.8 7.9	4.1 0.81 4.8 0.60 5.0 0.50 4.8 0.45 4.8 0.39	4.1 0.81 642 4.8 0.60 650 5.0 0.50 647 4.8 0.45 637 4.8 0.39 635 4.9 0.38 634	H.1 O.81 GHZ G.56 H.8 O.60 G50 G.57 5.0 O.50 G47 G.58 H.8 O.45 G37 G.60 H.8 O.39 G35 G.60 H.8 O.38 G34 G.61	H.1 O.81 GH2 G.56 1673 H.8 O.60 G50 G.57 166.9 5.0 O.50 G47 G.58 166.1 H.8 O.45 G37 G.60 166.2 H.8 O.39 G35 G.60 166.1 H.8 O.38 G34 G.61 166.1

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

Sample Containers	Preservatives	Du
VOA Vials × 3	HCI	므
		므
		므
		Sample Containers Preservatives

Well No.

SHANNON & WILSON, INC.

SOIL-GAS SAMPLING LOG

Client Krausz Compa	nies U.C.		Project Number	107889-001
Location Costco warehous			Project Name	and the second se
Near produce d				12/13/21 0840
Weather Clear	Temp (°F)		Sampling Personnel	DHE
Sample No. SSV -			Time (start) 2909	Time (end) 0915
Duplicate			Time (start)	Time (end)
Soil-Gas Port Type <u>Vapor pin</u> Installation Depth <u>Unknown</u> , ~	0.5	feet bgs	Date Installed Time Installed	11/8/18 1535
Canister ID <u>L 3313</u> Canister Volume (L) (Eurofins Modified TO-15
Final Canister Vacuum (inHg)5		-	Tracer Test Time	Helium (% or ppm)
Shut-in Test:	-29	al la seconda de	9:08:00	0
Vacuum applied to sample train	-21	inHg	9:08:03	0
Drop in vacuum after one minute Note: vacuum applied to sample train = evacuating sample trai	in to ≥ 7.35 inHg. Ar	inHg iy observable loss	9:08:0%	2
after 1 minute is considered a leak.			9:08:09	0
T			01:08:12	0
Tracer Test:	15	04-5-7	9:08:15	0
Helium applied at probe interface (shroud)	19000		9:08:18	0
Probe and sampling line purge rate	100	mL/min.		
Sample train length	4.22	ft l/ft		
Volume per foot (3/16" tubing) Sample train volume	28	mL/ft mL		
One sample train volume (purge time)	17	seconds		
Note: Helium detected at > 10% the helium applied under the s	shroud is considered			
Notes: Flow curt 25551#				
24"+14"+6"+37 =81 -	-12=6.75			

SHANNON & WILSON, INC.

930

SOIL-GAS SAMPLING LOG

Client The Gransz Comparies 16	Project Number	107889-001
Location Costos warehouse		
In cleaning supplies section at S.		12/13/21 930
Weather CLEAN Temp (°F) -35		
Sample No. SSV - 2	Time (start) <u>1000</u>	Time (end) <u>10 (</u> 3
Duplicate SSV - 12	Time (start) <u>i 000</u>	Time (end) 1013
Soil-Gas Port Type Vaper Pin	Date Installed	1118/18
Installation Depth Un Known ~0.5 feet bgs	Time Installed	1505
Canister ID 1289 140868	Laboratory	ELVOFUS
Canister Volume (L)		TO-IS Modified
Initial Canister Vacuum (inHg) <u>- 29 /- 28 5</u> Final Canister Vacuum (inHg) <u>-5</u>		
Leak Detection Tests: Pase / Fail	Tracer Test Time	Helium (% or ppm)
Shut-in Test:	9:57:03	0
Vacuum applied to sample train -29.5 in Hg	9:57:06	0
Drop in vacuum after one minuteinHg	9:57:09	0
Note: vacuum applied to sample train = evacuating sample train to ≥ 7.35 inHg. Any observable lo after 1 minute is considered a leak.	9:57:12	0
	9:57:15	0
Tracer Test:	9:57:18	0
Helium applied at probe interface (shroud) 🥠 🖓 or ppm	n	
Probe and sampling line purge ratemD/mL/min.		
Sample train length 5		
Volume per foot (3/16" tubing)4.22mL/ft		
Sample train volumemL		
One sample train volume (purge time) / S seconds Note: Helium detected at > 10% the helium applied under the shroud is considered a leak.		
Notes: frow controller 25045		
26"+17"+6+37=96		

SHANNON & WILSON, INC.

SOIL-GAS SAMPLING LOG

Client The Krausz Companies, U	C Project Number_ 107 889 -001
Location Cost co wavehouse	
Canned meat & source area, No end	
Weather Clear Temp (°F) -35	
Sample No. SSV - 3	Time (start) 1057 Time (end) 110 4
Duplicate	Time (start) Time (end)
Soil-Gas Port Type Vapor Pin	Date Installed
Installation Depth Unwnown, ~0,5 feet b	gs Time Installed 105
Canister ID 161806	Laboratory Eurofins
Canister Volume (L)	Analysis undified TO-15
Initial Canister Vacuum (inHg) <u>-28.5</u> Final Canister Vacuum (inHg) <u>-5</u>	
Leak Detection Tests: Pass / Fail	Tracer Test Time Helium (% or ppm)
Shut-in Test:	10:52:03 0
Vacuum applied to sample train -28 in Hg	(0:52:06 0
Drop in vacuum after one minute	10:52:09 0
Note: vacuum applied to sample train = evacuating sample train to ≥ 7.35 inHg. Any observab after 1 minute is considered a leak.	le loss 10:52:12 0
	10152115 0
Tracer Test:	10:52:18 0
Helium applied at probe interface (shroud), 5 % or p	ppm
Probe and sampling line purge rate mL/m	in.
Sample train length 6/7 5 ft	
Volume per foot (3/16" tubing) 4.22mL/ft	
Sample train volume28mL	
One sample train volume (purge time) 17 secon	ds
Note: Helium detected at > 10% the helium applied under the shroud is considered a leak.	
Notes: Mow controller 20298 24" +14" +6" +37" = 81	

PO# 173539-6-3404-KC

173539-KC

ease print or type. (Form desig										
UNIFORM HAZARDOUS WASTE MANIFEST	AKR000207175		2		399-4672		489	914	7 F	LE
5. Generator's Name and Mail THE KRAUSZ CO 44 MONTGOMEI SAN FRANCISC	OMPANIES, INC. RY STREET SUITE 2	388	BE	tor's Site Address NTLEY MACOLLEGE RBANKS,	ALL	an mailing addre	ess)			
Generator's Phone: 6. Transporter 1 Company Nar				×.		U.S. EPA ID		74		
US ECOLOGY A 7. Transporter 2 Company Nar	me					U.S. EPA ID	Number	8. jt.		
8. Designated Facility Name an						U.S. EPA ID	0284837	/2		
US ECOLOGY II 20400 LEMLEY I GRAND VIEW, II	DAHO, INC. RD						3114654	4		
9a. 9b. U.S. DOT Descript HM and Packing Group (if	tion (including Proper Shipping Name any))	e, Hazard Class, ID Numbe	er,	10. Conta No.	iners Type	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Cod	es
X n.o.s. (TETR	ste Environmentally h ACHLOROETHENE,			2	DM	320	Р	F002	*****	
2.	FLUOROMETHANE),	y, rgii er g	₩1/1							
3.										
4.										
	ns and Additional Information 102 IDW GROUNDWA			0069	1			-		
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 0	clare that the contents of t ar condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la	this consignment are fully according to applicable intr ched EPA Acknowledgmen arge quantity generator) o	and accurately de ernational and nat t of Consent. r (b) (if I am a sma	tional governm all quantity ge	ental regulations	nipping name . If export sh	ipment and I a	am the Prin	ary Year
15. GENERATOR'S/OFFERO marked and labeled/placa Exporter, I certify that the I certify that the waste min Generator's/Offeror's Printed/Ty Dana Fjor	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (clare that the contents of t ar condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la	this consignment are fully according to applicable intr ched EPA Acknowledgmen arge quantity generator) o	and accurately de ernational and nat t of Consent. r (b) (if I am a sma	tional governm all quantity ge	ental regulations	nipping name s. If export sh	ipment and I a	am the Prin	ary Year
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste min Generator's/Offeror's Printed/Ty Dana Fic 16. International Shipments Transporter signature (for expo	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CICE ON BEHAIF (Import to U.S. orts only):	clare that the contents of t ar condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la	this consignment are fully according to applicable intr ched EPA Acknowledgmen arge quantity generator) o	and accurately de ernational and nat t of Consent. r (b) (if I am a sma	tional governm all quantity ge	ental regulations	hipping name	ipment and I a	am the Prin	ary Year
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty Dance F, 2 16. International Shipments Transporter signature (for expo 17. Transporter Acknowledgmer Transporter 1 Printed/Typed Na	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform imization statement identified in 40 (yped Name CATE ON BEHAIF (Import to U.S. orts only): nt of Receipt of Materials imme	clare that the contents of t ar condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la	this consignment are fully according to applicable intu- sched EPA Acknowledgmen arge quantity generator) o SZ Signature	and accurately de rmational and nat t of Consent. r (b) (if I am a sma for to f en Port of en	tional governm all quantity ge	ental regulations	nipping name	ipment and I a	am the Prin hth Day	ary Year
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty Dana F, ic 16. International Shipments Transporter signature (for expo 17. Transporter Acknowledgmer Transporter 1 Printed/Typed Na	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform imization statement identified in 40 (yped Name CATE ON BEHAIF (Import to U.S. orts only): nt of Receipt of Materials imme	clare that the contents of t ar condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature	and accurately de rmational and nat t of Consent. r (b) (if I am a sma for to f en Port of en	tional governm all quantity ge	ental regulations	hipping name	ipment and I i Mor I i c Mon	am the Prin hth Day A I 4 th Day C 1	Year 21 Year Year
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty Dana F, ic 16. International Shipments Transporter signature (for expo 17. Transporter Acknowledgmer Transporter 1 Printed/Typed Na	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform imization statement identified in 40 (yped Name CATE ON BEHAIF (Import to U.S. orts only): nt of Receipt of Materials imme	clare that the contents of t ar condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la	this consignment are fully according to applicable intu- sched EPA Acknowledgmen arge quantity generator) o sc Signature Sput To Export from U.S.	and accurately de rmational and nat t of Consent. r (b) (if I am a sma for to f en Port of en	tional governm all quantity ge	ental regulations	hipping name	ipment and I i	am the Prin hth Day Day Day Day	Year
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty Dance Fjic 16. International Shipments Transporter signature (for expo 17. Transporter Acknowledgmer	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CATE ON BEHAIF (Import to U.S. orts only): nt of Receipt of Materials ime Lanc ame	clare that the contents of t er condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la of The Krau companies	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature	and accurately de ernational and nat t of Consent. r (b) (if I am a sma Port of en Date leav	tional governm all quantity ge	ental regulations	i. If export sh	ipment and I i Mor I i c Mon	am the Prin hth Day Day Day Day Day Day Day	Year Year Year Year Year
 15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty Dana F, ice 16. International Shipments 17. Transporter signature (for export 17. Transporter Acknowledgmer 17. Transporter 1 Printed/Typed Na Scotty Transporter 2 Printed/Typed Na 18. Discrepancy 	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform imization statement identified in 40 (o yped Name CATE on blinal F (o Import to U.S. orts only): int of Receipt of Materials ame Lanc ame	clare that the contents of t ar condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de ernational and nat t of Consent. r (b) (if I am a sma Port of en Date leav	all quantity ge	ental regulations	i. If export sh	ipment and I i Mor I i c Mon	am the Prin hth Day A I 4 th Day C 1	Year Year Year Year Year
 15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty Dana F, ice 16. International Shipments 17. Transporter signature (for export 17. Transporter Acknowledgmer 17. Transporter 1 Printed/Typed Na Scotty Transporter 2 Printed/Typed Na 18. Discrepancy 	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CATE on blinalF (Import to U.S. orts only): Int of Receipt of Materials imme Lane arme ace Quantity	clare that the contents of t er condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la of The Krau companies	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de ernational and nat t of Consent. r (b) (if I am a sma Port of en Date leav	all quantity ge	ental regulations	jection	ipment and I i Mor I i c Mon	am the Prin hth Day Day Day Day Day Day Day	Year Year Year Year Year
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty DCACCF, Concert, Concert Itansporter signature (for expo 16. International Shipments Transporter signature (for expo 17. Transporter Acknowledgmer Transporter 1 Printed/Typed Na ScoTTY Transporter 2 Printed/Typed Na 18. Discrepancy 18a. Discrepancy Indication Spi	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CATC ON BEHAIF (Import to U.S. orts only): Int of Receipt of Materials Imme Lanc are Quantity rator)	clare that the contents of t er condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la of The Krau companies	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de ernational and nat t of Consent. r (b) (if I am a sma Port of en Date leav	all quantity ge	ental regulations nerator) is true.	jection	ipment and I i Mor I i c Mon	th Day th Day th Day th Day th Day th Day	Year 2) Year Year Year ection
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty DCACE Transporter signature (for expo 16. International Shipments Transporter signature (for expo 17. Transporter Acknowledgmer Transporter 1 Printed/Typed Na ScoTTY Transporter 2 Printed/Typed Na 18. Discrepancy 18a. Discrepancy 18b. Alternate Facility (or Gener Facility's Phone: 18c. Signature of Alternate Facility	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CATE on blinal f (Import to U.S. orts only): Int of Receipt of Materials arme Lanc arme acce Quantity rator)	clare that the contents of t er condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la of The Krau Companies	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de emational and nat t of Consent. r (b) (if I am a sma Port of er Date leav Residue	all quantity ge	ental regulations nerator) is true.	jection	ipment and Li Mor I I Mon	th Day th Day th Day th Day th Day th Day Full Rej	Year 2) Year Year Year ection
 15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty DCACET, Contemporter Contemporter signature (for exporter) 16. International Shipments Transporter signature (for exporter) 17. Transporter signature (for exporter) 17. Transporter 1 Printed/Typed Na Scotty // Transporter 2 Printed/Typed Na 18. Discrepancy 18a. Discrepancy Indication Sputation Sputation Sputation 18b. Alternate Facility (or Generic Facility's Phone: 18c. Signature of Alternate Facility 	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CATC ON BEHAIF (Import to U.S. orts only): Int of Receipt of Materials Imme Lanc are Quantity rator)	clare that the contents of t er condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la of The Krau Companies	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de emational and nat t of Consent. r (b) (if I am a sma Port of er Date leav Residue	all quantity ge	ental regulations nerator) is true.	jection	ipment and Li Mor I I Mon	th Day th Day th Day th Day th Day th Day Full Rej	Year 2) Year Year Year ection
 15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the l certify that the waste mir Generator's/Offeror's Printed/Ty DCMCF, Composition of the second Transporter signature (for export 17. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Scotty D Transporter 2 Printed/Typed Na 18. Discrepancy 18a. Discrepancy Indication Sput 18b. Alternate Facility (or Gener Facility's Phone: 18c. Signature of Alternate Facility 19. Hazardous Waste Report M 1. 	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CATE on blinal f (Import to U.S. orts only): Int of Receipt of Materials arme Lanc arme acce Quantity rator)	es for hazardous waste tre	this consignment are fully according to applicable into the EPA Acknowledgment arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de ernational and nat t of Consent. r (b) (if I am a sma Port of er Date leav Residue anifest Reference	all quantity ge	ental regulations nerator) is true.	jection	ipment and Li Mor I I Mon	th Day th Day th Day th Day th Day th Day Full Rej	Year 2) Year Year Year ection
15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty DCACE, Transporter signature (for expo 16. International Shipments Transporter signature (for expo 17. Transporter Acknowledgmer Transporter 1 Printed/Typed Na Scotty D Transporter 2 Printed/Typed Na 18. Discrepancy 18a. Discrepancy 18b. Alternate Facility (or Gener Facility's Phone:	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in prope contents of this consignment conform nimization statement identified in 40 (yped Name CATC ON BEHAIF (Import to U.S. orts only): Int of Receipt of Materials Imme Lanc are Quantity rator)	clare that the contents of t er condition for transport a n to the terms of the attac CFR 262.27(a) (if I am a la of The Krau companies	this consignment are fully according to applicable into the EPA Acknowledgmen arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de ernational and nat t of Consent. r (b) (if I am a sma Port of en Date leav	all quantity ge	ental regulations nerator) is true.	jection	ipment and Li Mor I I Mon	th Day th Day th Day th Day th Day th Day	Year Year Year Year Year
 15. GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir Generator's/Offeror's Printed/Ty DCAC F.; 16. International Shipments Transporter signature (for export 17. Transporter Acknowledgmer Transporter 1 Printed/Typed National Scotty D Transporter 2 Printed/Typed National Transporter 2 Printed/Typed National Tra	DR'S CERTIFICATION: I hereby dec arded, and are in all respects in proper contents of this consignment conform imization statement identified in 40 (yped Name CNCC ON BEHAIF (Import to U.S. orts only): Int of Receipt of Materials Impediate and area Quantity rator) lility (or Generator) lanagement Method Codes (i.e., code 2.	es for hazardous waste tre	this consignment are fully according to applicable into the EPA Acknowledgment arge quantity generator) o SZ Signature Export from U.S. Signature Signature	and accurately de ernational and nat t of Consent. r (b) (if I am a sma Port of er Date leav Residue anifest Reference	all quantity ge	ental regulations nerator) is true.	jection	ipment and Li Mor I I Mon	th Day th Day th Day th Day th Day th Day Full Rej	Ye Z Ye Ye Ye Ye

Ple	ase pr	int or type.		*a+			Form A	pproved. OMB No. 2	2050-0039
1		FORM HAZARDOUS WASTE MANIFEST	21. Generator ID Number	22. Page	23. Mani	fest Tracking Nu		pprotodi onib rio. i	
		(Continuation Sheet)	AKR000207175		2	0048991	47FLE		_
	24.0	BENTLEY MAL	2040						
		32 COLLEGE F FAIRBANKS, A	\$99701						
	25					U.S. EPA ID	Number		
	20.	Transporter Company Name 3 TOTE MARITIM	E ALASKA, LLC.				0703979	55	
	26. 1	ransporter Company Name				U.S. EPA ID	Number		
	-	A FOINDUSTRIA					13564274	2	
	27a. HM	27b. U.S. DOT Description (including Proper Shi and Packing Group (if any))	oping Name, Hazard Class, ID Number,	28. Cor No.	ntainers Type	29. Total Quantity	30. Unit Wt./Vol.	31. Waste Codes	
				110.	Type	ununity	110.101	1 1	
									_
GENERATOR									
ENE	-				-	_			_
0									
					<u>е</u>				
			2						
						391			
							-		
			12						
	32. S	pecial Handling Instructions and Additional Information	tion	1	_				
*	33 7	ansporter Acknowledgment of Receipt of	Materiale						
TER	Printe	d/Typed Name	Si	gnature				Month Day	Year
OR									1
TRANSPORTER	34. Ti	ansporter Acknowledgment of Receipt of		1					
TR	Printe	d/Typed Name	Si	gnature				Month Day	Year
~	35. D	iscrepancy							1
H									
DESIGNATED FACILITY									
E	36 H	azardous Waste Report Management Mathed Oct	ae (i.e., codes for hazardous wasta tradmont diasas	al and requelles materia					
SNAT	30. H	acaroous maste report management method Cod	es (i.e., codes for hazardous waste treatment, dispos	ai, and recycling systems	9		1		
ESIC									
Q									Q
P	Form	8700-22A (Rev. 12-17) Previous editions a	re obsolete.	DE	SIGNATE	D FACILITY	TO EPA's	e-MANIFEST S	YSTEM

Appendix C

Building Inventory and Indoor Air Sampling Questionnaire

ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE

This form should be prepared by a person familiar with indoor air assessments with assistance from a person knowledgeable about the building. Complete this form for each building in which interior samples (e.g., indoor air, crawl space, or subslab soil gas samples) will be collected. Section I of this form should be used to assist in choosing an investigative strategy during workplan development. Section II should be used to assist in identification of complicating factors during a presampling building walkthrough.

Preparer's Name Dana Fjore	Date/Time Prepared 12/14/21 1415
Preparer's Affiliation Shannon & Wilson, Inc.	Phone No. (907) 987-7174
Purpose of Investigation Vapor Intension as part	OF BMES MONITORING

SECTION I: BUILDING INVENTORY

1. OCCUPANT OR BUILDING PERSONNEL:

Last Name Soule	First Name Jason (manager)
Address 48 College Rd	3
County Failcharks	
Phone No. (907)230-8586	
rumber of Occupants/persons at this focut	on various (Shopes) Age of Occupants (child to ad
OWNER or LANDLORD: (Check if sam	131 full-time employees 182 put time, adult (employees e as occupant_) Costco leases building for owner
OWNER or LANDLORD: (Check if sam	131 full-time employees 182 put time, adult (employees
	131 full-time employees 182 part-time, adult (employees e as occupant) Costco leases building for owner
OWNER or LANDLORD: (Check if sam Interviewed: Y / 🔊 Last Name <u>Kamh</u>	131 full-time employees 182 part-time, adult (employees e as occupant) Costco leases building for owner

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential
Industrial

2.

School Church Commercial/Multi-use Other

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other
If multiple units, how n	nany? <u>NIA</u>	
If the property is comm	ercial, type?	
Business Types(s)_	wholesale wave	nause
Does it include resid	lences (i.e., multi-use)? Y / کم /	D If yes, how many?
Other characteristics:	mezzonine over offi	tes (brockroon) hup for electrical Building age 28 Horcompressors/condensiers
Number of floors	mezzonine over fines	hup for electrical Building age 28
rumber of noors	mezzanine over baken	for compressors / condensers
Is the building insul	ated? P/N	How air tight? Tight / Average / Not Tight
Have occupants noticed	l chemical odors in the buil	ding? YN
If yes, please describe:	ta	

Use air current tubes, tracer smoke, or knowledge about the building to evaluate airflow patterns and qualitatively describe:

Airflow	between	floors	

4.

mezzanines are all open to the rest of the building, so tree air excl	roinge.
fons in bldg for circulating air	_
Three mezzanives: ane at no sheast comer, one at southeast corner,	oneat
Southwest corner.	

100

5

Airflow in building near suspected source

Sub-slab differential	pressure changes	with temperature.	Colder tonps	s = greater
SSDP readings.				

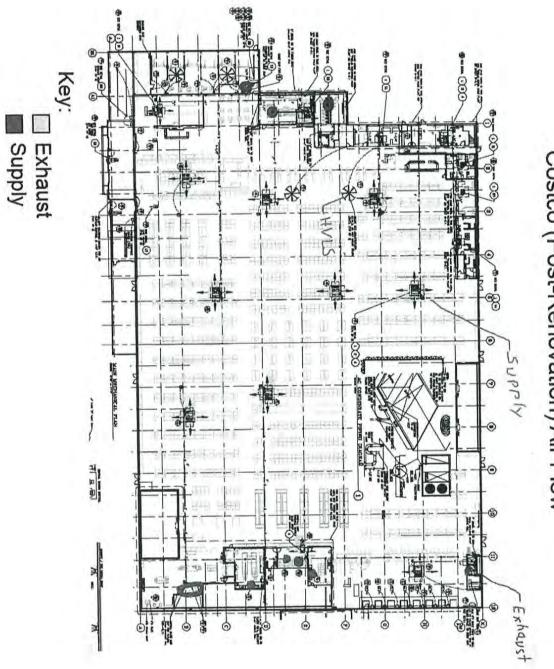
Outdoor air infiltration

frequently for supports front doors open and close HVAC System exchanges an estimated 16,000 cubic feet per minute 0.22 air exchanges per how 05

Infiltration into air ducts in food court, H-2 H-2

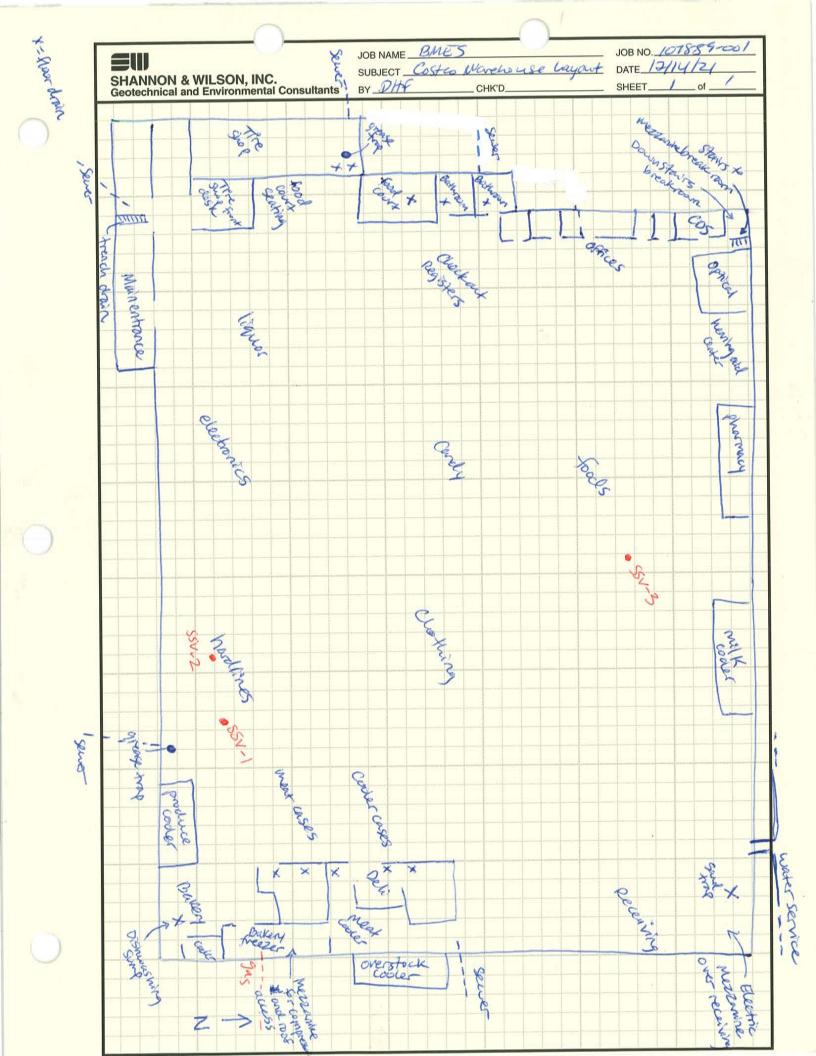
BASEMENT AND CONSTR	UCTION CHA	RACTERIST	ICS (Circle all tha	tapply) & No basement, responses
				tapply) & No basement, responses
a. Above grade construction:	wood frame	log	concrete	brick
	constructed o with enclosed		constructed on with open air sj	
b. Basement type:	full	crawlspace	slab-on-grade	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	unsealed	sealed	sealed with	
e. Foundation walls:	poured	block	stone	other
f. Foundation walls:	unsealed	sealed	sealed with	
g. The basement is:	wet	damp	dry N/A	
h. The basement is:	finished	unfinished	partially finishe	ed N/A
i. Sump present?	(D) N bel			o catch ninsewater
·	1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			
j. Water in sump?	(I IN / not aj	oplicable and	ned nightly	
			thed nightly (feet)	
asement/Lowest level depth belo	w gradeC	>	(feet)	
asement/Lowest level depth belo entify potential soil vapor entry	w grade points and app	> proximate size	(feet) (e.g., cracks, util	ity ports, drains)
nsement/Lowest level depth belo entify potential soil vapor entry The Floor is in good Ge	w grade points and app malifian and	> proximate size I sealed.	(feet) (e.g., cracks, utili Drains are	ity ports, drains)
entify potential soil vapor entry The Floor is in good Co Condensing units, an	w grade points and app malifian and	> proximate size I sealed.	(feet) (e.g., cracks, utili Drains are	ity ports, drains)
nsement/Lowest level depth belo entify potential soil vapor entry The Floor is in good Ge	w grade <u></u> points and app melipion and red in from	> proximate size il sealed. + entrene	(e.g., cracks, utili Drains are e- Montuele	ity ports, drains)
entify potential soil vapor entry The floor is in good Ce Condensing units, an and wear bakery.	w grade <u></u> points and app melition and well in from all CONDITIC	> proximate size d sealed. t entence ONING (Circle	(e.g., cracks, utili Drains are e Monuse all that apply)	ity ports, drains) located in areas with simu s for-grease traps in time of
entify potential soil vapor entry The floor is in good Co condensing units, an and war bakery. HEATING, VENTING and A Type of heating system(s) use Hot air circulation Space Heaters	w grade points and app welthin and welthin and	proximate size I sealed. F entrance DNING (Circle ng: (Circle all t Hot n Rac	(feet) (e.g., cracks, utili Drains are e - Manusle e all that apply) that apply – not pri water baseboard liant floor	ity ports, drains) <u>located in areas with Simi</u> s for-grease trops in time of the areas
entify potential soil vapor entry <u>The Floor is in good Condensing units</u> , and <u>condensing units</u> , and <u>and user bakeng</u> . HEATING, VENTING and A Type of heating system(s) use <u>Hot air circulation</u> Space Heaters <u>Electric baseboard</u>	w grade points and app weltion and weltion and	proximate size I sealed. F entrance DNING (Circle ng: (Circle all t Hot n Rac	(feet) (e.g., cracks, utili Drains are e - Manusle e all that apply) that apply – not pri water baseboard	ity ports, drains) located in areas with simu s for-grease traps in time of
asement/Lowest level depth belo entify potential soil vapor entry The floor is in good Ce Condensing units, and and war bakery. HEATING, VENTING and A Type of heating system(s) use Hot air circulation Space Heaters Electric baseboard The primary type of fuel used	w grade points and app weltfion and weltfion and weltfion	proximate size l sealed. Contractor Con	(feet) (e.g., cracks, utili Drains are e	ity ports, drains) <u>located in areas with Simi</u> s for-grease trops in time of the areas
asement/Lowest level depth belo entify potential soil vapor entry The floor is in good Co condensing units, and and war bakery. HEATING, VENTING and A Type of heating system(s) use Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas	w grade points and app weltion and weltion and	proximate size l sealed. Contractor Con	(feet) (e.g., cracks, utili Drains are e	ity ports, drains) <u>located in areas with Simi</u> s for-grease trops in time of the areas

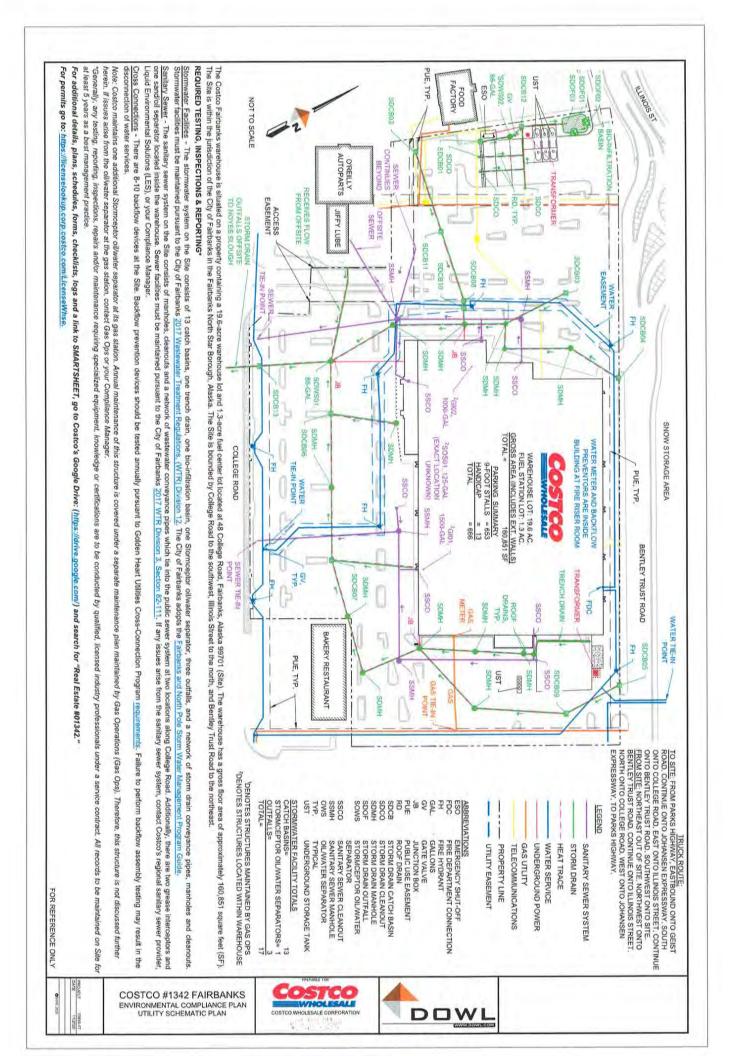
Do any of the heating appliances have cold-air intakes? N Type of air conditioning or ventilation used in this building:


Boiler/furnace located in: N/A, notwal gas

Outdoors

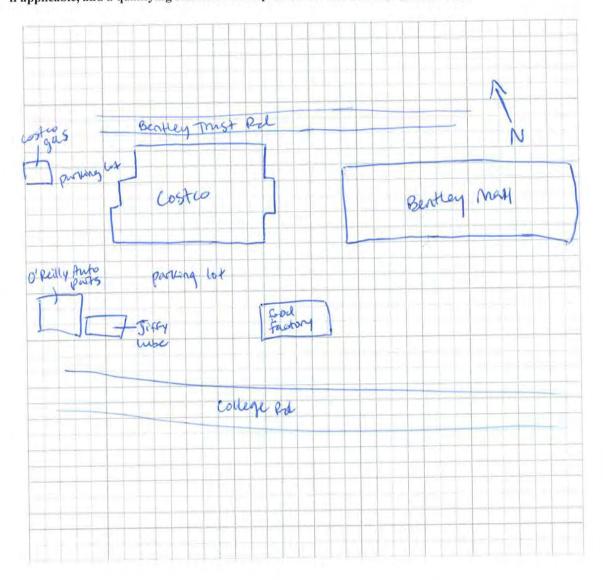
Main Floor


Other


		a la la serie de la serie d	
Commercial HV	AC Heat-recovery system	m Passive air system	
Are there air distrib	oution ducts present?	Ø/N	
the locations of air s	supply and exhaust points on	the floor plan.	and the tightness of duct joints. Indi
		poly and exhaust	is indicated on the
attached f	worplan,		
		-	
Is there a radon mit	tigation system for the buildin	ag/structure? V /NDate of	Installation MA
	-genon of orem for the second	igisti acture. I appate of	histanation NLP
Is the system active			
Is the system active			InstantationNLP
Is the system active OCCUPANCY			InstantationNLP
	or passive? Active/Pass	sive NZA	dom Almost Never
OCCUPANCY Is basement /lowest	or passive? Active/Pass	sive NA Occasionally Sel	dom Almost Never
OCCUPANCY Is basement /lowest <u>Level Genera</u>	or passive? Active/Pass	sive NA Occasionally Sel	dom Almost Never
OCCUPANCY Is basement/lowest Level Genera Basement	or passive? Active/Pass level occupied? Full-time al Use of Each Floor (e.g. fam	sive NA Occasionally Sel ily room, bedroom, laundr	dom Almost Never <u>v, workshop, storage)</u>
OCCUPANCY Is basement/lowest Level Genera Basement 1 st Floor	or passive? Active/Pass level occupied? Full-time al Use of Each Floor (e.g. fam	sive NLA Occasionally Sel <u>illy room, bedroom, laundr</u> Suopping, food p	dom Almost Never y, workshop, storage)
OCCUPANCY Is basement/lowest Level Genera Basement	or passive? Active/Pass level occupied? Full-time al Use of Each Floor (e.g. fam	sive NA Occasionally Sel ily room, bedroom, laundr	dom Almost Never y, workshop, storage)
OCCUPANCY Is basement/lowest Level Genera Basement 1 st Floor	or passive? Active/Pass level occupied? Full-time al Use of Each Floor (e.g. fam	sive NLA Occasionally Sel <u>illy room, bedroom, laundr</u> Suopping, food p	dom Almost Never y, workshop, storage)
OCCUPANCY Is basement/lowest Level Genera Basement 1 st Floor 2 nd Floor	or passive? Active/Pass level occupied? Full-time al Use of Each Floor (e.g. fam	sive NLA Occasionally Sel <u>illy room, bedroom, laundr</u> Suopping, food p	dom Almost Never y, workshop, storage)
OCCUPANCY Is basement/lowest Level Genera Basement 1 st Floor 2 nd Floor	or passive? Active/Pass level occupied? Full-time al Use of Each Floor (e.g. fam blesale warehouse, annes for brack	sive NLA Occasionally Sel <u>illy room, bedroom, laundr</u> Suopping, food p	dom Almost Never y, workshop, storage)
OCCUPANCY Is basement/lowest Level Genera Basement 1 st Floor 2 nd Floor 3 rd Floor	or passive? Active/Pass level occupied? Full-time al Use of Each Floor (e.g. fam blesale warehouse, annes for brack	sive NLA Occasionally Sel ily room, bedroom, laundr Suopping, God p	dom Almost Never y, workshop, storage)

Costco (Post-Renovation) Air Flow

Exhauston each correct



10. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING QUESTIONNAIRE

This section should be completed during a presampling walkthrough. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY a)

	(IN The shop attached to building, (IN the closed to rest of bldg, has 2 exh (IN/NA perf tubes (line a radiator)
Is there an attached garage?	ON closed to rest of blag; has a can
Does the garage have a separate heating unit?	(V)/N/NA next tubes (line a radiator)
Are petroleum-powered machines or vehicles	O/ N/NA
stored in the garage (e.g., lawnmower, ATV, car)	Please specify venicles
Has the building ever had a fire?	YN When? roof caught fire during remoder
Is a kerosene or unvented gas space heater present?	Y / Ø Where?
Is there a workshop or hobby/craft area?	1)/N Where & Type tire shop
Is there smoking in the building?	Y / How frequently?
Has painting/staining been done in the last 6 months?	(Y) N Where & When? minor touch-up
Is there new carpet, drapes or other textiles?	Y / Where & When?
Is there a kitchen exhaust fan?	Ø/N If yes, where vented?
Is there a bathroom exhaust fan?	(V)/N If yes, where vented? verted outside
Is there a clothes dryer?	Y/N If yes, is it vented outside? Y/N NJA
Are cleaning products, cosmetic products, or pesticides	used that could interfere with indoor air sampling? 🧷 / N
If yes, please describe <u>Occasional use of disi</u>	ofectants
Do any of the building occupants use solvents at work?	ØIN intreship
bo any of the bunding occupants use solvents at work.	

(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist

If yes, what types of solvents are used? non-chlorinated Solvents

If yes, are their clothes washed at work? YIND

Do any of the building occupants regularl	use or work at a dry-cleaning service? (Circle appropriate response)
---	--	------------------------------

Yes, use dry-cleaning regularly (weekly) Shar white	No
Yes, use dry-cleaning infrequently (monthly or less)	Unknown

Yes, work at a dry-cleaning services

2. PRODUCT INVENTORY FORM (For use during building walkthrough)

Make & Model of field instrument used

List specific products found in the residence that have the potential to affect indoor air quality:

Loca- tion	Product Description	Site (units)	Condition*	Chemical Ingredients	Field Instru- ment Reading (units)	Photo ** <u>Y / N</u>
-	1					
		1				· · · · ·
_						
_					-	
_						
		-				
_						
_			_			
		-				-
		· · · · · · · · · · · · · · · · · · ·				
		<u></u>	-			-
		-		2	-	
_			-	÷	-	
			-			
-						

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

This form modified from:

ITRC (Interstate Technology & Regulatory Council). 2007. Vapor Intrusion Pathway: A Practical Guideline. VI-1. Washington, D.C.: Interstate Technology & Regulatory Council, Vapor Intrusion Team. <u>www.itrcweb.org.</u>

The Alaska Department of Environmental Conservation's Contaminated Sites Program protects human health and the environment by managing the cleanup of contaminated soil and groundwater in Alaska. For more information, please contact our staff at the Contaminated Site program closest to you: Juneau: 907-465-5390 / Anchorage: 907-269-7500

linits are in LUC inclues of water column

²Email photos of differential pressure readings, and Air Pressure Trend Log to jharrington@pcenv.com.

¹Include units

Month	Data	1		Differential Pressure Reading	ssure Reading		Weather Description		Photo of Log
month	Date	IIme	Recorder Name	Reading ¹	Photo Sent?* yes/no	Wind calm, light, heavy	Outdoor Temperature (°F)	Precipitation none, rain, snow	Sent?*
1	orlo	9.00	Loto	0.74		light	O _o	Now	
2	intor	C: White	when	N.N.O		(isut	160	Ser	
ω	iolin		Sur	D.iA		num	540	ANG	
4	10/13	CN.O	you 4	620		22	-42°	Deve	
vi	derich miler	(Mich)	SIG IN	0.00	0	Calum	on'	Now	
σ				Ŧ					
7									
00									
.9	3	s. t							
10 -	144 47								4
ш									• (4
12									_

•

The stand of the stand

Air Pressure Trend Log Costco Fairbanks Fairbanks, Alaska

APPENDIX D: LABORATORY REPORTS

Appendix D Laboratory Reports

CONTENTS

- SGS Work Order 1218012
- Eurofins Work Order 2112475

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Road Fairbanks, AK 99709 (907)479-0600

Report Number: 1218012

Client Project: 107889-001 BMES

Dear Dana Fjare,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen C. Ede Stanton C. Ede 2021.12.28 16:33:15 -09'00'

Jennifer Dawkins **Project Manager** Jennifer.Dawkins@sgs.com Date

Print Date: 12/28/2021 4:20:06PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1218012 Project Name/Site: 107889-001 BMES Project Contact: Dana Fjare

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 12/28/2021 4:20:07PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 12/03/2021 for Chloroform and TTHMs by EPA 524.2, Nitrate as N by SM 4500NO3-F and DOC by 5310B) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

exceeded allowable regulatory or control limits.
control limits.
alyte is found in a blank associated with the sample.
vation Verification
ing Calibration Verification
n Factor
i.e., maximum method detection limit)
It is above the calibrated range.
< · · · · · · · · · · · · · · · · · · ·
Nerification
is an estimation.
rol Spike (Duplicate)
titation Check
n (i.e., 1/2 of the LOQ)
tion (i.e., reporting or practical quantitation limit)
uplicate)
alyte is not detected.
Difference
Fo Count
alyte was analyzed for but not detected.
"Total Solids" have already been adjusted for moisture content.
PP.

Print Date: 12/28/2021 4:20:09PM

Note:

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

	Sample Summary									
Client Sample ID	Lab Sample ID	Collected	Received	Matrix						
MW-1R	1218012001	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-100R	1218012002	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-4R	1218012003	12/10/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-104R	1218012004	12/10/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-2R	1218012005	12/10/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-3R	1218012006	12/10/2021	12/17/2021	Water (Surface, Eff., Ground)						
BMES-EB	1218012007	12/10/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-5	1218012008	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-6	1218012009	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-7	1218012010	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-8	1218012011	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-9	1218012012	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-10	1218012013	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-11	1218012014	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-12	1218012015	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
MW-13	1218012016	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
Trip Blank-1	1218012017	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						
Trip Blank-2	1218012018	12/09/2021	12/17/2021	Water (Surface, Eff., Ground)						

<u>Method</u> SW8260D Method Description

Volatile Organic Compounds (W) FULL

Print Date: 12/28/2021 4:20:11PM

Client Sample ID: MW-1R Lab Sample ID: 1218012001 Parameter Result Units 1,1,1,2-Tetrachloroethane 3.11 ug/L Volatile GC/MS 1,2-Dichloroethane 2.64 ug/L Chloroform 4.33 ug/L Tetrachloroethene 1150 ug/L Trichloroethene 2.42 ug/L Trichlorofluoromethane 40.3 ug/L Client Sample ID: MW-100R Lab Sample ID: 1218012002 Parameter <u>Result</u> <u>Units</u> 1,1,1,2-Tetrachloroethane 3.09 ug/L Volatile GC/MS 1.2-Dichloroethane 2.53 ug/L Chloroform 4.16 ug/L Tetrachloroethene 1150 ug/L Trichloroethene 2.36 ug/L Trichlorofluoromethane 41.3 ug/L Client Sample ID: MW-4R Lab Sample ID: 1218012003 Parameter Result Units 1,2-Dichloroethane 0.393J ug/L Volatile GC/MS 0.437J cis-1,2-Dichloroethene ug/L Tetrachloroethene 42.6 ug/L trans-1,2-Dichloroethene 1.05 ug/L Trichloroethene 0.923J ug/L Trichlorofluoromethane 5.47 ug/L Client Sample ID: MW-104R Lab Sample ID: 1218012004 Parameter Result Units 1,2-Dichloroethane Volatile GC/MS 0.388J ug/L cis-1,2-Dichloroethene 0.498J ug/L Tetrachloroethene 39.1 ug/L trans-1,2-Dichloroethene 1.22 ug/L Trichloroethene 1.02 ug/L Trichlorofluoromethane 5.41 ug/L Client Sample ID: MW-2R Lab Sample ID: 1218012005 Parameter Result Units Volatile GC/MS Benzene 0.330J ug/L Chloroform 8.16 ug/L cis-1.2-Dichloroethene 1.41 ug/L Tetrachloroethene 187 ug/L Trichloroethene 1.56 ug/L

Detectable Results Summary

Print Date: 12/28/2021 4:20:12PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Trichlorofluoromethane

ug/L

16.8

Detectable Results Summary

Client Sample ID: MW-3R			
Lab Sample ID: 1218012006	Parameter	Result	<u>Units</u>
Volatile GC/MS	Benzene	0.255J	ug/L
	cis-1,2-Dichloroethene	0.606J	ug/L
	Tetrachloroethene	0.364J	ug/L
	Trichlorofluoromethane	1.84	ug/L
Client Sample ID: BMES-EB			
Lab Sample ID: 1218012007	Paramotor	Popult	Units
Volatile GC/MS	<u>Parameter</u> Benzene	<u>Result</u> 0.137J	ug/L
Volatile GC/WS	Toluene	0.645J	ug/L
	loudite	0.0400	49/2
Client Sample ID: MW-5			
Lab Sample ID: 1218012008	<u>Parameter</u>	Result	<u>Units</u>
Volatile GC/MS	1,2-Dichloroethane	0.422J	ug/L
	Benzene	0.135J	ug/L
	Chloroform	0.373J	ug/L
	cis-1,2-Dichloroethene	1.14	ug/L
	Tetrachloroethene	60.4	ug/L
	trans-1,2-Dichloroethene	0.381J	ug/L
	Trichloroethene	7.03	ug/L
	Trichlorofluoromethane	6.12	ug/L
Client Sample ID: MW-6			
Lab Sample ID: 1218012009	Parameter	Result	Units
Volatile GC/MS	1,2-Dichloroethane	0.404J	ug/L
	Benzene	0.159J	ug/L
	Chloroform	0.474J	ug/L
	cis-1,2-Dichloroethene	1.59	ug/L
	Tetrachloroethene	91.3	ug/L
	Trichloroethene	9.29	ug/L
	Trichlorofluoromethane	3.99	ug/L
Client Sample ID: MW-7			-
Lab Sample ID: 1218012010	Densester	Desult	1.1 34
-	Parameter	<u>Result</u> 1.07	<u>Units</u>
Volatile GC/MS	cis-1,2-Dichloroethene Tetrachloroethene	4.21	ug/L ug/L
	Trichloroethene	1.79	ug/L
	Trichlorofluoromethane	0.749J	•
	meniorondoromethane	0.7495	ug/L
Client Sample ID: MW-8			
Lab Sample ID: 1218012011	Parameter	Result	<u>Units</u>
Volatile GC/MS	Chloroform	1.12	ug/L
	cis-1,2-Dichloroethene	1.11	ug/L
	Tetrachloroethene	3.21	ug/L
	trans-1,2-Dichloroethene	5.95	ug/L
	Trichloroethene	1.94	ug/L

Print Date: 12/28/2021 4:20:12PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary Client Sample ID: MW-9 Lab Sample ID: 1218012012 Parameter Result Units cis-1,2-Dichloroethene 2.23 ug/L Volatile GC/MS Tetrachloroethene 9.62 ug/L trans-1,2-Dichloroethene 8.82 ug/L Trichloroethene 2.58 ug/L Client Sample ID: MW-10 Lab Sample ID: 1218012013 Parameter Result Units Volatile GC/MS 1,2-Dichloroethane 0.456J ug/L Benzene 0.152J ug/L cis-1,2-Dichloroethene 3.60 ug/L ug/L Tetrachloroethene 43.0 trans-1,2-Dichloroethene 0.374J ug/L Trichloroethene 7.61 ug/L Trichlorofluoromethane 0.682J ug/L Client Sample ID: MW-11 Lab Sample ID: 1218012014 Result <u>Units</u> Parameter Volatile GC/MS cis-1,2-Dichloroethene ug/L 1.11 Tetrachloroethene 5.60 ug/L trans-1,2-Dichloroethene 8.05 ug/L Trichloroethene 2.23 ug/L Trichlorofluoromethane 6.09 ug/L Client Sample ID: MW-12 Lab Sample ID: 1218012015 Parameter Result Units Benzene 0.124J ug/L Volatile GC/MS cis-1,2-Dichloroethene 2.77 ug/L Tetrachloroethene 117 ug/L Trichloroethene 5.32 ug/L Trichlorofluoromethane 1.92 ug/L Client Sample ID: MW-13 Lab Sample ID: 1218012016 Parameter Result Units Chloroform Volatile GC/MS 2.15 ug/L Tetrachloroethene 31.9 ug/L Trichlorofluoromethane 2.95 ug/L

Print Date: 12/28/2021 4:20:12PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-1R

Client Sample ID: **MW-1R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012001 Lab Project ID: 1218012

Collection Date: 12/09/21 21:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Parameter_	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	3.11	0.500	0.150	ug/L	1		12/17/21 16:34
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:34
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 16:34
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 16:34
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,2-Dichloroethane	2.64	0.500	0.200	ug/L	1		12/17/21 16:34
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:34
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:34
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 16:34
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:34
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 16:34
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:34
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 8 of 79

Results of MW-1R

Client Sample ID: **MW-1R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012001 Lab Project ID: 1218012

Collection Date: 12/09/21 21:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	4.33	1.00	0.310	ug/L	1		12/17/21 16:34
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:34
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:34
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 16:34
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Tetrachloroethene	1150	50.0	15.5	ug/L	50		12/21/21 17:38
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:34
Trichloroethene	2.42	1.00	0.310	ug/L	1		12/17/21 16:34
Trichlorofluoromethane	40.3	1.00	0.310	ug/L	1		12/17/21 16:34
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:34
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 16:34
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 16:34
Surrogates							
1,2-Dichloroethane-D4 (surr)	94.3	81-118		%	1		12/17/21 16:34
4-Bromofluorobenzene (surr)	102	85-114		%	1		12/17/21 16:34
Toluene-d8 (surr)	105	89-112		%	1		12/17/21 16:34

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-1R

Client Sample ID: **MW-1R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012001 Lab Project ID: 1218012

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 16:34 Container ID: 1218012001-A

Analytical Batch: VMS21440 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/21/21 17:38 Container ID: 1218012001-B Collection Date: 12/09/21 21:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX38298 Prep Method: SW5030B Prep Date/Time: 12/21/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 10 of 79

Results of MW-100R

Client Sample ID: **MW-100R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012002 Lab Project ID: 1218012

Collection Date: 12/09/21 20:50 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	3.09	0.500	0.150	ug/L	1		12/17/21 16:49
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:49
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 16:49
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 16:49
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,2-Dichloroethane	2.53	0.500	0.200	ug/L	1		12/17/21 16:49
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:49
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:49
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 16:49
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:49
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 16:49
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:49
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-100R

Client Sample ID: **MW-100R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012002 Lab Project ID: 1218012

Collection Date: 12/09/21 20:50 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Deremeter	Beault Quel			Linita		Allowable	Data Analyzad
<u>Parameter</u> Chloroform	<u>Result Qual</u> 4.16	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.310	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	<u>Date Analyzed</u> 12/17/21 16:49
Chloromethane	4.16 0.500 U	1.00	0.310	ug/L ug/L	1		12/17/21 16:49
	0.500 U	1.00	0.310	-	1		12/17/21 16:49
cis-1,2-Dichloroethene	0.300 U 0.250 U	0.500	0.310	ug/L	1		12/17/21 16:49
cis-1,3-Dichloropropene Dibromochloromethane	0.250 U	0.500		ug/L	1		12/17/21 16:49
Dibromochloromethane	0.250 U 0.500 U		0.150	ug/L			12/17/21 16:49
	0.500 U	1.00	0.310	ug/L	1		
Dichlorodifluoromethane		1.00	0.310	ug/L	1		12/17/21 16:49
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 16:49
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Tetrachloroethene	1150	50.0	15.5	ug/L	50		12/21/21 17:53
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:49
Trichloroethene	2.36	1.00	0.310	ug/L	1		12/17/21 16:49
Trichlorofluoromethane	41.3	1.00	0.310	ug/L	1		12/17/21 16:49
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:49
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 16:49
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 16:49
Surrogates							
1,2-Dichloroethane-D4 (surr)	92.5	81-118		%	1		12/17/21 16:49
4-Bromofluorobenzene (surr)	102	85-114		%	1		12/17/21 16:49
Toluene-d8 (surr)	104	89-112		%	1		12/17/21 16:49

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-100R

Client Sample ID: **MW-100R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012002 Lab Project ID: 1218012

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 16:49 Container ID: 1218012002-A

Analytical Batch: VMS21440 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/21/21 17:53 Container ID: 1218012002-B Collection Date: 12/09/21 20:50 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX38298 Prep Method: SW5030B Prep Date/Time: 12/21/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 13 of 79

Results of MW-4R

Client Sample ID: **MW-4R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012003 Lab Project ID: 1218012

Collection Date: 12/10/21 11:16 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:04
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:04
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 17:04
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 17:04
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,2-Dichloroethane	0.393 J	0.500	0.200	ug/L	1		12/17/21 17:04
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:04
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:04
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 17:04
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:04
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 17:04
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:04
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-4R

Client Sample ID: **MW-4R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012003 Lab Project ID: 1218012

Collection Date: 12/10/21 11:16 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

	Desuit Qual			Linite		<u>Allowable</u>	Data Analyzad
<u>Parameter</u> Chloroform	<u>Result Qual</u> 0.500 U	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.310	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	<u>Date Analyzed</u> 12/17/21 17:04
Chloromethane	0.500 U	1.00	0.310	ug/∟ ug/L	1		12/17/21 17:04
•	0.300 U 0.437 J	1.00	0.310	-			12/17/21 17:04
cis-1,2-Dichloroethene	0.437 J 0.250 U	0.500	0.310	ug/L	1 1		12/17/21 17:04
cis-1,3-Dichloropropene	0.250 U	0.500		ug/L			12/17/21 17:04
Dibromochloromethane			0.150	ug/L	1		
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 17:04
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Tetrachloroethene	42.6	1.00	0.310	ug/L	1		12/17/21 17:04
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
trans-1,2-Dichloroethene	1.05	1.00	0.310	ug/L	1		12/17/21 17:04
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:04
Trichloroethene	0.923 J	1.00	0.310	ug/L	1		12/17/21 17:04
Trichlorofluoromethane	5.47	1.00	0.310	ug/L	1		12/17/21 17:04
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:04
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 17:04
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 17:04
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		12/17/21 17:04
4-Bromofluorobenzene (surr)	105	85-114		%	1		12/17/21 17:04
Toluene-d8 (surr)	104	89-112		%	1		12/17/21 17:04

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-4R

Client Sample ID: **MW-4R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012003 Lab Project ID: 1218012 Collection Date: 12/10/21 11:16 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 17:04 Container ID: 1218012003-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 16 of 79

SG

Results of MW-104R

Client Sample ID: MW-104R Client Project ID: 107889-001 BMES Lab Sample ID: 1218012004 Lab Project ID: 1218012

Collection Date: 12/10/21 11:06 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 17:19
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 17:19
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,2-Dichloroethane	0.388 J	0.500	0.200	ug/L	1		12/17/21 17:19
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 17:19
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 17:19
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 17 of 79

SG

Results of MW-104R

Client Sample ID: MW-104R Client Project ID: 107889-001 BMES Lab Sample ID: 1218012004 Lab Project ID: 1218012

Collection Date: 12/10/21 11:06 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
cis-1,2-Dichloroethene	0.498 J	1.00	0.310	ug/L	1		12/17/21 17:19
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:19
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 17:19
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Tetrachloroethene	39.1	1.00	0.310	ug/L	1		12/17/21 17:19
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
trans-1,2-Dichloroethene	1.22	1.00	0.310	ug/L	1		12/17/21 17:19
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:19
Trichloroethene	1.02	1.00	0.310	ug/L	1		12/17/21 17:19
Trichlorofluoromethane	5.41	1.00	0.310	ug/L	1		12/17/21 17:19
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:19
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 17:19
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 17:19
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		12/17/21 17:19
4-Bromofluorobenzene (surr)	102	85-114		%	1		12/17/21 17:19
Toluene-d8 (surr)	104	89-112		%	1		12/17/21 17:19

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 18 of 79

Results of MW-104R

Client Sample ID: **MW-104R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012004 Lab Project ID: 1218012

Collection Date: 12/10/21 11:06 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 17:19 Container ID: 1218012004-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 19 of 79

Results of MW-2R

Client Sample ID: MW-2R Client Project ID: 107889-001 BMES Lab Sample ID: 1218012005 Lab Project ID: 1218012

Collection Date: 12/10/21 13:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 17:34
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 17:34
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 17:34
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
Benzene	0.330 J	0.400	0.120	ug/L	1		12/17/21 17:34
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 17:34
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 20 of 79

Results of MW-2R

Client Sample ID: **MW-2R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012005 Lab Project ID: 1218012

Collection Date: 12/10/21 13:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Chloroform	8.16	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.310	ug/L	<u>Dr</u> 1	Limits	12/17/21 17:34
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		12/17/21 17:34
cis-1,2-Dichloroethene	1.41	1.00	0.310	ug/L	1		12/17/21 17:34
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:34
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 17:34
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Tetrachloroethene	187	1.00	0.310	ug/L	1		12/17/21 17:34
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:34
Trichloroethene	1.56	1.00	0.310	ug/L	1		12/17/21 17:34
Trichlorofluoromethane	16.8	1.00	0.310	ug/L	1		12/17/21 17:34
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:34
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 17:34
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 17:34
Surrogates							
1,2-Dichloroethane-D4 (surr)	98.9	81-118		%	1		12/17/21 17:34
4-Bromofluorobenzene (surr)	102	85-114		%	1		12/17/21 17:34
Toluene-d8 (surr)	103	89-112		%	1		12/17/21 17:34

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-2R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012005 Lab Project ID: 1218012 Collection Date: 12/10/21 13:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 17:34 Container ID: 1218012005-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 22 of 79

Results of MW-3R

Client Sample ID: **MW-3R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012006 Lab Project ID: 1218012

Collection Date: 12/10/21 12:15 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:48
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:48
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 17:48
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:48
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 17:48
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 17:48
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:48
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:48
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:48
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:48
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:48
Benzene	0.255 J	0.400	0.120	ug/L	1		12/17/21 17:48
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:48
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 17:48
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 17:48
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 17:48
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 17:48

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 23 of 79

Results of MW-3R

Client Sample ID: **MW-3R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012006 Lab Project ID: 1218012

Collection Date: 12/10/21 12:15 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

						Allowable
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Chloromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
cis-1,2-Dichloroethene	0.606 J	1.00	0.310	ug/L	1	12/17/21 17:48
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	12/17/21 17:48
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	12/17/21 17:48
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Freon-113	5.00 U	10.0	3.10	ug/L	1	12/17/21 17:48
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	12/17/21 17:48
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	12/17/21 17:48
Naphthalene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
o-Xylene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	12/17/21 17:48
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Styrene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Tetrachloroethene	0.364 J	1.00	0.310	ug/L	1	12/22/21 15:43
Toluene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	12/17/21 17:48
Trichlorofluoromethane	1.84	1.00	0.310	ug/L	1	12/17/21 17:48
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	12/17/21 17:48
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	12/17/21 17:48
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	12/17/21 17:48
Surrogates						
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1	12/17/21 17:48
4-Bromofluorobenzene (surr)	103	85-114		%	1	12/17/21 17:48
Toluene-d8 (surr)	104	89-112		%	1	12/17/21 17:48

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 24 of 79

Results of MW-3R

Client Sample ID: **MW-3R** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012006 Lab Project ID: 1218012

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21441 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/22/21 15:43 Container ID: 1218012006-B

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 17:48 Container ID: 1218012006-A Collection Date: 12/10/21 12:15 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Prep Batch: VXX38301 Prep Method: SW5030B Prep Date/Time: 12/22/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Page 25 of 79

Results of BMES-EB

Client Sample ID: **BMES-EB** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012007 Lab Project ID: 1218012

Collection Date: 12/10/21 12:30 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 18:03
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 18:03
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 18:03
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
Benzene	0.137 J	0.400	0.120	ug/L	1		12/17/21 18:03
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 18:03
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 26 of 79

Results of BMES-EB

Client Sample ID: **BMES-EB** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012007 Lab Project ID: 1218012

Collection Date: 12/10/21 12:30 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:03
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 18:03
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Toluene	0.645 J	1.00	0.310	ug/L	1		12/17/21 18:03
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:03
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:03
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 18:03
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 18:03
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		12/17/21 18:03
4-Bromofluorobenzene (surr)	103	85-114		%	1		12/17/21 18:03
Toluene-d8 (surr)	102	89-112		%	1		12/17/21 18:03

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of BMES-EB

Client Sample ID: **BMES-EB** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012007 Lab Project ID: 1218012

Collection Date: 12/10/21 12:30 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 18:03 Container ID: 1218012007-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 28 of 79

Results of MW-5

Client Sample ID: **MW-5** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012008 Lab Project ID: 1218012

Collection Date: 12/09/21 19:02 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 18:18
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 18:18
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,2-Dichloroethane	0.422 J	0.500	0.200	ug/L	1		12/17/21 18:18
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
Benzene	0.135 J	0.400	0.120	ug/L	1		12/17/21 18:18
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 18:18
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 29 of 79

Results of MW-5

Client Sample ID: **MW-5** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012008 Lab Project ID: 1218012

Results by Volatile GC/MS

Collection Date: 12/09/21 19:02 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Chloroform	0.373 J	<u>1.00/01</u>	0.310	ug/L	<u>Dr</u> 1	LIIIIIS	12/17/21 18:18
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
cis-1,2-Dichloroethene	1.14	1.00	0.310	ug/L	1		12/17/21 18:18
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:18
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 18:18
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Tetrachloroethene	60.4	1.00	0.310	ug/L	1		12/17/21 18:18
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
trans-1,2-Dichloroethene	0.381 J	1.00	0.310	ug/L	1		12/17/21 18:18
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:18
Trichloroethene	7.03	1.00	0.310	ug/L	1		12/17/21 18:18
Trichlorofluoromethane	6.12	1.00	0.310	ug/L	1		12/17/21 18:18
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:18
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 18:18
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 18:18
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.2	81-118		%	1		12/17/21 18:18
4-Bromofluorobenzene (surr)	106	85-114		%	1		12/17/21 18:18
Toluene-d8 (surr)	103	89-112		%	1		12/17/21 18:18

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-5

Client Sample ID: **MW-5** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012008 Lab Project ID: 1218012

Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Collection Date: 12/09/21 19:02

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 18:18 Container ID: 1218012008-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 31 of 79

SG

Results of MW-6

Client Sample ID: MW-6 Client Project ID: 107889-001 BMES Lab Sample ID: 1218012009 Lab Project ID: 1218012

Collection Date: 12/09/21 18:08 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 18:32
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 18:32
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,2-Dichloroethane	0.404 J	0.500	0.200	ug/L	1		12/17/21 18:32
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
Benzene	0.159 J	0.400	0.120	ug/L	1		12/17/21 18:32
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 18:32
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 32 of 79

Results of MW-6

Client Sample ID: **MW-6** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012009 Lab Project ID: 1218012

Collection Date: 12/09/21 18:08 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.474 J	1.00	0.310	ug/L	1		12/17/21 18:32
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
cis-1,2-Dichloroethene	1.59	1.00	0.310	ug/L	1		12/17/21 18:32
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:32
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 18:32
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Tetrachloroethene	91.3	1.00	0.310	ug/L	1		12/17/21 18:32
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:32
Trichloroethene	9.29	1.00	0.310	ug/L	1		12/17/21 18:32
Trichlorofluoromethane	3.99	1.00	0.310	ug/L	1		12/17/21 18:32
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:32
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 18:32
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 18:32
Surrogates							
1,2-Dichloroethane-D4 (surr)	98.3	81-118		%	1		12/17/21 18:32
4-Bromofluorobenzene (surr)	103	85-114		%	1		12/17/21 18:32
Toluene-d8 (surr)	103	89-112		%	1		12/17/21 18:32

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-6** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012009 Lab Project ID: 1218012

Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Collection Date: 12/09/21 18:08

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 18:32 Container ID: 1218012009-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 34 of 79

SG

Results of MW-7

Client Sample ID: MW-7 Client Project ID: 107889-001 BMES Lab Sample ID: 1218012010 Lab Project ID: 1218012

Collection Date: 12/09/21 20:18 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 18:47
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 18:47
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 18:47
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 18:47
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 18:47
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 35 of 79

SG

Client Sample ID: **MW-7** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012010 Lab Project ID: 1218012

Collection Date: 12/09/21 20:18 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
cis-1,2-Dichloroethene	1.07	1.00	0.310	ug/L	1		12/17/21 18:47
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 18:47
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 18:47
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Tetrachloroethene	4.21	1.00	0.310	ug/L	1		12/17/21 18:47
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 18:47
Trichloroethene	1.79	1.00	0.310	ug/L	1		12/17/21 18:47
Trichlorofluoromethane	0.749 J	1.00	0.310	ug/L	1		12/17/21 18:47
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 18:47
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 18:47
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 18:47
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.5	81-118		%	1		12/17/21 18:47
4-Bromofluorobenzene (surr)	99.9	85-114		%	1		12/17/21 18:47
Toluene-d8 (surr)	102	89-112		%	1		12/17/21 18:47

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-7

Client Sample ID: **MW-7** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012010 Lab Project ID: 1218012

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 18:47 Container ID: 1218012010-A Collection Date: 12/09/21 20:18 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 37 of 79

Results of MW-8

Client Sample ID: **MW-8** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012011 Lab Project ID: 1218012

Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: YN-1

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 19:02
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 19:02
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 19:02
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 19:02
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 19:02
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Client Sample ID: **MW-8** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012011 Lab Project ID: 1218012

Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: YN-1

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	1.12	1.00	0.310	ug/L	1		12/17/21 19:02
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
cis-1,2-Dichloroethene	1.11	1.00	0.310	ug/L	1		12/17/21 19:02
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:02
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
lsopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 19:02
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Tetrachloroethene	3.21	1.00	0.310	ug/L	1		12/17/21 19:02
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
trans-1,2-Dichloroethene	5.95	1.00	0.310	ug/L	1		12/17/21 19:02
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Trichloroethene	1.94	1.00	0.310	ug/L	1		12/17/21 19:02
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:02
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:02
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 19:02
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 19:02
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.2	81-118		%	1		12/17/21 19:02
4-Bromofluorobenzene (surr)	105	85-114		%	1		12/17/21 19:02
Toluene-d8 (surr)	102	89-112		%	1		12/17/21 19:02

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 39 of 79

Results of MW-8

Client Sample ID: **MW-8** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012011 Lab Project ID: 1218012

Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: YN-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 19:02 Container ID: 1218012011-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 40 of 79

Results of MW-9

Client Sample ID: **MW-9** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012012 Lab Project ID: 1218012

Collection Date: 12/09/21 15:25 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:16
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:16
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 19:16
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:16
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 19:16
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 19:16
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:16
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:16
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:16
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:16
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:16
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 19:16
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:16
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 19:16
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:16
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:16
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:16

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-9** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012012 Lab Project ID: 1218012

Collection Date: 12/09/21 15:25 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Chloromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
cis-1,2-Dichloroethene	2.23	1.00	0.310	ug/L	1	12/17/21 19:16
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	12/17/21 19:16
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	12/17/21 19:16
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Freon-113	5.00 U	10.0	3.10	ug/L	1	12/17/21 19:16
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	12/17/21 19:16
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	12/17/21 19:16
Naphthalene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
o-Xylene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	12/17/21 19:16
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Styrene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Tetrachloroethene	9.62	1.00	0.310	ug/L	1	12/17/21 19:16
Toluene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
trans-1,2-Dichloroethene	8.82	1.00	0.310	ug/L	1	12/17/21 19:16
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Trichloroethene	2.58	1.00	0.310	ug/L	1	12/17/21 19:16
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 19:16
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	12/17/21 19:16
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	12/17/21 19:16
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	12/17/21 19:16
Surrogates						
1,2-Dichloroethane-D4 (surr)	100	81-118		%	1	12/17/21 19:16
4-Bromofluorobenzene (surr)	105	85-114		%	1	12/17/21 19:16
Toluene-d8 (surr)	102	89-112		%	1	12/17/21 19:16

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-9

Client Sample ID: **MW-9** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012012 Lab Project ID: 1218012

Collection Date: 12/09/21 15:25 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 19:16 Container ID: 1218012012-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 43 of 79

Results of MW-10

Client Sample ID: **MW-10** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012013 Lab Project ID: 1218012

Collection Date: 12/09/21 17:05 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 19:31
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 19:31
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,2-Dichloroethane	0.456 J	0.500	0.200	ug/L	1		12/17/21 19:31
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
Benzene	0.152 J	0.400	0.120	ug/L	1		12/17/21 19:31
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 19:31
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 44 of 79

Results of MW-10

Client Sample ID: **MW-10** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012013 Lab Project ID: 1218012

Collection Date: 12/09/21 17:05 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

Deremeter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u>	Date Analyzed
<u>Parameter</u> Chloroform	0.500 U	1.00	0.310	ug/L	1	<u>Limits</u>	12/17/21 19:31
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
cis-1,2-Dichloroethene	3.60	1.00	0.310	ug/L	1		12/17/21 19:31
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:31
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 19:31
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Tetrachloroethene	43.0	1.00	0.310	ug/L	1		12/17/21 19:31
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
trans-1,2-Dichloroethene	0.374 J	1.00	0.310	ug/L	1		12/17/21 19:31
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:31
Trichloroethene	7.61	1.00	0.310	ug/L	1		12/17/21 19:31
Trichlorofluoromethane	0.682 J	1.00	0.310	ug/L	1		12/17/21 19:31
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:31
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 19:31
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 19:31
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.6	81-118		%	1		12/17/21 19:31
4-Bromofluorobenzene (surr)	104	85-114		%	1		12/17/21 19:31
Toluene-d8 (surr)	103	89-112		%	1		12/17/21 19:31

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-10** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012013 Lab Project ID: 1218012

Collection Date: 12/09/21 17:05 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-2

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 19:31 Container ID: 1218012013-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 46 of 79

Results of MW-11

Client Sample ID: **MW-11** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012014 Lab Project ID: 1218012

Collection Date: 12/09/21 13:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 19:46
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 19:46
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 19:46
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 19:46
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 19:46
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-11

Client Sample ID: **MW-11** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012014 Lab Project ID: 1218012

Collection Date: 12/09/21 13:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
cis-1,2-Dichloroethene	1.11	1.00	0.310	ug/L	1		12/17/21 19:46
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 19:46
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 19:46
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Tetrachloroethene	5.60	1.00	0.310	ug/L	1		12/17/21 19:46
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
trans-1,2-Dichloroethene	8.05	1.00	0.310	ug/L	1		12/17/21 19:46
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 19:46
Trichloroethene	2.23	1.00	0.310	ug/L	1		12/17/21 19:46
Trichlorofluoromethane	6.09	1.00	0.310	ug/L	1		12/17/21 19:46
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 19:46
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 19:46
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 19:46
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		12/17/21 19:46
4-Bromofluorobenzene (surr)	105	85-114		%	1		12/17/21 19:46
Toluene-d8 (surr)	103	89-112		%	1		12/17/21 19:46

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-11** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012014 Lab Project ID: 1218012

Collection Date: 12/09/21 13:00 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 19:46 Container ID: 1218012014-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 49 of 79

Results of MW-12

Client Sample ID: **MW-12** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012015 Lab Project ID: 1218012

Collection Date: 12/09/21 18:10 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:00
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:00
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 20:00
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 20:00
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 20:00
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:00
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:00
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
Benzene	0.124 J	0.400	0.120	ug/L	1		12/17/21 20:00
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:00
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 20:00
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:00
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 50 of 79

Results of MW-12

Client Sample ID: **MW-12** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012015 Lab Project ID: 1218012

Collection Date: 12/09/21 18:10 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Peremeter	Booult Ous			Linita	סר	Allowable	Data Analyzad
<u>Parameter</u> Chloroform	<u>Result Qual</u> 0.500 U	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.310	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 12/17/21 20:00
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		12/17/21 20:00
cis-1,2-Dichloroethene	2.77	1.00	0.310	-	1		12/17/21 20:00
cis-1,3-Dichloropropene	0.250 U	0.500	0.310	ug/L ug/L	1		12/17/21 20:00
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:00
Dibromomethane	0.230 U	1.00	0.310	0	1		12/17/21 20:00
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
				ug/L			
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 20:00
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Tetrachloroethene	117	1.00	0.310	ug/L	1		12/17/21 20:00
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:00
Trichloroethene	5.32	1.00	0.310	ug/L	1		12/17/21 20:00
Trichlorofluoromethane	1.92	1.00	0.310	ug/L	1		12/17/21 20:00
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:00
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 20:00
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 20:00
Surrogates							
1,2-Dichloroethane-D4 (surr)	96.4	81-118		%	1		12/17/21 20:00
4-Bromofluorobenzene (surr)	105	85-114		%	1		12/17/21 20:00
Toluene-d8 (surr)	102	89-112		%	1		12/17/21 20:00

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-12** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012015 Lab Project ID: 1218012

Collection Date: 12/09/21 18:10 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 20:00 Container ID: 1218012015-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 52 of 79

Results of MW-13

Client Sample ID: **MW-13** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012016 Lab Project ID: 1218012

Collection Date: 12/09/21 19:07 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:15
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:15
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 20:15
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:15
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 20:15
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 20:15
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:15
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:15
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:15
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:15
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:15
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 20:15
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:15
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 20:15
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 20:15
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 20:15
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 20:15

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 53 of 79

Results of MW-13

Client Sample ID: **MW-13** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012016 Lab Project ID: 1218012

Collection Date: 12/09/21 19:07 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

						Allowable
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits Date Analyzed
Chloroform	2.15	1.00	0.310	ug/L	1	12/17/21 20:15
Chloromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	12/17/21 20:15
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	12/17/21 20:15
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Freon-113	5.00 U	10.0	3.10	ug/L	1	12/17/21 20:15
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Methylene chloride	5.00 U	10.0	3.10	ug/L	1	12/17/21 20:15
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	12/17/21 20:15
Naphthalene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
o-Xylene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	12/17/21 20:15
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Styrene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Tetrachloroethene	31.9	1.00	0.310	ug/L	1	12/17/21 20:15
Toluene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Trichloroethene	0.500 U	1.00	0.310	ug/L	1	12/17/21 20:15
Trichlorofluoromethane	2.95	1.00	0.310	ug/L	1	12/17/21 20:15
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	12/17/21 20:15
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	12/17/21 20:15
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	12/17/21 20:15
Surrogates						
1,2-Dichloroethane-D4 (surr)	98	81-118		%	1	12/17/21 20:15
4-Bromofluorobenzene (surr)	106	85-114		%	1	12/17/21 20:15
Toluene-d8 (surr)	102	89-112		%	1	12/17/21 20:15

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: **MW-13** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012016 Lab Project ID: 1218012

Collection Date: 12/09/21 19:07 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: TB-1

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 20:15 Container ID: 1218012016-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 55 of 79

SG

Results of Trip Blank-1

Client Sample ID: Trip Blank-1 Client Project ID: 107889-001 BMES Lab Sample ID: 1218012017 Lab Project ID: 1218012

Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Trip Blank (TB-1)

Results by Volatile GC/MS

Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		12/17/21 15:50
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		12/17/21 15:50
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1		12/17/21 15:50
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
Benzene	0.200 U	0.400	0.120	ug/L	1		12/17/21 15:50
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
Bromoform	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Bromomethane	3.00 U	6.00	3.00	ug/L	1		12/17/21 15:50
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
Chloroethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 56 of 79

Results of Trip Blank-1

Client Sample ID: **Trip Blank-1** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012017 Lab Project ID: 1218012 Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Trip Blank (TB-1)

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 15:50
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 15:50
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 15:50
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 15:50
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 15:50
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 15:50
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		12/17/21 15:50
4-Bromofluorobenzene (surr)	103	85-114		%	1		12/17/21 15:50
Toluene-d8 (surr)	103	89-112		%	1		12/17/21 15:50

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 57 of 79

Results of Trip Blank-1

Client Sample ID: **Trip Blank-1** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012017 Lab Project ID: 1218012

Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Trip Blank (TB-1)

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 15:50 Container ID: 1218012017-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 58 of 79

Results of Trip Blank-2

Client Sample ID: **Trip Blank-2** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012018 Lab Project ID: 1218012 Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Trip Blank (TB-2)

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits Date Analyze	d
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	12/17/21 16:0	15
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	12/17/21 16:0	15
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	12/17/21 16:0	15
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	12/17/21 16:0	15
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	12/17/21 16:0	15
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,2-Dichloroethane	0.250 U	0.500	0.200	ug/L	1	12/17/21 16:0	15
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	12/17/21 16:0	15
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	12/17/21 16:0	15
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	12/17/21 16:0	15
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	12/17/21 16:0	15
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	12/17/21 16:0	15
Benzene	0.200 U	0.400	0.120	ug/L	1	12/17/21 16:0	15
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	12/17/21 16:0	15
Bromoform	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
Bromomethane	3.00 U	6.00	3.00	ug/L	1	12/17/21 16:0	15
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	12/17/21 16:0	15
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	12/17/21 16:0	15
Chloroethane	0.500 U	1.00	0.310	ug/L	1	12/17/21 16:0	15

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 59 of 79

Results of Trip Blank-2

Client Sample ID: **Trip Blank-2** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012018 Lab Project ID: 1218012 Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Trip Blank (TB-2)

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Chloromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:05
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		12/17/21 16:05
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Freon-113	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:05
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
lsopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:05
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:05
Naphthalene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
o-Xylene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		12/17/21 16:05
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Styrene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Toluene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		12/17/21 16:05
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		12/17/21 16:05
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		12/17/21 16:05
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		12/17/21 16:05
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		12/17/21 16:05
4-Bromofluorobenzene (surr)	102	85-114		%	1		12/17/21 16:05
Toluene-d8 (surr)	104	89-112		%	1		12/17/21 16:05

Print Date: 12/28/2021 4:20:14PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Results of Trip Blank-2

Client Sample ID: **Trip Blank-2** Client Project ID: **107889-001 BMES** Lab Sample ID: 1218012018 Lab Project ID: 1218012 Collection Date: 12/09/21 11:34 Received Date: 12/17/21 09:27 Matrix: Water (Surface, Eff., Ground) Solids (%): Location: Trip Blank (TB-2)

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Analyst: JMG Analytical Date/Time: 12/17/21 16:05 Container ID: 1218012018-A Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:14PM

J flagging is activated

Member of SGS Group

Page 61 of 79

Method Blank

Blank ID: MB for HBN 1829549 [VXX/38290] Blank Lab ID: 1651041

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1218012001, 1218012002, 1218012003, 1218012004, 1218012005, 1218012006, 1218012007, 1218012008, 1218012009, 1218012010, 1218012011, 1218012012, 1218012013, 1218012014, 1218012015, 1218012016, 1218012017, 1218012018

Results by SW8260D

-				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.200	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	3.00U	6.00	3.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 12/28/2021 4:20:16PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1829549 [VXX/38290] Blank Lab ID: 1651041

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1218012001, 1218012002, 1218012003, 1218012004, 1218012005, 1218012006, 1218012007, 1218012008, 1218012009, 1218012010, 1218012011, 1218012012, 1218012013, 1218012014, 1218012015, 1218012016, 1218012017, 1218012018

_	Results by SW8260D					
	Parameter	Results	LOQ/CL	<u>DL</u>	Units	
	Chloromethane	0.500U	1.00	0.310	ug/L	
	cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
	cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L	
	Dibromochloromethane	0.250U	0.500	0.150	ug/L	
	Dibromomethane	0.500U	1.00	0.310	ug/L	
	Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L	
	Ethylbenzene	0.500U	1.00	0.310	ug/L	
	Freon-113	5.00U	10.0	3.10	ug/L	
	Hexachlorobutadiene	0.500U	1.00	0.310	ug/L	
	Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L	
	Methylene chloride	5.00U	10.0	3.10	ug/L	
	Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L	
	Naphthalene	0.500U	1.00	0.310	ug/L	
	n-Butylbenzene	0.500U	1.00	0.310	ug/L	
	n-Propylbenzene	0.500U	1.00	0.310	ug/L	
	o-Xylene	0.500U	1.00	0.310	ug/L	
	P & M -Xylene	1.00U	2.00	0.620	ug/L	
	sec-Butylbenzene	0.500U	1.00	0.310	ug/L	
	Styrene	0.500U	1.00	0.310	ug/L	
	tert-Butylbenzene	0.500U	1.00	0.310	ug/L	
	Tetrachloroethene	0.500U	1.00	0.310	ug/L	
	Toluene	0.500U	1.00	0.310	ug/L	
	trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L	
	trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L	
	Trichloroethene	0.500U	1.00	0.310	ug/L	
	Trichlorofluoromethane	0.500U	1.00	0.310	ug/L	
	Vinyl acetate	5.00U	10.0	3.10	ug/L	
	Vinyl chloride	0.0750U	0.150	0.0500	ug/L	
	Xylenes (total)	1.50U	3.00	1.00	ug/L	
:	Surrogates					
	1,2-Dichloroethane-D4 (surr)	105	81-118		%	
	4-Bromofluorobenzene (surr)	101	85-114		%	
	Toluene-d8 (surr)	103	89-112		%	

Print Date: 12/28/2021 4:20:16PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS Method Blank						
Blank ID: MB for HBN 1829549 [VXX/38290] Blank Lab ID: 1651041		Matrix: Water (Surface, Eff., Ground)				
	02, 1218012003, 1218012004, 1218 11, 1218012012, 1218012013, 1218					
Parameter	<u>Results</u>	LOQ/CL	DL	<u>Units</u>		
Batch Information						
Analytical Batch: VM			atch: VXX3829			
Analytical Method: S Instrument: Agilent 7			ethod: SW503	0B 7/2021 6:00:00AM		
Analyst: JMG	090-751015		itial Wt./Vol.: 5			
	12/17/2021 2:14:00PM		xtract Vol: 5 ml			

Print Date: 12/28/2021 4:20:16PM

_

Blank Spike ID: LCS for HBN 1218012 [VXX38290] Blank Spike Lab ID: 1651042 Date Analyzed: 12/17/2021 14:29 Spike Duplicate ID: LCSD for HBN 1218012 [VXX38290] Spike Duplicate Lab ID: 1651043 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1218012001, 1218012002, 1218012003, 1218012004, 1218012005, 1218012006, 1218012007, 1218012008, 1218012009, 1218012010, 1218012011, 1218012012, 1218012013, 1218012014, 1218012015, 1218012016, 1218012017, 1218012018

Results by SW8260D

· · · ·		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	31.2	104	30	30.7	102	(78-124)	1.60	(< 20)
1,1,1-Trichloroethane	30	33.2	111	30	31.9	106	(74-131)	4.00	(< 20)
1,1,2,2-Tetrachloroethane	30	29.6	99	30	29.9	100	(71-121)	1.10	(< 20)
1,1,2-Trichloroethane	30	31.5	105	30	31.3	104	(80-119)	0.63	(< 20)
1,1-Dichloroethane	30	30.8	103	30	30.3	101	(77-125)	1.40	(< 20)
1,1-Dichloroethene	30	32.4	108	30	33.6	112	(71-131)	3.90	(< 20)
1,1-Dichloropropene	30	30.4	101	30	29.0	97	(79-125)	4.70	(< 20)
1,2,3-Trichlorobenzene	30	31.7	106	30	32.6	109	(69-129)	3.00	(< 20)
1,2,3-Trichloropropane	30	29.1	97	30	29.5	99	(73-122)	1.60	(< 20)
1,2,4-Trichlorobenzene	30	30.6	102	30	31.1	104	(69-130)	1.60	(< 20)
1,2,4-Trimethylbenzene	30	30.4	101	30	30.1	100	(79-124)	1.00	(< 20)
1,2-Dibromo-3-chloropropane	30	28.9	96	30	29.9	100	(62-128)	3.40	(< 20)
1,2-Dibromoethane	30	30.4	101	30	30.4	101	(77-121)	0.24	(< 20)
1,2-Dichlorobenzene	30	29.8	99	30	29.6	99	(80-119)	0.61	(< 20)
1,2-Dichloroethane	30	30.5	102	30	30.7	102	(73-128)	0.55	(< 20)
1,2-Dichloropropane	30	31.9	106	30	31.5	105	(78-122)	1.30	(< 20)
1,3,5-Trimethylbenzene	30	30.5	102	30	30.0	100	(75-124)	1.80	(< 20)
1,3-Dichlorobenzene	30	30.1	100	30	29.9	100	(80-119)	0.90	(< 20)
1,3-Dichloropropane	30	31.6	105	30	31.6	105	(80-119)	0.07	(< 20)
1,4-Dichlorobenzene	30	29.9	100	30	30.0	100	(79-118)	0.32	(< 20)
2,2-Dichloropropane	30	33.0	110	30	31.9	106	(60-139)	3.40	(< 20)
2-Butanone (MEK)	90	90.0	100	90	94.4	105	(56-143)	4.80	(< 20)
2-Chlorotoluene	30	30.1	100	30	29.7	99	(79-122)	1.60	(< 20)
2-Hexanone	90	88.9	99	90	91.7	102	(57-139)	3.10	(< 20)
4-Chlorotoluene	30	30.0	100	30	29.7	99	(78-122)	1.20	(< 20)
4-Isopropyltoluene	30	31.3	104	30	30.8	103	(77-127)	1.60	(< 20)
4-Methyl-2-pentanone (MIBK)	90	92.8	103	90	96.8	108	(67-130)	4.20	(< 20)
Benzene	30	31.8	106	30	31.4	105	(79-120)	1.10	(< 20)
Bromobenzene	30	29.8	99	30	29.4	98	(80-120)	1.10	(< 20)
Bromochloromethane	30	30.8	103	30	30.3	101	(78-123)	1.30	(< 20)
Bromodichloromethane	30	31.3	104	30	31.3	104	(79-125)	0.20	(< 20)
Bromoform	30	30.1	100	30	30.6	102	(66-130)	1.40	(< 20)
Bromomethane	30	30.4	101	30	29.9	100	(53-141)	1.70	(< 20)
Carbon disulfide	45	47.5	106	45	49.3	110	(64-133)	3.60	(< 20)

Print Date: 12/28/2021 4:20:18PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1218012 [VXX38290] Blank Spike Lab ID: 1651042 Date Analyzed: 12/17/2021 14:29 Spike Duplicate ID: LCSD for HBN 1218012 [VXX38290] Spike Duplicate Lab ID: 1651043 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1218012001, 1218012002, 1218012003, 1218012004, 1218012005, 1218012006, 1218012007, 1218012008, 1218012009, 1218012010, 1218012011, 1218012012, 1218012013, 1218012014, 1218012015, 1218012016, 1218012017, 1218012018

Results by SW8260D

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	30.8	103	30	29.5	98	(72-136)	4.30	(< 20)
Chlorobenzene	30	30.7	102	30	30.2	101	(82-118)	1.60	(< 20)
Chloroethane	30	29.9	100	30	32.2	107	(60-138)	7.30	(< 20)
Chloroform	30	28.5	95	30	27.9	93	(79-124)	2.20	(< 20)
Chloromethane	30	32.6	109	30	32.1	107	(50-139)	1.60	(< 20)
cis-1,2-Dichloroethene	30	31.1	104	30	30.7	102	(78-123)	1.50	(< 20)
cis-1,3-Dichloropropene	30	31.7	106	30	31.5	105	(75-124)	0.52	(< 20)
Dibromochloromethane	30	31.3	104	30	31.3	104	(74-126)	0.02	(< 20)
Dibromomethane	30	31.4	105	30	31.7	106	(79-123)	0.96	(< 20)
Dichlorodifluoromethane	30	35.1	117	30	33.7	112	(32-152)	4.10	(< 20)
Ethylbenzene	30	31.6	105	30	30.8	103	(79-121)	2.40	(< 20)
Freon-113	45	48.9	109	45	50.6	113	(70-136)	3.60	(< 20)
Hexachlorobutadiene	30	31.1	104	30	30.7	102	(66-134)	1.30	(< 20)
Isopropylbenzene (Cumene)	30	31.3	104	30	30.5	102	(72-131)	2.50	(< 20)
Methylene chloride	30	32.6	109	30	32.9	110	(74-124)	1.20	(< 20)
Methyl-t-butyl ether	45	49.2	109	45	50.3	112	(71-124)	2.20	(< 20)
Naphthalene	30	30.7	102	30	32.6	109	(61-128)	6.10	(< 20)
n-Butylbenzene	30	31.0	103	30	31.1	104	(75-128)	0.06	(< 20)
n-Propylbenzene	30	31.1	104	30	30.3	101	(76-126)	2.50	(< 20)
o-Xylene	30	31.1	104	30	30.8	103	(78-122)	0.84	(< 20)
P & M -Xylene	60	62.0	103	60	60.6	101	(80-121)	2.20	(< 20)
sec-Butylbenzene	30	31.6	105	30	31.0	103	(77-126)	2.00	(< 20)
Styrene	30	31.3	104	30	31.1	104	(78-123)	0.61	(< 20)
tert-Butylbenzene	30	31.0	103	30	30.7	102	(78-124)	1.20	(< 20)
Tetrachloroethene	30	33.0	110	30	31.8	106	(74-129)	3.60	(< 20)
Toluene	30	31.3	104	30	30.6	102	(80-121)	2.10	(< 20)
trans-1,2-Dichloroethene	30	32.3	108	30	32.0	107	(75-124)	1.10	(< 20)
trans-1,3-Dichloropropene	30	31.7	106	30	31.5	105	(73-127)	0.51	(< 20)
Trichloroethene	30	32.7	109	30	31.9	106	(79-123)	2.40	(< 20)
Trichlorofluoromethane	30	32.0	107	30	33.8	113	(65-141)	5.70	(< 20)
Vinyl acetate	30	32.1	107	30	32.9	110	(54-146)	2.50	(< 20)
Vinyl chloride	30	33.3	111	30	33.6	112	(58-137)	0.81	(< 20)
Xylenes (total)	90	93.0	103	90	91.4	102	(79-121)	1.70	(< 20)

Print Date: 12/28/2021 4:20:18PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1218012 [VXX38290] Blank Spike Lab ID: 1651042 Date Analyzed: 12/17/2021 14:29 Spike Duplicate ID: LCSD for HBN 1218012 [VXX38290] Spike Duplicate Lab ID: 1651043 Matrix: Water (Surface, Eff., Ground)

 QC for Samples:
 1218012001, 1218012002, 1218012003, 1218012004, 1218012005, 1218012006, 1218012007, 1218012008, 1218012009, 1218012010, 1218012011, 1218012012, 1218012013, 1218012014, 1218012015, 1218012016, 1218012017, 1218012018

Results by SW8260D			_						
		Blank Spil	ke (%)		Spike Dup	licate (%)			
<u>Parameter</u>	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		100	30		101	(81-118)	1.20	
4-Bromofluorobenzene (surr)	30		97	30		97	(85-114)	0.26	
Toluene-d8 (surr)	30		103	30		103	(89-112)	0.03	

Batch Information

Analytical Batch: VMS21434 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: JMG Prep Batch: VXX38290 Prep Method: SW5030B Prep Date/Time: 12/17/2021 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:18PM

Method Blank

Blank ID: MB for HBN 1829619 [VXX/38298] Blank Lab ID: 1651305

QC for Samples: 1218012001, 1218012002

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	112	81-118		%
4-Bromofluorobenzene (surr)	92	85-114		%
Toluene-d8 (surr)	94	89-112		%

Batch Information

Analytical Batch: VMS21440 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JMG Analytical Date/Time: 12/21/2021 11:15:00AM Prep Batch: VXX38298 Prep Method: SW5030B Prep Date/Time: 12/21/2021 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 12/28/2021 4:20:20PM

Blank Spike ID: LCS for HBN 1218012 [VXX38298] Blank Spike Lab ID: 1651306 Date Analyzed: 12/21/2021 11:29 Spike Duplicate ID: LCSD for HBN 1218012 [VXX38298] Spike Duplicate Lab ID: 1651307 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1218012001, 1218012002

Results by SW8260D Blank Spike (ug/L) Spike Duplicate (ug/L) Parameter <u>Spike</u> Result Rec (%) <u>Spike</u> Result Rec (%) <u>CL</u> <u>RPD (%)</u> RPD CL Tetrachloroethene 32.8 30 30 109 31.7 106 (74-129) (< 20) 3.60 Surrogates 1,2-Dichloroethane-D4 (surr) 30 102 30 102 (81-118) 0.24 4-Bromofluorobenzene (surr) 30 95 30 95 (85-114) 0.36 Toluene-d8 (surr) 30 30 95 95 (89-112) 0.37

Batch Information

Analytical Batch: VMS21440 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JMG Prep Batch: VXX38298 Prep Method: SW5030B Prep Date/Time: 12/21/2021 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:23PM

Method Blank

Blank ID: MB for HBN 1829742 [VXX/38301] Blank Lab ID: 1651394

QC for Samples: 1218012006

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	114	81-118		%
4-Bromofluorobenzene (surr)	93.2	85-114		%
Toluene-d8 (surr)	100	89-112		%

Batch Information

Analytical Batch: VMS21441 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JMG Analytical Date/Time: 12/22/2021 12:59:00PM Prep Batch: VXX38301 Prep Method: SW5030B Prep Date/Time: 12/22/2021 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 12/28/2021 4:20:25PM

Leaching Blank

Blank ID: LB for HBN 1829428 [TCLP/11556 Blank Lab ID: 1650826

QC for Samples: 1218012006

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Tetrachloroethene	25.0U	50.0	15.5	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	104	81-118		%
4-Bromofluorobenzene (surr)	95.8	85-114		%
Toluene-d8 (surr)	102	89-112		%

Batch Information

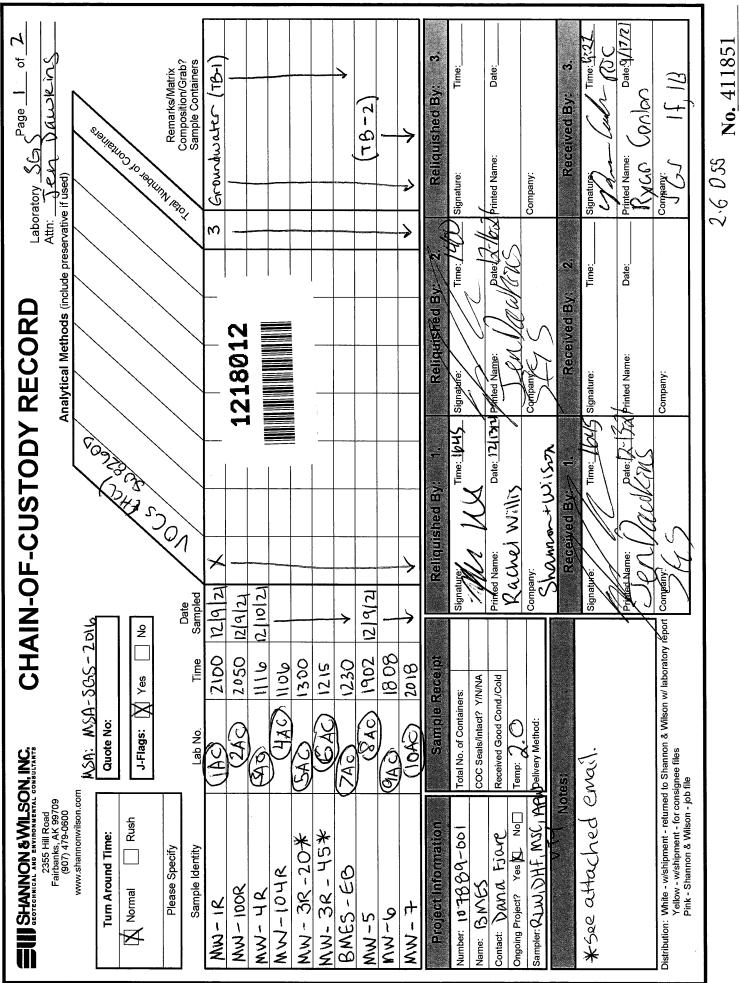
Analytical Batch: VMS21441 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JMG Analytical Date/Time: 12/22/2021 5:26:00PM Prep Batch: VXX38301 Prep Method: SW5030B Prep Date/Time: 12/22/2021 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

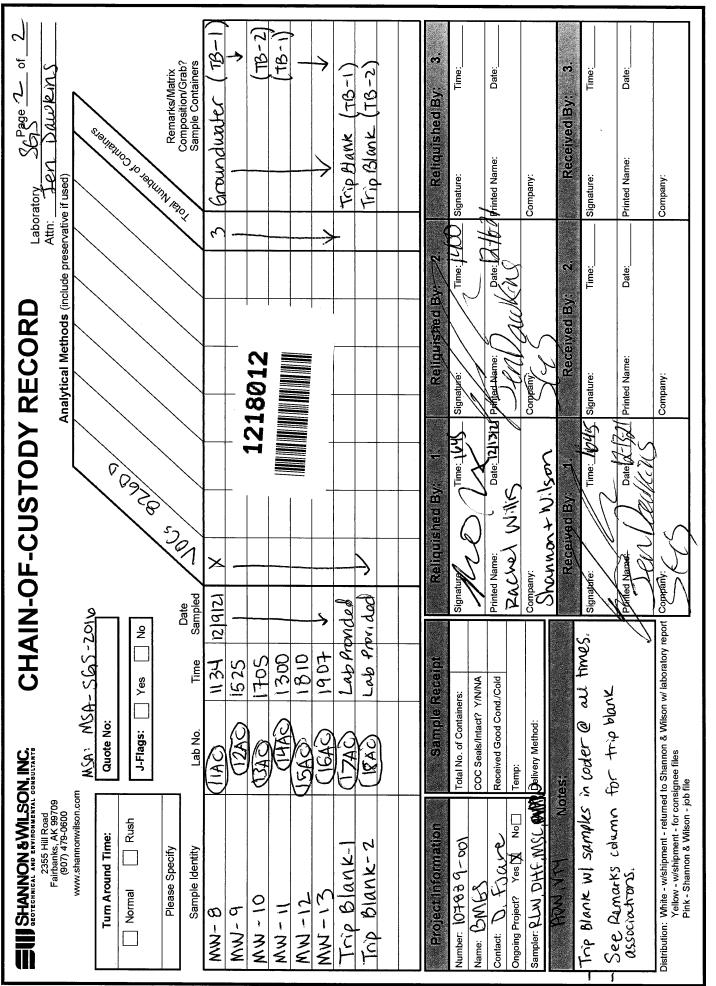
Matrix: Water (Surface, Eff., Ground)

Print Date: 12/28/2021 4:20:25PM

Blank Spike ID: LCS for HBN 1218012 [VXX38301] Blank Spike Lab ID: 1651395 Date Analyzed: 12/22/2021 13:13 Spike Duplicate ID: LCSD for HBN 1218012 [VXX38301] Spike Duplicate Lab ID: 1651396 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1218012006


Results by SW8260D


		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Tetrachloroethene	30	31.8	106	30	32.1	107	(74-129)	0.76	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		111	30		108	(81-118)	2.70	
4-Bromofluorobenzene (surr)	30		94	30		93	(85-114)	1.20	
Toluene-d8 (surr)	30		100	30		99	(89-112)	0.54	

Batch Information

Analytical Batch: VMS21441 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JMG Prep Batch: VXX38301 Prep Method: SW5030B Prep Date/Time: 12/22/2021 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 12/28/2021 4:20:27PM

Page 74 of 79

No. 411857

Dawkins, Jennifer A (Fairbanks)

From:	Dana Fjare <dana.fjare@shanwil.com></dana.fjare@shanwil.com>
Sent:	Tuesday, December 14, 2021 12:00 PM
То:	Dawkins, Jennifer A (Fairbanks)
Subject:	[EXTERNAL] Request to change sample names on COC

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments.

Hi Jen, I would like to change the sample naming from what is written on the COC for two samples from the BMES project #107889-001 (I don't have the work order # yet because they were turned in yesterday). Can you ask the lab to report the updated sample names in the report? See below.

Change "MW-3R-20" to "MW-2R" Change "MW-3R-45" to "MW-3R"

Thank you,

Dana

Dana Fjare

ENVIRONMENTAL SCIENTIST

EUISHANNON & WILSON

2355 Hill Road Fairbanks, AK 99709

shannonwilson.com

Phone: (907) 479-0600 Mobile: (907) 987-7174

dana.fjare@shanwil.com

Please note, my email address has been updated. You can still reach me at the old address.

e-Sample Receipt Form FBK

SGS	SGS Workorder #:		S&W			Sa	&W	
Review C	Criteria	Condition (Yes	;, No, N/A	Excep	tions No	oted be	low	
and the second	tody / Temperature Requi	irements	Yes	xemption perm				/ers.
	Custody Seals intact? Note # &							
	COC accompanied sa	amples? Yes	;					
DOD: Were samples	received in COC corresponding	coolers? N/A						
	**Exemption permitted if	f chilled & coll	ected <8 hours ag	go, or for sampl	les where c			
Temperature bla	ank compliant* (i.e., 0-6 °C afte	er CF)? Yes	Cooler ID:	1	@		C Therm. ID:	D57
			Cooler ID:		@	c	°C Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" wi cumented instead & "COOLER TEMP" will be noted to the right. "ambient" or "c			Cooler ID:		@		°C Therm. ID:	
	either is available.		Cooler ID:		@	Ċ	°C Therm. ID:	
*lf >6°C, we	ere samples collected <8 hours	s ago?						
If <0°	°C, were sample containers ic	e free?	<u> </u>					
	eived at non-compliant tempe							
Use for	rm FS-0029 if more space is r	needed.						
								ab aut i
	entation / Sample Condition R			orm F-083 "Sa	mple Guide	e" for spe	cific holding t	imes.
Do samples match COC** (i.e	그는 것 같아. 물건에서 이렇게 하는 것이 같아. 것이 가지 않는 것이 같아. 나는 것이 같아.							
	hr, record details & login per C							
**Note: If sample information on containers	s differs from COC, SGS will default to	COC informatio	n					
Were samples in good c	condition (no leaks/cracks/brea	akage)? Ye	6					
Were analytical requests clear?	(i.e., method is specified for a option for analysis (Ex: BTEX,							
With Humple c		Ye	s					
Were Trip Blanks (i.e., V	/OAs, LL-Hg) in cooler with sa	amples? Ye	S					
Were all water VOA vials free	of headspace (i.e., bubbles ≤	≦ 6mm)? N/0						
	OAs field extracted with MeOl							
For Rush/Short Hold Ti	ime, was RUSH/Short HT ema	ail sent? N/	Samples are a	week into ho	ld time.			
Note to Client: An	y "No", answer above indicates n	on-complianc	e with standard p	rocedures and	may impac	t data qu	ality.	
	Addition	nal notes (it	applicable):					
SGS Profile #	÷ 363	1/5		363	145			
SGS FIOINE #		ITJ		505	<u>т</u> тЈ			
		(t						
Held in Fairban	ks until 12/16	due +	o weath	er.				
	1							

e-Sam<u>ple Receipt Form</u>

CCC	
203	

SGS Workorder #:

1218012

1218012

Review Criteria	Condition (Yes,	dition (Yes, No, N/A Exceptions Noted below				
Chain of Custody / Temperature Req	uirements	Ν	I/A Exemption pe	ermitted if sampl	er hand carries/deliv	vers.
Were Custody Seals intact? Note #	& location Yes	1F, 1B				
COC accompanied	l samples? Yes					
DOD: Were samples received in COC corresponding	ig coolers? N/A					
N/A **Exemption permittee	d if chilled & colle	cted <8 hou	urs ago, or for sar	nples where chil	ling is not required	
Temperature blank compliant* (i.e., 0-6 °C a	after CF)? Yes	Cooler ID:	1	@	2.6 °C Therm. ID:	D55
		Cooler ID:		@	°C Therm. ID:	:
If samples received without a temperature blank, the "cooler temperature"		Cooler ID:		@	°C Therm. ID:	:
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or be noted if neither is available.	"chilled" will	Cooler ID:		@	°C Therm. ID:	
		Cooler ID:		@	°C Therm. ID:	:
*If >6°C, were samples collected <8 ho	urs ago? N/A					
If <0°C, were sample containers	ice free? N/A					
Note: Identify containers received at non-compliant tem						
Use form FS-0029 if more space is	s needed.					
Holding Time / Documentation / Sample Condition		Note: Refer	to form F-083 "Samp	ole Guide" for spec	ific holding times.	
Were samples received within hold	ling time? Yes					
Do samples match COC** (i.e.,sample IDs,dates/times co						
**Note: If times differ <1hr, record details & login per						
***Note: If sample information on containers differs from COC, SGS will default						
Were analytical requests clear? (i.e., method is specified for						
with multiple option for analysis (Ex: BTE)	A, IVIEIAIS)					
				14 I C		
	***)		I/A ***Exemption	permitted for m	etals (e.g,200.8/602	<u>20A).</u>
Were proper containers (type/mass/volume/preservative	Jused?					
Volatile / LL-Hg R	equirements					
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with						
Were all water VOA vials free of headspace (i.e., bubbles						
Were all soil VOAs field extracted with Med	· · · ·					
Note to Client: Any "No", answer above indicates		with standa	rd procedures an	d may impact da	ata quality	
				a may impaot de	and quanty.	
Additio	nal notes (if a	pplicable):			

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1218012001-A	HCL to pH < 2	ОК	1218012017-B	HCL to $pH < 2$	OK
1218012001-B	HCL to pH < 2	ОК	1218012017-C	HCL to $pH < 2$	ОК
1218012001-C	HCL to pH < 2	ОК	1218012018-A	HCL to pH < 2	ОК
1218012002-A	HCL to pH < 2	OK	1218012018-B	HCL to $pH < 2$	OK
1218012002-B	HCL to pH < 2	OK	1218012018-C	HCL to pH < 2	OK
1218012002-C	HCL to pH < 2	OK			
1218012003-A	HCL to pH < 2	OK			
1218012003-B	HCL to $pH < 2$	OK			
1218012003-C	HCL to pH < 2	OK			
1218012004-A	HCL to $pH < 2$	OK			
1218012004-B	HCL to $pH < 2$	OK			
1218012004-C	HCL to $pH < 2$	OK			
1218012005-A	HCL to $pH < 2$	OK			
1218012005-B	HCL to $pH < 2$	OK			
1218012005-C	HCL to $pH < 2$	OK			
1218012005 C	HCL to pH < 2	OK			
1218012006-B	HCL to pH < 2	OK			
1218012006-C	HCL to $pH < 2$	OK			
1218012000 C	HCL to $pH < 2$	OK			
1218012007-B	HCL to $pH < 2$	OK			
1218012007-C	HCL to $pH < 2$	OK			
1218012007 C	HCL to $pH < 2$	OK			
1218012008-B	HCL to $pH < 2$	OK			
1218012008-C	HCL to $pH < 2$	OK			
1218012009-A	HCL to $pH < 2$	OK			
1218012009-A	HCL to $pH < 2$	OK			
1218012009-D	HCL to $pH < 2$	OK			
1218012009-C	HCL to $pH < 2$	OK			
1218012010-A	HCL to $pH < 2$	OK			
1218012010-B	HCL to pH < 2	OK			
1218012010-C	HCL to $pH < 2$	OK			
1218012011-A 1218012011-B	HCL to $pH < 2$	OK			
	HCL to pH < 2				
1218012011-C 1218012012-A	HCL to $pH < 2$	OK OK			
1218012012-A	HCL to $pH < 2$	OK			
1218012012-D	HCL to $pH < 2$	OK			
1218012012-C	HCL to pH < 2	OK			
1218012013-А 1218012013-В	HCL to $pH < 2$	OK			
	HCL to $pH < 2$	OK			
1218012013-C 1218012014-A	HCL to $pH < 2$	OK			
	HCL to pH < 2				
1218012014-B	HCL to $pH < 2$	OK			
1218012014-C 1218012015-A	HCL to $pH < 2$	OK OK			
	HCL to $pH < 2$				
1218012015-В 1218012015-С	HCL to $pH < 2$	OK			
1218012015-C	HCL to $pH < 2$	OK			
1218012016-A	HCL to $pH < 2$	OK			
1218012016-B	HCL to $pH < 2$	OK			
1218012016-C	HCL to $pH < 2$	OK			
1218012017-A		OK			D

12/20/2021

Container Id

<u>Preservative</u>

Container Condition Container Id Pr

<u>Preservative</u>

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

1/4/2022 Ms. Dana Fjare Shannon & Wilson, Inc. 2355 Hill Road

Fairbanks AK 99709

Project Name: BMES Project #: 107889-001 Workorder #: 2112475

Dear Ms. Dana Fjare

The following report includes the data for the above referenced project for sample(s) received on 12/17/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Monica Tran at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ionica Fran

Monica Tran Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 2112475

Work Order Summary

CLIENT:	Ms. Dana Fjare Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, AK 99709	BILL TO:	Ms. Sheila Hinckley Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, AK 99709	
PHONE:	907-479-0600	P.O. #		
FAX:	907-479-5691	PROJECT #	107889-001 BMES	
DATE RECEIVED	: 12/17/2021	CONTACT:	Monica Tran	
DATE COMPLET	ED: 01/04/2022			
			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SSV-1	TO-15	4.5 "Hg	10.1 psi
02A	SSV-2	TO-15	4.7 "Hg	9.9 psi
03A	SSV-12	TO-15	4.9 "Hg	10.3 psi
04A	SSV-3	TO-15	4.7 "Hg	10.3 psi
05A	Lab Blank	TO-15	NA	NA
06A	CCV	TO-15	NA	NA
07A	LCS	TO-15	NA	NA
07AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

layes

01/04/22 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP – CA009332021-13, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

LABORATORY NARRATIVE EPA Method TO-15 Shannon & Wilson, Inc. Workorder# 2112475

Four 1 Liter Summa Canister (100% Certified) samples were received on December 17, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Dilution was performed on samples SSV-1 and SSV-3 due to the presence of high level non-target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- M Reported value may be biased due to apparent matrix interferences.
- CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SSV-1

Lab ID#: 2112475-01A

No Detections Were Found.

Client Sample ID: SSV-2

Lab ID#: 2112475-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	0.99	3.0	6.7	20
Client Sample ID: SSV-12				
Lab ID#: 2112475-03A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	1.0	2.7	6.9	18

Client Sample ID: SSV-3

Lab ID#: 2112475-04A

No Detections Were Found.

Client Sample ID: SSV-1 Lab ID#: 2112475-01A EPA METHOD TO-15 GC/MS FULL SCAN

Т

File Name: Dil. Factor:	p122215 3.97		of Collection: 12/ of Analysis: 12/22	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
trans-1,2-Dichloroethene	2.0	Not Detected	7.9	Not Detected
cis-1,2-Dichloroethene	2.0	Not Detected	7.9	Not Detected
Chloroform	2.0	Not Detected	9.7	Not Detected
1,2-Dichloroethane	2.0	Not Detected	8.0	Not Detected
Trichloroethene	2.0	Not Detected	11	Not Detected
Tetrachloroethene	2.0	Not Detected	13	Not Detected
1,1,1,2-Tetrachloroethane	7.9	Not Detected	54	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SSV-2 Lab ID#: 2112475-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	p122213 1.98		of Collection: 12/ of Analysis: 12/22	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
trans-1,2-Dichloroethene	0.99	Not Detected	3.9	Not Detected
cis-1,2-Dichloroethene	0.99	Not Detected	3.9	Not Detected
Chloroform	0.99	Not Detected	4.8	Not Detected
1,2-Dichloroethane	0.99	Not Detected	4.0	Not Detected
Trichloroethene	0.99	Not Detected	5.3	Not Detected
Tetrachloroethene	0.99	3.0	6.7	20
1,1,1,2-Tetrachloroethane	4.0	Not Detected	27	Not Detected

	· · · · ·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SSV-12 Lab ID#: 2112475-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: p122214 Dil. Factor: 2.03		Date of Collection: 12/13/21 10:13:00 A Date of Analysis: 12/22/21 06:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
trans-1,2-Dichloroethene	1.0	Not Detected	4.0	Not Detected
cis-1,2-Dichloroethene	1.0	Not Detected	4.0	Not Detected
Chloroform	1.0	Not Detected	5.0	Not Detected
1,2-Dichloroethane	1.0	Not Detected	4.1	Not Detected
Trichloroethene	1.0	Not Detected	5.4	Not Detected
Tetrachloroethene	1.0	2.7	6.9	18
1,1,1,2-Tetrachloroethane	4.1	Not Detected	28	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	88	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SSV-3 Lab ID#: 2112475-04A EPA METHOD TO-15 GC/MS FULL SCAN

Т

File Name: Dil. Factor:	p122216 16.1	P		Collection: 12/13/21 11:04:00 A Analysis: 12/22/21 07:09 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
trans-1,2-Dichloroethene	8.0	Not Detected	32	Not Detected	
cis-1,2-Dichloroethene	8.0	Not Detected	32	Not Detected	
Chloroform	8.0	Not Detected	39	Not Detected	
1,2-Dichloroethane	8.0	Not Detected	32	Not Detected	
Trichloroethene	8.0	Not Detected	43	Not Detected	
Tetrachloroethene	8.0	Not Detected	55	Not Detected	
1,1,1,2-Tetrachloroethane	32	Not Detected	220	Not Detected	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 2112475-05A EPA METHOD TO-15 GC/MS FULL SCAN

Т

File Name: Dil. Factor:	p122206c 1.00	2 410	of Collection: NA of Analysis: 12/22	2/21 01:46 PM
Compound	Rpt. Limit (ppbv)			Amount (ug/m3)
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
1,1,1,2-Tetrachloroethane	2.0	Not Detected	14	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	92	70-130
4-Bromofluorobenzene	85	70-130

Client Sample ID: CCV Lab ID#: 2112475-06A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p122202 1.00	Date of Collection: NA Date of Analysis: 12/22/21 10:32	٩M
Compound		%Recovery	
trans-1,2-Dichloroethene		95	
cis-1,2-Dichloroethene		94	
Chloroform		103	
1,2-Dichloroethane		99	
Trichloroethene		103	
Tetrachloroethene		111	
1,1,1,2-Tetrachloroethane		110	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: LCS Lab ID#: 2112475-07A EPA METHOD TO-15 GC/MS FULL SCAN

Т

File Name: Dil. Factor:	p122203 1.00	Date of Collec Date of Analys	tion: NA is: 12/22/21 11:01 AM
Compound		%Recovery	Method Limits
trans-1,2-Dichloroethene		100	70-130
cis-1,2-Dichloroethene		96	70-130
Chloroform		102	70-130
1,2-Dichloroethane		101	70-130
Trichloroethene		104	70-130
Tetrachloroethene		112	70-130
1,1,1,2-Tetrachloroethane		Not Spiked	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: LCSD Lab ID#: 2112475-07AA EPA METHOD TO-15 GC/MS FULL SCAN

Т

File Name: Dil. Factor:	p122204 1.00	Date of Collect Date of Analys	tion: NA is: 12/22/21 11:30 AM
Compound		%Recovery	Method Limits
trans-1,2-Dichloroethene		97	70-130
cis-1,2-Dichloroethene		95	70-130
Chloroform		100	70-130
1,2-Dichloroethane		100	70-130
Trichloroethene		104	70-130
Tetrachloroethene		111	70-130
1,1,1,2-Tetrachloroethane		Not Spiked	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	103	70-130

Curofins Air Toxics	Analysis Request /Canister Chain of	equest //	Ganiste	r Chai		Oustody				
180 Blue Ravine Rd. Suite B, Folsom, CA 95630	630 PID:	Workorder #:	Norkorder # 2112475	11247	C .27					
Phone (800) 985-5955; Fax (916) 351-8279									page-lof	
κ.	No.	Special Ins	Special Instructions/Notes		1.51		L	urnaround	Turnaround Time (Rush surcharges may apply)	rges may apply)
			Selectruce and to	- mary to	Not to	Ì	Standard	K	Rush	(specify)
lanager:	Project # (07889-00)	- --	vequesta anayors	ngyois			Cani	ster Vacu	Canister Vacuum/Pressure	Requested Analyses
Site Name: BM 55		Dido	Did not use reg. # 25406	Kej. # 25	もの			1	Lab Use Only	
CAMIC CONTRACT								g)	le	*e{ 5
Lab Field Sample Identification(Location)	Can #	Flow Controller #	Start Sampling Information	npling ation	Stop Sampling Information	mpling ation	il (in H	l (in Hg eipt	(psig) N ₂ / H	4 Fre 215
╋			Date	Time	Date	Time		Fina Rec	Fina Gas:	72
╈	123373	25551	B/13/21	1 6060	12/13/21	2160	<u>ن</u>	┥		
W17 55V-2	112219	25045		1000		1013	$\langle \rangle$	<i>N</i> '		
0A 55V-12	8980H	25045		000		<u>4</u> 101		'n		< >
CALS AND	90811	20295		1054	4	1104	- +	ά ·		× \$
Relinquished by: (Signature/Affiliation)		Date 12/13/24	Time 1330		Received by: (Signature/Affiliation	Signature/Affi	A liamon		Date I) I I I I	
Reiniquisned by: (Signature/Attiliation)		Date	Time	'n	Received by: (Signature/Affiliation)	Signature/Affi	iation)		Date	
Relinquished by: (Signature/Affiliation)		Date	Time		Received by: (Signature/Affiliation)	Signature/Affi	iation)		Date	Time
		5	Lab U	Lab Use Only						
Shipper Name: FRCLET	Custody Seals Intact?	(Yes)	No	None		6700	Q			Aberton manual and a second
sample transportation Notice: Relinquishing signature on this document indicates that samples are shipped in compliance with all any kind. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any	nature on this document in reement to hold harmless,	defend, and ind	tples are shipp emnify Eurofins	ed in compliar s Air Toxics ag	ice with all ap	plicable local, m, demand, o	State, Fede	ral, and int	ernational laws, regulated to the collection	I applicable local, State, Federal, and international laws, regulations, and ordinances of claim, demand, or action, of any kind related to the collection, handling, of chinging of
		san	samples. D.O.T Hotline (800) 467-4922	otline (800) 46	7-4922			шу кано, те	Hated to the conection	when, we have a second of any when, related to the collection, handling, of shipping of

Appendix E Laboratory Data Review Checklists

CONTENTS

- SGS Work Order 1218012
- Eurofins Work Order 2112475

Laboratory Data Review Checklist

Completed By:

Dana Fjare

Title:

Environmental Scientist

Date:

January 3, 2022

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America, Inc.

Laboratory Report Number:

1218012

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

ADEC File Number:

102.38.122

Hazard Identification Number:

4033

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	$Yes \boxtimes No \square N/A \square Comments:$			
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?			
	Yes No N/A Comments:			
	All analyses were performed by SGS North America in Anchorage, Alaska.			
2. <u>Chain of Custody (CoC)</u>				
a. CoC information completed, signed, and dated (including released/received by)?				
	Yes No N/A Comments:			
	b. Correct analyses requested?			
	Yes \boxtimes No \square N/A \square Comments:			
3.]	Laboratory Sample Receipt Documentation			
_				
	a. Sample/cooler temperature documented and within range at receipt $(0^{\circ} \text{ to } 6^{\circ} \text{ C})$?			

Yes \boxtimes No \square N/A \square Comments:

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The laboratory noted that samples were received in acceptable condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

NT- 🗖	N/A	C
INOL	$IN/A \square$	Comments

We requested that the laboratory change the name for two samples in the laboratory report from what was originally recorded on the chain-of-custody. Sample MW-3R-20 was changed to MW-2R and MW-3R-45 was changed to MW-3R.

e. Data quality or usability affected?

Comments:

The data quality/usability is not affected.

4. Case Narrative

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \square No \square N/A \boxtimes Comments:

The case narrative did not identify any discrepancies, errors, or QC failures.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

No corrective actions were required.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The data quality/usability is not affected.

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \square No \boxtimes N/A \square Comments:

The reported limits of detection (LODs) were less than the groundwater cleanup levels for the requested analytes, with the exception of 1,2,3-trichloropropane.

e. Data quality or usability affected?

We cannot assess whether 1,2,3-trichloropropane is present at a concentration less than the LOD but greater than the groundwater cleanup level.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; target analytes were not detected in the method blank samples.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Target analytes were not detected in the method blank samples.

v. Data quality or usability affected?

Comments:

The data quality/usability is not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

LCS and LCSDs were reported for volatile organic compounds (VOC) analysis by method SW8260D.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

Metals/Inorganics analyses were not requested with this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A; method accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

LCS and LCSD accuracy and precision were within laboratory control limits.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality/usability is not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \square Comments:

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \square Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \square No \square N/A \square Comments:

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory
- limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes \square No \square N/A \square Comments:

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes□ No□	N/A	Comments:
----------	-----	-----------

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

All surrogate recoveries were within laboratory control limits.

iv. Data quality or usability affected?

Comments:

The data quality/usability is not affected.

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \boxtimes No \square N/A \square Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \boxtimes No \square N/A \square Comments:

iii. All results less than LOQ and project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

N/A; target analytes were not detected in the trip blank samples.

v. Data quality or usability affected?

Comments:

The data quality/usability is not affected.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

The field duplicate pairs *MW-1R / MW-100R* and *MW-4R / MW-104R* were submitted with this work order.

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

The relative precision demonstrated for the duplicate pairs was within the project objective of 30% for water, where calculable.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality/usability is not affected.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \boxtimes No \square N/A \square Comments:

The equipment blank sample BMES-EB was submitted with this work order.

i. All results less than LOQ and project specified objectives?

Yes \square No \boxtimes N/A \square Comments:

Benzene and toluene were detected at estimated concentrations below the LOQ.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

Toluene was not detected in the project samples, so the results are not affected by the toluene detection in the equipment blank sample.

Benzene was detected at estimated concentrations in the field samples *MW-2R*, *MW-3R*, *MW-5*, *MW-6*, *MW-10*, and *MW-12*. The detected benzene results are roughly equivalent to that of the concentration detected in the equipment blank. These results may be artifacts of equipment contamination or ambient conditions during sampling. The affected results are considered false-positives and are flagged 'UB' at the LOQ in the analytical data tables.

Laboratory Report Date:

December 28, 2021

CS Site Name:

Bentley Mall East Satellite

iii. Data quality or usability affected?

Comments:

The data quality is affected; see above for applied qualifiers.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

Additional data flags/qualifiers were not required.

Laboratory Data Review Checklist for Air Samples

Completed By:

Dana Fjare

Title:

Environmental Scientist

Date:

January 4, 2022

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

Eurofins Air Toxics

Laboratory Report Number:

2112475

Laboratory Report Date:

January 4, 2022

CS Site Name:

Bentley Mall East Satellite

ADEC File Number:

102.38.122

Hazard Identification Number:

4033

Laboratory Report Date:

January 4, 2022

CS Site Name:

Bentley Mall East Satellite

Note: Any N/A or No box checked must have an explanation in the comments box.

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	$Yes \boxtimes No \square N/A \square Comments:$				
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?				
	Yes \square No \square N/A \boxtimes Comments:				
	All analyses were performed by Eurofins Air Toxics in Folsom, California.				
2. <u>Chain of Custody (CoC)</u>					
	a. CoC information completed, signed, and dated (including released/received by)?				
	Yes No N/A Comments:				
I	b. Correct analyses requested?				
	Yes \boxtimes No \square N/A \square Comments:				
. <u>L</u>	aboratory Sample Receipt Documentation				

a. Sample condition documented - Samples collected in gas tight, opaque/dark Summa canisters or other ADEC approved container? Canister vacuum/pressure checked, recorded upon receipt and contained no open valves?

Yes \boxtimes No \square N/A \square	Comments:

b. If there were discrepancies, were they documented? For example, incorrect sample containers, insufficient or missing samples, canister not holding a vacuum etc.?

Yes \square No \square N/A \boxtimes Comments:

The laboratory did not note any sample receiving discrepancies.

Laboratory Report Date:

January 4, 2022

CS Site Name:

Bentley Mall East Satellite

c. Data quality or usability affected?

Comments:

The data quality/usability is not affected.

4. <u>Case Narrative</u>

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \boxtimes N/A \square Comments:

Dilution was performed on samples *SSV-1* and *SSV-3* due to the presence of high-level non-target species.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

The laboratory case narrative did not note any corrective actions.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The laboratory case narrative did not specify an effect on data quality/usability.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

January 4, 2022

CS Site Name:

Bentley Mall East Satellite

c. Are the reported LOQs less than the target level or screening level for the project, as defined in the approved work plan?

 $Yes \square No \boxtimes N/A \square Comments:$

The reported LOQs were less than the target levels for the requested analytes except for 1,1,1,2-tetrachloroethane in sample *SSV-3*.

d. Data quality or usability affected?

We cannot assess whether 1,1,1,2-tetrachloroethane is present in sample *SSV-3* at a concentration less than the LOQ but greater than the target level.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; target analytes were not detected in the method blank.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Target analytes were not detected in the method blank.

v. Data quality or usability affected?

Comments:

The data quality/usability is not affected.

Laboratory Report Date:

January 4, 2022

CS Site Name:

Bentley N	Mall Ea	ast Satellite
-----------	---------	---------------

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

An LCS/LCSD was reported for volatile organic compounds (VOCs) analysis by method TO-15.

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

iii. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable?

Yes⊠	No□	N/A	Comments:	

iv. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A; method accuracy and precision were demonstrated to be within acceptable limits.

v. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

LCS/LCSD accuracy and precision were within laboratory control limits.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

The data quality/usability is not affected.

c. Surrogates - VOCs only

i. Are surrogate recoveries reported for VOC analyses – field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

January 4, 2022

CS Site Name:

Bentley Mall East Satellite

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Surrogate recoveries were within laboratory control limits.

iv. Data quality or usability affected?

Comments:

The data quality/usability is not affected.

- d. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

The field duplicate samples SSV-2 and SSV-12 were submitted to the laboratory.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% air)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

The relative precision demonstrated for the duplicate pair was within the project objective of 30%, where calculable.

Laboratory Report Date:

January 4, 2022

CS Site Name:

Bentley Mall East Satellite

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality/usability is not affected.

e. Field Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Samples for this project are not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

A field blank was not submitted with this work order.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

N/A; a field blank was not submitted with this work order.

iii. Data quality or usability affected?

Comments:

The data quality/usability is not affected; see above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes \square No \square N/A \boxtimes Comments:

Additional data flags/qualifiers were not required.

Appendix F Quality Assurance and Quality Control Summary

OVERVIEW

QC/QA procedures assist in producing data of acceptable quality and reliability. We reviewed the analytical results for laboratory QC samples and conducted our own QA assessment for this project. We reviewed the COC records and laboratory receipt forms to check that custody was not breached, sample-holding times were met, the groundwater samples were kept chilled (between 0 °C and 6 °C) during shipping.

Our QA-review procedures allowed us to document the accuracy and precision of the analytical data, as well as check that the analyses were sufficiently sensitive to meet project-specific data quality objectives.

Laboratory QC procedures included evaluating surrogate recovery, performing continuing calibration checks, analyzing method blanks, and analyzing laboratory control samples (LCS) and LCS duplicate (LCSD) samples to assess accuracy and precision. Surrogate recovery analyses were performed to evaluate the accuracy of the analytical process. Analytical precision was assessed by comparing the results of duplicate analyses performed on LCS/LCSD and field duplicate sample pairs.

QC procedures in the field included using single-use equipment when possible to reduce the potential for sample cross-contamination. We used a new, clean pair of nitrile gloves when sampling at each monitoring well and each air sample location. The laboratory report contains a case narrative and forms documenting sample-receipt conditions. Details regarding the results of our QA review are presented below.

For additional information, refer to the SGS laboratory report 1218012 and Eurofins laboratory report 2112475 in Appendix D and corresponding DEC LDRCs in Appendix E.

F.1 SAMPLE HANDLING

We hand-delivered coolers containing groundwater samples to the SGS Fairbanks facility on December 13, 2021. The coolers contained temperature blanks to measure whether samples were kept within an acceptable temperature range. SGS shipped samples to their Anchorage laboratory to perform analyses by methods specified on the COC records. SGS personnel measured the temperature blanks at the time that the samples arrived at their facilities. Temperature blanks were within the proper temperature range upon submittal in Fairbanks and arrival in Anchorage.

We shipped the air samples to the Eurofins laboratory in Folsom, California on December 13, 2021 via FedEx. The samples do not require temperature preservation and were

consequently kept at room temperature. The samples were received by the laboratory on December 17, 2021.

We delivered the samples to the SGS and Eurofins laboratories with sufficient time to allow the laboratories to analyze the samples within the applicable holding-time requirements. We retained a copy of the COC record to allow sample accountability between field and laboratory. Our review of COC records and laboratory sample-receipt documents did not identify sample handling anomalies. SGS and Eurofins processed the samples within the appropriate holding times.

F.2 ANALYTICAL SENSITIVITY

The laboratory's LOD is the lowest analyte concentration that can be measured. The laboratory's LOQ is the lowest analyte concentration that can be routinely measured in the sampled matrix with confidence, the point at which a concentration is considered quantitative. Sample matrix, instrument performance, sample dilutions, and other factors may affect the LOD and LOQ. Analytes may be present in samples at concentrations below the LOD. In cases where analytes were not detected at concentrations above their LOD, the analytical results are presented in our data-summary table with reference to their LOD. If the analyte is detected between the LOD and the LOQ, its concentration is considered an estimate; in our tables, this value is flagged with a 'J'. This flag is applied by the laboratory.

We compared groundwater LODs and soil-gas sample LOQs to their respective DEC regulatory levels. Groundwater data LODs were less than DEC-established cleanup levels (where applicable) except for 1,2,3-trichloropropane in all samples. Soil-gas sample *SSV-3* was analyzed at a dilution due to high concentrations of non-target analytes. Consequently, the LOQs for non-detect results in sample *SSV-3* were elevated over expected values and the LOQ for 1,1,1,2-PCA exceeded the DEC target level. We cannot assess if the non-detect analytes listed previously are present at concentrations less than the LOQ but greater than their respective DEC regulatory limits.

To evaluate the potential for cross-contamination between samples or introduction of contamination from an outside source, laboratory-supplied trip blanks are carried with groundwater samples in their cooler during sampling and shipping. Trip blanks were analyzed as part of this sampling event for VOCs. The laboratory reported there were no detections in the trip blanks.

Laboratory method blanks were also analyzed in association with groundwater and air samples to check for contributions to the analytical results possibly attributable to laboratory-based contamination. There were no detections in the method blank samples.

One groundwater equipment blank was collected to assess the possibility of crosscontamination from sampling equipment. The equipment blank was collected postdecontamination after collecting the project samples. The equipment blank was analyzed by the same test methods as the original sample. There were no detections in the equipment blank sample above the LOQ. However, benzene and toluene were detected between the LOD and the LOQ. Benzene results were detected in samples *MW-2R*, *MW-3R*, *MW-5*, *MW-6*, *MW-10*, and *MW-12*, and are considered false-positives and are qualified in the analytical tables to identify the imprecision.

F.3 ACCURACY

Accuracy refers to determining the correct analyte concentration and is a comparison between the measured value and a known or expected value. Laboratory analytical accuracy may be assessed through the analyte recoveries from LCS/LCSD analyses and the recovery of analyte surrogates (for organic analytes) added to project samples. The LCS/LCSD are spikes of known analyte concentrations added to a clean matrix. The laboratories' LCS, LCSD, and surrogate recoveries were within laboratory acceptance criteria.

The Eurofins laboratory also assesses analytical-batch accuracy using recovery information from continuing calibration verification (CCV) samples. Assessment of CCV recoveries is beyond the scope of a Level II data review. The CCV recovery was within laboratory control limits.

F.4 PRECISION

We collected field-duplicate samples at a frequency of ten percent of the total number of samples, and one field-duplicate sample per day, to evaluate the precision of analytical measurements and reproducibility of our sampling technique. We collected two groundwater duplicate samples (*MW-1R* and *MW-101R*, *MW-4R* and *MW-104R*) and one soil-gas duplicate sample (*SSV-2* and *SSV-12*). The field-duplicate samples were submitted "blind" (i.e., the laboratory could not identify it as a duplicate). The duplicates were analyzed by the same test methods as the original sample. To evaluate the precision of the data, we calculated the relative percent difference (RPD; difference between the sample and its duplicate divided by the mean of the two). RPDs can only be evaluated for analytes that are detected in both the sample and its duplicate.

The data quality objective is an RPD within 30 percent for water samples and 25 percent for air samples. Where analytes were detected in both samples, we calculated the RPDs. The RPDs were within acceptance criteria.

Laboratory analytical precision can also be assessed by comparing the results of duplicate analyses performed on the LCS/LCSD and evaluating the associated RPDs. The laboratory LCS/LCSD sample RPDs were within laboratory acceptance criteria.

F.5 DATA QUALITY SUMMARY

By conducting our field activities in general accordance with our standard QA/QC procedures, we consider the samples we collected to be representative of site conditions at the locations and times they were obtained. Based on our QA review, no datum was rejected as unusable due to QC failures, and our completeness goal of obtaining 85-percent useable data was met. In our opinion, the data produced by the SGS and Eurofins laboratories for this project are suitable for characterizing groundwater and soil-gas at the locations sampled.

Appendix G Conceptual Site Model

CONTENTS

- Scoping Form
- Graphic Form

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	Bentley Mall East Satellite
File Number:	102.38.122
Completed by:	Dana Fjare; Shannon & Wilson, Inc.

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

USTs	□ Vehicles	3	
ASTs	☐ Landfills	5	
Dispensers/fuel loading racks	Transfor	mers	
Drums	$\overline{\times}$ Other:	Dry cleaning waste disposal	
Release Mechanisms (check potential release mechanisms at the site)			

□ Spills	Direct discharge	
	Burning	
	⊠ Other: Undocumented releases	

Impacted Media (check potentially-impacted media at the site)

Surface soil (0-2 feet bgs*)	⊠ Groundwater
Subsurface soil (>2 feet bgs)	Surface water
🖂 Air	🗌 Biota
Sediment	Other:

Receptors (check receptors that could be affected by contamination at the site)

Residents (adult or child)	$\overline{\times}$ Site visitor
Commercial or industrial worker	🗵 Trespasser
⊠ Construction worker	Recreational user

- Subsistence harvester (i.e. gathers wild foods)
- Subsistence consumer (i.e. eats wild foods)
- ☐ Farmer Other:

* bgs - below ground surface

- **2. Exposure Pathways:** (*The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".*)
- a) Direct Contact -
 - 1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)

If the box is checked, label this pathway complete:	Complete	
Comments:		
 Dermal Absorption of Contaminants from Soil 		
Are contaminants present or potentially present in surface soi (Contamination at deeper depths may require evaluation on a		ground surface?
Can the soil contaminants permeate the skin (see Appendix B	in the guidance document)?	
If both boxes are checked, label this pathway complete:	Incomplete	
Comments:		
PCE and its derivatives are not listed in Appendix B as contaminants th	at can permeate the skin.	
Ingestion - 1. Ingestion of Groundwater		
Have contaminants been detected or are they expected to be d or are contaminants expected to migrate to groundwater in the	e ·	X
Could the potentially affected groundwater be used as a curre source? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source or to 18 AAC 75.350.	s determined the ground-	X
If both boxes are checked, label this pathway complete:	Complete	
Comments:		

2. Ingestion of Surface Water

c)

potentially impacting outdoor air.

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

Incomplete
PCE in groundwater to
nting, fishing, or
Appendix C in the guidance
to be taken up into for animals, in
Incomplete
veen 0 and 15 feet below the luation on a site specific basis.)
ance document)?
Complete
e

 \square

 \square

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Complete

Comments:

Inhalation of indoor air presents an insignificant risk at present, in the residences where we collected indoor air samples. However, we do not know if contaminants in groundwater are increasing, which could pose a greater vapor intrusion risk to commercial businesses and residences in the project area.

 $\overline{\times}$

 \overline{X}

3. Additional Exposure Pathways: (Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:

Comments:

Future construction activities may expose workers to contaminants in groundwater. In addition, there is a possibility of in-use residential wells in the area.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

PCE and other volatile contaminants are present in exceedance of DEC cleanup levels in groundwater samples collected from monitoring wells at the source area and down gradient (west) of the BMES property. Residents in the area are connected with municipal water supply; however, there may be old residential water wells still in-use, though they are likely not for drinking-water. In addition, the groundwater below the site is a future drinking water source.

 $\overline{\times}$

revised January 2017

 \times

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

Comments:

 \square

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: Bentley Mall East Satellite

Completed By: Dana Fjare; Shannon & Wilson, Inc.

<u>Instructions</u>: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

Date Compl	leted: November 2021									(5)		
(1)	(2)	(3)			(4)	exj "F"	oosure for fut	pathw ure rec	ay: Ent eptors,	er "C" fo "C/F" fo	or curre or both	ted by each nt receptors current and exposure.
Check the media could be directly by the release. Media		Check all expo media identifie	ed in (2).		Check all pathways that could be complete. <u>The pathways identified in this column must</u> <u>agree with Sections 2 and 3 of the Human</u> <u>Health CSM Scoping Form</u> . Exposure Pathway/Route		/	/	ssers,			ceptors
Surface Soil (0-2 ft bgs)	Direct release to surface soil check soil ✓ Migration to subsurface check soil ✓ Migration to groundwater check groundwater ✓ Volatilization check air	Exposure				Resident	(adults or children) Commer-	Industrial workers	Construction Lisers	Farmers or Subsist	Subsistence con-	Other
	Runoff or erosion check surface water Uptake by plants or animals check biota Other (list):	🔽 soil		Derm	ental Soil Ingestion al Absorption of Contaminants from Soil ation of Fugitive Dust	F	F	F	F			
Subsurface Soil (2-15 ft bgs)	Direct release to subsurface soil check soil ✓ Migration to groundwater check groundwater ✓ Volatilization check air ✓ Uptake by plants or animals check biota Other (list):	groundw	ater	✓ Inges	tion of Groundwater al Absorption of Contaminants in Groundwat ation of Volatile Compounds in Tap Water		F F F F	F	F			
Ground- water	Direct release to groundwater check groundwater ✓ Volatilization check air Flow to surface water body check surface water Flow to sediment check sediment Uptake by plants or animals check biota Other (list):	<mark>∕ air</mark>		✓ Inhala	ation of Outdoor Air ation of Indoor Air ation of Fugitive Dust	F I/F	F I/F	F I/F	F I/F			
Surface Water	Direct release to surface water Check surface water Volatilization check air Sedimentation check sediment Uptake by plants or animals check biota Other (list):	surface v	vater	Derm	tion of Surface Water al Absorption of Contaminants in Surface Wa ation of Volatile Compounds in Tap Water	iter						
Sediment	Direct release to sediment check sediment Resuspension, runoff, or erosion check surface water Uptake by plants or animals check biota Other (list):	sedimer			t Contact with Sediment							

Revised, 10/01/2010

Important Information About Your Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent

such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland