SUBMITTED TO: Alaska Department of Transportation & Public Facilities PO Box 112506 Juneau, AK 99811-2506 BY: Shannon & Wilson 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.com July 2022 Through April 2024 Water Supply Well Monitoring Submitted To: Alaska Department of Transportation & Public Facilities PO Box 112506 Juneau, AK 99811-2506 Attn: Melanie Bray Subject: FINAL SUMMARY REPORT, JULY 2022 THROUGH APRIL 2024 WATER SUPPLY WELL MONITORING, YAKUTAT, ALASKA Shannon & Wilson, Inc. (S&W) has prepared this report to summarize the water supply well (WSW) monitoring efforts performed between July 2022 and April 2024 at the Yakutat Airport (YAK) in Yakutat, Alaska. These services were conducted on behalf of the Alaska Department of Transportation & Public Facilities (DOT&PF). S&W's scope of services was specified in proposals dated February 18, 2021 and June 27, 2022 and authorized on March 23, 2021 and August 26, 2022, respectively, by DOT&PF under Professional Services Agreement Number 25-19-1-013 Per- and Polyfluoroalkyl Substance (PFAS) Related Environmental & Engineering Services. This report was prepared for the DOT&PF in accordance with the terms and conditions of S&W's contract, relevant Alaska Department of Environmental Conservation (DEC) guidance documents, and Title 18 of the Alaska Administrative Code Chapter 75.335. S&W appreciates the opportunity to be of service to the DOT&PF on this project. If there are questions concerning this report, please contact us. Sincerely, SHANNON & WILSON Ashley Jaramillo Project Manager/Senior Chemist ### **EXECUTIVE SUMMARY** S&W has prepared this summary report to document WSW monitoring efforts at the Yakutat Airport (YAK) in Yakutat, Alaska between July 2022 and June 2023. S&W collected analytical samples for PFAS analysis from the sample locations noted below during the following monitoring events. - September 2022: 33053, 33059, 33060, 33061, and 33068 - December 2022: 33059, 33060, 33061, and 33068 - March 2023: 33059, 33060, and 33068 - June 2023: 33053, 33056, 33059, 33060, and 33068 Between July 2022 and April 2024, sample results were less than the DEC's drinking water action level for PFAS. To date, sample locations 33063 (Yakutat Lodge), 33066 (Yakutat Lodge Restaurant), and 33065 (Yakutat Coastal Airlines) exceed DEC's drinking water action level for PFAS. Based on the results of the WSW monitoring efforts at the YAK to date, S&W recommends continued quarterly and annual monitoring. | 1 | Intro | Introduction | | | | | |---|--------------------|--|--|----|--|--| | | 1.1 | Purpo | se and Objectives | 1 | | | | | 1.2 | Scope of Services | | | | | | | 1.3 | Site Location | | | | | | | 1.4 | Geolo | gy and Hydrology | 2 | | | | 2 | Background | | | | | | | | 2.1 | Site H | istory | 2 | | | | | 2.2 | AFFF | Use at the Yakutat Airport | 3 | | | | | 2.3 | PFAS | Regulatory History | 3 | | | | | 2.4 | Conta | minants of Concern and Action Levels | 4 | | | | | 2.5 | PFAS | Discovery at the YAK | 5 | | | | | 2.6 | June 2 | 2019 Initial Water Supply Well Search and Sampling Event | 6 | | | | | | 2.6.1 | Water Supply Well Categories | 8 | | | | | | 2.6.2 | Water Supply Well Monitoring Criteria and Schedule | 9 | | | | | 2.7 | Decen | nber 2019 through June 2020 Water Supply Well Monitoring | 11 | | | | | | 2.7.1 | Water Supply Well Monitoring Criteria Modification | 11 | | | | | 2.8 | July 20 | 020 Through June 2021 Water Supply Well Monitoring | 11 | | | | | 2.9 | July 2021 Through June 2022 Water Supply Well Monitoring | | | | | | | 2.10 | Alternative Water Sources | | | | | | | 2.11 | Public | Information | 12 | | | | 3 | Field | Field Activities | | | | | | | 3.1 | Water Supply Well Sampling | | | | | | | 3.2 | Sampl | le Custody, Storage, and Transport | 14 | | | | | 3.3 | Specia | al Considerations for PFAS Sampling | 14 | | | | | 3.4 | Notifi | cation of Results | 14 | | | | | 3.5 | Devia | tions | 15 | | | | 4 | Analytical Results | | | | | | | | 4.1 | 1 Trend Analysis | | | | | | 5 | Qua | lity Assurance and Quality Control | | | | | | 6 | Recommendations | |------|---| | 7 | References | | | | | Exhi | oits | | Exhi | oit 2-1: PFAS Drinking Water Action Levels4 | | Exhi | oit 2-2: Applicable Regulatory Action Levels5 | | Exhi | oit 2-3: Reported PFAS Analytes5 | | Exhi | oit 2-4: DEC Limited PFAS Site Discovery Investigation6 | | Exhi | oit 2-5: Water Supply Wells Identified in the Well Search Area7 | | Exhi | oit 2-6: Water Supply Wells Identified in the Well Search Area9 | | Exhi | oit 2-7: June 2019 Water Supply Well Monitoring Criteria | | Exhi | oit 2-8: December 2019 Water Supply Well Monitoring Criteria11 | | Exhi | oit 4-1: MAROS Decision Matrix16 | | Exhi | oit 4-2: Trend Analysis Through June 202317 | | | | | Tab | es | | Tabl | e 1: September 2022 Water Supply Well Monitoring Analytical Results | | Tabl | e 2: December 2022 Water Supply Well Monitoring Analytical Results | | Tabl | e 3: March 2023 Water Supply Well Monitoring Analytical Results | | Tabl | e 4: June 2023 Water Supply Well Monitoring Analytical Results | | Tabl | e 5: Summary of Mann-Kendall Trend Analysis | | Figu | res | Highest Reported Water Supply Well Results Through June 2023 # **Appendices** Figure 1: Appendix A: Field Forms Appendix B: Laboratory Reports and LDRCs Appendix C: Analytical Data QA/QC Summary Important Information AAC Alaska Administrative Code ADF&G Alaska Department of Fish & Game AFB Yakutat Airforce Base AFFF aqueous film-forming foam ARFF aircraft rescue and firefighting bgs below ground surface °C degrees Celsius CAA Civil Aeronautics Administration COV coefficient of variation DEC Alaska Department of Environmental Conservation DoD Department of Defense DOT&PF Alaska Department of Transportation & Public Facilities EPA U.S. Environmental Protection Agency Eurofins Eurofins Environment Testing America FAA Federal Aviation Administration HFPO-DA hexafluoropropylene oxide dimer acid LDRC Laboratory Data Review Checklist LHA Lifetime Health Advisory MAROS Monitoring and Remediation Optimization System MCL maximum contaminant level µg/kg micrograms per kilogram ng/L nanograms per liter NOAA National Oceanic and Atmospheric Administration NPS National Park Service PFAS per- and polyfluoroalkyl substances PFBS perfluorobutanesulfonic acid PFHpA perfluoroheptanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid QA Quality Assurance QC Quality Control QSM Quality Systems Manual S&W Shannon & Wilson, Inc. SREB snow removal equipment building, TSA Transportation Security Administration, USACE U.S. Army Corps of Engineers USFS United States Forest Service. USGS U.S. Geological Survey WSW water supply well WO work order YAK Yakutat Airport ### 1 INTRODUCTION Shannon & Wilson, Inc. (S&W) has prepared this summary report to document water supply well (WSW) monitoring efforts at the Yakutat Airport (YAK) in Yakutat, Alaska. This report describes the activities conducted by S&W between July 2022 and April 2024. The YAK is an active, Alaska Department of Environmental Conservation (DEC) listed contaminated site due to the presence of per- and polyfluoroalkyl substances (PFAS) in WSW samples (DEC File Number 1530.38.022, Hazard ID 27090). ### 1.1 Purpose and Objectives The purpose of the services described in this report was to evaluate the potential for human exposure to PFAS-containing groundwater in WSWs at and near the YAK. S&W's objectives were to collect quarterly and annual analytical groundwater samples from previously sampled WSWs meeting the monitoring criteria discussed in Section 2.7.1. The scope of services implemented to achieve these objectives is defined in Section 1.2 below. ### 1.2 Scope of Services S&W's scope of services summarized in this report include four WSW monitoring events and public-outreach support. This report includes data from the WSW sampling events conducted in September 2022, December 2022, March 2023, and June 2023. Sampling events were not conducted during the 2024 fiscal year (July 2023 to June 2024). This report was prepared for the exclusive use of the Alaska Department of Transportation & Public Facilities (DOT&PF) and its representatives. This work presents S&W's professional judgment as to the conditions of the site. Information presented here is based on activities S&W performed. This report should not be used for other purposes without S&W's approval or if any of the following occurs: - Project details change, or new information becomes available, such as revised regulatory levels or the discovery of additional source areas. - Conditions change due to natural forces or human activity at, under, or adjacent to the project site. - Assumptions stated in this report have changed. - If the site ownership or land use has changed. - Regulations, laws, or cleanup levels change. - If the site's regulatory status has changed. If any of these occur, S&W should be retained to review the applicability of our recommendations. This report should not be used for other purposes without S&W's review. If a service is not specifically indicated in this report, do not assume it was performed. ### 1.3 Site Location The YAK is located at 1 Airport Road in Yakutat, Alaska. The City of Yakutat is located at the mouth of Yakutat Bay. The Borough of Yakutat lies in isolated lowlands along the Gulf of Alaska, 212 miles northwest of Juneau. The geographic coordinates of the YAK terminal are latitude 59.5033° N, longitude -139.9928° W. ### 1.4 Geology and Hydrology Yakutat is located on the Yakutat foreland, a gently sloping glacial outwash plain between the Saint Elias Mountains and the Gulf of Alaska. Eight dominant surficial deposits have been mapped in the Yakutat area,
including artificial fill, organic, eolian, beach, delta-estuarine, alluvial, outwash, and moraine deposits. Artificial fill is predominant under the airport runways and areas of the YAK that have been extensively modified during construction (U.S. Army Corps of Engineers [USACE], 2008). The absence of continuous confining layers in the unconsolidated deposits allows the groundwater to move both vertically and horizontally with little impedance to flow. Unconfined groundwater in the Yakutat area has been found to range in depth from within the top 10 feet below ground surface (bgs) to greater than 70 feet bgs. This fluctuation appears to be a function of the surface topography. The groundwater flow also appears to be generally dictated by topography, with flow towards the principal surface water bodies including streams, lakes, the coastline, and constructed drains (USACE, 2016). The U.S. Geological Survey (USGS) investigated groundwater flow near the YAK (USGS, 1994). Their measurements indicated a shallow water table ranging from 2 to 30 feet bgs with a flow from northeast to southwest. # 2 BACKGROUND This section provides background information regarding PFAS and the YAK. # 2.1 Site History A review of the Yakutat Airforce Base (AFB) site files and database actions indicates the Yakutat AFB was operated between 1940-1947 during WWII. In 1940, the Civil Aeronautics Administration/Federal Aviation Administration (CAA/FAA) built a radio range and construction began on the Yakutat Landing Field which was completed in 1943. The airfield was re-designated Yakutat Army Air Base in 1944 and placed on caretaker status until the end of the war. The Yakutat Air Base was declared surplus by the Army in December 1945 and the CAA/FAA assumed responsibility for maintenance and operation of the Yakutat Airport, leading to the transfer of the air base and all associated facilities from the Army to CAA/FAA on April 4, 1947. In 1978, the DOT&PF acquired the airport from the FAA. The YAK meets the requirements defined in Title 14, Code of Federal Regulations, Part 139, which requires specific certification through the FAA. This certification required, among other things, aircraft rescue and firefighting (ARFF) infrastructure and capabilities to ensure safety in air transportation. As part of this certification, Part 139 airports are required to conduct annual training for emergency response situations using aqueous film forming foam (AFFF) and demonstrate compliance with federal regulations. The FAA lifted the requirement to use PFAS-containing AFFF during training exercises at the beginning of 2019; alternate FAA-approved testing units have been implemented to test fire apparatus systems without discharging AFFF. ### 2.2 AFFF Use at the YAK PFAS-containing AFFF has been known to be stored at the YAK and used for emergency and training purposes in at least one location on the YAK property (Figure 1). AFFF was first used on the YAK property by DOT&PF in the 1990s. Discussions with Robert Lekanof, a DOT&PF YAK foreman, during S&W's initial site visit in June 2019, revealed fire training activities using AFFF have been mostly conducted at the end of Runway 2/20 since 2000. Fire training activities included annual training and triennial training events. During annual events, approximately 500 gallons of 3% mixed AFFF were released and during triennial events, approximately 1,500 gallons of 3% mixed AFFF were released. An unlined burn pit was also located at the airport and used for annual live fire training events near the northern end of Taxiway A. Training at the burn pit occurred between 1996 and 1999. The burn pit has been covered with soil and is currently vegetated. # 2.3 PFAS Regulatory History AFFF contains PFAS, a category of persistent organic compounds considered emerging environmental contaminants due to evidence that exposure can lead to adverse health effects. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are two PFAS commonly found at sites where AFFF has been used. Due to their persistence, toxicity, and bioaccumulative potential, these compounds are of increasing concern to environmental and health agencies. Exhibit 2-1 below briefly outlines PFAS drinking water action levels since the start of the YAK WSW monitoring events. Exhibit 2-1: PFAS Drinking Water Action Levels | Agency | Date | Analytes | Action Level | |--------|-------------|------------------------------------|------------------------| | EPA | May 2016 | PFOS + PFOA | 70 ng/L¹ | | DEC | August 2018 | PFOS + PFOA + PFHxS + PFHpA + PFNA | 70 ng/L ² | | DEC | April 2019 | PFOS + PFOA | 70 ng/L ^{3,4} | #### Notes: - 1 EPA LHA level - 2 DEC submitted this action level as proposed regulation. PFAS projects for the State of Alaska adopted the proposed regulatory action level from August 2018 to March 2019, per DEC direction. - 3 DEC aligned their PFAS drinking water action level with the final EPA LHA for PFOS and PFOA. - 4 Current DEC drinking water action level for PFAS. DEC = Alaska Department of Environmental Conservation, EPA = U.S. Environmental Protection Agency, LHA = Lifetime Health Advisory, ng/L = nanograms per liter, PFHpA = perfluoroheptanoic acid, PFHxS = perfluorohexanesulfonic acid, PFNA = perfluorononanoic acid, PFOA = perfluorooctanoic acid, PFOS = perfluorooctanoic acid In June 2022 the Environmental Protection Agency (EPA) published Interim Lifetime Health Advisory (LHA) levels of 0.004 nanograms per liter (ng/L) for PFOA and 0.02 ng/L for PFOS, and Final LHA levels of 2,000 ng/L for perfluorobutanesulfonic acid (PFBS), and 10 ng/L for hexafluoropropylene oxide dimer and its ammonium salt (together referred to as "GenX chemicals"). In April 2024 the EPA finalized the regulatory limits for the six compounds, setting Maximum Contaminant Levels (MCLs) of 4.0 ng/L for PFOS and PFOA, 10.0 ng/L for perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and hexafluoropropylene oxide dimer acid (HFPO-DA, also referred to as GenX), and 2,000 ng/L for PFBS. The DEC currently utilizes the 2016 EPA LHA as the PFAS drinking water action level for Alaska but is expected to align with the EPA MCLs following submittal through their regulatory process. DOT&PF has proactively compared historical results to the EPA MCL. Following DEC's announcement of adopting the MCL, DOT&PF is prepared to respond to the new action level. ### 2.4 Contaminants of Concern and Action Levels The primary contaminants of concern for the YAK are PFOS and PFOA. These two compounds are regulated with numeric action levels or cleanup levels, as summarized in Exhibit 2-2 below. Exhibit 2-2: Applicable Regulatory Action Levels | Media | Analyte | Action Level | |-----------------------------|-------------|--------------| | Drinking Water ¹ | PFOS + PFOA | 70 ng/L | | Crawadwatan? | PFOS | 400 ng/L | | Groundwater ² | PFOA | 400 ng/L | | Calls | PFOS | 3.0 µg/kg | | Soil ³ | PFOA | 1.7 µg/kg | #### Notes: - 1 DEC's drinking water action level reported in DEC's October 2019 Technical Memorandum. - 2 DEC's groundwater cleanup level reported in 18 AAC 75.345, Table C. - 3 DEC's migration to groundwater soil cleanup levels reported in 18 AAC 75.341, Table B1. AAC = Alaska Administrative Code, DEC = Alaska Department of Environmental Conservation, $\mu g/kg = micrograms$ per kilogram, ng/L = nanograms per liter, PFOA = perfluorooctanoic acid, PFOS = perfluorooctanesulfonic acid For the purposes of this project, samples were submitted for analysis of 18 PFAS analytes listed in Exhibit 2-3, below, via a modified EPA Method 537 compliant with the Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories version 5.3 Table B-15. **Exhibit 2-3: Reported PFAS Analytes** | | EPA 537M PFAS Analytes | |--------------------------------------|--| | perfluorooctanesulfonic acid (PFOS) | perfluorotetradecanoic acid (PFTeA) | | perfluorooctanoic acid (PFOA) | perfluorotridecanoic acid (PFTriA) | | perfluoroheptanoic acid (PFHpA) | perfluoroundecanoic acid (PFUnA) | | perfluorononanoic acid (PFNA) | hexafluoropropylene oxide dimer acid (HFPO-DA) | | perfluorohexanesulfonic acid (PFHxS) | N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) | | perfluorobutanesulfonic acid (PFBS) | N-methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA) | | perfluorodecanoic acid (PFDA) | 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CL-PF3OUdS) | | perfluorododecanoic acid (PFDoA) | 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CL-PF3ONS) | | perfluorohexanoic acid (PFHxA) | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ### 2.5 PFAS Discovery at the YAK In late 2018, as part of a Cooperative Agreement with the EPA, the DEC's Contaminated Sites Program conducted a limited PFAS Site Discovery Investigation. This included identifying potentially PFAS-impacted communities in Alaska, conducting a risk analysis of identified communities, collecting WSW samples for the analysis of PFAS, and reporting those results. The YAK was identified as a potentially PFAS affected site and DEC staff located and sampled 12 WSWs at and near the YAK in February of 2019 (Exhibit 2-4, below). Of the WSWs sampled, one well (YK-08, Yakutat Lodge) had PFAS concentrations exceeding the then DEC PFAS action level for the sum of five PFAS (70 ng/L for PFOS + PFOA + PFHxS + PFHpA + PFNA). Exhibit 2-4: Results of DEC Limited PFAS Site Discovery Investigation in February 2019 | DEC Sample
Name | Address/Location Description | Exceeds DEC
Action Level ¹ | |--------------------|--|--| | YK-01 | 101 Airport Road – DOT&PF ARFF | No | | YK-02 | 1015 Airport Access Road – DOT&PF SREB | No | | YK-03 | 951 Airport Access Road - NOAA, TSA, and NPS Office | No | | YK-04 | NOAA Housing off
Cannon Beach Road | No | | YK-05 | USFS Housing off Cannon Beach Road | No | | YK-06 | ADF&G Housing and Office off Colorado Road; NPS Housing | No | | YK-07 | 808 Cannon Beach Road - NPS Housing | No | | YK-08 | 1023/1033 Airport Access Road - Yakutat Lodge Employee and Guest Lodging | Yes | | YK-09 | 989 Airport Way - Yakutat Lodge Restaurant | No | | YK-10 | 935 Hangar Access Road - Alsek River Lodge | No | | YK-11 | 960 Endicott Way - Italio River Lodge | No | | YK-12 | 997 Airport Way - Alaska Airlines | No | #### Notes: 1 DEC drinking water action level for the sum of five PFAS (70 ng/L, PFOS + PFOA + PFHxS + PFHpA + PFNA) at time of sampling. ADF&G = Alaska Department of Fish & Game, ARFF = aircraft rescue and firefighting, DEC = Alaska Department of Environmental Conservation, DOT&PF = Alaska Department of Transportation & Public Facilities, NOAA = National Oceanic and Atmospheric Administration, NPS = National Park Service, ng/L = nanograms per liter, PFAS = per- and polyfluoroalkyl substances, PFHpA = perfluoroheptanoic acid, PFHxS = perfluoroheptanoic acid, PFNA = perfluorononanoic acid, PFOA = perfluorooctanoic acid, and PFOS = perfluorooctanosulfonic acid, SREB = snow removal equipment building, TSA = Transportation Security Administration, USFS = United States Forest Service. S&W reviewed the analytical data provided by DEC and performed a quality assurance/quality control (QA/QC) assessment of the analytical data and completed a DEC Laboratory Data Review Checklist (LDRC). # 2.6 June 2019 Initial Water Supply Well Search and Sampling Event In June 2019, S&W staff began the initial WSW search and survey at and near the YAK. Based on the information available and in coordination with the DOT&PF and DEC, a well search area was defined prior to the sampling event. Owners/users of the properties identified in the search area were contacted, where practicable, to determine the presence or absence of a WSW on the property and obtain pertinent information on the well. At that time, 21 properties with WSWs were identified as described in Exhibit 2-5 below. Exhibit 2-5: Results of Water Supply Wells Identified in the Well Search Area in June 2019 | Parcel/Sample ID
Number ¹ | DEC Sample
ID | Address/Location Description | | |---|------------------|--|--| | 32606 | _ | #1 State Camp Road | | | 32608 | _ | Second home from end (Left) of State Camp Road | | | 32609 | _ | #7 State Camp Road | | | 32615 | YK-05 | USFS Housing off Cannon Beach Road | | | 32616 | YK-04 | NOAA Housing off Cannon Beach Road | | | 32617 | YK-07 | 808 Cannon Beach Road - NPS Housing | | | 32618 | _ | ADF&G Housing off Cannon Beach Road | | | 33002 | YK-02 | 1015 Airport Access Road – DOT&PF SREB | | | 33004 | YK-06 | ADF&G Housing and Office off Colorado Road; NPS Housing | | | 33045 | YK-10 | 935 Hangar Access Road - Alsek River Lodge | | | 33052 | _ | 963 Airport Road | | | 33053 | _ | 964 Hangar Access Road | | | 33056 | YK-11 | 960 Endicott Way - Italio River Lodge | | | 33059 | _ | 931 Airport Access Road - NPS Service Hangar | | | 33060 | YK-01 | 101 Airport Road – DOT&PF ARFF | | | 33061 | YK-03 | 951 Airport Access Road - NOAA, TSA, and Office | | | 33063 | YK-08 | 1023/1033 Airport Access Road - Yakutat Lodge Employee and Guest Lodging | | | 33064 | _ | Delta Western Petroleum - Corner of Endicott and Airport Access | | | 33065 | _ | 1020 Airport Access Road - Yakutat Costal Airlines | | | 33066 | YK-09 | 989 Airport Way - Yakutat Lodge Restaurant | | | 33068 | YK-12 | 997 Airport Way - Alaska Airlines | | #### Notes: ADF&G = Alaska Department of Fish & Game, ARFF = aircraft rescue and firefighting, DEC = Alaska Department of Environmental Conservation, DOT&PF = Alaska Department of Transportation & Public Facilities, NOAA = National Oceanic and Atmospheric Administration, NPS = National Park Service, S&W = Shannon & Wilson, Inc., SREB = snow removal equipment building, TSA = Transportation Security Administration, USFS = United States Forest Service. During the June 2019 sampling event, an attempt was made to contact the owner and/or occupant of each identified property with a WSW in the search area. If occupants were not present at the time the property was visited, personalized door tags were left in a location where it would be noticed. The 21 wells identified during the initial well search were sampled. Sample YK-09 was collected after a carbon filter. The sample did not exceed the action level during the February 2019 event (sum of five PFAS above 70 ng/L, PFOS + PFOA + PFHxS + ¹ Parcel ID numbers were used to represent locations during the water supply well search. PFHpA + PFNA). However, the presence of a carbon filter may have artificially biased the detected PFAS concentrations below the DEC action level. This was further verified with comparing the results in subsequent sampling events. Therefore, DOT&PF treated location YK-09/33066 (Yakutat Lodge Restaurant) as an exceedance. ### 2.6.1 Water Supply Well Categories WSWs identified during the well search (June 2019) were categorized by use as follows based on information provided by the WSW owner/user. - Category 1: WSWs used for drinking or cooking, as reported by owners or occupants. - Category 2: WSWs used for dish washing, bathing, and other domestic purposes. Homes or businesses where the occupants report they do not drink the water, but where the WSWs lead to kitchen or bathroom faucets, are considered possible future drinking water wells. - Category 3: WSWs used for vegetable gardening and are not plumbed to indoor faucets or spigots. The well water is not accessed by outdoor plumbing, but the well may be located underneath or inside the structure. These wells are considered non-drinking water wells. - Category 4: WSWs used for outdoor purposes only, such as irrigation or vehicle washing. These wells are considered non-drinking water wells. - Category 5: WSWs currently not in use. Wells that have been abandoned in place, are inoperable, disconnected, or intended for future use. These wells are considered nondrinking water wells. WSWs are categorized in this manner to facilitate sorting of wells by use and provide levels of priority. Wells in Categories 1 and 2 are given a higher priority with respect to alternative water and additional monitoring. Exhibit 2-5 below includes the categories assigned to the 21 wells identified. Exhibit 2-6: Water Supply Wells Identified in the Well Search Area | Parcel/Sample
ID Number ¹ | DEC
Sample ID | Address/Location Description | Water Supply
Well Category ² | |---|------------------|--|--| | 32606 | _ | #1 State Camp Road | 1 | | 32608 | _ | Second home from end (Left) of State Camp Road | 1 | | 32609 | _ | #7 State Camp Road | 1 | | 32615 | YK-05 | USFS Housing off Cannon Beach Road | 1 | | 32616 | YK-04 | NOAA Housing off Cannon Beach Road | 1 | | 32617 | YK-07 | 808 Cannon Beach Road - NPS Housing | 1 | | 32618 | _ | ADF&G Housing off Cannon Beach Road | 1 | | 33002 | YK-02 | 1015 Airport Access Road – DOT&PF SREB | 2 | | 33004 | YK-06 | ADF&G Housing and Office off Colorado Road; NPS Housing | 1 | | 33045 | YK-10 | 935 Hangar Access Road - Alsek River Lodge | 1 | | 33052 | _ | 963 Airport Road | 2 | | 33053 | _ | 964 Hangar Access Road | 4 | | 33056 | YK-11 | 960 Endicott Way - Italio River Lodge | 1 | | 33059 | _ | 931 Airport Access Road - NPS Service Hangar | 1 | | 33060 | YK-01 | 101 Airport Road – DOT&PF ARFF | 2 | | 33061 | YK-03 | 951 Airport Access Road - NOAA, TSA, and Office | 1 | | 33063 | YK-08 | 1023/1033 Airport Access Road - Yakutat Lodge Employee and Guest Lodging | 2 | | 33064 | _ | Delta Western Petroleum - Corner of Endicott and Airport Access | 2 | | 33065 | _ | 1020 Airport Access Road - Yakutat Costal Airlines | 1 | | 33066 | YK-09 | 989 Airport Way - Yakutat Lodge Restaurant | 1 | | 33068 | YK-12 | 997 Airport Way - Alaska Airlines | 1 | ### Notes: ADF&G = Alaska Department of Fish & Game, ARFF = aircraft rescue and firefighting, DEC = Alaska Department of Environmental Conservation, DOT&PF = Alaska Department of Transportation & Public Facilities, NOAA = National Oceanic and Atmospheric Administration, NPS = National Park Service, S&W = Shannon & Wilson, Inc., SREB = snow removal equipment building, TSA = Transportation Security Administration, USFS = United States Forest Service. ### 2.6.2 Water Supply Well Monitoring Criteria and Schedule In coordination with the DOT&PF and DEC, S&W established the following quarterly and annual WSW monitoring criteria after the June 2019 sampling event. Quarterly Monitoring Criteria ¹ Parcel ID numbers were used to represent locations during the water supply well search. - Active category 1 and 2 WSWs with a maximum combined PFOS and PFOA concentration greater than or equal to 35 ng/L during a previous sampling event, per DEC guidance; and - Active category 1 and 2 WSWs within 500 lateral feet of WSWs with a combined PFOS and PFOA concentration greater than or equal to 35 ng/L during a previous sampling event. ### Annual Monitoring Criteria - Active category 1 and 2 WSWs with a maximum combined PFOS and PFOA concentration greater than or equal to 17.5 ng/L during a previous sampling event, per DEC guidance; and - Active category 1 and 2 WSWs within 500 lateral feet of WSWs with a combined PFOS and PFOA concentration greater than or equal to 17.5 ng/L during a previous sampling event. Lateral distance was measured from the GPS points collected during the initial round of sampling. Samples have generally been collected on a quarterly basis since the initial sampling event, with the exception of the 2024 fiscal year. The WSW monitoring criteria established for the YAK after the June
2019 event is shown in Exhibit 2-6 below. Exhibit 2-7: June 2019 Water Supply Well Monitoring Criteria | Parcel/Sample ID Number ¹ | Monitoring Criteria | |--------------------------------------|---------------------| | 33053 | Q/A | | 33056 | A | | 33059 | Q/A | | 33060 | Q/A | | 33061 | Q/A | | 33063 | Q/A | | 33064 | Q/A | | 33065 | Q/A | | 33066 | Q/A | | 33068 | Q/A | ### Notes: 1 Parcel ID numbers were used to represent locations during the water supply well search. A = annual, Q = quarterly ### 2.7 December 2019 through June 2020 Water Supply Well Monitoring In December 2019, S&W conducted a quarterly event at the YAK, sampling wells 33060, 33061, 33064, and 33068. PFAS did not exceed DEC's drinking water level of 70 ng/L for the sum of PFOS and PFOA. Additional quarterly and annual monitoring events were planned for March 2020 and June 2020, respectively; however, these events were postponed due to the COVID-19 pandemic. ### 2.7.1 Water Supply Well Monitoring Criteria Modification Yakutat WSW monitoring criteria were modified after the December 2019 quarterly monitoring event. Wells which previously exceeded the PFAS action level would no longer be sampled. The WSW monitoring criteria established for the YAK after the December 2019 event is shown in Exhibit 2-6 below. Exhibit 2-8: December 2019 Water Supply Well Monitoring Criteria | Parcel/Sample ID Number ¹ | Monitoring Criteria | |--------------------------------------|---------------------| | 33053 | Q/A | | 33056 | Α | | 33059 | Q/A | | 33060 | Q/A | | 33061 | Q/A | | 33064 | Q/A | | 33065 | Q/A | | 33068 | Q/A | #### Notes: 1 Parcel ID numbers were used to represent locations during the water supply well search. A = annual, Q = quarterly # 2.8 July 2020 Through June 2021 Water Supply Well Monitoring S&W collected analytical samples for PFAS analysis from the sample locations noted below during the following monitoring events. - August 2020: 33053, 33060, 33061, 33065, 33066, and 33068 - December 2020: 33059, 33060, 33061, 33064, and 33068 - March 2021: 33059, 33060, 33061, 33064, and 33068 - May 2021: 33053, 33056, 33059, 33060, 33061, 33064, and 33068 Between July 2020 and June 2021, sample results were less than the DEC's drinking water action level for PFAS, with the exception of sample location 33066 (Yakutat Lodge Restaurant) during the August 2020 event. This well was designated an exceedance during the June 2019 event under the former PFAS action level (sum of five PFAS above 70 ng/L, PFOS + PFOA + PFHxS + PFHpA + PFNA). During the August 2020 event the well exceeded the PFAS action level of 70 ng/L for the sum of PFOS and PFOA. To date, sample locations 33063 (Yakutat Lodge), 33066 (Yakutat Lodge Restaurant), and 33065 (Yakutat Coastal Airlines) exceed DEC's drinking water action level for PFAS. ### 2.9 July 2021 Through June 2022 Water Supply Well Monitoring S&W collected analytical samples for PFAS analysis from the sample locations noted below during the following monitoring events. - July 2021: 33053, 33059, 33060, 33061, 33064, 33065, and 33068 - October 2021: 33059, 33060, 33061, 33064, 33065, and 33068 - March 2022: 33059, 33060, 33061, 33064, and 33068 - June 2022: 33053, 33056, 33059, 33060, 33061, 33065, and 33068 Between July 2021 and June 2022, sample results were less than the DEC's drinking water action level for PFAS, with the exception of sample location 33065 (Yakutat Costal Airlines) during the June 2022 event. To date, sample locations 33063 (Yakutat Lodge), 33066 (Yakutat Lodge Restaurant), and 33065 (Yakutat Coastal Airlines) exceed DEC's drinking water action level for PFAS. ### 2.10 Alternative Water Sources Interim alternative bottled water has been supplied to well owners/users whose PFAS concentration exceeded the action level at the time of sampling and/or as determined necessary by DOT&PF. DOT&PF has been coordinating deliveries of bottled water with Pure Alaskan Water in Ketchikan, Alaska and/or barged from Costco out of Seattle, Washington. ### 2.11 Public Information The DOT&PF hosts a webpage (Alaska PFAS Information, Transportation & Public Facilities, State of Alaska; https://dot.alaska.gov/airportwater/) describing the PFAS water-testing project. The webpage includes simplified regional results maps, a project summary, list of contacts, and links to additional resources. ### 3 FIELD ACTIVITIES This section summarizes activities performed between July 2022 and April 2024. ### 3.1 Water Supply Well Sampling S&W conducted four WSW sampling events during the reporting period in September 2022, December 2022, March 2023, and June 2023. The following S&W personnel collected analytical water samples for this project. These individuals are State of Alaska Qualified Samplers as defined in 18 Alaska Administrative Code (AAC) 75.333[b] and 18 AAC 78.088[b]. - Kailyn Davis, Environmental Scientist - Michael Jaramillo, Environmental Chemist - Rachel Willis, Environmental Scientist S&W collected WSW samples during the reporting period as noted below. - September 2022: 33053, 33059, 33060, 33061, and 33068 - December 2022: 33059, 33060, 33061, and 33068 - March 2023: 33059, 33060, and 33068 - June 2023: 33053, 33056, 33059, 33060, and 33068 During the March 2023 event it was noted that the building associated with sample location 33061 had been condemned since the last sampling event in December 2022. S&W collected WSW samples from a location in the structure's plumbing upstream of water-treatment systems or water softeners, where possible. For the purposes of this project S&W does not consider small (i.e., less than 18 inches in height) particulate filters to be PFAS treatment systems. S&W purged the WSW systems prior to sampling by allowing the water to run until water parameters stabilized and the water appeared clear. During purging, parameters were collected using a multiprobe water quality meter. The parameters pH, temperature, and conductivity were recorded approximately once every three minutes until sample collection. The following values were used to indicate stability for a minimum of three consecutive readings: ± 0.1 pH, ± 0.5 degrees Celsius (°C) temperature, and ± 3 percent conductivity (microsiemens per centimeter). S&W discharged purge water to an indoor sink or to the ground surface. Following parameter stabilization, S&W collected PFAS water samples using laboratory-supplied containers. Copies of the WSW Sampling Logs are included in Appendix A, Field Forms. ### 3.2 Sample Custody, Storage, and Transport Immediately after collection, the sample bottles for each WSW were placed in Ziploc bags and stored in a designated sample cooler maintained between 0 °C and 6 °C with ice substitute separated from the sample bottles by a liner bag. S&W maintained custody of the samples until submitting them to the laboratory for analysis. Analytical samples and chain-of-custody forms were packaged for shipping in a hard-plastic cooler with an adequate quantity of frozen-ice substitute and packing material to maintain the proper temperature and prevent bottle breakage. S&W field staff applied custody seals to the cooler, which were observed to be intact upon receipt by the laboratory. Field staff shipped sample coolers to Eurofins Environment Testing America (Eurofins) in West Sacramento, California for analysis of PFAS by EPA 537(Mod) compliant with DoD QSM Version 5.3, Table B-15. ### 3.3 Special Considerations for PFAS Sampling S&W field staff took appropriate precautions to prevent cross contamination during sampling, including discontinuing the use of personal protective equipment and field supplies known to contain PFAS, using liner bags to contain samples before and after sample collection, hand washing, and donning a fresh pair of disposable nitrile gloves before sample collection. ### 3.4 Notification of Results Following review and validation of the analytical data, S&W prepared analytical data tables for the project team (DOT&PF, DEC, Department of Health). S&W also prepared letters for owners and occupants informing them of the results for the sample collected from their well. These letters were tailored to each property and analytical sample, and included the following information: - sample name; - comparison of analytical results to DEC's current action levels; - description of the project; and - pages of the Eurofins laboratory report that apply to the owner or occupant's WSW sample, including other PFAS results. Where requested, S&W emailed results letters to owners and/or occupants. ### 3.5 Deviations In general, S&W conducted the work in accordance with the sampling procedures noted above and based on ongoing discussion with DEC and DOT&PF. Samples were collected from wells accessible and functional during the time of sampling. Quarterly and/or annual sampling was not conducted in the 2024 fiscal year. ### 4 ANALYTICAL RESULTS Quarterly and annual samples were submitted for the analysis of the 18 PFAS listed in Exhibit 2-3 above by EPA 537(Mod) compliant with DoD QSM Version 5.3 Table B-15. Although all PFAS analytes for the analytical method are reported, PFAS concentrations are only compared to the DEC Drinking Water action level for PFOS and PFOA (70 ng/L). Tables 1 through 4 summarize the PFAS concentrations for samples collected from WSWs during the September 2022, December 2022, March 2023, and June 2023 events. The Eurofins work orders (WOs) are included in chronological order followed by their LDRC in Appendix B. The highest reported WSW PFAS analytical results through April 2024 for all wells sampled associated with this project are shown on Figure 1. # 4.1 Trend Analysis An evaluation of concentration trends for PFOS, PFOA and their sum in groundwater was completed using a Mann-Kendall statistical analysis of groundwater analytical data and visual inspection of the concentration graphs. Monitoring and Remediation Optimization System (MAROS) software by the Air Force Center for
Engineering and the Environment was developed to evaluate concentration trends by evaluating the Mann-Kendall statistical outputs and the coefficient of variation (COV). The COV is defined as the ratio of a dataset's standard deviation to its mean. S&W uses the ProUCL version 5.1 EPA Software capable of performing the Mann-Kendall test and calculating each dataset's COV for collected data. The information obtained from the ProUCL software is then used to further evaluate temporal trends using the MAROS decision matrix developed. The MAROS decision matrix of concentration trend depends on the result of a Mann-Kendall trend analysis, coupled with information about the COV. A statistically significant increasing or decreasing trend is identified by the Mann-Kendall analysis if the probability of a false-negative assessment is less than 5 percent (i.e., p < 0.05); MAROS refers to this condition as a "confidence in trend" above 95 percent. MAROS also discriminates between "no trend" and a "stable" contaminant concentration by evaluating the COV of a given well's dataset. COV values less than or near one indicate that data form a relatively close group around the mean value; values larger than one indicate data exhibit a greater degree of scatter around the mean. The MAROS decision matrix is presented in Exhibit 4-1 below: **Exhibit 4-1: MAROS Decision Matrix** | Mann-Kendall Statistic (S) | Confidence in Trend | Concentration in Trend | |----------------------------|-------------------------|------------------------| | | > 95 percent | Increasing | | S > 0 | 90 – 95 percent | Probably Increasing | | | < 90 percent | No Trend | | 0 < 0 | <90 percent and COV ≥ 1 | No Trend | | S ≤ 0 | <90 percent and COV < 1 | Stable | | 0.40 | 90 – 95 percent | Probably decreasing | | S < 0 | > 95 percent | Decreasing | COV = coefficient of variance Data from DEC's February 2019 samples were omitted from this analysis. Data collected by S&W through April 2024 was included in this analysis. Sample locations were evaluated for trends if: - A minimum of four sample results are reported for the given location - At least 50% detected results for a given analyte Sample locations that did not meet the above criteria were excluded from the trend analysis. With the current data set, we conducted the trend analysis for sample locations 33053, 33056, 33060, 33064, and 33065. A summary of the trend analysis is provided in Table 5. Our Mann-Kendall nonparametric trend analysis identified the following trends (Exhibit 4-2) for PFOS, PFOA, and the sum of PFOS+PFOA (for comparison to the DEC's drinking water action level). The data compared to the DEC drinking water action level was calculated as follows: - If both PFOS and PFOA were detected = PFOS + PFOA - If one is not detected and one detected = detected result - If both PFOS and PFOA are not detected = sum of the minimum reporting limits Exhibit 4-2: Trend Analysis Through June 2023 | Parcel/Sample ID
Number¹ | PFOS | PFOA | DEC Drinking Water
Action Level | |-----------------------------|------------|-------------------------|------------------------------------| | 33053 | Decreasing | Stable | Decreasing | | 33056 | Stable | Stable | Stable | | 33060 | No Trend | Stable | No Trend | | 33064 | Stable | Insufficient Detections | Stable | | 33065 | Increasing | Stable | Increasing | #### Notes: PFOA = perfluorooctanoic acid, PFOS = perfluorooctanesulfonic acid # 5 QUALITY ASSURANCE AND QUALITY CONTROL QA/QC procedures assist in producing data of acceptable quality and reliability. S&W reviewed the analytical results provided by Eurofins for laboratory QC samples and conducted our own QA assessment for this project in accordance with the June 2020 DEC approved Data-Validation Program Plan included as a part of our DOT&PF Statewide General Work Plan. S&W completed LDRCs for the PFAS WOs. These LDRCs are included in Appendix B after the corresponding analytical report. By working in accordance with the proposed scope of services, S&W considers the samples collected to be representative of site conditions at the locations and times they were obtained. The quality of the analytical data for this project does not appear to have been compromised, and those results affected by QC anomalies were qualified with appropriate flags. See Appendix C for a QA/QC summary of the analytical data. # 6 RECOMMENDATIONS Based on the previously completed work, S&W recommends the DOT&PF continue: - annual monitoring. - working with the DEC and the Alaska Department of Health to continue educating the public regarding the potential health effects of exposure to PFAS-containing water, as new information becomes available; and - limiting discharges of PFAS-containing AFFF to the ground, surface water bodies or groundwater from ARFF training or equipment testing, where possible. This ¹ Parcel ID numbers were used to represent locations during the water supply well search. [&]quot;Insufficient detections" indicates that the percent non-detect was greater than 50 percent. recommendation is not intended to limit or restrict AFFF use in any way during an emergency response. Based on the previously completed work, S&W recommends the DOT&PF consider: - conducting additional quarterly sampling for the purposes of assessing analytical trends. - resampling locations that have not been sampled during the quarterly and/or annual sampling events for comparison to upcoming regulatory changes. The information included in this report is based on limited sampling and should be considered representative of the times and locations at which the sampling occurred. Regulatory agencies may reach different conclusions than S&W. Important Information about your Environmental Report has been prepared and included as an appendix to assist you and others in understanding the use and limitations of this report. ### 7 REFERENCES - Alaska Department of Environmental Conservation (DEC), 2019a, 18 AAC 75, Oil and other hazardous substances pollution control: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 75, January available: http://dec.alaska.gov/commish/regulations/. - Alaska Department of Environmental Conservation (DEC), 2019b, 18 AAC 75.341, Soil cleanup levels: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 75, Section 341, January, available: http://dec.alaska.gov/commish/regulations/. - Alaska Department of Environmental Conservation (DEC), 2019c, 18 AAC 80, Drinking water: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 80, May, available: http://dec.alaska.gov/eh/dw/regulations. - Alaska Department of Environmental Conservation (DEC), 2019d, Field sampling guidance for contaminated sites and leaking underground storage tanks: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, October, available: http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm. - Alaska Department of Environmental Conservation (DEC), 2019e, Technical memorandum action levels for PFAS in water and guidance on sampling groundwater and drinking water (updated): Juneau, Alaska, DEC Division of Spill Prevention and Response Contaminated Sites Program and Division of Environmental Health Drinking Water Program, 4 p., October 2. - Shannon & Wilson, Inc., 2022, DOT&PF Statewide PFAS Data-Validation Program Plan, Various Sites, Alaska: Prepared July. - U.S. Army Corps of Engineers (USACE), 2008. Military Munitions Response Program Preliminary Assessment for Yakutat Air Base, Yakutat, Alaska, Property Number F10AK0606. July. - U.S. Army Corps of Engineers (USACE), 2016. Environmental Assessment for Yakutat Air Base, Yakutat, Alaska, Property Number F10AK0606. April. - U.S. Environmental Protection Agency (EPA), 2016, Drinking water health advisory for perfluorooctanoic acid (PFOA): Washington, D.C., U.S. EPA Office of Water, Health and Ecological Criteria Division, EPA 822-R-16-005, May, available: https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final_508.pdf - U. S. Geological Survey (USGS), 1994, Overview of Environmental and Hydrogeologic Conditions at Yakutat, Alaska, and publishing data—all the information necessary for unique identification and library search, Open-file report 94-713. Table 1 — September 2022 Water Supply Well Monitoring Analytical Results | | | | Sample ID
Sample Date | 33053
9/23/2022 | 33059
9/23/2022 | 33060
9/23 | 33160
3/2022 | 33061
9/23/2022 | 33068
9/23/2022 | |-------------------|--|--------------|--------------------------|---------------------------|---------------------------|----------------------|------------------------|---------------------------|---------------------------| | Analytical Method | Analyte | Action Level | Units | Project Sample | Project Sample | Field Du | plicate Pair | Project Sample | Project Sample | | | Perfluorooctanesulfonic acid (PFOS) | 70‡ | ng/L | 6.3 | < 1.8 | 7.9 | 8.4 | < 1.8 J* | < 1.8 | | | Perfluorooctanoic acid (PFOA) | 70‡ | ng/L | 1.7 J | < 1.8 | 4.6 | 4.7 | < 1.9 | < 1.8 | | | Hexafluoropropylene oxide dimer acid (HFPO-DA) | 10† | ng/L | < 3.6 | < 3.6 | < 3.7 | < 3.7 | < 3.7 | < 3.7 | | | Perfluorobutanesulfonic acid (PFBS) | 2000† | ng/L | 0.72 J | < 1.8 | 0.43 J | 0.54 J | < 1.9 | < 1.8 | | | Perfluorodecanoic acid (PFDA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.9 | < 1.8 | | | Perfluorododecanoic acid (PFDoA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.9 J* | < 1.8 | | | Perfluoroheptanoic acid (PFHpA) | N/A | ng/L | 1.0 J | < 1.8 | 3.6 | 3.2 | < 1.9 | < 1.8 | | | Perfluorohexanesulfonic acid (PFHxS) | N/A | ng/L | 9.8 | < 1.8 | 8.2 | 8.0 | < 1.9 J* | < 1.8 | | EPA 537(Mod) | Perfluorohexanoic acid (PFHxA) | N/A | ng/L | 1.6 J | < 1.8 | 18 | 17 | < 1.9 | < 1.8 | | EFA 557 (MOU) | Perfluorononanoic acid (PFNA) |
N/A | ng/L | 0.52 J | < 1.8 | 0.63 J | 0.65 J | < 1.9 | < 1.8 | | | Perfluorotetradecanoic acid (PFTeA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 J* | < 1.8 | | | Perfluorotridecanoic acid (PFTrDA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.9 | < 1.8 | | | Perfluoroundecanoic acid (PFUnA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.9 J* | < 1.8 | | | 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 J* | < 1.8 | | | 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 J* | < 1.8 | | | 4,8-Dioxa-3H-perfluorononanoic acid (DONA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 J* | < 1.8 | | | N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) | N/A | ng/L | < 4.5 | < 4.5 | < 4.7 | < 4.6 | < 4.6 J* | < 4.6 | | | N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA) | N/A | ng/L | < 4.5 | < 4.5 | < 4.7 | < 4.6 | < 4.6 J* | < 4.6 | Notes: Results reported from Eurofins Environment Testing in West Sacramento, California work order 320-92599-1. - † Final EPA PFAS LHAs (HFPO-DA/PFBS) - ‡ DEC Drinking Water Action Level = 70 ng/L for sum of PFOS and PFOA - < Analyte not detected; listed as less than the RL unless otherwise flagged due to quality-control failures. - J Estimated concentration, detected greater than the DL and less than the reporting limit RL. Flag applied by the laboratory. - J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. - DEC Alaska Department of Environmental Conservation - DL Detection Limit - EPA United States Environmental Protection Agency - LHA Lifetime Health Advisory - ng/L nanograms per liter - N/A No applicable regulatory limit exists for the associated analyte. - RL Reporting Limit Table 2 — December 2022 Water Supply Well Monitoring Analytical Results | | | | Sample ID
Sample Date | 33059
12/16/2022 | 33060 | 33160 5/2022 | 33061
12/16/2022 | 33068
12/16/2022 | |-------------------|--|--------------|--------------------------|----------------------------|--------|---------------------|----------------------------|----------------------------| | Analytical Method | Analyte | Action Level | Units | Project Sample | | plicate Pair | Project Sample | Project Sample | | | Perfluorooctanesulfonic acid (PFOS) | 70‡ | ng/L | < 2.0 | 8.9 | 9.2 | < 1.9 | < 1.9 | | | Perfluorooctanoic acid (PFOA) | 70‡ | ng/L | < 2.0 | 2.4 | 2.4 | < 1.9 | < 1.9 | | | Hexafluoropropylene oxide dimer acid (HFPO-DA) | 10† | ng/L | < 3.9 | < 4.2 | < 3.8 | < 3.8 | < 3.8 | | | Perfluorobutanesulfonic acid (PFBS) | 2000† | ng/L | < 2.0 | 0.79 J | 0.73 J | < 1.9 | < 1.9 | | | Perfluorodecanoic acid (PFDA) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | Perfluorododecanoic acid (PFDoA) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | Perfluoroheptanoic acid (PFHpA) | N/A | ng/L | 0.33 J | 2.5 | 2.3 | < 1.9 | < 1.9 | | | Perfluorohexanesulfonic acid (PFHxS) | N/A | ng/L | < 2.0 | 7.0 | 7.4 | < 1.9 | < 1.9 | | EPA 537(Mod) | Perfluorohexanoic acid (PFHxA) | N/A | ng/L | < 2.0 | 6.1 | 6.3 | < 1.9 | < 1.9 | | EPA 557 (MOU) | Perfluorononanoic acid (PFNA) | N/A | ng/L | < 2.0 | 0.51 J | 0.48 J | < 1.9 | < 1.9 | | | Perfluorotetradecanoic acid (PFTeA) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | Perfluorotridecanoic acid (PFTrDA) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | Perfluoroundecanoic acid (PFUnA) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | 4,8-Dioxa-3H-perfluorononanoic acid (DONA) | N/A | ng/L | < 2.0 | < 2.1 | < 1.9 | < 1.9 | < 1.9 | | | N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) | N/A | ng/L | < 4.9 | < 5.2 | < 4.7 | < 4.8 | < 4.8 | | | N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA) | N/A | ng/L | < 4.9 | < 5.2 | < 4.7 | < 4.8 | < 4.8 | Notes: Results reported from Eurofins Environment Testing in West Sacramento, California work order 320-95510-1. - † Final EPA PFAS LHAs (HFPO-DA/PFBS) - ‡ DEC Drinking Water Action Level = 70 ng/L for sum of PFOS and PFOA - < Analyte not detected; listed as less than the RL unless otherwise flagged due to quality-control failures. - J Estimated concentration, detected greater than the DL and less than the reporting limit RL. Flag applied by the laboratory. - DEC Alaska Department of Environmental Conservation - DL Detection Limit - EPA United States Environmental Protection Agency - LHA Lifetime Health Advisory - ng/L nanograms per liter - N/A No applicable regulatory limit exists for the associated analyte. - RL Reporting Limit Table 3 — March 2023 Water Supply Well Monitoring Analytical Results | | | | Sample ID
Sample Date | 33059
3/8/2023 | 33060
3/8/2 | 33160
2023 | 33068
3/8/2023 | |-------------------|--|--------------|--------------------------|--------------------------|-----------------------|----------------------|--------------------------| | Analytical Method | Analyte | Action Level | Units | Project Sample | Field Dup | | Project Sample | | | Perfluorooctanesulfonic acid (PFOS) | 70‡ | ng/L | < 1.8 | 8.5 | 9.4 | < 1.8 | | | Perfluorooctanoic acid (PFOA) | 70‡ | ng/L | < 1.8 | 1.5 J | 1.6 J | < 1.8 | | | Hexafluoropropylene oxide dimer acid (HFPO-DA) | 10† | ng/L | < 3.7 | < 3.6 | < 3.6 | < 3.7 | | | Perfluorobutanesulfonic acid (PFBS) | 2000† | ng/L | < 1.8 | 0.43 J | 0.53 J | < 1.8 | | | Perfluorodecanoic acid (PFDA) | N/A | ng/L | < 1.8 | < 1.8 | 0.35 J | < 1.8 | | | Perfluorododecanoic acid (PFDoA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.8 | < 1.8 | | | Perfluoroheptanoic acid (PFHpA) | N/A | ng/L | < 1.8 | 1.1 J | 1.0 J | < 1.8 | | | Perfluorohexanesulfonic acid (PFHxS) | N/A | ng/L | < 1.8 | 5.5 | 5.9 | < 1.8 | | EPA 537(Mod) | Perfluorohexanoic acid (PFHxA) | N/A | ng/L | < 1.8 | 1.7 J | 1.7 J | < 1.8 | | EPA 557 (IVIOU) | Perfluorononanoic acid (PFNA) | N/A | ng/L | < 1.8 | 0.59 J | 0.69 J | < 1.8 | | | Perfluorotetradecanoic acid (PFTeA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.8 | < 1.8 | | | Perfluorotridecanoic acid (PFTrDA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.8 | < 1.8 | | | Perfluoroundecanoic acid (PFUnA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.8 | < 1.8 | | | 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS) | N/A | ng/L | < 1.8 | < 1.8 | < 1.8 | < 1.8 | | | 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS) | N/A | ng/L | < 1.8 | < 1.8 | < 1.8 | < 1.8 | | | 4,8-Dioxa-3H-perfluorononanoic acid (DONA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.8 | < 1.8 | | | N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) | N/A | ng/L | < 4.6 | < 4.6 | < 4.5 | < 4.6 | | | N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA) | N/A | ng/L | < 4.6 | < 4.6 | < 4.5 | < 4.6 | Notes: Results reported from Eurofins Environment Testing America in West Sacramento, California work order 320-97690-1 - † Final EPA PFAS LHAs (HFPO-DA/PFBS) - ‡ DEC Drinking Water Action Level = 70 ng/L for sum of PFOS and PFOA - < Analyte not detected; listed as less than the RL unless otherwise flagged due to quality-control failures. - J Estimated concentration, detected greater than the DL and less than the reporting limit RL. Flag applied by the laboratory. - DEC Alaska Department of Environmental Conservation - DL Detection Limit - EPA United States Environmental Protection Agency - LHA Lifetime Health Advisory - ng/L nanograms per liter - N/A No applicable regulatory limit exists for the associated analyte. - RL Reporting Limit Table 4 — June 2023 Water Supply Well Monitoring Analytical Results | | | | Sample ID
Sample Date | 33053
6/6/2023 | 33056
6/6/2023 | 33059
6/6/2023 | 33060 6/6/ | 93060
2023 | 33068
6/6/2023 | |-------------------|--|--------------|--------------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------| | Analytical Method | Analyte | Action Level | Units | Project Sample | Project Sample | Project Sample | Field Dup | olicate Pair | Project Sample | | | Perfluorooctanesulfonic acid (PFOS) | 70‡ | ng/L | 4.0 | 9.5 | 0.54 J | 12 | 12 | < 1.7 | | | Perfluorooctanoic acid (PFOA) | 70‡ | ng/L | 0.84 J | 2.7 | < 1.9 | 2.3 | 2.4 | < 1.7 | | | Hexafluoropropylene oxide dimer acid (HFPO-DA) | 10† | ng/L | < 3.6 | < 3.5 | < 3.8 | < 3.6 | < 3.6 | < 3.5 | | | Perfluorobutanesulfonic acid (PFBS) | 2000† | ng/L | 0.34 J | 0.79 J | < 1.9 | 0.31 J | 0.30 J | < 1.7 | | | Perfluorodecanoic acid (PFDA) | N/A | ng/L | < 1.8 | 0.33 J | < 1.9 | 0.33 J | 0.33 J | < 1.7 | | | Perfluorododecanoic acid (PFDoA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 | < 1.7 | | | Perfluoroheptanoic acid (PFHpA) | N/A | ng/L | 0.65 J | 1.5 J | < 1.9 | 2.0 | 2.3 | < 1.7 | | | Perfluorohexanesulfonic acid (PFHxS) | N/A | ng/L | 6.9 | 8.9 | < 1.9 | 3.6 | 3.7 | < 1.7 | | EPA 537(Mod) | Perfluorohexanoic acid (PFHxA) | N/A | ng/L | 1.2 J | 1.7 J | < 1.9 | 3.9 | 4.3 | < 1.7 | | LI A 337 (Mod) | Perfluorononanoic acid (PFNA) | N/A | ng/L | 0.35 J | 1.2 J | < 1.9 | 0.63 J | 0.68 J | < 1.7 | | | Perfluorotetradecanoic acid (PFTeA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 | < 1.7 | | | Perfluorotridecanoic acid (PFTrDA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 | < 1.7 | | | Perfluoroundecanoic acid (PFUnA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 | < 1.7 | | | 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic
acid (9CI-PF3ONS) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 | < 1.7 | | | 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 | < 1.7 | | | 4,8-Dioxa-3H-perfluorononanoic acid (DONA) | N/A | ng/L | < 1.8 | < 1.8 | < 1.9 | < 1.8 | < 1.8 | < 1.7 | | | N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) | N/A | ng/L | < 4.5 | < 4.4 | < 4.8 | < 4.5 | < 4.5 | < 4.4 | | | N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA) | N/A | ng/L | < 4.5 | < 4.4 | < 4.8 | < 4.5 | < 4.5 | < 4.4 | Notes: Results reported from Eurofins Environment Testing in West Sacramento, California work order 320-101394-1. - † Final EPA PFAS LHAs (HFPO-DA/PFBS) - ‡ DEC Drinking Water Action Level = 70 ng/L for sum of PFOS and PFOA - < Analyte not detected; listed as less than the RL unless otherwise flagged due to quality-control failures. - J Estimated concentration, detected greater than the DL and less than the reporting limit RL. Flag applied by the laboratory. - DEC Alaska Department of Environmental Conservation - DL Detection Limit - EPA United States Environmental Protection Agency - LHA Lifetime Health Advisory - ng/L nanograms per liter - N/A No applicable regulatory limit exists for the associated analyte. - RL Reporting Limit 102219-025 1 of 1 May 2024 Table 5 - Summary of Mann-Kendall Trend Analysis | Location | Analyte | N | %ND | S | p-value | Confidence | COV | Trend | |----------|---------|----|--------|-----|---------|------------|-------|---| | | PFOS | 7 | 0.00% | -13 | 0.035 | 96.5% | 0.363 | Decreasing trend | | 33053 | PFOA | 7 | 0.00% | -5 | 0.281 | 71.9% | 0.220 | Stable | | | LHA | 7 | 0.00% | -13 | 0.035 | 96.5% | 0.322 | Decreasing trend | | _ | PFOS | 5 | 0.00% | -4 | 0.242 | 75.8% | 0.092 | Stable | | 33056 | PFOA | 5 | 0.00% | 0 | 0.592 | 40.8% | 0.178 | Stable | | | LHA | 5 | 0.00% | -4 | 0.242 | 75.8% | 0.099 | Stable | | | PFOS | 15 | 0.00% | 2 | 0.461 | 53.9% | 0.204 | No trend | | 33060 | PFOA | 15 | 6.67% | -14 | 0.248 | 75.2% | 0.511 | Stable | | | LHA | 15 | 0.00% | 15 | 0.248 | 75.2% | 0.203 | No trend | | | PFOS | 8 | 0.00% | -4 | 0.360 | 64.0% | 0.467 | Stable | | 33064 | PFOA | 8 | 62.50% | - | - | - | - | Insufficient detections for a meaningful trend analysis | | | LHA | 8 | 0.00% | -4 | 0.360 | 64.0% | 0.511 | Stable | | | PFOS | 5 | 0.00% | 10 | 0.008 | 99.2% | 0.659 | Increasing trend | | 33065 | PFOA | 5 | 0.00% | -4 | 0.242 | 75.8% | 0.195 | Stable | | | LHA | 5 | 0.00% | 8 | 0.042 | 95.8% | 0.555 | Increasing trend | Notes: COV = coefficient of variation; DEC = Alaska Department of Environmental Conservation; LHA = Lifetime Health Advisory Level/DECs PFAS Drinking Water Action Level; N = number of observations; PFAS = per- and polyfluoroalkyl substance; PFOA = perfluorooctanoic acid; PFOS = perfluorooctanesulfonic acid; S = Mann-Kendall Statistic NOTES: 1. The highest concentration for each well is presented on this map. This figure depicts a compilation of data collected throughout the life of the project. Some data depicted in this figure was not recently collected and may not represent the current condition. † Sum of PFOS and PFOA; *Sum of PFOS, PFOA, PFHxS, PFHpA, and PFNA **HIGHEST REPORTED WATER SUPPLY WELL RESULTS THROUGH JUNE 2023** Figure 1 Yakutat Tax Parcels # Appendix A # Field Forms # FIELD ACTIVITIES DAILY LOG | | Date 9/23/22 | |------------------------------------|--| | | Sheet <u>1</u> of <u>1</u>
Project No. 102896-009 | | Design Name | | | Project Name:
Field activity su | | | | daily activities and events: | | Description of t | daily activities and events. | | 0740 - | Calibrate YSIB, pack for sampling | | 0 1 10 | Controller 1919 Page 191 Santa 1919 | | 0900 - | Arrive at 33060. Purge and sample from utility sink in | | | garage bay | | | | | 1000 - | Arrive at 33059. Purge from bathroom sink while talking | | 1.10 | to Skip. Sample from PT in boiler room | | | 22052 5 - 6 | | 1100 - | Arrive at 33053. Purge from pump on top of well using | | | owner's hose. Sample directly from spigot | | 1200 - | Arrive at 33061. Purge through hose already connected to PT. | | 1200 | Sample directly from PT. Nobody present during sample. | | | Samme Girecity Home 1: November 1 | | 1255 - | Arrive at 33068. Talk to gate agents who page Adam | | | (airport manager). Purge from utility sink + sample directly | | | from PT. Adam intermittently present during purging. | | | | | 1:30 - | Return to cabin, unpack samples | Visitors on site | | | | | | Changes from | plans/specifications and other special orders and important decisions: | | | | | | | | Mosther send | itions: Object of Isober | | Weather condi | itions: Cloudy / rainy | | Important tele | phone calls: | | portant tele | | | Personnel on s | | | Signature: | Variable: 9/23/22 | # WATER SUPPLY WELL SAMPLING LOG | ner/Occupant Bobby Lekanof ailing address See DB | | | | - Project
Proje | Number 102896-009
oct Name FY23 Water Supply Well Sampling - Se
Date 9123122 | |--|---------------------|-----------------------|-----------------------------------|-----------------------------|--| | alling | address_ | Seede | 10 11 11 11 11 11 | P Andro | Time <u>0900</u> | | | | (907) 784 | | | ersonnel KND | | nple | Location _
- | Purge AND | sample from | utility/hanc | dwashing sink in shop | | mnle | -
Number | 33060 | | | Time 0927 | | iipic | Duplicate | 33160 | | _ | Time 0917 | | | Analysis | | | 1 | Lab Eurofins | | | gal/mir
e Volume | ~11.5gal | DADAMETERS | —
[stabilization criteri | al | | - | | | | pH pH | -1 | | | Time | Temp. (°C)
[± 0.5] | Conductivity
(µS/cm)
[± 3%] | (std. units)
[± 0.1] | Water Clarity (visual) | | F | 0901 | 20.9 | 336,2 | 5.95 | clear | | - | 0904 | 19.5 | 317.8 | 6.68 | clear | | ŀ | 1000 | 17.4 | 3.306.3 | 7.12 | Clear | | | 0910 | 16.7 | 301.9 | 7.28 | clear | | | 0912 | 16.6 | 301.0 | 7-35 | clear | | | 0915 | 16.5 | 300.7 | 7.40 | | | | 0918 | 165 | 300.6 | 7.43 | clear | | | 0921 | 16.5 | 300.6 | 7.44 | Clear | | | 0924 | 16.5 | 3.00.8 | 7-45 | Clear | | | Samp | lea @ 09 | 27 | | | | | | | | | | | | Notes | Notify | Bobby of resu | alts still | | | | | | | | | SHANNON & WILSON, INC. ### WATER SUPPLY WELL SAMPLING LOG | | Address_ | 931 Airpor | + Access Rd | Project Project | Number 102896-009
cct Name FY23 Water Supply Well Sampling - | |---|------------------------|-------------|----------------|------------------|---| | wner | /Occupant_ | Skip John | son | | Date 9/23/22 | | Mailin | g address_ | See DB | | - 1, 1 | Time 1000 | | | Telephone _ | (907) 784 | -3337 | Sampling P | ersonnel KND | | Telephone (907) 784-3337 Sample Location Purge from breakroom Sample from PT in boiler | | nink wiskin | present | | | | Sampl | e Location_ | Sample from | m PT in boile | y room (1st do | sor on left) | | | | | | | Time 1033 | | Sample Number
Duplicate | | _ | | | Time | | | | PFAS | | _ | Lab Eurofins | | Pu | O. logal
rge Volume | /min ~ 19 | | | a] | | | | | Conductivity | pH | | | | | Temp. (°C) | (µS/cm) | (std. units) | Water Clarity (visual) | | | Time | [± 0.5] | [± 3%] | [± 0.1] | | | | 1000 | 14.3 | 261.8 | 7.07 | very slightly cloudy | | | 1003 | 12.6 | 228.5 | 7.64 | | | | 1006 | 11.6 | 212.9 | 8.01 | | | | 1009 | 11.0 | 211.5 | 8.42 | | | | 1012 | 10.6 | 216.0 | 8.50 | | | | 1015 | 10.4 | 229.3 | 8.47 | | | 'n | 1018 | 10.3 | 234.2 | 8.45 | | | | 1021 | 10.2 | 238.2 | 8.45 | | | | 1024 | 10.1 | 240.7 | 8-46 | | | | 1030 | 10.2 | 242.1 | 8.47 | V | | | -77 | | | | | | | Samo | led @ 103 | 3 | | | | | CA.111.E | | | | | | | | | | | | | | | | | | 34 | | | | | | - De 1 | | | | Notes | Sand resu | its to Julia B | evens Pol | 30x 37 | | | Notes | : Sond resu | its to Julia B | evens Pol | per, AK 99603 | | | Notes | Sand resu | its to Julia B | evens Pos
Hom | Mer. Ar 99603 | | | Notes | Sand resu | its to Julia B | evens Pos
Hom | 30x 37
ner, Ar 99603 | On the Edge of Nowhere-Huntington North Wind Blows Softly Fri any time : except 12-1 (lunch) SHANNON & WILSON, INC. # WATER SUPPLY WELL SAMPLING LOG | ng addres
Telephor | Leo Tejeda se See DB ne (907) 784 purged from pump on to sampled to | 3910
op of well us
hrough spigo | Sampling Po | ct Name FY23 Water Supply Well Sampling - Date 9 23 22 Time 1100 ersonnel KND | |--|---|--|---|---| | ole Numb
Duplica | er <u>33053</u> | | | Time 1147 Time | | Analy | sis PFAS | | - | Lab Eurofins | | ırge Volu | me_~39gal | PARAMETERS |
[stabilization criteri | a] | | | | | pH | | | T: | Temp. (°C) | Conductivity
(µS/cm)
[± 3%] | (std. units)
[± 0.1] | Water Clarity (visual) | | Time | [± 0.5] | (µS/cm)
[± 3%] | (std. units) | clear | | 1109 | [± 0.5] | (µS/cm)
[± 3%] | (std. units)
[± 0.1] | clear | | 110 | [± 0.5]
5 | (µS/cm)
[± 3%] | (std. units)
[± 0.1]
6.34
6.94
7.17 | clear
clear | | 110 | [± 0.5]
3 | (µS/cm) [± 3%] 188.6 189.0 188.6 | (std. units)
[± 0.1]
6.34
6.94
7.17 | clear
clear
clear | | 110 | [± 0.5]
3 | (µS/cm) [± 3%] 188.6
189.0 188.6 188.2 | (std. units)
[± 0.1]
6.34
6.94
7.17
7.32 | clear
clear
clear
clear | | 1109
1109
1111
1112
1117 | [± 0.5] 6 | (µS/cm) [± 3%] 188.6 189.0 188.6 188.2 | (std. units)
[± 0.1]
6.34
6.94
1.17
1.32
1.47
1.59 | clear
clear
clear | | 1109
1109
1111
1112
1112
112 | [± 0.5] 6 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.2 188.0 | (std. units)
[± 0.1]
6.34
6.94
7.17
7.32
7.47
7.59
7.68 | clear
clear
clear
clear
clear | | 1105
110
1111
1112
1112
112
112 | [± 0.5] 3 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.6 188.2 188.0 188.1 | (std. units)
[± 0.1]
6.34
6.94
7.17
7.32
7.47
7.59
7.68
7.76 | clear
clear
clear
clear
clear
clear | | 1105
110
1111
1112
112
112
112 | [± 0.5] 3 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.6 188.2 188.0 187.4 | (std. units)
[± 0.1]
6.34
6.94
7.17
7.32
7.47
7.59
7.68
7.76
7.83
7.90 | clear | | 1105
1107
1114
1116
1117
1120
1121
1121
1121 | [± 0.5] 6 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.6 188.2 188.0 187.4 187.3 | (std. units) [± 0.1] 6.34 6.94 1.17 1.32 1.47 1.59 1.68 7.76 1.83 7.90 1.97 | clear | | 1109
1109
1111
1112
112
112
112
113 | [± 0.5] 6 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.6 188.2 188.0 187.4 | (std. units) [± 0.1] 6.34 6.94 7.17 7.32 7.47 7.59 7.68 7.76 7.83 7.90 1.97 | clear | | 1105
110
1111
1112
112
112
112
113
113 | [± 0.5] 6 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.2 188.0 181.6 187.4 187.3 187.2 187.0 186.9 | (std. units) [± 0.1] 6.34 6.94 7.17 7.32 7.47 1.59 7.68 7.76 7.83 7.90 1.97 8.02 8.05 | clear | | 1105
1107
1117
1117
1120
1120
1121
1131
1131
1131 | [± 0.5] 6 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.6 188.2 188.0 187.6 187.4 187.3 187.2 187.0 186.9 | (std. units) [± 0.1] 6.34 6.94 7.17 7.32 7.47 7.59 7.68 7.76 7.83 7.90 1.97 | clear | | 1105
110
1111
1112
112
112
112
113
113 | [± 0.5] 6 | (µS/cm) [± 3%] 188.6 189.0 188.8 188.6 188.2 188.0 187.6 187.4 187.3 187.2 187.0 186.9 | (std. units) [± 0.1] 6.34 6.94 7.17 7.32 7.47 1.59 7.68 7.76 7.83 7.90 1.97 8.02 8.05 | clear | CON | Sample Number 33061 Duplicate Analysis PFAS | Date 9123122 Time 1200 Sampling Personnel KND T (purged through hose already in place) ance from access is rear L side corner of bodg of 2 wooden boards Time 1238 Time — Lab Eurofins | |---|---| | Sample Location Purge / Sample from PT Ground floor maintenand Door proposed closed w/ w/ Door proposed closed w/ Door proposed closed w/ Door proposed closed w/ Door proposed closed w/ Door proposed w/ Door proposed closed | Sampling Personnel KND T (purged through hose already in place) ance room, access is rear L side corner of bodg of 2 wooden boards Time 1238 Time — | | Sample Number 33061 Duplicate Analysis PFAS | Time 1238 Time — | | Sample Number 33061 Duplicate Analysis PFAS | Time 1238 Time — | | Duplicate Analysis PFAS Purge Volume PARAMETER Conductivity (μS/cm) [± 0.5] [± 3%] 1202 | | | Duplicate Analysis PFAS Purge Volume PARAMETER Conductivity (μS/cm) [± 0.5] [± 3%] 1202 | | | Analysis PFAS 2 gal (min Purge Volume ~ 66 gal PARAMETER Temp. (°C) Conductivity (μS/cm) [± 0.5] [± 3%] | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Lab Eurofins | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Time [±0.5] [±3%] 1202 q.2 247.4 1205 7.9 243.4 1208 7.3 230.7 1211 7.2 232.5 1214 8.2 239.3 1217 8.0 237.6 1220 7.9 236.0 1223 7.7 234.9 1226 7.7 234.3 1229 7.6 233.6 1232 7.6 233.6 | (std. units) | | 1205 7.9 243.4
1208 7.3 230.7
1211 7.2 232.5
1214 8.2 239.3
1217 8.0 237.6
1220 7.9 236.0
1223 7.7 234.9
1226 7.7 234.3
1229 7.6 233.6
1232 7.6 233.6
1235 7.6 233.0 | [± 0.1] Water Clarity (visual) | | 1205 7.9 243.4
1208 7.3 230.7
1211 7.2 232.5
1214 8.2 239.3
1217 8.0 237.6
1220 7.9 236.0
1223 7.7 234.9
1226 7.7 234.3
1229 7.6 233.6
1232 7.6 233.6
1235 7.6 233.0 | 5.95 Slightly Cloudy | | 1211 7.2 232.5
1214 8.2 239.3
1217 8.0 237.6
1220 7.9 236.0
1223 7.7 234.9
1226 7.7 234.3
1229 7.6 233.6
1232 7.6 232.8
1235 7.6 233.0 | 7.33 Slightly cloudy | | 1214 8.2 239.3
1217 8.0 237.6
1220 7.9 236.0
1223 7.7 234.9
1226 7.7 234.3
1229 7.6 232.8
1235 7.6 233.0 | 7.90 dear | | 1217 8.0 237.6
1220 7.9 236.0
1223 7.7 234.9
1226 7.7 234.3
1229 7.6 232.8
1232 7.6 232.8
1235 7.6 233.0 | 8.19 Clear | | 1220 7.9 236.0
1223 7.7 234.9
1226 7.7 234.3
1229 7.6 233.6
1232 7.6 232.8
1235 7.6 233.0 | 0.14 | | 1223 7.7 234.9
1226 7.7 234.3
1229 7.6 233.6
1232 7.6 232.8
1235 7.6 233.0 | | | 1226 7.7 234.3
1229 7.6 233.6
1232 7.6 232.8
1235 7.6 233.0 | | | 1229 7.6 233.6
1232 7.6 232.8
1235 7.6 233.0 | | | 1232 7.6 232.8
1235 7.6 233.0 | | | 1235 7.6 233.0 | | | 10 0 0 | | | sampled@ 1238 | | | | | | Notes: | | | | | SHANNON & WILSON, INC. | ner/C | Address
Occupant | Adam (man | a way | Project
Proje | Number 1028
ct Name FY23 | Water Supply Well Sampling - Sep | | |------------|--|--------------------------------------|---|---|-----------------------------|---|--| | ailing | address _ | See DB | | | Date 91 | | | | | | 360) 355 - 3 | 2406 | Time 1255 Sampling Personnel KND | | | | | | | | | 07-01-01-00 | ×00 | | | | nple | Location _ | Purge from | utility sink + | P I Spigor sui | MPIE | | | | | = | PTspigot r
Adam pres | ear L side of bi | aggage area.
during sami | requires
sling. Said | escort
Ak Air building new
caropo locatio | | | | | 22068 | | | Time \ | 319 | | | mple | e Number_
Duplicate | 33068 | | - | Time | | | | | Duplicate_ | | | | | | | | | | DEAG | | | Lab F | turofins | | | | Analysis_ | PFAS | | - | N. 11 | | | | 3e
Purg | gal/min
ge Volume | ~63go | | <u>.</u>
7-10-11-11-11-11-11-11-11-11-11-11-11-11- | | | | | | | | | [stabilization criteri | a] | | | | | Time | Temp. (°C)
[± 0.5] | Conductivity
(µS/cm)
[± 3%] | pH
(std. units)
[± 0.1] | Wate | r Clarity (visual) | | | - 11 | | 17.3 | 313.8 | 6.39 | | dear | | | lì | 1255 | 1 1 2 2 | 305.0 | 7.15 | | dear | | | Ì | 1255 | 16.2 | | | | | | | | 1258 | 16.2 | 303.7 | 7.46 | | lear | | | | 1258 | 16.2
16.1
16.0 | 302.5 | 1-65 | | clear | | | | 1258
1301
1304 | 16.1 | 302.5 | 7-7-7 | | clear | | | , | 1258 | 16.0 | 3 02.5
3 00.5
299.8 | 1-65
1-7-7
1-80 | | clear
clear | | | , | 1258
1301
1304
1307 | 16.1
16.0
15.9
15.8 | 302.5
300.5
299.8
298.4 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | , | 1258
1301
1304
1303
1310 | 16.1
16.0
15.9 | 3 02.5
3 00.5
299.8 | 1-65
1-7-7
1-80 | (| clear
clear | | | | 1258
1301
1304
1307
1310
1313
1316 | 16.1
16.0
15.9
15.8 | 302.5
300.5
299.8
298.4
296.6 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | | 1258
1301
1304
1307
1310
1313
1316 | 16.1
16.0
15.9
15.8
15.8 | 302.5
300.5
299.8
298.4
296.6 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | | 1258
1301
1304
1307
1310
1313
1316 | 16.1
16.0
15.9
15.8
15.8 | 302.5
300.5
299.8
298.4
296.6 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | | 1258
1301
1304
1307
1310
1313
1316 |
16.1
16.0
15.9
15.8
15.8 | 302.5
300.5
299.8
298.4
296.6 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | | 1258
1301
1304
1307
1310
1313
1316 | 16.1
16.0
15.9
15.8
15.6 | 302.5
300.5
299.8
298.4
296.6 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | | 1258
1301
1304
1307
1310
1313
1316 | 16.1
16.0
15.9
15.8
15.6 | 302.5
300.5
299.8
298.4
296.6 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | | 1258
1301
1304
1307
1310
1313
1316 | 16.1
16.0
15.9
15.8
15.6 | 302.5
300.5
299.8
298.4
296.6 | 1-65
1-11
1-80
1-85 | (| clear
clear
clear | | | Date 12/15/2022 | |--| | Sheet of | | December 202 Project No. 102896-009 | | Project Name: Yakutat DOT&PF PFAS - FY23 Water Supply Well Sampling - Sept 2022 | | Field Activity Subject: Water Supply Well Sampling | | Calibration: 0530 AM Calibrate YSI F | | Description of daily activities and events: | | Description of daily activities and events. | | 05:30 Calibrate YSI and pack for field work. | | 0600 Drive to airport and check-in | | 0600-1604 Travel from Fairbanks > YAKUTAT | | 1604 Arrive in YAK and pick up luggarge. Pick up | | 1634 Arrive at DOT 3 PF ARFF building. Collect Sample and de plicate Sample 10 Sample Time. 33060 > 1704 primary | | 320/0h > 1704 201 min | | 33160 > 1706 duplicate | | - 3100 2 1100 AUDITEGAE | | 1708 Clean up work are and leave Site Check
in on Leo's Vehide Rental (33053). Business
Looks mactive. No vehicles on site and no foot
traffic to office. | | Check inon Italia River Lodge (33056). Tire trucks to brilding, Check back in the AM | | 1731 Arrive at B&B and organize year. | | | | Visitors on site: None | | Changes from plans/specifications and other special orders and important decisions: | | None | | Weather conditions: Fair banks 10°F snowing Yakutate 30°F raining | | Important telephone calls: See Contact list | | Personnel on site: Michael Javamillo | | Signature: Date: 12/15/2022 | | Dec 5.000 | | Date 12/16/2022 | |---| | Sheet/_ of | | Decimber Top Project No. 102896-009 | | Project Name: Yakutat DOT&PF PFAS - FY23 Water Supply Well Sampling - Sept 2022 | | Field Activity Subject: Water Supply Well Sampling | | Calibration: Calibration Check (0 630 | | Description of daily activities and events: | | | | 0430 Check calibration for YSI F. Conductivity out of | | calibration. Attempts to recalibrate and confirm | | calibration were pucuccessful. Continue with | | prep. Conductivity biased law but only used for | | Stabilization enteria. | | | | Pack for field work and departure. | | 0730 Amire at Alaska Airlines terminal and purge | | from whiley sink. Sample beneath pressure fork | | pre-treatment. | | Sumple 1D 33068 collected @ 0813 | | 0824 Clean up work area and await next appointment | | confirm no praffic for Leo's Auto. Some snow tracks | | at Italio's but no answer to phone call or knocking. | | | | 0845 Meet a Michael Man of TSP. Utility room outside | | behand building. Down propped up w 2x4. | | Furne and Some tron spigot below pressure that | | Sample 10 33061@0907. pre-trutme | | | | 0915 Cleany work area and await next appointment. | | Call Skip Johnson to see if he was able to | | come early. Get gas for rental. | | | | | | Visitors on site: | | | | Changes from plans/specifications and other special orders and important decisions: | | 70000 | | | | Weather conditions: Partly cloudy 25-30 of | | Wednest Contraction - Far 1 19 Classify | | Important telephone calls: See contact list | | | | Personnel on site: Michael Jovanillo (MXT) | | Signature: Date: 12/14/2022 | | Signature: Date: /2/14/2022 | | Rev. 5-9-22 | | | | Date 12/16/2022 | |--| | Sheet <u>Z</u> of <u>Z</u> | | Project No. 102896 -009 | | Project Name: YAKUtat DOT 3 PF PFAS - FY 23 Water Supply Well Sampling Field Activity Subject: Water Supply Well Sampling Occamber 2003 Calibration: Calibration Check @ 630 - See page 1 for notes. | | Description of daily activities and events: | | Service Hongar Purg. from NPS breakroom and Sample from spigot beneath pressure fent. Sample 10 33059 @ 1031 | | 1042 Cleany work gree and pack for departure: | | Drop offluoga-ge at Alaska Airlines. | | 1100-2145 Travel from Yakutet to Fair bunks. | | 2145-2230 Pick up luggage and drive to office place
Samples in restorder and unpack. | | * NoTE: TSA inspected cooler Sample controls not | | * Note: TSA inspected cooler. Sample controly not considered compromised. | | | | | | | | | | | | | | | | | | Visitors on site: None | | Changes from plans/specifications and other special orders and important decisions: | | | | Weather conditions: Partly cloudy 25-30°F in Vakutat | | Important telephone calls: See contact 11st | | Personnel on site: Milhaul Joranillo (AXX) | | Signature: Michael Date: 12/16/2022 | | Address | 101 A | PF ARFF | Proj | ect Number 102896-009 | |--------------------------|-------------|---------------|---------------|---| | wner/Occupant | DOT 3 | PF ARFF | _ Pr | roject Name FY23 Water Supply Well Sampling - Dec | | /lailing address | | 186 | | Date 12/15/2022 | | | | AT, AK 99689 | | Time 1634 | | Telephone | (907) 7 | 84-3476 | Sampling | g Personnel MXT | | mple Location | Utilit | y Sink in | ARFF | building - No treatm | | / | ourge pa | 0.5 gallons p | or minute | | | | | , | | | | mple Number
Duplicate | 3306 | 0 | | Time 1704 | | Duplicate | 3316 | 0 | | Time 1704 Time 1706 | | | | | 7 | | | | 250 | 10 | | | | Analysis | PFAS | x 18 | _ | Lab Eurofins - | | | | | | Lab Eurofins -
Sacramento, CA | | | | | | 3 201 110, CH | | | | | | | | Purge Volume | ~ 13, | 5 gallons | _ | | | | | | E sur bullion | | | | | PARAMETERS | | eria] | | | 12-10-16/20 | Conductivity | pH | | | | Temp. (°C) | (µS/cm) | (std. units) | | | Time | [± 0.5] | [± 3%] | [± 0.1] | Water Clarity (visual) | | 1637 | Started | ourging | | | | 1640 | 18.9 | 358.1 | 6,74 | Clear | | 1643 | 15.7 | 355.7 | 7.00 | 11 11 | | 1646 | 14.3 | 282.3 | 7.05 | 11 11 | | 1649 | 14.0 | 280.9 | 7.14 | W W | | 1652 | 13.5 | 284.1 | 7.17 | 11 11 | | 1655 | 12.8 | 285,5 | 7.21 | le te | | 1658 | 12.1 | 268,4 | 7.76 | " " | | 1701 | 12.3 | 269 1 | 7.28 | ve tt | | 1704 | 12.5 | 269,7 | 7.31 | ec n | | 1705 | collect | Samples | Notes: | None | | | | | | 14016 | | | | | 140103. | | | | | | Notes. | | | | | | Address | 931 A | irport Access | Read Pro | ject Number 10 | 2896-009 | | |----------------------------|------------|----------------------------------|---------------------|------------------|------------------------------|-----------| | wner/Occupant | Park | Service | P | roject Name FY | 23 Water Supply Well Samplin | g - Dec 2 | | Mailing address | PO B | | 7 | Date | 12/16/2022 | | | | Home | ,4 | 3 | Time | 1001 | _ | | Telephone | | 784-3337 | Samplin | ng Personnel _ | | | | ample Location | Spigot | beneth | pressure | tank | | | | Sample Number
Duplicate | 330 | 59 | | Time _
Time _ | 1031 | | | | PFAS | | - | Lab <u>(</u> | Eurofins -
Sacrament | e, ci | | Purge Volume | Temp. (°C) | PARAMETERS Conductivity (µS/cm) | [stabilization crit | eria] | | 1 | | Time | [± 0.5] | [± 3%] | [± 0.1] | Wate | er Clarity (visual) | | | 1003 | Sterted | purging | A = 0.2 | | | | | 1006 | 14.4 | 233.7 | 7.34 | Clear | | | | 1009 | 9.1 | 205.9 | 7.60 | in at | | | | 1012 | 7.4 | 187.4 | 7.72 | 4 61 | | | | 1015 | 4.9 | 143.6 | 7.75 | ** ** | | | | 1018 | 6.1 | 112.3 | 7.74 | 8. 11 | | . 1 | | 1021 | 5.7 | 84.1 | 7.72 | 40 00 | | | | 1074 | 5.4 | 66.9 | 7.72 | 42 11 | | | | 1027 | 5.5 | 657 | 7.70 | 0 11 | | | | 1030 | 5.5 | 45.2 | 7.69 | 41 11 | | 11 | | 1031 | Collect | Surges | | | | | | 10.1 | CO // CO | July | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | _ | | Notes: | Pu | ge from | NPS br | rek mem | cink. | | | | | 1 | 700 | | | | | | | Purge rate | 21 0011 | on munte | _ | | | | | | | / | | | | | | | | | | - | | | | | | | | | | | | | | | | - | | Address | 997 Ai | Airlines | _ P | roject Number 10 | | |----------------------------|-----------------------|-----------------------------|-------------------------
--|------------------------------------| | | | | | Project Name F | Y23 Water Supply Well Sampling - D | | Mailing address | | 30x 290 | | Date_ | | | | | T, AK 99689 | <u> </u> | Time_ | 730 | | Telephone | (907) | 784-3367 | _ Samp | ling Personnel_ | MXJ | | Sample Location | Spigot bemoth pr | | ressure fank | | | | Sample Number
Duplicate | 3306 | 8 | - | Time _
Time _ | 0813 | | Analysis | PFAS | 5 x 18 | - | Lab _ | Eurofins -
Sacramento, Ci | | Purge Volume | ~ 180 | gallons PARAMETERS [5 | - | | | | | -/ | | pH / | | | | Time | Temp. (°C)
[± 0.5] | Conductivity (µS/cm) [± 3%] | (std. units)
[± 0.1] | d la la la la | er Clarity (visual) | | 0734 | Started | puvaina | | | | | 0739 | 17.1 | 1296.1 | 6.75 | Clear | | | 0742 | 16.9 | 294.5 | 687 | 4 4 | | | 0745 | 16,5 | 289,4 | 4.93 | 11 11 | | | 0748 | 16.0 | 284.7 | 6.97 | N N | | | 0751 | 15.0 | 278,3 | 7.01 | 0. 11 | | | 0754 | 15.1 | 274. 7 | 7.04 | 11 11 | | | 0757 | 14.6 | 267.60 | 7,07 | 11 11 | | | 0800 | 14.0 | 261.8 | 7,09 | " " | | | 0803 | 13.5 | 254.3 | 7.12 | 11 11 | | | 0806 | 13.1 | 249.2 | 7,13 | 11 11 | | | 0809 | 12.9 | 247.3 | 7.16 | 11 11 | | | 0812 | 12.6 | 244.6 | 7,17 | 11 11 | | | 0813 | Collect | Sample | | | | | Notes: | Ruge | | 1 | and the same of th | whing machine. | | 4 | | purge (a) n5g | allows/ w | INVE | | | 14 | | | | | | | 1- | | | | | | | _ | | | | | | | vner/Occupant | TSA | sport Access Re | and Pr | oject Number 10 | | | | |---------------------------------|------------|-----------------|--------------|--------------------------------|-----------------------------------|--|--| | lailing address | | 2 1/27 | | Project Name <u>Fy</u>
Date | 23 Water Supply Well Sampling - D | | | | naming address | YAKUTI | DT AV 991. FG | - | Time | 12/16/2022 | | | | Telephone | | | Sampli | ng Personnel | MXT | | | | ample Location | beni | | | | | | | | ample Number
Duplicate | 3306 | | | Time | 8907 | | | | | PFAS | ma. V | | | Eurofins -
Sacramento, C | | | | | | | | 1111 | Sacramento, C | | | | Down a Valore | 2 20 | as lleas | | | | | | | Purge Volume | ~30 | | Olay Managar | | | | | | | | PARAMETERS [s | | teria] | | | | | | T (%C) | Conductivity | pH | | | | | | Time | Temp. (°C) | (µS/cm) | (std. units) | 101-1 | | | | | Time | [± 0.5] | [± 3%] | [± 0.1] | VVate | er Clarity (visual) | | | | 851 | Starte | of priejing | 7-1- | - 2 | | | | | 857 | 6.9 | 19318 | 7.75 | Clear | | | | | 900 | 4.7 | 190,3 | 7.79 | W */ | | | | | 903 | 6.8 | 191.3 | 111 | 11 11 | | | | | 904 | 6.7 | 197.2 | 7.76 | | | | | | 907 | collect | 114 | 1.14 | | | | | | 707 | Collect | sampa | Purge | to outside | of | | burned in | | | | Notes: | Hose | plumbed to | | | | | | | Notes: | Show | | - 11/10/21 | hase to | nurse | | | | Notes:
-
-
-
- | Snow | lice used | own | | pirge. | | | | Notes:
-
-
-
-
- | / | lice used | own | have to per m | , , | | | | | Date 318/23 | |--|--| | | Sheet 1 of 1 | | | Project No. 102896-009 | | Project Name | e: Yakutat DOT&PF PFAS - FY23 Water Supply Well Sampling - March 2023 | | Company of the Compan | Subject: March 2023 Water supply well sampling | | Calibration: | 4es- 451-F | | | of daily activities and events: | | 0820 | Calibrate YSI-F, pack for field day | | | and the state of t | | 0930 | Load car, drive into town | | | sample | | 1000 | sample NPS hangar (33059) | | 1115 | Drive around to other sample locations that didn't answer phone Confirm currently unoccupied (sample #5 33053, 33056, 33061) | | 1200 | Wait at AK Air terminal for flight to take off + get escort to | | | sample behind baggage area (Sample # 330(e8) | | | | | 1400 | Meet Bobby@ Fire hall + sample + Dup (Sample #5 | | | 33060 and 33160) | | 1500
 | | 1500 | End of workday | | | | | | 3 and 33056 were burried in snow, no evidence | | 2.2 | | | 3306 | | | | approx. February 2023 | | | | | | | | Visitors on sit | e: | | Changes from | n plans/specifications and other special orders and important decisions: | | | | | | | | Weather cond | ditions: Sunny 40s | | mportant tele | ephone calls: | | Personnel on : | site: KND | | Signature: | V 0 Date: 3/9/23 | | | Full Date: 3/8/23 | | | Address | 931 Aire | oort Access Rd | Proje | ect Number | 102896-009 | |-------|-------------------------|------------------------|------------------|----------------------|--------------|--------------------------------------| | Owne | r/Occupant | Julie Bevi | n.S | Pr | oject Name | FY23 Water Supply Well Sampling - Ma | | Maili | ing address | See DB | | | Date | 318123 | | | | | | | Time | 1000 | | | Telephone
₹ 60 ★ | (907) 350
data base | -4178 (Skipce | Sampling | g Personnel | KND | | Samp | ole Location | purge fro
Sample f | m kitchen sin | K | | | | Samı | ole Number
Duplicate | 33059 | | | Time
Time | 1025 | | | | | | | 100 | 1 | | | | 25.6 | | | | E C' | | | Analysis | PFAS | | _ | Lab | Eurofins | Pui | rge Volume | laal/mi | n ⇒ 18gal | | | | | | | , | | | | | | | | | | [stabilization crite | ria] | | | | | | Conductivity | L PA | | | | - 4 | | Temp. (°C) | (µ S/ cm) | (std. units) | | 10 (100) 12 4 | | | Time | [± 0.5] | [± 3%] | [± 0.1] | Wa | ater Clarity (visual) | | | 1004 | 16.8 | 299.5 | 6.06 | C | ear | | | 1007 | 15.0 | 299.5 | 6-65 | | | | | 1010 | | 276-6 | 6.89 | | | | in | .042 | 13.8 | 2665 | 1-03 | | | | in | 1016 | 11.3 | 261-3 | 7-03 | | | | | 1019 | 11.1 | 261-2 | 7-08 | | | | | 1022 | 10.9 | 260.1 | 7-10 | | V | | | | | | | | | | | sampl | ed@ 1025 | 5 | E-1-12 | Notes: | | | | | | | | 110100. | Address 997 Airport Way | | Project Number 102896-009 | | | | | |-------|--|-------------------------|---------------------------|---|------------------------|--|--| | Owne | r/Occupant | ccupant Alaska Airlines | | Project Name FY23 Water Supply Well Sampling - March 20 | | | | | Maili | ng address | See DB | | | Date 3(8(23 | | | | | | | | | Time 1215 | | | | | Telephone | e See DB | | — Sampling | Personnel KND | | | | | * PB= | B=database | | | | | | | Samp | Sample Location purge @ utility Sink + s | | sample from P | 70 | | | | | 7718 | | | 3 | 170.47724 | | | | Samp | ole Number | 33068 | | | Time 1235 | | | | | Duplicate . | _ | | | Time | | | | | | | | | | | | | | | 2545 | | | E. a.D'.ac | | | | | Analysis | PFAS | | _ | Lab <u>Eurofins</u> | 100 | Contident | | | | | | | | Pur | ge Volume | 2gal/min | ⇒ 30gal | _ | | | | | | | | DARAMETERS | [stabilization criter | rial | | | | Ī | | | Conductivity | | naj | | | | | | Temp. (°C) | (µS/cm) | (std. units) | | | | | | Time | [± 0.5] | (µS%m)
[± 3%] | (std. driits) | Water Clarity (visual) | | | | | Time | | | | | | | | | 1217 | 17-6 | 354-6 | 6.26 | clear | | | | - 4 | 1220 | 16-1 | 337.0 | 7.01 | | | | | smin | 1223 | 14.9 | 326.3 | 7.16 | | | | | 500 | 1226 | 14.9 | 326.3 | 7.23 | | | | | | 1229 | 14.9 | 326.1
327.3 | 7.25 | J | | | | | 1232 | 15.0 | 32+.3 | 7-27 | 4 | | | | | 00.00.010 | 10 1035 | | | | | | | | Sample | d@ 1235 | Ц | | | | | | | | | | Notes: | | | | | | | | | 110100. | | | | | | | | | - | | | | | | | | | | | | | | | | | | - | | | | | | | | | 1 | | | | | | | | | - | | | | | | | | | Address | 101 Airpo | A Rd | Projec | ct Number 1 | 02896-009 | |-------|--|---|---|-------------------------------|--------------|--| | Owne | r/Occupant | Bobby Leke | nof | | | Y23 Water Supply Well Sampling - March | | Maili | ng address | See DB | | | | 318/23 | | | | A SHEARING | | | Time | 1400 | | | Telephone | (907) 410- | 7359 (Bobby cell) | Sampling | Personnel_ | KND | | Samp | ole Location | purge/s | ample from utili | ry sink | · | | | Samp | ole Number
Duplicate | 33060
33160 | | | Time
Time | 1422
1412 | | | | | | | | | | | Analysis | PFAS | | | Lab | eurofins | | | Time | Temp. (°C) [± 0.5] | PARAMETERS [st Conductivity (µS/cm) [± 3%] | pH
(std. units)
[± 0.1] | | ater Clarity (visual) | | | 1403 | 23.1 | 283.0 | 6.09 | | clear | | | 1406 | 21.1 | 261.7 | 6.78 | | 1 | | | | 17.6 | 242.1 | 6.83 | | | | | 1407 | | | | | | | | 1407 | | 232.1 | 6.91 | | | | min | 1410 | 15.8 | 232.1 | 6.91 | | | | min | i410
1413 | 15.8
15.7 | 230,7 | 6.96 | | | | min | 1410 | 15.8 | | | | V | | min | 1410
1413
1416
1419 | 15.8
15.7
15.7 | 230.7 | 6.99 | | V | | min | 1410
1413
1416
1419 | 15.8
15.7
15.7
15.8 | 230.7 | 6.99 | | V | | omin | 1410
1413
1416
1419 | 15.8
15.7
15.7
15.8 | 230.7 | 6.99 | | V | | omin | 1410
1413
1416
1419 | 15.8
15.7
15.7
15.8 | 230.7 | 6.99 | | V | | omin | 1410
1413
1416
1419
Sample | 15.8
15.7
15.7
15.8
d@ 1422 | 230.7 | 6.99 | | V | | min | 1410
1413
1416
1419 | 15.8
15.7
15.7
15.8
d@ 1422 | 230.7 | 6.99 | | V | | min | 1410
1413
1416
1419
Sample | 15.8
15.7
15.7
15.8
d@ 1422 | 230.7 | 6.99 | | | | min | 1410
1413
1416
1419
Sample | 15.8
15.7
15.7
15.8
d@ 1422 | 230.7 | 6.99 | | V | | | Date 6/5/23 | |--|------------------------| | | Sheet of | | | Project No. 102896-009 | | Project Name: Yakutat DOT&PF PFAS - FY23 Water Supply Well Sampling - June 2023 | | | Field Activity Subject: Sampling - June 2023 | | | Calibration: None | | | Safety: Trayel Safety | | | | | | Description of daily activities and events: | | | 0800 Arrive @ S+W office. Prepare equipment 0850 Arrive @ FAI to depart to YAK | | | | | | 10 1600 ALW arrives in YAK. | | | 1620 Make phone calls to schedule sampling appointing | ent? | | 1700 Done with day | Visitors on site: | | | | | | Changes from plans/specifications and other special orders and important decisions: | | | changes from plansy specifications and other special orders and important decisions. | | | | | | | | | Weather conditions: 50°F OverCast | | | Weather conditions: 50°F OVERCAST | | | The second secon | | | Important telephone calls: schedule appointments | | | | | | Personnel on site: PLIN | | | ((a)) | 0 020 | | ac: MU | Signature: | | | | | | Date 6/6/23 | |---|-----------------------------| | | Sheet of | | | Project No. 102896-009 | | Project Name: Yakutat DOT&PF PFAS - FY23 Water Supply Well Sampling - June 2023 | , | | Field Activity Subject: wsw Sampling | | | Calibration: 151 F | | | Safety: Residential Sampling | | | Description of daily activities and events: | | | 0700 Calibrate 4SIF. Prepare paperwork | | | 0815 Depart lodging. | | | 0820 RLW Sample DOT - PF ARFF Bldg. | Personal inquired about | | | employees who touched AFFF. | | 0900 RLW arrived @ AK Air terminal | | | 1000 RLW a sampled Italio River Lodge Hang | | | | gar w/ Parks Service | | 1630 Done w day | | | ~ |
 | Visitors on site: | | | Visitors on site. | | | Changes from plans/specifications and other special orders and important decisions: | | | | | | | | | | | | Weather conditions: 50° F Overcast | | | | | | Important telephone calls: | | | Personnel on site: Rw | | | reisoniei on site. | 1 | | QC: (W) | ignature: MDU Date: 6/6/23 | | | Date 6/7/23 | |--|---| | | Sheet of | | | Project No. <u>102896-009</u> | | Project Name: Yakutat DOT&PF PFAS - FY23 Water Supply Well Sampling - June 2023 | | | Field Activity Subject: WSW Sampling | | | Calibration: None | | | Safety: Travel Safety | | | Description of daily activities and events: | | | 0800 Pack Equipment
RLN depart yakutak | | | 1700 RLW arrive in Fairbanks | | | 0730 Go unpack. Done for day | | | The state of s | Visitors on site: | | | 7,3,13,13,13,13,13 | | | Changes from plans/specifications and other special orders and important decisions: | | | | | | | | | Weather conditions: 50 – 70° F | | | Important telephone calls: | | | Personnel on site: | | | QC: IA | Signature: <u>ADM</u> Date: <u>617123</u> | | ner/Occupan | SPO BOX 186 | RFF | = ' | Project Name FY23 Water Supply Well Sampli Date 6820 | i <u>ng -</u> Jun | |--|--|---|---|---|-------------------| | Telephone | e 907-784-34 | 176 | Sampling Personnel QLW | | | | nple Location | Purge from | shop sink, sa | umple from | shop sink | | | | r 33060 | | | Time 0854 | _ | | | PFAS | | | Lab Eurofins | | | lumma Maluussa | 2 0.0/ | n | | | | | 0827 | Purge Start Temp. (°C) | PARAMETERS Conductivity (µS/cm) | [stabilization crit | 30.57 6.7 (0.1.1.4.) | | | 0827 | Purge Start Temp. (°C) [± 0.5] | PARAMETERS Conductivity (µS/cm) [± 3%] | pH
(std. units)
[± 0.1] | Water Clarity (visual) | | | 7 Time | Purge Start Temp. (°C) | PARAMETERS Conductivity (µS/cm) [± 3%] | pH
(std. units)
[± 0.1] | Water Clarity (visual) | | | 0827 | Purge Start Temp. (°C) [± 0.5] 9.3 9.3 | PARAMETERS Conductivity (µS/cm) [± 3%] 252 7 235 3 | pH
(std. units)
[± 0.1] | Water Clarity (visual) | | | Time 0833 0836 0839 0842 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 252. ∓ 235. 3 243. ↓ 218. ↓ | pH
(std. units)
[± 0.1] | Water Clarity (visual) | | | Time 0833 0836 0839 0842 0845 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 252. ∓ 235. 3 243. 1 218. 1 219. 4 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 0848 | Temp. (°C) [± 0.5] 9.3 9.3 9.3 9.3 6.0 | PARAMETERS Conductivity (μS/cm) [± 3%] 252. + 235. 3 243. 1 218. 1 219. 4 211. 6 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 252. ∓ 235. 3 243. 1 218. 1 219. 4 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 0845 | Temp. (°C) [± 0.5] 9.3 9.3 9.3 9.4 10.9 6.0 | PARAMETERS Conductivity (μS/cm) [± 3%] 252. + 235. 3 243. 1 218. 1 219. 4 211. 6 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 0845 | Temp. (°C) [± 0.5] 9.3 9.3 9.3 9.4 10.9 6.0 | PARAMETERS Conductivity (μS/cm) [± 3%] 252. + 235. 3 243. 1 218. 1 219. 4 211. 6 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 0845 | Temp. (°C) [± 0.5] 9.3 9.3 9.3 9.4 10.9 6.0 | PARAMETERS Conductivity (μS/cm) [± 3%] 252. + 235. 3 243. 1 218. 1 219. 4 211. 6 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 0845 | Temp. (°C) [± 0.5] 9.3 9.3 9.3 9.4 10.9 6.0 | PARAMETERS Conductivity (μS/cm) [± 3%] 252. + 235. 3 243. 1 218. 1 219. 4 211. 6 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 0845 | Temp. (°C) [± 0.5] 9.3 9.3 9.3 9.4 10.9 6.0 | PARAMETERS Conductivity (μS/cm) [± 3%] 252. + 235. 3 243. 1 218. 1 219. 4 211. 6 | pH
(std. units)
[± 0.1]
7.00
7.36
7.46
7.56 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear | | | Time 0833 0836 0839 0842 0845 0845 | Temp. (°C) [±0.5] 9.3 9.7 10.9.6 10.0 10.1 Sample Bathroom | PARAMETERS Conductivity (µS/cm) [± 3%] 252.7+ 235.3 243.1 218.1 219.4 211.6 214.2 | pH (std. units) [± 0.1] 7.00 7.36 7.46 7.56 7.61 7.63 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear Clear | | | Time 0833 0836 0839 0839 0842 0845 0845 0845 | Temp. (°C) [±0.5] 9.3 9.7 10.9.6 10.0 10.1 Sample Bathroom | PARAMETERS Conductivity (μS/cm) [± 3%] 252. ∓ 235. 3 243. 1 218. 1 219. 4 211. 6 214. 7 | pH (std. units) [± 0.1] 7.00 7.36 7.46 7.56 7.61 7.63 | Water Clarity (visual) Clear Clear Clear Clear Clear Clear Clear | | | ailing address | Alaska Airli | Way / 1044 Ax
nex) TSA
POBOX 42 | P | roject Name <u>FY</u>
Date | 23 Water Supply Well Sampling - Ju | |--|--------------------------------|---------------------------------------|--|-------------------------------|------------------------------------| | | Yakutat | Yakutat 9 | 1689 | Time | 0905 | | Telephone | | | Samplin | g Personnel | ZLW | | nple Locatior | Purge from | n utility m | opsink. San | aple from | pressure tank | | | 33 068 | 3 | | Time | 0934 | | Analysis | PFAS | | | Lab <u>(</u> | Eurofins | | | Temp. (°C) | | RS [stabilization crite
pH
(std. units)
[± 0.1] | The same | er Clarity (visual) | | 0916 | | | | | er Clarity (visual) | | | 16.7 | 344.9 | 7.49 | clear | | | | | 543-7 | | CIECC | | | 0919 | 16.6 | 345.6 | 7.80 | clear | | | 0919 | 16.0 | 348.1 | 7.80 | clear | | | 0919
0922
0925 | 16.0 | 348.1
348.1 | 7.87 | Clear | | | 0919 | 16.0 | 348.1 | 7.87 | | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928 | 16.7 | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928
0931
0934 | 16.0
16.7
16.8
Sample | 348.1
349.5
349.6 | 7.87 | clear | | | 0919
0922
0925
0928
0931
0934 | 16.0
16.7
16.8
Sample | 348.1
349.5 | 7.87 | clear | | | 0919
0922
0925
0928
0931
0934 | 16.0
16.7
16.8
Sample | 348.1
349.5
349.6 | 7.87 | clear | | | /ner/Occupant | POBOX283 | of Way
ver Lodge Ha | | ject Number 102896-009 roject Name <u>FY23 Water Supply Well Sampling</u> Date 6/6/23 |
1 Jur | |------------------------------------|-----------------------
---|---|---|-----------| | Telephone | 907-784 | AK 99689
-3280 | Samplin | g Personnel KLW | _ | | mple Location | Purge for
Sample f | om sink (utility | y/ Kitchen p | rcp) | _ | | imple Number
Duplicate | 33056 | | | Time 1025 Time | _ | | Analysis | PFAS | | | Lab Eurofins | _ | | Purge Volume | 3 gallo | In | _ | | | | | Temp. (°C) | | [stabilization criter pH (std. units) [± 0.1] | eria] Water Clarity (visual) | | | Time | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] | pH
(std. units)
[± 0.1] | Water Clarity (visual) | | | Time | Temp. (°C) | PARAMETERS Conductivity (µS/cm) [± 3%] | pH
(std. units)
[± 0.1] | Water Clarity (visual) | | | Time 1004 1007 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (µS/cm) [± 3%] 234.1 232.4 | pH
(std. units)
[± 0.1]
7.20
7.51
7.63 | Water Clarity (visual) | | | Time | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (µS/cm) [± 3%] | pH
(std. units)
[± 0.1] | Water Clarity (visual) | | | Time 1004 1007 1013 1016 1019 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 23(ω, 3) 23(ω, 3) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) | pH
(std. units)
[± 0.1]
7.20
7.51
7.63
7.78
7.84 | Water Clarity (visual) Clear Clear Clear Clear Clear | | | Time 1004 1007 1010 1013 1016 1019 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 23(μ, 3 23 4 . 1 232 . 4 231 . 4 230 . 4 | pH
(std. units)
[± 0.1]
7.20
7.51
7.63
7.78
7.84 | Water Clarity (visual) Clear Clear Clear Clear | | | Time 1004 1007 1013 1016 1019 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 23(ω, 3) 23(ω, 3) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) | pH
(std. units)
[± 0.1]
7.20
7.51
7.63
7.78
7.84 | Water Clarity (visual) Clear Clear Clear Clear Clear | | | Time 1004 1007 1010 1013 1016 1019 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 23(ω, 3) 23(ω, 3) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) | pH
(std. units)
[± 0.1]
7.20
7.51
7.63
7.78
7.84 | Water Clarity (visual) Clear Clear Clear Clear Clear | | | Time 1004 1007 1010 1013 1016 1019 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 23(ω, 3) 23(ω, 3) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) | pH
(std. units)
[± 0.1]
7.20
7.51
7.63
7.78
7.84 | Water Clarity (visual) Clear Clear Clear Clear Clear | | | Time 1004 1007 1010 1013 1016 1019 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 23(ω, 3) 23(ω, 3) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) | pH
(std. units)
[± 0.1]
7.20
7.51
7.63
7.78
7.84 | Water Clarity (visual) Clear Clear Clear Clear Clear | | | Time 1004 1007 1010 1013 1016 1019 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] 23(ω, 3) 23(ω, 3) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) 23(ω, 4) | pH
(std. units)
[± 0.1]
7.20
7.51
7.63
7.78
7.84 | Water Clarity (visual) Clear Clear Clear Clear Clear | | | wner/Occupant
Mailing address | PO Box 2 | | Pro | oject Name
Date | 102896-009 FY23 Water Supply Well Sampling - Jur | |--|---|---|--|--|---| | ample Location | From | pressure fani | e Purged | from | breakroom sint | | ample Number
Duplicate | 3305 | 9 | | Time
Time | 1334 | | Analysis | PFAS | | _ | Lab | Eurofins | | Time | Temp. (°C)
[± 0.5] | PARAMETERS Conductivity (μS/cm) [± 3%] | pH (std. units) [± 0.1] | | ater Clarity (visual) | | 11110 | | 320.5 | 7.49 | clear | | | 1307 | 16.7 | | | CHECK | | | 1307 | 14.2 | 301.4 | 7.73 | crear | | | 1307 | 14.2 | 301 4
295.3 | 7.86 | crear | | | 1307
1310
1313
1316 | 14.2 | 301.4
295.3
283.8 | 7.86 | clear | - | | 1307
1310
1313
1316
1319 | 14.2
13.6
12.1 | 301.4
295.3
2 83.8
2 74.4 | 7.86
7.97
8.05 | clear
clear
clear | | | 1307
1310
1313
1316
1319 | 14.2 | 301.4
295.3
283.8 | 7.86 | clear
clear
clear
clear | | | 1307
1310
1313
1314
1319
1322
1325
1328 | 14.2
13.6
12.1
10.5
10.1 | 301.4
295.3
283.8
274.4
264.1
260.0
259.8 | 7.86
7.97
8.05
8.09 | clear
clear
clear | | | 1307
1310
1313
1316
1319
1322
1325
1328
1331 | 14.2
13.6
12.1
10.5
10.1 | 301.4
295.3
283.8
274.4
264.1
260.0 | 7.86
7.97
8.05
8.09
8.14 | Clear
Clear
Clear
Clear
Clear | N . | | 1307
1310
1313
1314
1319
1322
1325
1328 | 14.2
13.6
12.1
10.5
10.1 | 301.4
295.3
283.8
274.4
264.1
260.0
259.8 | 7.86
7.97
8.05
8.09
8.14
8.16 | clear
clear
clear
clear
clear
clear | N . | | 1307
1310
1313
1316
1319
1322
1325
1328
1331 | 14.2
13.6
12.1
10.5
10.1 | 301.4
295.3
283.8
274.4
264.1
260.0
259.8 | 7.86
7.97
8.05
8.09
8.14
8.16 | clear
clear
clear
clear
clear
clear | N . | | 1307
1310
1313
1314
1319
1322
1325
1328
1331 | 14.2
13.6
12.1
10.5
10.1 | 301.4
295.3
283.8
274.4
264.1
260.0
259.8 | 7.86
7.97
8.05
8.09
8.14
8.16 | clear
clear
clear
clear
clear
clear | N . | | 1307
1310
1313
1316
1319
1322
1325
1328
1331 | 14.2
13.6
12.1
10.5
10.1 | 301.4
295.3
283.8
274.4
264.1
260.0
259.8 | 7.86
7.97
8.05
8.09
8.14
8.16 | clear
clear
clear
clear
clear
clear | N . | | 1307
1310
1313
1316
1319
1322
1325
1328
1331 | 14.2
13.6
12.1
10.5
10.1
10.1
9.9 | 301.4
295.3
283.8
274.4
264.1
260.0
259.8 | 7.86
7.97
8.05
8.09
8.14
8.16 | clear
clear
clear
clear
clear
clear | N . | | 1307
1310
1313
1316
1319
1322
1325
1328
1331 | 14.2
13.6
12.1
10.5
10.1
10.1
9.9 | 301.4
295.3
283.8
274.4
264.1
260.0
259.8 | 7.86
7.97
8.05
8.09
8.14
8.16 | clear
clear
clear
clear
clear
clear | N . | | er/Occupant | Leo's car | yar Access Rd St
rental
s
x 99689 | F | Date | FY23 Water Supply Well Sampling IH10 U16/23 | June | |--|---|---|---|---|---|------| | Telephone | 907-292-0 | 19689 | Sampli | ng Personnel | RLW | | | ple Location | from po | mp spigot | | | | _ | | nple Number
Duplicate | 33063 | | | Time Time | 1436 | | | Analysis | PFAS | | | Lab_ | Eurofins | | | | 0 4 | | | | | | | 1412 PV | Temp. (°C) | PARAMETERS Conductivity (µS/cm) | pH
(std. units) | | ater Clarity (visual) | | | | rge start | PARAMETERS Conductivity (µS/cm) [± 3%] | pH
(std. units)
[± 0.1] | Wa | ater Clarity (visual) | | | 1412 Pv | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (µS/cm) [± 3%] | pH
(std. units) | | ater Clarity (visual) | | | 1412 Pv | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (µS/cm) [± 3%] | pH
(std. units)
[± 0.1]
7.05
7.27 | Wa
clear
clear
clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 | Temp. (°C) [± 0.5] | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62 | Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1427 | Temp. (°C) [± 0.5] 6.7 6.4 6.0 6.0 5.7 | PARAMETERS Conductivity (μS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.74 | Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1427 1430 | Temp. (°C) [± 0.5] 6.7 6.4 6.0 6.0 5.7 | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.44
7.96
8.03 | Clear
Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1427 | Temp. (°C) [± 0.5] 6.7 6.4 6.0 6.0 5.7 | PARAMETERS Conductivity (μS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.74 | Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1424 14230 1433 | Temp. (°C) [±0.5] 6.7 6.7 6.0 5.7 5.6 5.7 | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.44
7.96
8.03 | Clear
Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1424 14230 1433 | Temp. (°C) [±0.5] 6.7 6.7 6.0 5.7 5.6 5.7 | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.44
7.96
8.03 | Clear
Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1424 14230 1433 | Temp. (°C) [±0.5] 6.7 6.7 6.0 5.7 5.6 5.7 | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.44
7.96
8.03 | Clear
Clear
Clear
Clear
Clear | ater
Clarity (visual) | | | Time 1415 1418 1421 1424 1424 14230 1433 | Temp. (°C) [±0.5] 6.7 6.7 6.0 5.7 5.6 5.7 | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.44
7.96
8.03 | Clear
Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1424 14230 1433 | Temp. (°C) [±0.5] 6.7 6.7 6.0 5.7 5.6 5.7 | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.44
7.96
8.03 | Clear
Clear
Clear
Clear
Clear | ater Clarity (visual) | | | Time 1415 1418 1421 1424 1424 1430 1433 1436 | Temp. (°C) [±0.5] 6.7 6.7 6.0 5.7 5.6 5.7 | PARAMETERS Conductivity (µS/cm) [± 3%] 155.9 150.1 149.4 147.9 | pH
(std. units)
[± 0.1]
7.05
7.27
7.62
7.44
7.96
8.03 | Clear
Clear
Clear
Clear
Clear | ater Clarity (visual) | | # Appendix B # Laboratory Reports and LDRCs # PREPARED FOR Attn: Ashley Jaramillo Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244 Generated 11/28/2022 8:14:52 AM Revision 1 # **JOB DESCRIPTION** FY23 Well Sampling (YAK) # **JOB NUMBER** 320-92599-1 Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605 # **Eurofins Sacramento** #### **Job Notes** This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory. The data in the report relate to the field sample(s) as received by the laboratory and associated QC. All results have been reviewed and have been found to be compliant with laboratory and accreditation requirements, with the exception of the noted deviation(s). For questions, please contact the Project Manager. The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager. # **Authorization** Generated 11/28/2022 8:14:52 AM Revision 1 Authorized for release by David Alltucker, Project Manager I <u>David.Alltucker@et.eurofinsus.com</u> (916)374-4383 3 4 5 6 8 40 13 14 15 Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) Laboratory Job ID: 320-92599-1 # **Table of Contents** | Cover Page | 1 | |--------------------------|----| | Table of Contents | 3 | | Definitions/Glossary | 4 | | Case Narrative | 5 | | Detection Summary | 6 | | Client Sample Results | 7 | | Isotope Dilution Summary | 14 | | QC Sample Results | 15 | | QC Association Summary | 19 | | Lab Chronicle | 20 | | Certification Summary | 21 | | Method Summary | 22 | | Sample Summary | 23 | | Chain of Custody | 24 | | Receipt Checklists | 25 | 3 6 8 10 12 13 14 1 # **Definitions/Glossary** Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) #### **Qualifiers** | | | N A | C | |---|---|-----|---| | _ | U | IV | J | | Qualifier | Qualifier Description | |-----------|--| | *5- | Isotope dilution analyte is outside acceptance limits, low biased. | | Н | Sample was prepped or analyzed beyond the specified holding time | | J | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. | | Glossary | | |----------------|---| | Abbreviation | These commonly used abbreviations may or may not be present in this report. | | ¤ | Listed under the "D" column to designate that the result is reported on a dry weight basis | | %R | Percent Recovery | | CFL | Contains Free Liquid | | CFU | Colony Forming Unit | | CNF | Contains No Free Liquid | | DER | Duplicate Error Ratio (normalized absolute difference) | | Dil Fac | Dilution Factor | | DL | Detection Limit (DoD/DOE) | | DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | | DLC | Decision Level Concentration (Radiochemistry) | | EDL | Estimated Detection Limit (Dioxin) | | LOD | Limit of Detection (DoD/DOE) | | LOQ | Limit of Quantitation (DoD/DOE) | | MCL | EPA recommended "Maximum Contaminant Level" | | MDA | Minimum Detectable Activity (Radiochemistry) | | MDC | Minimum Detectable Concentration (Radiochemistry) | | MDL | Method Detection Limit | | ML | Minimum Level (Dioxin) | | MPN | Most Probable Number | MQL NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) Method Quantitation Limit NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit** **PRES** Presumptive QC **Quality Control** RER Relative Error Ratio (Radiochemistry) RLReporting Limit or Requested Limit (Radiochemistry) **RPD** Relative Percent Difference, a measure of the relative difference between two points Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count **Eurofins Sacramento** #### Case Narrative Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) Job ID: 320-92599-1 **Laboratory: Eurofins Sacramento** Narrative Job Narrative 320-92599-1 Revision 11-28-2022: This report has been revised to report missing batch QC and correct batch number reference in narrative. #### Receipt The samples were received on 9/29/2022 12:46 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.0° C. #### **LCMS** Method EPA 537(Mod): Results for sample 33061 (320-92599-5) were reported from the analysis of a diluted extract due to sample matrix in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits Method EPA 537(Mod): Isotope Dilution Analyte (IDA) recoveries associated with the following sample are below the method recommended limit: 33061 (320-92599-5). The sample was re-extracted outside of the holding time with IDA recoveries within control limits. Both sets of data are reported. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample. No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. #### **Organic Prep** Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-621650. Method 3535: The following samples in preparation batch 320-621650 were observed to have floating particulates present in the sample bottle. 33059 (320-92599-3) and 33061 (320-92599-5) Method 3535: The following samples in preparation batch 320-621650 were dark brown in color prior to extraction. 33059 (320-92599-3) and 33061 (320-92599-5) Method 3535: During the solid phase extraction process, the following samples contained non-settable particulates which clogged the solid phase extraction column: 33059 (320-92599-3).320-621650 Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-632337. Method 3535: The following sample was re-prepared outside of preparation holding time due to a low IDA% recovery of 13C4 PFOS and 13C2 PFTeDA: 33061 (320-92599-5). preparation batch 320-632337 Method 3535: The following sample in preparation batch 320-632337 was observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. 33061 (320-92599-5) No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. Job ID: 320-92599-1 **Eurofins Sacramento** 11/28/2022 (Rev. 1) Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33160 Lab Sample ID: 320-92599-1 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 17 | | 1.8 | 0.53 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 3.2 | | 1.8 | 0.23 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 4.7 | | 1.8 | 0.78 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.65 | J | 1.8 | 0.25 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.54 | J | 1.8 | 0.18 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 8.0 | | 1.8 | 0.52 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 8.4 | | 1.8 | 0.50 | ng/L | 1 | | EPA 537(Mod) | Total/NA | Client Sample ID: 33060 Lab Sample ID: 320-92599-2 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 18 | | 1.9 | 0.54 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 3.6 | | 1.9 | 0.23 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 4.6 | | 1.9 | 0.79 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid
(PFNA) | 0.63 | J | 1.9 | 0.25 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.43 | J | 1.9 | 0.19 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 8.2 | | 1.9 | 0.53 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 7.9 | | 1.9 | 0.50 | ng/L | 1 | | EPA 537(Mod) | Total/NA | Lab Sample ID: 320-92599-3 Client Sample ID: 33059 No Detections. Client Sample ID: 33053 Lab Sample ID: 320-92599-4 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 1.6 | J | 1.8 | 0.52 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 1.0 | J | 1.8 | 0.22 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 1.7 | J | 1.8 | 0.76 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.52 | J | 1.8 | 0.24 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.72 | J | 1.8 | 0.18 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 9.8 | | 1.8 | 0.51 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 6.3 | | 1.8 | 0.48 | na/L | 1 | | EPA 537(Mod) | Total/NA | Client Sample ID: 33061 Lab Sample ID: 320-92599-5 No Detections. Client Sample ID: 33068 Lab Sample ID: 320-92599-6 No Detections. Job ID: 320-92599-1 This Detection Summary does not include radiochemical test results. Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33160 Lab Sample ID: 320-92599-1 Date Collected: 09/23/22 09:17 **Matrix: Water** Date Received: 09/29/22 12:46 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|--------| | Perfluorohexanoic acid (PFHxA) | 17 | | 1.8 | 0.53 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluoroheptanoic acid (PFHpA) | 3.2 | | 1.8 | 0.23 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorooctanoic acid (PFOA) | 4.7 | | 1.8 | 0.78 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorononanoic acid (PFNA) | 0.65 | J | 1.8 | 0.25 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorodecanoic acid (PFDA) | ND | | 1.8 | 0.28 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 1.0 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.51 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.67 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorobutanesulfonic acid (PFBS) | 0.54 | J | 1.8 | 0.18 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Perfluorohexanesulfonic acid (PFHxS) | 8.0 | | 1.8 | 0.52 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | • | | Perfluorooctanesulfonic acid (PFOS) | 8.4 | | 1.8 | 0.50 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.6 | 1.1 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | • | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.6 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | • | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | 0.22 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.7 | | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | • | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | • | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.37 | ng/L | | 10/01/22 10:49 | 10/12/22 05:39 | , | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 13C2 PFHxA | 99 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | - | | 13C4 PFHpA | 101 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C4 PFOA | 100 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C5 PFNA | 95 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C2 PFDA | 95 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C2 PFUnA | 93 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C2 PFDoA | 84 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C2 PFTeDA | 85 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C3 PFBS | 97 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 1802 PFHxS | 94 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C4 PFOS | 86 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | d3-NMeFOSAA | 105 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | d5-NEtFOSAA | 101 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:39 | | | 13C3 HFPO-DA | 95 | | 50 ₋ 150 | | | | 10/01/22 10:40 | 10/12/22 05:39 | | Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33060 Lab Sample ID: 320-92599-2 Date Collected: 09/23/22 09:27 **Matrix: Water** Date Received: 09/29/22 12:46 | Analyte | Result | Qualifier | RL | | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | 18 | | 1.9 | 0.54 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | | | Perfluoroheptanoic acid (PFHpA) | 3.6 | | 1.9 | 0.23 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | • | | Perfluorooctanoic acid (PFOA) | 4.6 | | 1.9 | 0.79 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | • | | Perfluorononanoic acid (PFNA) | 0.63 | J | 1.9 | 0.25 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | | | Perfluorodecanoic acid (PFDA) | ND | | 1.9 | 0.29 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | • | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.9 | 1.0 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | • | | Perfluorododecanoic acid (PFDoA) | ND | | 1.9 | 0.51 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.9 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | • | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.9 | 0.68 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | • | | Perfluorobutanesulfonic acid (PFBS) | 0.43 | J | 1.9 | 0.19 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | , | | Perfluorohexanesulfonic acid (PFHxS) | 8.2 | | 1.9 | 0.53 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | , | | Perfluorooctanesulfonic acid (PFOS) | 7.9 | | 1.9 | | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.7 | 1.1 | ng/L | | | 10/12/22 05:49 | • | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.7 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | • | | 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid | ND | | 1.9 | 0.22 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | | | Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) | ND | | 3.7 | 1.4 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | , | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.9 | 0.30 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | , | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.9 | 0.37 | ng/L | | 10/01/22 10:49 | 10/12/22 05:49 | , | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 13C2 PFHxA | 97 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C4 PFHpA | 99 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C4 PFOA | 96 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C5 PFNA | 94 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C2 PFDA | 94 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | - | | 13C2 PFUnA | 93 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C2 PFDoA | 88 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C2 PFTeDA | 83 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C3 PFBS | 94 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | - | | 1802 PFHxS | 96 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C4 PFOS | 90 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | d3-NMeFOSAA | 104 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | d5-NEtFOSAA | 98 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | | 13C3 HFPO-DA | 92 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 05:49 | | Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33059 Lab Sample ID: 320-92599-3 Date Collected: 09/23/22 10:33 **Matrix: Water** Date Received: 09/29/22 12:46 | Analyte | Result C | Qualifier | RL | MDL | | D | Prepared | Analyzed | Dil Fac | |---|-------------|--------------|-------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | | 1.8 | 0.52 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 1.8 | 0.22 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 1.8 | 0.76 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 1.8 | 0.24 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.8 | 0.28 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 0.98 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.49 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorotridecanoic
acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.65 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 1.8 | 0.18 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 1.8 | 0.51 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 1.8 | 0.48 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.5 | 1.1 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.5 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | 0.21 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.6 | 1.3 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.36 | ng/L | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | Isotope Dilution | %Recovery G | Qualifier Li | mits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 90 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C4 PFHpA | 88 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C4 PFOA | 85 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C5 PFNA | 81 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C2 PFDA | 78 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C2 PFUnA | 66 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C2 PFDoA | 59 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C2 PFTeDA | 66 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C3 PFBS | 85 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 1802 PFHxS | 85 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | 13C4 PFOS | 76 | 50 | - 150 | | | | 10/01/22 10:49 | 10/12/22 05:59 | 1 | | d3-NMeFOSAA | 78 | | - 150 | | | | | 10/12/22 05:59 | 1 | | d5-NEtFOSAA | 73 | | - 150 | | | | | 10/12/22 05:59 | 1 | | 13C3 HFPO-DA | 80 | | - 150 | | | | | 10/12/22 05:59 | 1 | Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33053 Lab Sample ID: 320-92599-4 Date Collected: 09/23/22 11:47 Date Received: 09/29/22 12:46 Matrix: Water | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | 1.6 | J | 1.8 | 0.52 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluoroheptanoic acid (PFHpA) | 1.0 | J | 1.8 | 0.22 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorooctanoic acid (PFOA) | 1.7 | J | 1.8 | 0.76 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorononanoic acid (PFNA) | 0.52 | J | 1.8 | 0.24 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.8 | 0.28 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 0.98 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.49 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.65 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorobutanesulfonic acid (PFBS) | 0.72 | J | 1.8 | 0.18 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | 9.8 | | 1.8 | 0.51 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Perfluorooctanesulfonic acid (PFOS) | 6.3 | | 1.8 | | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.5 | 1.1 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.5 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.6 | 1.3 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.36 | ng/L | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 100 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C4 PFHpA | 102 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C4 PFOA | 101 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C5 PFNA | 103 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C2 PFDA | 104 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C2 PFUnA | 105 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C2 PFDoA | 104 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C2 PFTeDA | 112 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C3 PFBS | 107 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 1802 PFHxS | 104 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C4 PFOS | 102 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | d3-NMeFOSAA | 117 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | d5-NEtFOSAA | 120 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | | 13C3 HFPO-DA | 97 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 06:19 | 1 | 3 5 1 9 12 14 1 Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) (ADONA) Client Sample ID: 33061 Lab Sample ID: 320-92599-5 Date Collected: 09/23/22 12:38 **Matrix: Water** Date Received: 09/29/22 12:46 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |--|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | | 1.9 | 0.54 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | | | Perfluoroheptanoic acid (PFHpA) | ND | | 1.9 | 0.23 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | • | | Perfluorooctanoic acid (PFOA) | ND | | 1.9 | 0.79 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 1.9 | 0.25 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.9 | 0.29 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.9 | 1.0 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.9 | 0.51 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.9 | 1.2 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.9 | 0.68 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 1.9 | 0.19 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 1.9 | 0.53 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 1.9 | 0.50 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | N-methylperfluorooctanesulfonamidoa
cetic acid (NMeFOSAA) | ND | | 4.6 | 1.1 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | N-ethylperfluorooctanesulfonamidoac
etic acid (NEtFOSAA) | ND | | 4.6 | 1.2 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.9 | 0.22 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.7 | 1.4 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 1.9 | 0.30 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.9 | 0.37 | ng/L | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 85 | | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | | | 13C4 PFHpA | 87 | | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 13C4 PFOA | 81 | | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 13C5 PFNA | 68 | | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | | | 13C2 PFDA | 56 | | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 13C2 PFUnA | 33 | *5- | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 13C2 PFDoA | 19 | *5- | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | | | 13C2 PFTeDA | 5 | *5- | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 13C3 PFBS | 54 | | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | 1802 PFHxS | 21 | *5- | 50 - 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | | | 13C4 PFOS | 5 | *5- | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | d3-NMeFOSAA | 35 | *5- | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/10/22 09:52 | 1 | | d5-NEtFOSAA | | *5- | 50 - 150 | | | | | 10/10/22 09:52 | | | 13C3 HFPO-DA | 96 | | 50 ₋ 150 | | | | | 10/10/22 09:52 | 1 | | Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 - RE | | | | | | | | | | | | |--|--------|-----------|-----|------|------|---|----------------|----------------|---------|--|--| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac
| | | | Perfluorotetradecanoic acid (PFTeA) | ND | H | 1.8 | 0.66 | ng/L | | 11/11/22 13:03 | 11/13/22 04:43 | 1 | | | | Perfluorooctanesulfonic acid (PFOS) | ND | Н | 1.8 | 0.49 | ng/L | | 11/11/22 13:03 | 11/13/22 04:43 | 1 | | | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | Н | 1.8 | 0.22 | ng/L | | 11/11/22 13:03 | 11/13/22 04:43 | 1 | | | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | Н | 1.8 | 0.29 | ng/L | | 11/11/22 13:03 | 11/13/22 04:43 | 1 | | | | 4,8-Dioxa-3H-perfluorononanoic acid | ND | Н | 1.8 | 0.36 | ng/L | | 11/11/22 13:03 | 11/13/22 04:43 | 1 | | | Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33061 Lab Sample ID: 320-92599-5 . Matrix: Water Date Collected: 09/23/22 12:38 Date Received: 09/29/22 12:46 | Isotope Dilution | %Recovery | Qualifier | Limits | Prepared | Analyzed | Dil Fac | |------------------|-----------|-----------|----------|----------------|----------------|---------| | 13C2 PFTeDA | 68 | | 50 - 150 | 11/11/22 13:03 | 11/13/22 04:43 | 1 | | 13C4 PFOS | 90 | | 50 - 150 | 11/11/22 13:03 | 11/13/22 04:43 | 1 | 2 _ 6 8 40 11 13 14 15 Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33068 Lab Sample ID: 320-92599-6 Date Collected: 09/23/22 13:19 **Matrix: Water** Date Received: 09/29/22 12:46 | Method: EPA 537(Mod) - PFAS
Analyte | | Qualifier | RL | MDL | | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | | 1.8 | 0.53 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 1.8 | 0.23 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 1.8 | 0.78 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 1.8 | 0.25 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.8 | 0.28 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 1.0 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.50 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.67 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 1.8 | 0.18 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 1.8 | 0.52 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 1.8 | 0.49 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.6 | 1.1 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.6 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | 0.22 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.7 | 1.4 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.37 | ng/L | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 100 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C4 PFHpA | 101 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C4 PFOA | 99 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C5 PFNA | 98 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C2 PFDA | 98 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C2 PFUnA | 97 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C2 PFDoA | 97 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C2 PFTeDA | 99 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C3 PFBS | 95 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 1802 PFHxS | 99 | | 50 - 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | 13C4 PFOS | 88 | | 50 ₋ 150 | | | | 10/01/22 10:49 | 10/12/22 06:29 | 1 | | d3-NMeFOSAA | 116 | | 50 ₋ 150 | | | | | 10/12/22 06:29 | 1 | | d5-NEtFOSAA | 113 | | 50 - 150 | | | | | 10/12/22 06:29 | | | 13C3 HFPO-DA | 94 | | 50 - 150 | | | | | 10/12/22 06:29 | 1 | Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 **Matrix: Water Prep Type: Total/NA** | | Percent Isotope Dilution Recovery (Acceptance Li | | | | | | | | | |---------------------|--|----------|----------|----------|----------|----------|----------|----------|----------| | | | PFHxA | C4PFHA | PFOA | PFNA | PFDA | PFUnA | PFDoA | PFTDA | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | 320-92599-1 | 33160 | 99 | 101 | 100 | 95 | 95 | 93 | 84 | 85 | | 320-92599-2 | 33060 | 97 | 99 | 96 | 94 | 94 | 93 | 88 | 83 | | 320-92599-3 | 33059 | 90 | 88 | 85 | 81 | 78 | 66 | 59 | 66 | | 320-92599-4 | 33053 | 100 | 102 | 101 | 103 | 104 | 105 | 104 | 112 | | 320-92599-5 | 33061 | 85 | 87 | 81 | 68 | 56 | 33 *5- | 19 *5- | 5 *5- | | 320-92599-5 - RE | 33061 | | | | | | | | 68 | | 320-92599-6 | 33068 | 100 | 101 | 99 | 98 | 98 | 97 | 97 | 99 | | LCS 320-621650/2-A | Lab Control Sample | 104 | 102 | 103 | 102 | 99 | 101 | 101 | 112 | | LCS 320-632337/2-A | Lab Control Sample | | | | | | | | 95 | | LCSD 320-621650/3-A | Lab Control Sample Dup | 102 | 100 | 99 | 98 | 97 | 98 | 95 | 100 | | LCSD 320-632337/3-A | Lab Control Sample Dup | | | | | | | | 88 | | MB 320-621650/1-A | Method Blank | 103 | 99 | 100 | 99 | 103 | 102 | 101 | 105 | | MB 320-632337/1-A | Method Blank | | | | | | | | 93 | | Percent Isotope Dilution Recovery | (Acceptance Limits) | |-----------------------------------|---------------------| |-----------------------------------|---------------------| | ш | | | | | | | | | , | |---|---------------------|------------------------|----------|----------|----------|----------|----------|----------|---| | | | | C3PFBS | PFHxS | PFOS | d3NMFOS | d5NEFOS | HFPODA | | | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | | | 320-92599-1 | 33160 | 97 | 94 | 86 | 105 | 101 | 95 | | | | 320-92599-2 | 33060 | 94 | 96 | 90 | 104 | 98 | 92 | | | | 320-92599-3 | 33059 | 85 | 85 | 76 | 78 | 73 | 80 | | | | 320-92599-4 | 33053 | 107 | 104 | 102 | 117 | 120 | 97 | | | | 320-92599-5 | 33061 | 54 | 21 *5- | 5 *5- | 35 *5- | 23 *5- | 96 | | | | 320-92599-5 - RE | 33061 | | | 90 | | | | | | | 320-92599-6 | 33068 | 95 | 99 | 88 | 116 | 113 | 94 | | | | LCS 320-621650/2-A | Lab Control Sample | 104 | 103 | 99 | 115 | 113 | 100 | | | | LCS 320-632337/2-A | Lab Control Sample | | | 97 | | | | | | | LCSD 320-621650/3-A | Lab Control Sample Dup | 98 | 92 | 89 | 116 | 108 | 97 | | | | LCSD 320-632337/3-A | Lab Control Sample Dup | | | 93 | | | | | | | MB 320-621650/1-A | Method Blank | 103 | 99 | 97 | 114 | 110 | 94 | | | | MB 320-632337/1-A | Method Blank | | | 97 | | | | | #### **Surrogate Legend** PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFUnA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA Job ID: 320-92599-1 Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) ### Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 MD MD Lab Sample ID: MB 320-621650/1-A **Matrix: Water** **Analysis Batch: 624111** Client Sample ID: Method Blank **Prep Batch: 621650** **Prep Type: Total/NA** | | MR | MR | | | | | | | | |---|--------|-----------|-----|------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Perfluorohexanoic acid (PFHxA) | ND | | 2.0 | 0.58 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 2.0 | 0.25 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 2.0 | 0.85 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 2.0 | 0.27 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 2.0 | 0.31 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 2.0 | 1.1 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 2.0 | 0.55 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 2.0 | 1.3 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 2.0 | 0.73 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 2.0 | 0.20 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 2.0 | 0.57 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 2.0 | 0.54 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 5.0 | 1.2 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | N-ethylperfluorooctanesulfonamidoac
etic acid (NEtFOSAA) | ND | | 5.0 | 1.3 | ng/L | | 10/01/22
10:49 | 10/12/22 04:28 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 2.0 | 0.24 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 4.0 | 1.5 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 2.0 | 0.32 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 2.0 | 0.40 | ng/L | | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | MB MB | | |-------|--| |-------|--| | | IVID | IVID | | | | |------------------|-----------|---------------------|----------------|----------------|---------| | Isotope Dilution | %Recovery | Qualifier Limits | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 103 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C4 PFHpA | 99 | 50 ₋ 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C4 PFOA | 100 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C5 PFNA | 99 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C2 PFDA | 103 | 50 ₋ 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C2 PFUnA | 102 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C2 PFDoA | 101 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C2 PFTeDA | 105 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C3 PFBS | 103 | 50 ₋ 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 18O2 PFHxS | 99 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C4 PFOS | 97 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | d3-NMeFOSAA | 114 | 50 ₋ 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | d5-NEtFOSAA | 110 | 50 - 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | 13C3 HFPO-DA | 94 | 50 ₋ 150 | 10/01/22 10:49 | 10/12/22 04:28 | 1 | | | | | | | | Lab Sample ID: LCS 320-621650/2-A **Matrix: Water** **Analysis Batch: 624111** | | nple | |-----------------|------| | Prep Type: Tota | I/NA | **Prep Batch: 621650** | | Spike | LCS | LCS | | | | %Rec | | |---------------------------------|-------|--------|-----------|------|---|------|----------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Perfluorohexanoic acid (PFHxA) | 40.0 | 41.6 | | ng/L | | 104 | 72 - 129 | | | Perfluoroheptanoic acid (PFHpA) | 40.0 | 42.8 | | ng/L | | 107 | 72 - 130 | | | Perfluorooctanoic acid (PFOA) | 40.0 | 44.0 | | ng/L | | 110 | 71 - 133 | | | Perfluorononanoic acid (PFNA) | 40.0 | 41.6 | | ng/L | | 104 | 69 - 130 | | **Eurofins Sacramento** Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: LCS 320-621650/2-A **Matrix: Water** Client: Shannon & Wilson, Inc Analysis Batch: 624111 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Prep Batch: 621650** LCS LCS Spike %Rec Added Result Qualifier Unit %Rec Limits Perfluorodecanoic acid (PFDA) 40.0 44.8 ng/L 112 71 - 129 Perfluoroundecanoic acid 40.0 44.4 ng/L 111 69 - 133 (PFUnA) 40.0 42.4 106 72 - 134 Perfluorododecanoic acid ng/L (PFDoA) 40.0 44.3 65 - 144 Perfluorotridecanoic acid ng/L 111 (PFTriA) 40.0 42.3 ng/L 106 71 - 132 Perfluorotetradecanoic acid (PFTeA) 35.5 37.8 Perfluorobutanesulfonic acid ng/L 106 72 - 130 (PFBS) Perfluorohexanesulfonic acid 36.5 37.4 ng/L 103 68 - 131 (PFHxS) 37.2 Perfluorooctanesulfonic acid 39.7 ng/L 107 65 - 140 (PFOS) 40.0 39.5 99 N-methylperfluorooctanesulfona ng/L 65 - 136 midoacetic acid (NMeFOSAA) 40.0 42.6 N-ethylperfluorooctanesulfonami ng/L 107 61 - 135doacetic acid (NEtFOSAA) 37.4 40.4 9-Chlorohexadecafluoro-3-oxan ng/L 108 77 - 137 onane-1-sulfonic acid Hexafluoropropylene Oxide 40.0 44.8 112 72 - 132 ng/L Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaund 37.8 41.1 ng/L 109 76 - 136 ecane-1-sulfonic acid 44.0 4,8-Dioxa-3H-perfluorononanoic 37.8 ng/L 117 81 - 141 acid (ADONA) LCS LCS | | LCS | LUS | | |------------------|-----------|-----------|----------| | Isotope Dilution | %Recovery | Qualifier | Limits | | 13C2 PFHxA | 104 | | 50 - 150 | | 13C4 PFHpA | 102 | | 50 - 150 | | 13C4 PFOA | 103 | | 50 - 150 | | 13C5 PFNA | 102 | | 50 - 150 | | 13C2 PFDA | 99 | | 50 - 150 | | 13C2 PFUnA | 101 | | 50 - 150 | | 13C2 PFDoA | 101 | | 50 - 150 | | 13C2 PFTeDA | 112 | | 50 - 150 | | 13C3 PFBS | 104 | | 50 - 150 | | 1802 PFHxS | 103 | | 50 - 150 | | 13C4 PFOS | 99 | | 50 - 150 | | d3-NMeFOSAA | 115 | | 50 - 150 | | d5-NEtFOSAA | 113 | | 50 - 150 | | 13C3 HFPO-DA | 100 | | 50 - 150 | | _ | | | | Lab Sample ID: LCSD 320-621650/3-A | Matrix: Water
Analysis Batch: 624111 | | | | | | | Prep Ty
Prep Ba | • | | |---|-------|--------|-----------|------|---|------|--------------------|-----|-------| | , | Spike | LCSD | LCSD | | | | %Rec | | RPD | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Perfluorohexanoic acid (PFHxA) | 40.0 | 40.3 | | ng/L | | 101 | 72 - 129 | 3 | 30 | | Perfluoroheptanoic acid (PFHpA) | 40.0 | 43.3 | | ng/L | | 108 | 72 - 130 | 1 | 30 | | Perfluorooctanoic acid (PFOA) | 40.0 | 44.2 | | ng/L | | 110 | 71 - 133 | 0 | 30 | **Eurofins Sacramento** Page 16 of 25 **Client Sample ID: Lab Control Sample Dup** Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: LCSD 320-621650/3-A **Matrix: Water** **Analysis Batch: 624111** Client: Shannon & Wilson, Inc **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA **Prep Batch: 621650** | | Spike LCSD LCSD | | | | | | %Rec | | RPD | |--|-----------------|--------|-----------|------|---|------|----------|-----|-------| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Perfluorononanoic acid (PFNA) | 40.0 | 42.8 | | ng/L | | 107 | 69 - 130 | 3 | 30 | | Perfluorodecanoic acid (PFDA) | 40.0 | 45.2 | | ng/L | | 113 | 71 - 129 | 1 | 30 | | Perfluoroundecanoic acid (PFUnA) | 40.0 | 44.7 | | ng/L | | 112 | 69 - 133 | 1 | 30 | | Perfluorododecanoic acid (PFDoA) | 40.0 | 44.1 | | ng/L | | 110 | 72 - 134 | 4 | 30 | | Perfluorotridecanoic acid (PFTriA) | 40.0 | 43.7 | | ng/L | | 109 | 65 - 144 | 1 | 30 | | Perfluorotetradecanoic acid (PFTeA) | 40.0 | 41.0 | | ng/L | | 103 | 71 - 132 | 3 | 30 | | Perfluorobutanesulfonic acid (PFBS) | 35.5 | 38.1 | | ng/L | | 107 | 72 - 130 | 1 | 30 | | Perfluorohexanesulfonic acid (PFHxS) | 36.5 | 38.1 | | ng/L | | 104 | 68 - 131 | 2 | 30 | | Perfluorooctanesulfonic acid (PFOS) | 37.2 | 42.3 | | ng/L | | 114 | 65 - 140 | 6 | 30 | | N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA) | 40.0 | 39.1 | | ng/L | | 98 | 65 - 136 | 1 | 30 | | N-ethylperfluorooctanesulfonami
doacetic acid (NEtFOSAA) | 40.0 | 45.6 | | ng/L | | 114 | 61 - 135 | 7 | 30 | | 9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid | 37.4 | 41.3 | | ng/L | | 111 | 77 - 137 | 2 | 30 | | Hexafluoropropylene Oxide
Dimer Acid (HFPO-DA) | 40.0 | 44.5 | | ng/L | | 111 | 72 - 132 | 1 | 30 | | 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid | 37.8 | 40.6 | | ng/L | | 107 | 76 - 136 | 1 | 30 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 37.8 | 49.3 | | ng/L | | 131 | 81 - 141 | 11 | 30 | LCSD LCSD | | 2002 | _005 | | |------------------|-----------|-----------|----------| | Isotope Dilution | %Recovery | Qualifier | Limits | | 13C2 PFHxA | 102 | | 50 - 150 | | 13C4 PFHpA | 100 | | 50 - 150 | | 13C4 PFOA | 99 | | 50 - 150 | | 13C5 PFNA | 98 | | 50 - 150 | | 13C2 PFDA | 97 | | 50 - 150 | | 13C2 PFUnA | 98 | | 50 - 150 | | 13C2 PFDoA | 95 | | 50 - 150 | | 13C2 PFTeDA | 100 | | 50 - 150 | | 13C3 PFBS | 98 | | 50 - 150 | | 1802 PFHxS | 92 | | 50 - 150 | | 13C4 PFOS | 89 | | 50 - 150 | | d3-NMeFOSAA | 116 | | 50 - 150 | | d5-NEtFOSAA | 108 | | 50 - 150 | | 13C3 HFPO-DA | 97 | | 50 - 150 | | _ | | | | Lab Sample ID: MB 320-632337/1-A **Matrix: Water** **Analysis Batch: 632509** **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 632337 MB MB Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Perfluorotetradecanoic acid (PFTeA) ND 2.0 0.73 ng/L 11/11/22 13:03 11/13/22 04:12 Perfluorooctanesulfonic acid (PFOS) ND 2.0 11/11/22 13:03 11/13/22 04:12 0.54 ng/L **Eurofins Sacramento** Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) Job ID: 320-92599-1 ### Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) 97 Lab Sample ID: MB 320-632337/1-A **Matrix: Water** **Analysis Batch: 632509** Client Sample ID: Method Blank **Prep Type: Total/NA** **Prep Batch: 632337** | | MB | MB | | | | | | | | |--|-----------|-----------|----------|------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 2.0 | 0.24 | ng/L | | 11/11/22 13:03 | 11/13/22 04:12 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 2.0 | 0.32 | ng/L | | 11/11/22 13:03 | 11/13/22 04:12 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 2.0 | 0.40 | ng/L | | 11/11/22 13:03 | 11/13/22 04:12 | 1 | | | MB | MB | | | | | | | | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFTeDA | 93 | | 50 - 150 | | | | 11/11/22 13:03 | 11/13/22 04:12 | 1 | 50 - 150 Lab Sample ID: LCS 320-632337/2-A **Matrix: Water** 13C4 PFOS Analysis Batch: 632509 **Client Sample ID: Lab Control Sample** 11/11/22 13:03 11/13/22 04:12 **Prep Type: Total/NA** **Prep Batch: 632337** | | Spike | LCS | LCS | | | %Rec | | |--------------------------------|---------|--------|--------------|----------|------|----------|--| | Analyte | Added | Result | Qualifier Un | it D | %Rec | Limits | | | Perfluorotetradecanoic acid | 40.0 | 38.9 | ng/ | L | 97 | 71 - 132 | | | (PFTeA) | | | | | | | | | Perfluorooctanesulfonic acid | 37.2 | 38.9 | ng/ | <u>L</u> | 104 | 65 -
140 | | | (PFOS) | | | | | | | | | 9-Chlorohexadecafluoro-3-oxan | 37.4 | 38.8 | ng/ | L | 104 | 77 - 137 | | | onane-1-sulfonic acid | | | | | | | | | 11-Chloroeicosafluoro-3-oxaund | 37.8 | 39.4 | ng/ | L | 104 | 76 - 136 | | | ecane-1-sulfonic acid | | | | | | | | | 4,8-Dioxa-3H-perfluorononanoic | 37.8 | 41.4 | ng/ | L | 110 | 81 - 141 | | | acid (ADONA) | | | | | | | | | | 100 100 | | | | | | | LCS LCS | Isotope Dilution | %Recovery | Qualifier | Limits | |------------------|-----------|-----------|----------| | 13C2 PFTeDA | 95 | | 50 - 150 | | 13C4 PFOS | 97 | | 50 - 150 | Lab Sample ID: LCSD 320-632337/3-A **Matrix: Water** Analysis Batch: 632509 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA Prep Batch: 632337 | | Spike | LCSD | LCSD | | | | %Rec | | RPD | |--|-------|--------|-----------|------|---|------|----------|-----|-------| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Perfluorotetradecanoic acid (PFTeA) | 40.0 | 36.1 | | ng/L | | 90 | 71 - 132 | 8 | 30 | | Perfluorooctanesulfonic acid (PFOS) | 37.2 | 37.5 | | ng/L | | 101 | 65 - 140 | 4 | 30 | | 9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid | 37.4 | 36.8 | | ng/L | | 99 | 77 - 137 | 5 | 30 | | 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid | 37.8 | 38.3 | | ng/L | | 101 | 76 - 136 | 3 | 30 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 37.8 | 41.0 | | ng/L | | 108 | 81 - 141 | 1 | 30 | LCSD LCSD | Isotope Dilution | %Recovery | Qualifier | Limits | |------------------|-----------|-----------|----------| | 13C2 PFTeDA | 88 | | 50 - 150 | | 13C4 PFOS | 93 | | 50 - 150 | **Eurofins Sacramento** # **QC Association Summary** Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) ### LCMS ### **Prep Batch: 621650** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 320-92599-1 | 33160 | Total/NA | Water | 3535 | | | 320-92599-2 | 33060 | Total/NA | Water | 3535 | | | 320-92599-3 | 33059 | Total/NA | Water | 3535 | | | 320-92599-4 | 33053 | Total/NA | Water | 3535 | | | 320-92599-5 | 33061 | Total/NA | Water | 3535 | | | 320-92599-6 | 33068 | Total/NA | Water | 3535 | | | MB 320-621650/1-A | Method Blank | Total/NA | Water | 3535 | | | LCS 320-621650/2-A | Lab Control Sample | Total/NA | Water | 3535 | | | LCSD 320-621650/3-A | Lab Control Sample Dup | Total/NA | Water | 3535 | | ### **Analysis Batch: 623410** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------|------------------|-----------|--------|--------------|------------| | 320-92599-5 | 33061 | Total/NA | Water | EPA 537(Mod) | 621650 | ### Analysis Batch: 624111 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------------|------------| | 320-92599-1 | 33160 | Total/NA | Water | EPA 537(Mod) | 621650 | | 320-92599-2 | 33060 | Total/NA | Water | EPA 537(Mod) | 621650 | | 320-92599-3 | 33059 | Total/NA | Water | EPA 537(Mod) | 621650 | | 320-92599-4 | 33053 | Total/NA | Water | EPA 537(Mod) | 621650 | | 320-92599-6 | 33068 | Total/NA | Water | EPA 537(Mod) | 621650 | | MB 320-621650/1-A | Method Blank | Total/NA | Water | EPA 537(Mod) | 621650 | | LCS 320-621650/2-A | Lab Control Sample | Total/NA | Water | EPA 537(Mod) | 621650 | | LCSD 320-621650/3-A | Lab Control Sample Dup | Total/NA | Water | EPA 537(Mod) | 621650 | #### **Prep Batch: 632337** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 320-92599-5 - RE | 33061 | Total/NA | Water | 3535 | | | MB 320-632337/1-A | Method Blank | Total/NA | Water | 3535 | | | LCS 320-632337/2-A | Lab Control Sample | Total/NA | Water | 3535 | | | LCSD 320-632337/3-A | Lab Control Sample Dup | Total/NA | Water | 3535 | | ### **Analysis Batch: 632509** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------------|------------| | 320-92599-5 - RE | 33061 | Total/NA | Water | EPA 537(Mod) | 632337 | | MB 320-632337/1-A | Method Blank | Total/NA | Water | EPA 537(Mod) | 632337 | | LCS 320-632337/2-A | Lab Control Sample | Total/NA | Water | EPA 537(Mod) | 632337 | | LCSD 320-632337/3-A | Lab Control Sample Dup | Total/NA | Water | EPA 537(Mod) | 632337 | Job ID: 320-92599-1 2 Job ID: 320-92599-1 Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) Client Sample ID: 33160 Lab Sample ID: 320-92599-1 Matrix: Water Date Collected: 09/23/22 09:17 Date Received: 09/29/22 12:46 Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed Analyst Lab 621650 10/01/22 10:49 Total/NA Prep 3535 272.2 mL 10.0 mL EJR **EET SAC** Total/NA EPA 537(Mod) 624111 10/12/22 05:39 D1R Analysis 1 1 mL 1 mL **EET SAC** Client Sample ID: 33060 Lab Sample ID: 320-92599-2 Matrix: Water Date Collected: 09/23/22 09:27 Date Received: 09/29/22 12:46 | _ | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 268.3 mL | 10.0 mL | 621650 | 10/01/22 10:49 | EJR | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 624111 | 10/12/22 05:49 | D1R | EET SAC | Client Sample ID: 33059 Lab Sample ID: 320-92599-3 Date Collected: 09/23/22 10:33 Date Received: 09/29/22 12:46 Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed Analyst Lab Total/NA Prep 3535 280 mL 10.0 mL 621650 10/01/22 10:49 EJR **EET SAC** Total/NA 1 mL 624111 10/12/22 05:59 D1R EET SAC Analysis EPA 537(Mod) 1 ml 1 Client Sample ID: 33053 Date Collected: 09/23/22 11:47 Lab Sample ID: 320-92599-4 Matrix: Water Date Collected: 09/23/22 11:47 Date Received: 09/29/22 12:46 | | Batch | Batch | _ | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 279.4 mL | 10.0 mL | 621650 | 10/01/22 10:49 | EJR | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 624111 | 10/12/22 06:19 | D1R | EET SAC | Client Sample ID: 33061 Date Collected: 09/23/22 12:38 Lab Sample ID: 320-92599-5 Matrix: Water Date Received: 09/29/22 12:46 | Prep Type | Batch
Type | Batch
Method | Run | Dil
Factor | Initial
Amount | Final
Amount | Batch
Number | Prepared or Analyzed | Analyst | Lab | |-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|----------------------|---------|---------| | Total/NA | Prep | 3535 | | | 269.6 mL | 10.0 mL | 621650 | 10/01/22 10:49 | EJR | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 623410 | 10/10/22 09:52 | RS1 | EET SAC | | Total/NA | Prep | 3535 | RE | | 277.4 mL | 10.0 mL | 632337 | 11/11/22 13:03 | RAC | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | RE | 1 | 1 mL | 1 mL | 632509 | 11/13/22 04:43 | S1M | EET SAC | Client Sample ID: 33068 Date Collected: 09/23/22 13:19 Lab Sample ID: 320-92599-6 Matrix: Water Date Received: 09/29/22 12:46 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 273.1 mL | 10.0 mL | 621650 | 10/01/22 10:49 | EJR | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 624111 | 10/12/22 06:29 | D1R | EET SAC | Laboratory References: EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 **Eurofins Sacramento** 3 4 6 7 9 10 11 **Matrix: Water** 13 14 # **Accreditation/Certification Summary** Client: Shannon & Wilson, Inc Job ID: 320-92599-1 Project/Site: FY23 Well Sampling (YAK) ### **Laboratory: Eurofins Sacramento** The accreditations/certifications listed below are applicable to this report. | Authority | Program | Identification Number | Expiration Date | |--------------|---------|-----------------------|------------------------| | Alaska (UST) | State | 17-020 | 02-20-24 | 3 4 6 8 11 1 4 14 ### **Method Summary** Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) MethodMethod DescriptionProtocolLaboratoryEPA 537(Mod)PFAS for QSM 5.3, Table B-15EPAEET SAC3535Solid-Phase Extraction (SPE)SW846EET SAC #### **Protocol References:** EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### **Laboratory References:** EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 Job ID: 320-92599-1 -0 4 5 7 8 11 12 14 ### **Sample Summary** Client: Shannon & Wilson, Inc Project/Site: FY23 Well Sampling (YAK) Lab Sample ID **Client Sample ID** Matrix Collected Received 09/23/22 09:17 09/29/22 12:46 320-92599-1 33160 Water 320-92599-2 33060 Water 09/23/22 09:27 09/29/22 12:46 33059 320-92599-3 Water 09/23/22 10:33 09/29/22 12:46 320-92599-4 33053 09/23/22 11:47 09/29/22 12:46 Water 33061 320-92599-5 Water 09/23/22 12:38 09/29/22 12:46 320-92599-6 33068 Water 09/23/22 13:19 09/29/22 12:46 Job ID:
320-92599-1 2 3 4 _ 9 10 19 13 14 No. 5 6 11/28/2022 (Rev. 1) Client: Shannon & Wilson, Inc Job Number: 320-92599-1 Login Number: 92599 List Source: Eurofins Sacramento List Number: 1 Creator: Her, David A | Creator. Her, David A | | | |--|--------|---------| | Question | Answer | Comment | | Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True | | | The cooler's custody seal, if present, is intact. | True | seal | | Sample custody seals, if present, are intact. | N/A | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time (excluding tests with immediate HTs) | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | N/A | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | | Multiphasic samples are not present. | True | | | Samples do not require splitting or compositing. | True | | | Residual Chlorine Checked. | N/A | | | | | | # ADEC Contaminated Sites Program Laboratory Data Review Checklist | Completed By:
Date: | Ashley
Jaramillo | CS Site
Name: | ADOT&PF
Yakutat Airport
Sitewide PFAS | Lab Name: | Eurofins
Environment
Testing
America | |------------------------|---------------------------|-------------------|---|------------------------|---| | Title: | Senior
Chemist | ADEC File
No.: | 1530.38.022 | Lab
Report
No.: | 320-92599-1
Revision 1 | | Consulting Firm: | Shannon &
Wilson, Inc. | Hazard ID
No.: | 27090 | Lab
Report
Date: | November
28, 2022 | Note: Any N/A or No box checked must have an explanation in the comments box. ### 1. Lab | 1. | Labor | atory | |----|-------|---| | | a. | Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses? Yes 🖂 No 🗌 N/A 🔲 Comments: The DEC certified Eurofins Environment Testing America in West Sacramento, California for the analysis of PFAS on February 11, 2021 by LCMSMS compliant with QSM Version 5.3 Table B-15. The reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020. | | | b. | If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved? Yes \square No \square N/A \boxtimes Comments: Project samples were not transferred to another "network" laboratory or sub-contracted to an alternate laboratory. | | 2. | Chain | of Custody (CoC) | | | a. | Is the CoC information completed, signed, and dated (including released/received by)? Yes No N/A Comments: Click or tap here to enter text. | | | b. | Were the correct analyses requested? Yes \boxtimes No \square N/A \square Analyses requested: EPA 537(Mod) PFAS compliant with QSM 5.3, Table B-15 Comments: Click or tap here to enter text. | Revision 9/2022 Lab Report No.: 320-92599-1 Revision 1 ### 3. Laboratory Sample Receipt Documentation | 6 | a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)? | |--------|---| | | Yes ⊠ No □ N/A □ | | | Cooler temperature(s): Cooler temperature was not reported by the laboratory. Sample temperature(s): Sample temperatures were not noted by the laboratory. Comments: A temperature blank was included with the samples in the cooler and is used to access temperature preservation. The temperature blank was within the acceptable temperature range of 0°C to 6°C. | | t | Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)? Yes □ No □ N/A ☒ Comments: PFAS analysis does not require preservation outside of temperature preservation. | | , | c. Is the sample condition documented – broken, leaking, zero headspace (VOA | | | vials); canister vacuum/pressure checked and no open valves, etc.? Yes No N/A Comments: The laboratory noted samples arrived in good condition and properly | | | preserved on ice. | | C | d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.? Yes No N/A Comments: No sample discrepancies were identified by the laboratory at sample login. | | € | e. Is the data quality or usability affected? Yes □ No □ N/A ☒ Comments: See above. | | 4. Cas | e Narrative | | â | a. Is the case narrative present and understandable? Yes ⊠ No □ N/A □ Comments: | **Lab Report No.:** 320-92599-1 Revision 1 | | D. | Are there discre | pancies, errors | , or QC failures | identified b | y the lab | |--|----|------------------|-----------------|------------------|--------------|-----------| |--|----|------------------|-----------------|------------------|--------------|-----------| Yes ⊠ No □ N/A □ Comments: - Revision 11-28-2022: The laboratory report was revised to report missing batch QC and correct batch number references in the narrative. - Results for sample 33061 were reported from the analysis of a diluted extract due to sample matrix in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits. Data quality and/or usability not affected. - IDA recoveries associated with the following sample is below the method recommended limit: 33061. The sample was re-extracted outside of the holding time with IDA recoveries within control limits. Both sets of data are reported. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample. See Section 6.d. for details regarding data quality and/or usability impacts, if any. - Insufficient sample volume was available to perform a MS/MSD associated with preparation batch 320-621650. See Section 6.c. for details regarding data quality and/or usability impacts, if any. - The following samples in preparation batch 320-621650 were observed to have floating particulates present in the sample bottle. 33059 and 33061. Data quality and/or usability not affected. - The following samples in preparation batch 320-621650 were dark brown in color prior to extraction. 33059 and 33061. Data quality and/or usability not affected. - During the solid phase extraction process, the following samples contained non-settable particulates which clogged the solid phase extraction column: 33059. Data quality and/or usability not affected. - Insufficient sample volume was available to perform a MS/MSD associated with preparation batch 320-632337. See Section 6.c. for details regarding data quality and/or usability impacts, if any. - The following sample was re-prepared outside of preparation holding time due to a low IDA% recovery of 13C4 PFOS and 13C2 PFTeDA: 33061. See Section 5.b for details regarding impact to data quality and/or usability. - The following sample in preparation batch 320-632337 was observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction: 33061. Data quality and/or usability not affected. | C. | Were al | I the co | rective action | s documented? | |----|---------|----------|----------------|---------------| | | Yes ⊠ | No □ | N/A □ | | Comments: Where required. **Lab Report No.:** 320-92599-1 Revision 1 d. What is the effect on data quality/usability according to the case narrative? Comments: The case narrative does not discuss effect on data quality, it only discusses discrepancies and what was done considering them, as applicable. Any notable data quality issues mentioned in the case narrative are discussed above in Section 4.b. or elsewhere within this DEC checklist. a. Are the correct analyses performed/reported as requested on CoC? ### 5. Sample Results | | α. | Yes ⊠ No □ N/A □ Comments: | |----|-------
---| | | b. | Are all applicable holding times met? Yes \square No \boxtimes N/A \square Comments: Sample 33061 was re-prepared outside of preparation holding time due to gross low IDA recoveries for 13C2 PFTeDA and 13C4 PFOS. In hold and out of hold data is reported for the analytes associated with the gross IDA recovery failures in the laboratory report, but only the out of hold data is reported in the analytical tables. The reported non-results for the associated analytes PFOS, PFTeA, ADONA, 9CI-PF3ONS, and 11CI-PF3-OUdS are considered estimated and are flagged 'J*' in the analytical summary tables. | | | C. | Are all soils reported on a dry weight basis? Yes □ No □ N/A ☒ Comments: Soil samples were not included with this work order. | | | d. | Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project? Yes \boxtimes No \square N/A \square Comments: | | | e. | Is the data quality or usability affected? Yes □ No □ N/A ☒ Comments: See above. | | 6. | QC Sa | mples | | | a. | Method Blank | | | | i. Was one method blank reported per matrix, analysis, and 20 samples? Yes ⋈ No □ N/A □ Comments: | | | | ii. Are all method blank results less than LOQ (or RL)? Yes \boxtimes No \square N/A \square | **Lab Report No.:** 320-92599-1 Revision 1 | | | Comments: | |----|--------|--| | | iii. | If above LoQ or RL, what samples are affected? Comments: Not applicable, see above. | | | iv. | Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: See above. | | | V. | Data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See above. | | b. | Labora | atory Control Sample/Duplicate (LCS/LCSD) | | | i. | Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes ⋈ No □ N/A □ Comments: • A LCS and LCSD was reported for preparatory batches 320-621650 and 320-632337. | | | ii. | Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes □ No □ N/A ☒ Comments: Metals/inorganics analyses were not requested with this work order. | | | iii. | Accuracy – Are all percent recoveries (%R) reported and within method of laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes No N/A Comments: | | | iv. | Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) $Yes \ \boxtimes \ No \ \square \ N/A \ \square$ Comments: | v. If %R or RPD is outside of acceptable limits, what samples are affected? CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-92599-1 Revision 1 Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. vii. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See above. c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No ⋈ N/A □ Comments: MS and MSD samples were not reported with this work order. Sample precision and accuracy were evaluated using the LCS/LCSD. Data quality and/or usability not affected. ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No □ N/A ⊠ Comments: Metals/inorganic analyses were not requested as a part of this work order. iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes □ No □ N/A ☒ Comments: See above. iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes □ No □ N/A ⊠ Comments: See above. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. | | vii. | Is the data quality or usability affected? Yes □ No □ N/A ⊠ | | | | |----|--|--|--|--|--| | | | Comments: See above. | | | | | d. | Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only | | | | | | | i. | Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples? Yes \boxtimes No \square N/A \square Comments: | | | | | | ii. | Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes □ No ☒ N/A □ Comments: The IDA recoveries for 13C2 PFUnA, 13C2 PFDoA, 18O2 PFHxS, d3-NMeFOSAA, and d5-NEtFOSAA were recovered low in sample 33061. The associated analytes PFUnA, PFDoA, PFHxS, NMeFOSAA, and NEtFOSAA results were not detected in sample 33061. These results are considered estimates and have been flagged 'J*' in the analytical tables. The IDA recoveries for 13C2 PFTeA and 13C4 PFOS had gross low recovery failures for sample 33061. The sample was re-extracted outside | | | | | | | of hold time and used for reporting purposes. The re-extracted results are not affected by the gross low IDA recovery failures. Refer to Section 5.b for applied qualifiers for out of hold data. | | | | | | iii. | Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: See above. | | | | | | iv. | Is the data quality or usability affected? Yes ⊠ No □ N/A □ Comments: See above. | | | | | e. | Trip Bl | anks | | | | | | i. | Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes □ No □ N/A ⊠ Comments: Volatile samples were not included with this work order. | | | | | | ii. | Are all results less than LoQ or RL? | | | | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-92599-1 Revision 1 | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-92599-1 Revision 1 | |---| | Yes □ No □ N/A ⊠
Comments: See above. | | iii. If above LoQ or RL, what samples are affected?
Comments: Not applicable, see above. | | iv. Is the data quality or usability affected?Yes □ No □ N/A ☒Comments: See above. | | f. Field Duplicate | | i. Are one field duplicate submitted per matrix, analysis, and 10 project samples? Yes ⋈ No □ N/A □ Comments: 33160 is the sample duplicate for sample 33060. | | ii. Was the duplicate submitted blind to lab?Yes ⋈ No □ N/A □Comments: | | iii. Precision – All relative percent differences (RPD) less than specified
project objectives? (Recommended: 30% water or air, 50% soil) | | $RPD (\%) = \left \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right X 100$ | | Where R_1 = Sample Concentration | | R ₂ = Field Duplicate Concentration | | Yes ⊠ No □ N/A □ Comments: Where calculable. | | iv. Is the data quality or usability affected? (Explain)Yes □ No □ N/A ⋈Comments: See above. | | g. Decontamination or Equipment Blanks | | i. Were decontamination or
equipment blanks collected? Yes □ No □ N/A ☒ Comments: reusable equipment was not used during sample collection. | | ii. Are all results less than LoQ or RL?Yes □ No □ N/A ⋈Comments: See above. | | | | If above LoQ or RL, specify what samples are affected. Comments: Not applicable, see above. Are data quality or usability affected? Yes □ No □ N/A ☒ | |----|---------|--| | a. | Are the | Comments: See above. lags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) ey defined and appropriate? No N/A | | | Comm | ents: Other data flags and/or qualifiers not required. | | | | | Lab Report No.: 320-92599-1 Revision 1 # PREPARED FOR Attn: Ashley Jaramillo Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244 Generated 1/17/2023 4:45:45 PM **JOB DESCRIPTION** Yakutat PFAS **JOB NUMBER** 320-95510-1 Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605 # **Eurofins Sacramento** ### **Job Notes** This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory. The data in the report relate to the field sample(s) as received by the laboratory and associated QC. All results have been reviewed and have been found to be compliant with laboratory and accreditation requirements, with the exception of the noted deviation(s). For questions, please contact the Project Manager. The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager. ### **Authorization** Generated 1/17/2023 4:45:45 PM Authorized for release by David Alltucker, Project Manager I David.Alltucker@et.eurofinsus.com (916)374-4383 1/17/2023 Client: Shannon & Wilson, Inc Project/Site: Yakutat PFAS Laboratory Job ID: 320-95510-1 # **Table of Contents** | Cover Page | 1 | |--------------------------|----| | Table of Contents | 3 | | Definitions/Glossary | 4 | | Case Narrative | 5 | | Detection Summary | 6 | | Client Sample Results | 7 | | Isotope Dilution Summary | 12 | | QC Sample Results | 13 | | QC Association Summary | 18 | | Lab Chronicle | 19 | | Certification Summary | 20 | | Method Summary | 21 | | Sample Summary | 22 | | Chain of Custody | 23 | | Receipt Checklists | 24 | 10 12 14 ### **Definitions/Glossary** Client: Shannon & Wilson, Inc Project/Site: Yakutat PFAS Job ID: 320-95510-1 Qualifiers **LCMS** | Qualifier | Qualifier Description | |-----------|--| | *5- | Isotope dilution analyte is outside acceptance limits, low biased. | | F1 | MS and/or MSD recovery exceeds control limits. | | J | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. | **Glossary** | Appreviation | These commonly used appreviations may or may not be present in this report. | |----------------|---| | ¤ | Listed under the "D" column to designate that the result is reported on a dry weight basis | | %R | Percent Recovery | | CFL | Contains Free Liquid | | CFU | Colony Forming Unit | | CNF | Contains No Free Liquid | | DER | Duplicate Error Ratio (normalized absolute difference) | | Dil Fac | Dilution Factor | | DL | Detection Limit (DoD/DOE) | | DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | | | | DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) These commonly used abbreviations may be may not be present in this report LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit PRES Presumptive QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count **Eurofins Sacramento** Page 4 of 24 1/17/2023 #### **Case Narrative** Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Job ID: 320-95510-1 **Laboratory: Eurofins Sacramento** **Narrative** Job Narrative 320-95510-1 #### Receipt The samples were received on 12/21/2022 10:52 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.8° C. #### LCMS Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: (320-95519-A-4-A), (320-95519-A-4-B MS) and (320-95519-A-4-C MSD). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s). Method EPA 537(Mod): The matrix spike duplicate (MSD) recoveries for preparation batch 320-643176 and analytical batch 320-645374 was outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. #### **Organic Prep** Method 3535: The following samples in preparation batch 320-643176 were observed to have floating particulates present in the sample bottle 33061 (320-95510-3). Method 3535: The following samples in preparation batch 320-643176 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. 33060 (320-95510-1) and 33160 (320-95510-2) Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-643176. Method 3535: During the solid phase extraction process, the following samples contain non-settable particulates which clogged the solid phase extraction column: 33061 (320-95510-3).preparation batch 320-643176 No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. Λ Ė _ 8 9 11 12 14 ### **Detection Summary** Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS | Client Sample ID: 33060 La | Sample ID: 320-95510-1 | |----------------------------|------------------------| |----------------------------|------------------------| | Analyte | Result C | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------------------------|----------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 6.1 | | 2.1 | 0.61 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 2.5 | | 2.1 | 0.26 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 2.4 | | 2.1 | 0.89 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.51 J | J | 2.1 | 0.28 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.79 J | J | 2.1 | 0.21 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 7.0 | | 2.1 | 0.60 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 8.9 | | 2.1 | 0.56 | ng/L | 1 | | EPA 537(Mod) | Total/NA | ### Client Sample ID: 33160 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | DI | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|---------|-----|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 6.3 | | 1.9 | 0.55 | ng/L | 1 | _ i | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 2.3 | | 1.9 | 0.24 | ng/L | 1 | I | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 2.4 | | 1.9 | 0.80 | ng/L | 1 | I | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.48 | J | 1.9 | 0.25 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.73 | J | 1.9 | 0.19 | ng/L | 1 | I | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 7.4 | | 1.9 | 0.54 | ng/L | 1 | I | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 9.2 | | 1.9 | 0.51 | ng/L | 1 | | EPA 537(Mod) | Total/NA | # Client Sample ID: 33061 Lab Sample ID: 320-95510-3 No Detections. Client Sample ID: 33059 Lab Sample ID: 320-95510-4 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |---------------------------------|--------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluoroheptanoic acid (PFHpA) | 0.33 | J | 2.0 | 0.24 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | ### Client Sample ID: 33068 Lab Sample ID: 320-95510-5 No Detections. This Detection Summary does
not include radiochemical test results. 1/17/2023 Lab Sample ID: 320-95510-2 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Client Sample ID: 33060 Lab Sample ID: 320-95510-1 Date Collected: 12/15/22 17:04 Matrix: Water Date Received: 12/21/22 10:52 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|--------| | Perfluorohexanoic acid (PFHxA) | 6.1 | | 2.1 | 0.61 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluoroheptanoic acid (PFHpA) | 2.5 | | 2.1 | 0.26 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorooctanoic acid (PFOA) | 2.4 | | 2.1 | 0.89 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorononanoic acid (PFNA) | 0.51 | J | 2.1 | 0.28 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorodecanoic acid (PFDA) | ND | | 2.1 | 0.32 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluoroundecanoic acid (PFUnA) | ND | | 2.1 | 1.2 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorododecanoic acid (PFDoA) | ND | | 2.1 | 0.58 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorotridecanoic acid (PFTriA) | ND | | 2.1 | 1.4 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorotetradecanoic acid (PFTeA) | ND | | 2.1 | 0.76 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorobutanesulfonic acid (PFBS) | 0.79 | J | 2.1 | 0.21 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorohexanesulfonic acid (PFHxS) | 7.0 | | 2.1 | 0.60 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Perfluorooctanesulfonic acid (PFOS) | 8.9 | | 2.1 | | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 5.2 | 1.3 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 5.2 | 1.4 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 2.1 | 0.25 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 4.2 | 1.6 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 2.1 | 0.33 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 2.1 | 0.42 | ng/L | | 12/29/22 05:14 | 01/07/23 18:37 | | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 13C2 PFHxA | 95 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C4 PFHpA | 95 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C4 PFOA | 98 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C5 PFNA | 100 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C2 PFDA | 98 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C2 PFUnA | 103 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C2 PFDoA | 86 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C2 PFTeDA | 93 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C3 PFBS | 91 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 1802 PFHxS | 99 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C4 PFOS | 91 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | d3-NMeFOSAA | 93 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | d5-NEtFOSAA | 111 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:37 | | | 13C3 HFPO-DA | 84 | | 50 ₋ 150 | | | | 12/20/22 05:14 | 01/07/23 18:37 | | 3 5 7 9 11 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Lab Sample ID: 320-95510-2 Client Sample ID: 33160 Date Collected: 12/15/22 17:06 **Matrix: Water** Date Received: 12/21/22 10:52 | Method: EPA 537(Mod) - PFAS
Analyte | | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | 6.3 | | 1.9 | 0.55 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluoroheptanoic acid (PFHpA) | 2.3 | | 1.9 | 0.24 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorooctanoic acid (PFOA) | 2.4 | | 1.9 | 0.80 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorononanoic acid (PFNA) | 0.48 | J | 1.9 | 0.25 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.9 | 0.29 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.9 | 1.0 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.9 | 0.52 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.9 | 1.2 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.9 | 0.69 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorobutanesulfonic acid (PFBS) | 0.73 | J | 1.9 | 0.19 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | 7.4 | | 1.9 | | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Perfluorooctanesulfonic acid (PFOS) | 9.2 | | 1.9 | 0.51 | | | | 01/07/23 18:47 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.7 | | ng/L | | | 01/07/23 18:47 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.7 | 1.2 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid | ND | | 1.9 | | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.8 | | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.9 | 0.30 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.9 | 0.38 | ng/L | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 100 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C4 PFHpA | 99 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C4 PFOA | 96 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C5 PFNA | 101 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C2 PFDA | 100 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C2 PFUnA | 110 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C2 PFDoA | 92 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C2 PFTeDA | 89 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C3 PFBS | 89 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 1802 PFHxS | 95 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C4 PFOS | 93 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | d3-NMeFOSAA | 108 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | d5-NEtFOSAA | 115 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | | 13C3 HFPO-DA | 89 | | 50 ₋ 150 | | | | 12/29/22 05:14 | 01/07/23 18:47 | 1 | Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Date Received: 12/21/22 10:52 13C3 HFPO-DA Client Sample ID: 33061 Lab Sample ID: 320-95510-3 Date Collected: 12/16/22 09:07 **Matrix: Water** | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | | 1.9 | 0.55 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 1.9 | 0.24 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 1.9 | 0.81 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 1.9 | 0.26 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.9 | 0.30 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.9 | 1.1 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.9 | 0.53 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.9 | 1.2 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.9 | 0.70 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 1.9 | 0.19 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 1.9 | 0.55 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 1.9 | 0.52 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.8 | 1.1 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.8 | 1.2 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.9 | 0.23 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.8 | 1.4 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.9 | | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.9 | 0.38 | ng/L | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 94 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C4 PFHpA | 96 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C4 PFOA | 95 | | 50 ₋ 150 |
 | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C5 PFNA | 94 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C2 PFDA | 89 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C2 PFUnA | 76 | | 50 ₋ 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C2 PFDoA | 54 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C2 PFTeDA | 64 | | 50 ₋ 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C3 PFBS | 94 | | 50 ₋ 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 1802 PFHxS | 97 | | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 18:57 | 1 | | 13C4 PFOS | 86 | | 50 ₋ 150 | | | | | 01/07/23 18:57 | 1 | | d3-NMeFOSAA | 77 | | 50 ₋ 150 | | | | | 01/07/23 18:57 | 1 | | d5-NEtFOSAA | 77 | | 50 - 150 | | | | | 01/07/23 18:57 | 1 | | | | | | | | | | | = | 12/29/22 05:14 01/07/23 18:57 50 - 150 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Date Received: 12/21/22 10:52 Client Sample ID: 33059 Lab Sample ID: 320-95510-4 Date Collected: 12/16/22 10:31 **Matrix: Water** Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Perfluorohexanoic acid (PFHxA) 2.0 ND 0.57 ng/L 12/29/22 05:14 01/07/23 19:07 2.0 Perfluoroheptanoic acid (PFHpA) 0.33 J 0.24 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluorooctanoic acid (PFOA) ND 2.0 0.83 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluorononanoic acid (PFNA) ND 2.0 0.26 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluorodecanoic acid (PFDA) ND 2.0 0.30 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluoroundecanoic acid (PFUnA) 1.1 ng/L ND 2.0 12/29/22 05:14 01/07/23 19:07 Perfluorododecanoic acid (PFDoA) ND 2.0 0.54 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluorotridecanoic acid (PFTriA) ND 2.0 12/29/22 05:14 01/07/23 19:07 1.3 ng/L Perfluorotetradecanoic acid (PFTeA) ND 2.0 0.71 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluorobutanesulfonic acid (PFBS) ND 2.0 0.20 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluorohexanesulfonic acid (PFHxS) ND 2.0 0.56 ng/L 12/29/22 05:14 01/07/23 19:07 Perfluorooctanesulfonic acid (PFOS) ND 2.0 0.53 ng/L 12/29/22 05:14 01/07/23 19:07 N-methylperfluorooctanesulfonamidoa ND 4.9 1.2 ng/L 12/29/22 05:14 01/07/23 19:07 cetic acid (NMeFOSAA) ND 12/29/22 05:14 01/07/23 19:07 N-ethylperfluorooctanesulfonamidoac 4.9 1.3 ng/L etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan ND 2.0 0.23 ng/L 12/29/22 05:14 01/07/23 19:07 e-1-sulfonic acid ND 3.9 1.5 ng/L 12/29/22 05:14 01/07/23 19:07 Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 2.0 0.31 ng/L 12/29/22 05:14 01/07/23 19:07 e-1-sulfonic acid ND 12/29/22 05:14 01/07/23 19:07 4,8-Dioxa-3H-perfluorononanoic acid 2.0 0.39 ng/L (ADONA) | Isotope Dilution | %Recovery Qualifier | Limits | Prepared | Analyzed | Dil Fac | |------------------|---------------------|---------------------|----------------|----------------|---------| | 13C2 PFHxA | 106 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C4 PFHpA | 104 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C4 PFOA | 102 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C5 PFNA | 104 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C2 PFDA | 101 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C2 PFUnA | 109 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C2 PFDoA | 92 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C2 PFTeDA | 99 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C3 PFBS | 99 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 1802 PFHxS | 112 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C4 PFOS | 99 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | d3-NMeFOSAA | 114 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | d5-NEtFOSAA | 121 | 50 - 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | | 13C3 HFPO-DA | 80 | 50 ₋ 150 | 12/29/22 05:14 | 01/07/23 19:07 | 1 | 1/17/2023 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Client Sample ID: 33068 Lab Sample ID: 320-95510-5 **Matrix: Water** Date Collected: 12/16/22 08:31 Date Received: 12/21/22 10:52 13C3 HFPO-DA | Analyte | Result Qualif | | | Unit | D | Prepared | Analyzed | Dil Fac | |---|------------------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | 1.9 | 0.56 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | 1.9 | 0.24 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorooctanoic acid (PFOA) | ND | 1.9 | 0.81 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorononanoic acid (PFNA) | ND | 1.9 | 0.26 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorodecanoic acid (PFDA) | ND | 1.9 | 0.30 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | 1.9 | 1.1 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | 1.9 | 0.53 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | 1.9 | 1.2 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | 1.9 | 0.70 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | 1.9 | 0.19 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | 1.9 | 0.55 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | 1.9 | 0.52 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | 4.8 | 1.1 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | 4.8 | | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid | ND | 1.9 | | ng/L | | | 01/07/23 19:17 | | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | 3.8 | 1.4 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | 1.9 | | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | 1.9 | 0.38 | ng/L | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | Isotope Dilution | %Recovery Qualit | ier Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 95 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C4 PFHpA | 95 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C4 PFOA | 97 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C5 PFNA | 98 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C2 PFDA | 99 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C2 PFUnA | 103 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C2 PFDoA | 102 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C2 PFTeDA | 97 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C3 PFBS | 88 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 1802 PFHxS | 100 | 50 - 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | 13C4 PFOS | 97 | 50 ₋ 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | d3-NMeFOSAA | 104 | 50 ₋ 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | d5-NEtFOSAA | 119 | 50 ₋ 150 | | | | 12/29/22 05:14 | 01/07/23 19:17 | 1 | | | | | | | | | | | 12/29/22 05:14 01/07/23 19:17 50 - 150 ### **Isotope Dilution Summary** Client: Shannon & Wilson, Inc Project/Site: Yakutat PFAS Job ID: 320-95510-1 Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Lab Control Sample Dup Method Blank Matrix: Water Prep Type: Total/NA | | | | Perce | ent Isotope | Dilution Re | covery (Ac | ceptance L | imits) | | | |----------------------|------------------------|----------|----------|-------------|-------------|------------|------------|----------|----------|--| | | | PFHxA | C4PFHA | PFOA | PFNA | PFDA | PFUnA | PFDoA | PFTDA | | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | | 320-95510-1 | 33060 | 95 | 95 | 98 | 100 | 98 | 103 | 86 | 93 | | | 320-95510-2 | 33160 | 100 | 99 | 96 | 101 | 100 | 110 | 92 | 89 | | | 320-95510-3 | 33061 | 94 | 96 | 95 | 94 | 89 | 76 | 54 | 64 | | | 320-95510-4 | 33059 | 106 | 104 | 102 | 104 | 101 | 109 | 92 | 99 | | | 320-95510-5 | 33068 | 95 | 95 | 97 | 98 | 99 | 103 | 102 | 97 | | | 320-95519-A-4-B MS | Matrix Spike | 85 | 89 | 88 | 87 | 73 | 61 | 49 *5- | 50 | | | 320-95519-A-4-C MSD | Matrix Spike Duplicate | 93 | 101 | 100 | 92 | 87 | 77 | 52 | 49 *5- | | | LCS 320-643176/2-A | Lab Control Sample | 95 | 99 | 97 | 97 | 105 | 113 | 98 | 98 | | | LCSD 320-643176/3-A | Lab Control Sample Dup | 97 | 102 | 98 | 104 | 107 | 111 | 94 | 102 | | | MB 320-643176/1-A | Method Blank | 95 | 97 | 98 | 99 | 97 | 104 | 99 | 104 | | | | | | Perce | ent Isotope | Dilution Re | covery (Ac | ceptance L | imits) | | | | | | C3PFBS | PFHxS | PFOS | d3NMFOS | d5NEFOS | HFPODA | | | | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | | | | 320-95510-1 | 33060 | 91 | 99 | 91 | 93 | 111 | 84 | | | | | 320-95510-2 | 33160 | 89 | 95 | 93 | 108 | 115 | 89 | | | | | 320-95510-3 | 33061 | 94 | 97 | 86 | 77 | 77 | 79 | | | | | 320-95510-4 | 33059 | 99 | 112 | 99 | 114 | 121 | 80 | | | | | 320-95510-5 | 33068 | 88 | 100 | 97 | 104 | 119 | 79 | | | | | 320-95519-A-4-B MS | Matrix Spike | 78 | 89 | 70 | 58 | 55 | 81 | | | | | 320-95519-A-4-C MSD | Matrix Spike Duplicate | 91 | 100 | 85 | 58 | 68 | 88 | | | | | LCS 320-643176/2-A | Lab Control Sample | 94 | 105 | 96 | 107 | 117 | 86 | | | | | 1 000 000 04047040 4 | | | | | | | | | | | 105 102 94 96 112 101 113 114 86 96 | _ | | | | |-------|-----|-----|-----| | Surro | ate | Lea | end | LCSD 320-643176/3-A MB 320-643176/1-A PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFUnA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS
= 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA **Eurofins Sacramento** Page 12 of 24 - 3 4 6 ė 9 11 13 14 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Lab Sample ID: MB 320-643176/1-A **Matrix: Water** Analysis Batch: 645374 Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 643176** | | | | | | | | | | • .• • | |---|--------|-----------|-----|------|------|---|----------------|----------------|---------| | | MB | MB | | | | | | | | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Perfluorohexanoic acid (PFHxA) | ND | | 2.0 | 0.58 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 2.0 | 0.25 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 2.0 | 0.85 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 2.0 | 0.27 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 2.0 | 0.31 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 2.0 | 1.1 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 2.0 | 0.55 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 2.0 | 1.3 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 2.0 | 0.73 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 2.0 | 0.20 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 2.0 | 0.57 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 2.0 | 0.54 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 5.0 | 1.2 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | N-ethylperfluorooctanesulfonamidoac
etic acid (NEtFOSAA) | ND | | 5.0 | 1.3 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 2.0 | 0.24 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 4.0 | 1.5 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 2.0 | 0.32 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 2.0 | 0.40 | ng/L | | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | | IVID IVID | | | | | |------------------|---------------------|----------|----------------|----------------|---------| | Isotope Dilution | %Recovery Qualifier | Limits | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 95 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C4 PFHpA | 97 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C4 PFOA | 98 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C5 PFNA | 99 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C2 PFDA | 97 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C2 PFUnA | 104 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C2 PFDoA | 99 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C2 PFTeDA | 104 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C3 PFBS | 96 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 18O2 PFHxS | 102 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C4 PFOS | 94 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | d3-NMeFOSAA | 101 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | d5-NEtFOSAA | 114 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | 13C3 HFPO-DA | 96 | 50 - 150 | 12/29/22 05:14 | 01/07/23 18:07 | 1 | | | | | | | | Lab Sample ID: LCS 320-643176/2-A **Matrix: Water** Analysis Batch: 645374 | Client Sample | D: Lab Control | Sample | |---------------|----------------|---------| | | Pron Type: 1 | otal/NA | Prep Type: Total/NA **Prep Batch: 643176** | - | Spike | LCS | LCS | | | | %Rec | | |---------------------------------|-------|--------|-----------|------|---|------|----------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Perfluorohexanoic acid (PFHxA) | 40.0 | 41.3 | | ng/L | | 103 | 72 - 129 | | | Perfluoroheptanoic acid (PFHpA) | 40.0 | 40.1 | | ng/L | | 100 | 72 - 130 | | | Perfluorooctanoic acid (PFOA) | 40.0 | 41.2 | | ng/L | | 103 | 71 - 133 | | | Perfluorononanoic acid (PFNA) | 40.0 | 43.5 | | ng/L | | 109 | 69 - 130 | | **Eurofins Sacramento** Page 13 of 24 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: LCS 320-643176/2-A **Matrix: Water** **Analysis Batch: 645374** **Client Sample ID: Lab Control Sample** **Prep Type: Total/NA** **Prep Batch: 643176** %Rec | Analysis Baton: 040074 | Spike | LCS | LCS | | | | %Rec | |---|-------|--------|-----------|----------|---|------|----------| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | Perfluorodecanoic acid (PFDA) | 40.0 | 40.9 | | ng/L | | 102 | 71 - 129 | | Perfluoroundecanoic acid | 40.0 | 39.4 | | ng/L | | 99 | 69 - 133 | | (PFUnA) | | | | | | | | | Perfluorododecanoic acid | 40.0 | 46.5 | | ng/L | | 116 | 72 - 134 | | (PFDoA) | | | | | | | | | Perfluorotridecanoic acid | 40.0 | 47.3 | | ng/L | | 118 | 65 - 144 | | (PFTriA) | | | | | | | | | Perfluorotetradecanoic acid | 40.0 | 42.9 | | ng/L | | 107 | 71 - 132 | | (PFTeA) | | | | | | | | | Perfluorobutanesulfonic acid | 35.5 | 37.7 | | ng/L | | 106 | 72 - 130 | | (PFBS) | | | | | | | | | Perfluorohexanesulfonic acid | 36.5 | 36.0 | | ng/L | | 99 | 68 - 131 | | (PFHxS) | | | | | | | | | Perfluorooctanesulfonic acid | 37.2 | 40.6 | | ng/L | | 109 | 65 - 140 | | (PFOS) | | | | <u>-</u> | | | | | N-methylperfluorooctanesulfona | 40.0 | 41.0 | | ng/L | | 102 | 65 - 136 | | midoacetic acid (NMeFOSAA) | 40.0 | 22.0 | | | | 400 | 04 405 | | N-ethylperfluorooctanesulfonami | 40.0 | 39.9 | | ng/L | | 100 | 61 - 135 | | doacetic acid (NEtFOSAA) | 27.4 | 40.0 | | | | 440 | 77 407 | | 9-Chlorohexadecafluoro-3-oxan | 37.4 | 40.9 | | ng/L | | 110 | 77 - 137 | | onane-1-sulfonic acid | 40.0 | 43.7 | | | | 100 | 72 - 132 | | Hexafluoropropylene Oxide | 40.0 | 43.7 | | ng/L | | 109 | 12 - 132 | | Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaund | 37.8 | 41.8 | | ng/L | | 111 | 76 - 136 | | ecane-1-sulfonic acid | 37.0 | 41.0 | | Hg/L | | 111 | 70 - 130 | | 4,8-Dioxa-3H-perfluorononanoic | 37.8 | 42.2 | | ng/L | | 112 | 81 - 141 | | acid (ADONA) | 37.0 | 42.2 | | rig/L | | 112 | 01-141 | | acia (ADCINA) | | | | | | | | LCS LCS | Isotope Dilution | %Recovery | Qualifier | Limits | | | | | |------------------|-----------|-----------|----------|--|--|--|--| | 13C2 PFHxA | 95 | | 50 - 150 | | | | | | 13C4 PFHpA | 99 | | 50 - 150 | | | | | | 13C4 PFOA | 97 | | 50 - 150 | | | | | | 13C5 PFNA | 97 | | 50 - 150 | | | | | | 13C2 PFDA | 105 | | 50 - 150 | | | | | | 13C2 PFUnA | 113 | | 50 - 150 | | | | | | 13C2 PFDoA | 98 | | 50 - 150 | | | | | | 13C2 PFTeDA | 98 | | 50 - 150 | | | | | | 13C3 PFBS | 94 | | 50 - 150 | | | | | | 1802 PFHxS | 105 | | 50 - 150 | | | | | | 13C4 PFOS | 96 | | 50 - 150 | | | | | | d3-NMeFOSAA | 107 | | 50 - 150 | | | | | | d5-NEtFOSAA | 117 | | 50 - 150 | | | | | | 13C3 HFPO-DA | 86 | | 50 - 150 | | | | | | | | | | | | | | Lab Sample ID: LCSD 320-643176/3-A **Matrix: Water** **Client Sample ID: Lab Control Sample Dup** **Prep Type: Total/NA** D it 0 | ١ | Analysis Batch: 645374 | | | | | | | Prep Ba | itch: 64 | 3176 | |---|---------------------------------|-------|--------|-----------|------|---|------|----------|----------|-------| | ١ | | Spike | LCSD | LCSD | | | | %Rec | | RPD | | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | | Perfluorohexanoic acid (PFHxA) | 40.0 | 40.6 | | ng/L | | 102 | 72 - 129 | 2 | 30 | | | Perfluoroheptanoic acid (PFHpA) | 40.0 | 44.4 | | ng/L | | 111 | 72 - 130 | 10 | 30 | | | Perfluorooctanoic acid (PFOA) | 40.0 | 41.8 | | ng/L | | 104 | 71 - 133 | 1 | 30 | **Eurofins Sacramento** Page 14 of 24 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: LCSD 320-643176/3-A **Client Sample ID: Lab Control Sample Dup** **Matrix: Water** **Analysis Batch: 645374** Prep Type: Total/NA **Prep Batch: 643176** | Analyte | Spike | LCSD I
Result (| LCSD
Qualifier | Unit | | %Rec | %Rec
Limits | RPD | RPD
Limit | |--|-------|--------------------|-------------------|------|---|------|----------------|-----|--------------| | | Added | | | | D | | | | | | Perfluorononanoic acid (PFNA) | 40.0 | 41.3 | | ng/L | | 103 | 69 - 130 | 5 | 30 | | Perfluorodecanoic acid (PFDA) | 40.0 | 39.9 | | ng/L | | 100 | 71 - 129 | 3 | 30 | | Perfluoroundecanoic acid (PFUnA) | 40.0 | 40.5 | | ng/L | | 101 | 69 - 133 | 3 | 30 | | Perfluorododecanoic acid (PFDoA) | 40.0 | 48.8 | | ng/L | | 122 | 72 - 134 | 5 | 30 | | Perfluorotridecanoic acid (PFTriA) | 40.0 | 46.9 | | ng/L | | 117 | 65 - 144 | 1 | 30 | | Perfluorotetradecanoic acid (PFTeA) | 40.0 | 46.1 | | ng/L | | 115 | 71 - 132 | 7 | 30 | | Perfluorobutanesulfonic acid (PFBS) | 35.5 | 37.0 | | ng/L | | 104 | 72 - 130 | 2 | 30 | | Perfluorohexanesulfonic acid (PFHxS) | 36.5 | 35.6 | | ng/L | | 98 | 68 - 131 | 1 | 30 | | Perfluorooctanesulfonic acid (PFOS) | 37.2 | 42.5 | | ng/L | | 114 | 65 - 140 | 4 | 30 | | N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA) | 40.0 | 40.8 | | ng/L | | 102 | 65 - 136 | 1 | 30 | | N-ethylperfluorooctanesulfonami
doacetic acid (NEtFOSAA) | 40.0 |
40.7 | | ng/L | | 102 | 61 - 135 | 2 | 30 | | 9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid | 37.4 | 42.2 | | ng/L | | 113 | 77 - 137 | 3 | 30 | | Hexafluoropropylene Oxide
Dimer Acid (HFPO-DA) | 40.0 | 44.1 | | ng/L | | 110 | 72 - 132 | 1 | 30 | | 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid | 37.8 | 45.1 | | ng/L | | 119 | 76 - 136 | 8 | 30 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 37.8 | 42.7 | | ng/L | | 113 | 81 - 141 | 1 | 30 | LCSD LCSD | | LUSD | LUSD | | | |------------------|-----------|-----------|----------|--| | Isotope Dilution | %Recovery | Qualifier | Limits | | | 13C2 PFHxA | 97 | | 50 - 150 | | | 13C4 PFHpA | 102 | | 50 - 150 | | | 13C4 PFOA | 98 | | 50 - 150 | | | 13C5 PFNA | 104 | | 50 - 150 | | | 13C2 PFDA | 107 | | 50 - 150 | | | 13C2 PFUnA | 111 | | 50 - 150 | | | 13C2 PFDoA | 94 | | 50 - 150 | | | 13C2 PFTeDA | 102 | | 50 - 150 | | | 13C3 PFBS | 95 | | 50 - 150 | | | 1802 PFHxS | 105 | | 50 - 150 | | | 13C4 PFOS | 94 | | 50 - 150 | | | d3-NMeFOSAA | 112 | | 50 - 150 | | | d5-NEtFOSAA | 113 | | 50 - 150 | | | 13C3 HFPO-DA | 86 | | 50 - 150 | | | = | | | | | Lab Sample ID: 320-95519-A-4-B MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total/NA** Analysis Batch: 645374 **Prep Batch: 643176** | - | Sample | Sample | Spike | MS | MS | | | | %Rec | | |---------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|------| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Perfluorohexanoic acid (PFHxA) | 14 | | 37.5 | 50.8 | | ng/L | | 99 | 72 - 129 |
 | | Perfluoroheptanoic acid (PFHpA) | 6.9 | | 37.5 | 46.4 | | ng/L | | 105 | 72 - 130 | | **Eurofins Sacramento** Page 15 of 24 Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) 49 *5- 50 78 89 70 58 55 81 Lab Sample ID: 320-95519-A-4-B MS **Matrix: Water** Analysis Batch: 645374 Client Sample ID: Matrix Spike Prep Type: Total/NA **Prep Batch: 643176** %Rec | Analyte | - | Sample
Qualifier | Spike
Added | _ | MS
Qualifier | Unit | D | %Rec | %Rec
Limits | 04317 | |--|-----------|---------------------|---------------------|------|-----------------|-------|---|------|----------------|-------| | Perfluorooctanoic acid (PFOA) | 8.4 | - Guaintei | 37.5 | 48.8 | Qualifier | ng/L | = | 108 | 71 - 133 | | | Perfluorononanoic acid (PFNA) | 5.8 | | 37.5 | 44.4 | | ng/L | | 103 | 69 - 130 | | | Perfluorodecanoic acid (PFDA) | 1.0 | 1 | 37.5 | 44.9 | | ng/L | | 117 | 71 - 129 | | | Perfluoroundecanoic acid | ND | 3 | 37.5 | 41.4 | | ng/L | | 110 | 69 - 133 | | | (PFUnA) | ND | | 37.3 | 71.7 | | IIg/L | | 110 | 09 - 100 | | | Perfluorododecanoic acid (PFDoA) | ND | | 37.5 | 37.6 | | ng/L | | 100 | 72 - 134 | | | Perfluorotridecanoic acid (PFTriA) | ND | | 37.5 | 33.5 | | ng/L | | 89 | 65 - 144 | | | Perfluorotetradecanoic acid (PFTeA) | ND | | 37.5 | 40.9 | | ng/L | | 109 | 71 - 132 | | | Perfluorobutanesulfonic acid (PFBS) | ND | | 33.3 | 60.7 | | ng/L | | 105 | 72 - 130 | | | Perfluorohexanesulfonic acid (PFHxS) | 14 | | 34.2 | 51.6 | | ng/L | | 111 | 68 - 131 | | | Perfluorooctanesulfonic acid (PFOS) | 31 | | 34.9 | 73.9 | | ng/L | | 122 | 65 - 140 | | | N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA) | ND | | 37.5 | 38.9 | | ng/L | | 104 | 65 - 136 | | | N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA) | ND | | 37.5 | 39.1 | | ng/L | | 104 | 61 - 135 | | | 9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid | ND | | 35.0 | 40.7 | | ng/L | | 116 | 77 - 137 | | | Hexafluoropropylene Oxide
Dimer Acid (HFPO-DA) | ND | | 37.5 | 36.3 | | ng/L | | 97 | 72 - 132 | | | 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid | ND | F1 | 35.4 | 26.8 | | ng/L | | 76 | 76 - 136 | | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 35.4 | 45.9 | | ng/L | | 130 | 81 - 141 | | | | MS | MS | | | | | | | | | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | | | | | | 13C2 PFHxA | 85 | | 50 - 150 | | | | | | | | | 13C4 PFHpA | 89 | | 50 - 150 | | | | | | | | | 13C4 PFOA | 88 | | 50 - 150 | | | | | | | | | 13C5 PFNA | 87 | | 50 - 150 | | | | | | | | | 13C2 PFDA | 73 | | 50 - 150 | | | | | | | | | 13C2 PFUnA | 61 | | 50 ₋ 150 | | | | | | | | Lab Sample ID: 320-95519-A-4-C MSD Matri 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 1802 PFHxS 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA | Analysis Batch: 645374 | | | | | | | | | Prep ly
Prep Ba | • | | |--------------------------------|--------|-----------|-------|--------|-----------|------|---|------|--------------------|-----|-------| | | Sample | Sample | Spike | MSD | MSD | | | | %Rec | | RPD | | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Perfluorohexanoic acid (PFHxA) | 14 | | 37.7 | 52.2 | | ng/L | | 102 | 72 - 129 | 3 | 30 | 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 **Eurofins Sacramento** **Client Sample ID: Matrix Spike Duplicate** Page 16 of 24 # **QC Sample Results** Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS # Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) | Lab Sample | ID: 320-95519-A-4-C MS | D | |------------|------------------------|---| |------------|------------------------|---| **Matrix: Water** Analysis Batch: 645374 **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA **Prep Batch: 643176** | Allary old Batolli Groot 4 | | | | | | | | | op Be | | | |--|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------| | | Sample | Sample | Spike | MSD | MSD | | | | %Rec | | RPD | | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Perfluoroheptanoic acid (PFHpA) | 6.9 | | 37.7 | 47.5 | | ng/L | | 108 | 72 - 130 | 2 | 30 | | Perfluorooctanoic acid (PFOA) | 8.4 | | 37.7 | 46.4 | | ng/L | | 101 | 71 - 133 | 5 | 30 | | Perfluorononanoic acid (PFNA) | 5.8 | | 37.7 | 46.1 | | ng/L | | 107 | 69 - 130 | 4 | 30 | | Perfluorodecanoic acid (PFDA) | 1.0 | J | 37.7 | 43.5 | | ng/L | | 113 | 71 - 129 | 3 | 30 | | Perfluoroundecanoic acid (PFUnA) | ND | | 37.7 | 41.4 | | ng/L | | 110 | 69 - 133 | 0 | 30 | | Perfluorododecanoic acid
(PFDoA) | ND | | 37.7 | 36.1 | | ng/L | | 96 | 72 - 134 | 4 | 30 | | Perfluorotridecanoic acid
(PFTriA) | ND | | 37.7 | 36.0 | | ng/L | | 95 | 65 - 144 | 7 | 30 | | Perfluorotetradecanoic acid
(PFTeA) | ND | | 37.7 | 35.2 | | ng/L | | 94 | 71 - 132 | 15 | 30 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 33.5 | 64.8 | | ng/L | | 116 | 72 - 130 | 6 | 30 | | Perfluorohexanesulfonic acid
(PFHxS) | 14 | | 34.4 | 49.3 | | ng/L | | 103 | 68 - 131 | 5 | 30 | | Perfluorooctanesulfonic acid
(PFOS) | 31 | | 35.1 | 69.7 | | ng/L | | 110 | 65 - 140 | 6 | 30 | | N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA) | ND | | 37.7 | 41.2 | | ng/L | | 109 | 65 - 136 | 6 | 30 | | N-ethylperfluorooctanesulfonami
doacetic acid (NEtFOSAA) | ND | | 37.7 | 39.7 | | ng/L | | 105 | 61 - 135 | 1 | 30 | | 9-Chlorohexadecafluoro-3-oxan
onane-1-sulfonic acid | ND | | 35.2 | 38.5 | | ng/L | | 109 | 77 - 137 | 5 | 30 | | Hexafluoropropylene Oxide
Dimer Acid (HFPO-DA) | ND | | 37.7 | 41.8 | | ng/L | | 111 | 72 - 132 | 14 | 30 | | 11-Chloroeicosafluoro-3-oxaund
ecane-1-sulfonic acid | ND | F1 | 35.6 | 25.5 | F1 | ng/L | | 72 | 76 - 136 | 5 | 30 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 35.6 | 40.9 | | ng/L | | 115 | 81 - 141 | 12 | 30 | | • | | | | | | | | | | | | | USD | MSD | |------------|-----| | | IVISD | IVISU | | |------------------|-----------|-----------|---------------------| | Isotope Dilution | %Recovery | Qualifier | Limits | | 13C2 PFHxA | 93 | | 50 - 150 | | 13C4 PFHpA | 101 | | 50 - 150 | | 13C4 PFOA | 100 | | 50 - 150 | | 13C5 PFNA | 92 | | 50 - 150 | | 13C2 PFDA | 87 | | 50 ₋ 150 | | 13C2 PFUnA | 77 | | 50 - 150 | | 13C2 PFDoA | 52 | | 50 - 150 | | 13C2 PFTeDA | 49 | *5- | 50 ₋ 150 | | 13C3 PFBS | 91 | | 50 ₋ 150 | | 1802 PFHxS | 100 | | 50 - 150 | | 13C4 PFOS | 85 | | 50 - 150 | | d3-NMeFOSAA | 58 | | 50 - 150 | | d5-NEtFOSAA | 68 | | 50 - 150 | | 13C3 HFPO-DA | 88 | | 50 - 150 | # **QC Association Summary** Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS ### LCMS ### **Prep Batch: 643176** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 320-95510-1 | 33060 | Total/NA | Water | 3535 | | | 320-95510-2 | 33160 | Total/NA | Water | 3535 | | | 320-95510-3 | 33061 | Total/NA | Water | 3535 | | | 320-95510-4 | 33059 | Total/NA | Water | 3535 | | | 320-95510-5 | 33068 | Total/NA | Water | 3535 | | | MB 320-643176/1-A | Method Blank | Total/NA | Water | 3535 | | | LCS 320-643176/2-A | Lab Control Sample | Total/NA | Water | 3535 | | | LCSD 320-643176/3-A | Lab Control Sample Dup | Total/NA | Water | 3535 | | | 320-95519-A-4-B MS | Matrix Spike | Total/NA | Water | 3535 | | | 320-95519-A-4-C MSD | Matrix Spike Duplicate | Total/NA | Water | 3535 | | ### **Analysis Batch: 645374** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------------|------------| | 320-95510-1 | 33060 | Total/NA | Water | EPA 537(Mod) | 643176 | | 320-95510-2 | 33160 | Total/NA | Water | EPA 537(Mod) | 643176 | | 320-95510-3 | 33061 | Total/NA | Water | EPA 537(Mod) | 643176 | | 320-95510-4 | 33059 | Total/NA | Water | EPA 537(Mod) | 643176 | | 320-95510-5 | 33068 | Total/NA | Water | EPA 537(Mod) | 643176 | | MB 320-643176/1-A | Method Blank | Total/NA | Water | EPA 537(Mod) | 643176 | | LCS 320-643176/2-A | Lab Control
Sample | Total/NA | Water | EPA 537(Mod) | 643176 | | LCSD 320-643176/3-A | Lab Control Sample Dup | Total/NA | Water | EPA 537(Mod) | 643176 | | 320-95519-A-4-B MS | Matrix Spike | Total/NA | Water | EPA 537(Mod) | 643176 | | 320-95519-A-4-C MSD | Matrix Spike Duplicate | Total/NA | Water | EPA 537(Mod) | 643176 | Job ID: 320-95510-1 Client: Shannon & Wilson, Inc Project/Site: Yakutat PFAS Client Sample ID: 33060 Lab Sample ID: 320-95510-1 Matrix: Water Date Collected: 12/15/22 17:04 Date Received: 12/21/22 10:52 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|---------|---------|--------|----------------|---------|---------| | Prep Type | Туре | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 239 mL | 10.0 mL | 643176 | 12/29/22 05:14 | RLT | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 645374 | 01/07/23 18:37 | D1R | EET SAC | Client Sample ID: 33160 Lab Sample ID: 320-95510-2 Date Collected: 12/15/22 17:06 Matrix: Water Date Received: 12/21/22 10:52 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 265.5 mL | 10.0 mL | 643176 | 12/29/22 05:14 | RLT | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 645374 | 01/07/23 18:47 | D1R | EET SAC | Client Sample ID: 33061 Lab Sample ID: 320-95510-3 Date Collected: 12/16/22 09:07 Matrix: Water Date Received: 12/21/22 10:52 | _ | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 261.3 mL | 10.0 mL | 643176 | 12/29/22 05:14 | RLT | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 645374 | 01/07/23 18:57 | D1R | EET SAC | Client Sample ID: 33059 Date Collected: 12/16/22 10:31 Lab Sample ID: 320-95510-4 Matrix: Water Date Collected: 12/16/22 10:31 Date Received: 12/21/22 10:52 | | Batch | Batch | _ | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|---------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 256 mL | 10.0 mL | 643176 | 12/29/22 05:14 | RLT | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 645374 | 01/07/23 19:07 | D1R | EET SAC | Client Sample ID: 33068 Date Collected: 12/16/22 08:31 Lab Sample ID: 320-95510-5 Matrix: Water Date Received: 12/21/22 10:52 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 261.1 mL | 10.0 mL | 643176 | 12/29/22 05:14 | RLT | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 645374 | 01/07/23 19:17 | D1R | EET SAC | #### **Laboratory References:** EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 **Eurofins Sacramento** 2 Л 5 7 a 10 12 1 / # **Accreditation/Certification Summary** Client: Shannon & Wilson, Inc Job ID: 320-95510-1 Project/Site: Yakutat PFAS ### **Laboratory: Eurofins Sacramento** The accreditations/certifications listed below are applicable to this report. | Authority | Program | Identification Number | Expiration Date | |---------------|---------|-----------------------|-----------------| | Alaska (LIST) | State | 17-020 | 02-20-24 | 3 4 6 Ω 9 11 14 14 # **Method Summary** Client: Shannon & Wilson, Inc Project/Site: Yakutat PFAS Job ID: 320-95510-1 | Method | Method Description | Protocol | Laboratory | |--------------|------------------------------|----------|------------| | EPA 537(Mod) | PFAS for QSM 5.3, Table B-15 | EPA | EET SAC | | 3535 | Solid-Phase Extraction (SPE) | SW846 | EET SAC | #### **Protocol References:** EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### Laboratory References: EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 - 4 5 7 8 3 11 40 14 # **Sample Summary** Client: Shannon & Wilson, Inc Project/Site: Yakutat PFAS Job ID: 320-95510-1 | Lab Sample ID | Client Sample ID | Matrix | Collected | Received | |---------------|------------------|--------|----------------|----------------| | 320-95510-1 | 33060 | Water | 12/15/22 17:04 | 12/21/22 10:52 | | 320-95510-2 | 33160 | Water | 12/15/22 17:06 | 12/21/22 10:52 | | 320-95510-3 | 33061 | Water | 12/16/22 09:07 | 12/21/22 10:52 | | 320-95510-4 | 33059 | Water | 12/16/22 10:31 | 12/21/22 10:52 | | 320-95510-5 | 33068 | Water | 12/16/22 08:31 | 12/21/22 10:52 | 3 4 _____ 7 _ 10 11 13 14 No. 2 5 7 9 10 11 14 # **Login Sample Receipt Checklist** Client: Shannon & Wilson, Inc Job Number: 320-95510-1 Login Number: 95510 List Source: Eurofins Sacramento List Number: 1 Creator: Alltucker, David R | Creator. Alltucker, David R | | | |---|--------|---------| | Question | Answer | Comment | | Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A | | | The cooler's custody seal, if present, is intact. | True | seal | | Sample custody seals, if present, are intact. | N/A | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | N/A | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time (excluding tests with immediate HTs) | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | N/A | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | N/A | | | Multiphasic samples are not present. | True | | | Samples do not require splitting or compositing. | True | | | Residual Chlorine Checked. | N/A | | 2 A 5 7 9 13 # ADEC Contaminated Sites Program Laboratory Data Review Checklist | Completed By:
Date: | Ashley Jaramillo
01/18/2023 | CS Site
Name: | ADOT&PF
Yakutat Airport
Sitewide PFAS | Lab
Name: | Eurofins
Environment
Testing | | |--|--|--|---|--
---|--| | Title: | Senior Chemist | ADEC File
No.: | 1530.38.022 | Lab
Report
No.: | 320-95510-1 | | | Consulting Firm: | Shannon &
Wilson, Inc. | Hazard ID
No.: | 27090 | Lab
Report
Date: | 01/17/2023 | | | Note: Any N/A or I | No box checked mu | st have an exp | planation in the con | nments box. | | | | app Yes Con Sac LCN wer b. If th to a app Yes Con | an ADEC Contamin roved laboratory recomments: No N/A numents: The DEC contaminates of the DEC contracted contract | ertified Eurofir for the analys h QSM Versio C's Contamin asferred to anary, was the lab | orm all of the submose Environment Testis of PFAS on Febrary 5.3 Table B-15.7 ated Sites Laborate other "network" laboratory performing | sting in West
ruary 11, 202
The reported
ory Approval
oratory or sub
the analyses | analyses? 1 by analytes 17-020. c-contracted s CS-LAP | | | 2. Chain of C | ustody (CoC) | | | | | | | rele
Yes | ne CoC information of ased/received by)? No N/A nments: | completed, sig | ned, and dated (in | cluding | | | | Yes
Ana
5.3 | re the correct analys ☑ No □ N/A □ lyses requested: PF Table B-15. nments: Analyses p | FAS by EPA 5 | 37 modified method | d compliant v | vith QSM | | 1 Revision 9/2022 CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS **Lab Report No.:** 320-95510-1 ### 3. Laboratory Sample Receipt Documentation | | a. | Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)? | |----|------|---| | | | Yes \boxtimes No \square N/A \square Cooler temperature(s): Cooler temperature was 4.8°C at sample login. Sample temperature(s): Sample temperature was not reported by the laboratory. Comments: Cooler temperature is within the acceptable range of 0°C to 6°C. | | | b. | Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)? Yes \square No \square N/A \boxtimes Comments: PFAS analysis does not require preservation outside of temperature preservation. | | | C. | Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.? Yes \boxtimes No \square N/A \square Comments: The samples arrived in good condition, and where required, properly preserved and on ice. | | | d. | If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.? Yes \square No \square N/A \boxtimes Comments: No discrepancies were identified by the laboratory. | | | e. | Is the data quality or usability affected? Yes □ No □ N/A ☒ Comments: See above. | | 4. | Case | Narrative | | | a. | Is the case narrative present and understandable? Yes \boxtimes No \square N/A \square Comments: | | | b. | Are there discrepancies, errors, or QC failures identified by the lab? Yes ⋈ No □ N/A □ Comments: • The IDA recovery associated with the following samples is below the method recommended limit: 320-95519-A-4-A, 320-95519-A-4-B MS and 320-95519-A-4-C MSD. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples. These samples are not associated with the | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-95510-1 - project samples submitted with this work order. Data quality and/or usability not affected. - MS and/or MSD recoveries for preparation batch 320-643176 and analytical batch 320-645374 were outside control limits. Sample matrix interference is suspected because the associated LCS recovery was within acceptance limits. The MS/MSD samples are not associated with project samples submitted with this work order. Data quality and/or usability not affected. - The following sample in preparation batch 320-643176 was observed to have floating particulates present in the sample bottle: 33061. Data quality and/or usability not affected. - The following samples in preparation batch 320-643176 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction: 33060 and 33160. Data quality and/or usability not affected. - Insufficient sample volume was available to perform MS/MSD samples associated with preparation batch 320-643176. See Section 6.c. for details regarding affect to data quality and/or usability, if any. | | | During the solid phase extraction process, the following sample contain
non-settable particulates which clogged the solid phase extraction
column: 33061 in preparation batch 320-643176. Data quality and/or
usability not affected. | |----|------|---| | | C. | Were all the corrective actions documented? Yes □ No □ N/A ☒ Comments: Corrective actions were not required. | | | d. | What is the effect on data quality/usability according to the case narrative? Comments: The case narrative does not discuss effect on data quality, it discusses discrepancies and what was done considering them, as applicable. Any notable data quality issues mentioned in the case narrative are discussed above in Section 4.b. or elsewhere within this DEC checklist. | | 5. | Samp | le Results | | | a. | Are the correct analyses performed/reported as requested on CoC? Yes \boxtimes No \square N/A \square Comments: | | | b. | Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments: | | | C. | Are all soils reported on a dry weight basis? Yes \square No \square N/A \boxtimes Comments: Soil samples were not submitted with this work order. | d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project? Yes ⊠ No □ N/A □ Comments: e. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See above. 6. QC Samples a. Method Blank i. Was one method blank reported per matrix, analysis, and 20 samples? Yes ⊠ No □ N/A □ Comments: ii. Are all method blank results less than LOQ (or RL)? Yes ⊠ No □ N/A □ Comments: iii. If above LoQ or RL, what samples are affected? Comments: Not applicable, see above. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. v. Data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See above. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes ⊠ No □ N/A □ Comments: CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-95510-1 CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-95510-1 | | ii. | Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes □ No □ N/A ⊠ Comments: Metal/inorganic analyses were not requested as a part of this work order. | |----|--------|---| | | iii. | Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes \boxtimes No \square N/A \square Comments: | | | iv. | Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes \boxtimes No \square N/A \square Comments: | | | V. | If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. | | | vi. | Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: See above. | | | vii. | Is the data quality or usability affected? Yes □ No □ N/A ☒ Comments: See above. | | c. | Matrix | Spike/Matrix Spike Duplicate (MS/MSD) | | | i. | Organics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes No N/A Comments: Insufficient project sample volume was available to perform a MS/MSD associated with preparation batch 320-643176. An MS/MSD was included in preparation batch 320-643176, but the MS/MSD samples were not associated with the project samples included in this work order. Batch accuracy and precision was evaluated using LCS/LCSD samples, see Section
6.b. Data quality and/or usability not affected. | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-95510-1 ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No □ N/A □ Comments: Metal/inorganic analyses were not requested as a part of this work order. iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes □ No ⋈ N/A □ Comments: The MSD recoveries for 11-choroeicosafluoro-3-oxaundecane-1sulfonic acid was below control limits. The MS/MSD samples are not associated with the project samples submitted with this work order. Data quality and/or usability not affected. iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes ⊠ No □ N/A □ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. vii. Is the data quality or usability affected? Yes □ No ⋈ N/A □ Comments: See above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples? Yes ⊠ No □ N/A □ Comments: CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-95510-1 ii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes □ No □ N/A □ Comments: MS and/or MSD samples had IDA recoveries outside of laboratory limits for 13C2 PFTeDA and 13C2 PFDoA. The MS/MSD samples are not associated with project samples submitted with this work order. Data quality and/or usability not affected. iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. iv. Is the data quality or usability affected? Yes □ No ⋈ N/A □ Comments: See above. e. Trip Blanks i. Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes □ No □ N/A ⊠ Comments: No volatile samples were included with this work order. ii. Are all results less than LoQ or RL? Yes □ No □ N/A ⊠ Comments: See above. iii. If above LoQ or RL, what samples are affected? Comments: Not applicable, see above. iv. Is the data quality or usability affected? Yes □ No □ N/A ⋈ Comments: See above. #### f. Field Duplicate i. Are one field duplicate submitted per matrix, analysis, and 10 project samples? Yes ⊠ No □ N/A □ Comments: ii. Was the duplicate submitted blind to lab? Yes ⊠ No □ N/A □ Comments: Sample 33160 is the field duplicate sample for 33060. iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil) $RPD \ (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration Yes ⊠ No □ N/A □ Comments: Where calculable. iv. Is the data quality or usability affected? (Explain) Yes □ No □ N/A ⊠ Comments: See above. g. Decontamination or Equipment Blanks i. Were decontamination or equipment blanks collected? Yes □ No □ N/A ⊠ Comments: Reusable equipment was not used to collect project samples. ii. Are all results less than LoQ or RL? Yes □ No □ N/A ⊠ Comments: See above. iii. If above LoQ or RL, specify what samples are affected. Comments: Not applicable, see above. iv. Are data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See above. 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Are they defined and appropriate? Yes □ No □ N/A ⊠ Comments: No other data flags and/or qualifiers required. CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-95510-1 # PREPARED FOR Attn: Ashley Jaramillo Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244 Generated 3/30/2023 2:47:00 PM **JOB DESCRIPTION** YAK **JOB NUMBER** 320-97690-1 Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605 # **Eurofins Sacramento** ### **Job Notes** This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory. The data in the report relate to the field sample(s) as received by the laboratory and associated QC. All results have been reviewed and have been found to be compliant with laboratory and accreditation requirements, with the exception of the noted deviation(s). For questions, please contact the Project Manager. The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager. ### **Authorization** Generated 3/30/2023 2:47:00 PM Authorized for release by David Alltucker, Project Manager I David.Alltucker@et.eurofinsus.com (916)374-4383 30/2023 2:47:00 PM Client: Shannon & Wilson, Inc Project/Site: YAK Laboratory Job ID: 320-97690-1 # **Table of Contents** | Cover Page | 1 | |--------------------------|----| | Table of Contents | 3 | | Definitions/Glossary | 4 | | Case Narrative | 5 | | Detection Summary | 6 | | Client Sample Results | 7 | | Isotope Dilution Summary | 11 | | QC Sample Results | 12 | | QC Association Summary | 15 | | Lab Chronicle | 16 | | Certification Summary | 17 | | Method Summary | 18 | | Sample Summary | 19 | | Chain of Custody | 20 | | Receipt Checklists | 21 | ### **Definitions/Glossary** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK #### Qualifiers #### **LCMS** Qualifier Qualifier Description J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. #### **Glossary** | Abbreviation | These commonly used abbreviations may or may not be present in this report. | |--------------|--| | | List along the UDW of the state | Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit PRES Presumptive QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference,
a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count **Eurofins Sacramento** Page 4 of 21 3/30/2023 #### **Case Narrative** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Job ID: 320-97690-1 **Laboratory: Eurofins Sacramento** **Narrative** Job Narrative 320-97690-1 #### Receipt The samples were received on 3/14/2023 2:47 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.1° C. #### **LCMS** No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. #### **Organic Prep** Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-661239. Method 3535: The following samples in preparation batch 320-661239 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. 33059 (320-97690-1) and 33068 (320-97690-2) No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. # **Detection Summary** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Client Sample ID: 33059 Lab Sample ID: 320-97690-1 No Detections. Client Sample ID: 33068 Lab Sample ID: 320-97690-2 No Detections. Client Sample ID: 33160 Lab Sample ID: 320-97690-3 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac [| Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|-----------|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 1.7 | J | 1.8 | 0.52 | ng/L | | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 1.0 | J | 1.8 | 0.22 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 1.6 | J | 1.8 | 0.76 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.69 | J | 1.8 | 0.24 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorodecanoic acid (PFDA) | 0.35 | J | 1.8 | 0.28 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.53 | J | 1.8 | 0.18 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 5.9 | | 1.8 | 0.51 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 9.4 | | 1.8 | 0.48 | ng/L | 1 | EPA 537(Mod) | Total/NA | Client Sample ID: 33060 Lab Sample ID: 320-97690-4 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac D | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|-----------|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 1.7 | J | 1.8 | 0.53 | ng/L | | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 1.1 | J | 1.8 | 0.23 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 1.5 | J | 1.8 | 0.77 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.59 | J | 1.8 | 0.25 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.43 | J | 1.8 | 0.18 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 5.5 | | 1.8 | 0.52 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 8.5 | | 1.8 | 0.49 | ng/L | 1 | EPA 537(Mod) | Total/NA | This Detection Summary does not include radiochemical test results. 3/30/2023 Page 6 of 21 2 3 4 5 7 9 10 12 1 1 1 % Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Lab Sample ID: 320-97690-1 Client Sample ID: 33059 Date Collected: 03/08/23 10:25 **Matrix: Water** Date Received: 03/14/23 16:26 | Analyte | Result (| Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | | 1.8 | 0.53 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | | | Perfluoroheptanoic acid (PFHpA) | ND | | 1.8 | 0.23 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Perfluorooctanoic acid (PFOA) | ND | | 1.8 | 0.78 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Perfluorononanoic acid (PFNA) | ND | | 1.8 | 0.25 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | | | Perfluorodecanoic acid (PFDA) | ND | | 1.8 | 0.28 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 1.0 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.50 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.67 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Perfluorobutanesulfonic acid (PFBS) | ND | | 1.8 | 0.18 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 1.8 | 0.52 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | | | Perfluorooctanesulfonic acid (PFOS) | ND | | 1.8 | 0.49 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.6 | 1.1 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | , | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.6 | 1.2 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | , | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | 0.22 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.7 | 1.4 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | , | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | 4,8-Dioxa-3H-perfluorononanoic acid
(ADONA) | ND | | 1.8 | 0.37 | ng/L | | 03/16/23 05:40 | 03/18/23 04:57 | • | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 13C2 PFHxA | 111 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 13C4 PFHpA | 110 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 13C4 PFOA | 107 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | - | | 13C5 PFNA | 113 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 13C2 PFDA | 113 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 13C2 PFUnA | 114 | | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 13C2 PFDoA | 107 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 13C2 PFTeDA | 104 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 13C3 PFBS | 106 | | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 04:57 | | | 1802 PFHxS | 104 | | 50 ₋ 150 | | | | | 03/18/23 04:57 | | | 13C4 PFOS | 104 | | 50 - 150 | | | | | 03/18/23 04:57 | | | d3-NMeFOSAA | 105 | | 50 - 150 | | | | | 03/18/23 04:57 | | | d5-NEtFOSAA | 111 | | 50 - 150 | | | | | 03/18/23 04:57 | | | 13C3 HFPO-DA | 107 | | 50 ₋ 150 | | | | | 03/18/23 04:57 | | **Eurofins Sacramento** Page 7 of 21 Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Client Sample ID: 33068 Lab Sample ID: 320-97690-2 Date Collected: 03/08/23 12:35 **Matrix: Water** Date Received: 03/14/23 16:26 | Analyte | Result Qualific | er RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |---|-------------------|---------------------|------|------|---|----------------|----------------|--------| | Perfluorohexanoic acid (PFHxA) | ND | 1.8 | 0.53 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | • | | Perfluoroheptanoic acid (PFHpA) | ND | 1.8 | | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorooctanoic acid (PFOA) | ND | 1.8 | 0.78 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorononanoic acid (PFNA) | ND | 1.8 | 0.25 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorodecanoic acid (PFDA) | ND | 1.8 | 0.29 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluoroundecanoic acid (PFUnA) | ND | 1.8 | 1.0 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorododecanoic acid (PFDoA) | ND | 1.8 | 0.51 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorotridecanoic acid (PFTriA) | ND | 1.8 | 1.2 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | • | | Perfluorotetradecanoic acid (PFTeA) | ND | 1.8 | 0.67 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorobutanesulfonic acid (PFBS) | ND | 1.8 | 0.18 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorohexanesulfonic acid (PFHxS) | ND | 1.8 | 0.52 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | Perfluorooctanesulfonic acid (PFOS) | ND | 1.8 | 0.50 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | 4.6 | 1.1 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | 4.6 | 1.2 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | 1.8 | 0.22 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | • | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | 3.7 | 1.4 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | 1.8 | 0.29 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | • | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | 1.8 | 0.37 | ng/L | | 03/16/23 05:40 | 03/18/23 05:07 | • | | Isotope Dilution | %Recovery Qualifi | er Limits | | | | Prepared | Analyzed | Dil Fa | | 13C2 PFHxA | 113 | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:07 | | | 13C4 PFHpA | 110 | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:07 | | | 13C4 PFOA | 107 | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 05:07 | | | 13C5 PFNA | 111 | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:07 | | | 13C2 PFDA | 115 | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:07 | | | 13C2 PFUnA | 112 | 50 ₋ 150 | |
 | 03/16/23 05:40 | 03/18/23 05:07 | | | 13C2 PFDoA | 113 | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:07 | | | 13C2 PFTeDA | 107 | 50 ₋ 150 | | | | | 03/18/23 05:07 | | | 13C3 PFBS | 109 | 50 ₋ 150 | | | | | 03/18/23 05:07 | | | 1802 PFHxS | 110 | 50 ₋ 150 | | | | | 03/18/23 05:07 | | | 13C4 PFOS | 111 | 50 ₋ 150 | | | | | 03/18/23 05:07 | | | d3-NMeFOSAA | 110 | 50 ₋ 150 | | | | | 03/18/23 05:07 | | | d5-NEtFOSAA | 111 | 50 ₋ 150 | | | | | 03/18/23 05:07 | | | 13C3 HFPO-DA | 110 | 50 ₋ 150 | | | | | 03/18/23 05:07 | | Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Client Sample ID: 33160 Lab Sample ID: 320-97690-3 Date Collected: 03/08/23 14:12 **Matrix: Water** Date Received: 03/14/23 16:26 | Analyte | Result | Qualifier | RL | MDL | | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | 1.7 | J | 1.8 | 0.52 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluoroheptanoic acid (PFHpA) | 1.0 | J | 1.8 | 0.22 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorooctanoic acid (PFOA) | 1.6 | J | 1.8 | 0.76 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorononanoic acid (PFNA) | 0.69 | J | 1.8 | 0.24 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorodecanoic acid (PFDA) | 0.35 | J | 1.8 | 0.28 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 0.98 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.49 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.65 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorobutanesulfonic acid (PFBS) | 0.53 | J | 1.8 | 0.18 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | 5.9 | | 1.8 | 0.51 | - | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Perfluorooctanesulfonic acid (PFOS) | 9.4 | | 1.8 | | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.5 | 1.1 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.5 | | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | 0.21 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.6 | | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.36 | ng/L | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 116 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C4 PFHpA | 109 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C4 PFOA | 107 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C5 PFNA | 111 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C2 PFDA | 108 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C2 PFUnA | 104 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C2 PFDoA | 107 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C2 PFTeDA | 102 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C3 PFBS | 112 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 1802 PFHxS | 108 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C4 PFOS | 110 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | d3-NMeFOSAA | 102 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | d5-NEtFOSAA | 108 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | | 13C3 HFPO-DA | 107 | | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 05:17 | 1 | Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Lab Sample ID: 320-97690-4 Client Sample ID: 33060 Date Collected: 03/08/23 14:22 **Matrix: Water** Date Received: 03/14/23 16:26 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |---|-----------|-----------|----------------------|------|------|---|----------------|----------------|--------| | Perfluorohexanoic acid (PFHxA) | 1.7 | J | 1.8 | 0.53 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluoroheptanoic acid (PFHpA) | 1.1 | J | 1.8 | 0.23 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorooctanoic acid (PFOA) | 1.5 | J | 1.8 | 0.77 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorononanoic acid (PFNA) | 0.59 | J | 1.8 | 0.25 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorodecanoic acid (PFDA) | ND | | 1.8 | 0.28 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 1.0 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.50 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.67 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorobutanesulfonic acid (PFBS) | 0.43 | J | 1.8 | 0.18 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorohexanesulfonic acid (PFHxS) | 5.5 | | 1.8 | 0.52 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Perfluorooctanesulfonic acid (PFOS) | 8.5 | | 1.8 | | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.6 | | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | N-ethylperfluorooctanesulfonamidoac
etic acid (NEtFOSAA) | ND | | 4.6 | | ng/L | | | 03/18/23 05:28 | | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | 0.22 | ng/L | | | 03/18/23 05:28 | | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.6 | | ng/L | | | 03/18/23 05:28 | | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.8 | | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.36 | ng/L | | 03/16/23 05:40 | 03/18/23 05:28 | | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 13C2 PFHxA | 112 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C4 PFHpA | 106 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C4 PFOA | 110 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C5 PFNA | 109 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C2 PFDA | 109 | | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C2 PFUnA | 110 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C2 PFDoA | 104 | | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C2 PFTeDA | 102 | | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C3 PFBS | 110 | | 50 ₋ 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 1802 PFHxS | 106 | | 50 - 150 | | | | 03/16/23 05:40 | 03/18/23 05:28 | | | 13C4 PFOS | 109 | | 50 - 150 | | | | | 03/18/23 05:28 | | | d3-NMeFOSAA | 102 | | 50 ₋ 150 | | | | | 03/18/23 05:28 | | | d5-NEtFOSAA | 105 | | 50 - 150 | | | | | 03/18/23 05:28 | | | 13C3 HFPO-DA | 104 | | 50 - 150
50 - 150 | | | | | 03/18/23 05:28 | | ### **Isotope Dilution Summary** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Method Blank **Matrix: Water Prep Type: Total/NA** | | | | Perce | ent Isotope | Dilution Re | covery (Ac | ceptance L | imits) | | |---------------------|------------------------|----------|----------|-------------|-------------|------------|------------|----------|----------| | | | PFHxA | C4PFHA | PFOA | PFNA | PFDA | PFUnA | PFDoA | PFTDA | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | 320-97690-1 | 33059 | 111 | 110 | 107 | 113 | 113 | 114 | 107 | 104 | | 320-97690-2 | 33068 | 113 | 110 | 107 | 111 | 115 | 112 | 113 | 107 | | 320-97690-3 | 33160 | 116 | 109 | 107 | 111 | 108 | 104 | 107 | 102 | | 320-97690-4 | 33060 | 112 | 106 | 110 | 109 | 109 | 110 | 104 | 102 | | LCS 320-661239/2-A | Lab Control Sample | 112 | 107 | 105 | 105 | 107 | 111 | 107 | 101 | | LCSD 320-661239/3-A | Lab Control Sample Dup | 109 | 109 | 108 | 107 | 109 | 109 | 114 | 107 | | MB 320-661239/1-A | Method Blank | 113 | 112 | 109 | 111 | 113 | 115 | 118 | 108 | | | | | Perce | ent Isotope | Dilution Re | covery (Ac | ceptance L | imits) | | | | | C3PFBS | PFHxS | PFOS | d3NMFOS | d5NEFOS | HFPODA | | | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | | | 320-97690-1 | 33059 | 106 | 104 | 104 | 105 | 111 | 107 | | | | 320-97690-2 | 33068 | 109 | 110 | 111 | 110 | 111 | 110 | | | | 320-97690-3 | 33160 | 112 | 108 | 110 | 102 | 108 | 107 | | | | 320-97690-4 | 33060 | 110 | 106 | 109 | 102 | 105 | 104 | | | | LCS 320-661239/2-A | Lab Control Sample | 107 | 107 | 107 | 103 | 102 | 104 | | | | LCSD 320-661239/3-A | Lab Control Sample Dup | 109 | 107 | 107 | 102 | 107 | 99 | | | 110 113 114 111 109 110 | Surrogate | Legend | |-----------|--------| MB 320-661239/1-A PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFUnA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK # Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 MB MB Lab Sample ID: MB
320-661239/1-A **Matrix: Water** **Analysis Batch: 661801** Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 661239 | Analyte | Result Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|------------------|-----|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | 2.0 | 0.58 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | 2.0 | 0.25 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorooctanoic acid (PFOA) | ND | 2.0 | 0.85 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorononanoic acid (PFNA) | ND | 2.0 | 0.27 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorodecanoic acid (PFDA) | ND | 2.0 | 0.31 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | 2.0 | 1.1 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | 2.0 | 0.55 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | 2.0 | 1.3 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | 2.0 | 0.73 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | 2.0 | 0.20 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | 2.0 | 0.57 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | 2.0 | 0.54 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | 5.0 | 1.2 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | 5.0 | 1.3 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | 2.0 | 0.24 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | 4.0 | 1.5 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | 2.0 | 0.32 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | 2.0 | 0.40 | ng/L | | 03/16/23 05:40 | 03/18/23 04:27 | 1 | MB MB | | IVIB | WB | | | | | |------------------|-----------|-----------|----------|----------------|----------------|---------| | Isotope Dilution | %Recovery | Qualifier | Limits | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 113 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C4 PFHpA | 112 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C4 PFOA | 109 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C5 PFNA | 111 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C2 PFDA | 113 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C2 PFUnA | 115 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C2 PFDoA | 118 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C2 PFTeDA | 108 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C3 PFBS | 110 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 1802 PFHxS | 110 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C4 PFOS | 113 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | d3-NMeFOSAA | 114 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | d5-NEtFOSAA | 111 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | 13C3 HFPO-DA | 109 | | 50 - 150 | 03/16/23 05:40 | 03/18/23 04:27 | 1 | | | | | | | | | Lab Sample ID: LCS 320-661239/2-A **Matrix: Water** **Analysis Batch: 661801** | Client Sample ID: | Lab | Control Sample | |-------------------|------|----------------| | | Prep | Type: Total/NA | Prep Batch: 661239 %Rec | | Spike | LCS | LCS | | | | %Rec | | |---------------------------------|-------|--------|-----------|------|---|------|----------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Perfluorohexanoic acid (PFHxA) | 40.0 | 38.4 | | ng/L | | 96 | 72 - 129 | | | Perfluoroheptanoic acid (PFHpA) | 40.0 | 43.3 | | ng/L | | 108 | 72 - 130 | | | Perfluorooctanoic acid (PFOA) | 40.0 | 41.9 | | ng/L | | 105 | 71 - 133 | | | Perfluorononanoic acid (PFNA) | 40.0 | 43.9 | | ng/L | | 110 | 69 - 130 | | **Eurofins Sacramento** 3/30/2023 Page 12 of 21 2 J 5 7 9 11 12 1 / # **QC Sample Results** Job ID: 320-97690-1 Client: Shannon & Wilson, Inc Project/Site: YAK Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: LCS 320-661239/2-A **Matrix: Water** **Analysis Batch: 661801** **Client Sample ID: Lab Control Sample** **Prep Type: Total/NA** Prep Batch: 661239 | | Spike | LCS | LCS | | | | %Rec | | |--|----------|--------|-----------|-------|---|------|----------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Perfluorodecanoic acid (PFDA) | 40.0 | 44.5 | | ng/L | | 111 | 71 - 129 | | | Perfluoroundecanoic acid | 40.0 | 43.4 | | ng/L | | 109 | 69 - 133 | | | (PFUnA) | | | | | | | | | | Perfluorododecanoic acid | 40.0 | 43.2 | | ng/L | | 108 | 72 - 134 | | | (PFDoA) | | | | | | | | | | Perfluorotridecanoic acid | 40.0 | 40.4 | | ng/L | | 101 | 65 - 144 | | | (PFTriA) | | | | | | | | | | Perfluorotetradecanoic acid | 40.0 | 39.8 | | ng/L | | 100 | 71 - 132 | | | (PFTeA) | | | | | | | | | | Perfluorobutanesulfonic acid | 35.5 | 40.3 | | ng/L | | 114 | 72 - 130 | | | (PFBS) | | | | | | | | | | Perfluorohexanesulfonic acid | 36.5 | 40.1 | | ng/L | | 110 | 68 - 131 | | | (PFHxS) | 07.0 | 00.0 | | | | 405 | 05 440 | | | Perfluorooctanesulfonic acid | 37.2 | 38.9 | | ng/L | | 105 | 65 - 140 | | | (PFOS) | 40.0 | 41.4 | | na/l | | 103 | 65 - 136 | | | N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA) | 40.0 | 41.4 | | ng/L | | 103 | 05 - 130 | | | N-ethylperfluorooctanesulfonami | 40.0 | 40.7 | | ng/L | | 102 | 61 - 135 | | | doacetic acid (NEtFOSAA) | 40.0 | 40.7 | | iig/L | | 102 | 01-100 | | | 9-Chlorohexadecafluoro-3-oxan | 37.4 | 41.2 | | ng/L | | 110 | 77 - 137 | | | onane-1-sulfonic acid | 3 | | | | | | | | | Hexafluoropropylene Oxide | 40.0 | 40.7 | | ng/L | | 102 | 72 - 132 | | | Dimer Acid (HFPO-DA) | | | | J | | | | | | 11-Chloroeicosafluoro-3-oxaund | 37.8 | 41.4 | | ng/L | | 110 | 76 - 136 | | | ecane-1-sulfonic acid | | | | • | | | | | | 4,8-Dioxa-3H-perfluorononanoic | 37.8 | 40.0 | | ng/L | | 106 | 81 - 141 | | | acid (ADONA) | | | | | | | | | LCS LCS | | _00 | | | | | |------------------|-----------|-----------|----------|--|--| | Isotope Dilution | %Recovery | Qualifier | Limits | | | | 13C2 PFHxA | 112 | | 50 - 150 | | | | 13C4 PFHpA | 107 | | 50 - 150 | | | | 13C4 PFOA | 105 | | 50 - 150 | | | | 13C5 PFNA | 105 | | 50 - 150 | | | | 13C2 PFDA | 107 | | 50 - 150 | | | | 13C2 PFUnA | 111 | | 50 - 150 | | | | 13C2 PFDoA | 107 | | 50 - 150 | | | | 13C2 PFTeDA | 101 | | 50 - 150 | | | | 13C3 PFBS | 107 | | 50 - 150 | | | | 1802 PFHxS | 107 | | 50 - 150 | | | | 13C4 PFOS | 107 | | 50 - 150 | | | | d3-NMeFOSAA | 103 | | 50 - 150 | | | | d5-NEtFOSAA | 102 | | 50 - 150 | | | | 13C3 HFPO-DA | 104 | | 50 - 150 | | | | | | | | | | Lab Sample ID: LCSD 320-661239/3-A | Matrix: water | | | | | | | Prep ly | pe: lot | al/NA | | |---------------------------------|-------|--------|-----------|------|---|---------------------------|----------|---------|-------|--| | Analysis Batch: 661801 | | | | | | Prep Batch: 661239 | | | | | | | Spike | LCSD | LCSD | | | | %Rec | | RPD | | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | | Perfluorohexanoic acid (PFHxA) | 40.0 | 37.9 | | ng/L | | 95 | 72 - 129 | 1 | 30 | | | Perfluoroheptanoic acid (PFHpA) | 40.0 | 42.3 | | ng/L | | 106 | 72 - 130 | 2 | 30 | | | Perfluorooctanoic acid (PFOA) | 40.0 | 40.3 | | ng/L | | 101 | 71 - 133 | 4 | 30 | | | | | | | | | | | | | | **Eurofins Sacramento** 3/30/2023 **Client Sample ID: Lab Control Sample Dup** Page 13 of 21 ### **QC Sample Results** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK ### Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) | Lab Sample | ID: LCSD | 320-661239/3-A | |------------|----------|----------------| |------------|----------|----------------| **Matrix: Water** **Analysis Batch: 661801** 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA **Prep Batch: 661239** LCSD LCSD **RPD** Spike %Rec Added Result Qualifier Unit %Rec Limits RPD Limit Perfluorononanoic acid (PFNA) 40.0 42.8 ng/L 107 69 - 130 3 30 Perfluorodecanoic acid (PFDA) 40.0 43.3 ng/L 108 71 - 129 30 40.0 30 Perfluoroundecanoic acid 45.2 ng/L 69 - 133 113 (PFUnA) 40.0 ng/L Perfluorododecanoic acid 42.6 106 72 - 13430 (PFDoA) 40.0 41.1 103 65 - 144 30 Perfluorotridecanoic acid ng/L (PFTriA) 30 Perfluorotetradecanoic acid 40.0 39.7 ng/L 99 71 - 132 0 (PFTeA) Perfluorobutanesulfonic acid 35.5 39.4 72 - 130 2 30 ng/L 111 (PFBS) Perfluorohexanesulfonic acid 36.5 38.2 105 68 - 131 ng/L 5 30 (PFHxS) 37.2 37.8 102 65 - 140 3 30 Perfluorooctanesulfonic acid ng/L (PFOS) 40.0 41.1 103 65 - 136 30 N-methylperfluorooctanesulfona ng/L midoacetic acid (NMeFOSAA) 40.0 104 2 30 N-ethylperfluorooctanesulfonami 41.6 ng/L 61 - 135 doacetic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxan 37.4 40.0 ng/L 107 77 - 137 3 30 onane-1-sulfonic acid 40.0 43.6 109 72 - 132 Hexafluoropropylene Oxide ng/L Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaund 37.8 40.6 107 76 - 136 2 30 ng/L ecane-1-sulfonic acid 37.8 41.7 ng/L 110 81 - 141 LCSD LCSD | | 2002 20 | 02 | |------------------|--------------|----------------| | Isotope Dilution | %Recovery Qu | alifier Limits | | 13C2 PFHxA | 109 | 50 - 150 | | 13C4 PFHpA | 109 | 50 - 150 | | 13C4 PFOA | 108 | 50 - 150 | | 13C5 PFNA | 107 | 50 - 150 | | 13C2 PFDA | 109 | 50 - 150 | | 13C2 PFUnA | 109 | 50 - 150 | | 13C2 PFDoA | 114 | 50 - 150 | | 13C2 PFTeDA | 107 |
50 - 150 | | 13C3 PFBS | 109 | 50 - 150 | | 1802 PFHxS | 107 | 50 - 150 | | 13C4 PFOS | 107 | 50 - 150 | | d3-NMeFOSAA | 102 | 50 - 150 | | d5-NEtFOSAA | 107 | 50 - 150 | | 13C3 HFPO-DA | 99 | 50 - 150 | # **QC Association Summary** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK ### LCMS ### **Prep Batch: 661239** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 320-97690-1 | 33059 | Total/NA | Water | 3535 | | | 320-97690-2 | 33068 | Total/NA | Water | 3535 | | | 320-97690-3 | 33160 | Total/NA | Water | 3535 | | | 320-97690-4 | 33060 | Total/NA | Water | 3535 | | | MB 320-661239/1-A | Method Blank | Total/NA | Water | 3535 | | | LCS 320-661239/2-A | Lab Control Sample | Total/NA | Water | 3535 | | | LCSD 320-661239/3-A | Lab Control Sample Dup | Total/NA | Water | 3535 | | ### **Analysis Batch: 661801** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------------|------------| | 320-97690-1 | 33059 | Total/NA | Water | EPA 537(Mod) | 661239 | | 320-97690-2 | 33068 | Total/NA | Water | EPA 537(Mod) | 661239 | | 320-97690-3 | 33160 | Total/NA | Water | EPA 537(Mod) | 661239 | | 320-97690-4 | 33060 | Total/NA | Water | EPA 537(Mod) | 661239 | | MB 320-661239/1-A | Method Blank | Total/NA | Water | EPA 537(Mod) | 661239 | | LCS 320-661239/2-A | Lab Control Sample | Total/NA | Water | EPA 537(Mod) | 661239 | | LCSD 320-661239/3-A | Lab Control Sample Dup | Total/NA | Water | EPA 537(Mod) | 661239 | 4 6 a 10 40 13 14 ### **Lab Chronicle** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK Client Sample ID: 33059 Lab Sample ID: 320-97690-1 Date Collected: 03/08/23 10:25 **Matrix: Water** Date Received: 03/14/23 16:26 Batch Batch Dil Initial Batch Final Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Amount Amount Analyst Total/NA 3535 273.4 mL 10.0 mL 661239 03/16/23 05:40 HK EET SAC Prep Total/NA 03/18/23 04:57 K1S Analysis EPA 537(Mod) 661801 **EET SAC** 1 1 mL 1 mL Client Sample ID: 33068 Lab Sample ID: 320-97690-2 Date Collected: 03/08/23 12:35 **Matrix: Water** Date Received: 03/14/23 16:26 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 271.9 mL | 10.0 mL | 661239 | 03/16/23 05:40 | HK | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 661801 | 03/18/23 05:07 | K1S | EET SAC | Client Sample ID: 33160 Lab Sample ID: 320-97690-3 Date Collected: 03/08/23 14:12 **Matrix: Water** Date Received: 03/14/23 16:26 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 279.8 mL | 10.0 mL | 661239 | 03/16/23 05:40 | HK | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 661801 | 03/18/23 05:17 | K1S | EET SAC | Client Sample ID: 33060 Lab Sample ID: 320-97690-4 Date Collected: 03/08/23 14:22 **Matrix: Water** Date Received: 03/14/23 16:26 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|---------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 274.2 mL | 10.0 mL | 661239 | 03/16/23 05:40 | HK | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 661801 | 03/18/23 05:28 | K1S | EET SAC | **Laboratory References:** EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 Page 16 of 21 # **Accreditation/Certification Summary** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK ### **Laboratory: Eurofins Sacramento** The accreditations/certifications listed below are applicable to this report. | Authority | Program | Identification Number | Expiration Date | |--------------|---------|-----------------------|------------------------| | Alaska (UST) | State | 17-020 | 02-20-24 | 3 4 5 6 R 9 11 12 14 # **Method Summary** Client: Shannon & Wilson, Inc Job ID: 320-97690-1 Project/Site: YAK | Method | Method Description | Protocol | Laboratory | |--------------|------------------------------|----------|------------| | EPA 537(Mod) | PFAS for QSM 5.3, Table B-15 | EPA | EET SAC | | 3535 | Solid-Phase Extraction (SPE) | SW846 | EET SAC | #### **Protocol References:** EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### Laboratory References: EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 # **Sample Summary** Client: Shannon & Wilson, Inc Project/Site: YAK eu/sile. TAR | Lab Sample ID | Client Sample ID | Matrix | Collected | Received | |---------------|------------------|--------|----------------|----------------| | 320-97690-1 | 33059 | Water | 03/08/23 10:25 | 03/14/23 16:26 | | 320-97690-2 | 33068 | Water | 03/08/23 12:35 | 03/14/23 16:26 | | 320-97690-3 | 33160 | Water | 03/08/23 14:12 | 03/14/23 16:26 | | 320-97690-4 | 33060 | Water | 03/08/23 14:22 | 03/14/23 16:26 | Job ID: 320-97690-1 3 4 J b 8 9 10 11 13 14 | SHANNON & WILSON, INC. | CHA | N-OF-CUSTODY RECORD | RECORD | Page 1 of 1 | |---|---|---|---------------------------------------|--| | 2355 Hill Road
Fairbanks, AK 99709
(907) 479-0600 | | • • • • • • • • • • • • • • • • • • • | nclude prese | Laboratory Laborate Awironinent less Attn: David Alltucker ervative if used) | | www.shannonwilson.com | | | | | | Turn Around Time: | Quote No: | | \
\
\ | Stoly | | Normal | | | \ | Pluo | | | J-Flags: X Yes No | 8 | | 20 40 40 40 | | Please Specify | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Remarks/Matrix | | Sample Identity | Lab No. Time Sa | Date Sampled | | Composition/Grab? | | 33059 | 1025 3/ | | | 2 Groundwater | | 33068 | 1235 | × | | 7 | | 33160 | 1412 | × | | 7 | | 33060 | 1422 | × | | 7 | 320-97690 Chain of Custody | | Project Information | Sample Receipt | Reliquished By: 1. | Reliquished By: 2. | Reliquished Bv: 3. | | Number: 102896 - 009 | Total No. of Containers: | Signature: Time: 1630 | ≣.
E. | ie. | | | COC Seals/Intact? Y/N/NA | alle | | | | Contact: ashley.jaramillo@shamsh | Received Good Cond./Cold | Printed Name: Date: 3/13/23 Printed Name: | Printed Name: Date: | Printed Name: Date: | | Ongoing Project? Yes 🔀 No | Temp: | Kailyn Davis | | | | Sampler: KND | Delivery Method: Goldstreak | Company: | Company: | Company: | | Notes: | :Si | | | | | | | received by. | Received By: 2. | Received By: 3. | | PFAS method is DoD QSM v5.5 Table B-1 | M v 5.5 Table B-1 | Signature: Time: | Signature: Time: | Signature: Time: | | | | Printed Name: Date: | Printed Name: Date: | Printed Name: Date: | | Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - job file | io Shannon & Wilson w/ laboratory repoi
gnee files
file | Company: | Company: | Company: | | | | | | | Page 20 of 21 ### **Login Sample Receipt Checklist** Client: Shannon & Wilson, Inc Job Number: 320-97690-1 Login Number: 97690 List Source: Eurofins Sacramento List Number: 1 Creator: Pratali, Sandra A | ordior. I ratan, oundra A | | | |--|--------|---------| | Question | Answer | Comment | | Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True | | | The cooler's custody seal, if present, is intact. | True | seal | | Sample custody seals, if present, are intact. | N/A | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time (excluding tests with immediate HTs) | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | N/A | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | | Multiphasic samples are not present. | True | | | Samples do not require splitting or compositing. | True | | | Residual Chlorine Checked. | N/A | | | | | | 4 _ _ 11 13 ۳ # ADEC
Contaminated Sites Program Laboratory Data Review Checklist | Completed By:
Date: | Ashley
Jaramillo
3/31/2023 | CS Site
Name: | ADOT&PF
Yakutat Airport
Sitewide PFAS | Lab
Name: | Eurofins
Environment
Testing | |------------------------|----------------------------------|-------------------|---|------------------------|------------------------------------| | Title: | Senior
Chemist | ADEC File
No.: | 1530.38.022 | Lab
Report
No.: | 320-97690-1 | | Consulting Firm: | Shannon &
Wilson, Inc. | Hazard ID
No.: | 27090 | Lab
Report
Date: | 3/30/2023 | #### 1. Lab | | J | vvilson, inc. No.: Date: | |-------|-------|--| | te: A | ny N/ | A or No box checked must have an explanation in the comments box. | | 1. I | Labor | atory | | | a. | Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses? Yes \boxtimes No \square N/A \square Comments: Project samples were sent to Eurofins Environment Testing in West Sacramento, California for the analysis of PFAS by LCMSMS compliant with DoD QSM Version 5.3 Table B-15, under DEC approval 17-020 dated 2/11/21. | | | b. | If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved? Yes \square No \square N/A \boxtimes Comments: Samples were not transferred to another "network" laboratory or sub-contracted to an alternate laboratory. | | 2. (| Chain | of Custody (CoC) | | | a. | Is the CoC information completed, signed, and dated (including released/received by)? Yes \boxtimes No \square N/A \square Comments: | | | b. | Were the correct analyses requested? Yes □ No ☒ N/A □ Analyses requested: Analysis of PFAS was incorrectly requested by LCMSMS compliant with DoD QSM Version 5.5 Table B-1, rather than DoD QSM Version 5.3 Table B-15, the correct method. | Comments: PFAS was correctly analyzed by LCMSMS compliant with DoD QSM Version 5.3 Table B-15. Data quality and/or usability not affected. CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-97690-1 #### 3. Laboratory Sample Receipt Documentation | | a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)? Yes ⋈ No □ N/A □ Cooler temperature(s): The temperature of the cooler at receipt was 0.1° C. | |--------|--| | | Sample temperature(s): Sample temperatures were not noted by the laboratory. Comments: The cooler temperature was within the acceptable range. | | | Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)? Yes □ No □ N/A ⋈ | | | Comments: PFAS analysis does not require preservation outside of temperature preservation. | | | c. Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.? Yes No N/A | | | Comments: The laboratory noted the samples arrived in good condition, and where required, properly preserved and on ice. | | | d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.? Yes No N/A | | | Comments: No sample discrepancies were noted by the laboratory. | | | e. Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: See above. | | 4. Cas | e Narrative | | | a. Is the case narrative present and understandable? Yes ⊠ No □ N/A □ Comments: | | | Are there discrepancies, errors, or QC failures identified by the lab? Yes ⋈ No □ N/A □ | | | Comments: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-661239. See section 6.c. for details regarding impacts to data quality and/or usability, as applicable. | | | The following samples in preparation batch 320-661239 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction: 33059 and 33068. Data quality and/or usability not affected. | | | : ADOT&PF Yakutat Airport Sitewide PFAS
o.: 320-97690-1 | |----------|---| | C. | Were all the corrective actions documented? Yes □ No □ N/A ☒ Comments: Corrective actions not required. | | d. | What is the effect on data quality/usability according to the case narrative? Comments: The case narrative does not discuss effect of identified discrepancies on data quality. Any notable data quality issues mentioned in the case narrative are discussed above in Section 4.b. or elsewhere within this DEC checklist. | | 5. Samp | le Results | | a. | Are the correct analyses performed/reported as requested on CoC? Yes □ No ☒ N/A □ Comments: Analysis of PFAS was incorrectly requested by LCMSMS compliant with DoD QSM Version 5.5 Table B-1, rather than DoD QSM Version 5.3 Table B-15, the correct method. PFAS was correctly analyzed by LCMSMS compliant with DoD QSM Version 5.3 Table B-15. Data quality and/or usability not affected. | | b. | Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments: | | C. | Are all soils reported on a dry weight basis? Yes \square No \square N/A \boxtimes Comments: Soil samples were not included with this work order. | | d. | Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project? Yes \boxtimes No \square N/A \square Comments: | | e. | Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: See above. | | 6. QC Sa | amples | | a. | Method Blank | | | i. Was one method blank reported per matrix, analysis, and 20 samples? Yes ⋈ No □ N/A □ Comments: | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-97690-1 ii. Are all method blank results less than LOQ (or RL)? Yes ⊠ No □ N/A □ Comments: iii. If above LoQ or RL, what samples are affected? Comments: Not applicable, see above. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. v. Data quality or usability affected? Yes □ No ⋈ N/A □ Comments: See above. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes ⊠ No □ N/A □ Comments: ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes □ No □ N/A ⋈ Comments: Metal/inorganic analyses were not requested for samples included in this work order. iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes ⊠ No □ N/A □ Comments: iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes ⊠ No □ N/A □ Comments: CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-97690-1 | | V. | Comments: Not applicable, see above. | |----|--------|---| | | vi. | Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: See above. | | | vii. | Is the data quality or usability affected? Yes □ No □ N/A ☒ Comments: See above. | | c. | Matrix | Spike/Matrix Spike Duplicate (MS/MSD) | | | i. | Organics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No ☒ N/A □ Comments: Insufficient sample volume was available to perform a MS/MSD associated with preparation batch 320-661239. Batch accuracy and precision is evaluated using the LCS/LCSD samples. See section 6.b, above. | | | ii. | Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No □ N/A ☒ Comments: Metal/inorganic analyses were not requested for samples included in this work order. | | | iii. | Accuracy – Are all percent recoveries (%R) reported and within method of laboratory limits and project specified objectives, if applicable? Yes \square No \square
N/A \boxtimes Comments: See above. | | | iv. | Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes \square No \square N/A \boxtimes Comments: See above. | | | V. | If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-97690-1 vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. vii. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See above. d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples? Yes ⊠ No □ N/A □ Comments: ii. Accuracy - Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes ⊠ No □ N/A □ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. iv. Is the data quality or usability affected? Yes □ No □ N/A ☒ Comments: See above. e. Trip Blanks i. Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes \square No \square N/A \boxtimes Comments: Volatile samples were not included with this work order. ii. Are all results less than LoQ or RL? Yes □ No □ N/A ⊠ Comments: See above. iii. If above LoQ or RL, what samples are affected? Comments: Not applicable, see above. iv. Is the data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See above. f. Field Duplicate i. Are one field duplicate submitted per matrix, analysis, and 10 project samples? Yes ⊠ No □ N/A □ Comments: Sample 33160 is the field duplicate of project sample 33060. ii. Was the duplicate submitted blind to lab? Yes ⊠ No □ N/A □ Comments: iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil) $RPD \ (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration Yes ⊠ No □ N/A □ Comments: iv. Is the data quality or usability affected? (Explain) Yes □ No □ N/A ⊠ Comments: See above. g. Decontamination or Equipment Blanks i. Were decontamination or equipment blanks collected? Yes □ No ⋈ N/A □ Comments: Samples were not collected with reusable equipment. ii. Are all results less than LoQ or RL? Yes □ No □ N/A ☒ Comments: See above. iii. If above LoQ or RL, specify what samples are affected. Comments: Not applicable, see above. CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-97690-1 | CS Site Name: Lab Report No. | ADOT&PF Yakutat Airport Sitewide PFAS
: 320-97690-1 | |------------------------------|---| | | iv. Are data quality or usability affected?Yes □ No □ N/A ⋈Comments: See above. | | 7. Other [| Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) | | | Are they defined and appropriate? Yes □ No ☒ N/A □ Comments: No other data flags/qualifiers required. | ### PREPARED FOR Attn: Ashley Jaramillo Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244 Generated 6/23/2023 9:16:59 AM **JOB DESCRIPTION** YAKUTAT **JOB NUMBER** 320-101394-1 Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605 # **Eurofins Sacramento** #### **Job Notes** This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager. #### **Authorization** Generated 6/23/2023 9:16:59 AM Linda C. Laver, Senior Project Manager <u>Linda.Laver@et.eurofinsus.com</u> Designee for David Alltucker, Project Manager I <u>David.Alltucker@et.eurofinsus.com</u> Authorized for release by (916)374-4383 14 Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Laboratory Job ID: 320-101394-1 # **Table of Contents** | Cover Page | 1 | |--------------------------|----| | Table of Contents | 3 | | Definitions/Glossary | 4 | | Case Narrative | 5 | | Detection Summary | 6 | | Client Sample Results | 7 | | Isotope Dilution Summary | 13 | | QC Sample Results | 14 | | QC Association Summary | 17 | | Lab Chronicle | 18 | | Certification Summary | 19 | | Method Summary | 20 | | Sample Summary | 21 | | Chain of Custody | 22 | | Receipt Checklists | 23 | 3 4 Q 9 11 12 14 ### **Definitions/Glossary** Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT #### **Qualifiers** #### **LCMS** Qualifier Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. #### **Glossary** | Abbreviation | These commonly used abbreviations may or may not be present in this report. | |--------------|--| | n | Listed under the "D" column to designate that the result is reported on a dry weight basis | Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac Dilution Factor DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit PRES Presumptive QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count **Eurofins Sacramento** Page 4 of 23 6/23/2023 #### **Case Narrative** Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT Job ID: 320-101394-1 **Laboratory: Eurofins Sacramento** Narrative Job Narrative 320-101394-1 #### Receipt The samples were received on 6/10/2023 11:05 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.3° C. #### **LCMS** No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. #### **Organic Prep** Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-684092. Method 3535: The following samples were yellow in color and contained floating particulates prior to extraction: 33068 (320-101394-1), 33060 (320-101394-2), 93060 (320-101394-3), 33059 (320-101394-4), 33056 (320-101394-5) and 33053 (320-101394-6). preparation batch 320-684092 No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Job ID: 320-101394-1 Client Sample ID: 33068 Lab Sample ID: 320-101394-1 No Detections. Client Sample ID: 33060 Lab Sample ID: 320-101394-2 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 3.9 | | 1.8 | 0.52 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 2.0 | | 1.8 | 0.23 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 2.3 | | 1.8 | 0.77 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.63 | J | 1.8 | 0.24 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorodecanoic acid (PFDA) | 0.33 | J | 1.8 | 0.28 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.31 | J | 1.8 | 0.18 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 3.6 | | 1.8 | 0.51 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 12 | | 1.8 | 0.49 | ng/L | 1 | | EPA 537(Mod) | Total/NA | Client Sample ID: 93060 Lab Sample ID: 320-101394-3 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluorohexanoic acid
(PFHxA) | 4.3 | | 1.8 | 0.52 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 2.3 | | 1.8 | 0.22 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 2.4 | | 1.8 | 0.76 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.68 | J | 1.8 | 0.24 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorodecanoic acid (PFDA) | 0.33 | J | 1.8 | 0.28 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.30 | J | 1.8 | 0.18 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 3.7 | | 1.8 | 0.51 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 12 | | 1.8 | 0.48 | ng/L | 1 | | EPA 537(Mod) | Total/NA | Client Sample ID: 33059 Lab Sample ID: 320-101394-4 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D Method | Prep Type | |-------------------------------------|------------------|-----|-----------|------------------|-----------| | Perfluorooctanesulfonic acid (PFOS) | 0.54 J | 1.9 | 0.52 ng/L | 1 EPA 537(Mod) | Total/NA | Client Sample ID: 33056 Lab Sample ID: 320-101394-5 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|---------|---|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 1.7 | J | 1.8 | 0.51 | ng/L | 1 | _ | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 1.5 | J | 1.8 | 0.22 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 2.7 | | 1.8 | 0.75 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 1.2 | J | 1.8 | 0.24 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorodecanoic acid (PFDA) | 0.33 | J | 1.8 | 0.27 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.79 | J | 1.8 | 0.18 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 8.9 | | 1.8 | 0.50 | ng/L | 1 | | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 9.5 | | 1.8 | 0.47 | ng/L | 1 | | EPA 537(Mod) | Total/NA | Client Sample ID: 33053 Lab Sample ID: 320-101394-6 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac I | O Method | Prep Type | |--------------------------------------|--------|-----------|-----|------|------|-----------|--------------|-----------| | Perfluorohexanoic acid (PFHxA) | 1.2 | J | 1.8 | 0.52 | ng/L | | EPA 537(Mod) | Total/NA | | Perfluoroheptanoic acid (PFHpA) | 0.65 | J | 1.8 | 0.23 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorooctanoic acid (PFOA) | 0.84 | J | 1.8 | 0.77 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorononanoic acid (PFNA) | 0.35 | J | 1.8 | 0.24 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorobutanesulfonic acid (PFBS) | 0.34 | J | 1.8 | 0.18 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorohexanesulfonic acid (PFHxS) | 6.9 | | 1.8 | 0.51 | ng/L | 1 | EPA 537(Mod) | Total/NA | | Perfluorooctanesulfonic acid (PFOS) | 4.0 | | 1.8 | 0.49 | ng/L | 1 | EPA 537(Mod) | Total/NA | This Detection Summary does not include radiochemical test results. **Eurofins Sacramento** Page 6 of 23 6/23/2023 Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT Date Received: 06/10/23 11:05 d5-NEtFOSAA 13C3 HFPO-DA Client Sample ID: 33068 Lab Sample ID: 320-101394-1 Date Collected: 06/06/23 09:34 **Matrix: Water** | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | | 1.7 | 0.51 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 1.7 | 0.22 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 1.7 | 0.74 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 1.7 | 0.24 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.7 | 0.27 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.7 | 0.96 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.7 | 0.48 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.7 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.7 | 0.64 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 1.7 | 0.17 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 1.7 | 0.50 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 1.7 | 0.47 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.4 | 1.0 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.4 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid | ND | | 1.7 | 0.21 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.5 | 1.3 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.7 | 0.28 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.7 | 0.35 | ng/L | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 99 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C4 PFHpA | 99 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C4 PFOA | 96 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C5 PFNA | 100 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C2 PFDA | 97 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C2 PFUnA | 98 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C2 PFDoA | 92 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C2 PFTeDA | 88 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C3 PFBS | 93 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 1802 PFHxS | 95 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | 13C4 PFOS | 96 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | d3-NMeFOSAA | 108 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:17 | 1 | | JE NEGOOAA | | | | | | | 00/40/00 05 10 | 00/04/00 00 17 | | 06/19/23 05:13 06/21/23 09:17 06/19/23 05:13 06/21/23 09:17 50 - 150 50 - 150 100 Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT 13C3 PFBS 1802 PFHxS 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Date Received: 06/10/23 11:05 Lab Sample ID: 320-101394-2 Client Sample ID: 33060 Date Collected: 06/06/23 08:54 **Matrix: Water** | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | 3.9 | | 1.8 | 0.52 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluoroheptanoic acid (PFHpA) | 2.0 | | 1.8 | 0.23 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorooctanoic acid (PFOA) | 2.3 | | 1.8 | 0.77 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorononanoic acid (PFNA) | 0.63 | J | 1.8 | 0.24 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorodecanoic acid (PFDA) | 0.33 | J | 1.8 | 0.28 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 0.99 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.50 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.66 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorobutanesulfonic acid (PFBS) | 0.31 | J | 1.8 | 0.18 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | 3.6 | | 1.8 | 0.51 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Perfluorooctanesulfonic acid (PFOS) | 12 | | 1.8 | 0.49 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.5 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.5 | 1.2 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.8 | 0.22 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.6 | 1.4 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.36 | ng/L | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 100 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 13C4 PFHpA | 100 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 13C4 PFOA | 94 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 13C5 PFNA | 97 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 13C2 PFDA | 95 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 13C2 PFUnA | 95 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | | 13C2 PFDoA | 86 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:27 | 1 | |
13C2 PFTeDA | 80 | | 50 ₋ 150 | | | | 06/10/23 05:13 | 06/21/23 09:27 | 1 | 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 87 96 91 104 97 100 **Eurofins Sacramento** 06/19/23 05:13 06/21/23 09:27 06/19/23 05:13 06/21/23 09:27 06/19/23 05:13 06/21/23 09:27 06/19/23 05:13 06/21/23 09:27 06/19/23 05:13 06/21/23 09:27 06/19/23 05:13 06/21/23 09:27 Page 8 of 23 Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT d5-NEtFOSAA 13C3 HFPO-DA Date Received: 06/10/23 11:05 Client Sample ID: 93060 Lab Sample ID: 320-101394-3 Date Collected: 06/06/23 08:44 **Matrix: Water** | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | 4.3 | | 1.8 | 0.52 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluoroheptanoic acid (PFHpA) | 2.3 | | 1.8 | 0.22 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorooctanoic acid (PFOA) | 2.4 | | 1.8 | 0.76 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorononanoic acid (PFNA) | 0.68 | J | 1.8 | 0.24 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorodecanoic acid (PFDA) | 0.33 | J | 1.8 | 0.28 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 0.98 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.49 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.2 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.65 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorobutanesulfonic acid (PFBS) | 0.30 | J | 1.8 | 0.18 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | 3.7 | | 1.8 | | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Perfluorooctanesulfonic acid (PFOS) | 12 | | 1.8 | 0.48 | _ | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.5 | | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.5 | | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid | ND | | 1.8 | 0.21 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) | ND | | 3.6 | | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.8 | 0.29 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.36 | ng/L | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 96 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C4 PFHpA | 97 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C4 PFOA | 96 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C5 PFNA | 94 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C2 PFDA | 91 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C2 PFUnA | 92 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C2 PFDoA | 87 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C2 PFTeDA | 87 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C3 PFBS | 91 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 1802 PFHxS | 93 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | 13C4 PFOS | 95 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:37 | 1 | | | | | | | | | | | | 06/19/23 05:13 06/21/23 09:37 06/19/23 05:13 06/21/23 09:37 50 - 150 50 - 150 102 Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Job ID: 320-101394-1 Client Sample ID: 33059 Date Collected: 06/06/23 13:34 94 Date Received: 06/10/23 11:05 13C3 HFPO-DA Lab Sample ID: 320-101394-4 **Matrix: Water** | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|----------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | ND | | 1.9 | 0.56 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 1.9 | 0.24 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 1.9 | 0.82 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 1.9 | 0.26 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 1.9 | 0.30 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.9 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 1.9 | 0.53 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.9 | 1.2 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.9 | 0.70 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 1.9 | 0.19 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 1.9 | 0.55 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Perfluorooctanesulfonic acid (PFOS) | 0.54 | J | 1.9 | 0.52 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.8 | 1.2 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.8 | 1.2 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 1.9 | 0.23 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 3.8 | 1.4 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan | ND | | 1.9 | 0.31 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | e-1-sulfonic acid | | | | | | | | | | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.9 | 0.38 | ng/L | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 91 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C4 PFHpA | 95 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C4 PFOA | 93 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C5 PFNA | 95 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C2 PFDA | 93 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C2 PFUnA | 91 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C2 PFDoA | 86 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C2 PFTeDA | 82 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C3 PFBS | 88 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 1802 PFHxS | 92 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 13C4 PFOS | 95 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | d3-NMeFOSAA | 99 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | d5-NEtFOSAA | 96 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:47 | 1 | | 4000 UEDO DA | | | 50 450 | | | | 00//0/00 05 :- | 00/04/00 00 :- | | 06/19/23 05:13 06/21/23 09:47 50 - 150 3 Ē 7 9 10 12 14 Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Job ID: 320-101394-1 Client Sample ID: 33056 Lab Sample ID: 320-101394-5 Date Collected: 06/06/23 10:25 Date Received: 06/10/23 11:05 Matrix: Water | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------| | Perfluorohexanoic acid (PFHxA) | 1.7 | J | 1.8 | 0.51 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | | | Perfluoroheptanoic acid (PFHpA) | 1.5 | J | 1.8 | 0.22 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | Perfluorooctanoic acid (PFOA) | 2.7 | | 1.8 | 0.75 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | Perfluorononanoic acid (PFNA) | 1.2 | J | 1.8 | 0.24 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | | | Perfluorodecanoic acid (PFDA) | 0.33 | J | 1.8 | 0.27 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | Perfluoroundecanoic acid (PFUnA) | ND | | 1.8 | 0.96 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | Perfluorododecanoic acid (PFDoA) | ND | | 1.8 | 0.48 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | | | Perfluorotridecanoic acid (PFTriA) | ND | | 1.8 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | Perfluorotetradecanoic acid (PFTeA) | ND | | 1.8 | 0.64 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | | | Perfluorobutanesulfonic acid (PFBS) | 0.79 | J | 1.8 | 0.18 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | , | | Perfluorohexanesulfonic acid (PFHxS) | 8.9 | | 1.8 | 0.50 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | Perfluorooctanesulfonic acid (PFOS) | 9.5 | | 1.8 | 0.47 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 4.4 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | , | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 4.4 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid | ND | | 1.8 | 0.21 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | , | | Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) | ND | | 3.5 | | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | , | | 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid | ND | | 1.8 | 0.28 | ng/L | | 06/19/23 05:13 | 06/21/23 09:58 | • | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 1.8 | 0.35 | ng/L | | 06/19/23 05:13 |
06/21/23 09:58 | , | | Isotope Dilution | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 13C2 PFHxA | 91 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C4 PFHpA | 93 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C4 PFOA | 90 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C5 PFNA | 96 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C2 PFDA | 89 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C2 PFUnA | 85 | | 50 - 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | - | | 13C2 PFDoA | 71 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C2 PFTeDA | 63 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C3 PFBS | 91 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 1802 PFHxS | 94 | | 50 ₋ 150 | | | | 06/19/23 05:13 | 06/21/23 09:58 | | | 13C4 PFOS | 92 | | 50 - 150 | | | | | 06/21/23 09:58 | | | d3-NMeFOSAA | 90 | | 50 ₋ 150 | | | | | 06/21/23 09:58 | | | d5-NEtFOSAA | 82 | | 50 - 150 | | | | | 06/21/23 09:58 | | | 13C3 HFPO-DA | 95 | | 50 - 150 | | | | | 06/21/23 09:58 | | 6/23/2023 3 5 0 10 12 Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT Date Received: 06/10/23 11:05 4,8-Dioxa-3H-perfluorononanoic acid Client Sample ID: 33053 Lab Sample ID: 320-101394-6 Date Collected: 06/06/23 14:36 **Matrix: Water** 06/19/23 05:13 06/21/23 10:08 Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared **Analyzed** Perfluorohexanoic acid (PFHxA) 1.8 0.52 ng/L 06/19/23 05:13 06/21/23 10:08 1.2 J Perfluoroheptanoic acid (PFHpA) 0.65 J 1.8 0.23 ng/L 06/19/23 05:13 06/21/23 10:08 Perfluorooctanoic acid (PFOA) 0.84 J 1.8 0.77 ng/L 06/19/23 05:13 06/21/23 10:08 0.24 ng/L Perfluorononanoic acid (PFNA) 0.35 J 1.8 06/19/23 05:13 06/21/23 10:08 Perfluorodecanoic acid (PFDA) ND 1.8 0.28 ng/L 06/19/23 05:13 06/21/23 10:08 Perfluoroundecanoic acid (PFUnA) ND 1.8 0.99 ng/L 06/19/23 05:13 06/21/23 10:08 Perfluorododecanoic acid (PFDoA) ND 1.8 0.50 ng/L 06/19/23 05:13 06/21/23 10:08 Perfluorotridecanoic acid (PFTriA) ND 1.8 06/19/23 05:13 06/21/23 10:08 1.2 ng/L Perfluorotetradecanoic acid (PFTeA) ND 1.8 0.66 ng/L 06/19/23 05:13 06/21/23 10:08 Perfluorobutanesulfonic acid 0.34 J 1.8 0.18 ng/L 06/19/23 05:13 06/21/23 10:08 (PFBS) 1.8 0.51 ng/L 06/19/23 05:13 06/21/23 10:08 Perfluorohexanesulfonic acid 6.9 (PFHxS) Perfluorooctanesulfonic acid 4.0 1.8 0.49 ng/L 06/19/23 05:13 06/21/23 10:08 (PFOS) ND 4.5 1.1 ng/L 06/19/23 05:13 06/21/23 10:08 N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac ND 4.5 1.2 ng/L 06/19/23 05:13 06/21/23 10:08 etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan ND 1.8 0.22 ng/L 06/19/23 05:13 06/21/23 10:08 e-1-sulfonic acid Hexafluoropropylene Oxide Dimer ND 3.6 1.4 ng/L 06/19/23 05:13 06/21/23 10:08 Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 1.8 0.29 ng/L 06/19/23 05:13 06/21/23 10:08 e-1-sulfonic acid | (ADONA) | | | 0.00g/_ | | | | |------------------|-------------|------------------|---------|----------------|----------------|---------| | Isotope Dilution | %Recovery Q | Qualifier Limits | | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 96 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C4 PFHpA | 95 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C4 PFOA | 95 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C5 PFNA | 97 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C2 PFDA | 96 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C2 PFUnA | 94 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C2 PFDoA | 87 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C2 PFTeDA | 85 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C3 PFBS | 86 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 18O2 PFHxS | 90 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C4 PFOS | 93 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | d3-NMeFOSAA | 98 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | d5-NEtFOSAA | 101 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | | 13C3 HFPO-DA | 100 | 50 - 150 | | 06/19/23 05:13 | 06/21/23 10:08 | 1 | 1.8 0.36 ng/L ND ### **Isotope Dilution Summary** Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 **Matrix: Water Prep Type: Total/NA** | | | | Perce | ent Isotope | Dilution Re | covery (Ac | ceptance L | imits) | | |------------------------------------|--|----------|------------|-------------|-------------|------------|------------|----------|----------| | | | PFHxA | C4PFHA | PFOA | PFNA | PFDA | PFUnA | PFDoA | PFTDA | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | 320-101394-1 | 33068 | 99 | 99 | 96 | 100 | 97 | 98 | 92 | 88 | | 320-101394-2 | 33060 | 100 | 100 | 94 | 97 | 95 | 95 | 86 | 80 | | 320-101394-3 | 93060 | 96 | 97 | 96 | 94 | 91 | 92 | 87 | 87 | | 320-101394-4 | 33059 | 91 | 95 | 93 | 95 | 93 | 91 | 86 | 82 | | 320-101394-5 | 33056 | 91 | 93 | 90 | 96 | 89 | 85 | 71 | 63 | | 320-101394-6 | 33053 | 96 | 95 | 95 | 97 | 96 | 94 | 87 | 85 | | LCS 320-684092/2-A | Lab Control Sample | 96 | 97 | 96 | 98 | 97 | 95 | 95 | 87 | | LCSD 320-684092/3-A | Lab Control Sample Dup | 94 | 95 | 96 | 97 | 95 | 97 | 95 | 92 | | MB 320-684092/1-A | Method Blank | 98 | 96 | 96 | 98 | 96 | 93 | 85 | 88 | | | | | Perce | ent Isotope | Dilution Re | covery (Ac | ceptance L | imits) | | | | | C3PFBS | PFHxS | PFOS | | d5NEFOS | HFPODA | • | | | Lab Sample ID | Client Sample ID | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) | | | | 320-101394-1 | 33068 | 93 | 95 | 96 | 108 | 100 | 96 | | | | 320-101394-2 | 33060 | 87 | 96 | 91 | 104 | 97 | 100 | | | | 320-101394-3 | 93060 | 91 | 93 | 95 | 99 | 102 | 95 | | | | 320-101394-4 | 33059 | 88 | 92 | 95 | 99 | 96 | 94 | | | | 320-101394-5 | 33056 | 91 | 94 | 92 | 90 | 82 | 95 | | | | 000 101001 0 | 33053 | 86 | 90 | 93 | 98 | 101 | 100 | | | | 320-101394-6 | | | | | | | | | | | 320-101394-6
LCS 320-684092/2-A | Lab Control Sample | 93 | 101 | 97 | 104 | 100 | 97 | | | | | Lab Control Sample
Lab Control Sample Dup | 93
93 | 101
102 | 97
103 | 104
100 | 100
107 | 97
96 | | | | Surrogate | Legend | |-----------|--------| |-----------|--------| PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFUnA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA **Eurofins Sacramento** Page 13 of 23 Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT ### Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Lab Sample ID: MB 320-684092/1-A Matrix: Water Prep Type: Total/NA Analysis Batch: 684603 Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 684092 | | MB | MB | | | | | | | | |---|--------|-----------|-----|------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Perfluorohexanoic acid (PFHxA) | ND | | 2.0 | 0.58 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluoroheptanoic acid (PFHpA) | ND | | 2.0 | 0.25 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorooctanoic acid (PFOA) | ND | | 2.0 | 0.85 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorononanoic acid (PFNA) | ND | | 2.0 | 0.27 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorodecanoic acid (PFDA) | ND | | 2.0 | 0.31 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluoroundecanoic acid (PFUnA) | ND | | 2.0 | 1.1 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorododecanoic acid (PFDoA) | ND | | 2.0 | 0.55 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorotridecanoic acid (PFTriA) | ND | | 2.0 | 1.3 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorotetradecanoic acid (PFTeA) | ND | | 2.0 | 0.73 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorobutanesulfonic acid (PFBS) | ND | | 2.0 | 0.20 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorohexanesulfonic acid (PFHxS) | ND | | 2.0 | 0.57 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Perfluorooctanesulfonic acid (PFOS) | ND | | 2.0 | 0.54 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | 5.0 | 1.2 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | 5.0 | 1.3 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 9-Chlorohexadecafluoro-3-oxanonan
e-1-sulfonic acid | ND | | 2.0 | 0.24 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | Hexafluoropropylene Oxide Dimer
Acid (HFPO-DA) | ND | | 4.0 | 1.5 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 11-Chloroeicosafluoro-3-oxaundecan
e-1-sulfonic acid | ND | | 2.0 | 0.32 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | ND | | 2.0 | 0.40 | ng/L | | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | | | | | | | | | | | | (ADONA) | | | | _ | | | |------------------|-------------|-----------|----------|----------------|----------------|---------| | | MB N | ИВ | | | | | | Isotope Dilution | %Recovery 0 | Qualifier | Limits | Prepared | Analyzed | Dil Fac | | 13C2 PFHxA | 98 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C4 PFHpA | 96 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C4 PFOA | 96 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C5 PFNA | 98 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C2 PFDA | 96 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C2 PFUnA | 93 | | 50 - 150 | 06/19/23 05:13 |
06/21/23 08:46 | 1 | | 13C2 PFDoA | 85 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C2 PFTeDA | 88 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C3 PFBS | 87 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 1802 PFHxS | 93 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C4 PFOS | 94 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | d3-NMeFOSAA | 99 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | d5-NEtFOSAA | 94 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | | 13C3 HFPO-DA | 98 | | 50 - 150 | 06/19/23 05:13 | 06/21/23 08:46 | 1 | Lab Sample ID: LCS 320-684092/2-A **Matrix: Water** **Analysis Batch: 684603** | Client Sample ID: | Lab Control Sample | |-------------------|---------------------| | | Prep Type: Total/NA | | | Pren Batch: 684092 | | | Spike | LCS | LCS | | | | %Rec | | |---------------------------------|-------|--------|-----------|------|---|------|----------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Perfluorohexanoic acid (PFHxA) | 40.0 | 45.2 | | ng/L | | 113 | 72 - 129 | | | Perfluoroheptanoic acid (PFHpA) | 40.0 | 46.9 | | ng/L | | 117 | 72 - 130 | | | Perfluorooctanoic acid (PFOA) | 40.0 | 44.0 | | ng/L | | 110 | 71 - 133 | | | Perfluorononanoic acid (PFNA) | 40.0 | 43.5 | | ng/L | | 109 | 69 - 130 | | **Eurofins Sacramento** Page 14 of 23 2 3 4 6 8 10 11 13 14 Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT #### Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Lab Sample ID: LCS 320-684092/2-A **Matrix: Water** **Analysis Batch: 684603** **Client Sample ID: Lab Control Sample** **Prep Type: Total/NA** Prep Batch: 684092 %Rec | Analysis Baton: 004000 | Spike | LCS LC | cs | | %Rec | |--|-------|----------|---------------|--------|----------| | Analyte | Added | Result Q | ualifier Unit | D %Rec | Limits | | Perfluorodecanoic acid (PFDA) | 40.0 | 43.8 | ng/L | 109 | 71 - 129 | | Perfluoroundecanoic acid
(PFUnA) | 40.0 | 41.7 | ng/L | 104 | 69 - 133 | | Perfluorododecanoic acid (PFDoA) | 40.0 | 44.3 | ng/L | 111 | 72 - 134 | | Perfluorotridecanoic acid (PFTriA) | 40.0 | 41.7 | ng/L | 104 | 65 - 144 | | Perfluorotetradecanoic acid (PFTeA) | 40.0 | 42.6 | ng/L | 106 | 71 - 132 | | Perfluorobutanesulfonic acid (PFBS) | 35.5 | 39.6 | ng/L | 111 | 72 - 130 | | Perfluorohexanesulfonic acid (PFHxS) | 36.5 | 36.2 | ng/L | 99 | 68 - 131 | | Perfluorooctanesulfonic acid (PFOS) | 37.2 | 40.5 | ng/L | 109 | 65 - 140 | | N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA) | 40.0 | 43.4 | ng/L | 108 | 65 - 136 | | N-ethylperfluorooctanesulfonami
doacetic acid (NEtFOSAA) | 40.0 | 46.7 | ng/L | 117 | 61 - 135 | | 9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid | 37.4 | 41.1 | ng/L | 110 | 77 - 137 | | Hexafluoropropylene Oxide
Dimer Acid (HFPO-DA) | 40.0 | 44.5 | ng/L | 111 | 72 - 132 | | 11-Chloroeicosafluoro-3-oxaund
ecane-1-sulfonic acid | 37.8 | 41.8 | ng/L | 111 | 76 - 136 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 37.8 | 46.4 | ng/L | 123 | 81 - 141 | | 100 | 1.00 | | | | | LCS LCS | | LUU | L00 | | |------------------|-----------|-----------|----------| | Isotope Dilution | %Recovery | Qualifier | Limits | | 13C2 PFHxA | 96 | | 50 - 150 | | 13C4 PFHpA | 97 | | 50 - 150 | | 13C4 PFOA | 96 | | 50 - 150 | | 13C5 PFNA | 98 | | 50 - 150 | | 13C2 PFDA | 97 | | 50 - 150 | | 13C2 PFUnA | 95 | | 50 - 150 | | 13C2 PFDoA | 95 | | 50 - 150 | | 13C2 PFTeDA | 87 | | 50 - 150 | | 13C3 PFBS | 93 | | 50 - 150 | | 1802 PFHxS | 101 | | 50 - 150 | | 13C4 PFOS | 97 | | 50 - 150 | | d3-NMeFOSAA | 104 | | 50 - 150 | | d5-NEtFOSAA | 100 | | 50 - 150 | | 13C3 HFPO-DA | 97 | | 50 - 150 | | | | | | Lab Sample ID: LCSD 320-684092/3-A **Matrix: Water** **Client Sample ID: Lab Control Sample Dup** **Prep Type: Total/NA** | ı | Analysis Batch: 684603 | | | | | | | Prep Batch: 684092 | | | |---|---------------------------------|-------|--------|-----------|------|---|------|--------------------|-----|-------| | ١ | | Spike | LCSD | LCSD | | | | %Rec | | RPD | | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | | Perfluorohexanoic acid (PFHxA) | 40.0 | 46.4 | | ng/L | | 116 | 72 - 129 | 3 | 30 | | ١ | Perfluoroheptanoic acid (PFHpA) | 40.0 | 45.8 | | ng/L | | 115 | 72 - 130 | 2 | 30 | | | Perfluorooctanoic acid (PFOA) | 40.0 | 44.9 | | ng/L | | 112 | 71 - 133 | 2 | 30 | **Eurofins Sacramento** Page 15 of 23 6/23/2023 ### **QC Sample Results** Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) **Matrix: Water** **Analysis Batch: 684603** Lab Sample ID: LCSD 320-684092/3-A **Client Sample ID: Lab Control Sample Dup** **Prep Type: Total/NA Prep Batch: 684092** | , | Spike | LCSD | LCSD | | | | %Rec | | RPD | |--|-------|--------|-----------|------|---|------|----------|-----|-------| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Perfluorononanoic acid (PFNA) | 40.0 | 45.0 | | ng/L | | 113 | 69 - 130 | 3 | 30 | | Perfluorodecanoic acid (PFDA) | 40.0 | 43.1 | | ng/L | | 108 | 71 - 129 | 2 | 30 | | Perfluoroundecanoic acid (PFUnA) | 40.0 | 42.6 | | ng/L | | 106 | 69 - 133 | 2 | 30 | | Perfluorododecanoic acid (PFDoA) | 40.0 | 47.3 | | ng/L | | 118 | 72 - 134 | 7 | 30 | | Perfluorotridecanoic acid (PFTriA) | 40.0 | 43.6 | | ng/L | | 109 | 65 - 144 | 4 | 30 | | Perfluorotetradecanoic acid (PFTeA) | 40.0 | 42.8 | | ng/L | | 107 | 71 - 132 | 0 | 30 | | Perfluorobutanesulfonic acid (PFBS) | 35.5 | 41.3 | | ng/L | | 116 | 72 - 130 | 4 | 30 | | Perfluorohexanesulfonic acid (PFHxS) | 36.5 | 36.6 | | ng/L | | 100 | 68 - 131 | 1 | 30 | | Perfluorooctanesulfonic acid (PFOS) | 37.2 | 40.2 | | ng/L | | 108 | 65 - 140 | 1 | 30 | | N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA) | 40.0 | 46.9 | | ng/L | | 117 | 65 - 136 | 8 | 30 | | N-ethylperfluorooctanesulfonami
doacetic acid (NEtFOSAA) | 40.0 | 45.3 | | ng/L | | 113 | 61 - 135 | 3 | 30 | | 9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid | 37.4 | 40.4 | | ng/L | | 108 | 77 - 137 | 2 | 30 | | Hexafluoropropylene Oxide
Dimer Acid (HFPO-DA) | 40.0 | 45.5 | | ng/L | | 114 | 72 - 132 | 2 | 30 | | 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid | 37.8 | 42.5 | | ng/L | | 112 | 76 - 136 | 2 | 30 | | 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) | 37.8 | 43.1 | | ng/L | | 114 | 81 - 141 | 7 | 30 | LCSD LCSD | _005 | _002 | | |-----------|--|---| | %Recovery | Qualifier | Limits | | 94 | | 50 - 150 | | 95 | | 50 - 150 | | 96 | | 50 - 150 | | 97 | | 50 - 150 | | 95 | | 50 - 150 | | 97 | | 50 - 150 | | 95 | | 50 - 150 | | 92 | | 50 - 150 | | 93 | | 50 - 150 | | 102 | | 50 - 150 | | 103 | | 50 - 150 | | 100 | | 50 - 150 | | 107 | | 50 - 150 | | 96 | | 50 - 150 | | | 94
95
96
97
95
97
95
92
93
102
103
100
107 | 95
96
97
95
97
95
92
93
102
103
100 | # **QC Association Summary** Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Job ID: 320-101394-1 LCMS **Prep Batch: 684092** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 320-101394-1 | 33068 | Total/NA | Water | 3535 | | | 320-101394-2 | 33060 | Total/NA | Water | 3535 | | | 320-101394-3 | 93060 | Total/NA | Water | 3535 | | | 320-101394-4 | 33059 | Total/NA | Water | 3535 | | | 320-101394-5 | 33056 | Total/NA | Water | 3535 | | | 320-101394-6 | 33053 | Total/NA | Water | 3535 | | | MB 320-684092/1-A | Method Blank | Total/NA | Water | 3535 | | | LCS 320-684092/2-A | Lab Control Sample | Total/NA | Water | 3535 | | | LCSD 320-684092/3-A | Lab Control Sample Dup | Total/NA | Water | 3535 | | **Analysis Batch: 684603** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------------|------------| | 320-101394-1 | 33068 | Total/NA | Water | EPA 537(Mod) | 684092 | | 320-101394-2 | 33060 | Total/NA | Water | EPA 537(Mod) | 684092 | | 320-101394-3 | 93060 | Total/NA | Water | EPA 537(Mod) | 684092 | | 320-101394-4 | 33059 | Total/NA | Water | EPA 537(Mod) | 684092 | | 320-101394-5 | 33056 | Total/NA | Water | EPA 537(Mod) | 684092 | | 320-101394-6 | 33053 | Total/NA | Water | EPA 537(Mod) | 684092 | | MB 320-684092/1-A | Method Blank | Total/NA | Water | EPA 537(Mod) | 684092 | | LCS 320-684092/2-A | Lab Control Sample | Total/NA | Water | EPA 537(Mod) | 684092 | | LCSD 320-684092/3-A | Lab Control Sample Dup | Total/NA | Water | EPA 537(Mod) | 684092 | ____ Λ 4 6 8 9 4 4 12 13 ____ Job ID: 320-101394-1 Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Client Sample ID: 33068 Lab Sample ID: 320-101394-1 Date Collected: 06/06/23 09:34 **Matrix: Water** **Matrix: Water** **Matrix: Water** Date Received: 06/10/23 11:05 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|----------|--------|----------------|---------|---------| | Prep Type | Туре | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 286.2 mL | 10.00 mL | 684092 | 06/19/23 05:13 | HJA | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 684603 | 06/21/23 09:17 | C1P | EET SAC | Lab Sample ID: 320-101394-2 Client Sample ID: 33060 Date Collected: 06/06/23 08:54 **Matrix: Water** Date Received: 06/10/23 11:05 | _ | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------
---------|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 277 mL | 10.00 mL | 684092 | 06/19/23 05:13 | HJA | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 684603 | 06/21/23 09:27 | C1P | EET SAC | Client Sample ID: 93060 Lab Sample ID: 320-101394-3 Date Collected: 06/06/23 08:44 Date Received: 06/10/23 11:05 | _ | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 279.6 mL | 10.00 mL | 684092 | 06/19/23 05:13 | HJA | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 684603 | 06/21/23 09:37 | C1P | EET SAC | Client Sample ID: 33059 Lab Sample ID: 320-101394-4 Date Collected: 06/06/23 13:34 Date Received: 06/10/23 11:05 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 260.1 mL | 10.00 mL | 684092 | 06/19/23 05:13 | HJA | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 684603 | 06/21/23 09:47 | C1P | EET SAC | Client Sample ID: 33056 Lab Sample ID: 320-101394-5 Date Collected: 06/06/23 10:25 **Matrix: Water** Date Received: 06/10/23 11:05 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 285.1 mL | 10.00 mL | 684092 | 06/19/23 05:13 | HJA | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 684603 | 06/21/23 09:58 | C1P | EET SAC | Lab Sample ID: 320-101394-6 Client Sample ID: 33053 Date Collected: 06/06/23 14:36 **Matrix: Water** Date Received: 06/10/23 11:05 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------------|-----|--------|----------|----------|--------|----------------|---------|---------| | Prep Type | Туре | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3535 | | | 277.5 mL | 10.00 mL | 684092 | 06/19/23 05:13 | HJA | EET SAC | | Total/NA | Analysis | EPA 537(Mod) | | 1 | 1 mL | 1 mL | 684603 | 06/21/23 10:08 | C1P | EET SAC | **Laboratory References:** EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 **Eurofins Sacramento** Page 18 of 23 # **Accreditation/Certification Summary** Client: Shannon & Wilson, Inc Job ID: 320-101394-1 Project/Site: YAKUTAT #### **Laboratory: Eurofins Sacramento** The accreditations/certifications listed below are applicable to this report. | Authority | Program | Identification Number | | | |--------------|---------|-----------------------|----------|--| | Alaska (UST) | State | 17-020 | 02-20-24 | | 3 А 6 8 10 11 13 14 ### **Method Summary** Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Method **Method Description** Protocol Laboratory EPA 537(Mod) PFAS for QSM 5.3, Table B-15 EPA **EET SAC** 3535 Solid-Phase Extraction (SPE) SW846 **EET SAC** #### **Protocol References:** EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### **Laboratory References:** EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600 Job ID: 320-101394-1 # **Sample Summary** Client: Shannon & Wilson, Inc Project/Site: YAKUTAT Job ID: 320-101394-1 | Lab Sample ID | Client Sample ID | Matrix | Collected | Received | |---------------|------------------|--------|----------------|----------------| | 320-101394-1 | 33068 | Water | 06/06/23 09:34 | 06/10/23 11:05 | | 320-101394-2 | 33060 | Water | 06/06/23 08:54 | 06/10/23 11:05 | | 320-101394-3 | 93060 | Water | 06/06/23 08:44 | 06/10/23 11:05 | | 320-101394-4 | 33059 | Water | 06/06/23 13:34 | 06/10/23 11:05 | | 320-101394-5 | 33056 | Water | 06/06/23 10:25 | 06/10/23 11:05 | | 320-101394-6 | 33053 | Water | 06/06/23 14:36 | 06/10/23 11:05 | Client: Shannon & Wilson, Inc Job Number: 320-101394-1 Login Number: 101394 List Source: Eurofins Sacramento List Number: 1 Creator: Cahill, Nicholas P | Creator. Carrill, Nicriolas P | | | |--|--------|-----------------| | Question | Answer | Comment | | Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True | | | The cooler's custody seal, if present, is intact. | True | 1504531/1504530 | | Sample custody seals, if present, are intact. | N/A | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time (excluding tests with immediate HTs) | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | N/A | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | | Multiphasic samples are not present. | True | | | Samples do not require splitting or compositing. | True | | | Residual Chlorine Checked. | N/A | | **Eurofins Sacramento** # ADEC Contaminated Sites Program Laboratory Data Review Checklist | Completed By:
Date: | Ashley Jaramillo
6/26/2023 | CS Site
Name: | ADOT&PF
Yakutat Airport
Sitewide PFAS | Lab Name: | Eurofins
Environment
Testing | | | | | |---|---|-------------------|---|---------------------|------------------------------------|--|--|--|--| | Title: | Senior Chemist | ADEC
File No.: | 1530.38.022 | Lab Report
No.: | 320-101394-1 | | | | | | Consulting
Firm: | Shannon &
Wilson, Inc. | Hazard
ID No.: | 27090 | Lab Report
Date: | 6/23/23 | | | | | | • | Note: Any N/A or No box checked must have an explanation in the comments box. 1. Laboratory | | | | | | | | | | ap
Ye
Co
(E
PI
DI
b. If
to | a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses? Yes No N/A Comments: Project samples were sent to Eurofins Environment Testing (Eurofins) in Sacramento, California. Eurofins analyzed project samples for PFAS by 537(Mod), compliant with the DoD QSM Version 5.3 Table B-15, under DEC approval 17-020 dated 4/13/23. b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved? | | | | | | | | | | or | omments: Project sa
sub-contracted to a | | | another "netwo | rk" laboratory | | | | | | 2. Chain of | Custody (CoC) | | | | | | | | | | re
Ye | the CoC information
leased/received by)
es ⊠ No □ N/A □
omments: None | ? | , signed, and dated | d (including | | | | | | | Ye
Ar | Were the correct analyses requested? Yes ⊠ No □ N/A □ Analyses requested: PFAS compliant with the DoD QSM Version 5.3 Table B-15. Comments: Eurofins performed analysis as requested. | | | | | | | | | Revision 9/2022 CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS **Lab Report No.:** 320-101394-1 ### 3. Laboratory Sample Receipt Documentation | | a. | Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)? Yes \boxtimes No \square N/A \square | |----|--------|--| | | | Cooler temperature(s): 1.3° C at receipt. | | | | Sample temperature(s): Sample temperature not included. Comments: Cooler temperature was within acceptable range. | | | | Comments. Cooler temperature was within acceptable range. | | | b. | Is the sample preservation acceptable – acidified waters, methanol preserved
soil (GRO, BTEX, VOCs, etc.)? Yes \square No \square N/A \boxtimes | | | | Comments: Outside of ice, sample preservation is not required for PFAS analysis. | | | C. | Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.? Yes \boxtimes No \square N/A \square | | | | Comments: Eurofins noted upon receipt that project samples arrived in good condition, and where required, properly preserved and on ice. | | | d. | If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.? Yes \square No \square N/A \boxtimes | | | | Comments: No discrepancies were identified by the lab, no documentation required. | | | e. | Is the data quality or usability affected? | | | | Yes □ No ☒ N/A □ Comments: See above. | | 4. | Case I | Narrative | | | a. | Is the case narrative present and understandable? Yes ⊠ No □ N/A □ Comments: None | | | | | | | b. | Are there discrepancies, errors, or QC failures identified by the lab? Yes \square No \square N/A \square | | | | Comments: Insufficient sample volume was available to perform a MS/MSD associated with | | | | preparation batch 320-684092. See section 6.b. for impacts to data quality and/or usability, as applicable. | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-101394-1 The following samples were yellow in color and contained floating particulates prior to extraction: 33068, 33060, 93060, 33059, 33056 and 33053, in preparation batch 320-684092. Data quality and/or usability not affected. c. Were all the corrective actions documented? Yes □ No □ N/A ⊠ Comments: Corrective actions were not required; no documentation required. d. What is the effect on data quality/usability according to the case narrative? Comments: Effects to data quality and/or usability due to discrepancies noted in the case narrative are either discussed above in Section 4.b. or elsewhere within this checklist, as applicable. 5. Sample Results a. Are the correct analyses performed/reported as requested on CoC? Yes ⊠ No □ N/A □ Comments: None. b. Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments: None. c. Are all soils reported on a dry weight basis? Yes □ No □ N/A ⊠ Comments: Soil samples were not included in this work order. d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project? Yes ⊠ No □ N/A □ Comments: Analytical sensitivity was evaluated to verify that RLs met applicable DEC groundwater cleanup levels for non-detect results, as appropriate. RLs met applicable regulatory levels. e. Is the data quality or usability affected? Yes \square No \boxtimes N/A \square Comments: See above. CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-101394-1 #### 6. QC Samples a. Method Blank i. Was one method blank reported per matrix, analysis, and 20 samples? Yes ⊠ No □ N/A □ Comments: None ii. Are all method blank results less than LOQ (or RL)? Yes ⊠ No □ N/A □ Comments: No target analytes were detected in the method blank sample associated with batch 320-684092. iii. If above LoQ or RL, what samples are affected? Comments: Not applicable, see above. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: See above. v. Data quality or usability affected? Yes □ No ⋈ N/A □ Comments: See above. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes ⊠ No □ N/A □ Comments: A LCS/LCSD was reported for PFAS batch 320-684092. ii. Metals/Inorganics - Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes □ No □ N/A ⊠ Comments: Metals/inorgaincs analyses were not requested for samples included in the work order. iii. Accuracy - Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes ⊠ No □ N/A □ Comments: None CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-101394-1 | | iv. | Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes No N/A Comments: None | |----|--------|---| | | V. | If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. | | | vi. | Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: See above. | | | vii. | Is the data quality or usability affected? Yes □ No ☒ N/A □ Comments: See above. | | C. | Matrix | Spike/Matrix Spike Duplicate (MS/MSD) | | | i. | Organics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No ☒ N/A □ Comments: Insufficient sample volume was available to perform a MS/MSD associated with batch 320-684092. Batch accuracy and precision is evaluated using the LCS/LCSD samples. See section 6.b, above. Data quality and/or usability not affected. | | | ii. | Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples? Yes □ No □ N/A ☒ Comments: Metals/inorgaincs analyses were not requested for samples included in the work order. | | | iii. | Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes \square No \square N/A \boxtimes Comments: See above. | | | | | CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-101394-1 iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes □ No □ N/A ⊠ Comments: See above. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes □ No □ N/A ⊠ Comments: None vii. Is the data quality or usability affected? Yes □ No ⋈ N/A □ Comments: See above. d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples? Yes ⊠ No □ N/A □ Comments: None. ii. Accuracy - Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes ⊠ No □ N/A □ Comments: None. iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: See above. Yes \square No \boxtimes N/A \square Comments: See above. iv. Is the data quality or usability affected? CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-101394-1 e. Trip Blanks g. Decontamination or Equipment Blanks i. Were decontamination or equipment blanks collected? Yes □ No □ N/A ⊠ Comments: Samples were not collected using reusable equipment, equipment blank not required. ii. Are all results less than LoQ or RL? Yes □ No □ N/A ⊠ Comments: See above. iii. If above LoQ or RL, specify what samples are affected. Comments: Not applicable, see above. iv. Are data quality or usability affected? Yes □ No ⋈ N/A □ Comments: See above. 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Are they defined and appropriate? Yes □ No □ N/A ⊠ Comments: Other data flags/qualifiers not required. CS Site Name: ADOT&PF Yakutat Airport Sitewide PFAS Lab Report No.: 320-101394-1 Appendix C # Analytical Data QA/QC Summary ## Appendix C # QA/QC Summary #### **CONTENTS** | C.1 | uction | . 1 | | |-----|--------|--|-----| | | | Analytical Methods and Data Quality Objectives | | | | C.1.2 | Summary of Groundwater Samples | .2 | | C.2 | Water | Supply Well Data Quality Review | .3 | | | C.2.1 | Sample Collection | .3 | | | C.2.2 | Sample Handling | .3 | | | C.2.3 | Method Blanks | .4 | | | C.2.4 | Laboratory Control Samples | .4 | | | C.2.5 | Matrix Spike Sample and Sample Duplicates | .4 | | | C.2.6 | Isotope Dilution Analytes | . 4 | | | C.2.7 | Field Duplicates | . 4 | | | C.2.8 | Analytical Sensitivity | . 4 | | | C.2.9 | Summary of Qualified Results | .5 | | | C.2.10 | Completeness | .5 | °C degrees Celsius DEC Alaska Department of Environmental Conservation DQO data quality objective Eurofins Eurofins Environment Testing GWP General Work Plan IDA isotope dilution analyte LCS laboratory control samples LCSD LCS duplicate LDRC Laboratory Data Review Checklist MS matrix spike MSD MS duplicate PFAS per- and polyfluoroalkyl substances QA quality assurance QC quality control RPD relative percent difference WO work order YAK Yakutat Airport #### C.1 INTRODUCTION This quality assurance (QA)/quality
control (QC) summary outlines the technical review of analytical results generated in support of water supply well sample collection at the Yakutat Airport (YAK) from July 2022 through April 2024. Shannon & Wilson, Inc. reviewed project sample and QC analytical data to assess whether the data met the designated quality objectives (DQOs) and were acceptable for project use. The project data were reviewed for deviations to the requirements presented in *Revision 1 - DOT&PF Statewide PFAS General Work Plan* (GWP), approved by the Alaska Department of Environmental Conservation (DEC) in August 2020. As appropriate, the review includes evaluation of sample collection and handling, holding times, blanks, project sample and laboratory quality control sample duplicates, laboratory control samples (LCSs) and sample isotope dilution analyte (IDA) recoveries, and matrix spike sample (MS) recoveries. Calibration curves and continuing calibration verification recoveries were not reviewed unless a QC discrepancy was noted by the laboratory in a case narrative. QC deviations that do not impact data quality are not discussed in this summary. Full data quality descriptions are reported in the DEC Laboratory Data Review Checklists (LDRC) prepared for each laboratory report. LDRCs and laboratory reports are included in Appendix B. Water supply well data quality is discussed in the following sections. Data which did not meet acceptance criteria have been described and the associated samples and data quality implications or qualifications are summarized. #### C.1.1 Analytical Methods and Data Quality Objectives The analytical methods and associated DQOs used for this review were established in the GWP. The DQOs represent the minimum acceptable QC limits and goals for analytical measurements and are used as comparison criteria during data quality review to determine both the quality and usability of the analytical data. The six DQOs used for this review were accuracy, precision, representativeness, comparability, sensitivity, and completeness. Accuracy measures the correctness, or the closeness, between the true value and the quantity detected. It is measured by calculating the percent recovery of known concentrations of spiked compounds that were introduced into the appropriate sample matrix. IDA, LCS, and MS sample recoveries are used to measure accuracy. - Precision measures the reproducibility of repetitive measurements. It is measured by calculating the relative percent difference (RPD) between duplicate samples. Laboratory duplicate samples, field duplicate samples, MS and matrix spike duplicate sample (MSD) sample pairs, and LCS and laboratory control sample duplicate (LCSD) pairs are used to measure precision. - Representativeness describes the degree to which data accurately and precisely represents site characteristics. This is addressed in more detail in the following section(s). - Comparability describes whether two data sets can be considered equivalent with respect to the project goal. This is addressed in more detail in the following section(s). - Sensitivity describes the lowest concentration that the analytical method can reliably quantitate and is evaluated by verifying that the detected results and/or limits of detection meet the project-specific cleanup levels and/or screening levels. - Completeness describes the amount of valid data obtained from the sampling event(s). It is calculated as the percentage of valid measurements compared to the total number of measurements. The completeness goal for this project was set at 90 percent. In addition to these criteria for the six DQOs described above, sample collection and handling procedures and blank samples were reviewed to ensure overall data quality. Sample collection forms were reviewed to verify that representative samples were collected. Sample handling was reviewed to assess parameters such as chain-of-custody documentation, the use of appropriate sample containers and preservatives, shipment cooler temperature, and method-specified sample holding times. Each of these parameters contributes to the general representativeness and comparability of the project data. The combination of evaluations of the above-mentioned items leads to a determination of the overall project data completeness. ## C.1.2 Summary of Groundwater Samples A total of 17 groundwater samples were collected from water supply wells at the YAK between June 2022 and April 2024 (including 4 field duplicate samples). Project samples were sent to Eurofins Environment Testing (Eurofins) in Sacramento, California. Groundwater samples were shipped via Alaska Airlines Goldstreak service from Fairbanks to Eurofins. Eurofins analyzed project samples for per- and polyfluoroalkyl substances (PFAS) by 537(Mod), compliant with the U.S. Department of Defense Quality Systems Manual Version 5.3 Table B-15, under DEC approval 17-020 dated February 21, 2024. The laboratory reports were assigned the following work order (WO) numbers: - WO 320-92599-1 September 2022 samples - WO 320-95510-1 December 2022 samples - WO 320-97690-1 March 2023 samples - WO 320-101394-1 June 2023 samples The laboratory reports and associated DEC LDRCs are included in Appendix B. #### C.2 WATER SUPPLY WELL DATA QUALITY REVIEW This section presents the findings of the data quality review and the resulting data qualifications for water supply well samples. See the associated LDRCs in Appendix B for more elaborate data quality descriptions. #### C.2.1 Sample Collection Water supply well sample collection forms (Appendix A) were reviewed to ensure samples were collected as identified in the GWP. No sample collection discrepancies were noted. #### C.2.2 Sample Handling The evaluation of proper sample handling procedures includes verification of the following: correct chain-of-custody documentation, appropriate sample containers and preservatives, cooler temperatures maintained within the DEC-recommended temperature range (0 to 6 degrees Celsius [°C]), and sample analyses performed within method-specified holding times. No sample handling discrepancies were noted upon receipt at the laboratory with the one exception noted below: - WO 320-92599-1 - Sample 33061 was re-prepared outside of preparation holding time due to gross low IDA recoveries for 13C2 PFTeDA and 13C4 PFOS. In hold and out of hold data was reported for the analytes associated with the gross IDA recovery failures in the laboratory report, but only the out of hold data is reported in the analytical tables. The reported results for the associated analytes PFOS, PFTeA, ADONA, 9Cl-PF3ONS, and 11Cl-PF3-OUdS are considered estimated and are flagged 'J*' in the analytical summary tables. #### C.2.3 Method Blanks Method blanks were utilized to detect potential laboratory cross-contamination of project samples. Samples are considered affected if they are detected within ten times the concentration of the detection in the method blank. Blank samples were analyzed in every batch, as required. No analytes were detected in method blank samples. #### C.2.4 Laboratory Control Samples The LCS/LCSD samples were prepared by adding spike compounds to blank samples to assess laboratory extraction and instrumentation performance. An LCS/LCSD pair was reported in each WO. LCS/LCSD recoveries and/or RPDs were within laboratory and project limits and did not result in qualification of the data. #### C.2.5 Matrix Spike Sample and Sample Duplicates MS/MSD samples were not performed in any WO due to insufficient sample volumes. Sample precision and accuracy were evaluated using the LCS/LCSDs. #### C.2.6 Isotope Dilution Analytes IDA compounds were added to project samples by the laboratory prior to analysis, in accordance with method requirements. IDA recoveries were then calculated as percentages and reported by the laboratory as a measure of analytical extraction efficiency. The following IDA discrepancies were identified: - WO 320-92599-1 - The IDA recoveries for 13C2 PFUnA, 13C2 PFDoA, 18O2 PFHxS, d3-NMeFOSAA, and d5-NEtFOSAA were recovered below limits in sample 33061. The associated analytes PFUnA, PFDoA, PFHxS, NMeFOSAA, and NEtFOSAA results were not detected in sample 33061. These results are considered estimates and have been flagged 'J*' in the analytical tables. #### C.2.7 Field Duplicates Four field duplicate samples were collected as a part of this project. Where calculable, analytical results met the comparison criterion ($\leq 30\%$ for water) for the field duplicate pairs. #### C.2.8 Analytical Sensitivity Analytical sensitivity was evaluated to verify that the reporting limits met the applicable regulatory levels for non-detect results. Analytes met the minimum required detection level. ## C.2.9 Summary of Qualified Results The following table summarizes the applied flags. **Exhibit C-1: Summary of Qualified Results** | wo | Sample | Analyte | Flag | Explanation | |-------------|--------|---|------|----------------------| | 320-92599-1 | 33061 | PFOS, PFTeA, ADONA, 9CI-
PF3ONS, and 11CI-PF3-OUdS | J* | Hold time exceedance | | 320-92399-1 | | PFUnA, PFDoA, PFHxS,
NMeFOSAA, and NEtFOSAA | J* | IDA recovery failure | ## C.2.10 Completeness Overall, the data validation process deemed the groundwater data acceptable for use. No data were rejected pursuant to the data quality review, and all data may be used as applicable for the purposes of the July 2022 to April 2024 Water Supply Well Monitoring Summary Report. # Important Information About Your Environmental Report # CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS. Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and
expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant. #### THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS. A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed. #### SUBSURFACE CONDITIONS CAN CHANGE. Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally. Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary. #### MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS. Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect. #### A REPORT'S CONCLUSIONS ARE PRELIMINARY. The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction. #### THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION. Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues. ## BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT. Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process. To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale. #### READ RESPONSIBILITY CLAUSES CLOSELY. Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions. The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland