

DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites Program

> 555 Cordova Street Anchorage, AK 99501 Main: (907) 269-7558 Fax: (907) 269-7687 www.dec.alaska.gov

DEC File No: 2320.38.051

July 11, 2024

Jamie Grant US Army Corps of Engineers, Alaska District P.O. Box 6898 JBER AFB, AK 99506-0898

Re: Decision Document: Wildwood AFS Main Complex Area UST 502-1 Cleanup Complete Determination

Dear Ms. Grant,

The Alaska Department of Environmental Conservation, Contaminated Sites Program (DEC) has completed a review of the environmental records associated with the Wildwood AFS Main Complex Area UST 502-1 located at Mile 3.5 North Kenai Road in Kenai, Alaska. Based on the information provided to date, it has been determined that the contaminant concentrations remaining on site do not pose an unacceptable risk to human health or the environment and no further remedial action will be required unless information becomes available that indicates residual contaminants may pose an unacceptable risk.

This Cleanup Complete determination is based on the administrative record for the Wildwood AFS Main Complex Area UST 502-1 maintained by DEC. This decision letter summarizes the site history, cleanup actions and levels, and site closure conditions that apply.

Site Name and Location: Wildwood AFS Main Complex Area UST 502-1 Mile 3.5 North Kenai Road Kenai, Alaska 99611

DEC Site Identifiers: File No.: 2320.38.051 Hazard ID.: 25200 Name and Mailing Address of Contact Party: Jamie Grant US Army Corps of Engineers P.O. Box 6898 JBER AFB, AK 99506-0898

Regulatory Authority for Determination: 18 Alaska Administrative Code (AAC) 75 and 18 AAC 78

Site Description and Background

Wildwood Air Force Station (AFS), originally named Seward Station, was constructed as a communications station and activated in 1953 by the United States Army. The total area of the station was approximately 5,300 acres, however, military construction was confined to a 125-acre tract. In May 1954, the station was renamed Wildwood Station, and in 1966 the property was transferred to the U.S. Air Force (USAF). Wildwood AFS was closed by the USAF in July 1972. The former Wildwood AFS is located 3.5 miles northwest of Kenai, Alaska on the Kenai Peninsula. Underground storage tank (UST) 502-1 was a 500 gallon tank associated with a former guard shack (Building 502). The tank was installed in 1957 in the southwest corner of the Wildwood AFS Main Complex Area, and held diesel fuel (see Figure 2 Project Vicinity and Sites for tank location). During removal of UST 502-1 in 1994, contamination above cleanup levels was identified at the base of the excavation confirming there was a release.

Contaminants of Concern

During the site investigation and cleanup activities at this site, samples were collected from soil and groundwater and analyzed for DRO, residual range organics (RRO), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and benzene, toluene, ethylbenzene, and xylenes (BTEX). Based on these analyses, the following contaminants were detected above the applicable cleanup levels and are considered Contaminants of Concern (COCs) at this site:

• DRO

Cleanup Levels

Soil cleanup levels applicable to the site are the most stringent Method 2 cleanup levels for the under 40inches of precipitation climate zone found in 18 AAC 75.341(d), Table B2. Groundwater cleanup levels applicable to this site are found in 18 AAC 75.345, Table C.

Table 1 – Approved Cleanup Levels

Contaminant	Soil (mg/kg)	Groundwater (µg/L)		
DRO	250	1,500		

Notes:

1. mg/kg = milligrams per kilogram

2. $\mu g/L = micrograms per liter$

Characterization and Cleanup Activities

In 1994 a 500-gallon UST (approximately 6 feet long and 4 feet in diameter) was removed and approximately 20 cubic yards of surrounding soil was excavated and stockpiled onsite. Excavation dimensions were about 7 feet by 10 feet by 8.5 feet deep after UST removal. During the removal, the UST was observed to have moderate corrosion. Groundwater was not encountered during excavation activities. Analytical data collected from the base of the excavation at about 8.5 feet below ground surface (bgs) identified DRO concentrations ranging from 670 to 11,000 milligrams per kilogram (mg/kg) with the highest concentrations being detected right below the base of the UST. The stockpiled soil was sampled and had a maximum DRO concentration of 680 mg/kg. All the soil was used as backfill for the excavation.

To further characterize the site, nine Rapid Optical Screening Tool/Laser Induced Florescence (ROST/LIF) probes were advanced to depths ranging from 26 to 41 feet bgs during a 2005 investigation. Results of the ROST/LIF confirmed petroleum contamination remained in the subsurface from approximately 14 to 27.5 feet bgs. Three soil samples were collected and sent for laboratory analysis with the sample collected from the highest ROST/LIF screening location indicating DRO at a concentration of 6,510 mg/kg, which is

above migration to groundwater but below human health levels (see Figure 5-1 for the ROST/LIF boring location). The ROST/LIF investigation delineated the soil contamination laterally and vertically.

In 2020, one groundwater monitoring well (MW-1) was installed at the source to a depth of 40 feet bgs to assess groundwater impacts (see Figure 6 for monitoring well location). Groundwater was sampled for three consecutive years with monitoring results from all three years below cleanup levels for DRO. A soil sample collected at 17-18 feet bgs during well installation detected DRO at a concentration of 2,200 mg/kg. Soil contamination remains in the subsurface and based on the groundwater sampling at MW-1 indicating concentrations below Table C cleanup levels for three consecutive years, and confirming the remaining soil contamination is not a risk to groundwater.

Per 18 AAC 75.380(c)(1), a 95% upper confidence limit (UCL) was calculated using laboratory analytical soil sample results from 1994 and 2005 (See enclosed ProUCL Calculations). The 95% UCL indicated that subsurface soil residual DRO contamination is 6,888 mg/kg which is below the DEC Method Two Cleanup Level for Ingestion and remaining concentrations of DRO are considered de minimis and all below human health cleanup levels.

Cumulative Risk Evaluation

Pursuant to 18 AAC 78.600(d), when detectable contamination remains on-site following a cleanup, a cumulative risk determination must be made that the risk from a hazardous substances does not exceed a cumulative carcinogenic risk standard of 1 in 100,000 across all exposure pathways and does not exceed a cumulative noncarcinogenic risk standard at a hazard index of one across all exposure pathways.

Based on a review of the environmental record, DEC has determined that residual contaminant concentrations meet the human health cumulative risk criteria for residential land use.

Exposure Pathway Evaluation

Following investigation and cleanup at the site, exposure to the remaining contaminants was evaluated using DEC's Exposure Tracking Model (ETM). Exposure pathways are the conduits by which contamination may reach human or ecological receptors. ETM results show all pathways to be one of the following: De Minimis Exposure, Exposure Controlled, or Pathway Incomplete. A summary of this pathway evaluation is included in Table 2.

Pathway	Result	Explanation			
Surface Soil Contact	De Minimis Exposure	UST 502-1 has been removed and no			
		contaminants of concern remain in the			
		top two feet of soil.			
Sub-Surface Soil Contact	De Minimis Exposure	Concentrations remaining in the			
		subsurface (2-15 feet below ground			
		surface) are below human health ingestion			
		and inhalation cleanup levels in 18 AAC			
		75.341 Table B2.			
Inhalation – Outdoor Air	Pathway Incomplete	Concentrations remaining in the			
		subsurface (2-15 feet below ground			
		surface) are below human health and			
		inhalation cleanup levels in 18 AAC			
		75.341 Table B2.			

Table 2 – Exposure Pathway Evaluation

Inhalation – Indoor Air (vapor intrusion)	Pathway Incomplete	Concentrations remaining in the subsurface (2-15 feet below ground surface) are below human health and inhalation cleanup levels in 18 AAC 75.341 Table B2.
Groundwater Ingestion	De Minimis Exposure	Contaminants of concern in the groundwater are below cleanup levels in 18 AAC 75.345 Table C.
Surface Water Ingestion	Pathway Incomplete	Contaminants of concern do not have the potential to migrate to surface water bodies. The nearest surface water body is greater than ¹ / ₄ mile, and contamination in groundwater is below cleanup levels in 18 AAC 75.345 Table C.
Wild and Farmed Foods Ingestion	Pathway Incomplete	There are no contaminants of concern that will bioaccumulate in plants and/or animals.
Exposure to Ecological Receptors	Pathway Incomplete	There are no contaminants of concern expected to affect ecological receptors.

Notes:

1. "De Minimis Exposure" means that, in DEC's judgment, the receptors are unlikely to be adversely affected by the minimal volume or concentration of remaining contamination.

2. "Pathway Incomplete" means that, in DEC's judgment, the contamination has no potential to contact receptors.

DEC Decision

Soil and groundwater contamination at the site have been cleaned up to concentrations below the approved cleanup levels suitable for residential land use. This site will receive a "Cleanup Complete," designation on the Contaminated Sites Database.

DEC approval is required for movement and disposal of soil subject to the Site Cleanup Rules, in accordance with 18 AAC 78.600(h). Please contact DEC for information about applicable regulations and requirements. A "site", as defined by 18 AAC 78.995, means an area that is contaminated, including areas contaminated by the migration of hazardous substances from a source area, regardless of property ownership.

Movement or use of contaminated material in an ecologically sensitive area or in a manner that results in a violation of 18 AAC 70 water quality standards is prohibited. Furthermore, groundwater throughout Alaska is protected for use as a water supply for drinking, culinary and food processing, agriculture including irrigation and stock watering, aquaculture, and industrial use. Contaminated site cleanup complete determinations are based on groundwater being considered a potential drinking water source. If, in the future, groundwater from this site is to be used for other purposes, additional testing and treatment may be required to ensure the water is suitable for its intended use.

This determination is in accordance with 18 AAC 75.276(f) and does not preclude DEC from requiring additional assessment and/or cleanup action if information indicates that contaminants at this site may pose an unacceptable risk to human health, safety, or welfare or to the environment.

Informal Reviews and Adjudicatory Hearings

A person authorized under a provision of 18 AAC 15 may request an informal review of a contested decision by the Division Director in accordance with 18 AAC 15.185 and/or an adjudicatory hearing in accordance with 18 AAC 15.195 – 18 AAC 15.340. See DEC's "Appeal a DEC Decision" web page <u>https://dec.alaska.gov/commish/review-guidance/</u> for access to the required forms and guidance on the appeal process. Please provide a courtesy copy of the adjudicatory hearing request in an electronic format to the parties required to be served under 18 AAC 15.200. Requests must be submitted no later than the deadline specified in 18 AAC 15.

If you have questions about this closure decision, please feel free to contact me at (907) 269-4702, or email at <u>brian.watts@alaska.gov</u>.

Sincerely,

Brian Watts Project Manager

- Enclosures: Figure 2 Project Vicinity and Sites Figure 17 Sampling Plan UST 502-1 Figure 5-1 Former UST 502-1 Maximum LIF Percent Figure 6 UST 502-1 Project 08 CON-HTRW ProUCL Calculations
- cc: DEC, Division of Spill Prevention and Response, Cost Recovery Unit Erica Blake, DEC Kyrstyn Kelly, DNR (landowner)

		Approx. Groundwater Flow Direction	05WILD5021	150 (WW502 LIF-001)			1
A DECEMBER OF THE OWNER	and the set		Depth	14.5' bgs (2005)	4.50		State in
05WILD50208SO (WW502 LIF-005)		DRO	1,520			1000
Depth	16'-18' bgs (2005)	4	RRO	ND			10000
DRO	4,200						
RRO	ND	LIF-005	Diesel UST-502-1			Wild	woodDr
			MW-1 Groundwa	ater (JUNE 2020)	(SEPT 2021)	(JUNE 2022)	
	Sec. 15.75	Martin 15. Y	DRO	0.653 [0.341] J,B	0.443 [0.306] J 0.	299 [0.288] J, B	
			W-1 Soil (JUN DRO 220	NE 2020) 10 [10.4]	4		
		ADEC Table C. Groundwater		Data Flag Explanations			
	Sec. and	Cleanup Levels (Nov 2021)	[]-L	aboratory Limit of Detection (LOD)	A Part And And	
		Cleanup Levels in miligrams per lite	r Qualifier	Definition			
	1.000	(mg/L) DRO = 1.5		the level is below the laboratory LOC	ated value because a but above the DL		
ROST Point & Max LIF		ADEC Table B2. Method Two- Migration	to B Ar	nalyte result is considered a high es contamination present in the n Analyte result is considered an estir	timated value due to nethod blank. nated value biased	UST-502-1	
LIF005 (11.17%)		Cleanup Levels in miligrams per kilogram	ms	(high, low, uncertain) due to a qua	ity control failure		INA IS PRIME
LIF001 (25 14%)		(mg/kg)	R	Analyte result is rejected - result	is not usable.	0 0.25 0.5	1
	N 104 B	DRU = 250	Flags may be	e combined when more than one quality de			Miles
Coordinate System: NAD 1983 2011 StatePlar	e Alaska 4 FIPS 5004 Feet			<u>1</u>			
Monitoring Well Monitoring Well Road Notes: Netes: Netes: Notes: N	l road layers represents approximate rres. ation are approximate, multipath encountered near trees and buildings.	Acronyms: DRO: Diesel Range Organics RRO: Residual Range Organics BGS: Bellow Ground Surface ROST: Rapid Optical Screening Tool	0 10	20 40 Feet	UST 502-1 WILDW	PROJECT 08 CO OOD AFS, KENAI, ALA	N/HTRW ASKA
UST 502-1 (Diesel) UST 502-1 (Diesel) UST 502-1 (Diesel)	on differential GPS. exceeding ADEC (Nov 2021) cleanup leve D.	LIF: Laser-Induced Fluorescence UST: Underground Storage Tank ND: Not Detected	1 inch = 20.83 feet Im 1:250 Sa	nagery: DigitalGlobe Multispec atellite Imagery (2019-05-04)	U.S. ARMY CORPS OF ENGINEERS ALASKA DISTRICT	F10AK0251-08	FIGURE:

	A B	С	D	E	F	G	Н				J	K		L
1			ι	JCL Statis	stics for Unc	ensored Full	Data Se	əts						
2	2													
3	User Selected Options													
4	Date/Time of Computation ProUCL 5.2 6/27/2024 11:14:46 AM													
5	Fr	om File	WorkSheet.xls	orkSheet.xls										
6	Full Pr	recision	OFF	-F										
7	Confidence Coe	efficient	95%	j%										
8	Number of Bootstrap Ope	erations	2000	000										
9														
10														
11	DRO Wild 502-1													
12														
13					General	Statistics							1	
14		Total	Number of Obs	ervations	9				Numb	er of Dis	tinct O	bservations		9
15									Numb	er of Mis	sing O	bservations		0
16				Minimum	670							Mean	46	631
17				Maximum	11000							Median	42	200
18				SD	3641						Std. Er	ror of Mean	12	214
19			Coefficient of	Variation	0.786							Skewness		0.517
20														
21	Note: Sample	e size is	small (e.g., <10), if data a	are collected	l using increi	nental s	ampl	ing metho	odology	(ISM) a	approach,		
22	re	fer also t	o ITRC Tech Re	eg Guide	on ISM (ITR	C 2020 and	TRC 20	12) fo	or additio	nal guida	ance,			
23	but r	note that	ITRC may reco	mmend th	ne t-UCL or t	he Chebysh	ev UCL 1	for sr	nall samp	ole sizes	(n < 7)).		
24			The Chebysh	nev UCL o	ften results	in gross ove	restimate	es of	the mear	า.				
25		Ref	er to the ProUC	CL 5.2 Tec	hnical Guid	e for a discu	ssion of	the C	hebyshe	v UCL.				
26														
27				-	Normal (GOF Test								
28	Shapiro Wilk Test Statistic 0.924 Shapiro Wilk GOF Test													
29		1% S	hapiro Wilk Criti	cal Value	0.764		Data a	appea	ar Normal	at 1% Si	ignifica	ince Level		
30	Lilliefors Test Statistic 0.165 Lilliefors GOF Test													
31		1	% Lilliefors Criti	cal Value	0.316		Data a	appea	ar Normal	at 1% S	ignifica	ince Level		
32	Data appear Normal at 1% Significance Level													
33			Note G	iOF tests	may be unre	eliable for sm	all sam	ple si	zes					
34	34													
35		050/ 11		As	suming Nori	nal Distribut	ion							
36		95% No			0000			אינ 15% נ			Skew	vness)		254
37			95% Studer	nt's-t UCL	6888			9	5% Adjus			Chen-1995)	50	351
38									95% Modi	fied-t UC	L (Jon	inson-1978)	65	923
39					0									
40				4 Ctatiatia	Gamma	GOF Test	۸		an Darlin	- 0		Teat		
41			A-D Tes	st Statistic	0.326	Datasta		naers	on-Dariin	ig Gamm		- lest		
42			5% A-D Criti		0.736	Detected		pear	Gamma I			% Significar	ice i	Levei
43		K-S Test Statistic 0.19 Kolmogorov-Smirnov Gamma GOF Test												
44			Detected		0.285			pear		DISTIDUTE	su at 5'	no Significar	ice l	Levei
45							om Signi	ncan						
46			NOTE G		may be unre	nable for Sm	iali sam	pie SI	262					
47	47													
48			, .			ວເສແຣແດຣ				k			1	1 007
49		k hat (MLE)							T L - ·	k star (bi	as corr	ected MLE)		1.007
50			i neta l		331U 25.10				ineta	a star (bi	as corr		40	
51		• -		nat (MLE)	25.18					nu st		s corrected)		18.12
52		М	∟⊢ Mean (bias c	corrected)	4631					MLE S	od (bias	s corrected)	46	515

	А	В	С	D	E	F	G	Н	I	J	K	L		
53		Approximate Chi Square Value (0.05)							9.48					
54	Adjusted Level of Significance 0.0231 Adjusted Chi Square Value								8.195					
55														
56	Assuming Gamma Distribution													
57	, 95% Approximate Gamma UCL 8854 95% Adjusted Gamma UCL 10242									10242				
58														
59	Lognormal GOF Test													
60			S	hapiro Wilk T	est Statistic	0.9	Shapiro Wilk Lognormal GOF Test							
61			10% Sł	napiro Wilk C	ritical Value	0.859		Data appea	ar Lognormal a	at 10% Signif	icance Level			
62				Lilliefors T	est Statistic	0.193		Li	Iliefors Logno	ormal GOF T	est			
63			10	% Lilliefors C	ritical Value	0.252		Data appea	ar Lognormal a	at 10% Signif	icance Level			
64				Γ	Data appear	Lognormal a	at 10% Signi	ficance Lev	el					
65				Note	GOF tests	may be unre	eliable for sm	nall sample	sizes					
66														
67						Lognorma	I Statistics							
68				Vinimum of L	ogged Data	6.507				Mean of I	ogged Data	8.042		
69			Ν	laximum of L	ogged Data	9.306				SD of I	ogged Data	1.056		
70														
71					Assı	uming Logno	ormal Distrib	ution						
72					95% H-UCL	19079	90% Chebyshev (MVUE) UCL 1046							
73	95% Chebyshev (MVUE) UCL						97.5% Chebyshev (MVUE) UCL 1					16378		
74	99% Chebyshev (MVUE) UCL 23133													
75														
76					Nonparame	etric Distribu	tion Free UC	CL Statistics	3					
77					Data appea	r to follow a	Discernible	Distribution	ו					
78														
79					Nonpa	rametric Dis	tribution Fre	e UCLs						
80				95	% CLT UCL	6627				95% BCA Bo	otstrap UCL	6814		
81			95%	Standard Bo	otstrap UCL	6566				95% Boot	tstrap-t UCL	7521		
82	82 95% Hall's Bootstrap UCL 7007 95% Percentile Bootstrap							otstrap UCL	6591					
83			90% Ch	ebyshev(Mea	an, Sd) UCL	8272			95% Ch	ebyshev(Mea	an, Sd) UCL	9921		
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	12210			99% Ch	ebyshev(Mea	an, Sd) UCL	16706		
85														
86						Suggested	UCL to Use							
87				95% Stud	dent's-t UCL	6888								
88														
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	o select the m	lost appropria	ate 95% UCL			
90		Recom	mendations a	are based up	on data size	, data distrib	ution, and sk	ewness usir	ng results fror	m simulation s	studies.			
91	Ho	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additic	onal insight t	the user may	want to consu	ult a statistici	an.		
92														

	0	1	2				
12:00	DRO 502-1						
1	6300	an a shirin na shirin na shararan	94WILD127SL				
2	11000		94WILD128SL				
3	680		94WILD129SL				
4	670		94WILD130SL				
5	8300		94WILD131SL				
6	2500		94WILD132SL				
7	1520		05WILD50211SO				
8	6510		05WILD50209SO				
9	4200		05WILD50208SO				

٠

'n,