

#### SUSTAINABLE ENVIRONMENT, ENERGY, HEALTH & SAFETY PROFESSIONAL SERVICES

June 6, 2024

Sent via email to elizabeth.fifer@kiewit.com

#### NORTECH, Inc.

Kiewit Corporation 1550 Mike Fahey Street Omaha, Nebraska 68102

Accounting Office: 2400 College Rd Fairbanks, AK 99709 907.452.5688 907.452.5694 Fax ATTN: Elizabeth Fifer, Sustainability Coordinator RE: March 2024 Groundwater Monitoring Report Former Kiewit Facility, 2050 Pager Paged Fai

3105 Lakeshore Drive Suite A106 Anchorage, AK 99517

907.222.2445 907.222.0915 Fax

•

5438 Shaune Drive Suite B **Juneau**, AK 99801 907.586.6813 907.586.6819 Fax

www.nortechengr.com

٠

Ms. Fifer,

**NORTECH** is pleased to present Kiewit Corporation (Kiewit) with this March 2024 Groundwater Monitoring Report. Six monitoring wells were sampled on March 19 - 27, 2024, at the former Kiewit Facility located at 2050 Peger Road, Fairbanks, Alaska (the Site). Attached are site figures, summary data tables, field notes, site photographs, and laboratory data reports.

ADEC File Number: 102.38.164 and Hazard Identification Number: 25680

Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska

#### Site Location and Background

Location and site maps are provided in Attachment 1 as Figures 1 and 2, respectively. The Site legal description in the Fairbanks North Star Borough (FNSB) database is Block 15A E M Jones out of Block 15 E M Jones Subdivision. In 2016, Kiewit sold the property to GGATS LLC, with Construction Machinery Industrial, LLC (CMI) currently occupying the land and buildings. CMI's primary shop is located on the adjacent parcel to the west, and CMI uses the Site parcel for additional equipment storage.

Existing soil and groundwater contamination are related to a former used oil aboveground storage tank (AST) and buried fuel delivery line (FDL) removed in 2011. Because of contamination from the AST and FDL during Kiewit's ownership, Kiewit remains the responsible party for the Site cleanup.

Two wells were decommissioned in August 2019: MW-1 and the former Tesoro investigation well G-4. Four remaining monitoring wells (MW-2, MW-3, MW-4, and MW-5) on the former Kiewit property and the adjacent parcel occupied by CMI were sampled. A fifth shallow well MW-403B, belonging to the Alaska Department of Transportation & Public Facilities (Alaska DOT&PF) in the 20<sup>th</sup> Avenue right of way (ROW), was also sampled. Adjacent Alaska DOT&PF well MW-403A is screened at a deeper depth and was the sixth well sampled. The well locations are shown in Figure 2 in Attachment 1.

#### **Previous and Current Results Overview**

Twenty rounds of groundwater samples have been collected since 2012. Eight rounds (April 2015, April 2018, April 2019, May 2020, May 2021, March 2022, March 2023, and March 2024) were collected during low and rising groundwater level conditions during late winter/early spring. Twelve rounds (October 2012, July-August 2014,



October 2014, September 2015, August 2016, September 2017, October 2018, October 2019, September 2020, October 2021, October 2022, and September 2023) were collected during transient or high groundwater conditions during late summer/early fall. Groundwater sampling was not conducted in 2013. Historical Groundwater Analytical Data from 2012 to Present are provided in Attachment 2, Table 3.

**NORTECH** measured and removed light non-aqueous phase liquid (LNAPL [free product]) from MW-2 in the former FDL source area monthly between October 2018 and December 2020. Free product was observed intermittently, and an estimated 0.266 gallon of free product was removed during twenty-one events. Groundwater analytical sampling of MW-2 was not implemented if more than 0.03 feet of free product was present. MW-2 was not sampled in October 2018 and April 2019 due to the presence of free product. Free product has not been detected in the other network monitoring wells.

In upgradient well MW-1, all tested analytes were below Alaska Department of Environmental Conservation (ADEC) cleanup levels (CLs) from 2014 to 2019. In MW-2 and MW-3, diesel range organics (DRO) has been detected above ADEC CL each year since 2012. In MW-4, DRO was detected above ADEC CL in 2015, 2020, 2021, 2022, and 2023. In MW-5, DRO was detected below ADEC CL in 2012 and 2016, and the analyte has not been detected in the well since 2016. In MW-403A, first sampled by Kiewit in May 2020, and in MW-403B, first sampled by Kiewit in October 2019, DRO has not been detected.

#### Scope of Work and Methodology

**NORTECH's** scope of work for the March 2024 monitoring event was to complete groundwater sampling of the existing monitoring wells in accordance with Section 9 of the ADEC-approved *Former Kiewit Facility, 2019 Remedial Action Work Plan* (GHD [July 26, 2019]). Groundwater monitoring was completed by a qualified environmental professional (QEP) as defined by 18 Alaska Administrative Code (AAC) 75, 18 AAC 78, and the ADEC January 2022 Field Sampling Guidance (2022 FSG). Methods were in general accordance with the 2022 FSG, and as further described below. This included analytical, sampling, and product recovery methods and associated quality assurance/quality control (QA/QC).

**NORTECH** completed groundwater sampling of the existing six monitoring wells currently present on or adjacent to the Site. MW-2 and MW-3 are on the Site. MW-4 and MW-5 are on the property to the west. MW-403A and MW-403B are located in the 20<sup>th</sup> Avenue ROW on the north edge of the Site. To be consistent with previous years, these wells were sampled at regional and Site low groundwater conditions which typically occur annually during late winter/early spring. Groundwater samples were analyzed for DRO, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Reported VOCs consisted of the following analytes: benzene, toluene, ethylbenzene, and xylenes (BTEX); naphthalene; 1,2,4-trimethylbenzene; and 1,3,5-trimethylbenzene.

As in Fall 2021, Spring 2022, Fall 2022, Spring 2023, and Fall 2023, Kiewit requested additional analyses during the Spring 2024 groundwater monitoring event to support a natural source zone depletion (NSZD) evaluation of biodegradation of the dissolved source zone mass. The NSZD evaluation includes sampling each of the six wells for nitrate; sulfate; total and dissolved iron and manganese; and dissolved methane/ethane/ethane.

During the Spring 2024 groundwater sampling event, depth to free product (if detected) and depth to groundwater were measured in the six network wells using an electronic oil/water



interface indicator probe (oil/water interface probe) capable of 0.01-foot accuracy and recorded in the field notes. Total well depth was also measured to calculate well volume. If free product were detected in a well, the well was not to be sampled; however, the product would be removed, and the well purged of three well volumes.

#### March 2024 Groundwater Sampling

Depth to groundwater and total depth were measured in each well using an oil/water interface probe. In wells without a sheen or product, water quality parameters were obtained using a flow-through cell. Where a well has historically exhibited a sheen, the flow-through cell was not used. Water clarity was evaluated by visual observation before the water entered the flow-through-cell and was recorded as clear or turbid. Field parameters measured during purging were obtained using a calibrated YSI ProDSS water quality meter.

Water quality parameters were considered stable when three successive readings, collected 3-5 minutes apart, were within a recommended limit of variance for five parameters of temperature, dissolved oxygen, conductivity, pH, and oxidation-reduction potential (ORP) or three to five well volumes had been removed from the well. The parameters and visual clarity were monitored and recorded on the groundwater sample forms presented in Attachment 3. MW-2 and MW-3 were sampled using a peristaltic pump, and the other four wells were sampled using a submersible pump, which was decontaminated between wells to avoid cross-contamination. Low-flow technique was implemented for each well to minimize turbidity and suspended solids.

In MW-2 and MW-3, a peristaltic pump and disposable tubing were used to purge and sample the wells to preclude contaminating and damaging the submersible pump and water quality meter with oily water. To minimize potential VOC loss, the peristaltic pump was operated such that air bubbles were not entrained with the water during purging and sampling efforts.

After purging, water samples were collected directly from the pump discharge tubing into laboratory-supplied sample bottles as outlined in the 2022 FSG. New disposable gloves were worn to collect samples and gloves were changed between sample locations.

Samples were collected in the order of volatility, volatiles first; containers filled and sealed, with rims cleaned before tightening the lid. Volatile samples were collected without headspace in the container. Other sample jars were filled and sealed as indicated by the laboratory for the method. Teflon-lined screw caps provided by the laboratory were used to seal the containers.

#### Laboratory Analysis

Groundwater samples from the six wells were submitted to SGS North America Inc. (SGS) an ADEC-approved laboratory in Anchorage, Alaska, for analysis by the following methods:



| Grour                     | ndwater Analytical Sampling Program                       |
|---------------------------|-----------------------------------------------------------|
| Monitoring Well           | Analysis                                                  |
| MW-2                      | DRO (AK102); VOCs (US Environmental Protection Agency     |
|                           | [EPA] 8260D); Nitrate (EPA 300.0); Sulfate (EPA 300.0);   |
|                           | Total Iron and Manganese (EPA 6020); Dissolved Iron and   |
|                           | Manganese (EPA 6020); Dissolved Methane/Ethane/Ethene     |
|                           | (EPA RSK-175)                                             |
| MW-3 (and Field Duplicate | DRO (AK102); VOCs (EPA 8260D); PAHs (EPA 8270D SIM);      |
| of DRO; VOCs; and PAHs,   | Nitrate (EPA 300.0); Sulfate (EPA 300.0); Total Iron and  |
| only)                     | Manganese (EPA 6020); Dissolved Iron and Manganese        |
|                           | (EPA 6020); Dissolved Methane/Ethane/Ethene (EPA RSK-     |
|                           | 175)                                                      |
| MW-4                      | DRO (AK102); VOCs (EPA 8260D); Nitrate (EPA 300.0);       |
|                           | Sulfate (EPA 300.0); Total Iron and Manganese (EPA 6020); |
|                           | Dissolved Iron and Manganese (EPA 6020); Dissolved        |
|                           | Methane/Ethane/Ethene (EPA RSK-175)                       |
| MW-5                      | DRO (AK102); VOCs (EPA 8260D); Nitrate (EPA 300.0);       |
|                           | Sulfate (EPA 300.0); Total Iron and Manganese (EPA 6020); |
|                           | Dissolved Iron and Manganese (EPA 6020); Dissolved        |
|                           | Methane/Ethane/Ethene (EPA RSK-175)                       |
| MW-403A                   | DRO (AK102); VOCs (EPA 8260D); Nitrate (EPA 300.0);       |
|                           | Sulfate (EPA 300.0); Total Iron and Manganese (EPA 6020); |
|                           | Dissolved Iron and Manganese (EPA 6020); Dissolved        |
|                           | Methane/Ethane/Ethene (EPA RSK-175)                       |
| MW-403B                   | DRO (AK102); VOCs (EPA 8260D); Nitrate (EPA 300.0);       |
|                           | Sulfate (EPA 300.0); Total Iron and Manganese (EPA 6020); |
|                           | Dissolved Iron and Manganese (EPA 6020); Dissolved        |
|                           | Methane/Ethane/Ethene (EPA RSK-175)                       |

Note: Reported VOCs consist of benzene, toluene, ethylbenzene, and xylenes (BTEX); naphthalene; 1,2,4-trimethylbenzene; and 1,3,5-trimethylbenzene

#### Quality Assurance/Quality Control

QA/QC objectives were followed as described in the 2022 FSG. Field QA/QC procedures included adherence to the 2019 Work Plan, handling samples under chain-of-custody procedures, submitting samples within specified holding times, collecting a field duplicate, and including a trip blank in the sample cooler with volatile analytes. An equipment blank was collected and submitted for analysis, as a submersible pump was used for sampling. The trip blank was transported with volatiles samples and submitted for analysis. Laboratory QA/QC procedures include analysis of method blanks; laboratory control spikes (LCS) and LCS duplicates (LCSD); and matrix spikes (MS) and MS duplicates (MSD).

#### Monitoring Well Survey

At the request of Kiewit, **NORTECH** contracted Design Alaska, Inc. (Design Alaska) to complete a professional monitoring well survey on November 4, 2020. Design Alaska provided well coordinates, top of casing (TOC) elevation, and top of monument elevation for the six network wells. **NORTECH** used the Design Alaska survey data and November 2020, May 2021, October 2021, March 2022, October 2022, March 2023, September 2023, and March 2024 depth to groundwater measurements to estimate inferred groundwater flow direction at the Site.



#### **Field Activities**

Field sampling was conducted from March 19 to 27, 2024. Purge water treatment and disposal were conducted on May 15, 2024. The wells were in good condition for sampling, and no repairs were necessary. Field notes and groundwater sample forms are presented in Attachment 3, and Site Photographs are provided in Attachment 4.

#### Groundwater Sampling

#### *MW-2*

Pre-purge depth to water was measured at 9.87 feet below TOC. The total well depth was measured at 13.90 feet below TOC. Free product was not detected using an oil/water interface probe. The well was purged and sampled from the screened section 12.0 feet below TOC. Water quality parameters were not collected due to historic elevated contaminant levels and historic sheen. Three to five well volumes of water were purged using a peristaltic pump. Approximately four gallons of water were removed and containerized. Purge water from the well did not exhibit petroleum sheen; however, the water exhibited petroleum odor. Groundwater sample MW-2 was collected. The well appeared in good condition; although, a damaged rim prevented completely sealing the monument cover.

#### MW-3

Pre-purge depth to water was measured at 10.22 feet below TOC. The total well depth was measured at 12.92 feet below TOC. Free product was not detected using an oil/water interface probe. The well was purged and sampled from the screened section 12.0 feet below TOC. Water quality parameters were not collected due to historic elevated contaminant levels and historic sheen. Nearly three well volumes of water were purged using a peristaltic pump. The well was purged dry and slow to recharge. Approximately two gallons of water were removed and containerized. Purge water from the well did not exhibit petroleum sheen; however, the water exhibited petroleum odor. Primary groundwater sample MW-3 and duplicate sample MW-300 (DRO, VOCs, and PAHs) were collected. The well appeared in good condition.

#### MW-4

Pre-purge depth to water was measured at 11.58 feet below TOC. The total well depth was measured at 13.95 feet below TOC. Free product was not detected using an oil/water interface probe. The well was purged and sampled from the screened section 13.0 feet below TOC. Water was purged from the well using a submersible pump, and water quality parameters were measured until stable. Approximately seven gallons of water were removed and containerized. Purge water from the well did not exhibit petroleum sheen or petroleum odor. Groundwater sample MW-4 was collected. The well appeared in good condition.

#### MW-5

Pre-purge depth to water was measured at 11.36 feet below TOC. The total well depth was measured at 34.50 feet below TOC. Free product was not detected using an oil/water interface probe. The well was purged and sampled from the screened section 33.0 feet below TOC. Water was purged from the well using a submersible pump, and water quality parameters were measured until stable. Approximately eight gallons of water were removed and containerized. Purge water from the well did not exhibit petroleum sheen or petroleum odor. Groundwater sample MW-5 was collected. The well appeared in good condition.

#### MW-403A

Pre-purge depth to water was measured at 9.49 feet below TOC. The total well depth was measured at 47.85 feet below TOC. Free product was not detected using an oil/water interface



probe. The well was purged and sampled from the screened section 46.0 feet below TOC. Water was purged from the well using a submersible pump, and water quality parameters were measured until stable. Approximately eight gallons of water were removed and containerized. Purge water from the well did not exhibit petroleum sheen or petroleum odor. Groundwater sample MW-403A was collected. The well appeared in good condition.

#### MW-403B

Pre-purge depth to water was measured at 9.45 feet below TOC. The total well depth was measured at 14.93 feet below TOC. Free product was not detected using an oil/water interface probe. The well was purged and sampled from the screened section 12.0 feet below TOC. Water was purged from the well using a submersible pump, and water quality parameters were measured until stable. Approximately eight gallons of water were removed and containerized. Purge water from the well did not exhibit petroleum sheen or petroleum odor. Groundwater sample MW-403B was collected. The well appeared in good condition.

#### Investigation-Derived Waste (IDW) Management

Approximately 38 gallons of purge water was generated from the six wells during sampling on March 19 to 27, 2024. The water waste was characterized based on groundwater analytical results from March 2024 and per- and polyfluoroalkyl substances (PFAS) results from late 2019.

On May 15, 2024, **NORTECH** processed and treated the purge water from each well using a portable Granular Activated Carbon (GAC) System. The treated water was disposed of on Site by pouring to the ground surface a minimum of 100 feet away from drinking water wells or surface water.

Used/disposable sampling supplies were double-bagged and disposed of with other non-hazardous waste in a trash receptacle for transport to the FNSB Landfill.

#### Laboratory Results and Discussion

The SGS Laboratory Reports are provided in Attachment 5. The laboratory analytical results for the March 2024 groundwater monitoring event are summarized in Attachment 2, Tables 1 (DRO and VOCs) and 2 (PAHs). Historical Groundwater Analytical Data from 2012 to Present are summarized in Attachment 2, Table 3. Laboratory results in Tables 1, 2, and 3 are compared to current ADEC 18 AAC 75 Table C Groundwater Cleanup Levels as amended through October 18, 2023.

The March 2024 monitoring event is the eleventh since 2019. The intent of these events is to identify potential seasonal trends in groundwater contaminant concentrations.

#### Groundwater Results

#### *MW-2*

The results for source well MW-2 were above the ADEC CL for three analytes. DRO was detected at a concentration of 3.16 milligrams per liter (mg/L) (CL of 1.5 mg/L). Other analytes with concentrations exceeding their respective CLs were 1,2,4-trimethylbenzene at 135 micrograms per liter ( $\mu$ g/L) (CL of 56  $\mu$ g/L) and naphthalene at 26.7  $\mu$ g/L (CL of 1.7  $\mu$ g/L). 1.3,5-Trimethylbenzene, ethylbenzene, and total xylenes were detected at concentrations below their respective CLs. Benzene and toluene were non-detect. These results are consistent with previous results and confirm that this well is within the source area of the contaminant plume.



#### *MW-3*

The results for source well MW-3 were above the ADEC CL for two analytes. Primary and duplicate samples had DRO concentrations of 7.11 and 3.10 mg/L, respectively, both above the ADEC CL. Naphthalene by VOCs analysis was detected in the primary and duplicate samples at concentrations above the ADEC CL. The VOCs 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; benzene; toluene; and total xylenes were detected at concentrations below their respective CLs. Ethylbenzene was non-detect. The PAHs 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, and naphthalene were detected in the primary and duplicate samples at concentrations below their respective CLs. These results are consistent with previous results for the former AST source area well.

#### MW-4

The results for downgradient well MW-4 had detections of DRO and benzene at concentrations below their CLs. No other analytes were detected in MW-4. These results are consistent with previous results for DRO and benzene.

During the October 2022 sampling event, naphthalene was detected for the first time in the well since 2015 and at a concentration above CL. In 2015, naphthalene was detected below the CL. In every other sampling event, including March 2024, naphthalene has been non-detect.

#### MW-5

No tested analytes were detected in downgradient well MW-5. This is consistent with previous sampling events. The depth of the well was measured at approximately 35 feet below ground surface (bgs). Based on absence of contamination in MW-5, which is closer to the source area than MW-4, a historical review of the well log installation was undertaken to determine the elevation of the screened interval. This information allows evaluation of the comparability of the data to other shallow wells that are screened across the water table.

In Fall 2020, the well log was obtained from Kiewit and indicates the well is screened in the interval from 30 feet to 35 feet bgs, the screened interval does not intersect the top of the groundwater table, and the well is screened approximately 20 feet below the groundwater surface. Data is flagged in the report tables to indicate that it may not represent contamination near the groundwater surface.

#### MW-403A

This downgradient monitoring well is located in the Alaska DOT&PF ROW immediately outside the northern property boundary. MW-403A had benzene as the only analyte detected at a concentration far below the ADEC CL. The results are consistent with the eight previous sampling events conducted by Kiewit in 2020, 2021, 2022, and 2023; however, benzene was detected for the first time in the well during the October 2022 sampling event. The monitoring well was installed as part of the Alaska DOT&PF Maintenance Facility investigation. The well is located approximately 3 feet east of MW-403B, discussed below. The depth of the well was measured at approximately 48.5 feet bgs. The well is located approximately 145 feet and 205 feet downgradient from the former AST and FDL, respectively.

In Fall 2020, a historical review of the well log installation was conducted to determine the elevation of the screened interval. The well log obtained from Alaska DOT&PF indicates the well is screened in the interval from 44 feet to 48 feet bgs, the screened interval does not intersect the top of the groundwater table, and the well is screened more than 30 feet below the



groundwater surface. MW-403A analytical data is flagged in the report tables to indicate that it may not represent contamination near the groundwater surface.

#### MW-403B

This downgradient monitoring well is located in the Alaska DOT&PF ROW immediately outside the northern property boundary. MW-403B had benzene as the only analyte detected at a concentration far below the ADEC CL. The results are consistent with the nine previous sampling events conducted by Kiewit in 2019, 2020, 2021, 2022, and 2023. The monitoring well was installed as part of the Alaska DOT&PF Maintenance Facility investigation. The depth of the well was measured at approximately 15.5 feet bgs. The well is located approximately 145 feet and 205 feet downgradient from the former AST and FDL, respectively.

In Fall 2020, a historical review of the well log installation was conducted to determine the elevation of the screened interval. The well log obtained from Alaska DOT&PF indicates the well is screened in the interval from about 5.5 feet to 15.5 feet bgs, and the screened interval intersects the top of the groundwater table.

#### Field Water Quality Parameters and NSZD Evaluation Results

Final field water quality parameters of monitoring well purge water from each well prior to groundwater sample collection are provided in Attachment 2, Table 4. The NSZD evaluation included sampling each of the six wells for nitrate; sulfate; total and dissolved iron and manganese; and dissolved methane/ethane/ethene. The NSZD analytical results are summarized in Attachment 2, Table 5. Kiewit intends to evaluate the water quality and NSZD data to determine future actions at the Site.

#### Quality Assurance/Quality Control

Part of the data quality objectives (DQOs) for the project were to produce data of adequate quality as outlined in the 2022 FSG for comparison to the 18 AAC 75.345 groundwater cleanup levels. The primary tool used to assess data quality was the ADEC Laboratory Data Review Checklist (LDRC). A LDRC was completed for each of the two laboratory work orders and are included with the laboratory reports in Attachment 5. The SGS laboratory report case narrative was reviewed against the ADEC LDRC for potential laboratory QC issues. The laboratory case narratives for the SGS work orders are located on Page 2 of the laboratory reports.

QA/QC procedures included adherence to the 2019 Work Plan, handling samples under chainof-custody procedures, submitting samples within specified holding times, collecting a field duplicate, and including a trip blank in the sample cooler with volatile analytes. An equipment blank was collected, as a submersible pump was used for sampling the wells. Laboratory QA/QC procedures included analysis of method blanks; laboratory control samples (LCS) and LCS duplicates (LCSD); and matrix spike samples (MS) and MS duplicates (MSD).

#### Comparison of LOQs to Cleanup Levels

A QA/QC check was completed to compare the laboratory limit of quantitation (LOQ) of the analytes with ADEC CLs. As shown on Attachment 2, Tables 1 and 2, the LOQs of the contaminants of concern were below the ADEC CLs, confirming the results represent Site groundwater quality.

#### Duplicate Pair Relative Percent Difference

Duplicate pairs are a QC check on field sampling techniques and laboratory error. Precision, expressed as the relative percent difference (RPD) between field duplicate sample results, is an



indication of consistency in sampling, sample handling, preservation, and laboratory analysis. The RPD (the difference between the field duplicate results expressed as a percentage of the average of those results) was calculated according to the 2022 FSG. For field duplicate water samples, below 30% for calculated RPDs is preferred for meeting DQOs with no impact to usability.

Tables 1 and 2 in Attachment 2 present the calculated RPDs for detected results from the field duplicate pair MW-3 / MW-300. Thirteen analytes were detected in the duplicate pair. Five analytes had RPDs greater than the 30% recommended for water ranging from 31.9% to 85.6%. The associated well was pumped dry, was slow to recharge, and purge water from the well exhibited petroleum odor. The RPD exceedances are attributed to non-homogenous sample matrix.

Data quality and usability are not adversely affected. The higher value of each detected analyte in the duplicate pair was consistent with previous sampling events and was used for decision purposes.

#### Equipment Blank and Trip Blank

An equipment blank sample was collected during the sampling event. The equipment blank sample was collected by running distilled water over and through the submersible pump after sampling MW-4 and decontamination. No DRO or VOCs were detected in the equipment blank sample.

Laboratory-prepared trip blank samples accompanied the volatile samples during collection through submittal to SGS. The trip blanks were non-detect for VOCs.

#### QA/QC Summary

The data quality review for this sampling event indicates there were no significant data quality issues associated with the laboratory reports. The data quality of the laboratory reports is adequate, and results can be used to characterize contaminant concentrations of the groundwater and to evaluate NSZD at the Site. The data quality issues associated with the laboratory reports and the issues discussed above are also reviewed in the ADEC LDRCs. The laboratory analytical data generated during the March 2024 monitoring event is usable as described in this monitoring report.

#### Annual Groundwater Elevation Variation

A review of monthly depth to water readings from October 2018 to December 2020 at MW-2 indicates the groundwater elevation at the Site was lowest during late winter (mid-February to mid-March) and highest during late summer (mid-August to mid-September). Annual depth to water at MW-2 ranged from approximately 10.0 feet bgs during late winter to 6.0 feet bgs during late summer. The March 2024 groundwater monitoring event during a period of low groundwater level conditions during late winter/early spring.

#### Groundwater Flow Direction and Gradient

The groundwater flow direction was estimated using the monitoring well survey data provided by Design Alaska on November 4, 2020, and depth to water measurements collected by *NORTECH* on March 19, 26, and 27, 2024. The survey data and well measurements are presented in Attachment 2, Table 6.



#### March 2024 Groundwater Monitoring Report Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska June 6, 2024

Due to frost-jacking of the casings and the resultant change in TOC elevations since the November 4, 2020, survey associated with downgradient wells MW-4, MW-5, MW-403A, and MW-403B, the groundwater flow direction and gradient could not be accurately determined. In Fall 2021 and subsequent monitoring events, *NORTECH* repaired the four wells by trimming the casings and resetting the well monuments to ground surface. The potentiometric difference between wells MW-2 and MW-3 measurements calculated on March 27, 2024, provides limited support of past data that has determined that the inferred groundwater flow direction is to the north-northwest.

Figure 3 in Attachment 1 provides a potentiometric surface map of groundwater elevations taken during a previous monitoring event unaffected by frost-jacking conducted on May 12, 2021. The May 12, 2021, data were entered in the EPA *On-line Tools for Site Assessment Calculation* to determine groundwater flow direction and gradient. Based on the well survey and depth to water measurements, the inferred groundwater flow direction is to the north-northwest at a gradient of approximately 0.001925 foot per linear foot. Based on past data and limited March 2024 data, groundwater at the Site appears to flow similar to known regional groundwater direction and gradient. This has been consistent during all monitoring events at the Site. A new survey and continued groundwater gradient evaluation are not recommended.

#### Summary, Conclusions, and Recommendations

**NORTECH** completed March 2024 groundwater monitoring at the former Kiewit facility located at 2050 Peger Road in Fairbanks, Alaska. The March 2024 groundwater sampling event was conducted during a period of low groundwater level conditions during late winter/early spring. Based on field observations, laboratory results, and Site conditions, **NORTECH** has the following summary, conclusions, and recommendations:

#### Free Product Testing and Recovery and General Observations

- An oil/water interface probe was used in the field to test for free product in the six network wells
- None of the wells exhibited measurable free product, and no free product was recovered from the wells
- Based on the absence of measurable free product, the six wells underwent groundwater sampling for laboratory analysis
- No well had purge water exhibiting sheen

#### March 2024 Groundwater Results

- DRO
  - Remains above the ADEC CL in source area wells MW-2 and MW-3
  - o Detected below the ADEC CL in downgradient well MW-4
  - Not detected in downgradient wells MW-5, MW-403A, or MW-403B
- BTEX
  - Benzene was detected below the ADEC CL in MW-3, MW-4, MW-403A, and MW-403B consistent with previous sampling events
  - Toluene was detected below the ADEC CL in MW-3
  - $\circ~$  Ethylbenzene was detected below the ADEC CL in MW-2
  - Total xylenes was detected below the ADEC CL in MW-2 and MW-3
  - BTEX was not detected in MW-5
- 1,2,4-Trimethylbenzene
  - Detected above the ADEC CL in MW-2 and below the CL in MW-3



- Not detected in MW-4, MW-5, MW-403A, or MW-403B
- 1,3,5-Trimethylbenzene
  - Detected below the ADEC CL in MW-2 and MW-3
  - Not detected in MW-4, MW-5, MW-403A, or MW-403B
- Naphthalene (as a VOC by EPA Method 8260D)
  - Detected above the ADEC CL in MW-2 and MW-3
  - Not detected in MW-4, MW-5, MW-403A, or MW-403B
- PAHs (analyzed for MW-3 only)
  - 1-Methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, and naphthalene were detected below respective ADEC CLs
  - No other PAHs were detected

#### Field Water Quality Parameters and NSZD Evaluation Results

- NSZD evaluation included sampling each of the six wells for nitrate; sulfate; total and dissolved iron and manganese; and dissolved methane/ethane/ethene
- Kiewit intends to evaluate the water quality and NSZD data to determine future actions at the Site

#### Monitoring Well Observations

- The six network wells were in satisfactory condition for groundwater sampling, and no repairs were necessary
- MW-5 and MW-403A were measured at a total depth of approximately 35 and 48 feet bgs, respectively
  - Historical review of the MW-5 well log indicates the well is screened in a 5-foot interval approximately 20 feet below the top of the groundwater table
  - Historical review of the MW-403A well log indicates the well is screened in a 4-foot interval more than 30 feet below the top of the groundwater table
  - MW-5 and MW-403A analytical data is flagged in the report tables to indicate that it may not represent contamination near the groundwater surface

#### Monitoring Well Survey and Inferred Groundwater Flow Direction

- In November 2020, the six network monitoring wells were surveyed for well coordinates and TOC elevation by a professional engineering firm
- In November 2020 and May 2021, inferred groundwater flow at the Site was to the northnorthwest, consistent with the known regional groundwater conditions
- Based on past data and limited March 2024 data, groundwater at the Site appears to flow north-northwest similar to previous observations
- A new survey and continued groundwater gradient evaluation are not recommended

#### <u>IDW</u>

- Approximately 38 gallons of purge water was generated from the six monitoring wells during the March 2024 sampling event
- **NORTECH** processed and treated the purge water from each well using a portable GAC System, and the treated water was disposed of on Site by pouring to the ground surface a minimum of 100 feet away from drinking water wells or surface water
- Used/disposable sampling supplies were disposed of with other non-hazardous waste in a trash receptacle for transport to the FNSB Landfill



MW-5 and MW-403A, respectively, are screened 30 and 44 feet bgs, and the screened intervals are at least 20 feet below the top of the groundwater table. Analytical data does not represent contamination near the groundwater surface. MW-5 has been sampled since 2012, and no tested analytes have been detected above CLs. Additionally, no analytes have been detected above LOQ in MW-5 since 2016. MW-403A has been sampled nine times for this project since May 2020, and no tested analytes have been detected above CLs. *NORTECH* recommends seeking approval from ADEC to discontinue analytical sampling of these two wells.

*NORTECH* recommends submitting this letter report to ADEC as documentation of the March 2024 groundwater monitoring at the Site.

We trust that this information is sufficient at present. Please contact us if you have questions or comments.

Sincerely, *NORTECH* 

William L. Watte

William L. Watts Environmental Project Manager

Har Good X by

**Peter Beardsley, PE** Principal, Environmental Engineer

#### **List of Attachments**

Attachment 1: Site Figures

Figure 1 – Location Map

Figure 2 – Site Map

Figure 3 – Potentiometric Surface Map – May 12, 2021

Attachment 2: Summary Tables

Table 1 – March 2024 Groundwater Results Summary for DRO and VOCs

Table 2 – March 2024 Groundwater Results Summary for PAHs

Table 3 – Historical Groundwater Results: 2012 to Present

Table 4 – March 2024 Final Field Water Quality Parameter Measurements

Table 5 – March 2024 NSZD Evaluation Results Summary

Table 6 – Monitoring Well Survey and Groundwater Measurements

Attachment 3: Field Notes / Groundwater Sample Forms

Attachment 4: Site Photographs

Attachment 5: Laboratory Reports and Laboratory Data Review Checklists

# Attachment 1







# **Attachment 2**

| Table 1                                                    |
|------------------------------------------------------------|
| March 2024 Groundwater Results Summary for DRO and VOCs    |
| Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska |

| Analyte                                             | ADEC<br>Cleanup<br>Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-2 MW-3 MW-300 MW-4 MW-5*     |        | MW-403A* | MW-403B    | EB-1    | TB-1    | TB-2    |         |         |         |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|----------|------------|---------|---------|---------|---------|---------|---------|--|--|
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |        | DRO (    | AK101) (mg | /L)     |         | l       |         |         |         |  |  |
| Diesel Range Organics                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.16                            | 7.11   | 3.10     | 0.774      | 0.605 U | 0.577 U | 0.605 U | 0.600 U | NA      | NA      |  |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |        |          |            |         |         |         |         |         |         |  |  |
| 1,2,4-Trimethylbenzene                              | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                             | 7.26   | 5.70     | 1.00 U     | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  |  |  |
| 1,3,5-Trimethylbenzene                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.7                            | 3.13   | 2.50     | 1.00 U     | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  |  |  |
| Benzene                                             | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.400 U                         | 1.19   | 1.20     | 1.02       | 0.400 U | 0.480   | 0.460   | 0.400 U | 0.400 U | 0.400 U |  |  |
| Ethylbenzene                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.8                            | 1.00 U | 1.00 U   | 1.00 U     | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  |  |  |
| Naphthalene                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.7                            | 4.72   | 3.42     | 1.00 U     | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  |  |  |
| o-Xylene                                            | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.9                            | 1.41   | 1.27     | 1.00 U     | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  |  |  |
| P & M -Xylene                                       | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72.0                            | 2.37   | 2.19     | 2.00 U     | 2.00 U  | 2.00 U  | 2.00 U  | 2.00 U  | 2.00 U  | 2.00 U  |  |  |
| Toluene                                             | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00 U                          | 1.54   | 1.53     | 1.00 U     | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  | 1.00 U  |  |  |
| Xylenes (total)                                     | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116                             | 3.78   | 3.46     | 3.00 U     | 3.00 U  | 3.00 U  | 3.00 U  | 3.00 U  | 3.00 U  | 3.00 U  |  |  |
| *<br>U<br>L<br><br>Shade<br>Bold<br>NA<br>NE<br>DUP | Analytical results are compared to ADEC 18 AAC 75 Table C Groundwater Cleanup Levels<br>as amended through October 18, 2023<br>Data for MW-5 and MW-403A may not represent contamination near the groundwater surface, as the<br>screened interval at each well does not intersect the top of the groundwater table<br>Analyte not detected at the listed limit of quantitation (LOQ)<br>Result is biased low due to low laboratory control spike (LCS) percentage recovery in the quality control sample<br>Analyte detected in concentration below the ADEC Cleanup Level<br>Analyte detected in concentration exceeding the ADEC 18 Cleanup Level<br>Not applicable<br>A regulatory cleanup level is not established |                                 |        |          |            |         |         |         |         |         |         |  |  |
| mg/L<br>μg/L<br>EB<br>TB                            | milligram p<br>microgram<br>Equipment<br>Trip Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ber liter<br>per liter<br>Blank |        |          |            |         |         |         |         |         |         |  |  |

#### **Quality Control Summary - Detected Analytes Only**

| Analyte                | MW-3      | MW-300<br>(DUP) | Average | Difference | RPD   |  |  |  |  |  |  |  |  |
|------------------------|-----------|-----------------|---------|------------|-------|--|--|--|--|--|--|--|--|
| DRO (AK101) (mg/L)     |           |                 |         |            |       |  |  |  |  |  |  |  |  |
| Diesel Range Organics  | 7.11      | 3.10            | 5.11    | 4.01       | 78.6% |  |  |  |  |  |  |  |  |
| VOCs (EF               | PA Method | l 8260D) (µ     | ıg/L)   |            |       |  |  |  |  |  |  |  |  |
| 1,2,4-Trimethylbenzene | 7.26      | 5.70            | 6.48    | 1.56       | 24.1% |  |  |  |  |  |  |  |  |
| 1,3,5-Trimethylbenzene | 3.13      | 2.50            | 2.82    | 0.63       | 22.4% |  |  |  |  |  |  |  |  |
| Benzene                | 1.19      | 1.20            | 1.20    | -0.01      | 0.8%  |  |  |  |  |  |  |  |  |
| Naphthalene            | 4.72      | 3.42            | 4.07    | 1.30       | 31.9% |  |  |  |  |  |  |  |  |
| o-Xylene               | 1.41      | 1.27            | 1.34    | 0.14       | 10.4% |  |  |  |  |  |  |  |  |
| P & M -Xylene          | 2.37      | 2.19            | 2.28    | 0.18       | 7.9%  |  |  |  |  |  |  |  |  |
| Toluene                | 1.54      | 1.53            | 1.535   | 0.01       | 0.7%  |  |  |  |  |  |  |  |  |
| Xylenes (total)        | 3.78      | 3.46            | 3.62    | 0.32       | 8.8%  |  |  |  |  |  |  |  |  |
| Netzer                 |           |                 |         |            |       |  |  |  |  |  |  |  |  |

Notes:

RPDRelative Percent DifferenceDUPField Duplicate Sample

mg/L milligram per liter

μg/L microgram per liter Shade RPD exceeds recor

RPD exceeds recommended 30 percent (%) for a water sample duplicate pair 30% RPD for a water sample duplicate pair is considered within the preferred range

and meeting data quality objectives with no impact to usability

| Table 2                                                    |
|------------------------------------------------------------|
| March 2024 Groundwater Results Summary for PAHs            |
| Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska |

| Analyte                  | ADEC<br>Cleanup<br>Level                                                                                                                                                                                                                                                                                             | MW-2 | MW-3      | MW-300<br>(DUP) | MW-4         | MW-5* | MW-403A* | MW-403B | EB-1 |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-----------------|--------------|-------|----------|---------|------|--|--|--|--|
|                          |                                                                                                                                                                                                                                                                                                                      |      | PAHs (EPA | Method 8270     | D SIM) (µg/L | .)    |          |         |      |  |  |  |  |
| 1-Methylnaphthalene      | 11                                                                                                                                                                                                                                                                                                                   |      | 0.289     | 0.556           |              |       |          |         |      |  |  |  |  |
| 2-Methylnaphthalene      | 36                                                                                                                                                                                                                                                                                                                   |      | 0.183     | 0.457           |              |       |          |         |      |  |  |  |  |
| Acenaphthene             | 530                                                                                                                                                                                                                                                                                                                  |      | 0.322     | 0.276           |              |       |          |         |      |  |  |  |  |
| Acenaphthylene           | 260                                                                                                                                                                                                                                                                                                                  |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Anthracene               | 43                                                                                                                                                                                                                                                                                                                   |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Benzo(a)Anthracene       | 0.30                                                                                                                                                                                                                                                                                                                 |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Benzo[a]pyrene           | 0.25                                                                                                                                                                                                                                                                                                                 |      | 0.0192 U  | 0.0196 U        |              |       |          |         |      |  |  |  |  |
| Benzo[b]Fluoranthene     | 2.5                                                                                                                                                                                                                                                                                                                  |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Benzo[g,h,i]perylene     | 0.26                                                                                                                                                                                                                                                                                                                 |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Benzo[k]fluoranthene     | 0.80                                                                                                                                                                                                                                                                                                                 |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Chrysene                 | 2.0                                                                                                                                                                                                                                                                                                                  |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Dibenzo[a,h]anthracene   | 0.25                                                                                                                                                                                                                                                                                                                 |      | 0.0192 U  | 0.0196 U        |              |       |          |         |      |  |  |  |  |
| Fluoranthene             | 260                                                                                                                                                                                                                                                                                                                  |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Fluorene                 | 290                                                                                                                                                                                                                                                                                                                  |      | 0.225     | 0.322           |              |       |          |         |      |  |  |  |  |
| Indeno[1,2,3-c,d] pyrene | 0.19                                                                                                                                                                                                                                                                                                                 |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Naphthalene              | 1.7                                                                                                                                                                                                                                                                                                                  |      | 0.483     | 0.754           |              |       |          |         |      |  |  |  |  |
| Phenanthrene             | 170                                                                                                                                                                                                                                                                                                                  |      | 0.0962 U  | 0.0980 U        |              |       |          |         |      |  |  |  |  |
| Pyrene                   | 120                                                                                                                                                                                                                                                                                                                  |      | 0.0481 U  | 0.0490 U        |              |       |          |         |      |  |  |  |  |
| Notes:                   |                                                                                                                                                                                                                                                                                                                      |      |           |                 |              |       |          |         |      |  |  |  |  |
| *                        | Analytical results are compared to ADEC 18 AAC 75 Table C Groundwater Cleanup Levels<br>as amended through October 18, 2023<br>Data for MW-5 and MW-403A may not represent contamination near the groundwater surface, as the<br>screened interval at each well does not intersect the top of the groundwater table. |      |           |                 |              |       |          |         |      |  |  |  |  |

| U | Analyte not detected at the reported limit of quantitation (LOQ) |
|---|------------------------------------------------------------------|
|---|------------------------------------------------------------------|

| Н | PAH data is biased low due to laboratory error. Analyte extraction occurred outside method hold time |
|---|------------------------------------------------------------------------------------------------------|
|   |                                                                                                      |

- Shade Analyte detected in concentration below the ADEC Cleanup Level
  - Bold Analyte detected in concentration exceeding the ADEC 18 Cleanup Level
  - -- Analysis not requested for this sample
  - μg/L Microgram per Liter
  - EB Equipment Blank

#### Quality Control Summary - Detected Analytes Only

|                 | Quality cont         |                                                                 | 5 20100100                     |                                 |                                   |                |  |  |  |  |  |  |
|-----------------|----------------------|-----------------------------------------------------------------|--------------------------------|---------------------------------|-----------------------------------|----------------|--|--|--|--|--|--|
| Analyte         |                      | MW-3                                                            | MW-300<br>(DUP)                | Average                         | Difference                        | RPD            |  |  |  |  |  |  |
|                 | PAHs                 | (EPA Metho                                                      | d 8270D SIM                    | ) (µg/L)                        |                                   |                |  |  |  |  |  |  |
| 1-Methylnaphtha | alene                | 0.289                                                           | 0.556                          | 0.42                            | -0.27                             | 63.2%          |  |  |  |  |  |  |
| 2-Methylnaphtha | alene                | 0.183                                                           | 0.457                          | 0.32                            | -0.27                             | 85.6%          |  |  |  |  |  |  |
| Acenaphther     | ne                   | 0.322                                                           | 0.276                          | 0.30                            | 0.05                              | 15.4%          |  |  |  |  |  |  |
| Fluorene        |                      | 0.225                                                           | 0.322                          | 0.27                            | -0.10                             | 35.5%          |  |  |  |  |  |  |
| Naphthalen      | е                    | 0.483                                                           | 0.754                          | 0.62                            | -0.27                             | 43.8%          |  |  |  |  |  |  |
| Notes:          |                      |                                                                 |                                |                                 |                                   | <u>.</u>       |  |  |  |  |  |  |
| RPD             | Relative Pe          | tive Percent Difference                                         |                                |                                 |                                   |                |  |  |  |  |  |  |
| DUP             | Field Dupli          | cate Sample                                                     |                                |                                 |                                   |                |  |  |  |  |  |  |
| μg/L            | Microgram            | jram per Liter                                                  |                                |                                 |                                   |                |  |  |  |  |  |  |
| *               | The limit of         | nit of quantitation (LOQ) for non-detect Sample MW-300 was used |                                |                                 |                                   |                |  |  |  |  |  |  |
|                 | for calcula          | r calculation.                                                  |                                |                                 |                                   |                |  |  |  |  |  |  |
| **              | The LOQ              | Q for non-detect Sample MW-3 was used for calculation.          |                                |                                 |                                   |                |  |  |  |  |  |  |
| Shade           | RPD excee            | eds recomme                                                     | ended 30 perc                  | ent (%) for a                   | water sampl                       | e duplicate pa |  |  |  |  |  |  |
|                 | 30% RPD<br>and meeti | for a water sa<br>ng data quali                                 | ample duplica<br>ty objectives | ite pair is cor<br>with no impa | nsidered withi<br>ct to usability | n the preferre |  |  |  |  |  |  |

Table 3 Historical Groundwater Results: 2012-Present

|                                                                           |                                   |                                     |                           |                                      |                                     |                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              | For                                           | mer Kiewit Inf                                  | rastructure V      | /est Co., 2050                | Peger Road, | airbanks, Al                   | laska                          |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------|---------------------------|--------------------------------------|-------------------------------------|--------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------|-------------------------------|-------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|
| Analytical Parameter                                                      | Locat                             | tion ID:                            | ADEC<br>Cleanup           | MW11-1016<br>(MW1 Dup)               | MW-1                                | MW-11<br>(MW1-Dup)                                     | MW-1                                      | MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW-1                                       | MW-1                                         | MW-1                                          | MW-1                                            | MW-1               | MW-1                          | MW-1        | W MW-403A***                   | MW-403A***                     | MW-403A***                     | MW-403A***                     | MW-403A***         | MW-403A***                     | MW-403A***                     | MW-403A***                     | MW-403A***                     | W MW-403B          | MW-403B                       | MW-403B                        | MW-403B                       | MW-403B                        | MW-403B                        | MW-403B                        | MW-403B                        | MW-403B                       | MW-403B                        |
| Analytical Faranteter                                                     | Samp                              | le Date:                            | Level                     | 1 16-Oct-12                          | 02-Jul-14                           | 24-Jul-14                                              | 16-Oct-14                                 | 27-Apr-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02-Sep-15                                  | 25-Aug-16                                    | 26-Sep-17                                     | 26-Apr-18                                       | 11-Oct-18          | 17-Apr-19                     | 16-Aug-19   | 0<br>3 06-May-20               | 02-Sep-20                      | 12-May-21                      | 06-Oct-21                      | 23-Mar-22          | 10-Oct-22                      | 21-Mar-23                      | 18-Sep-23                      | 19-Mar-24                      | 0 15-Oct-19        | 06-May-20                     | 02-Sep-20                      | 12-May-21                     | 06-Oct-21                      | 22-Mar-22                      | 10-Oct-22                      | 21-Mar-23                      | 18-Sep-23                     | 19-Mar-24                      |
| Petroleum Range Hydrocarbons                                              | CAS                               | Method                              | mg/L                      | mg/L                                 | mg/L                                | mg/L                                                   | mg/L                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                       | mg/L                                         | mg/L                                          | mg/L                                            | mg/L               | mg/L                          |             | A mg/L                         | mg/L                           | mg/L                           | mg/L                           | mg/L               | mg/L                           | mg/L                           | mg/L                           | mg/L I                         | B mg/L             | mg/L                          | mg/L                           | mg/L                          | mg/L                           | mg/L                           | mg/L                           | mg/L                           | mg/L                          | mg/L                           |
| Gasoline Range Organics (GRO)<br>Diesel Range Organics (DRO)              | N/A<br>N/A                        | AK 101<br>AK 102                    | 2.2<br>1.5                | 3.2<br>21                            | <0.6                                | <br><0.6                                               | <0.6                                      | <0.031<br>0.203 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.07                                       | <0.031<br>0.407 J                            | <0.031<br><0.176                              | <0.0310<br>0.230 J                              | <br>0.588 U        | <br>0.588 U                   |             | <br>0.566 U                    | <br>0.577 U                    | <br>0.577 U                    | <br>0.600 U                    | <br>0.577 U        | <br>0.566 U                    | <br>0.545 U                    | <br>0.577 U                    | <br>0.577 U                    | <br>0.588 U        | <br>0.577 U                   | <br>0.577 U                    | <br>0.577 U                   | <br>0.577 U                    | <br>0.577 U                    | <br>0.577 U                    | <br>0.545 U                    | <br>0.588 U                   | <br>0.605 U                    |
| Residual Range Organics (RRO)                                             | N/A                               | AK 103                              | 1.1                       |                                      | <0.0004                             | <0.0004                                                | <0.00012                                  | 0.162 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.144                                     | 0.199 J                                      | <0.147                                        | 0.224 J                                         |                    |                               |             |                                |                                | 0.0004.11                      |                                |                    |                                |                                | 0.000460                       |                                |                    | 0.000721                      |                                | 0.000761                      | 0.000540                       | 0.000544                       | 0.000600                       | 0.000551                       | 0.000500                      | 0.000460                       |
| Foluene<br>Ethylbenzene                                                   | 108-88-3<br>100-41-4              | 8260<br>8260                        | 1.100<br>0.015            | <0.004<br><0.02<br>0.081             | <0.0004<br><0.001<br><0.001         | <0.0004<br><0.001<br><0.001                            | <0.00012<br><0.00031<br><0.00031          | <0.00012<br><0.00031<br><0.00031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.00013<br><0.00031<br><0.00031           | <0.00013<br><0.00031<br><0.00031             | <0.00013<br><0.00031<br><0.00031              | <0.00013<br><0.00031<br><0.00031                | 0.001 U<br>0.001 U | 0.001 U<br>0.001 U<br>0.001 U |             | 0.0004 0<br>0.001 U<br>0.001 U | 0.001 U<br>0.001 U | 0.000540<br>0.001 U<br>0.001 U | 0.000421<br>0.001 U<br>0.001 U | 0.000460<br>0.001 U<br>0.001 U | 0.000480<br>0.001 U<br>0.001 U | 0.001 U<br>0.001 U | 0.001 U<br>0.001 U<br>0.001 U | 0.000534<br>0.001 U<br>0.001 U | 0.001 U<br>0.001 U<br>0.001 U | 0.000540<br>0.001 U<br>0.001 U | 0.000544<br>0.001 U<br>0.001 U | 0.000000<br>0.001 U<br>0.001 U | 0.000351<br>0.001 U<br>0.001 U | 0.000 U<br>0.001 U<br>0.001 U | 0.000480<br>0.001 U<br>0.001 U |
| Kylenes<br>Volatile Organic Compounds                                     | 1330-20-7                         | 8260                                | 0.190                     | <0.74                                | <0.003                              | <0.003                                                 | <0.001                                    | <0.00093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00093                                   | <0.00093                                     | 0.00074 J                                     | <0.00093                                        | 0.003 U            | 0.003 U                       |             | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U            | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U            | 0.003 U                       | 0.003 U                        | 0.003 U                       | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                       | 0.003 U                        |
| I,1,1,2-Tetrachloroethane<br>I,1,1-Trichloroethane                        | 630-20-6<br>71-55-6<br>79-34-5    | 8260<br>8260<br>8260                | 0.0057<br>8.0<br>0.00076  | <0.004<br><0.004<br><0.004           | <0.0005<br><0.001<br><0.0005        | <0.0005<br><0.001<br><0.0005                           | <0.00015<br><0.00031<br><0.00015          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | g           |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| I,1,2-Trichloroethane<br>I,1-Dichloroethane                               | 79-00-5<br>75-34-3                | 8260<br>8260                        | 0.00041<br>0.028          | <0.004<br><0.004                     | <0.001<br><0.001                    | <0.001<br><0.001                                       | <0.00031<br><0.00031                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | ione        |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| I,1-Dichloroethylene<br>I,1-Dichloropropene                               | 75-35-4<br>563-58-6               | 8260<br>8260                        | 0.280<br>NE               | <0.004<br><0.004                     | <0.001<br><0.001                    | <0.001<br><0.001                                       | <0.00031<br><0.00031                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | niss        |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| I,2,3-Trichlorobenzene<br>I,2,3-Trichloropropane                          | 87-61-6<br>96-18-4<br>120-82-1    | 8260<br>8260<br>8260                | 0.007<br>0.0000075        | <0.004<br><0.002<br><0.004           | <0.001<br><0.001                    | <0.001<br><0.001                                       | <0.00031<br><0.00031                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | omr         |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| 1,2,4-Trimethylbenzene<br>1,2-Dibromo-3-chloropropane                     | 95-63-6<br>96-12-8                | 8260<br>8260                        | 0.056<br>NE               | 0.75<br><0.02                        | <0.001<br><0.01                     | <0.001<br><0.001<br><0.01                              | <0.00031<br><0.0031                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 | 0.001 U            | 0.001 U<br>                   | Dec         | 0.001 U                        | 0.001 U                        | 0.001 U                        | 0.001 U                        | 0.001 U            | 0.001 U                        | 0.001 U                        | 0.001 U                        | 0.001 U                        | 0.001 U            | 0.001 U                       | 0.001 U                        | 0.001 U                       | 0.001 U                        | 0.001 U                        | 0.001 U                        | 0.001 U                        | 0.001 U                       | 0.001 U                        |
| I,2-Dibromoethane<br>I,2-Dichlorobenzene                                  | 106-93-4<br>95-50-1               | 8260<br>8260                        | 0.000075<br>0.300         | <0.004<br><0.004                     | <0.001<br><0.001                    | <0.001<br><0.001                                       | <0.00031<br><0.00031                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                | =                              |                                | -                              |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| I,2-Dichloroethane<br>I,2-Dichloropropane<br>I 3 5-Trimethylbenzene       | 107-06-2<br>78-87-5<br>108-67-8   | 8260<br>8260<br>8260                | 0.0017<br>0.0082<br>0.060 | <0.004<br><0.004<br>3.5              | <0.0005<br><0.001                   | <0.0005<br><0.001                                      | <0.00015<br><0.00031                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| I,3-Dichlorobenzene                                                       | 541-73-1<br>142-28-9              | 8260<br>8260                        | 0.300<br>NE               | <0.004<br><0.004                     | <0.001<br><0.001<br><0.0005         | <0.001<br><0.001<br><0.0004                            | <0.00031<br><0.00031<br><0.00015          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| 1,4-Dichlorobenzene<br>2,2-Dichloropropane                                | 106-46-7<br>594-20-7              | 8260<br>8260                        | 0.0048<br>NE              | <0.004<br><0.004                     | <0.0005<br><0.001                   | <0.0005<br><0.001                                      | <0.00015<br><0.00031                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                | -                              |                                |                                |                    |                                |                                |                                | =                              |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| 2-Butanone (methyl ethyl ketone)<br>2-Chloroethyl vinyl ether *           | 78-93-3<br>110-75-8               | 8260<br>8260                        | 5.6<br>NE                 | <0.1<br><0.02                        | <0.01                               | < 0.01                                                 | <0.0031                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| 2-Chlorotoluene<br>2-Hexanone<br>4-Chlorotoluene                          | 591-78-6<br>106-43-4              | 8260<br>8260                        | 0.038<br>NF               | <0.004<br><0.04<br><0.004            | <0.001<br><0.01<br><0.001           | <0.001<br><0.01<br><0.001                              | <0.00031<br><0.0031<br><0.00031           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| A-Isopropyltoluene<br>Acetone                                             | 99-87-6<br>67-64-1                | 8260<br>8260                        | NE<br>14                  | 0.081                                | <0.001                              | <0.001                                                 | <0.00031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Benzene<br>Bromobenzene                                                   | 71-43-2<br>108-86-1               | 8260<br>8260                        | 0.0046                    | <0.004                               | <0.0004<br><0.001                   | <0.0004<br><0.001                                      | <0.00012<br><0.00031                      | <0.00012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00015                                   | <0.00015                                     | <0.00015                                      | <0.00015                                        | 0.001 U<br>        | 0.001 U<br>                   |             | 0.0004 U<br>                   | 0.0004 U<br>                   | 0.0004 U<br>                   | 0.0004 U<br>                   | 0.0004 U<br>       | 0.000540                       | 0.000421                       | 0.000460                       | 0.000480                       | 0.00049            | 0.000721                      | 0.000534                       | 0.000751                      | 0.000540                       | 0.000544                       | 0.000600                       | 0.000551                       | 0.000500                      | 0.000460                       |
| Bromodichloromethane<br>Bromodichloromethane                              | 75-27-4                           | 8260<br>8260                        | 0.0013                    | <0.004<br><0.004<br><0.02            | <0.001<br><0.0005<br><0.001         | <0.001<br><0.0005<br><0.001                            | <0.00031<br><0.00015<br><0.00031          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Bromomethane<br>Carbon disulfide                                          | 74-83-9<br>75-15-0                | 8260<br>8260                        | 0.0075<br>0.810           | <0.02<br><0.004                      | <0.01<br><0.01                      | <0.01<br><0.01                                         | <0.0031<br><0.0031                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Carbon tetrachloride<br>Chlorobenzene                                     | 56-23-5<br>108-90-7               | 8260<br>8260                        | 0.0046<br>0.078           | <0.004<br><0.004                     | <0.001<br><0.0005                   | <0.001<br><0.0005                                      | <0.00031<br><0.00015                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                | -                              |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Chlorofernane (etnyl chloride)<br>Chloroform<br>Chloromethane             | 75-00-3<br>67-66-3<br>74-87-3     | 8260<br>8260<br>8260                | 0.0022                    | <0.02<br><0.004<br><0.02             | <0.001<br><0.001<br><0.001          | <0.001<br><0.001<br><0.001                             | <0.00031<br><0.0003<br><0.00031           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Volatile Organic Compounds (cont)<br>cis-1,2-Dichloroethylene             | 156-59-2                          | 8260                                | 0.036                     | < 0.004                              | <0.001                              | <0.001                                                 | <0.00031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| cis-1,3-Dichloropropene<br>Dibromochloromethane                           | 10061-01-5<br>124-48-1<br>74.05.2 | 8260<br>8260                        | 0.0047<br>0.0087          | <0.004<br><0.004                     | <0.0005<br><0.0005                  | <0.0005<br><0.0005                                     | <0.00015<br><0.00015<br><0.00021          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | per         |                                | -                              |                                |                                |                    |                                | -                              |                                | -                              |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Dibromometnane<br>Dichlorodifluoromethane<br>Ethylbenzene                 | 74-95-3<br>75-71-8<br>100-41-4    | 8260<br>8260<br>8260                | 0.0083                    | <0.004<br><0.004                     | <0.001<br><0.001<br><0.001          | <0.001<br><0.001<br><0.001                             | <0.00031<br><0.00031<br><0.00031          | <0.00031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br><br><0.00031                           | <0.00031                                     | <br><br><0.00031                              | <0.00031                                        | <br>0.001 U        | <br><br>0.001 U               | sion        |                                | 0.001.11                       |                                |                                |                    |                                |                                |                                |                                |                    |                               | 0.001.11                       |                               |                                |                                |                                |                                |                               | 0.00111                        |
| Freon-113 **<br>Hexachlorobutadiene                                       | 76-13-1<br>87-68-3                | 8260<br>8260                        | 10<br>0.0014              | <0.004                               | <br><0.001                          | <0.001                                                 | <br><0.00031                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | imis        | =                              | -                              |                                |                                |                    |                                | Ξ                              |                                | =                              | =                  |                               | =                              | =                             | Ξ                              | =                              |                                |                                | Ξ                             |                                |
| odomethane *<br>sopropylbenzene (Cumene)                                  | 74-88-4<br>98-82-8                | 8260<br>8260                        | NE<br>0.450               | <0.04<br>0.041                       | <0.001                              | <0.001                                                 | <0.00031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | econ        |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Vethyl isobutyl ketone "<br>Vethyl tert-butyl ether<br>Vethylene chloride | 1634-04-4                         | 8260<br>8260<br>8260                | 0.140                     | <0.004<br><0.004<br><0.02            | <0.01<br>0.01<br><0.005             | <0.01<br>0.01<br><0.005                                | <0.0031<br><0.0031<br><0.001              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               | ă           |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Naphthalene **<br>n-Butylbenzene                                          | 91-20-3<br>104-51-8               | 8260<br>8260                        | 0.0017<br>1.00            | <0.004                               | <0.001                              | <0.001                                                 | <0.00031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>        | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>        | 0.001 U<br>                   | 0.001 U<br>                    | 0.001 U<br>                   | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                   | 0.001 U<br>                    |
| n-Propylbenzene<br>p-Xylene (see Xylenes) **                              | 103-65-1<br>1330-20-7             | 8260<br>8260                        | 0.660<br>NE               | 0.088                                | <0.001                              | <0.001                                                 | <0.00031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             | 0.001 U                        | <br>0.001 U                    | <br>0.001 U                    | <br>0.001 U                    | <br>0.001 U        | <br>0.001 U                    | <br>0.001 U                    | <br>0.001 U                    | 0.001 U                        |                    | <br>0.001 U                   | 0.001 U                        | 0.001 U                       | 0.001 U                        | 0.001 U                        | 0.001 U                        | <br>0.001 U                    | 0.001 U                       | <br>0.001 U                    |
| o- & m-Xylene (see Xylenes) **<br>sec-Butylbenzene<br>Sturene             | 1330-20-7<br>135-98-8<br>100-42-5 | 8260<br>8260<br>8260                | NE<br>2.00<br>1.20        | 0.057                                | <0.001                              | <0.001                                                 | <0.00031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             | 0.002 U                        | 0.002 U                        | 0.002 U                        | 0.002 U                        | 0.002 U            | 0.002 U                        | 0.002 U                        | 0.002 U                        | 0.002 U                        |                    | 0.002 U                       | 0.002 U                        | 0.002 U                       | 0.002 U                        | 0.002 U                        | 0.002 U                        | 0.002 U                        | 0.002 U                       | 0.002 U                        |
| ert-Butylbenzene<br>Fetrachloroethylene                                   | 98-06-6<br>127-18-4               | 8260<br>8260                        | 0.690                     | <0.004<br><0.004<br><0.004           | <0.001<br><0.001                    | <0.001<br><0.001<br><0.001                             | <0.00031<br><0.00031<br><0.00031          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Foluene<br>rans-1,2-Dichloroethylene                                      | 108-88-3<br>156-60-5              | 8260<br>8260                        | 1.100<br>0.360            | <0.02<br><0.004                      | <0.001<br><0.001                    | <0.001<br><0.001                                       | <0.00031<br><0.00031                      | <0.00031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00031                                   | <0.00031<br>                                 | <0.00031                                      | <0.00031                                        | 0.001 U<br>        | 0.001 U<br>                   |             | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>        | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>        | 0.001 U<br>                   | 0.001 U<br>                    | 0.001 U<br>                   | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                    | 0.001 U<br>                   | 0.001 U<br>                    |
| rans-1,3-Dichloropropene<br>Frichloroethylene                             | 10061-02-6<br>79-01-6             | 8260<br>8260                        | 0.0047<br>0.0028          | <0.004<br><0.004                     | <0.001<br><0.001                    | <0.001<br><0.001                                       | <0.00031<br><0.00031                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| /inyl acetate<br>/inyl chloride                                           | 108-05-4<br>75-01-4               | 8260<br>8260                        | 0.410<br>0.00019          | <0.004<br><0.04<br><0.004            | <0.001                              | <0.001                                                 | <0.00031                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Kylenes<br>Semi-Volatile Organic Compounds                                | 1330-20-7                         | 8260                                | 0.190                     | 0.74                                 | <0.003                              | <0.003                                                 | <0.001                                    | <0.00093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00093                                   | <0.00093                                     | 0.00074 J                                     | <0.00093                                        | 0.003 U            | 0.003 U                       |             | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U            | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U            | 0.003 U                       | 0.003 U                        | 0.003 U                       | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                        | 0.003 U                       | 0.003 U                        |
| I-Methylnaphthalene<br>2-Methylnaphthalene<br>Acenaphthene                | 90-12-0<br>91-57-6<br>83-32-9     | 8270D/SIM<br>8270D/SIM<br>8270D/SIM | 0.011 0.036 0.530         | 0.03<br>0.038<br>0.0013              | <0.00005<br><0.00005<br><0.00005    | <0.00005<br><0.00005<br><0.00005                       | <0.0000155<br><0.0000155<br><0.0000155    | <0.000015<br><0.000015<br><0.000015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00000391<br><0.00000391<br><0.00000391  | <0.0000142<br><0.0000142<br><0.0000142       | <0.0000147<br><0.0000147<br><0.0000147        | <0.0000142<br>0.0000155 J<br><0.0000142         |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Acenaphthylene<br>Anthracene                                              | 208-96-8<br>120-12-7              | 8270D/SIM<br>8270D/SIM              | 0.260<br>0.043            | <0.00047<br><0.00047                 | <0.00005<br><0.00005                | <0.00005<br><0.00005                                   | <0.0000155<br><0.0000155                  | <0.000015<br><0.000015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0000391<br><0.0000391                   | <0.0000142<br><0.0000142                     | <0.0000147<br><0.0000147                      | <0.0000142<br><0.0000142                        |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                | -                              |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Benzo[a]Anthracene<br>Benzo[a]pyrene                                      | 56-55-3<br>50-32-8                | 8270D/SIM<br>8270D/SIM              | 0.00030                   | <0.000047<br><0.000047               | <0.00005<br><0.00005                | <0.00005<br><0.00005                                   | <0.0000155<br><0.0000155                  | <0.000015<br><0.000015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00000391<br><0.00000391                 | <0.0000142<br><0.00000585                    | <0.0000147<br><0.00000608                     | <0.0000142<br><0.00000585                       |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Benzo[b]Fluoranthene<br>Benzo[g,h,i]perylene                              | 205-99-2<br>191-24-2<br>207.08.0  | 8270D/SIM<br>8270D/SIM<br>8270D/SIM | 0.0025                    | <0.000047<br><0.000047               | <0.00005<br><0.00005                | <0.00005<br><0.00005                                   | <0.0000155<br><0.0000155                  | <0.000015<br><0.000015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00000391<br><0.00000391                 | <0.0000142<br><0.0000142                     | <0.0000147<br><0.0000147                      | <0.0000142<br><0.0000142                        |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Chrysene<br>Dibenzía.hlanthracene                                         | 218-01-9<br>53-70-3               | 8270D/SIM<br>8270D/SIM<br>8270D/SIM | 0.002                     | <0.000047<br><0.000047<br><0.000047  | <0.00005<br><0.00005<br><0.00005    | <0.00005<br><0.00005<br><0.00005                       | <0.0000133<br><0.0000155<br><0.0000155    | <0.000015<br><0.000015<br><0.000015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00000391<br><0.00000391<br><0.00000391  | <0.0000142<br><0.0000142<br><0.0000945       | <0.0000147<br><0.0000147<br><0.00000608       | <0.0000142<br><0.0000142<br><0.0000585          |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Fluoranthene<br>Fluorene                                                  | 206-44-0<br>86-73-7               | 8270D/SIM<br>8270D/SIM              | 0.260<br>0.290            | <0.00047<br>0.0023                   | <0.00005<br><0.00005                | <0.00005<br><0.00005                                   | <0.0000155<br><0.0000155                  | <0.000015<br><0.000015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0000391<br><0.0000391                   | <0.0000236<br><0.0000142                     | <0.0000147<br><0.0000147                      | <0.0000142<br><0.0000142                        |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| ndeno[1,2,3-c,d] pyrene<br>Naphthalene                                    | 193-39-5<br>91-20-3               | 8270D/SIM<br>8270D SIM              | 0.00019                   | <0.000047<br>0.25                    | <0.00005<br><0.0001                 | <0.00005<br><0.0001                                    | <0.0000155<br><0.0031                     | <0.000015<br><0.000031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00000391<br><0.00000807                 | <0.0000142<br><0.0000292                     | <0.0000147<br><0.0000304                      | <0.0000142<br>0.0000295 J                       |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
| Pyrene                                                                    | రం-01-8<br>129-00-0               | 8270D/SIM<br>8270D/SIM              | 0.170                     | <pre>0.0013 &lt;0.00047 Notes:</pre> | <0.00005<br><0.00005<br>Analytics   | <0.00005<br><0.00005<br>al results were i              | <0.0000155<br><0.0000155<br>imported from | <0.0000157 J<br><0.000015<br>Pastor, Behling 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0000391<br><0.0000391<br>& Wheeler, LLC | <0.0000142<br><0.0000142<br>which was acquir | <0.0000147<br><0.0000147<br>red by Golder Ass | <0.0000142<br><0.0000142<br>sociates, Inc in 20 | 118.               |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|                                                                           |                                   |                                     |                           | <                                    | Analytica<br>Analyte v              | al results are co<br>was not detecte                   | ompared to AD<br>ed at the specif         | EC 18 AAC 75 T<br>ied Level of Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table C Groundwa<br>Intitation (LOQ) o     | ater Cleanup Lev<br>r Detection Level        | els as amended t<br>(DL)                      | hrough October 1                                | 8, 2023            |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|                                                                           |                                   |                                     |                           | J/JH<br>mg/L<br>LI                   | Estimate<br>Milligram<br>Analyte    | ed value/Estima<br>n per liter<br>not detected at      | the reported I                            | ed high due to su<br>OQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | urrogate recovery                          |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|                                                                           |                                   |                                     |                           | H<br>L                               | Result is<br>Result is              | biased low due<br>biased low due                       | e to laboratory<br>e to low labora        | error. Analyte ex<br>tory control spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | xtraction occurred<br>e (LCS) percentag    | l outside method<br>ge recovery in the       | hold time<br>e quality control s              | ample                                           |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|                                                                           |                                   |                                     |                           | XXXX                                 | LOQ/Nor<br>Analyte v                | n-detected con<br>was detected b                       | elow ADEC Cle                             | eed ADEC Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nup Levels Updat<br>dated in 2023 / 2      | ed in 2023 / 202<br>021 / 2020 / 2018        | 1 / 2020 / 2018 / :<br>8 / 2016<br>8 / 2016   | 2016                                            |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|                                                                           |                                   |                                     |                           | *                                    | Analyte v<br>Analyte v<br>Analyte i | was detected al<br>was not analyze<br>is not currently | ed during samp<br>included in Me          | earrup Levels Up<br>ple event<br>thod 8260 labors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | atory analyte list                         | u21 / 2020 / 201                             | o / 2016                                      |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|                                                                           |                                   |                                     |                           | **                                   | Analyte v<br>Data for               | was added by I<br>MW-403A and                          | NORTECH and<br>MW-5 may no                | t is included in contact the second sec | urrent Method 82<br>amination near th      | 60 analyte list<br>e groundwater si          | urface, as the scr                            | eened interval                                  |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |
|                                                                           |                                   |                                     |                           |                                      | at each                             | well does not in                                       | ntersect the top                          | o of the groundwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ater table                                 |                                              |                                               |                                                 |                    |                               |             |                                |                                |                                |                                |                    |                                |                                |                                |                                |                    |                               |                                |                               |                                |                                |                                |                                |                               |                                |

| Table 3                                      |  |
|----------------------------------------------|--|
| Historical Groundwater Results: 2012-Present |  |

| Former Kiewit Infrastructure West Co., 2050 Peger Road, Fairbanks, Alaska |                                                                                                                                                                                                                                                                                                                                                                                   |                        |                           |                               |                           |                                            |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|-------------------------------|---------------------------|--------------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------|------------------------|----------------------|----------------------|----------------------|---------------------|----------------------------|----------------------------|-------------------|---------------------|---------------------|-------------------|-------------------|-------------------|---------------------|---------------------|
| Analytical Parameter                                                      | Locat                                                                                                                                                                                                                                                                                                                                                                             | ion ID:                | ADEC<br>Cleanup           | MW2-1016                      | MW-2                      | MW12<br>(MW2 Dup)                          | MW-2                                 | MW-2                                | MW-6<br>(MW-2 DUP)                     | MW-2                                    | MW-2                            | MW-2                   | MW-102<br>(MW-2 Dup) | MW-2                 | MW-2                 | MW-2                | MW-2                       | MW-200<br>(MW-2 Dup)       | MW-2              | MW-2                | MW-2                | MW-2              | MW-2              | MW-2              | MW-2                | MW-2                |
|                                                                           | Sampl<br>CAS                                                                                                                                                                                                                                                                                                                                                                      | e Date:<br>Method      | Level<br>mg/L             | 2 17-Oct-12 mg/L              | 08-Aug-14<br>mg/L         | 08-Aug-14<br>mg/L                          | 27-Apr-15<br>mg/L                    | 02-Sep-15<br>mg/L                   | 02-Sep-15<br>mg/L                      | 25-Aug-16<br>mg/L                       | 26-Sep-17<br>mg/L               | 26-Apr-18<br>mg/L      | 26-Apr-18<br>mg/L    | 11-Oct-18<br>mg/L    | 17-Apr-19<br>mg/L    | 15-Oct-19<br>mg/L   | 06-May-20<br>mg/L          | 06-May-20<br>mg/L          | 02-Sep-20<br>mg/L | 12-May-21<br>mg/L   | 06-Oct-21<br>mg/L   | 23-Mar-22<br>mg/L | 11-Oct-22<br>mg/L | 22-Mar-23<br>mg/L | 20-Sep-23<br>mg/L   | 27-Mar-24<br>mg/L   |
| Petroleum Range Hydrocarbons<br>Gasoline Range Organics (GRO)             | N/A                                                                                                                                                                                                                                                                                                                                                                               | AK 101                 | 2.2                       | 2.7                           |                           |                                            | 0.67                                 |                                     |                                        | 0.7                                     | 1.11                            | 2.78 JH                | 2.93 JH              | No Sample,           | No Sample,           |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Diesel Range Organics (DRO)<br>Residual Range Organics (RRO)<br>RTFX      | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                        | AK 102<br>AK 103       | 1.5<br>1.1                | 12                            | 15.2<br>1.31              | 14.5<br>1.40                               | <b>4.46</b><br>0.3 J                 | <b>1.53</b><br><0.144               | 1.44<br><0.144                         | 13<br><0.692                            | 6.16<br>0.361 J                 | 5.86<br>0.472 J        | 6.33<br>0.392 J      | LNAPL<br>Present     | LNAPL<br>Present     | 2.12                | 3.03                       |                            | 4.80              | 5.05                | 4.07                | 5.27              | 5.21              | 3.54              | 6.28 L<br>          | 3.16                |
| Benzene                                                                   | 71-43-2                                                                                                                                                                                                                                                                                                                                                                           | 8260<br>8260           | 0.0046                    | <0.002                        | 0.00067                   | <0.0004                                    | <0.00012                             | <0.00015                            | <0.00015                               | 0.0003 J<br><0.00031                    | 0.0004 J                        | 0.00066 J              | 0.00061 J            | No Sample,           | No Sample,           | 0.0004 U<br>0.001 U | 0.0004 U                   |                            | 0.0004 U          | 0.0004 U<br>0.001 U | 0.0004 U<br>0.001 U | 0.0004 U          | 0.0004 U          | 0.0004 U          | 0.0004 U<br>0.001 U | 0.0004 U<br>0.001 U |
| Ethylbenzene<br>Xylenes                                                   | 100-00-3<br>100-41-4<br>1330-20-7                                                                                                                                                                                                                                                                                                                                                 | 8260<br>8260           | 0.015<br>0.190            | <0.01<br><0.064<br>0.0114     | 0.0409                    | 0.0398<br>0.191                            | 0.00031<br>0.011<br>0.1448           | 0.0251<br>0.202                     | 0.0233<br>0.184                        | 0.0185<br>0.1435                        | 0.0155<br>0.388                 | 0.106 0.837            | 0.118                | LNAPL<br>Present     | LNAPL<br>Present     | 0.0418              | 0.00735                    |                            | 0.0176            | 0.006               | 0.0132              | 0.0153            | 0.00484 0.0732    | 0.00694           | 0.00319<br>0.0502   | 0.0108              |
| Volatile Organic Compounds<br>1,1,1,2-Tetrachloroethane                   | 630-20-6                                                                                                                                                                                                                                                                                                                                                                          | 8260                   | 0.0057                    | <0.002                        | <0.0005                   | <0.0005                                    |                                      |                                     |                                        |                                         |                                 |                        |                      |                      | 1                    |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane                        | 71-55-6<br>79-34-5                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 8.0<br>0.00076            | <0.002<br><0.002              | <0.001<br><0.001          | <0.001<br><0.0005                          |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane                               | 79-00-5<br>75-34-3                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.00041<br>0.028          | <0.002<br><0.002              | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| 1,1-Dichloroethylene<br>1,1-Dichloropropene                               | 75-35-4<br>563-58-6                                                                                                                                                                                                                                                                                                                                                               | 8260<br>8260           | 0.280<br>NE               | <0.002<br><0.002              | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| 1,2,3-Trichlorobenzene<br>1,2,3-Trichloropropane                          | 87-61-6<br>96-18-4                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.007                     | <0.002<br><0.001              | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| 1,2,4-1 richlorobenzene<br>1,2,4-Trimethylbenzene                         | 95-63-6                                                                                                                                                                                                                                                                                                                                                                           | 8260<br>8260           | 0.004                     | <0.002<br>0.68                | <0.001<br>0.347           | <0.001<br>0.336                            |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      | 0.748               | 0.277                      |                            | 0.311             | 0.269               | 0.338               | 0.267             | 0.139             | 0.164             | 0.101               | 0.135               |
| 1,2-Dibromoethane                                                         | 96-12-8<br>106-93-4<br>05-50-1                                                                                                                                                                                                                                                                                                                                                    | 8260                   | 0.000075                  | <0.002                        | <0.001                    | <0.001                                     |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| 1,2-Dichloroethane                                                        | 107-06-2                                                                                                                                                                                                                                                                                                                                                                          | 8260                   | 0.0017                    | <0.002                        | <0.001                    | <0.001                                     |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| 1,3-5-Trimethylbenzene                                                    | 108-67-8                                                                                                                                                                                                                                                                                                                                                                          | 8260                   | 0.060                     | <0.002                        | 0.0639                    | 0.065                                      |                                      |                                     |                                        |                                         |                                 |                        | -                    |                      |                      |                     | 0.0984                     |                            | 0.110             | 0.105               | 0.110               | 0.0951            | 0.0567            | 0.0629            | 0.0473              | 0.0577              |
| 1,3-Dichloropropane                                                       | 142-28-9                                                                                                                                                                                                                                                                                                                                                                          | 8260<br>8260           | NE<br>0.0048              | <0.002                        | <0.0005                   | <0.0005                                    |                                      |                                     |                                        |                                         |                                 |                        |                      | No Sample,           | No Sample,           |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| 2,2-Dichloropropane                                                       | 594-20-7                                                                                                                                                                                                                                                                                                                                                                          | 8260<br>8260           | NE 5.6                    | <0.002                        | <0.0005                   | <0.0005                                    |                                      |                                     |                                        |                                         |                                 |                        |                      | LNAPL<br>Present     | LNAPL<br>Present     |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| 2-Chloroethyl vinyl ether *                                               | 110-75-8                                                                                                                                                                                                                                                                                                                                                                          | 8260                   | NE                        | <0.03                         |                           |                                            |                                      |                                     | -                                      |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| 2-Chlorotoluene<br>2-Hexanone<br>1-Chlorotoluene                          | 591-78-6<br>106-43-4                                                                                                                                                                                                                                                                                                                                                              | 8260<br>8260           | 0.038                     | <0.02                         | <0.001                    | <0.001                                     |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| 4-Isopropyltoluene                                                        | 99-87-6<br>67-64-1                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | NE<br>14                  | 0.05                          | 0.0283                    | 0.0284                                     |                                      |                                     |                                        |                                         |                                 |                        | -                    |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Benzene<br>Bromobenzene                                                   | 71-43-2                                                                                                                                                                                                                                                                                                                                                                           | 8260<br>8260           | 0.0046                    | <0.002                        | 0.00067                   | <0.0004                                    |                                      |                                     |                                        | 0.0003 J                                | 0.0004 J                        | 0.00066 J              | 0.00061 J            |                      |                      | 0.0004 U            | 0.0004 U                   |                            | 0.0004 U          | 0.0004 U            | 0.0004 U            | 0.0004 U          | 0.0004 U          | 0.0004 U          | 0.0004 U            | 0.0004 U            |
| Bromochloromethane<br>Bromodichloromethane                                | 74-97-5                                                                                                                                                                                                                                                                                                                                                                           | 8260<br>8260           | NE<br>0.0013              | <0.002                        | <0.001<br><0.0005         | <0.001<br><0.001<br><0.0005                |                                      |                                     |                                        |                                         |                                 |                        | -                    |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | -                   |                     |
| Bromoform<br>Bromomethane                                                 | 75-25-2<br>74-83-9                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.033                     | <0.01                         | <0.001                    | <0.001                                     |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Carbon disulfide<br>Carbon tetrachloride                                  | 75-15-0<br>56-23-5                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.810                     | <0.002                        | <0.01<br><0.001           | <0.01<br><0.001                            |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Chlorobenzene<br>Chloroethane (ethyl chloride)                            | 108-90-7<br>75-00-3                                                                                                                                                                                                                                                                                                                                                               | 8260<br>8260           | 0.078                     | <0.002<br><0.01               | <0.0005<br><0.001         | <0.0005<br><0.001                          |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Chloroform<br>Chloromethane                                               | 67-66-3<br>74-87-3                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.0022                    | <0.002<br><0.01               | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Volatile Organic Compounds (cont)<br>cis-1,2-Dichloroethylene             | 156-59-2                                                                                                                                                                                                                                                                                                                                                                          | 8260                   | 0.036                     | <0.002                        | <0.001                    | <0.001                                     |                                      |                                     |                                        |                                         |                                 |                        |                      |                      | I                    |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| cis-1,3-Dichloropropene<br>Dibromochloromethane                           | 10061-01-5<br>124-48-1                                                                                                                                                                                                                                                                                                                                                            | 8260<br>8260           | 0.0047<br>0.0087          | <0.002<br><0.002              | <0.0005<br><0.0005        | <0.0005<br><0.0005                         |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Dibromomethane<br>Dichlorodifluoromethane                                 | 74-95-3<br>75-71-8                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.0083<br>0.200           | <0.002<br><0.002              | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| Ethylbenzene<br>Freon-113 **                                              | 100-41-4<br>76-13-1                                                                                                                                                                                                                                                                                                                                                               | 8260<br>8260           | 0.015<br>10               | 0.064                         | 0.0409                    | 0.0398                                     |                                      |                                     |                                        | 0.0185                                  | 0.0155                          | 0.106                  | 0.118                |                      |                      | 0.0418              | 0.00735                    |                            | 0.0176            | 0.006               | 0.0132              | 0.0153            | 0.00484           | 0.00694           | 0.00319             | 0.0108              |
| Hexachlorobutadiene<br>lodomethane *                                      | 87-68-3<br>74-88-4                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.0014<br>NE              | <0.002<br><0.02               | <0.001                    | <0.001                                     |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| sopropylbenzene (Cumene)<br>Methyl isobutyl ketone *                      | 98-82-8<br>108-10-1                                                                                                                                                                                                                                                                                                                                                               | 8260<br>8260           | 0.450<br>6.3              | 0.029                         | 0.00952<br><0.01          | 0.00941<br><0.01                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| Methyl tert-butyl ether<br>Methylene chloride                             | 1634-04-4<br>75-09-2                                                                                                                                                                                                                                                                                                                                                              | 8260<br>8260           | 0.140<br>0.110            | <0.002<br><0.01               | <0.01<br><0.005           | <0.01<br><0.005                            |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Naphthalene **<br>n-Butylbenzene                                          | 91-20-3<br>104-51-8                                                                                                                                                                                                                                                                                                                                                               | 8260<br>8260           | 0.0017                    | <0.002                        | <br><0.001                | <0.001                                     |                                      |                                     |                                        |                                         |                                 |                        |                      | No Sample,<br>I NAPI | No Sample,<br>I NAPI | 0.203               | 0.0697                     |                            | 0.106             | 0.049               | 0.0827              | 0.0637            | 0.0238            | 0.0283            | 0.0191              | 0.0267              |
| n-Propylbenzene<br>p-Xylene (see Xylenes) **                              | 103-65-1<br>1330-20-7                                                                                                                                                                                                                                                                                                                                                             | 8260<br>8260           | 0.660<br>NE               | 0.062                         | 0.0148                    | 0.0147                                     |                                      |                                     |                                        |                                         |                                 |                        |                      | Present              | Present              | 0.325               | 0.0551                     |                            | 0.116             | 0.0454              | 0.0821              | 0.0774            | 0.0287            | 0.0382            | 0.0198              | 0.0439              |
| p- & m-Xylene (see Xylenes) **<br>sec-Butylbenzene                        | 1330-20-7<br>135-98-8                                                                                                                                                                                                                                                                                                                                                             | 8260<br>8260           | NE<br>2.00                | 0.035                         | 0.00592                   | 0.00602                                    |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      | 0.668               | 0.105                      |                            | 0.206             | 0.0841              | 0.142               | 0.128             | 0.0446            | 0.0598            | 0.0304              | 0.072               |
| Styrene<br>ert-Butylbenzene                                               | 100-42-5<br>98-06-6                                                                                                                                                                                                                                                                                                                                                               | 8260<br>8260           | 1.20<br>0.690             | <0.002<br>0.0021              | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| Tetrachloroethylene<br>Toluene                                            | 127-18-4<br>108-88-3                                                                                                                                                                                                                                                                                                                                                              | 8260<br>8260           | 0.041<br>1.100            | <0.002<br><0.01               | <0.001<br><0.001          | <0.001<br><0.001                           | <br><0.00031                         | <0.00031                            | <0.00031                               | <0.00031                                | 0.00402                         | 0.00127                | 0.00126              |                      |                      | 0.001 U             | 0.001 U                    |                            | 0.001 U           | 0.001 U             | 0.001 U             | 0.001 U           | 0.001 U           | <br>0.001 U       | <br>0.001 U         | <br>0.001 U         |
| trans-1,2-Dichloroethylene<br>trans-1,3-Dichloropropene                   | 156-60-5<br>10061-02-6                                                                                                                                                                                                                                                                                                                                                            | 8260<br>8260           | 0.360<br>0.0047           | <0.002<br><0.002              | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| Trichloroethylene<br>Trichlorofluoromethane                               | 79-01-6<br>75-69-4                                                                                                                                                                                                                                                                                                                                                                | 8260<br>8260           | 0.0028<br>5.20            | <0.002<br><0.002              | <0.001<br><0.001          | <0.001<br><0.001                           |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   | _                   |                     |
| Vinyl acetate<br>Vinyl chloride<br>Xvlenes                                | 108-05-4<br>75-01-4<br>1330-20-7                                                                                                                                                                                                                                                                                                                                                  | 8260<br>8260<br>8260   | 0.410<br>0.00019<br>0.190 | <0.02<br><0.002               | <0.001                    | <0.001                                     |                                      |                                     |                                        | <br><br>0 1/35                          |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
| Semi-Volatile Organic Compounds                                           | 90-12-0                                                                                                                                                                                                                                                                                                                                                                           | 8270D/SIM              | 0.011                     | 0.061                         | <0.022                    | <0.0154                                    | 0.0261                               | 0.00262                             | 0.00228                                | 0.0119                                  | 0.0227                          | 0.00702                | 0.002                |                      | і<br>г               | 0.993               | 0.160                      | 0.0204                     | 0.322             | 0.130               | 0.224               | 0.205             | 0.0732            | 0.0980            | 0.0502              | 0.1160              |
| 2-Methylnaphthalene                                                       | 91-57-6<br>83-32-0                                                                                                                                                                                                                                                                                                                                                                | 8270D/SIM<br>8270D/SIM | 0.036                     | 0.083                         | <0.0232                   | <0.0057                                    | 0.00797                              | 0.00248                             | 0.00215                                | 0.00899                                 | 0.00708                         | 0.00035                | 0.0015               |                      |                      |                     | 0.0172                     | 0.0201                     |                   |                     |                     |                   |                   |                   |                     |                     |
| Acenaphthylene                                                            | 208-96-8                                                                                                                                                                                                                                                                                                                                                                          | 8270D/SIM              | 0.260                     | <0.0019                       | <0.0000515                | <0.000521                                  | <0.000785                            | <0.0000391                          | <0.00000391                            | <0.000142                               | <0.0000155                      | <0.000015              | <0.0000588           |                      |                      |                     | 0.000410<br>0.0000490 U    | 0.0000421<br>0.0000490 U   |                   |                     |                     |                   |                   |                   |                     |                     |
| Benzo[a]Anthracene                                                        | 56-55-3                                                                                                                                                                                                                                                                                                                                                                           | 8270D/SIM              | 0.00030                   | <0.00048                      | <0.0000515                | <0.0000521                                 | <0.0000234                           | <0.00000391                         | <0.00000391                            | <0.0000142                              | <0.0000155                      | <0.000015              | <0.0000588           |                      |                      |                     | 0.0000490 U                | 0.0000490 U                |                   |                     |                     |                   |                   |                   |                     |                     |
| Benzo[a]pyrene<br>Benzo[b]Fluoranthene<br>Benzo[a b ilberulene            | 205-99-2                                                                                                                                                                                                                                                                                                                                                                          | 8270D/SIM<br>8270D/SIM | 0.00025                   | <0.000048                     | <0.0000515                | <0.0000521                                 | <0.0000785                           | <0.00000391                         | <0.00000391                            | <0.0000142                              | <0.0000155                      | <0.0000062             | <0.0000588           | No Sample,           | No Sample,           |                     | 0.0000198 U<br>0.0000490 U | 0.0000198 U<br>0.0000490 U |                   |                     |                     |                   |                   |                   |                     |                     |
| Benzolg,n,nperviene<br>Benzolk]fluoranthene                               | 207-08-9                                                                                                                                                                                                                                                                                                                                                                          | 8270D/SIM<br>8270D/SIM | 0.00020                   | <0.000048                     | <0.0000515                | <0.0000521                                 | <0.0000785                           | <0.00000391                         | <0.00000391                            | <0.0000142                              | <0.0000155                      | <0.000015              | <0.0000588           | LNAPL<br>Present     | LNAPL<br>Present     |                     | 0.0000490 U                | 0.0000490 U                |                   |                     |                     |                   |                   |                   |                     |                     |
| Dibenz[a,h]anthracene                                                     | 53-70-3<br>206.44.0                                                                                                                                                                                                                                                                                                                                                               | 8270D/SIM<br>8270D/SIM | 0.002                     | <0.000048                     | <0.0000515                | <0.0000521                                 | <0.0000785                           | <0.00000391                         | <0.00000391                            | <0.0000142                              | <0.0000155                      | <0.000015              | <0.000243            |                      |                      |                     | 0.0000490 U                | 0.0000490 U                |                   |                     |                     |                   |                   |                   |                     |                     |
| Fluorantinene<br>Fluorene                                                 | 200-44-0<br>86-73-7<br>102 20 5                                                                                                                                                                                                                                                                                                                                                   | 8270D/SIM<br>8270D/SIM | 0.200                     | 0.0037                        | <0.0000515                | <0.0000521                                 | 0.00202                              | 0.000268                            | 0.000248                               | 0.00142                                 | 0.00109                         | 0.000698               | 0.000805             |                      |                      |                     | 0.0000490 0                | 0.000490 0                 |                   |                     |                     |                   |                   |                   |                     |                     |
| Naphthalene<br>Phenanthrene                                               | 91-20-3<br>85-01-8                                                                                                                                                                                                                                                                                                                                                                | 8270D SIM<br>8270D/SIM | 0.0017                    | 0.082                         | <0.0000313                | <0.0202                                    | 0.00105                              | 0.00368                             | 0.00328                                | 0.0010142                               | 0.0312                          | 0.00967                | 0.0182               |                      |                      |                     | 0.0326                     | 0.000456                   |                   |                     |                     |                   |                   |                   |                     |                     |
| Pyrene                                                                    | 129-00-0                                                                                                                                                                                                                                                                                                                                                                          | 8270D/SIM              | 0.120                     | <0.0027<br><0.00048<br>Notes: | <0.0000515<br>Analytical  | <0.000430<br><0.0000521<br>results were im | <0.000785                            | <0.0000391<br>stor, Behling & V     | <0.00000391<br>Vheeler. LLC. w         | <0.000142                               | <0.000432<br><0.0000155         | <0.000015<br><0.000015 | <0.0000588           |                      |                      |                     | 0.0000427<br>0.0000490 U   | 0.0000490 U                |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           | NOTES:       Analytical results are comported from Pastor, Elening & Wheeler, LLC, which was acquired by Golder Associates, Inc in 2018.         Analytical results are compared to ADEC 18 AAC 75 Table C Groundwater Cleanup Levels as amended through November 18, 2021          Analytic was not detected at the socified Level of Quantitation (LOQ) or Detection Level (DL) |                        |                           |                               |                           |                                            |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           | <ul> <li>Analyse was not detected at the specified Level of dualitation (CC) of Detection Level (CL)</li> <li>J/JH Estimated value biased high due to surrogate recovery</li> <li>mg/L Milligram per liter</li> </ul>                                                                                                                                                             |                        |                           |                               |                           |                                            |                                      |                                     |                                        |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |                        |                           | Ú<br>H                        | Analyte no<br>Result is t | ot detected at the                         | ne reported LOC<br>to laboratory er  | )<br>ror. Analyte extra             | action occurred o                      | utside method h                         | old time                        |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |                        |                           | L<br>XXXXX                    | Result is t<br>LOQ/Non-   | biased low due<br>detected conce           | to low laborator<br>entrations excee | y control spike (l<br>d ADEC Cleanu | LCS) percentage<br>b Levels Updated    | recovery in the o<br>d in 2021 / 2020 / | uality control s<br>2018 / 2016 | ample                  |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |                        |                           | XXXX<br>XXXX                  | Analyte wa<br>Analyte wa  | as detected bel<br>as detected abo         | ow ADEC Clear                        | nup Levels Upda<br>nup Levels Upda  | ted in 2021 / 202<br>ted in 2021 / 202 | 20 / 2018 / 2016<br>20 / 2018 / 2016    |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |                        |                           | *                             | Analyte wa<br>Analyte is  | as not analyzed<br>not currently in        | during sample<br>cluded in Methe     | event<br>od 8260 laborato           | ry analyte list                        | and the second                          |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |                        |                           | **                            | Analyte wa<br>Data for N  | as added by <b>N</b><br>IW-403A and N      | IW-5 may not r                       | epresent contam                     | ent Method 8260<br>ination near the    | analyte list<br>groundwater surf        | ace, as the scr                 | eened interval         |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |                        |                           |                               | at each w                 | ren aoes not int                           | ersect the top o                     | i ine groundwate                    | a (adié                                |                                         |                                 |                        |                      |                      |                      |                     |                            |                            |                   |                     |                     |                   |                   |                   |                     |                     |

Page 2 of 5

|                                                                                                | Table 3         Historical Groundwater Results: 2012-Present         Former Kiewit Infrastructure West Co., 2050 Peger Road, Fairbanks, Alaska                                           |                                     |                              |                                   |                                     |                                                           |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|
| Analytical Parameter                                                                           | Locat                                                                                                                                                                                    | tion ID:                            | ADEC<br>Cleanup              | MW3-1016                          | MW-3                                | MW-3                                                      | MW-3                                                     | MW-3                                                           | MW-3                                                      | MW-3                                                      | MW-3                                           | MW-3                                | MW-33<br>(MW-3 Dup)                     | MW-3                                    | MW-33<br>(MW-3 Dup)                     | MW-3                        | MW-300<br>(MW-3 Dup)         | MW-3                         | MW-300<br>(MW-3 Dup)         | MW-3                                      | MW-300<br>(MW-3 Dup)                      | MW-3                                      | MW-300<br>(MW-3 Dup)                      | MW-3                                      | MW-300<br>(MW-3 Dup)                      | MW-3                                      | MW-300<br>(MW-3 Dup)                      | MW-3                                      | MW-300<br>(MW-3 Dup)                      | MW-3                                      | MW-300<br>(MW-3 Dup)                      | MW-3                                         | MW-300<br>(MW-3 Dup)                         | MW-3                                      | MW-300<br>(MW-3 Dup)                      |
|                                                                                                | Samp<br>CAS                                                                                                                                                                              | le Date:<br>Method                  | Level                        | 3 16-Oct-12                       | 02-Jul-14<br>mg/l                   | 16-Oct-14                                                 | 27-Apr-15<br>mg/l                                        | 02-Sep-15                                                      | 25-Aug-16                                                 | 26-Sep-17                                                 | 26-Apr-18                                      | 11-Oct-18<br>ma/l                   | 11-Oct-18<br>ma/l                       | 17-Apr-19<br>ma/l                       | 17-Apr-19<br>mg/l                       | 15-Oct-19                   | 15-Oct-19<br>ma/l            | 06-May-20                    | 06-May-20                    | 02-Sep-20                                 | 02-Sep-20                                 | 12-May-21                                 | 12-May-21                                 | 06-Oct-21                                 | 06-Oct-21                                 | 23-Mar-22                                 | 23-Mar-22                                 | 11-Oct-22                                 | 11-Oct-22                                 | 22-Mar-23                                 | 22-Mar-23                                 | 20-Sep-23                                    | 20-Sep-23                                    | 27-Mar-24<br>mg/l                         | 27-Mar-24                                 |
| Petroleum Range Hydrocarbons<br>Gasoline Range Organics (GRO)<br>Diesel Range Organics (DRO)   | N/A<br>N/A                                                                                                                                                                               | AK 101<br>AK 102                    | 2.2<br>1.5                   | 0.58                              |                                     |                                                           | 0.104                                                    | 4.04                                                           | 0.136                                                     | 0.164                                                     | 0.0795 J<br>1.29                               | <br>14.9                            | 11.9                                    | 2.51                                    | 2.96                                    | 4.1                         |                              | 7.31                         | 6.72                         | 22.5                                      |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           | 8.32                                      |                                           | 4.69                                      | <br>14.0 L                                   | <br>14.2 L                                   | <br>7.11                                  | 3.10                                      |
| Residual Range Organics (RRO)<br>BTEX<br>Benzene                                               | N/A                                                                                                                                                                                      | AK 103                              | 0.0046                       |                                   | <b>2.53</b>                         | 3.04                                                      | 0.242 J                                                  | <0.144                                                         | 0.413 J                                                   | 0.462 J                                                   | 0.215 J                                        |                                     | 0.00243                                 | 0.0147                                  | 0.0157                                  |                             |                              |                              |                              |                                           |                                           | 0.00437                                   | 0.00497                                   | 0.00316                                   |                                           |                                           |                                           |                                           |                                           |                                           |                                           | 0.0004.11                                    |                                              | 0.00119                                   | 0.00120                                   |
| Toluene<br>Ethylbenzene<br>Xylenes                                                             | 108-88-3<br>100-41-4<br>1330-20-7                                                                                                                                                        | 8260<br>8260<br>8260                | 1.100<br>0.015<br>0.190      | <0.002<br>0.011<br>0.08           | <0.001<br>0.00299<br>0.00618        | 0.0192<br>0.00315<br>0.037                                | 0.00041 J<br>0.00128<br><0.00767                         | <0.00200<br><0.00031<br>0.00165<br>0.00893                     | 0.00054 J<br>0.00212<br>0.00951                           | 0.00035 J<br>0.00282<br>0.01497                           | <0.00031<br>0.00115<br>0.00637                 | 0.0016<br>0.00173<br>0.00904        | 0.00148<br>0.00164<br>0.00831           | 0.001 U<br>0.00617<br>0.0311            | 0.001 U<br>0.00660<br>0.0326            | 0.0025<br>0.00217<br>0.0109 | 0.00263<br>0.00223<br>0.0104 | 0.001 U<br>0.00245<br>0.0121 | 0.001 U<br>0.00308<br>0.0150 | 0.00103<br>0.0112<br>0.001 U<br>0.00358   | 0.0109<br>0.001 U<br>0.00368              | 0.00437                                   | 0.00655<br>0.00494<br>0.0258              | 0.00645<br>0.00329<br>0.0170              | 0.00200<br>0.00603<br>0.00295<br>0.0156   | 0.00343<br>0.00169<br>0.00811             | 0.00399<br>0.00194<br>0.00921             | 0.00513<br>0.00196<br>0.0117              | 0.00537<br>0.00164<br>0.00932             | 0.00150<br>0.00139<br>0.00798             | 0.001 U<br>0.00125<br>0.00673             | 0.00286<br>0.001 U<br>0.003 U                | 0.00286<br>0.001 U<br>0.003 U                | 0.00113<br>0.00154<br>0.001 U<br>0.00378  | 0.00120<br>0.00153<br>0.001 U<br>0.00346  |
| Volatile Organic Compounds           1,1,1,2-Tetrachloroethane           1,1 - Trichloroethane | 630-20-6<br>71-55-6                                                                                                                                                                      | 8260<br>8260                        | 0.0057                       | <0.0004                           | <0.0005<br><0.001                   | <0.00015<br><0.00031                                      |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloroethane                                             | 79-34-5<br>79-00-5<br>75-34-3                                                                                                                                                            | 8260<br>8260<br>8260                | 0.00076<br>0.00041<br>0.028  | <0.0004<br><0.0004<br><0.0004     | <0.0005<br><0.001<br><0.001         | <0.00015<br><0.00031<br><0.00031                          |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| 1,1-Dichloroethylene<br>1,1-Dichloropropene                                                    | 75-35-4<br>563-58-6                                                                                                                                                                      | 8260<br>8260                        | 0.280<br>NE                  | <0.0004<br><0.0004                | <0.001<br><0.001                    | <0.00015<br><0.00031                                      |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene                                               | 96-18-4<br>120-82-1                                                                                                                                                                      | 8260<br>8260                        | 0.0000075                    | <0.0004<br><0.0002<br><0.0004     | <0.001<br><0.001<br><0.001          | <0.00031<br><0.00031<br><0.00031                          |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dibromoethane                                               | 96-12-8<br>106-93-4                                                                                                                                                                      | 8260<br>8260                        | NE<br>0.000075               | <0.002<br><0.0004                 | <0.01<br><0.001<br><0.001           | <0.00318<br><0.00031<br><0.00031                          |                                                          |                                                                |                                                           |                                                           |                                                | <0.0157                             | 0.0141<br>                              | 0.0281                                  |                                         | 0.0149                      | 0.0136                       | 0.0127                       | 0.0156<br><br>               |                                           | 0.00496                                   |                                           | 0.0257                                    |                                           |                                           | 0.0123                                    | 0.0131                                    |                                           | 0.0166<br><br>                            |                                           |                                           |                                              | 0.00141<br>                                  |                                           |                                           |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane<br>1,2-Dichloropropane                               | 95-50-1<br>107-06-2<br>78-87-5                                                                                                                                                           | 8260<br>8260<br>8260                | 0.300<br>0.0017<br>0.0082    | <0.0004<br><0.0004<br><0.0004     | <0.001<br><0.0005<br><0.001         | <0.00031<br><0.00031<br><0.00031                          |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene<br>1,3-Dichloropropane                           | 108-67-8<br>541-73-1<br>142-28-9                                                                                                                                                         | 8260<br>8260<br>8260                | 0.060<br>0.300<br>NF         | 0.035<br><0.0004<br><0.0004       | 0.0123<br><0.001<br><0.0004         | 0.0314<br><0.00031<br><0.00015                            |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              | 0.00724                      | 0.00799                      | 0.00927                                   | 0.00797                                   | 0.00983                                   | 0.0104                                    | 0.0103                                    | 0.00921                                   | 0.00542                                   | 0.00567                                   | 0.00797                                   | 0.00642                                   | 0.00376                                   | 0.00321                                   | 0.00161                                      | 0.00163                                      | 0.00313                                   | 0.00250                                   |
| 1,4-Dichlorobenzene<br>2,2-Dichloropropane                                                     | 106-46-7<br>594-20-7                                                                                                                                                                     | 8260<br>8260                        | 0.0048<br>NE                 | <0.0004<br><0.0004                | <0.0005<br><0.001                   | <0.00015<br><0.00031                                      |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| 2-Chlorotoluene                                                                                | 110-75-8<br>95-49-8                                                                                                                                                                      | 8260<br>8260                        | NE<br>NE                     | <0.002<br><0.0004                 | <0.001                              | <0.0267<br><br><0.00031                                   |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| 2-Hexanone<br>4-Chlorotoluene<br>4-Isopropyltoluene                                            | 591-78-6<br>106-43-4<br>99-87-6                                                                                                                                                          | 8260<br>8260<br>8260                | 0.038<br>NE<br>NE            | <0.004<br><0.0004<br>0.0079       | <0.01<br><0.001<br><0.001           | <0.0031<br><0.00031<br>0.00721                            |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Acetone<br>Benzene<br>Bromobenzene                                                             | 67-64-1<br>71-43-2<br>108-86-1                                                                                                                                                           | 8260<br>8260<br>8260                | 14<br>0.0046<br>0.062        | <0.01<br>0.0031<br><0.0004        | <br>0.00147<br><0.001               | <br>0.00653<br><0.00031                                   |                                                          |                                                                | 0.00364                                                   | 0.00477                                                   | 0.00229                                        | 0.00261                             | 0.00243                                 | 0.0147                                  | 0.0157                                  | 0.00206                     | 0.00207                      | 0.00498                      | 0.00603                      | 0.00105                                   | 0.00118                                   | 0.00437                                   | 0.00497                                   | 0.00316                                   | 0.00286                                   | 0.00288                                   | 0.00314                                   | 0.00105                                   | 0.00111                                   | 0.00209                                   | 0.00187                                   | <br>0.0004 U<br>                             | <br>0.0004 U<br>                             | <br>0.00119<br>                           | 0.00120                                   |
| Bromochloromethane<br>Bromodichloromethane<br>Bromoform                                        | 74-97-5<br>75-27-4<br>75-25-2                                                                                                                                                            | 8260<br>8260<br>8260                | NE<br>0.0013<br>0.033        | <0.0004<br><0.0004<br><0.002      | <0.001<br><0.0005<br><0.001         | <0.00031<br><0.00015<br><0.00031                          |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Bromomethane<br>Carbon disulfide                                                               | 74-83-9<br>75-15-0                                                                                                                                                                       | 8260<br>8260                        | 0.0075                       | <0.002<br><0.002<br><0.0004       | <0.01<br><0.01                      | <0.0001<br><0.0031<br><0.0031                             |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Chloroethane (ethyl chloride)                                                                  | 108-90-7<br>75-00-3                                                                                                                                                                      | 8260<br>8260                        | 0.0046<br>0.078<br>21        | <0.0004<br><0.0004<br><0.002      | <0.001<br><0.0005<br><0.001         | <0.00031<br><0.00015<br><0.00031                          |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Chloroform<br>Chloromethane<br>Volatile Organic Compounds (cont)                               | 67-66-3<br>74-87-3                                                                                                                                                                       | 8260<br>8260                        | 0.0022<br>0.190              | <0.0004<br><0.002                 | <0.001<br><0.001                    | <0.0003<br><0.00031                                       |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| cis-1,2-Dichloroethylene<br>cis-1,3-Dichloropropene<br>Dibromochloromethane                    | 156-59-2<br>10061-01-5<br>124-48-1                                                                                                                                                       | 8260<br>8260<br>8260                | 0.036<br>0.0047<br>0.0087    | <0.0004<br><0.0004<br><0.0004     | <0.001<br><0.0005<br><0.0005        | <0.00031<br><0.00015<br><0.00015                          |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Dibromomethane<br>Dichlorodifluoromethane<br>Ethylbenzene                                      | 74-95-3<br>75-71-8                                                                                                                                                                       | 8260<br>8260<br>8260                | 0.0083<br>0.200<br>0.015     | <0.0004<br><0.0004                | <0.001<br><0.001                    | <0.00031<br><0.00031                                      |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Freon-113 **<br>Hexachlorobutadiene                                                            | 76-13-1<br>87-68-3                                                                                                                                                                       | 8260<br>8260                        | 10<br>0.0014                 | <0.0004                           | <0.00233                            | <0.00031                                                  |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Isopropylbenzene (Cumene)<br>Methyl isobutyl ketone *                                          | 98-82-8<br>108-10-1                                                                                                                                                                      | 8260<br>8260<br>8260                | 0.450<br>6.3                 | <0.004<br>0.0041<br><0.004        | <0.001<br><0.01                     | <0.00031<br><0.0031                                       |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Methyl tert-butyl ether<br>Methylene chloride<br>Naphthalene **                                | 1634-04-4<br>75-09-2<br>91-20-3                                                                                                                                                          | 8260<br>8260<br>8260                | 0.140<br>0.110<br>0.0017     | <0.0004<br><0.002<br>             | <0.01<br><0.005<br>                 | <0.0031<br><0.001<br>                                     |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         | 0.0132                      | 0.015                        | 0.0102                       | <br><br>0.0136               | 0.00565                                   | 0.00568                                   | 0.0173                                    | 0.0216                                    | 0.0223                                    | 0.0212                                    | 0.0122                                    | 0.0124                                    | 0.0172                                    | <br><br>0.0133                            | 0.00853                                   | 0.00669                                   | <br><br>0.00110                              | 0.00108                                      | 0.00472                                   | 0.00342                                   |
| n-Butylbenzene<br>n-Propylbenzene<br>o-Xylene (see Xylenes) **                                 | 104-51-8<br>103-65-1<br>1330-20-7                                                                                                                                                        | 8260<br>8260<br>8260                | 1.00<br>0.660                | <0.0004<br>0.0068                 | <0.001<br><0.001                    | <0.00031<br><0.00031                                      |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| p- & m-Xylene (see Xylenes) **<br>sec-Butylbenzene                                             | 1330-20-7<br>135-98-8                                                                                                                                                                    | 8260<br>8260                        | NE<br>2.00                   | 0.0037                            | <0.001                              | <0.00031                                                  |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              | 0.00707                      | 0.00875                      | 0.00222                                   | 0.00226                                   | 0.0133                                    | 0.0156                                    | 0.0108                                    | 0.00987                                   | 0.00505                                   | 0.00567                                   | 0.00742                                   | 0.00593                                   | 0.00483                                   | 0.00408                                   | 0.002 U                                      | 0.002 U                                      | 0.00237                                   | 0.00219                                   |
| Styrene<br>tert-Butylbenzene<br>Tetrachloroethylene                                            | 100-42-5<br>98-06-6<br>127-18-4                                                                                                                                                          | 8260<br>8260<br>8260                | 1.20<br>0.690<br>0.041       | <0.0004<br><0.0004<br><0.0004     | <0.001<br><0.001<br><0.001          | <0.00031<br><0.00031<br><0.00031                          |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Toluene<br>trans-1,2-Dichloroethylene<br>trans-1,3-Dichloropropene                             | 108-88-3<br>156-60-5<br>10061-02-6                                                                                                                                                       | 8260<br>8260<br>8260                | 1.100<br>0.360<br>0.0047     | <0.002<br><0.0004<br><0.0004      | <0.001<br><0.001<br><0.001          | 0.0192<br><0.00031<br><0.00031                            | 0.00041 J                                                | <0.00031                                                       | 0.00054 J                                                 | 0.00035 J                                                 | <0.00031                                       | 0.0016                              | 0.00148                                 | 0.001 U<br>                             | 0.001 U<br>                             | 0.0025                      | 0.00263                      | 0.001 U<br>                  | 0.001 U<br>                  | 0.0112                                    | 0.0109                                    | 0.00698                                   | 0.00655                                   | 0.00645                                   | 0.00603                                   | 0.00343                                   | 0.00399                                   | 0.00513                                   | 0.00537                                   | 0.00150                                   | 0.001 U<br>                               | 0.00286                                      | 0.00286                                      | 0.00154                                   | 0.00153                                   |
| Trichloroethylene<br>Trichlorofluoromethane                                                    | 79-01-6<br>75-69-4                                                                                                                                                                       | 8260<br>8260                        | 0.0028                       | <0.0004<br><0.0004                | <0.001<br><0.001                    | <0.00031<br><0.00031                                      |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
| Vinyl acetate<br>Vinyl chloride<br>Xylenes                                                     | 108-05-4<br>75-01-4<br>1330-20-7                                                                                                                                                         | 8260<br>8260<br>8260                | 0.410<br>0.00019<br>0.190    | <0.004<br><0.0004<br>0.08         | <0.001<br>0.00618                   | <0.00031<br>0.037                                         | 0.00767                                                  | 1.00767                                                        | 0.00951                                                   | 0.01497                                                   | 0.00637                                        | 0.00904                             | 0.00831                                 | 0.0311                                  | 0.0326                                  | 0.0109                      | 0.0104                       | 0.0121                       | <br>0.0150                   | 0.00358                                   | 0.00368                                   | 0.0220                                    | 0.0258                                    | 0.0170                                    | 0.0156                                    | 0.00811                                   | 0.00921                                   | 0.0117                                    | 0.00932                                   | 0.00798                                   | 0.00673                                   | <br><br>0.003 U                              | <br><br>0.003 U                              | 0.00378                                   | 0.00346                                   |
| Semi-Volatile Organic Compounds 1-Methylnaphthalene 2-Methylnaphthalene                        | 90-12-0<br>91-57-6                                                                                                                                                                       | 8270D/SIM<br>8270D/SIM              | 0.011<br>0.036               | <0.057<br><0.088                  | <0.000725<br><0.0005                | <0.00628<br><0.00447                                      | 0.0013<br>0.000247                                       | 0.000028<br>0.0000164                                          | <0.0000147<br><0.0000147                                  | <0.0000154<br><0.0000154                                  | 0.00319<br>0.00270                             | 0.00005 U<br>0.00005 U              | 0.00374<br>0.00441                      | 0.00443<br>0.00432                      | 0.00413<br>0.00381                      |                             |                              |                              |                              | 0.0000463 U<br>0.0000463 U                | 0.0000463 U<br>0.0000463 U                | 0.000227 U<br>0.000227 U                  | 0.000231 U<br>0.000231 U                  | 0.00330<br>0.00205                        | 0.00452<br>0.00297                        | 0.00326<br>0.00285                        | 0.00387<br>0.00351                        | 0.0000463 U<br>0.0000463 U                | 0.0000463 U<br>0.0000463 U                | 0.00131<br>0.00121                        | 0.00164<br>0.00164                        | 0.0000481 UH<br>0.0000481 UH                 | 0.0000481 UH<br>0.0000481 UH                 | 0.000289<br>0.000183                      | 0.000556<br>0.000457                      |
| Acenaphthene<br>Acenaphthylene<br>Anthracene                                                   | 83-32-9<br>208-96-8<br>120-12-7                                                                                                                                                          | 8270D/SIM<br>8270D/SIM<br>8270D/SIM | 0.530<br>0.260<br>0.043      | <0.0027<br><0.00054<br><0.0005    | <0.000528<br><0.0005<br><0.0005     | <0.000306<br><0.000306<br><0.000306                       | 0.000339<br><0.0000155<br>0.0000582                      | 0.0000401<br><0.00000391<br><0.00000391                        | 0.000402<br><0.0000147<br><0.0000147                      | <0.0000154<br><0.0000154<br><0.0000154                    | 0.000322<br><0.0000144<br><0.0000144           | 0.000417<br>0.00005 U<br>0.00005 U  | 0.00112<br>0.000049 U<br>0.000049 U     | 0.000294<br>0.000049 U<br>0.000049 U    | 0.000298<br>0.000049 U<br>0.000049 U    |                             |                              |                              |                              | 0.0000463 U<br>0.0000463 U<br>0.0000463 U | 0.0000463 U<br>0.0000463 U<br>0.0000463 U | 0.00115<br>0.000227 U<br>0.000227 U       | 0.00146<br>0.000231 U<br>0.000231 U       | 0.000315<br>0.0000481 U<br>0.0000481 U    | 0.000426<br>0.0000472 U<br>0.0000472 U    | 0.000295<br>0.0000528<br>0.0000867        | 0.000346<br>0.0000655<br>0.0000481 U      | 0.000124<br>0.0000463 U<br>0.0000463 U    | 0.000133<br>0.0000463 U<br>0.0000463 U    | 0.000139<br>0.0000455 U<br>0.0000455 U    | 0.000135<br>0.0000463 U<br>0.0000463 U    | 0.0000481 UH<br>0.0000481 UH<br>0.0000481 UH | 0.0000481 UH<br>0.0000481 UH<br>0.0000481 UH | 0.000322<br>0.0000481 U<br>0.0000481 U    | 0.000276<br>0.0000490 U<br>0.0000490 U    |
| Benzo[a]Anthracene<br>Benzo[a]pyrene<br>Benzo[b]Eluoranthene                                   | 56-55-3<br>50-32-8<br>205-99-2                                                                                                                                                           | 8270D/SIM<br>8270D/SIM<br>8270D/SIM | 0.00030<br>0.00025<br>0.0025 | <0.000052<br><0.00005<br><0.00005 | <0.00005<br><0.00005<br><0.00005    | <0.0000153<br><0.0000153<br><0.0000153                    | <0.0000155<br><0.0000155<br><0.0000155                   | <0.00000391<br><0.00000391<br><0.00000391                      | <0.0000147<br><0.00000608<br><0.0000147                   | <0.0000154<br><0.00000635<br><0.0000154                   | <0.0000144<br><0.00000596<br><0.0000144        | 0.00005 U<br>0.00002 U<br>0.00005 U | 0.000049 U<br>0.0000196 U<br>0.000049 U | 0.000049 U<br>0.0000196 U<br>0.000049 U | 0.000049 U<br>0.0000196 U<br>0.000049 U |                             |                              |                              |                              | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000455 U<br>0.0000182 U<br>0.0000455 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000472 U<br>0.0000189 U<br>0.0000472 U | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000455 U<br>0.0000182 U<br>0.0000455 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000481 UH<br>0.0000192 UH<br>0.0000481 UH | 0.0000481 UH<br>0.0000192 UH<br>0.0000481 UH | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000490 U<br>0.0000196 U<br>0.0000490 U |
| Benzo[g,h,i]perylene<br>Benzo[k]fluoranthene                                                   | 191-24-2<br>207-08-9                                                                                                                                                                     | 8270D/SIM<br>8270D/SIM              | 0.00026                      | <0.00005<br><0.00005              | <0.00005<br><0.00005                | <0.0000153<br><0.0000153                                  | <0.0000155<br><0.0000155                                 | <0.00000391<br><0.00000391                                     | <0.0000147<br><0.0000147                                  | <0.0000154<br><0.0000154                                  | <0.0000144<br><0.0000144                       | 0.00005 U<br>0.00005 U              | 0.000049 U<br>0.000049 U                | 0.000049 U<br>0.000049 U                | 0.000049 U<br>0.000049 U                |                             |                              |                              |                              | 0.0000463 U<br>0.0000463 U                | 0.0000463 U<br>0.0000463 U                | 0.0000455 U<br>0.0000455 U                | 0.0000463 U<br>0.0000463 U                | 0.0000481 U<br>0.0000481 U                | 0.0000472 U<br>0.0000472 U                | 0.0000481 U<br>0.0000481 U                | 0.0000481 U<br>0.0000481 U                | 0.0000463 U<br>0.0000463 U                | 0.0000463 U<br>0.0000463 U                | 0.0000455 U<br>0.0000455 U                | 0.0000463 U<br>0.0000463 U                | 0.0000481 UH<br>0.0000481 UH                 | 0.0000481 UH<br>0.0000481 UH                 | 0.0000481 U<br>0.0000481 U                | 0.0000490 U<br>0.0000490 U                |
| Chrysene<br>Dibenz[a,h]anthracene<br>Fluoranthene                                              | 218-01-9<br>53-70-3<br>206-44-0                                                                                                                                                          | 8270D/SIM<br>8270D/SIM<br>8270D/SIM | 0.002<br>0.00025<br>0.260    | <0.00005<br><0.00005<br><0.0005   | <0.00005<br><0.00005<br><0.00005    | <0.0000153<br><0.0000153<br><0.0000153                    | <0.0000155<br><0.0000155<br><0.0000155                   | <0.00000391<br><0.00000391<br><0.00000391                      | <0.0000147<br><0.00000608<br><0.0000147                   | <0.0000154<br><0.0000635<br><0.0000154                    | <0.0000144<br><0.00000596<br><0.0000144        | 0.00005 U<br>0.00002 U<br>0.00005 U | 0.000049 U<br>0.0000196 U<br>0.000049 U | 0.000049 U<br>0.0000196 L<br>0.000049 U | 0.000049 U<br>0.0000196 U<br>0.000049 U |                             |                              |                              |                              | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000455 U<br>0.0000182 U<br>0.0000455 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000472 U<br>0.0000189 U<br>0.0000472 U | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000455 U<br>0.0000182 U<br>0.0000463 U | 0.0000463 U<br>0.0000185 U<br>0.0000463 U | 0.0000481 UH<br>0.0000192 UH<br>0.0000481 UH | 0.0000481 UH<br>0.0000192 UH<br>0.0000481 UH | 0.0000481 U<br>0.0000192 U<br>0.0000481 U | 0.0000490 U<br>0.0000196 U<br>0.0000490 U |
| Fluorene<br>Indeno[1,2,3-c,d] pyrene<br>Naphthalene                                            | 86-73-7<br>193-39-5<br>91-20-3                                                                                                                                                           | 8270D/SIM<br>8270D/SIM<br>8270D SIM | 0.290<br>0.00019<br>0.0017   | <0.0071<br><0.00005<br><0.12      | <0.000562<br><0.00005<br><0.00438   | <0.00148<br><0.0000153<br><0.0391                         | 0.000747<br><0.0000155<br>0.00166                        | <0.00000391<br><0.00000391<br>0.000193                         | <0.0000147<br><0.0000147<br>0.000195                      | <0.0000154<br><0.0000154<br><0.0000318                    | 0.000961<br><0.0000144<br>0.003330             | 0.00005 U<br>0.00005 U<br>0.000938  | 0.00097<br>0.000049 U<br>0.00598        | 0.00103<br>0.000049 U<br>0.00870        | 0.00101<br>0.000049 U<br>0.00822        |                             |                              |                              |                              | 0.0000463 U<br>0.0000463 U<br>0.000471    | 0.0000463 U<br>0.0000463 U<br>0.000620    | 0.000227 U<br>0.0000455 U<br>0.00121      | 0.000231 U<br>0.0000463 U<br>0.00151      | 0.000776<br>0.0000481 U<br>0.00646        | 0.000990<br>0.0000472 U<br>0.00853        | 0.00092<br>0.0000481 U<br>0.00369         | 0.00114<br>0.0000481 U<br>0.00421         | 0.0000463 U<br>0.0000463 U<br>0.0000926 U | 0.0000463 U<br>0.0000463 U<br>0.0000926 U | 0.000385<br>0.0000463 U<br>0.00212        | 0.000385<br>0.0000463 U<br>0.00254        | 0.0000481 UH<br>0.0000481 UH<br>0.0000962 UH | 0.0000481 UH<br>0.0000481 UH<br>0.0000962 UH | 0.000225<br>0.0000481 U<br>0.000483       | 0.000322<br>0.0000490 U<br>0.000754       |
| Phenanthrene<br>Pyrene                                                                         | 85-01-8<br>129-00-0                                                                                                                                                                      | 8270D/SIM<br>8270D/SIM              | 0.170<br>0.120               | <0.0044<br><0.0005                | <0.0005<br><0.000057                | <0.000306<br><0.0000153                                   | 0.0000769<br>0.0000277 J                                 | <0.00000391<br><0.0000391                                      | <0.0000147<br><0.0000515                                  | <0.0000154<br><0.0000154                                  | 0.000334<br><0.0000144                         | 0.00005 U<br>0.0000732              | 0.000504<br>0.0000490 U                 | 0.000295<br>0.000049 U                  | 0.000273<br>0.000049 U                  |                             |                              |                              |                              | 0.0000463 U<br>0.000156                   | 0.0000463 U<br>0.000161                   | 0.000227 U<br>0.0000455 U                 | 0.000231 U<br>0.0000871                   | 0.000185<br>0.0000481 U                   | 0.000253<br>0.0000472 U                   | 0.000422<br>0.0000481 U                   | 0.000599<br>0.0000481 U                   | 0.0000926 U<br>0.0000463 U                | 0.0000926 U<br>0.0000463 U                | 0.0000909 U<br>0.0000463 U                | 0.0000969<br>0.0000463 U                  | 0.0000962 UH<br>0.0000481 UH                 | 0.0000962 UH<br>0.0000481 UH                 | 0.0000962 U<br>0.0000481 U                | 0.0000980 U<br>0.0000490 U                |
|                                                                                                |                                                                                                                                                                                          |                                     |                              | <u>Notes</u> .<br><               | Analytica<br>Analytica<br>Analyte w | l results were in<br>l results are co<br>vas not detecter | mported from P<br>mpared to ADE<br>d at the specifie     | C 18 AAC 75 Tab<br>Level of Quanti                             | ble C Groundwate<br>itation (LOQ) or I                    | nich was acquire<br>er Cleanup Level<br>Detection Level ( | d by Golder As<br>s as amended<br>DL)          | sociates, inc in through Noven      | iber 18, 2021                           |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
|                                                                                                |                                                                                                                                                                                          |                                     |                              | J/JH<br>mg/L<br>U                 | Estimateo<br>Milligram<br>Analyte n | d value/Estimat<br>per liter<br>ot detected at t          | ted value biased                                         | d high due to surr<br>Q                                        | rogate recovery                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
|                                                                                                |                                                                                                                                                                                          |                                     |                              | H<br>L<br>XXXX                    | Result is<br>Result is<br>LOQ/Non   | biased low due<br>biased low due<br>-detected conc        | e to laboratory e<br>to low laborato<br>centrations exce | error. Analyte extra<br>ory control spike (<br>eed ADEC Cleanu | action occurred o<br>(LCS) percentage<br>p Levels Updated | outside method h<br>e recovery in the<br>d in 2021 / 2020 | old time<br>quality control :<br>/ 2018 / 2016 | sample                              |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
|                                                                                                |                                                                                                                                                                                          |                                     |                              | XXXX<br>XXXX                      | Analyte w<br>Analyte w              | as detected be<br>as detected ab                          | elow ADEC Clea                                           | anup Levels Upda<br>anup Levels Upda<br>e event                | ated in 2021 / 202<br>ated in 2021 / 202                  | 20 / 2018 / 2016<br>20 / 2018 / 2016                      |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
|                                                                                                |                                                                                                                                                                                          |                                     |                              | * **                              | Analyte is<br>Analyte w             | anot currently i<br>as added by N                         | included in Meth                                         | nod 8260 laborate                                              | ory analyte list<br>rent Method 8260                      | ) analyte list                                            | faan *                                         | manual last of                      |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |
|                                                                                                | *** Data for MW-403A and MW-5 may not represent contamination near the groundwater surface, as the screened interval<br>at each well does not intersect the top of the groundwater table |                                     |                              |                                   |                                     |                                                           |                                                          |                                                                |                                                           |                                                           |                                                |                                     |                                         |                                         |                                         |                             |                              |                              |                              |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                              |                                              |                                           |                                           |

|                                                                 | Former Kiewit Infrastructure West Co., 2050 Peger Road, Fairbanks, Alaska                                                                                                                |                        |                   |                      |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|----------------------|---------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|----------------------------------|--------------------------|--------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---|
|                                                                 | Location ID: ADEC M MW4-1016 MW-4 MW-4 MW-4 MW-4 MW-4 MW-4 MW-4 MW-4                                                                                                                     |                        |                   |                      |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Analytical Parameter                                            |                                                                                                                                                                                          |                        | Cleanup           | w                    |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 | Samp                                                                                                                                                                                     | le Date:               |                   | 4 16-Oct-12          | 03-Jul-14                 | 16-Oct-14                             | 27-Apr-15                            | 02-Sep-15                               | 25-Aug-16                            | 26-Sep-17                              | 26-Apr-18                        | 11-Oct-18                | 17-Apr-19                | 15-Oct-19          | 06-May-20          | 02-Sep-20          | 12-May-21          | 06-Oct-21          | 22-Mar-22          | 1 |
| Petroleum Pange Hydrocarbons                                    | CAS                                                                                                                                                                                      | Method                 | mg/L              | mg/L                 | mg/L                      | mg/L                                  | mg/L                                 | mg/L                                    | mg/L                                 | mg/L                                   | mg/L                             | mg/L                     | mg/L                     | mg/L               | mg/L               | mg/L               | mg/L               | mg/L               | mg/L               | 1 |
| Gasoline Range Organics (GRO)                                   | N/A                                                                                                                                                                                      | AK 101                 | 2.2               | <0.1                 |                           |                                       | 0.0318 J                             |                                         | 0.0326 J                             | < 0.031                                | < 0.031                          |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Diesel Range Organics (DRO)<br>Residual Range Organics (RRO)    | N/A<br>N/A                                                                                                                                                                               | AK 102<br>AK 103       | 1.5<br>1.1        | 0.59                 | <0.6                      | 1.12<br>0.947                         | 1.72<br>0.371 J                      | 0.994<br><0.144                         | 1.15<br>0.25 J                       | 0.769<br>0.316 J                       | 0.786<br>0.331 J                 | 0.667                    | 0.951                    | 0.826              | 0.968              | 1.69               | 1.63               | 1.33               | 1.77               |   |
| BTEX                                                            | 71-43-2                                                                                                                                                                                  | 8260                   | 0.0046            | L <0.0002            | 0.0008                    | <0.00012                              | 0.0003 1                             | <0.00015                                | 0.00023.1                            | 0.00051                                | 0.00065                          | 0.00056                  | 0.00102                  | 93000.0            | 0.00122            | 0.000914           | 0.00122            | 0.00000            | 0.00124            |   |
| Toluene                                                         | 108-88-3                                                                                                                                                                                 | 8260                   | 1.100             | <0.001               | < 0.001                   | <0.00031                              | < 0.00031                            | <0.00031                                | < 0.00031                            | 0.00055 J                              | < 0.00031                        | 0.001 U                  | 0.001 U                  | < 0.00031          | 0.00123            | 0.0001 U           | 0.00123            | 0.001 U            | 0.00134<br>0.001 U |   |
| Ethylbenzene<br>Xylenes                                         | 100-41-4<br>1330-20-7                                                                                                                                                                    | 8260<br>8260           | 0.015<br>0.190    | <0.0002<br><0.0004   | <0.001<br>0.0036          | <0.00031<br><0.001                    | <0.00031<br><0.00093                 | <0.00031<br><0.00093                    | <0.00031<br><0.00093                 | 0.00036 J<br>0.00171 J                 | <0.00031<br><0.00093             | 0.001 U<br>0.003 U       | 0.001 U<br>0.003 U       | <0.00031<br><0.001 | 0.001 U<br>0.003 U |   |
| Volatile Organic Compounds                                      | 630-20-6                                                                                                                                                                                 | 8260                   | 0.0057            | <0.0002              | <0.0005                   | <0.00015                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    | 1                  |                    |                    |                    | 1                  | _ |
| 1,1,1-Trichloroethane                                           | 71-55-6                                                                                                                                                                                  | 8260                   | 8.0               | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,1,2,2-Trichloroethane                                         | 79-34-5                                                                                                                                                                                  | 8260                   | 0.00076           | <0.0002              | <0.0005                   | <0.00015<br><0.00031                  |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,1-Dichloroethane<br>1.1-Dichloroethylene                      | 75-34-3<br>75-35-4                                                                                                                                                                       | 8260<br>8260           | 0.028             | <0.0002<br><0.0002   | <0.001<br><0.001          | <0.00031<br><0.00015                  |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,1-Dichloropropene                                             | 563-58-6                                                                                                                                                                                 | 8260                   | NE<br>0.007       | <0.0002              | < 0.001                   | < 0.00031                             |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,2,3-Trichloropropane                                          | 96-18-4                                                                                                                                                                                  | 8260                   | 0.0000075         | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene                | 120-82-1<br>95-63-6                                                                                                                                                                      | 8260<br>8260           | 0.004             | <0.0002              | <0.001                    | <0.00031<br><0.00031                  |                                      |                                         |                                      |                                        |                                  | 0.001 U                  | 0.001 U                  | <0.00031           | 0.001 U            | 0.001 U            | 0.001 U            | <br>0.001 U        | 0.001 U            | 1 |
| 1,2-Dibromo-3-chloropropane<br>1.2-Dibromoethane                | 96-12-8<br>106-93-4                                                                                                                                                                      | 8260<br>8260           | NE<br>0.000075    | <0.001<br><0.0002    | <0.01<br><0.001           | <0.0031<br><0.00031                   |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,2-Dichlorobenzene                                             | 95-50-1                                                                                                                                                                                  | 8260                   | 0.300             | < 0.0002             | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,2-Dichloropropane                                             | 78-87-5                                                                                                                                                                                  | 8260                   | 0.0017            | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene                   | 108-67-8<br>541-73-1                                                                                                                                                                     | 8260<br>8260           | 0.060             | <0.0002<br><0.0002   | <0.001<br><0.001          | <0.00031<br><0.00031                  |                                      |                                         |                                      |                                        |                                  |                          |                          |                    | 0.001 U            | 1 |
| 1,3-Dichloropropane                                             | 142-28-9                                                                                                                                                                                 | 8260<br>8260           | NE<br>0.0048      | <0.0002              | <0.0004                   | <0.00015                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 2,2-Dichloropropane                                             | 594-20-7                                                                                                                                                                                 | 8260                   | NE                | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 2-Butanone (methyl ethyl ketone)<br>2-Chloroethyl vinyl ether * | 78-93-3<br>110-75-8                                                                                                                                                                      | 8260<br>8260           | 5.6<br>NE         | <0.005               | <0.01                     | <0.0031                               |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 2-Chlorotoluene<br>2-Hexanone                                   | 95-49-8<br>591-78-6                                                                                                                                                                      | 8260<br>8260           | NE<br>0.038       | <0.0002<br><0.002    | <0.001<br><0.01           | <0.00031<br><0.0031                   |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| 4-Chlorotoluene                                                 | 106-43-4                                                                                                                                                                                 | 8260                   | NE                | < 0.0002             | < 0.001                   | < 0.00031                             |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Acetone                                                         | 99-87-6<br>67-64-1                                                                                                                                                                       | 8260                   | NE<br>14          | <0.0002<br><0.005    | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Benzene<br>Bromobenzene                                         | 71-43-2<br>108-86-1                                                                                                                                                                      | 8260<br>8260           | 0.0046            | <0.0002<br><0.0002   | 0.00083                   | <0.00012<br><0.00031                  |                                      |                                         | 0.00023 J                            | 0.00051                                | 0.00065                          | 0.00056                  | 0.00102                  | 0.00068            | 0.00123            | 0.000814           | 0.00123            | 0.00090            | 0.00134            | 0 |
| Bromochloromethane                                              | 74-97-5                                                                                                                                                                                  | 8260<br>8260           | NE<br>0.0012      | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Bromoform                                                       | 75-25-2                                                                                                                                                                                  | 8260                   | 0.033             | <0.001               | <0.001                    | <0.00013                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Bromomethane<br>Carbon disulfide                                | 74-83-9<br>75-15-0                                                                                                                                                                       | 8260<br>8260           | 0.0075 0.810      | <0.001<br><0.0002    | <0.01<br><0.01            | <0.0031<br><0.0031                    |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Carbon tetrachloride                                            | 56-23-5<br>108-90-7                                                                                                                                                                      | 8260<br>8260           | 0.0046            | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Chloroethane (ethyl chloride)                                   | 75-00-3                                                                                                                                                                                  | 8260                   | 21                | <0.001               | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Chloromethane                                                   | 67-66-3<br>74-87-3                                                                                                                                                                       | 8260<br>8260           | 0.0022            | <0.0002<br><0.001    | <0.001<br><0.001          | <0.0003                               |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Volatile Organic Compounds (cont)<br>cis-1,2-Dichloroethylene   | 156-59-2                                                                                                                                                                                 | 8260                   | 0.036             | <0.0002              | <0.001                    | < 0.00031                             |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    | _ |
| cis-1,3-Dichloropropene<br>Dibromochloromethane                 | 10061-01-5<br>124-48-1                                                                                                                                                                   | 8260<br>8260           | 0.0047            | <0.0002<br><0.0002   | <0.0005<br><0.0005        | <0.00015<br><0.00015                  |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Dibromomethane                                                  | 74-95-3                                                                                                                                                                                  | 8260                   | 0.0083            | < 0.0002             | < 0.001                   | < 0.00031                             |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Ethylbenzene                                                    | 75-71-8<br>100-41-4                                                                                                                                                                      | 8260<br>8260           | 0.200             | <0.0002<br><0.0002   | <0.001                    | <0.00031 <0.00031                     |                                      |                                         | <0.00031                             | 0.00036 J                              | <0.00031                         | 0.001 U                  | 0.001 U                  | <0.00031           | 0.001 U            |   |
| Freon-113 **<br>Hexachlorobutadiene                             | 76-13-1<br>87-68-3                                                                                                                                                                       | 8260<br>8260           | 10<br>0.0014      | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| lodomethane *                                                   | 74-88-4                                                                                                                                                                                  | 8260                   | NE                | <0.002               |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Methyl isobutyl ketone *                                        | 108-10-1                                                                                                                                                                                 | 8260                   | 6.3               | <0.002               | <0.01                     | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Methyl tert-butyl ether<br>Methylene chloride                   | 1634-04-4<br>75-09-2                                                                                                                                                                     | 8260<br>8260           | 0.140 0.110       | <0.0002<br><0.001    | <0.01<br><0.005           | <0.0031<br><0.001                     |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Naphthalene **                                                  | 91-20-3<br>104-51-8                                                                                                                                                                      | 8260<br>8260           | 0.0017            | <                    | <br><0.001                | <br><0.00031                          |                                      |                                         |                                      |                                        |                                  |                          |                          | <0.00031           | 0.001 U            |   |
| n-Propylbenzene                                                 | 103-65-1                                                                                                                                                                                 | 8260                   | 0.660             | <0.0002              | <0.001                    | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| p- & m-Xylene (see Xylenes) **                                  | 1330-20-7<br>1330-20-7                                                                                                                                                                   | 8260<br>8260           | NE<br>NE          |                      |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    | 0.001 U<br>0.002 U |   |
| sec-Butylbenzene<br>Styrene                                     | 135-98-8<br>100-42-5                                                                                                                                                                     | 8260<br>8260           | 2.00              | <0.0002<br><0.0002   | <0.001<br><0.001          | <0.00031<br><0.00031                  |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| tert-Butylbenzene                                               | 98-06-6                                                                                                                                                                                  | 8260                   | 0.690             | < 0.0002             | < 0.001                   | < 0.00031                             |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Toluene                                                         | 127-18-4<br>108-88-3                                                                                                                                                                     | 8260                   | 1.100             | <0.0002              | <0.001                    | <0.00031                              | <0.00031                             | <0.00031                                | <0.00031                             | 0.00055 J                              | <0.00031                         | 0.001 U                  | 0.001 U                  | <0.00031           | 0.001 U            |   |
| trans-1,2-Dichloroethylene<br>trans-1,3-Dichloropropene         | 156-60-5<br>10061-02-6                                                                                                                                                                   | 8260<br>8260           | 0.360 0.0047      | <0.0002<br><0.0002   | <0.001<br><0.001          | <0.00031<br><0.00031                  |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Trichloroethylene                                               | 79-01-6                                                                                                                                                                                  | 8260                   | 0.0028            | <0.0002              | < 0.001                   | <0.00031                              |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Vinyl acetate                                                   | 108-05-4                                                                                                                                                                                 | 8260                   | 0.410             | <0.002               |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
| Vinyl chloride<br>Xylenes                                       | 75-01-4<br>1330-20-7                                                                                                                                                                     | 8260<br>8260           | 0.00019<br>0.190  | <0.0002<br><0.0004   | <0.001<br>0.0036          | <0.00031<br><0.001                    | <0.00093                             | <0.00093                                | <0.00093                             | 0.00171 J                              | <0.00093                         | <br>0.003 U              | 0.003 U                  | <br><0.001         | 0.003 U            | <br>0.003 U        | <br>0.003 U        | <br>0.003 U        | <br>0.003 U        |   |
| Semi-Volatile Organic Compounds<br>1-Methylnaphthalene          | 90-12-0                                                                                                                                                                                  | 8270D/SIM              | 0.011             | <0.00028             | <0.0000954                | < 0.0000153                           | 0.0000371.J                          | <0.00000391                             | 0.0000259                            | <0.0000144                             | < 0.0000147                      | <0.0000144               | <0.0000144               |                    |                    |                    |                    |                    |                    |   |
| 2-Methylnaphthalene                                             | 91-57-6                                                                                                                                                                                  | 8270D/SIM              | 0.036             | <0.00036             | <0.0000524                | <0.0000153                            | 0.0000174 J                          | < 0.0000391                             | 0.0000284                            | < 0.0000144                            | <0.0000147                       | < 0.0000144              | < 0.0000144              |                    |                    |                    |                    |                    |                    |   |
| Acenaphthylene                                                  | 208-96-8                                                                                                                                                                                 | 8270D/SIM              | 0.260             | <0.00014             | <0.0000524                | <0.0000153                            | < 0.000129                           | < 0.0000391                             | <0.000211                            | <0.0000387                             | <0.000115 <0.000147              | < 0.0000144              | < 0.0000394              |                    |                    |                    |                    |                    |                    |   |
| Anthracene<br>BenzolalAnthracene                                | 120-12-7<br>56-55-3                                                                                                                                                                      | 8270D/SIM<br>8270D/SIM | 0.043             | <0.0001<br><0.00005  | <0.0000524<br><0.0000524  | <0.0000153<br><0.0000153              | <0.0000155<br><0.0000155             | <0.0000391<br><0.0000391                | <0.0000142<br><0.0000142             | <0.0000144<br><0.0000144               | <0.0000147<br><0.0000147         | <0.0000144<br><0.0000144 | <0.0000144<br><0.0000144 |                    |                    |                    |                    |                    |                    |   |
| Benzo[a]pyrene                                                  | 50-32-8                                                                                                                                                                                  | 8270D/SIM              | 0.00025           | <0.00005             | 0.0000524                 | < 0.0000153                           | <0.0000155                           | <0.00000391                             | <0.00000585                          | <0.00000596                            | <0.00000608                      | <0.00000596              | <0.00000596              |                    |                    |                    |                    |                    |                    |   |
| Benzo[g,h,i]perylene                                            | 191-24-2                                                                                                                                                                                 | 8270D/SIM              | 0.0025            | <0.00005             | <0.0000524                | <0.0000153                            | <0.0000155                           | <0.00000391                             | <0.0000142                           | <0.0000144                             | <0.0000147 <0.0000147            | <0.0000144               | <0.0000144               |                    |                    |                    |                    |                    |                    |   |
| Benzo[k]fluoranthene<br>Chrysene                                | 207-08-9<br>218-01-9                                                                                                                                                                     | 8270D/SIM<br>8270D/SIM | 0.00080 0.002     | <0.00005<br><0.00005 | <0.0000524<br><0.0000524  | <0.0000153<br><0.0000153              | <0.0000155<br><0.0000155             | <0.00000391<br><0.00000391              | <0.0000142<br><0.0000142             | <0.0000144<br><0.0000144               | <0.0000147<br><0.0000147         | <0.0000144<br><0.0000144 | <0.0000144<br><0.0000144 |                    |                    |                    |                    |                    |                    |   |
| Dibenz[a,h]anthracene                                           | 53-70-3                                                                                                                                                                                  | 8270D/SIM              | 0.00025           | <0.00005             | <0.0000524                | <0.0000153                            | <0.0000155                           | <0.00000391                             | <0.0000585                           | <0.00000596                            | <0.00000608                      | <0.00000596              | <0.00000596              |                    |                    |                    |                    |                    |                    |   |
| Fluorene                                                        | 86-73-7                                                                                                                                                                                  | 8270D/SIM              | 0.290             | <0.0001              | <0.0000324                | <0.0000876                            | 0.000213                             | 0.0000613                               | 0.000203                             | 0.000117                               | 0.000159                         | 0.000122                 | 0.000172                 |                    |                    |                    |                    |                    |                    |   |
| Indeno[1,2,3-c,d] pyrene<br>Naphthalene                         | 193-39-5<br>91-20-3                                                                                                                                                                      | 8270D/SIM<br>8270D SIM | 0.00019<br>0.0017 | <0.00005<br><0.00022 | <0.0000524<br><0.000231   | <0.0000153<br><0.0031                 | <0.0000155<br>0.000192               | <0.00000391<br><0.00000807              | <0.0000142<br><0.0000292             | <0.0000144<br><0.0000298               | <0.0000147<br><0.0000304         | <0.0000144<br><0.0000298 | <0.0000144<br><0.0000298 |                    |                    |                    |                    |                    |                    |   |
| Phenanthrene<br>Pyrene                                          | 85-01-8<br>129-00-0                                                                                                                                                                      | 8270D/SIM<br>8270D/SIM | 0.170             | <0.0001<br><0.0001   | <0.0000524<br><0.0000524  | <0.0000153                            | <0.0000155                           | <0.00000391                             | <0.0000142<br><0.0000142             | <0.0000144<br><0.0000144               | <0.0000147<br><0.0000147         | <0.0000144               | <0.0000144<br><0.0000144 |                    |                    |                    |                    |                    |                    |   |
| ر <u>م</u>                                                      |                                                                                                                                                                                          |                        |                   | Notes:               | Analytical                | results were im                       | ported from Pas                      | tor, Behling & Wi<br>18 AAC 75 Table    | heeler, LLC, white<br>C Groundwater  | ch was acquired<br>Cleanun I evele     | by Golder Asso<br>as amended the | ciates, Inc in 201       | 8.<br>18. 2021           |                    |                    |                    |                    |                    |                    |   |
|                                                                 |                                                                                                                                                                                          |                        |                   | <                    | Analyte wa                | is not detected                       | at the specified                     | Level of Quantita                       | tion (LOQ) or De                     | etection Level (D                      | L)                               | ougintoronibol           | 10, 2021                 |                    |                    |                    |                    |                    |                    |   |
|                                                                 |                                                                                                                                                                                          |                        |                   | J/JH<br>mg/L         | Estimated<br>Milligram    | value/Estimate<br>per liter           | u value biased h                     | ngh due to surrog                       | ate recovery                         |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 |                                                                                                                                                                                          |                        |                   | U<br>H               | Analyte no<br>Result is b | t detected at the<br>iased low due to | e reported LOQ<br>o laboratory erro  | or. Analyte extrac                      | tion occurred out                    | tside method hol                       | ld time                          |                          |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 |                                                                                                                                                                                          |                        |                   | L                    | Result is b<br>LOQ/Non-   | iased low due to<br>detected concer   | o low laboratory<br>ntrations exceed | control spike (LO                       | CS) percentage n<br>Levels Updated i | ecovery in the qu<br>n 2021 / 2020 / 1 | uality control sa<br>2018 / 2016 | mple                     |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 |                                                                                                                                                                                          |                        |                   | XXXX                 | Analyte wa                | is detected belo                      | W ADEC Clean                         | up Levels Update                        | d in 2021 / 2020                     | / 2018 / 2016                          |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 |                                                                                                                                                                                          |                        |                   |                      | Analyte wa                | is unlected abo                       | during sample                        | event                                   | u iii 2021 / 2020                    | / 2016/ 2016                           |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 |                                                                                                                                                                                          |                        |                   | *                    | Analyte is<br>Analyte wa  | not currently ind<br>is added by NO   | RTECH and is                         | a 8260 laboratory<br>included in currer | anaiyte list<br>nt Method 8260 a     | analyte list                           |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 | *** Data for MW-403A and MW-5 may not represent contamination near the groundwater surface, as the screened interval<br>at each well does not intersect the top of the groundwater table |                        |                   |                      |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |
|                                                                 | at each well does not intersect the top of the groundwater table                                                                                                                         |                        |                   |                      |                           |                                       |                                      |                                         |                                      |                                        |                                  |                          |                          |                    |                    |                    |                    |                    |                    |   |

## Table 3 Historical Groundwater Results: 2012-Present

|   | MW-4               | MW-4                | MW-4                | MW-4               |
|---|--------------------|---------------------|---------------------|--------------------|
| 2 | 10-Oct-22          | 21-Mar-23           | 19-Sep-23           | 26-Mar-24          |
|   | mg/L               | mg/L                | mg/L                | mg/L               |
|   |                    |                     |                     |                    |
|   | 1.10               | 1.56                | 1.32 L              | 0.774              |
|   |                    |                     |                     |                    |
| 1 | 0.00108<br>0.001 U | 0.000875<br>0.001 U | 0.000840<br>0.001 U | 0.00102<br>0.001 U |
|   | 0.001 U<br>0.003 U | 0.001 U<br>0.003 U  | 0.001 U<br>0.003 U  | 0.001 U<br>0.003 U |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   | 0.001 U            | 0.001 U             | 0.001 U             | <br>0.001 U        |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   | 0.001 U            | 0.001 U             | 0.001 U             | 0.001 U            |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   | 0.00108            | 0.000875            | 0.000840            | 0.00102            |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   | 0.00216            | 0.001 U             | <br>0.001 U         | <br>0.001 U        |
|   |                    |                     |                     |                    |
|   | 0.001 U            | 0.001 U             | 0.001 U             | 0.001 U            |
|   | 0.002 0            | 0.002 0             | 0.002 0             | 0.002 0            |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
| _ | 0.003 U            | 0.003 U             | 0.003 U             | 0.003 U            |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |
|   |                    |                     |                     |                    |

|                                                                                                                          | Table 3         Historical Groundwater Results: 2012-Present         Former Kiewit Infrastructure West Co., 2050 Peger Road, Fairbanks, Alaska |                              |                                   |                                         |                                       |                                            |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------|
| Analytical Parameter                                                                                                     | Loca                                                                                                                                           | tion ID:                     | ADEC<br>Cleanup                   | MW5-1016***                             | MW-5***                               | MW-5***                                    | MW-5***                                      | MW-52***<br>(MW5 DUP)                                                                   | MW-5***                                      | MW-5***                                      | MW-5***                                       | MW-55***<br>(MW-5 DUP)                           | MW-5***                                      | MW-5***                                  | MW-5***                                  | MW-5***                                    | MW-5***                                   | MW-5***                                   | MW-5***                                   | MW-5***                                   | MW-         |
| -                                                                                                                        | Samp<br>CAS                                                                                                                                    | le Date:<br>Method           | Level<br>ma/L                     | 5 16-Oct-12<br>mg/L                     | 02-Jul-14<br>ma/L                     | 16-Oct-14<br>mg/L                          | 27-Apr-15<br>ma/L                            | 27-Apr-15<br>mg/L                                                                       | 02-Sep-15<br>mg/L                            | 25-Aug-16<br>ma/L                            | 26-Sep-17<br>mg/L                             | 27-Sep-17<br>mg/L                                | 26-Apr-18<br>mg/L                            | 11-Oct-18<br>ma/L                        | 17-Apr-19<br>ma/L                        | 15-Oct-19<br>ma/L                          | 06-May-20<br>mg/L                         | 02-Sep-20<br>mg/L                         | 12-May-21<br>mg/L                         | 06-Oct-21<br>mg/L                         | 22-Ma<br>ma |
| etroleum Range Hydrocarbons<br>asoline Range Organics (GRO)<br>esel Range Organics (DRO)<br>esidual Range Organics (RRO) | N/A<br>N/A<br>N/A                                                                                                                              | AK 101<br>AK 102<br>AK 103   | 2.2<br>1.5<br>1.1                 | <0.1<br>0.24<br>                        | <br><0.6<br><0.5                      | <br><0.6<br><0.5                           | <0.031<br><0.18<br><0.15                     | 0.0449 J<br><0.18<br><0.15                                                              | <br><0.173<br><0.144                         | <0.031<br>0.277<br><0.144                    | <0.031<br><0.176<br><0.147                    | <0.031<br><0.170<br><0.142                       | <0.031<br><0.173<br><0.144                   | <br><0.173<br>                           | <br><0.180<br>                           | <br><0.000167<br>                          | <br>0.566 U<br>                           | <br>0.556 U<br>                           | 0.577 U<br>                               | <br>0.566 U<br>                           | 0.62        |
| IEX<br>enzene<br>oluene<br>hylbenzene<br>/lenes                                                                          | 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7                                                                                                   | 8260<br>8260<br>8260<br>8260 | 0.0046<br>1.100<br>0.015<br>0.190 | <0.0002<br><0.001<br><0.0002<br><0.0004 | <0.0004<br><0.001<br><0.001<br><0.003 | <0.00012<br><0.00031<br><0.00031<br><0.001 | <0.00012<br><0.00031<br><0.00031<br><0.00093 | <0.00012<br><0.00031<br><0.00031<br><0.00093                                            | <0.00015<br><0.00031<br><0.00031<br><0.00093 | <0.00015<br><0.00031<br><0.00031<br><0.00093 | <0.00015<br><0.00031<br><0.00031<br>0.00093 J | <0.00015<br><0.00031<br><0.00031<br>0.00107 J    | <0.00015<br><0.00031<br><0.00031<br><0.00093 | 0.001 U<br>0.001 U<br>0.001 U<br>0.003 U | 0.001 U<br>0.001 U<br>0.001 U<br>0.003 U | <0.00012<br><0.00031<br><0.00031<br><0.001 | 0.0004 U<br>0.001 U<br>0.001 U<br>0.003 U | 0.000       |
| Datile Organic Compounds                                                                                                 | 630-20-6                                                                                                                                       | 8260                         | 0.0057                            | <0.0002                                 | <0.0005                               | < 0.00015                                  |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| 1,2,2-Tetrachloroethane                                                                                                  | 79-34-5<br>79-00-5                                                                                                                             | 8260<br>8260                 | 0.00076                           | <0.0002<br><0.0002<br><0.0002           | <0.001<br><0.0005<br><0.001           | <0.00031<br><0.00015<br><0.00031           |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            | -                                         |                                           |                                           |                                           | -           |
| 1-Dichloroethane<br>1-Dichloroethylene                                                                                   | 75-34-3<br>75-35-4                                                                                                                             | 8260<br>8260                 | 0.028<br>0.280                    | <0.0002<br><0.0002                      | <0.001<br><0.001                      | <0.00031<br><0.00015                       |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| 1-Dichloropropene<br>2,3-Trichlorobenzene                                                                                | 563-58-6<br>87-61-6                                                                                                                            | 8260<br>8260                 | NE<br>0.007                       | <0.0002<br><0.0002                      | <0.001<br><0.001                      | <0.00031<br><0.00031                       |                                              |                                                                                         |                                              |                                              |                                               | _                                                |                                              |                                          |                                          |                                            | =                                         |                                           |                                           |                                           | -           |
| 2,3-Trichloropropane<br>2,4-Trichlorobenzene                                                                             | 96-18-4<br>120-82-1                                                                                                                            | 8260<br>8260                 | 0.0000075<br>0.004                | <0.0001<br><0.0002                      | <0.001<br><0.001                      | <0.00031<br><0.00031                       |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| 2,4-Trimethylbenzene<br>2-Dibromo-3-chloropropane                                                                        | 95-63-6<br>96-12-8                                                                                                                             | 8260<br>8260                 | 0.056<br>NE                       | <0.0002<br><0.001                       | <0.001<br><0.01                       | <0.00031<br><0.0031                        |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              | 0.001 U<br>                              | 0.001 U<br>                              | <0.00031                                   | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.00        |
| 2-Dibromoethane<br>2-Dichlorobenzene                                                                                     | 106-93-4<br>95-50-1                                                                                                                            | 8260<br>8260                 | 0.000075<br>0.300                 | <0.0002<br><0.0002                      | <0.001<br><0.001                      | <0.00031<br><0.00031                       |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| 2-Dichloroethane<br>2-Dichloropropane                                                                                    | 107-06-2<br>78-87-5                                                                                                                            | 8260<br>8260                 | 0.0017<br>0.0082                  | <0.0002<br><0.0002                      | <0.0005<br><0.001                     | <0.00031<br><0.00031                       |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| 3,5-Trimethylbenzene<br>3-Dichlorobenzene                                                                                | 108-67-8<br>541-73-1                                                                                                                           | 8260<br>8260                 | 0.060 0.300                       | <0.0002<br><0.0002                      | <0.001<br><0.001                      | <0.00031<br><0.00031                       |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.00        |
| 3-Dichloropropane<br>4-Dichlorobenzene                                                                                   | 142-28-9<br>106-46-7                                                                                                                           | 8260<br>8260                 | NE<br>0.0048                      | <0.0002<br><0.0002                      | <0.0004<br><0.0005                    | <0.00015<br><0.00015                       |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            | =                                         |                                           | -                                         | _                                         |             |
| 2-Dichloropropane<br>Butanone (methyl ethyl ketone)                                                                      | 594-20-7<br>78-93-3                                                                                                                            | 8260<br>8260                 | NE<br>5.6                         | <0.0002<br><0.005                       | <0.001<br><0.01                       | <0.00031<br><0.0031                        |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| Chloroethyl vinyl ether *<br>Chlorotoluene                                                                               | 110-75-8<br>95-49-8                                                                                                                            | 8260<br>8260                 | NE<br>NE                          | <0.001<br><0.0002                       | <br><0.001                            | <br><0.00031                               |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| Hexanone<br>Chlorotoluene                                                                                                | 591-78-6<br>106-43-4                                                                                                                           | 8260<br>8260                 | 0.038<br>NF                       | <0.0002<br><0.0002                      | <0.01<br><0.001                       | <0.0031<br><0.00031                        |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| Isopropyltoluene                                                                                                         | 99-87-6<br>67-64-1                                                                                                                             | 8260<br>8260                 | NE<br>14                          | <0.002<br><0.005                        | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| enzene<br>romobenzene                                                                                                    | 71-43-2<br>108-86-1                                                                                                                            | 8260<br>8260                 | 0.0046                            | <0.0002                                 | <0.0004<br><0.001                     | <0.00012<br><0.00031                       |                                              |                                                                                         |                                              | <0.00015                                     | <0.00015                                      | <0.00015                                         | <0.00015                                     | 0.001 U                                  | 0.001 U                                  | <0.00012                                   | 0.0004 U                                  | 0.0004 U                                  | 0.0004 U                                  | 0.0004 U                                  | 0.000       |
| omochloromethane                                                                                                         | 74-97-5<br>75-27-4                                                                                                                             | 8260<br>8260                 | NE<br>0.0013                      | <0.0002<br><0.0002                      | <0.001<br><0.0005                     | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            | -                                         |                                           |                                           |                                           |             |
| omoform<br>comomethane                                                                                                   | 75-25-2<br>74-83-9                                                                                                                             | 8260<br>8260                 | 0.033                             | <0.001<br><0.001                        | <0.001<br><0.01                       | <0.00031<br><0.0031                        |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| arbon disulfide<br>arbon tetrachloride                                                                                   | 75-15-0<br>56-23-5                                                                                                                             | 8260<br>8260                 | 0.810                             | <0.0002<br><0.0002                      | <0.01<br><0.001                       | <0.0031                                    |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            | -                                         |                                           |                                           |                                           |             |
| hlorobenzene<br>hloroethane (ethyl chloride)                                                                             | 108-90-7<br>75-00-3                                                                                                                            | 8260<br>8260                 | 0.078                             | <0.0002<br><0.001                       | <0.0005<br><0.001                     | <0.00015                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            | -                                         |                                           |                                           |                                           |             |
| hloroform                                                                                                                | 67-66-3<br>74-87-3                                                                                                                             | 8260<br>8260                 | 0.0022                            | <0.00037<br><0.001                      | <0.001<br><0.001                      | <0.0003<br><0.00031                        |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| platile Organic Compounds (cont)<br>s-1.2-Dichloroethylene                                                               | 156-59-2                                                                                                                                       | 8260                         | 0.036                             | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| s-1,3-Dichloropropene<br>bromochloromethane                                                                              | 10061-01-5<br>124-48-1                                                                                                                         | 8260<br>8260                 | 0.0047                            | <0.0002<br><0.0002                      | <0.0005<br><0.0005                    | <0.00015<br><0.00015                       |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| bromomethane<br>chlorodifluoromethane                                                                                    | 74-95-3<br>75-71-8                                                                                                                             | 8260<br>8260                 | 0.0083                            | <0.0002<br><0.0002                      | <0.001<br><0.001                      | <0.00031<br><0.00031                       |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| hylbenzene<br>eon-113 **                                                                                                 | 100-41-4<br>76-13-1                                                                                                                            | 8260<br>8260                 | 0.015                             | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              | <0.00031                                      | <0.00031                                         | <0.00031                                     | 0.001 U                                  | 0.001 U                                  | <0.00031                                   | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.00        |
| exachlorobutadiene                                                                                                       | 87-68-3<br>74-88-4                                                                                                                             | 8260<br>8260                 | 0.0014<br>NF                      | <0.0002<br><0.002                       | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| opropylbenzene (Cumene)<br>ethyl isobutyl ketone *                                                                       | 98-82-8<br>108-10-1                                                                                                                            | 8260<br>8260                 | 0.450                             | <0.002<br><0.002                        | <0.001<br><0.01                       | <0.00031<br><0.0031                        |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | -           |
| ethyl tert-butyl ether<br>ethylene chloride                                                                              | 1634-04-4<br>75-09-2                                                                                                                           | 8260<br>8260                 | 0.140                             | <0.0002                                 | <0.01<br><0.005                       | <0.0031<br><0.001                          |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| aphthalene **<br>Butylbenzene                                                                                            | 91-20-3<br>104-51-8                                                                                                                            | 8260<br>8260                 | 0.0017                            | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          | <0.00031                                   | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.001 U                                   | 0.00        |
| Propylbenzene<br>Xvlene (see Xvlenes) **                                                                                 | 103-65-1                                                                                                                                       | 8260                         | 0.660                             | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               | -                                                | -                                            |                                          |                                          |                                            | 0.001.11                                  |                                           |                                           | 0.001.11                                  |             |
| & m-Xylene (see Xylenes) **                                                                                              | 1330-20-7                                                                                                                                      | 8260                         | NE<br>2.00                        |                                         |                                       |                                            |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            | 0.002 U                                   | 0.002 U                                   | 0.002 U                                   | 0.002 U                                   | 0.00        |
| yrene<br>t Butulbenzene                                                                                                  | 100-42-5                                                                                                                                       | 8260                         | 1.20                              | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| etrachloroethylene                                                                                                       | 127-18-4                                                                                                                                       | 8260                         | 0.041                             | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| ans-1,2-Dichloroethylene                                                                                                 | 156-60-5                                                                                                                                       | 8260                         | 0.360                             | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           | 0.00        |
| ichloroethylene                                                                                                          | 79-01-6                                                                                                                                        | 8260                         | 0.0047                            | <0.0002                                 | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               | -                                                |                                              |                                          |                                          |                                            | -                                         |                                           |                                           |                                           |             |
| nyl acetate                                                                                                              | 75-69-4<br>108-05-4                                                                                                                            | 8260                         | 0.410                             | <0.002                                  | <0.001                                | <0.00031                                   |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            | -                                         |                                           |                                           |                                           |             |
| /lenes                                                                                                                   | 1330-20-7                                                                                                                                      | 8260                         | 0.190                             | <0.0002<br><0.0004                      | <0.007                                | <0.001                                     | <0.00093                                     | <0.00093                                                                                | <0.00093                                     | <0.00093                                     | 0.00093 J                                     | 0.00107 J                                        | <0.00093                                     | 0.003 U                                  | 0.003 U                                  | <0.001                                     | 0.003 U                                   | 0.003 U                                   | 0.003 U                                   | 0.003 U                                   | 0.00        |
| Methylnaphthalene<br>Methylnaphthalene                                                                                   | 90-12-0<br>91-57-6                                                                                                                             | 8270D/SIM<br>8270D/SIM       | 0.011                             | <0.000097                               | <0.00005                              | <0.000015                                  | <0.0000153                                   | <0.0000153                                                                              | <0.0000391                                   | <0.0000139                                   | <0.0000147                                    | <0.000015                                        | <0.0000144                                   |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| cenaphthene                                                                                                              | 83-32-9                                                                                                                                        | 8270D/SIM<br>8270D/SIM       | 0.530                             | <0.000097                               | <0.00005                              | <0.000015                                  | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | <0.0000139                                   | <0.0000147                                    | <0.000015                                        | <0.0000144                                   | -                                        |                                          |                                            | -                                         |                                           | -                                         | -                                         | -           |
| nthracene                                                                                                                | 120-12-7                                                                                                                                       | 8270D/SIM                    | 0.043                             | <0.000097                               | <0.00005                              | <0.000015                                  | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | <0.0000139                                   | <0.0000147                                    | <0.000015                                        | <0.0000144                                   |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| enzo[a]pyrene                                                                                                            | 50-32-8<br>205-00-2                                                                                                                            | 8270D/SIM<br>8270D/SIM       | 0.00025                           | <0.0000097                              | <0.00005                              | <0.000015                                  | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | <0.0000139                                   | <0.0000147                                    | <0.000015                                        | <0.0000144                                   |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| enzo[g,h,i]perylene                                                                                                      | 191-24-2                                                                                                                                       | 8270D/SIM<br>8270D/SIM       | 0.0025                            | <0.0000097                              | < 0.00005                             | < 0.000015                                 | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | <0.0000139                                   | <0.0000147                                    | <0.000015                                        | < 0.0000144                                  |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| hrysene                                                                                                                  | 218-01-9                                                                                                                                       | 8270D/SIM<br>8270D/SIM       | 0.002                             | <0.0000097                              | < 0.00005                             | < 0.000015                                 | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | < 0.0000139                                  | <0.0000147                                    | <0.000015                                        | < 0.0000144                                  |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| uoranthene                                                                                                               | 206-44-0                                                                                                                                       | 8270D/SIM<br>8270D/SIM       | 0.260                             | <0.000097                               | <0.00005                              | <0.000015                                  | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | <0.00000574                                  | <0.0000147                                    | <0.000062                                        | <0.0000144                                   |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| deno[1,2,3-c,d] pyrene                                                                                                   | 193-39-5                                                                                                                                       | 8270D/SIM<br>8270D/SIM       | 0.00019                           | <0.000097                               | < 0.00005                             | <0.000015                                  | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | <0.0000139                                   | <0.0000147                                    | <0.000015                                        | <0.0000144                                   |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| henanthrene                                                                                                              | 85-01-8                                                                                                                                        | 8270D/SIM<br>8270D/SIM       | 0.170                             | <0.000097                               | <0.00005                              | <0.00015                                   | <0.0000153                                   | <0.0000153                                                                              | <0.00000391                                  | <0.0000287                                   | <0.0000304                                    | <0.000031                                        | <0.0000298<br>0.0000193 J                    |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
| rene                                                                                                                     | 129-00-0                                                                                                                                       | 8270D/SIM                    | 0.120                             | <u>Notes</u> :                          | <0.00005<br>Analytica                 | <0.000015<br>al results were               | <0.0000153<br>imported from P                | <ul> <li>&lt;0.0000153</li> <li>astor, Behling &amp;</li> <li>C 18 AAC 75 To</li> </ul> | Vheeler, LLC, v                              | <0.0000139<br>which was acquir               | <0.0000147<br>red by Golder As                | <0.000015<br>ssociates, Inc in<br>through Neuron | 2018.                                        |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          |                                                                                                                                                |                              |                                   | <                                       | Analytica<br>Analyte v                | al results are o<br>was not detected       | ompared to ADE<br>ed at the specifie         | C 18 AAC 75 Ta<br>d Level of Quan                                                       | ititation (LOQ) or                           | Detection Level                              | els as amended<br>(DL)                        | through Novem                                    | iber 18, 2021                                |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          |                                                                                                                                                |                              |                                   | J/JH<br>mg/L                            | Estimate<br>Milligram                 | d value/Estima<br>per liter                | ated value blase                             | d high due to su                                                                        | rrogate recovery                             |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          |                                                                                                                                                |                              |                                   | H                                       | Result is                             | biased low du                              | e to laboratory e                            | error. Analyte ext                                                                      | raction occurred                             | outside method                               | hold time                                     | sample                                           |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          |                                                                                                                                                |                              |                                   | XXXX                                    | LOQ/Nor                               | n-detected con                             | centrations exce                             | ed ADEC Clean                                                                           | up Levels Update                             | ed in 2021 / 2020                            | 0 / 2018 / 2016                               | Sample                                           |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          |                                                                                                                                                |                              |                                   | XXXX                                    | Analyte v<br>Analyte v                | was detected b                             | bove ADEC Clea                               | anup Levels Upd                                                                         | lated in 2021 / 20                           | 020 / 2018 / 2016                            | 6                                             |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          |                                                                                                                                                |                              |                                   | *                                       | Analyte is<br>Analyte is              | s not currently                            | included in Meth                             | o event<br>hod 8260 labora<br>is included in ou                                         | tory analyte list                            | 0 analyte liet                               |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          |                                                                                                                                                |                              |                                   | ***                                     | Data for l                            | MW-403A and<br>well does not i             | MW-5 may not                                 | represent contai                                                                        | mination near the                            | e groundwater su                             | urface, as the so                             | creened interval                                 |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |
|                                                                                                                          | at each well does not intersect the top of the groundwater table                                                                               |                              |                                   |                                         |                                       |                                            |                                              |                                                                                         |                                              |                                              |                                               |                                                  |                                              |                                          |                                          |                                            |                                           |                                           |                                           |                                           |             |

Page 5 of 5

| V-5***       | MW-5***            | MW-5***            | MW-5***            | MW-5***            |
|--------------|--------------------|--------------------|--------------------|--------------------|
| Mar-22       | 10-Oct-22          | 21-Mar-23          | 19-Sep-23          | 26-Mar-24          |
| ng/L         | mg/L               | mg/L               | mg/L               | mg/L               |
| <br>25 U     | <br>0.566 U<br>    | <br>0.566 U<br>    | <br>0.588 U<br>    | <br>0.605 U<br>    |
| 00411        | 0.0004.11          | 0.000411           | 0.0004.11          | 0.0004.11          |
| 01 U         | 0.0004 0           | 0.0004 0           | 0.0004 0           | 0.0004 0           |
| 01 U<br>03 U | 0.001 U<br>0.003 U | 0.001 U<br>0.003 U | 0.001 U<br>0.003 U | 0.001 U<br>0.003 U |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
| 001 U        | 0.001 U            | 0.001 U            | 0.001 U            | 0.001 U            |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
| 0111         | 0.001.11           | 0.001.11           | 0.001.11           | 0.001.11           |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
| 01 U         | 0.001 U            | 0.001 U            | 0.001 U            | 0.001 U            |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              | 0.001 0            | 0.001 0            | 0.001 0            |                    |
| <br>01 U     | <br>0.001 U        | <br>0.001 U        | <br>0.001 U        | <br>0.001 U        |
| 02 U         | 0.002 U            | 0.002 U            | 0.002 U            | 0.002 U            |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
| 01 U         | 0.001 U            | 0.001 U            | 0.001 U            | 0.001 U            |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
| 03 U         | 0.003 U            | 0.003 U            | 0.003 U            | 0.003 U            |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |
|              |                    |                    |                    |                    |

| Table 4                                                     |
|-------------------------------------------------------------|
| March 2024 Final Field Water Quality Parameter Measurements |
| Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska  |

| Monitoring | Temperature | Dissolved O <sub>2</sub> | Conductivity | рН        | ORP   | Visual Clarity     | Odor    | Sheen   |
|------------|-------------|--------------------------|--------------|-----------|-------|--------------------|---------|---------|
| Well       | (°C)        | (mg/L)                   | (µS/cm)      | (pH unit) | (mV)  | (observed)         | (Y / N) | (Y / N) |
| MW-2       | NM          | NM                       | NM           | NM        | NM    | Clear              | Y       | N       |
| MW-3       | NM          | NM                       | NM           | NM        | NM    | Slight Yellow Tint | Y       | N       |
| MW-4       | 1.6         | 0.35                     | 698          | 6.79      | -98.1 | Slight Yellow Tint | N       | N       |
| MW-5       | 1.6         | 0.31                     | 432          | 6.86      | -81.7 | Clear              | N       | N       |
| MW-403A    | 0.7         | 0.50                     | 869          | 6.97      | -92.4 | Clear              | N       | N       |
| MW-403B    | 0.9         | 0.50                     | 987          | 7.11      | -61.3 | Clear              | N       | N       |

Notes:

°C Degree centigrade

mg/L Milligram per liter

μS/cm Microsiemen per centimeter

pH unit Potential of hydrogen defined as the decimal logarithm of the reciprocal of the hydrogen ion activity on a scale used to specify the acidity or basicity of an aqueous solution

mV Millivolt

Y / N Yes / No

NM Not measured

| Table 5                                                             |
|---------------------------------------------------------------------|
| March 2024 Natural Source Zone Depletion Evaluation Results Summary |
| Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska          |

| Monitoring<br>Well | Nitrate<br>(mg/L) | Sulfate<br>(mg/L) | Total Iron<br>(mg/L) | Dissolved Iron<br>(mg/L) | Total Manganese<br>(mg/L) | Dissolved Manganese<br>(mg/L) | Methane<br>(µg/L) | Ethane<br>(μg/L) | Ethene<br>(μg/L) |
|--------------------|-------------------|-------------------|----------------------|--------------------------|---------------------------|-------------------------------|-------------------|------------------|------------------|
| MW-2               | 0.200 U           | 0.200 U           | 50.9                 | 49.1                     | 2.98                      | 2.88                          | 3450              | 1.0 U            | 1.0 U            |
| MW-3               | 0.200 U           | 3.39              | 57.8                 | 44.9                     | 2.77                      | 2.55                          | 1460              | 1.0 U            | 1.0 U            |
| MW-4               | 0.200 U           | 0.259             | 99.5                 | 102                      | 2.42                      | 2.41                          | 735               | 1.0 U            | 1.0 U            |
| MW-5               | 0.200 U           | 20.8              | 16.0                 | 17.1                     | 1.55                      | 1.56                          | 251               | 1.0 U            | 1.0 U            |
| MW-403A            | 0.200 U           | 20.3              | 17.3                 | 17.1                     | 1.45                      | 1.49                          | 308               | 1.0 U            | 1.0 U            |
| MW-403B            | 0.200 U           | 23.7              | 24.0                 | 24.1                     | 1.35                      | 1.41                          | 293               | 1.0 U            | 1.0 U            |

Notes:

mg/L milligram per liter

µg/L microgram per liter

U Analyte not detected at the listed limit of quantitation (LOQ) or reporting limit (RL), as applicable

# Table 6Monitoring Well Survey and Groundwater MeasurementsFormer Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska

| Well ID | Northing  | Easting   | Top of Casing<br>Elevation (ft) | Ground<br>Elevation (ft) | Depth to Water<br>(ft BTOC) | Groundwater<br>Elevation (ft) |
|---------|-----------|-----------|---------------------------------|--------------------------|-----------------------------|-------------------------------|
| MW-2    | 3961474.8 | 1362999.2 | 436.08                          | 436.5                    | 9.87                        | 426.21                        |
| MW-3    | 3961533.4 | 1363031.6 | 436.34                          | 436.8                    | 10.22                       | 426.12                        |
| MW-4    | 3961674.5 | 1362920.6 | NS                              | 437.8                    | 11.58                       | NC                            |
| MW-5    | 3961614.6 | 1362948.3 | NS                              | 437.9                    | 11.36                       | NC                            |
| MW-403A | 3961682.0 | 1363033.7 | NS                              | 436.0                    | 9.49                        | NC                            |
| MW-403B | 3961681.3 | 1363031.1 | NS                              | 436.0                    | 9.45                        | NC                            |

Alaska State Plane NAD83, Zone 3, NAD88 Elevation

TBM: 6" spike, south side first power pole south of 20th Ave. Elev. = 437.17 ft Surveyed November 4, 2020

Depth to water and groundwater elevation measurements were obtained on March 19, 26, and 27, 2024

MW-4, MW-5, MW-403A, and MW-403B exhibited frost jacking of well casings that occurred subsequent to the November 4, 2020 survey. The top of casing elevations of the wells have not been re-surveyed.

Notes:

ft Feet

TBM Temporary benchmark

BTOC Below top of casing

NS Not surveyed

NC Not calculated

# **Attachment 3**

23-1007 24-1000 50 Thursday Former Kiewir-Peyer Red 215ep 2023 Tuesday Formor Kiewit - Pegea RI 19Mar 2024 0915 - Sample ingrit + mobe 0730 - Mobe for ground word for punge waren theorment monireang 1400 - Deliver groundwaren samples To 0900 - Anne Si Te SGS-EAT Nonzich Prascanel: William Waits 1120 - Anere SITA Wes Thin; MOSTIN Clean, ZOF Call FI NORTECH Personal: William Watts Apprix 2.0' Show on sponsed Weather Mestly Cloudy, 35°F, calm Cocare all Six wells Set up punge water 55-gal Ser ap GIte mearment 5957in draum on west side of 4-13mg at punge waren duan **FR** 1140- Begin GAC TREETMENT of Bldg. E930 - Calibrare VST meren purque water Collect Samples From MW-403A Treated all 38 gallous & parga Warm, Poaked to pround Statace +mw-403B 1345- De (1200 Samples to 565near mu-3 Fainbarks lab office for Mismare Coad empty 55-gel deam and Scrowt hold, De formed that 565 -Truck ANC and 57 For Nitnere will 1325 - Depart Sire 1342 - RETURN TO NORTECH OFFICE be gone Thrusslay ward next weak Demobe Themform, nomeroung if marg Will be Sampled next weak 1500 - Done when maly 57 back on dury. Sas ANC had been nori fied Las I week + again y estendary neganding Nithate samples 565 ander 57 having an plained WLW. absence. hra Rite in the Rain.



24-1008 24-1008 54 55 Wednesdy Former kiewir-Pegm Bd. 27 Maa Wednesday Former Kicair-Pegeafed 15 May 2024 0800 - Mobe for quandar ren Sampling 1300 - 10062 for Pringe Water Treamin 0845 - Anonce Site WITZ POTTON GAC Syster NORTECH Personnel: William Watis 1330 - Annu Sira Weartum - Puns 19 Cloudy BOF, Calm Begin water Theorem Appass list Suce on fround - yand Pricessor ~ 38 fallins of pary lince been schaped waren. Poursel to gunnerlow for Collected Samples from mw-2 near mW 3. Coar Simper and ma - 3. Collected duplicat 53-gd. dram onto much mw -300 from mw - 3 153 - Depart 5.72 1310 - Depart Sire Samph mynus 1500 - Annale & file 1400 - Delever samples to SES-Faraband Demoke necerving Facility 1845 - Done 1450 - Reman TO NoutECH OFFice Nortech pensonnel-William Watts Demos Jacob Ferrill -1545-Done Weather: Clean 60"F Call -wen wen Rite in the Rain



| Project:       | Former Kiev              | wit Facility -           | 2050 Peger Rd                          |                   | Site Location:          | Fairbanks, Alaska             | •             |                      |              |
|----------------|--------------------------|--------------------------|----------------------------------------|-------------------|-------------------------|-------------------------------|---------------|----------------------|--------------|
| Project #:     | 24-1008                  |                          |                                        |                   | Well Number:            | MW-2                          |               |                      |              |
| Water Col      | umn                      | Pre-Purge                | Post-Purge: (onl)                      | / need to be coli | ected if field staff ha | ve sufficient belief these me | asurements h  | ave chang            | ed)          |
| Total Depth o  | イブラアスシンデ<br>f Weli (fl): | 73.90                    |                                        |                   | Water Level Measu       | rement Date:                  | 3/2-          | 7/24                 | Ë            |
| Depth to Proc  | luct from TOC (ft)       | ND                       |                                        |                   | Water Level Measu       | rement Time:                  | 112           | <u>-5</u>            |              |
| Depth to Wat   | er from TOC (ft):        | 9,87                     |                                        |                   | WL Meter & S/N:         | Solinst SN 484936             |               |                      |              |
| Column of W    | ater in Well (ft):       | 4.03                     |                                        |                   | TOM-GS (ft):            | Flush                         | TOC-TOM (     | ft): <u>0</u> 1      | <u> &lt;</u> |
| Purae Info     | ormation                 |                          | Well Diameter (in)                     | Volume (gal/ft)   | Depth Pump Deplo        | yed (ft): <u>/ Z</u>          | Tubing Used   | i (ft): _Z           | 20           |
| Column of W    | ater in Well (ft):       | 4.03                     | 1 3/4 "                                | 0.13              | Purge Method:           | Pereissich                    | IL PRO        | m                    |              |
| Gailons/foot ( | of Well Casing:          | X 0.17                   | 2"                                     | 0.17              | Est. Flow Rate (I       | iters/min): D, H Develo       | opment Tot. V | 'ol (gal):           | 4.0 *        |
| Vol. of Water  | in Well (gal):           | = 0.7                    | <b>4</b> "                             | 0.66              | Purge Water Dispo       | sal: Processed through G      | AC and disp   | osal on site         | <u>e</u>     |
| Field Param    | eters                    | Purge Start Tim          | ne: 1145                               | Purge End time    | 375                     | Total Purge Volume Remo       | ved (gal):    | 3,2                  |              |
| Time           | Temperature              | Dissolved O <sub>2</sub> | Conductivity                           | pН                | ORP                     | Visual Clarity                | Odor          | Sheen                | Removed      |
| (24-hr)        | [±0.5 °C]                | [± 0.1 mg/L]             | (±3% µS/cm)                            | (± 0.1 pH units)  | [±10 mV]                | (observed)                    | (Y/N)         | (Y/N)                | Vol (gal)    |
| 1150           | War                      | in gu                    | Sin pu                                 | appare th         | 25                      | Tint                          |               | $\sim$               | 0.5          |
| 1155           | hot                      | a clear                  | al der to                              | hispan            | ۷                       | 11                            | Y             | $\overline{N}_{\pi}$ | 1.0          |
| 1700           | 54220                    | and or                   | wared co                               | manne             | non.                    | 11                            | Γy Ι          | $N_{\downarrow}$     | 1.5          |
| 1205           | -                        |                          |                                        |                   |                         | Clear                         | 4             | $\mathcal{N}$        | 2,0          |
| 1210           |                          |                          |                                        |                   |                         | Clean                         | 61            | $\mathcal{N}$        | 2,5-         |
| 1215           |                          |                          |                                        |                   |                         | Clean                         |               | $\sim$               | 3.0          |
|                |                          |                          |                                        |                   |                         | · · ·                         |               |                      |              |
|                |                          |                          |                                        |                   |                         |                               |               |                      |              |
|                |                          |                          |                                        |                   |                         |                               |               |                      |              |
|                |                          | -                        |                                        | M                 |                         |                               |               |                      |              |
|                |                          |                          |                                        |                   |                         |                               |               |                      |              |
|                |                          |                          |                                        |                   |                         |                               |               |                      |              |
|                |                          |                          |                                        |                   |                         |                               | <u> </u>      |                      | <u>, E</u>   |
| Water Qualit   | y Meter & S/N:           |                          |                                        |                   | Purge Notes:            |                               |               |                      | al Dusand    |
| Sample Ir      | $\frac{1000}{2}$         | n la it                  |                                        |                   | Sample Unteria (ci      | rcie one): Stable parame      |               |                      | 77()         |
| Sample Dat     | e: <u>2/ /</u>           | 107                      |                                        |                   | Sample ID:              | THU - h                       |               | 11me: / 4            |              |
| Sampler(s):    |                          | <u>w</u>                 |                                        |                   | Field Dup ID:           |                               | •             | Time:                |              |
| Sample Met     | hod: <u>Fe</u> R         | 1572 (1)                 | - pump                                 |                   | Equip Blank ID:         |                               | -             | Time:                |              |
| Well Condit    | ion Notes:               |                          | ······································ | ······            |                         |                               |               |                      |              |
| Casing N       | otes: (                  | Good                     |                                        |                   |                         |                               |               | <u></u>              |              |
| Monumer        | it Notes: 10             | n var                    | - Banke                                | n/07              | her ea                  | ie threads                    | Stiri         | pper                 | /            |
| Alditional     | Notes & Commer           | nts: 51                  | non Pe                                 | Thelen            | in odoi                 | · to plum.                    | e w           | . Tor                |              |
|                |                          |                          |                                        |                   |                         |                               |               |                      |              |
|                |                          |                          |                                        |                   |                         | ·                             |               |                      |              |

2

. """

 $M_{\rm e}^{\rm Max}$ 



| Project:           | Former Kie         | wit Facility -           | 2050 Peger Rd      |                   | Site Location:                        | Fairbanks, Alaska              |               |              |            |                |
|--------------------|--------------------|--------------------------|--------------------|-------------------|---------------------------------------|--------------------------------|---------------|--------------|------------|----------------|
| Project #:         | 24-1008            |                          |                    |                   | Well Number:                          | mw-3                           |               |              |            |                |
| Water Col          | umn                | Pre-Purge                | Post-Purge: (on    | ly need to be col | lected if field staff ha              | ave sufficient belief these me | asurements    | have chang   | ed)        |                |
| /<br>Total Depth o | f Well (ft):       | 12.92                    |                    |                   | Water Level Measu                     | rement Date:                   | 3/27          | 7/24         |            |                |
| Depth to Prod      | luct from TOC (fi  | ND_                      |                    |                   | Water Level Measu                     | rement Time:                   | 092           | 0            |            |                |
| Depth to Wat       | er from TOC (ft):  | 10,22                    |                    |                   | WL Meter & S/N:                       | Solinst SN 484936              |               |              |            |                |
| Column of Wa       | ater in Well (ft): | 2.70                     |                    |                   | TOM-GS (ft):                          | Flug                           | тос-том       | (ft): 01     | <u> </u>   |                |
| Purge Info         | ormation           |                          | Well Diameter (in) | Volume (gal/ft)   | Depth Pump Deplo                      | vyed (ft): 17                  | Tubing Use    | ed (ft):     | 8          |                |
| Column of Wa       | ater in Well (ft): | 2,70                     | 1 3/4 "            | 0.13              | Purge Method:                         | Pinisalt                       | c Pur         | w w          |            | mn             |
| Gallons/foot o     | of Well Casing:    | X 0.17                   | 2"                 | 0.17              | Est. Flow Rate (                      | liters/min): 0.15 Develo       | opment Tot.   | Vol (gal): 🔁 | 501.       | 75             |
| Vol. of Water      | in Weil (gal):     | = 0,46                   | 4                  | 0.66              | Purge Water Dispo                     | osal: Processed through G      | AC and dis    | oosal on sit | <u>e</u>   |                |
| Field Param        | eters              | Purge Start Tim          | ne: 0900           | Purge End time    | 0940                                  | Total Purge Volume Remo        | oved (gal): _ | 1.8          | 5          | _              |
| Time               | Temperature        | Dissolved O <sub>2</sub> | Conductivity       | рН                | ORP                                   | Visual Clarity                 | Odor          | Sheen        | Removed    |                |
| (24-hr)            | [±0,5 °C]          | [± 0.1 mg/L]             | [±3%µS/cm]         | [± 0.1 pH units]  | [ ±10 mV ]                            | (observed)<br>Sligat ye (low   | (Y/N)         | (Y/N)        | Voi (gal)  |                |
| 0905               | Waz                | for gui                  | City pur           | SMATLE            |                                       | print                          | Y             |              | 0.5        |                |
| 6915               | INOT               | collected                | due to             | historic          |                                       |                                | <u> </u>      |              | 0,75       |                |
| 0925               | Shee               | n and -                  | etword c           | ontanin           | utton,                                |                                | 17            |              | 1.0        |                |
| 0735               |                    |                          |                    |                   |                                       | 11                             | <u>Y</u> _    |              | 1.25       | inu            |
|                    |                    |                          |                    |                   |                                       |                                |               | -N           | 1.5        | Support States |
|                    |                    |                          |                    |                   | -                                     |                                |               |              |            |                |
|                    |                    |                          |                    |                   | · · · · · · · · · · · · · · · · · · · |                                |               |              |            |                |
|                    |                    |                          |                    |                   |                                       |                                |               |              |            |                |
|                    |                    |                          |                    |                   |                                       | -                              |               |              |            |                |
|                    |                    |                          |                    |                   |                                       |                                |               |              |            |                |
|                    |                    |                          |                    |                   |                                       |                                |               |              |            |                |
|                    |                    |                          |                    |                   | 2                                     |                                |               |              |            |                |
| Water Qualit       | v Meter & S/N:     |                          |                    |                   | Purge Notes:                          |                                |               |              |            | _              |
| Sample Ir          | formation          |                          |                    |                   | Sample Criteria (c                    | ircle one): Stable parame      | ters or       | > 3 Well V   | ol. Purged |                |
| Sample Date        | : 3127             | 1/24                     |                    |                   | Sample ID:                            | mw - 3                         |               | Time: 🔇      | 2950       | 6              |
| Sampter(s):        | m                  | $\mathcal{V}^{\prime}$   |                    |                   | Field Dup ID:                         | mw-30                          | 0             | Time: /      | ے ہگ       | 2              |
| Sample Met         | hod: P-212         | isalt                    | K Pumo             |                   | Equip Blank ID:                       |                                |               | Time:        |            | -              |
|                    |                    |                          |                    |                   | • •                                   |                                |               |              |            | -<br>2         |
| Well Condit        | ion Notes:         | <del></del>              |                    |                   |                                       |                                |               |              |            | -              |
| Casing No          | otes:              | Orver                    |                    |                   |                                       | •                              |               |              |            | _              |
| Monumen            | t Notes:           | 0,00                     | d                  |                   |                                       |                                |               |              |            | _              |
| Additional N       | lotes & Comme      | nts: P.                  | rachun             | Olor              | to pa                                 | nge wate                       | ~ t~~~~       |              |            | -              |
|                    | Pur                | m pred                   | well d're          | 5,5               | low To                                | Re chan                        | ie.           |              | ······     | _              |
| <u> </u>           |                    | ·                        |                    | /                 | · · · ·                               | C                              | )             |              |            | -              |

New.



| Project:                                                                                                                                             | Former Kiev           | vit Facility - :         | 2050 Peger Rd      |                                              | Site Location:                                      | Fairbanks, Alaska                                        |                  |               |              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|--------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------|---------------|--------------|--|
| Project #:                                                                                                                                           | 24-1008               |                          |                    |                                              | Well Number:                                        | MW-4                                                     | ۷                |               |              |  |
| Water Column         Pre-Purge         Post-Purge: (only need to be collected if field staff have sufficient belief these measurements have changed) |                       |                          |                    |                                              |                                                     |                                                          |                  |               |              |  |
| Total Depth of Well (ft): 13.95                                                                                                                      |                       |                          |                    | Water Level Measurement Date: <u>3126124</u> |                                                     |                                                          |                  |               |              |  |
| Depth to Prod                                                                                                                                        | uct from TOC (ft)     | ND_                      |                    |                                              | Water Level Measurement Time: 1210                  |                                                          |                  |               |              |  |
| Depth to Wate                                                                                                                                        | er from TOC (ft):     | 11.58                    |                    |                                              | WL, Meter & S/N:                                    | Solinst SN 484936                                        | ······           |               |              |  |
| Column of Wa                                                                                                                                         | ater in Well (ft):    | 2.37                     | <i></i>            |                                              | TOM-GS (ft):                                        | Flush                                                    | TOC-TOM (        | (ft):/        | <u>K</u>     |  |
| Purge Info                                                                                                                                           | rmation               |                          | Well Diameter (in) | Volume (gal/ft)                              | Depth Pump Deployed (fl): 12,5 Tubing Used (fl): 18 |                                                          |                  |               |              |  |
| Column of Wa                                                                                                                                         | ater in Well (ft):    | 2.37                     | 1 3/4 "            | 0.13                                         | Purge Method:                                       | Submusib                                                 | k P              | imp           |              |  |
| Gailons/foot o                                                                                                                                       | f Well Casing:        | X 0.17                   | 2"                 | 0.17                                         | Est. Flow Rate (I                                   | v Rate (liters/min): 0.7 Development Tot. Vol (gal): 7.0 |                  |               |              |  |
| Vol. of Water                                                                                                                                        | in Well (gal):        | = 0,41                   | 4                  | 0.66                                         | Purge Water Dispo                                   | sal: Processed through G/                                | AC and disp      | osal on site  | 2            |  |
| Field Parame                                                                                                                                         | ters                  | Purge Start Tim          | e:1220             | Purge End time                               | 1252                                                | Total Purge Volume Remo                                  | ved (gal):       | 5.5           | <u></u>      |  |
| Time                                                                                                                                                 | Temperature           | Dissolved O <sub>2</sub> | Conductivity       | pH                                           | ORP                                                 | Visual Clarity                                           | Odor             | Sheen         | Removed      |  |
| (24-hr)                                                                                                                                              | [±0.5 °C]             | [± 0.1 mg/L]             | [±3%μS/cm]         | [± 0.1 pH units]                             | [±10 mV]                                            | (observed)                                               | (Y/N)            | <u>(Y/N)</u>  | Voi (gai)    |  |
| 1223                                                                                                                                                 | <u> </u>              | 043                      | 1391/2,2           | 6,10                                         | -50,7                                               | Pale                                                     |                  | <u> </u>      | <i>L</i> , 3 |  |
| 1226                                                                                                                                                 | 1.5                   | 0,79                     | 1341               | 0.11                                         | -62.7                                               | gerlow                                                   |                  |               | 1.0          |  |
| 1229                                                                                                                                                 | 1,5                   | 0,82                     | 13-151             | 6.12                                         | -60.5                                               | Light Pale                                               |                  | $\frac{V}{n}$ |              |  |
| 1232                                                                                                                                                 | 1.5                   | 0.59                     | 13091              | 0,71                                         | - 13, 3                                             | getteer-                                                 |                  |               | 7.0          |  |
| 1235                                                                                                                                                 | 1.5                   | 0,50                     | 12841              | 6,17                                         | - 80,6                                              | Licher Dale                                              |                  |               | 2:5          |  |
| 1238                                                                                                                                                 | 1.5                   | 0,45                     | 12701              | 6.76                                         | -8517                                               | GerlowThe                                                |                  |               | 5,0          |  |
| 1241                                                                                                                                                 | 1,5                   | 0.40                     | 1901               | 6.77                                         | -91.4                                               | SIMMERIA                                                 |                  | $\frac{n}{1}$ | 5.5          |  |
| 1244                                                                                                                                                 | 1.6                   | 0,38                     | 500/ 702           | 6,78                                         | -92,9                                               | Gellow The                                               |                  |               | 7.0          |  |
| 1247                                                                                                                                                 | 1.6                   | 0.37                     | 12000              | 6.78                                         | - 94, 8                                             | Gelline That                                             |                  |               | 4.5          |  |
| 1250                                                                                                                                                 | 1.6                   | 0.35                     | 698                | 6,79                                         | -98,1                                               | genow The                                                |                  |               | 5.0          |  |
|                                                                                                                                                      |                       |                          |                    |                                              |                                                     |                                                          |                  |               |              |  |
|                                                                                                                                                      |                       |                          |                    | <u> </u>                                     |                                                     |                                                          |                  |               |              |  |
| Water Quality                                                                                                                                        | y Meter & S/N:        |                          |                    |                                              | _ Purge Notes:                                      |                                                          |                  |               |              |  |
| Sample In                                                                                                                                            | formation             | e la c                   |                    |                                              | Sample Criteria (ci                                 | rcle one Stable paramet                                  | ters of          | > 3 Well V    | ol. Purged   |  |
| Sample Date: 3/26/24                                                                                                                                 |                       |                          |                    |                                              | Sample ID:                                          | D: MW-4. Time: 130                                       |                  |               |              |  |
| Sampler(s):                                                                                                                                          |                       |                          |                    |                                              | Field Dup ID:                                       | Time:                                                    |                  |               |              |  |
| Sample Met                                                                                                                                           | hod: <u>S W</u>       | binensi                  | ste Pun            | Equip Blank ID:                              | EB-1                                                |                                                          | Time: <u>/</u> 3 | 345           |              |  |
| Wall Condition Notes:                                                                                                                                |                       |                          |                    |                                              |                                                     |                                                          |                  |               |              |  |
| Casing Notes: Q. D.D./                                                                                                                               |                       |                          |                    |                                              |                                                     |                                                          |                  |               |              |  |
| Monumen                                                                                                                                              | Monument Notes: Grand |                          |                    |                                              |                                                     |                                                          |                  |               |              |  |
| Additional                                                                                                                                           | lofes & Commer        | <u>1. U.C.C.</u>         |                    |                                              |                                                     |                                                          |                  |               | <b>_</b>     |  |
| Automotial N                                                                                                                                         | otes a sounder        |                          |                    |                                              |                                                     |                                                          |                  |               |              |  |
|                                                                                                                                                      |                       |                          |                    |                                              |                                                     |                                                          |                  |               |              |  |



1

### Groundwater Sample Form

| Project:                                                                                                                                             | Former Kie         | wit Facility -           | 2050 Peger Rd      |                                       | Site Location:        | Fairbanks, Alaska            |                                         |                           |            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|--------------------|---------------------------------------|-----------------------|------------------------------|-----------------------------------------|---------------------------|------------|--|--|
| Project #:                                                                                                                                           | 24-1008            | -<br>                    |                    |                                       | Well Number:          |                              |                                         |                           |            |  |  |
| Water Column         Pre-Purge         Post-Purge: (only need to be collected if field staff have sufficient belief these measurements have changed) |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Total Depth of Well (ft): <u>34,50</u> Water Le                                                                                                      |                    |                          |                    |                                       |                       | urement Date: <u>3/26/24</u> |                                         |                           |            |  |  |
| Depth to Product from TOC (ft) <u>ND</u> Water Level Measurement Time: <u>D955</u>                                                                   |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Depth to Water from TOC (ft): 11.36 WL Meter & S/N: Solinst SN 484936                                                                                |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Column of Water in Well (ft): <u>Z3,14</u> TOC-TOM (ft): <u>DK</u>                                                                                   |                    |                          |                    |                                       |                       |                              |                                         |                           | <u>×K_</u> |  |  |
| Purge Info                                                                                                                                           | rmation            |                          | Well Diameter (in) | Volume (gal/ft)                       | Depth Pump Deploy     | yed (ft): <u>33</u>          | 3 Tubing Used (ft): 40                  |                           |            |  |  |
| -<br>Column of Wa                                                                                                                                    | ater in Well (ft): | 23,14                    | 1 3/4 "            | 1 3/4" 0.13 Purge Method: Submensible |                       |                              |                                         |                           | pamp       |  |  |
| Gallons/foot c                                                                                                                                       | f Well Casing:     | X 0.17                   | 2"                 | 0.17                                  | Est. Flow Rate (I     | iters/min): 0,6 Develo       | pment Tot. V                            | /ol (gal):                | 7.5        |  |  |
| Vol. of Water                                                                                                                                        | in Well (gal):     | = 3,94                   | 4"                 | 0.66                                  | Purge Water Dispo     | sal: Processed through G     | AC and dist                             | osal on site              | 2          |  |  |
| Field Parame                                                                                                                                         | ters               | Purge Start Tim          | e: 1015            | Purge End time:                       | 1050                  | Total Purge Volume Remo      | wed (gal): _                            | 5.5                       | •          |  |  |
| Time                                                                                                                                                 | Temperature        | Dissolved O <sub>2</sub> | Conductivity       | рН                                    | ORP                   | Visual Clarity               | Odor                                    | Sheen                     | Removed    |  |  |
| (24-hr)                                                                                                                                              | [±0.5 °C]          | [± 0.1 mg/L]             | [±3%µS/cm]         | [± 0.1 pH units]                      | [±10 mV]              | ( observed )                 | (Y/N)                                   | (Y/N)                     | Vol (gal)  |  |  |
| 1018                                                                                                                                                 | 1.5                | 0,90                     | 785/431,           | 96.63                                 | 3,3                   | Clean                        | $ \mathcal{N} $                         | $\mathcal{N}_{\cdot}$     | 0,5-       |  |  |
| 1021                                                                                                                                                 | 1.5                | 0,68                     | 184/432,0          | 6.70                                  | - 13,4                | Clean                        |                                         | N                         | 1,0        |  |  |
| 1024                                                                                                                                                 | 1.6                | 0,62                     | 782/432.4          | 6,14                                  | -28,5                 | Clear                        | $ \  \                                $ | N                         | 1.5        |  |  |
| 1027                                                                                                                                                 | 1.6                | 0,60                     | 182/432,8          | 6.76                                  | -36,4                 | Clean                        | $\lfloor \mathcal{N} \rfloor$           | $\underline{N}$           | 0,2        |  |  |
| 1030                                                                                                                                                 | 1.6                | 0,51                     | 781/432.9          | ,6.80                                 | -51.5                 | Clean                        |                                         | $\underline{\mathcal{N}}$ | 2.5        |  |  |
| 1033                                                                                                                                                 | 1.7                | 0.43                     | 181/432.6          | 6.82                                  | -58,3                 | Clean                        |                                         | $\mathcal{N}$             | 3.0        |  |  |
| 10:37                                                                                                                                                | 1.6                | 0.37                     | 782/431.8          | 6,83                                  | -6617                 | Clean                        | $ \sim$                                 | $\sim$                    | 3.5        |  |  |
| 1041                                                                                                                                                 | 1.6                | 0.34                     | 782/431,9          | 6,85                                  | -74.2                 | Clean                        | $ $ $\sim$                              | $\mathcal{N}$             | 4,0        |  |  |
| 1045                                                                                                                                                 | 1,6                | 0,32                     | 783/431.9          | 6,86                                  | -80,3                 | Clean                        |                                         | $\overline{N}$            | 4,5        |  |  |
| 1049                                                                                                                                                 | 1.6                | 0.31                     | 183/432.0          | 6.86                                  | -81.7                 | Clean                        |                                         | $'N_{\cdot}$              | 5.0        |  |  |
|                                                                                                                                                      |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
|                                                                                                                                                      |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Water Quality                                                                                                                                        | / Meter & S/N:     |                          |                    |                                       | Purge Notes:          |                              |                                         |                           |            |  |  |
| Sample In                                                                                                                                            | formation          |                          |                    |                                       | Sample Criteria (ci   | rcle one) Stable parame      | ters                                    | > 3 Well Vo               | ol, Purged |  |  |
| Sample Date                                                                                                                                          | : 3/26             | 124                      |                    |                                       | Sample ID:            | MW-5                         |                                         | Time: / /                 | 100        |  |  |
| Sampler(s): WLW Field Dup ID: Time:                                                                                                                  |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Sample Method: Submarsible pump                                                                                                                      |                    |                          |                    |                                       | Equip Blank ID: Time: |                              |                                         |                           |            |  |  |
|                                                                                                                                                      |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Well Conditi                                                                                                                                         | on Notes:          |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Casing Notes: Good                                                                                                                                   |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Monument Notes: Coud                                                                                                                                 |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
| Additional N                                                                                                                                         | otes & Comme       | nts:                     |                    |                                       |                       |                              |                                         |                           | <u> </u>   |  |  |
|                                                                                                                                                      |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |
|                                                                                                                                                      |                    |                          |                    |                                       |                       |                              |                                         |                           |            |  |  |



| Project:                                             | roject: Former Kiewit Facility - 2050 Peger Rd |                          |                 |                                    | Site Location: Fairbanks, Alaska      |                                         |                       |                           |            |             |  |
|------------------------------------------------------|------------------------------------------------|--------------------------|-----------------|------------------------------------|---------------------------------------|-----------------------------------------|-----------------------|---------------------------|------------|-------------|--|
| -<br>Project #:                                      | 24-1008                                        |                          |                 |                                    | Well Number:                          | mw-40                                   | 3A                    |                           |            |             |  |
| Water Colu                                           | ımn .                                          | Pre-Purge                | Post-Purge: (on | ly need to be col                  | lected if field staff ha              | ve sufficient belief these me           | asurements            | have change               | ed)        | :           |  |
| Total Depth of Weil (ff): 47.85                      |                                                |                          |                 |                                    | Water Level Measurement Date: 3/19/24 |                                         |                       |                           |            |             |  |
| Depth to Prod                                        | uct from TOC (ft                               | 9.49                     |                 |                                    | Water Level Measurement Time: 1030    |                                         |                       |                           |            |             |  |
| Depth to Wate                                        | Depth to Water from TOC (ft):                  |                          |                 |                                    |                                       | WL Meter & S/N: Solinst SN 484936       |                       |                           |            |             |  |
| Column of Water in Well (ft): 38,36                  |                                                |                          |                 |                                    | TOM-GS (ft):                          | Flugh                                   | тос-том               | (ft):                     | -ok        | 7<br>       |  |
| Purge Information Well Diameter (in) Volume (gal/ft) |                                                |                          |                 |                                    | Depth Pump Deployed (ft):             |                                         |                       |                           |            |             |  |
| Column of Water in Well (ft): 38,36                  |                                                | 1 3/4 " 0.13             |                 | Purge Method: Shib mensiole Prempe |                                       |                                         |                       |                           | lere       |             |  |
| Gallons/foot o                                       | f Well Casing:                                 | X 0.17                   | 2" 0.17         |                                    | Est. Flow Rate (li                    | ters/min): <u>0,9</u> Develo            | pment Tot. V          | Vol (gal): <u> </u>       | 6.0        |             |  |
| Vol. of Water                                        | in Well (gal):                                 | = 6.5                    | 4"              | 0.66                               | Purge Water Dispos                    | al: <u>Processed through G</u>          | AC and disr           | osal on site              | e/         | r.S<br>aria |  |
| Field Parame                                         | ters                                           | Purge Start Tim          | e: <u>/050</u>  | Purge End time                     | 1115                                  | 1115 Total Purge Volume Removed (gal):5 |                       |                           | 5-6,       | 6           |  |
| Time                                                 | Temperature                                    | Dissolved O <sub>2</sub> | Conductivity    | рН                                 | ORP                                   | Visual Clarity                          | Odor                  | Sheen                     | Removed    |             |  |
| (24-hr)                                              | [±0.5 °C]                                      | [± 0.1 mg/L]             | [±3% µS/cm]     | (± 0.1 pH units)                   | [ ±10 mV ]                            | (observed)                              | (Y/N)                 | <u>(Y/N)</u>              | Vol (gal)  |             |  |
| 1653                                                 | DIZ                                            | 2,36                     | 874             | 6,77                               | -32,6                                 | C. lear                                 | $\mathcal{N}_{\cdot}$ | $\overline{N}_{+}$        | 1.0        | -           |  |
| 1055                                                 | 0.7                                            | 1.29                     | 873             | 6.86                               | -49.1                                 | Clean                                   | $\sim$                |                           | 1.5        | -           |  |
| 1057                                                 | 0,6                                            | 1.04                     | 872             | 6.89                               | -58:7                                 | Clea                                    | N                     | $\sim$                    | 2,0        |             |  |
| 1059                                                 | 0.6                                            | 0,92                     | 872             | 6,90                               | -6412                                 | Clean                                   | $\sim$                | $\underline{\mathcal{N}}$ | 2,5        |             |  |
| 1101                                                 | 0.7                                            | D.BZ                     | 871             | 6.92                               | -68,0                                 | Clean                                   | $\sim$                | $\mathcal{N}$             | 3,0        |             |  |
| 1103                                                 | 0,7                                            | 0.65                     | 870             | 6.94                               | - 78.7                                | Clean                                   | $\mathcal{N}$         | av                        | 3.5        |             |  |
| 1105                                                 | 0.7                                            | 0,60                     | 8.70            | 6,95                               | -82.5                                 | Clean                                   | N                     | N                         | 4,0        |             |  |
| 1107                                                 | 0.7                                            | 0,58                     | 810             | 6,96                               | -86,7                                 | Clean                                   | $\sim$                | $\mathcal{N}_{i}$         | 4.5        |             |  |
| 1109                                                 | 0.7                                            | 0.52                     | - 861           | 6.96                               | -90,1                                 | Clean                                   | $\mathcal{N}$         | N                         | 5.0        |             |  |
| 111/                                                 | 0.7                                            | 0.51                     | 869             | 6.97                               | -91.4                                 | Clean                                   | $\mathcal{N}$         | N                         | 5.5        |             |  |
| 1113                                                 | 0.7                                            | 0.50                     | 869             | 6,97                               | -72,4                                 | Clean                                   | $\sim$                | N                         | 6.0        |             |  |
|                                                      | ,                                              |                          |                 |                                    |                                       |                                         |                       |                           |            | ]           |  |
| Water Quality                                        | Meter & S/N:                                   |                          |                 |                                    | _ Purge Notes:                        |                                         | Photo                 |                           |            | -           |  |
| Sample In                                            | formation                                      | <b>,</b> ,               |                 |                                    | Sample Criteria (cir                  | cle one): Stable paramet                | ers) or               | > 3 Well Vo               | ol. Purged | -           |  |
| Sample Date: 3/19/24 Sample ID: MW-403A Time: 1125   |                                                |                          |                 |                                    |                                       |                                         |                       |                           | <b>_</b>   |             |  |
| Sampler(s):                                          | W1 W                                           |                          |                 |                                    | Field Dup ID:                         |                                         |                       | Time:                     |            | _           |  |
| Sample Meth                                          | od: Sub                                        | mensible                 | е римр          |                                    | Equip Blank ID:                       | Time:                                   |                       |                           |            | -           |  |
|                                                      |                                                |                          |                 |                                    |                                       |                                         |                       |                           |            |             |  |
| Well Condition Notes:                                |                                                |                          |                 |                                    |                                       |                                         |                       |                           |            |             |  |
| Casing Notes: (2004                                  |                                                |                          |                 |                                    |                                       |                                         |                       |                           |            |             |  |
| Monument Notes: (3000                                |                                                |                          |                 |                                    |                                       |                                         |                       |                           |            |             |  |
| Additional Notes & Comments:                         |                                                |                          |                 |                                    |                                       |                                         |                       |                           |            |             |  |
|                                                      |                                                |                          |                 |                                    |                                       | <u></u>                                 |                       |                           |            | -           |  |
|                                                      |                                                |                          |                 |                                    |                                       |                                         |                       |                           |            | _           |  |



| Project:                                                                                               | Former Kiev                         | wit Facility - :         | 2050 Peger Rd                    |                        | Site Location:                                                  | Fairbanks, Alaska                     |               |                         |             |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|----------------------------------|------------------------|-----------------------------------------------------------------|---------------------------------------|---------------|-------------------------|-------------|--|
| Project #:                                                                                             | 24-1008                             |                          |                                  |                        | Well Number:                                                    | MW-40                                 | <u>3B</u>     |                         |             |  |
| Water Colu                                                                                             | mn                                  | Pre-Purge                | Post-Purge: (onl)                | y need to be coll      | ecled if field staff hav                                        | ve sufficient belief these me         | asurements    | have change             | ed)         |  |
| Total Depth of Well (ft): <u>14.93</u> Water Level Measurement Date: <u>3/19/24</u>                    |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Depth to Product from TOC (ft) <u>ND</u> Water Level Measurement Time: <u>120</u>                      |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Depth to Water from TOC (ft): WL Meter & S/N: Solinst SN 484936                                        |                                     |                          |                                  |                        |                                                                 |                                       |               |                         | · .         |  |
| Column of Water in Well (ft): <u>5, 48</u> TOM-GS (ft): <u>F/n611</u> TOC-TOM (ft): <u>DK</u>          |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Purge Information Well Diameter (in) Volume (gal/ft) Depth Pump Deployed (ft): 17 Tubing Used (ft): 18 |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Column of Wa                                                                                           | ter in Well (ft):                   | 514B                     | Purge Method: Jub pmarsible Pamp |                        |                                                                 |                                       |               | Emp                     |             |  |
| Gallons/foot o                                                                                         | f Well Casing:                      | X 0.17                   | 2"                               | 0.17                   | Est. Flow Rate (liters/min): L. L. Development Tot. Vol (gal):S |                                       |               |                         |             |  |
| Vol. of Water                                                                                          | n Well (gal):                       | =0,94                    | 4" (1945)<br>                    | 0.66                   | Purge Water Dispos                                              | al: Processed through G               | AC and dist   | oosal on site           | 2           |  |
| Field Parame                                                                                           | ters                                | Purge Start Tim          | e: <u>1215</u>                   | Purge End time:        | 1231                                                            | Total Purge Volume Remo               | ved (gai): _  | 7,0                     | <del></del> |  |
| Time                                                                                                   | Temperature                         | Dissolved O <sub>2</sub> | Conductivity                     | pH<br>I+ 0.1 nH unite] | ORP                                                             | Visual Clarity                        | Odor<br>(Y/N) | Sheen                   | Removed     |  |
| (24-11)                                                                                                |                                     | 0.79                     | 996                              | 7.07                   | -3.5.8                                                          | Chiam                                 | $\mathcal{N}$ | $^{\prime}$ $^{\prime}$ | 4.0         |  |
| 17.7.7                                                                                                 | 1.0                                 | 0.66                     | 990                              | 7.09                   | -44,4                                                           | Che qui                               | N             | N                       | 4.5         |  |
| 17.7.9                                                                                                 | 1.0                                 | 0.61                     | 988                              | 7.09                   | -48.7                                                           | Clean                                 | N             | N                       | 570         |  |
| 12.31                                                                                                  | 1.0                                 | 0,56                     | 988                              | 7.10                   | ~ 54, Z                                                         | Clear.                                | N             | $\mathcal{N}_{i}$       | 5.5         |  |
| 1233                                                                                                   | 0,9                                 | 0,53                     | 987                              | 7,10                   | - 57.4                                                          | Clean                                 | N             | W                       | 6.0         |  |
| 12.35                                                                                                  | 0.9                                 | 0.51                     | 987                              | 7.11                   | -59,7                                                           | Clean                                 | $\mathcal{N}$ | $\mathcal{N}$           | 6.5         |  |
| 1237                                                                                                   | 0,9                                 | 0,50                     | 987                              | 7.11                   | -61.3                                                           | Clean                                 | $\sim$        | $^{\prime}N$            | 7.0         |  |
|                                                                                                        |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
|                                                                                                        |                                     |                          |                                  |                        |                                                                 | · · · · · · · · · · · · · · · · · · · | N.            |                         |             |  |
|                                                                                                        |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
|                                                                                                        |                                     | ļ                        |                                  |                        |                                                                 |                                       |               |                         |             |  |
|                                                                                                        | <u> </u>                            |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Water Quality                                                                                          | Meter & S/N:                        |                          |                                  |                        | Purge Notes:                                                    | مىلىكەتلەرتىرىيى دىرىيى               |               |                         |             |  |
| Sample In                                                                                              | formation                           | ( )                      |                                  |                        | Sample Criteria (cir                                            | cle one): Stable paramet              | ters or       | > 3 Well V              | ol. Purged  |  |
| Sample Date                                                                                            | : <u>3//9/</u>                      | 24_                      |                                  |                        | Sample ID:                                                      | MW-4031                               | 3             | Time: /2                | -50         |  |
| Sampler(s):                                                                                            | Sampler(s): WLW Field Dup ID: Time: |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Sample Method: <u>SLibmansible pump</u> Equip Blank ID: <u>Time</u> :                                  |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Well Condition Notes:                                                                                  |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Casing Notes: Cy 80 d                                                                                  |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
| Monument                                                                                               | Notes:                              | Grat                     | Du                               | ean m                  | 55 C. M .                                                       | ofther can                            | Spl           | i poze                  | ./          |  |
| Additional N                                                                                           | otes & Commer                       | nts:                     | 1457                             | 3.0 S.A.               | 11045 01                                                        | cample Ca                             | 5/012         |                         |             |  |
|                                                                                                        |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
|                                                                                                        |                                     |                          |                                  |                        |                                                                 |                                       |               |                         |             |  |
# **Attachment 4**



### March 2024 Groundwater Monitoring Report Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska June 2024



*Photo 1:* March 27, 2024. Looking west at MW-2 (center) showing the CMI facility (background) as the well is purged using a low flow peristaltic pump instead of a submersible pump due to historic elevated contaminant concentrations. Three to five well volumes of water were removed prior to groundwater sample collection.



**Photo 2:** March 27, 2024. Looking south at MW-3 (center) showing the 4-Bay Building (left) as the well is purged using a low flow peristaltic pump instead of a submersible pump due to historic elevated contaminant concentrations. Three to five well volumes of water were removed prior to groundwater sample collection.

Https://Nortechinc.Sharepoint.Com/00-Jobs/2024/1008/Shared Documents/Images/Spring 2024 Report/24-1008 GW Rpt Spring 2024 Photopages V2.Docx



### March 2024 Groundwater Monitoring Report Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska June 2024



**Photo 3:** March 26, 2024. Looking northeast at MW-4 showing 20<sup>th</sup> Avenue (background) as the well is purged using a low flow submersible pump. Water quality parameters were measured with a YSI Pro DSS instrument prior to groundwater sample collection.



**Photo 4:** March 26, 2024. Looking southeast at MW-5 showing the CMI yard as the well is purged using a low flow submersible pump while water quality parameters are measured with a YSI Pro DSS instrument prior to groundwater sample collection. The 4-Bay Building is shown (upper left, background).



### March 2024 Groundwater Monitoring Report Former Kiewit Facility, 2050 Peger Road, Fairbanks, Alaska June 2024



*Photo 5:* March 19, 2024. Looking east at MW-403A and MW-403B in 20<sup>th</sup> Avenue ROW. The wells were purged using a low flow submersible pump while water quality parameters were measured with a YSI Pro DSS instrument prior to groundwater sample collection. The 2-Bay Building is shown on the right.



**Photo 6:** May 15, 2024. Looking south from the vicinity of the 4-Bay Building as the approximately 38 gallons of contaminated purge water generated from the six monitoring wells during sampling is processed and treated through a portable Granular Activated Carbon (GAC) system. The treated water was disposed of on Site by pouring to the ground surface a minimum of 100 feet away from drinking water wells or surface water.

## **Attachment 5**



#### Laboratory Report of Analysis

To: Nortech 2400 College Road Fairbanks, AK 99707 (907)452-5688

Report Number: **1241074** 

Client Project: Former Kiewit Fac-2050 Peger

Dear William Watts,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

| Sincerely,<br>SGS North America Inc. |            | Stephen C. Ede   |
|--------------------------------------|------------|------------------|
|                                      | Stophen C. | Ede 2024.04.08   |
|                                      |            | 08:20:08 -08'00' |

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 04/05/2024 4:56:02PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group



#### **Case Narrative**

#### SGS Client: Nortech SGS Project: 1241074 Project Name/Site: Former Kiewit Fac-2050 Peger Project Contact: William Watts

Refer to sample receipt form for information on sample condition.

#### LCS for HBN 1873731 [VXX/41017 (1756897) LCS

8260D - LCS recovery for trichlorofluoromethane does not meet QC criteria. This analyte was not reported above LOQ in associated samples.

#### LCSD for HBN 1873731 [VXX/4101 (1756898) LCSD

8260D - LCS/LCSD RPD for trichlorofluoromethane does not meet QC criteria. This analyte was not reported above LOQ in associated samples.

#### 1240966013(1757104MS) (1757109) MS

6020B - Metals MS recoveries for Iron and Manganese do not meet QC criteria. The post digestion spike was successful.

Light Gases by RSK-175 were analyzed by SGS of Orlando, FL.

\*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/05/2024 4:56:04PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group



#### Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270E, 8270E-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

| *                                                    | The analyte has exceeded allowable regulatory or control limits.                    |
|------------------------------------------------------|-------------------------------------------------------------------------------------|
| !                                                    | Surrogate out of control limits.                                                    |
| В                                                    | Indicates the analyte is found in a blank associated with the sample.               |
| CCV/CVA/CVB                                          | Continuing Calibration Verification                                                 |
| CCCV/CVC/CVCA/CVCB                                   | Closing Continuing Calibration Verification                                         |
| CL                                                   | Control Limit                                                                       |
| DF                                                   | Analytical Dilution Factor                                                          |
| DL                                                   | Detection Limit (i.e., maximum method detection limit)                              |
| E                                                    | The analyte result is above the calibrated range.                                   |
| GT                                                   | Greater Than                                                                        |
| IB                                                   | Instrument Blank                                                                    |
| ICV                                                  | Initial Calibration Verification                                                    |
| J                                                    | The quantitation is an estimation.                                                  |
| LCS(D)                                               | Laboratory Control Spike (Duplicate)                                                |
| LLQC/LLIQC                                           | Low Level Quantitation Check                                                        |
| LOD                                                  | Limit of Detection (i.e., 3/4 of the LOQ)                                           |
| LOQ                                                  | Limit of Quantitation (i.e., reporting or practical quantitation limit)             |
| LT                                                   | Less Than                                                                           |
| MB                                                   | Method Blank                                                                        |
| MS(D)                                                | Matrix Spike (Duplicate)                                                            |
| ND                                                   | Indicates the analyte is not detected.                                              |
| RPD                                                  | Relative Percent Difference                                                         |
| TNTC                                                 | Too Numerous To Count                                                               |
| U                                                    | Indicates the analyte was analyzed for but not detected.                            |
| Sample summaries which i<br>All DRO/RRO analyses are | nclude a result for "Total Solids" have already been adjusted for moisture content. |

Print Date: 04/05/2024 4:56:09PM

Note:



| Sample Summary          |               |                    |               |                               |  |  |  |  |  |  |
|-------------------------|---------------|--------------------|---------------|-------------------------------|--|--|--|--|--|--|
| <u>Client Sample ID</u> | Lab Sample ID | <u>Collected</u>   | Received      | <u>Matrix</u>                 |  |  |  |  |  |  |
| MW-403A                 | 1241074001    | 03/19/2024         | 03/20/2024    | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW-403B                 | 1241074002    | 03/19/2024         | 03/20/2024    | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| TB-1                    | 1241074003    | 03/19/2024         | 03/20/2024    | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW-403A                 | 1241074004    | 03/19/2024         | 03/20/2024    | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
| MW-403B                 | 1241074005    | 03/19/2024         | 03/20/2024    | Water (Surface, Eff., Ground) |  |  |  |  |  |  |
|                         |               |                    |               |                               |  |  |  |  |  |  |
| Method                  | Method Des    | scription          |               |                               |  |  |  |  |  |  |
| SW6020B                 | Dissolved M   | letals by ICP-MS   |               |                               |  |  |  |  |  |  |
| AK102                   | DRO Low V     | olume (W)          |               |                               |  |  |  |  |  |  |
| EPA 300.0               | Ion Chroma    | tographic Analysis | ;             |                               |  |  |  |  |  |  |
| EPA 300.0               | Ion Chroma    | tographic Analysis | ; (VV)        |                               |  |  |  |  |  |  |
| SW6020B                 | Metals by IC  | CP-MS              |               |                               |  |  |  |  |  |  |
| SW8260D                 | Volatile Org  | anic Compounds(    | W)Custom List |                               |  |  |  |  |  |  |



| Detectable | Results | Summary |
|------------|---------|---------|
|------------|---------|---------|

| Client Sample ID: MW-403A  |           |        |              |
|----------------------------|-----------|--------|--------------|
| Lab Sample ID: 1241074001  | Parameter | Result | Units        |
| Metals by ICP/MS           | Iron      | 17300  | ug/L         |
|                            | Manganese | 1450   | ug/L         |
| Volatile GC/MS             | Benzene   | 0.480  | ug/L         |
| Waters Department          | Sulfate   | 20.3   | mg/L         |
| Client Sample ID: MW-403B  |           |        |              |
| Lab Sample ID: 1241074002  | Parameter | Result | <u>Units</u> |
| Metals by ICP/MS           | Iron      | 24000  | ug/L         |
|                            | Manganese | 1350   | ug/L         |
| Volatile GC/MS             | Benzene   | 0.460  | ug/L         |
| Waters Department          | Sulfate   | 23.7   | mg/L         |
| Client Sample ID: MW-403A  |           |        |              |
| Lab Sample ID: 1241074004  | Parameter | Result | <u>Units</u> |
| Dissolved Metals by ICP/MS | Iron      | 17100  | ug/L         |
|                            | Manganese | 1490   | ug/L         |
| Client Sample ID: MW-403B  |           |        |              |
| Lab Sample ID: 1241074005  | Parameter | Result | <u>Units</u> |
| Dissolved Metals by ICP/MS | Iron      | 24100  | ug/L         |
|                            | Manganese | 1410   | ug/L         |
|                            |           |        |              |

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

| Results of MW-403A                                                                                                                                  |                              |        |                                                                             |                                                                               |                        |           |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|-----------|----------------|
| Client Sample ID: MW-403A<br>Client Project ID: Former Kiewit Fac-2050 Peger<br>Lab Sample ID: 1241074001<br>Lab Project ID: 1241074                |                              | r      | Collection D<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:     | ate: 03/19/24 1<br>ate: 03/20/24 09<br>er (Surface, Eff.,                     | 1:25<br>):55<br>Ground | )         |                |
| Results by Metals by ICP/I                                                                                                                          | M5                           |        |                                                                             |                                                                               |                        | Allowable |                |
| Parameter                                                                                                                                           | <u>Result</u> Qual           | LOQ/CL | <u>DL</u>                                                                   | <u>Units</u>                                                                  | DF                     | Limits    | Date Analyzed  |
| Iron                                                                                                                                                | 17300                        | 500    | 150                                                                         | ug/L                                                                          | 5                      |           | 03/28/24 18:15 |
| Manganese                                                                                                                                           | 1450                         | 2.00   | 0.620                                                                       | ug/L                                                                          | 5                      |           | 03/28/24 18:15 |
| Batch Information<br>Analytical Batch: MMS122<br>Analytical Method: SW602<br>Analyst: HGS<br>Analytical Date/Time: 03/2<br>Container ID: 1241074001 | 38<br>0B<br>8/24 18:15<br>-J |        | Prep Batch:<br>Prep Methoc<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | MXX36522<br>d: SW3010A<br>ime: 03/25/24 14<br>Vt./Vol.: 25 mL<br>: Vol: 25 mL | :05                    |           |                |

| SGS<br>Pesults of MW/4034                                                                                                            |                      |        |                                                                              |                                                                            |                        |           |                |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------|-----------|----------------|
| Client Sample ID: MW-403A<br>Client Project ID: Former Kiewit Fac-2050 Peger<br>Lab Sample ID: 1241074001<br>Lab Project ID: 1241074 |                      | r      | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:     | ate: 03/19/24 1<br>te: 03/20/24 09<br>r (Surface, Eff.,                    | 1:25<br>):55<br>Ground | )         |                |
| Results by Semivolatile Or                                                                                                           | ganic Fuels          |        |                                                                              |                                                                            |                        | Allowable |                |
| <u>Parameter</u>                                                                                                                     | Result Qual          | LOQ/CL | <u>DL</u>                                                                    | <u>Units</u>                                                               | DF                     | Limits    | Date Analyzed  |
| Diesel Range Organics                                                                                                                | 0.577 U              | 0.577  | 0.192                                                                        | mg/L                                                                       | 1                      |           | 04/03/24 19:47 |
| Surrogates                                                                                                                           |                      |        |                                                                              |                                                                            |                        |           |                |
| 5a Androstane (surr)                                                                                                                 | 80.6                 | 50-150 |                                                                              | %                                                                          | 1                      |           | 04/03/24 19:47 |
| Batch Information                                                                                                                    |                      |        |                                                                              |                                                                            |                        |           |                |
| Analytical Batch: XFC1680<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/03<br>Container ID: 1241074001-    | 8<br>3/24 19:47<br>A |        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | XXX49302<br>: SW3520C<br>me: 04/02/24 17:<br>/t./Vol.: 260 mL<br>Vol: 1 mL | :00                    |           |                |

#### Results of MW-403A

Client Sample ID: **MW-403A** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241074001 Lab Project ID: 1241074 Collection Date: 03/19/24 11:25 Received Date: 03/20/24 09:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                    |        |           |              |    | Allowable     |                |
|------------------------------|--------------------|--------|-----------|--------------|----|---------------|----------------|
| <u>Parameter</u>             | <u>Result</u> Qual | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | <u>Limits</u> | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 03/21/24 16:35 |
| 1,3,5-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 03/21/24 16:35 |
| Benzene                      | 0.480              | 0.400  | 0.120     | ug/L         | 1  |               | 03/21/24 16:35 |
| Ethylbenzene                 | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 03/21/24 16:35 |
| Naphthalene                  | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 03/21/24 16:35 |
| o-Xylene                     | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 03/21/24 16:35 |
| P & M -Xylene                | 2.00 U             | 2.00   | 0.620     | ug/L         | 1  |               | 03/21/24 16:35 |
| Toluene                      | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 03/21/24 16:35 |
| Xylenes (total)              | 3.00 U             | 3.00   | 1.00      | ug/L         | 1  |               | 03/21/24 16:35 |
| Surrogates                   |                    |        |           |              |    |               |                |
| 1,2-Dichloroethane-D4 (surr) | 98.3               | 81-118 |           | %            | 1  |               | 03/21/24 16:35 |
| 4-Bromofluorobenzene (surr)  | 104                | 85-114 |           | %            | 1  |               | 03/21/24 16:35 |
| Toluene-d8 (surr)            | 102                | 89-112 |           | %            | 1  |               | 03/21/24 16:35 |
|                              |                    |        |           |              |    |               |                |

#### Batch Information

Analytical Batch: VMS23148 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 03/21/24 16:35 Container ID: 1241074001-C Prep Batch: VXX41017 Prep Method: SW5030B Prep Date/Time: 03/21/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

| SGS<br>Posulte of MW 4024                                                                                                                |                        |                                                                           |                                                                                               |                                                                                        |                |                                   |                                 |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|-----------------------------------|---------------------------------|
| Client Sample ID: MW-403A<br>Client Project ID: Former Kie<br>Lab Sample ID: 1241074001<br>Lab Project ID: 1241074                       | r                      | Collection Da<br>Received Da<br>Matrix: Water<br>Solids (%):<br>Location: | ate: 03/19/24 1<br>te: 03/20/24 09<br>r (Surface, Eff.,                                       | 1:25<br>9:55<br>Ground                                                                 | )              |                                   |                                 |
| Parameter<br>Nitrate-N                                                                                                                   | Result Qual<br>0.200 U | LOQ/CL<br>0.200                                                           | <u>DL</u><br>0.0700                                                                           | <u>Units</u><br>mg/L                                                                   | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>03/21/24 00:11 |
| Batch Information<br>Analytical Batch: WIC6565<br>Analytical Method: EPA 300.0<br>Analyst: EBH<br>Analytical Date/Time: 03/21/2          | 20.3                   | 2.00                                                                      | 0.500<br>Prep Batch:<br>Prep Method<br>Prep Date/Tir<br>Prep Initial W                        | mg/L<br>WXX15171<br>: METHOD<br>me: 03/20/24 17<br>/t./Vol.: 10 mL                     | 10             |                                   | 03/21/24 00:29                  |
| Analytical Batch: WIC6565<br>Analytical Method: EPA 300.0<br>Analyst: EBH<br>Analytical Date/Time: 03/21/2<br>Container ID: 1241074001-I | )<br>4 00:29           |                                                                           | Prep Extract<br>Prep Batch:<br>Prep Method<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | VOI: 10 ML<br>WXX15171<br>: METHOD<br>me: 03/20/24 17<br>/t./Vol.: 10 mL<br>Vol: 10 mL | :30            |                                   |                                 |

| Results of MW-403B                                                                                                                                                                        |                                    |                              |                                                                             |                                                                                       |                        |                                   |                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------|-----------------------------------|---------------------------------------------------|
| Client Sample ID: <b>MW-403B</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241074002<br>Lab Project ID: 1241074                                        |                                    | r                            | Collection D<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:     | ate: 03/19/24 1;<br>ate: 03/20/24 09<br>er (Surface, Eff.,                            | 2:50<br>):55<br>Ground | )                                 |                                                   |
| Parameter<br>Iron                                                                                                                                                                         | <u>Result</u> <u>Qual</u><br>24000 | <u>LOQ/CL</u><br>500<br>2.00 | <u>DL</u><br>150                                                            | <u>Units</u><br>ug/L                                                                  | <u>DF</u><br>5         | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>03/28/24 18:17<br>03/28/24 18:17 |
| Batch Information         Analytical Batch: MMS12238         Analytical Method: SW6020B         Analyst: HGS         Analytical Date/Time: 03/28/24 18         Container ID: 1241074002-J | 3:17                               | 2.00                         | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | ug/∟<br>MXX36522<br>d: SW3010A<br>ime: 03/25/24 14<br>Vt./Vol.: 25 mL<br>: Vol: 25 mL | <b>5</b><br>:05        |                                   | 03/28/24 18:17                                    |

| Results of MW-403B                                                                                                                                 |                           |                 |                                                                              |                                                                             |                        |               |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------|---------------|----------------|
| Client Sample ID: <b>MW-403B</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241074002<br>Lab Project ID: 1241074 |                           | r               | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:     | ate: 03/19/24 1:<br>ate: 03/20/24 09<br>er (Surface, Eff.,                  | 2:50<br>):55<br>Ground | )             |                |
|                                                                                                                                                    | guine rueis               |                 |                                                                              |                                                                             |                        | Allowable     |                |
| Parameter<br>Diesel Range Organics                                                                                                                 | <u>Result</u> <u>Qual</u> | LOQ/CL<br>0.605 | <u>DL</u><br>0.202                                                           | <u>Units</u><br>ma/l                                                        | <u>DF</u><br>1         | <u>Limits</u> | Date Analyzed  |
|                                                                                                                                                    | 0.000 0                   | 0.005           | 0.202                                                                        | ing/L                                                                       | I                      |               | 04/03/24 19:39 |
| 5a Androstane (surr)                                                                                                                               | 71.3                      | 50-150          |                                                                              | %                                                                           | 1                      |               | 04/03/24 19:59 |
| Batch Information                                                                                                                                  |                           |                 |                                                                              |                                                                             |                        |               |                |
| Analytical Batch: XFC1680<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/03<br>Container ID: 1241074002-                  | 8<br>3/24 19:59<br>.A     |                 | Prep Batch:<br>Prep Methoc<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract | XXX49302<br>i: SW3520C<br>ime: 04/02/24 17<br>Vt./Vol.: 248 mL<br>Vol: 1 mL | :00                    |               |                |

#### Results of MW-403B

Client Sample ID: **MW-403B** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241074002 Lab Project ID: 1241074 Collection Date: 03/19/24 12:50 Received Date: 03/20/24 09:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                           |        |           |              |    | Allowable |                |
|------------------------------|---------------------------|--------|-----------|--------------|----|-----------|----------------|
| Parameter                    | <u>Result</u> <u>Qual</u> | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | Limits    | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 16:50 |
| 1,3,5-Trimethylbenzene       | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 16:50 |
| Benzene                      | 0.460                     | 0.400  | 0.120     | ug/L         | 1  |           | 03/21/24 16:50 |
| Ethylbenzene                 | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 16:50 |
| Naphthalene                  | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 16:50 |
| o-Xylene                     | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 16:50 |
| P & M -Xylene                | 2.00 U                    | 2.00   | 0.620     | ug/L         | 1  |           | 03/21/24 16:50 |
| Toluene                      | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 16:50 |
| Xylenes (total)              | 3.00 U                    | 3.00   | 1.00      | ug/L         | 1  |           | 03/21/24 16:50 |
| Surrogates                   |                           |        |           |              |    |           |                |
| 1,2-Dichloroethane-D4 (surr) | 93.4                      | 81-118 |           | %            | 1  |           | 03/21/24 16:50 |
| 4-Bromofluorobenzene (surr)  | 109                       | 85-114 |           | %            | 1  |           | 03/21/24 16:50 |
| Toluene-d8 (surr)            | 103                       | 89-112 |           | %            | 1  |           | 03/21/24 16:50 |
|                              |                           |        |           |              |    |           |                |

#### Batch Information

Analytical Batch: VMS23148 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 03/21/24 16:50 Container ID: 1241074002-C Prep Batch: VXX41017 Prep Method: SW5030B Prep Date/Time: 03/21/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

|   | BGGS<br>Results of MW-403B                                                                                                                                         |                        |                                                                              |                                                                                                                                       |                                                                            |                |                                   |                                 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|-----------------------------------|---------------------------------|
|   | Client Sample ID: <b>MW-403B</b><br>Client Project ID: <b>Former Kiewit I</b><br>Lab Sample ID: 1241074002<br>Lab Project ID: 1241074                              | Fac-2050 Peger         |                                                                              | Collection Date: 03/19/24 12:50<br>Received Date: 03/20/24 09:55<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                            |                |                                   |                                 |
| > | Results by Waters Department                                                                                                                                       |                        |                                                                              |                                                                                                                                       |                                                                            |                |                                   |                                 |
|   | Parameter<br>Nitrate-N                                                                                                                                             | Result Qual<br>0.200 U | LOQ/CL<br>0.200                                                              | <u>DL</u><br>0.0700                                                                                                                   | <u>Units</u><br>mg/L                                                       | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>03/21/24 00:48 |
|   | Suirate                                                                                                                                                            | 23.7                   | 2.00                                                                         | 0.500                                                                                                                                 | mg/L                                                                       | 10             |                                   | 03/21/24 01:06                  |
| r | Batch Information<br>Analytical Batch: WIC6565<br>Analytical Method: EPA 300.0<br>Analyst: EBH<br>Analytical Date/Time: 03/21/24 00:<br>Container ID: 1241074002-I |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract |                                                                                                                                       |                                                                            |                |                                   |                                 |
|   | Analytical Batch: WIC6565<br>Analytical Method: EPA 300.0<br>Analyst: EBH<br>Analytical Date/Time: 03/21/24 01:<br>Container ID: 1241074002-I                      | 06                     |                                                                              | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial M<br>Prep Extract                                                          | WXX15171<br>: METHOD<br>me: 03/20/24 17:3<br>/t./Vol.: 10 mL<br>Vol: 10 mL | 30             |                                   |                                 |

#### Results of TB-1

Client Sample ID: **TB-1** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241074003 Lab Project ID: 1241074 Collection Date: 03/19/24 00:00 Received Date: 03/20/24 09:55 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |             |        |           |              |    | Allowable |                |
|------------------------------|-------------|--------|-----------|--------------|----|-----------|----------------|
| <u>Parameter</u>             | Result Qual | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | Limits    | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 1.00 U      | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 15:04 |
| 1,3,5-Trimethylbenzene       | 1.00 U      | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 15:04 |
| Benzene                      | 0.400 U     | 0.400  | 0.120     | ug/L         | 1  |           | 03/21/24 15:04 |
| Ethylbenzene                 | 1.00 U      | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 15:04 |
| Naphthalene                  | 1.00 U      | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 15:04 |
| o-Xylene                     | 1.00 U      | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 15:04 |
| P & M -Xylene                | 2.00 U      | 2.00   | 0.620     | ug/L         | 1  |           | 03/21/24 15:04 |
| Toluene                      | 1.00 U      | 1.00   | 0.310     | ug/L         | 1  |           | 03/21/24 15:04 |
| Xylenes (total)              | 3.00 U      | 3.00   | 1.00      | ug/L         | 1  |           | 03/21/24 15:04 |
| Surrogates                   |             |        |           |              |    |           |                |
| 1,2-Dichloroethane-D4 (surr) | 108         | 81-118 |           | %            | 1  |           | 03/21/24 15:04 |
| 4-Bromofluorobenzene (surr)  | 101         | 85-114 |           | %            | 1  |           | 03/21/24 15:04 |
| Toluene-d8 (surr)            | 100         | 89-112 |           | %            | 1  |           | 03/21/24 15:04 |
|                              |             |        |           |              |    |           |                |

#### Batch Information

Analytical Batch: VMS23148 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 03/21/24 15:04 Container ID: 1241074003-A Prep Batch: VXX41017 Prep Method: SW5030B Prep Date/Time: 03/21/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

| Results of MW-4034                                                                                                                |                                    |                                                                          |                                                         |                                          |                |           |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|----------------|-----------|---------------------------------|
| Client Sample ID: <b>MW-403A</b><br>Client Project ID: <b>Former Kiew</b><br>Lab Sample ID: 1241074004<br>Lab Project ID: 1241074 | r                                  | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location: | ate: 03/19/24 1<br>te: 03/20/24 09<br>r (Surface, Eff., | 1:25<br>9:55<br>Ground                   | )              |           |                                 |
| Results by <b>Dissolved Metals by</b>                                                                                             |                                    | 1.00/01                                                                  |                                                         |                                          | 55             | Allowable |                                 |
| Parameter<br>Iron                                                                                                                 | <u>Result</u> <u>Quai</u><br>17100 | <u>LOQ/CL</u><br>500                                                     | <u>DL</u><br>150                                        | <u>Units</u><br>ua/L                     | <u>DF</u><br>5 | Limits    | Date Analyzed<br>03/28/24 18·20 |
| Manganese                                                                                                                         | 1490                               | 2.00                                                                     | 0.620                                                   | ug/L                                     | 5              |           | 03/28/24 18:20                  |
| Batch Information Analytical Batch: MMS12238 Analytical Method: SW6020B Analyst: HGS                                              |                                    |                                                                          | Prep Batch:<br>Prep Method<br>Prep Date/Ti              | MXX36522<br>: SW3010A<br>me: 03/25/24 14 | :05            |           |                                 |

| Besults of MW-403B                                                                                                                 |                    |        |                                                                                                                                       |                 |     |           |                |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----------|----------------|
| Client Sample ID: <b>MW-403B</b><br>Client Project ID: <b>Former Kiewi</b><br>Lab Sample ID: 1241074005<br>Lab Project ID: 1241074 | t Fac-2050 Pege    | r      | Collection Date: 03/19/24 12:50<br>Received Date: 03/20/24 09:55<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                 |     |           |                |
| -Results by <b>Dissolved Metals by</b>                                                                                             | ICP/MS             |        |                                                                                                                                       |                 |     | Allowable |                |
| Parameter                                                                                                                          | <u>Result</u> Qual | LOQ/CL | <u>DL</u>                                                                                                                             | <u>Units</u>    | DF  | Limits    | Date Analyzed  |
| Iron                                                                                                                               | 24100              | 500    | 150                                                                                                                                   | ug/L            | 5   |           | 03/28/24 18:23 |
| Manganese                                                                                                                          | 1410               | 2.00   | 0.620                                                                                                                                 | ug/L            | 5   |           | 03/28/24 18:23 |
| Batch Information                                                                                                                  |                    |        |                                                                                                                                       |                 |     |           |                |
| Analytical Batch: MMS12238                                                                                                         |                    |        | Prep Batch:                                                                                                                           | MXX36522        |     |           |                |
| Analytical Method: SW6020B                                                                                                         |                    |        | Prep Method                                                                                                                           | : SW3010A       | .OF |           |                |
| Analysi' Huss                                                                                                                      |                    |        | Prep Date/11                                                                                                                          | me: U3/25/24 14 | :05 |           |                |
| Analytical Date/Time: 03/28/24 1                                                                                                   | 8.23               |        | EIED IIIIIA M                                                                                                                         |                 |     |           |                |

| Blank Lab ID: 1757100                     |                      | I                                                      | indi ixi                                                            |              | o, Em, Oroana) |  |  |
|-------------------------------------------|----------------------|--------------------------------------------------------|---------------------------------------------------------------------|--------------|----------------|--|--|
| QC for Samples:<br>1241074001, 1241074002 | , 1241074004, 124107 | 4005                                                   |                                                                     |              |                |  |  |
|                                           |                      |                                                        |                                                                     |              |                |  |  |
| Results by SW6020B                        |                      |                                                        |                                                                     |              |                |  |  |
| Parameter                                 | LOQ/CL               | DL                                                     | LOD                                                                 | <u>Units</u> |                |  |  |
| Iron                                      | 375U                 | 500                                                    | 150                                                                 | 375          | ug/L           |  |  |
| manganese                                 | 1.500                | 2.00                                                   | 0.620                                                               | 1.50         | ug/L           |  |  |
| atch Information                          |                      |                                                        |                                                                     |              |                |  |  |
| Analytical Batch: MMS                     | 12237                |                                                        | Prep Batcl                                                          | h: MXX36522  |                |  |  |
| Analytical Method: SW                     | 6020B                |                                                        | Prep Method: SW3010A                                                |              |                |  |  |
| Analyst: HGS                              | 7800                 |                                                        | Prep Date/Time: 3/25/2024 2:05:00PM<br>Prep Initial Wt (Vol : 25 ml |              |                |  |  |
|                                           |                      | Prep Initial WL/Vol.: 25 mL<br>Prep Extract Vol: 25 mL |                                                                     |              |                |  |  |

| SGS |  |
|-----|--|
|     |  |

Blank Spike ID: LCS for HBN 1241074 [MXX36522] Blank Spike Lab ID: 1757101 Date Analyzed: 03/26/2024 21:31

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241074001, 1241074002, 1241074004, 1241074005

Results by SW6020B

|           |       | Blank Spike | • (ug/L)       |           |
|-----------|-------|-------------|----------------|-----------|
| Parameter | Spike | Result      | <u>Rec (%)</u> | <u>CL</u> |
| on        | 5000  | 5240        | 105            | (87-118)  |
| anganese  | 500   | 513         | 103            | (87-115)  |

Analytical Batch:MMS12237Prep Batch:MXX36522Analytical Method:SW6020BPrep Method:SW3010AInstrument:P7 Agilent 7800Prep Date/Time:03/25/202414:05Analyst:HGSSpike Init Wt./Vol.:5000 ug/LExtract Vol:25 mLDupe Init Wt./Vol.:Extract Vol:25 mL



#### Matrix Spike Summary

Original Sample ID: 1757104 MS Sample ID: 1757109 MS MSD Sample ID: 1757110 MSD Analysis Date: 03/26/2024 21:34 Analysis Date: 03/26/2024 21:36 Analysis Date: 03/26/2024 21:39 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241074001, 1241074002, 1241074004, 1241074005

| Spike         Result         Rec (%)         CL         RPD (%)         RPD (%)           5000         13600         99         87-118         4.77         (< 20 )           500         2430         105         87-115         4.28         (< 20 ) |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 5000       13600       99       87-118       4.77       (< 20 )         500       2430       105       87-115       4.28       (< 20 )                                                                                                                 |  |  |  |  |  |  |
| 500 2430 <b>105</b> 87-115 <b>4.28</b> (< 20)                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| p Method: 3010 H20 Digest for Metals ICP-MS<br>p Date/Time: 3/25/2024 2:05:00PM<br>p Initial Wt./Vol.: 25.00mL<br>p Extract Vol: 25.00mL                                                                                                               |  |  |  |  |  |  |
| Prep Batch: MXX36522<br>Prep Method: 3010 H20 Digest for Metals ICP-MS<br>Prep Date/Time: 3/25/2024 2:05:00PM<br>Prep Initial Wt./Vol.: 25.00mL<br>Prep Extract Vol: 25.00mL                                                                           |  |  |  |  |  |  |

#### Bench Spike Summary

Original Sample ID: 1757104 MS Sample ID: 1757111 BND MSD Sample ID: Analysis Date: 03/26/2024 21:34 Analysis Date: 03/26/2024 21:42 Analysis Date: Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241074001, 1241074002, 1241074004, 1241074005

| Results by SW6020B                                                                                                                                            |              |       |              |                                      |                                                                      |                                                                  |                                             |                   |                |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|--------------|--------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|-------------------|----------------|--------|
|                                                                                                                                                               |              | Ma    | trix Spike ( | ug/L)                                | Spik                                                                 | e Duplicate                                                      | e (ug/L)                                    |                   |                |        |
| <u>Parameter</u>                                                                                                                                              | Sample       | Spike | Result       | <u>Rec (%)</u>                       | Spike                                                                | Result                                                           | <u>Rec (%)</u>                              | CL                | <u>RPD (%)</u> | RPD CL |
| Iron                                                                                                                                                          | 8630         | 25000 | 34300        | 103                                  |                                                                      |                                                                  |                                             | 75-125            |                |        |
| Manganese                                                                                                                                                     | 1900         | 1250  | 3100         | 96                                   |                                                                      |                                                                  |                                             | 75-125            |                |        |
| Batch Information<br>Analytical Batch: MMS12237<br>Analytical Method: SW6020B<br>Instrument: P7 Agilent 7800<br>Analyst: HGS<br>Analytical Date/Time: 3/26/20 | )24 9:42:00F | PM    |              | Prep<br>Prep<br>Prep<br>Prep<br>Prep | 9 Batch: N<br>9 Method:<br>9 Date/Tin<br>9 Initial Wi<br>9 Extract \ | MXX36522<br>3010 H20<br>ne: 3/25/2<br>t./Vol.: 25.<br>/ol: 25.00 | )<br>Digest for<br>024 2:05:0<br>00mL<br>mL | Metals ICF<br>0PM | P-MS           |        |

#### Method Blank

Blank ID: MB for HBN 1873731 [VXX/41017] Blank Lab ID: 1756896 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241074001, 1241074002, 1241074003

#### Results by SW8260D

| <u>Parameter</u>             | <b>Results</b> | LOQ/CL | <u>DL</u> | LOD   | <u>Units</u> |
|------------------------------|----------------|--------|-----------|-------|--------------|
| 1,2,4-Trimethylbenzene       | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| 1,3,5-Trimethylbenzene       | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| Benzene                      | 0.300U         | 0.400  | 0.120     | 0.300 | ug/L         |
| Ethylbenzene                 | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| Naphthalene                  | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| o-Xylene                     | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| P & M -Xylene                | 1.50U          | 2.00   | 0.620     | 1.50  | ug/L         |
| Toluene                      | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| Xylenes (total)              | 2.25U          | 3.00   | 1.00      | 2.25  | ug/L         |
| Surrogates                   |                |        |           |       |              |
| 1,2-Dichloroethane-D4 (surr) | 102            | 81-118 |           | 0     | %            |
| 4-Bromofluorobenzene (surr)  | 103            | 85-114 |           | 0     | %            |
| Toluene-d8 (surr)            | 100            | 89-112 |           | 0     | %            |
|                              |                |        |           |       |              |

#### **Batch Information**

Analytical Batch: VMS23148 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Analytical Date/Time: 3/21/2024 11:56:00AM Prep Batch: VXX41017 Prep Method: SW5030B Prep Date/Time: 3/21/2024 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241074 [VXX41017] Blank Spike Lab ID: 1756897 Date Analyzed: 03/21/2024 12:11 Spike Duplicate ID: LCSD for HBN 1241074 [VXX41017] Spike Duplicate Lab ID: 1756898 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241074001, 1241074002, 1241074003

| Results by SW8260D           |              |             |                |              |             |                |           |                |        |
|------------------------------|--------------|-------------|----------------|--------------|-------------|----------------|-----------|----------------|--------|
|                              |              | Blank Spike | e (ug/L)       |              | Spike Dupli | cate (ug/L)    |           |                |        |
| <u>Parameter</u>             | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>CL</u> | <u>RPD (%)</u> | RPD CL |
| 1,2,4-Trimethylbenzene       | 30           | 34.2        | 114            | 30           | 33.3        | 111            | (79-124)  | 2.60           | (< 20) |
| 1,3,5-Trimethylbenzene       | 30           | 34.4        | 115            | 30           | 34.0        | 113            | (75-124)  | 1.20           | (< 20) |
| Benzene                      | 30           | 30.8        | 103            | 30           | 29.9        | 100            | (79-120)  | 3.00           | (< 20) |
| Ethylbenzene                 | 30           | 31.6        | 105            | 30           | 30.6        | 102            | (79-121)  | 3.30           | (< 20) |
| Naphthalene                  | 30           | 30.5        | 102            | 30           | 31.4        | 105            | (61-128)  | 2.90           | (< 20) |
| o-Xylene                     | 30           | 31.0        | 103            | 30           | 30.1        | 100            | (78-122)  | 2.90           | (< 20) |
| P & M -Xylene                | 60           | 62.9        | 105            | 60           | 60.8        | 101            | (80-121)  | 3.40           | (< 20) |
| Toluene                      | 30           | 30.3        | 101            | 30           | 29.8        | 99             | (80-121)  | 1.50           | (< 20) |
| Xylenes (total)              | 90           | 93.9        | 104            | 90           | 90.9        | 101            | (79-121)  | 3.30           | (< 20) |
| Surrogates                   |              |             |                |              |             |                |           |                |        |
| 1,2-Dichloroethane-D4 (surr) | 30           |             | 94             | 30           |             | 92             | (81-118)  | 1.30           |        |
| 4-Bromofluorobenzene (surr)  | 30           |             | 103            | 30           |             | 104            | (85-114)  | 0.39           |        |
| Toluene-d8 (surr)            | 30           |             | 102            | 30           |             | 102            | (89-112)  | 0.62           |        |
|                              |              |             |                |              |             |                |           |                |        |

#### **Batch Information**

Analytical Batch: VMS23148 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Prep Batch: VXX41017 Prep Method: SW5030B Prep Date/Time: 03/21/2024 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

| lank ID: MB for HBN 1<br>lank Lab ID: 1757041<br>IC for Samples:                                                    | 873937 [WXX/15171                                             | ]                               | Matrix: V                                                             | Water (Surface                                                                | e, Eff., Ground)             |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|--|
| 241074001, 1241074002                                                                                               | 2                                                             |                                 |                                                                       |                                                                               |                              |  |
| Results by EPA 300.0                                                                                                |                                                               |                                 |                                                                       |                                                                               |                              |  |
| P <u>arameter</u><br>Nitrate-N<br>Sulfate                                                                           | <u>Results</u><br>0.150U<br>0.150U                            | <u>LOQ/CL</u><br>0.200<br>0.200 | <u>DL</u><br>0.0700<br>0.0500                                         | <u>LOD</u><br>0.150<br>0.150                                                  | <u>Units</u><br>mg/L<br>mg/L |  |
| atch Information                                                                                                    |                                                               |                                 |                                                                       |                                                                               |                              |  |
| Analytical Batch: WIC6<br>Analytical Method: EP<br>Instrument: 930 Metro<br>Analyst: EBH<br>Analytical Date/Time: 3 | 8565<br>A 300.0<br>hm compact IC flex<br>3/20/2024 10:20:08PM | I                               | Prep Batch<br>Prep Metho<br>Prep Date/<br>Prep Initial<br>Prep Extrac | : WXX15171<br>od: METHOD<br>Time: 3/20/202<br>Wt./Vol.: 10 m<br>ct Vol: 10 mL | 4 5:30:00PM<br>L             |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |
|                                                                                                                     |                                                               |                                 |                                                                       |                                                                               |                              |  |



| Blank Spike ID: LCS for<br>Blank Spike Lab ID: 175<br>Date Analyzed: 03/20/2 | HBN 1241074<br>7042<br>2024 22:38 | [WXX1517    | 1]             | Matrix: Water (Surface, Eff., Ground)                                              |  |  |  |  |  |
|------------------------------------------------------------------------------|-----------------------------------|-------------|----------------|------------------------------------------------------------------------------------|--|--|--|--|--|
| QC for Samples: 124<br>Results by <b>EPA 300.0</b>                           | 1074001, 124107                   | 4002        |                |                                                                                    |  |  |  |  |  |
| -                                                                            |                                   | Blank Spike | e (mg/L)       |                                                                                    |  |  |  |  |  |
| <u>Parameter</u>                                                             | Spike                             | Result      | <u>Rec (%)</u> | <u>CL</u>                                                                          |  |  |  |  |  |
| Nitrate-N                                                                    | 5                                 | 5.06        | 101            | (90-110)                                                                           |  |  |  |  |  |
| Sulfate                                                                      | 5                                 | 5.12        | 102            | (90-110)                                                                           |  |  |  |  |  |
| Batch Information                                                            |                                   |             |                |                                                                                    |  |  |  |  |  |
| Analytical Batch: WIC65                                                      | 65                                |             |                | Prep Batch: WXX15171                                                               |  |  |  |  |  |
| Analytical Method: EPA                                                       | 300.0                             |             |                | Prep Method: <b>METHOD</b>                                                         |  |  |  |  |  |
| Instrument: 930 Metrohr                                                      | n compact IC fle                  | ĸ           |                | Prep Date/Time: 03/20/2024 17:30                                                   |  |  |  |  |  |
| Analyst: <b>EBH</b>                                                          |                                   |             |                | Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL<br>Dupe Init Wt./Vol.: Extract Vol: |  |  |  |  |  |
|                                                                              |                                   |             |                |                                                                                    |  |  |  |  |  |
|                                                                              |                                   |             |                |                                                                                    |  |  |  |  |  |
|                                                                              |                                   |             |                |                                                                                    |  |  |  |  |  |



#### Matrix Spike Summary

Original Sample ID: 1757040 MS Sample ID: 1757044 MS MSD Sample ID: Analysis Date: 03/21/2024 1:06 Analysis Date: 03/21/2024 1:25 Analysis Date: Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241074001, 1241074002

| Results by EPA 300.0                                                                                                                                                                                  |        |              | _            |                |                                                              |                                                                 |                                                 |                    |                |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--------------|----------------|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|--------------------|----------------|--------|
|                                                                                                                                                                                                       |        | Ma           | trix Spike ( | mg/L)          | Spike                                                        | e Duplicate                                                     | e (mg/L)                                        |                    |                |        |
| <u>Parameter</u>                                                                                                                                                                                      | Sample | <u>Spike</u> | Result       | <u>Rec (%)</u> | Spike                                                        | Result                                                          | <u>Rec (%)</u>                                  | CL                 | <u>RPD (%)</u> | RPD CL |
| Nitrate-N                                                                                                                                                                                             | 1.50U  | 50.0         | 50.7         | 101            |                                                              |                                                                 |                                                 | 90-110             |                |        |
| Sulfate                                                                                                                                                                                               | 23.7   | 50.0         | 74           | 101            |                                                              |                                                                 |                                                 | 90-110             |                |        |
| Batch Information         Analytical Batch: WIC6565         Analytical Method: EPA 300.0         Instrument: 930 Metrohm compact IC flex         Analyst: EBH         Analytical Date/Time: 3/21/2024 |        |              |              |                | ) Batch: \<br>Method:<br>Date/Tin<br>Initial Wi<br>Extract \ | NXX15171<br>EPA 300<br>ne: 3/20/2<br>t./Vol.: 10.<br>/ol: 10.00 | l<br>.0 Extractior<br>024 5:30:0<br>.00mL<br>mL | n Waters/L<br>00PM | iquids         |        |

| Method Blank                                          |                |                                       |                          |                                     |                 |  |  |  |
|-------------------------------------------------------|----------------|---------------------------------------|--------------------------|-------------------------------------|-----------------|--|--|--|
| Blank ID: MB for HBN 1874564<br>Blank Lab ID: 1758245 |                | Matrix: Water (Surface, Eff., Ground) |                          |                                     |                 |  |  |  |
| QC for Samples:<br>1241074001, 1241074002             |                |                                       |                          |                                     |                 |  |  |  |
| Results by AK102                                      |                |                                       |                          |                                     |                 |  |  |  |
| Parameter                                             | <u>Results</u> | LOQ/CL                                | <u>DL</u>                | LOD                                 | <u>Units</u>    |  |  |  |
| Diesel Range Organics                                 | 0.450U         | 0.600                                 | 0.200                    | 0.450                               | mg/L            |  |  |  |
| Surrogates                                            |                |                                       |                          |                                     |                 |  |  |  |
| 5a Androstane (surr)                                  | 75.2           | 60-120                                |                          | 0                                   | %               |  |  |  |
| Batch Information                                     |                |                                       |                          |                                     |                 |  |  |  |
| Analytical Batch: XFC16808                            |                |                                       | Prep Batcl               | h: XXX49302                         |                 |  |  |  |
| Analytical Method: AK102                              |                |                                       | Prep Meth                | od: SW3520C                         |                 |  |  |  |
| Instrument: Agilent 7890B F                           |                |                                       | Prep Date<br>Prep Initia | /Time: 4/2/2024<br>TWt /Vol : 250 r | 5:00:00PM<br>nl |  |  |  |
| Analyst: BRP                                          |                |                                       | i icp iiiida             | 2001                                |                 |  |  |  |



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241074 [XXX49302] Blank Spike Lab ID: 1758246 Date Analyzed: 04/03/2024 20:37 Spike Duplicate ID: LCSD for HBN 1241074 [XXX49302] Spike Duplicate Lab ID: 1758247 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241074001, 1241074002

| Results by AK102            |              |             |                |                                                 |              |                |              |                |         |
|-----------------------------|--------------|-------------|----------------|-------------------------------------------------|--------------|----------------|--------------|----------------|---------|
|                             |              | Blank Spike | e (mg/L)       | Spike Duplicate (mg/L)                          |              |                |              |                |         |
| Parameter                   | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>Spike</u>                                    | Result       | <u>Rec (%)</u> | <u>CL</u>    | <u>RPD (%)</u> | RPD CL  |
| Diesel Range Organics       | 20           | 19.5        | 98             | 20                                              | 18.2         | 91             | (75-125)     | 7.20           | (< 20 ) |
| Surrogates                  |              |             |                |                                                 |              |                |              |                |         |
| 5a Androstane (surr)        | 0.4          |             | 115            | 0.4                                             |              | 116            | (60-120)     | 0.29           |         |
| Batch Information           |              |             |                |                                                 |              |                |              |                |         |
| Analytical Batch: XFC16808  |              |             |                | Pre                                             | p Batch: X   | XX49302        |              |                |         |
| Analytical Method: AK102    |              |             |                | Pre                                             | p Method:    | SW3520C        |              |                |         |
| Instrument: Agilent 7890B F |              |             |                | Prep Date/Time: 04/02/2024 17:00                |              |                |              |                |         |
| Analyst: BRP                |              |             |                | Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL |              |                |              |                |         |
|                             |              |             |                | Dup                                             | e Init Wt./\ | /ol.: 0.4 mg   | /L Extract V | ol: 1 mL       |         |



#### SGS North America Inc. CHAIN OF CUSTODY RECORD



365980-0

|                   |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  | 26         | 21         | DU           | JU                       | www.co.og   |                         |
|-------------------|-------------------------|------------------------------------------------------|--------------------|------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|----------------------------------|------------|------------|--------------|--------------------------|-------------|-------------------------|
| Γ                 | CLIENT:                 | Nortech                                              |                    |                                                |                           |                                                                                                                 | In                | struc                                                                                                            | tions:            | Sec                 | tions 1                          | - 5 r      | nust       | be fille     | ed out.                  |             |                         |
|                   | CONTACT                 |                                                      | NE #1              |                                                |                           |                                                                                                                 |                   | Omis                                                                                                             | sions             | may                 | delay t                          | ne or      | iset c     | of anal      | ysis.                    |             | Page of                 |
|                   | CONTACT:                | William Watts                                        | 907-452            | -5688                                          |                           | Sec                                                                                                             | tion 3            |                                                                                                                  |                   |                     |                                  | Pre        | eservat    | tive         |                          |             |                         |
| ction 1           | PROJECT<br>NAME:        | Former Kiewit Facility - PROJE<br>2050 Peger Rd PERM | ECT/<br>//<br> T#: |                                                |                           | #<br>C                                                                                                          |                   | HC                                                                                                               | , hci             | Nor                 | e HCI                            | Hor        | e Nor      | .0 HH        | 5 <sup>3</sup> HNO       | ~//         |                         |
| Š                 | REPORTS T               | O: William Watts E-MA                                | IL: willi          | am.watts@noi                                   | rtechengr.com             | 0                                                                                                               | Comp              |                                                                                                                  |                   |                     |                                  | Ana        | lysis*     |              |                          |             | NOTE                    |
|                   |                         | Profi                                                | le #:              |                                                |                           | Т                                                                                                               | Grab              |                                                                                                                  |                   |                     |                                  | 0          | 0.         | nese         | 020                      |             | *The following analyses |
|                   | INVOICE TO              | : QUO                                                | TE #:              | 14 H.                                          |                           | A                                                                                                               | мі                |                                                                                                                  | 8260              | 5                   | le/                              | 300        | A 300      | angai        | PA 6                     |             | require specific method |
|                   | 1                       | Nortech P.O.                                         | #: 24-1008         |                                                |                           | N                                                                                                               | (Multi-<br>incre- | K102                                                                                                             | EPA<br>_ist)      |                     | EPA                              | EPA        | / EP/      | 20 M         | lron a<br>e by E<br>red) |             | BTEX, Metals, PFAS      |
|                   | RESERVED<br>for lab use | SAMPLE IDENTIFICATION                                | DATE<br>mm/dd/yy   | TIME<br>HH:MM                                  | MATRIX/<br>MATRIX<br>CODE | E<br>IR<br>INS                                                                                                  | mental)           | DRO by A                                                                                                         | /OCs by<br>Custom | PAHs by<br>EPA 8270 | Methane/<br>Ethene by<br>RSK 175 | Vitrate by | Sulfate by | fotal Iron a | Dissolved<br>Manganes    |             | REMARKS/LOC ID          |
|                   | ins                     | MW-403A                                              | 3/19/20            | 1125                                           | Water                     | 115                                                                                                             | Ged               | X                                                                                                                | X                 |                     | X                                | ×          | ×          | ×            | X                        |             | 440                     |
|                   | 245                     | MW - 403R                                            | 2/19/24            | 12.50                                          | Water                     | 11                                                                                                              | Gens              | X                                                                                                                | X                 |                     | X                                | ×          | X          | ×            | X                        |             | 5A)                     |
|                   | 3AC                     | TB-1                                                 | -11 1147           | -                                              | Waren                     | 3                                                                                                               | -                 |                                                                                                                  | X                 |                     |                                  |            |            |              |                          |             | FRIP BLANK              |
| UO                |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  |            |            |              |                          |             |                         |
| ect               |                         | · · · · · · · · · · · · · · · · · · ·                |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  |            |            |              |                          |             |                         |
| 0                 | , <u> </u>              |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  |            |            |              |                          |             |                         |
|                   |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  |            |            |              |                          |             |                         |
|                   |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  |            |            |              |                          |             |                         |
|                   |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  |            |            |              | ļ                        |             |                         |
|                   |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   | -                                                                                                                |                   |                     |                                  |            |            |              |                          |             |                         |
|                   | Relinquishe             | ed By: (1)                                           | Date               | Time                                           | Received By:              | States of the second |                   |                                                                                                                  |                   | Sec                 | tion 4                           |            | D Proj     | ect? Ye      | es No                    | Data Deli   | verable Requirements:   |
|                   | Will.                   | : C. Watts                                           | 3/19/20            | 134Z                                           |                           | 1                                                                                                               | $\sim$            |                                                                                                                  | _                 |                     |                                  |            |            |              |                          |             | ADEC Level II           |
|                   | Relinquishe             | d-BJP. (2)                                           | Date/              | Time                                           | Received By:              | ~                                                                                                               | $\mathcal{C}$     |                                                                                                                  | -                 | Reque               | ested Tu                         | rnarou     | nd Tim     | e and/o      | r Specia                 | Instruction | s:                      |
| 2                 | S Participad Bur (2)    |                                                      |                    |                                                |                           |                                                                                                                 |                   | Standard TAT / Nitrate Has Short Hold<br>No J-Flags<br>For VOCs: Report BTEX: 1.2.4-TMB: 1.3.5-TMB: and Naphthal |                   |                     |                                  |            |            |              |                          |             |                         |
| ctio              |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   |                     |                                  |            | MB; and Na | ohthalene    |                          |             |                         |
| Se                |                         |                                                      |                    |                                                |                           |                                                                                                                 |                   |                                                                                                                  |                   | Tem                 | p Blank                          | °C:        | 3          | .5           |                          | Chain of    | Custody Seal (Circle)   |
|                   | Relinquishe             | od By: (4)                                           | Date               | Time                                           | Received For              | Laborat                                                                                                         | tory By:          |                                                                                                                  |                   |                     |                                  | or An      | nbient     | []           |                          | INTACI      |                         |
| 3/20/24 9:55 Jucn |                         |                                                      | ny                 | Delivery Method: Hand Delivery [] Commerical D |                           |                                                                                                                 |                   | al Delivery [ ]                                                                                                  |                   |                     |                                  |            |            |              |                          |             |                         |

http://www.sgs.com/terms-and-conditions





## SAMPLE RECEIPT FORM

| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | roject     | Manage    | er Com   | pletion                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|-------------------------------------------------------------------|
| Was all necessary information recorded on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /Yes/      | No        | N/A      |                                                                   |
| COC upon receipt? (temperature, COC seals,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sim$     |           |          |                                                                   |
| etc.?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           | 61/A     | If "Ne" are the complex either everyth or compled <9              |
| Was temperature between 0-6°C?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes        | NO        |          | If "No", are the samples either exempt or sampled <o< td=""></o<> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |          |                                                                   |
| Were all analyses received within holding time*?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kes        | No        | N/A      |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\bigcirc$ |           |          |                                                                   |
| Was a method specified for each analysis,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes        | No        | N/A      |                                                                   |
| where applicable? If no, please note correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |          |                                                                   |
| methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Nia       | NITA     |                                                                   |
| Are compound lists specified, where applicable?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | NO        | N/A      |                                                                   |
| Por project specific or special compound lists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           |          |                                                                   |
| If rush was requested by the client, was the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes        | No        | MPA      | If "NO", what is the approved TAT?                                |
| requested TAT approved?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           | N C      |                                                                   |
| If SEDD Deliverables are required, were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes        | No        | N/A)     | If "NO", contact client for information.                          |
| Location ID's and an NPDL Number provided?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |          |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampl      | e Logir   |          | bletion                                                           |
| Do ID's on sample containers match COC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | res        | INO       | IN/A     |                                                                   |
| If provided on containers, do dates/times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes        | No        | N/A      | Note: If times differ <1 hr., record details below and            |
| collected match COC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim$     |           |          | login per COC.                                                    |
| Were all sample containers received in good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ves        | No        | N/A      |                                                                   |
| condition?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\vdash$   |           |          |                                                                   |
| Were proper containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes        | V No      | N/A      | Note: If 200.8/6020 Total Metals are received unpreserved,        |
| (type/mass/volume/preservative) received for all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ſ         |          | If 200.8/6020 Dissolved Metals are received unpreserved, log      |
| samples?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |          | in for LABFILTER and do not preserve.                             |
| "See form F-083 Sample Guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |          | For all non-metals methods, inform Project Manager.               |
| (in the second se |            |           |          |                                                                   |
| Were Trip Blanks (VOC, GRO, Low-Level Hg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes        | No        | N/A      |                                                                   |
| etc.) received with samples, where applicable*?-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +          |           |          |                                                                   |
| Were all VOA vials free of headspace >6mm?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes        | No        | N/A      |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |          |                                                                   |
| Were all soil VOA samples received field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes        | NO        |          | $\triangleright$                                                  |
| Did all soil VOA samples have an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ves        | No        | N/A      |                                                                   |
| accompanying unpreserved container for %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103        |           |          | $\mathcal{P}$                                                     |
| solids?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | e         | <u></u>  |                                                                   |
| If special handling is required, were containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes        | No        | N/A      |                                                                   |
| labelled appropriately? e.g. MI/ISM, foreign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |          | P                                                                 |
| soils, lab filter, Ref Lab, limited volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =          | L         |          |                                                                   |
| For Rush/Short Holding time, was the lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes        | DNO       | N/A      |                                                                   |
| For any question answered "NO" was the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes        |           | N/A      | PM Initials                                                       |
| Project Manager notified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           | $\sim$   |                                                                   |
| Was Peer Review of sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes        | No        | N/A      | Reviewer Initiats                                                 |
| numbering/labelling completed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          | V         |          |                                                                   |
| Additional Notes/Clarification where Applicable, inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | luding I   | resolutio | on of "N | lo" answers when a change order is not attached:                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |          | $\sim$                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |          |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |          |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |          |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |          |                                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |          |                                                                   |



### **Sample Containers and Preservatives**

| <u>Container Id</u> | Preservative             | <u>Container</u> | Container Id | <u>Preservative</u> | <u>Container</u> |
|---------------------|--------------------------|------------------|--------------|---------------------|------------------|
|                     |                          | Condition        |              |                     | Condition        |
| 1241074001-A        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074001-B        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074001-C        | HCL to pH < 2            | OK               |              |                     |                  |
| 1241074001-D        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074001-E        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074001-F        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074001-G        | HCL to pH < 2            | OK               |              |                     |                  |
| 1241074001-H        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074001-I        | No Preservative Required | OK               |              |                     |                  |
| 1241074001-J        | HNO3 to pH < 2           | OK               |              |                     |                  |
| 1241074002-A        | HCL to pH < 2            | OK               |              |                     |                  |
| 1241074002-В        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074002-C        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074002-D        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074002-E        | HCL to pH < 2            | OK               |              |                     |                  |
| 1241074002-F        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074002-G        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074002-H        | HCL to pH < 2            | OK               |              |                     |                  |
| 1241074002-I        | No Preservative Required | OK               |              |                     |                  |
| 1241074002-J        | HNO3 to pH < 2           | OK               |              |                     |                  |
| 1241074003-A        | HCL to $pH < 2$          | OK               |              |                     |                  |
| 1241074003-B        | HCL to $pH < 2$          | ОК               |              |                     |                  |
| 1241074003-C        | HCL to $pH < 2$          | ОК               |              |                     |                  |
| 1241074004-A        | HNO3 to pH < 2           | OK               |              |                     |                  |
| 1241074005-A        | HNO3 to pH < 2           | ОК               |              |                     |                  |

#### Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.



### **Orlando**, FL

The results set forth herein are provided by SGS North America Inc.

### **Technical Report for**

### SGS North America, Inc

1241074

SGS Job Number: FC14325



Sampling Date: 03/19/24

**Report to:** 

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 justin.nelson@sgs.com; env.alaska.reflabteam@sgs.com

**ATTN: Justin Nelson** 

### Total number of pages in report: 16



Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Client Service contact: Andrea Colby 407-425-6700 Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • Page 31 of 46

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com



1 of 16

#### 03/27/24

Automated Report

e-Hardcopy 2.0
# **Table of Contents**

N

ယ

4

G

6

#### -1-

| Section 1: Sample Summary                      | 3  |
|------------------------------------------------|----|
| Section 2: Case Narrative/Conformance Summary  | 4  |
| Section 3: Summary of Hits                     | 5  |
| Section 4: Sample Results                      | 6  |
| <b>4.1:</b> FC14325-1: MW-403A                 | 7  |
| <b>4.2:</b> FC14325-2: MW-403B                 | 8  |
| Section 5: Misc. Forms                         | 9  |
| 5.1: Chain of Custody                          | 10 |
| Section 6: GC Volatiles - QC Data Summaries    | 12 |
| 6.1: Method Blank Summary                      | 13 |
| 6.2: Blank Spike/Blank Spike Duplicate Summary | 14 |
| 6.3: Matrix Spike Summary                      | 15 |
| 6.4: Duplicate Summary                         | 16 |

## **Sample Summary**

SGS North America, Inc

FC14325-2 03/19/24 12:50

1241074

Sample<br/>NumberCollected<br/>DateMatrix<br/>Time ByClient<br/>Sample IDThis report contains results reported as ND = Not detected. The following applies:<br/>Organics ND = Not detected above the RLND = Not detected. The following applies:<br/>MW-403A

03/26/24 AQ Water

Job No: FC14325

MW-403B

### SAMPLE DELIVERY GROUP CASE NARRATIVE

| Client:      | SGS North America, Inc                                                     | Job No:            | FC14325               |
|--------------|----------------------------------------------------------------------------|--------------------|-----------------------|
| Site:        | 1241074                                                                    | Report Date:       | 3/27/2024 12:10:53    |
| On 03/26/202 | 4, 2 Sample(s), 0 Trip Blank(s), 0 Equip. Blank(s) and 0 Field Blank(s) we | ere received at SC | S North America Inc - |

Orlando. at a maximum corrected temperature of 4.4 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. - Orlando Job Number of FC14325 was assigned to the project.

Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### GC Volatiles By Method RSKSOP-147/175

Matrix: AQ

Batch ID: GLL3068

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FC14325-1DUP, FC14325-2MS were used as the QC samples indicated.

SGS North America Inc. - Orlando certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc.- Orlando is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:

Kim Benham, Report Generation (signature on file)



Summary of Hits Job Number: FC14325 Account: SGS North America, Inc Project: 1241074 Collected: 03/19/24

| Lab Sample ID<br>Analyte | Client Sample ID | Result/<br>Qual | RL   | MDL | Units | Method         |
|--------------------------|------------------|-----------------|------|-----|-------|----------------|
| FC14325-1                | MW-403A          |                 |      |     |       |                |
| Methane                  |                  | 308             | 0.50 |     | ug/l  | RSKSOP-147/175 |
| FC14325-2                | MW-403B          |                 |      |     |       |                |
| Methane                  |                  | 293             | 0.50 |     | ug/l  | RSKSOP-147/175 |

Page 1 of 1

ω





Orlando, FL

4

Sample Results

Report of Analysis



SGS North America Inc.

**Report of Analysis** 

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | nple ID: MW-40<br>le ID: FC1432<br>AQ - W<br>RSKSO<br>1241074 | 3A<br>5-1<br>7ater<br>P-147/175<br>4 |          |          |         | Da<br>Da<br>Pe | ate Sampled:<br>ate Received:<br>ercent Solids: | 03/19/24<br>03/26/24<br>n/a |
|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|----------|----------|---------|----------------|-------------------------------------------------|-----------------------------|
|                                                          | File ID                                                       | DF                                   | Analyzed | By       | Prep l  | Date           | Prep Batch                                      | Analytical Batch            |
| Run #1                                                   | LL88266.D                                                     | 1                                    | 03/27/24 | 08:36 JR | n/a     |                | n/a                                             | GLL3068                     |
| Run #2                                                   |                                                               |                                      |          |          |         |                |                                                 |                             |
|                                                          | Initial Volume                                                | Headspa                              | e Volume | Volume I | njected | Tempe          | erature                                         |                             |
| Run #1<br>Run #2                                         | 37.0 ml                                                       | 5.0 ml                               |          | 500 ul   |         | 21 Deg         | g. C                                            |                             |
| CAS No.                                                  | Compound                                                      |                                      | Result   | RL       | Units   | Q              |                                                 |                             |
| 74-82-8                                                  | Methane                                                       |                                      | 308      | 0.50     | ug/l    |                |                                                 |                             |
| 74-84-0                                                  | Ethane                                                        |                                      | ND       | 1.0      | ug/l    |                |                                                 |                             |
| 74-85-1                                                  | Ethene                                                        |                                      | ND       | 1.0      | ug/l    |                |                                                 |                             |

ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



4

J = Indicates an estimated value

SGS North America Inc.

**Report of Analysis** 

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | nple ID: MW-40<br>le ID: FC1432<br>AQ - W<br>RSKSO<br>124107 <sup>2</sup> | 3B<br>5-2<br>fater<br>P-147/175<br>4 |                          |                 |                    |                      | D<br>D<br>P   | ate Sampled:<br>ate Received:<br>ercent Solids: | 03/1<br>03/2<br>n/a | 19/24<br>26/24              |
|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|--------------------------|-----------------|--------------------|----------------------|---------------|-------------------------------------------------|---------------------|-----------------------------|
| Run #1<br>Run #2                                         | <b>File ID</b><br>LL88267.D                                               | <b>DF</b><br>1                       | <b>Analyzed</b> 03/27/24 | l I<br>08:43 J  | <b>By I</b><br>R 1 | Prep I<br>n∕a        | Date          | <b>Prep Batc</b><br>n/a                         | h                   | Analytical Batch<br>GLL3068 |
| Run #1<br>Run #2                                         | <b>Initial Volume</b><br>38.0 ml                                          | Headspa<br>5.0 ml                    | ace Volume               | Volum<br>500 ul | e Injecto          | ed                   | Temp<br>21 De | <b>erature</b><br>g. C                          |                     |                             |
| CAS No.                                                  | Compound                                                                  |                                      | Result                   | t R             | LI                 | Units                | Q             |                                                 |                     |                             |
| 74-82-8<br>74-84-0<br>74-85-1                            | Methane<br>Ethane<br>Ethene                                               |                                      | 293<br>ND<br>ND          | 0.<br>1.<br>1.  | 50 ι<br>0 ι<br>0 ι | 1g/l<br>1g/l<br>1g/l |               |                                                 |                     |                             |

ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 1 of 1

J = Indicates an estimated value



Orlando, FL

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody



SGS North America Inc. CHAIN OF CUSTODY RECORD

FC14325



Locations Nationwide Alaska Florida

Texas

New Jersey Colorado North Carolina

Louisiana

|                          |                                       | F                              |                             | 43                        | 57                     | しつ                           |            |          |                |               |        |               | Virginia<br>www.us          | Louisiana             |
|--------------------------|---------------------------------------|--------------------------------|-----------------------------|---------------------------|------------------------|------------------------------|------------|----------|----------------|---------------|--------|---------------|-----------------------------|-----------------------|
| CLIENT:                  | SGS North Ame                         | erica Inc Ala                  | ska Division                |                           | SG                     | S Refere                     | nce:       |          | S              | GS,           | Orla   | ando FL       |                             | 1390.0011             |
| CONTACT:                 | Justin Nelson                         | PHONE NO:                      | (907) 56                    | 62-2343                   | Addi                   | itional                      | Comme      | ents:    | All soils      | repo          | ort ou | t in dry weig | ht unless                   | Page 1 of 1           |
| PROJECT<br>NAME:         | 1241074                               | PWSID#:<br>NPDL#:              |                             |                           | #                      | Preserv-                     | HC!        |          |                |               |        |               |                             |                       |
| REPORTS TO               | : Justin.Nelson                       | E-MAIL:<br>Env.Alaska.         | Justin.Nelso<br>RefLabTeam( | n@sgs.com<br>@sgs.com     |                        | TYPE<br>C =<br>COMP          | SK-175     |          |                | 1             |        |               |                             |                       |
| INVOICE TO:<br>env.alask | SGS - Alaska<br>(a.accounting@sgs.com | QUOTE #:<br>pm P.O. #: 1241074 |                             | 074                       | A<br>1<br>N            | G =<br>GRAB<br>MI =<br>Multi | ses by R\$ |          |                |               |        |               |                             |                       |
| RESERVED<br>for lab use  | SAMPLE IDENTIFICATION                 | DATE<br>mm/dd/yy               | ТІМЕ<br>ННММ                | MATRIX/<br>MATRIX<br>CODE | R<br>S                 | Incre-<br>mental<br>Solis    | Light Ga   |          |                | мз            | MSD    | SGS lab #     |                             | Location ID           |
| 1                        | MW-403A                               | 03/19/2024                     | 11:25:00                    | Water                     | 3                      |                              | X          |          |                |               |        | 1241074001    |                             |                       |
| 2                        | MW-403B                               | 03/19/2024                     | 12:50:00                    | Water                     | 3                      |                              | X          | _        | _              |               |        | 1241074002    |                             |                       |
|                          |                                       |                                |                             |                           |                        |                              |            |          |                |               |        |               |                             |                       |
|                          |                                       |                                |                             |                           |                        |                              |            |          |                |               |        |               |                             |                       |
|                          |                                       |                                |                             |                           |                        |                              |            |          |                |               |        |               |                             |                       |
| Relinquished             | By: (1)                               | Date                           | Time                        | Received                  | Ву:                    |                              |            | DC<br>Re | D Projec       | t?<br>L (J Fl | ags)?  | NO            | Data Deliverable Requiremen |                       |
| Jere                     | ing brend                             | 3/25/24                        | 10/52                       |                           |                        |                              |            | li 1     | Report as      | DLILOD        | LOQ.   | NO            | Leve                        | 12+SGS EDD            |
| Relinquished             | By: (2)                               | Date                           | Time                        | Received                  | By:                    |                              |            | Co       | oler ID:       |               |        |               |                             |                       |
|                          |                                       |                                |                             |                           |                        |                              |            |          | Reques         | ted T         | urnar  | ound Time a   | nd-or Spec                  | ial Instructions:     |
| Relinquished I           | By: (3)                               | Date                           | Time                        | Received                  | By:                    |                              |            |          |                |               |        |               |                             |                       |
|                          |                                       |                                |                             |                           |                        |                              |            | Tei      | mp Blank       | °C:           |        |               | Chain of C                  | ustody Seal: (Circle) |
| Relinquished I           | Ву: (4)                               | Date                           | Time                        | Received I                | For Laboratory By: 945 |                              |            | 5        | or Ambient [ ] |               |        | []            | INTACT BROKEN ABSE          |                       |
| X 200 W Pot              | ter Drive Anchorage AK 995            | 18 Tel: (907)                  | 62-2343 Eav                 | . (007) 561               | 5201                   |                              |            | l.tt     | n:llinner      |               |        | an and soudit | ana hén                     |                       |

[ 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

-EVIEWED-INITIAL ASSESSMENT ZB ZD) 3.4 1R#f(

F088\_COC\_REF\_LAB\_20190411

FC14325: Chain of Custody Page 1 of 2



| Job Number: fc14325 Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                         | Project: 1241074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | roject: 1241074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3/26/2024 9:45:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Delivery Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FEDEX                                                                                                                                                                                                                                   | Airbill #'s: 642042704324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| asured) °C: Co<br>rrected) °C: Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oler 1: (3.4);<br>oler 1: (4.4);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| <u>Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Info                                                                                                                                                                                                                             | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ </td <td>IR Gun     Ice (Bag)     or N     O</td> <td>VA<br/>V<br/>V<br/>VA</td> <td><ol> <li>Sample lat</li> <li>Samples p</li> <li>Sufficient v</li> <li>Condition of</li> <li>Sample red</li> <li>Dates/Time</li> <li>VOCs have</li> <li>Bottles rec</li> <li>Compositin</li> <li>Voa Soil I</li> <li>% Solids</li> </ol></td> <td>bels present on bottles:<br/>vresented properly<br/>volume/containers recv'd for analysis<br/>of sample:<br/>cv'd within HT<br/>es/IDs on COC match sample label<br/>e headspace<br/>exeived for unspecified tests<br/>ng instructions clear<br/>Kits/Jars received past 48hrs?<br/>Jar Received?</td> <td>S     Intact     S     C</td> <td></td> <td></td> | IR Gun     Ice (Bag)     or N     O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VA<br>V<br>V<br>VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ol> <li>Sample lat</li> <li>Samples p</li> <li>Sufficient v</li> <li>Condition of</li> <li>Sample red</li> <li>Dates/Time</li> <li>VOCs have</li> <li>Bottles rec</li> <li>Compositin</li> <li>Voa Soil I</li> <li>% Solids</li> </ol> | bels present on bottles:<br>vresented properly<br>volume/containers recv'd for analysis<br>of sample:<br>cv'd within HT<br>es/IDs on COC match sample label<br>e headspace<br>exeived for unspecified tests<br>ng instructions clear<br>Kits/Jars received past 48hrs?<br>Jar Received?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S     Intact     S     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12. Residual                                                                                                                                                                                                                            | Chionne Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 5 Gram<br>pH 0-3:<br>Strip Lot #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Gram<br>226422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH 10-12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         | umber of Lab Filtered Metals:<br>Other: (Specify)pH 1.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fc14325         3/26/2024 9:45:0         asured) °C: Coor         rrected) °C: Coor         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓ | fc14325       Client:         3/26/2024 9:45:00 AM         asured) °C:       Cooler 1: (3.4);         rrected) °C:       Cooler 1: (4.4);         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0         ✓       0 <tr< td=""><td>fc14325       Client:       SGS ALASKA         3/26/2024 9:45:00 AM       Delivery Method:      </td><td>fc14325       Client:       SGS ALASKA         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX         asured) °C:       Cooler 1: (3.4);       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Image: Second structure       Image: Second structure       1. Condition         Image: Image: Image: Second structure       Image: Second structure       10. Voc Soil         Image: Image: Image: Image: Second structure       Image: Second structure       Image: Second structure         Image: Imag</td><td>fc14325       Client: SGS ALASKA       Project: 1241074         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX       Airbill #'s: 642042704324         asured) °C: Cooler 1: (3.4);       rrected) °C: Cooler 1: (4.4);       Sample Information       1. Sample labels present on bottles:         Ø       Image: Cooler 1: (4.4);       Sample Information       1. Sample labels present on bottles:         Ø       Image: Cooler 1: (6.4);       Sample Information       1. Sample labels present on bottles:         Ø       Image: Cooler 1: (6.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1</td><td>fc14325       Client: SGS ALASKA       Project: 1241074         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX       Airbill #'s: 642042704324         asured) °C: Cooler 1: (3.4);       rrected) °C: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (3.4);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (3.4);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (A.G);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (A.G);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (Bag)       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Bag)       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Cooler 1: (Cooler 1: (Cooler 1: (5.2);       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Bag)       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Cooler 1: (Cooler</td><td>fc14325       Client: SGS ALASKA       Project: 1241074         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX       Airbill #'s: 642042704324         asured) °C: Cooler 1: (3.4);       rrected) °C: Cooler 1: (4.4);       Sample Information       Y or N         V       O       1. Sample Information       Y or N       O         V       O       1. Sample Information       Y or N       O         V       O       1. Sample Information       Y or N       O         V       O       1. Sample Information       Y or N       O         V       O       3. Sufficient volume/containers recv'd for analysis       O       O         IR Gun       4. Condition of sample:       Intact       Intact       Intact       O         Ice (Bag)       Sample received within HT       Intact       O       O       O       O       O         :       Image: Conspositing instructions clear       Intact       Intact       O       O       O       O       O         ::       Image: Conspositing instructions clear       Image: C</td></tr<> | fc14325       Client:       SGS ALASKA         3/26/2024 9:45:00 AM       Delivery Method:                                                                                                                                              | fc14325       Client:       SGS ALASKA         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX         asured) °C:       Cooler 1: (3.4);       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Second structure       Image: Second structure       1. Sample Infc         Image: Image: Second structure       Image: Second structure       1. Condition         Image: Image: Image: Second structure       Image: Second structure       10. Voc Soil         Image: Image: Image: Image: Second structure       Image: Second structure       Image: Second structure         Image: Imag | fc14325       Client: SGS ALASKA       Project: 1241074         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX       Airbill #'s: 642042704324         asured) °C: Cooler 1: (3.4);       rrected) °C: Cooler 1: (4.4);       Sample Information       1. Sample labels present on bottles:         Ø       Image: Cooler 1: (4.4);       Sample Information       1. Sample labels present on bottles:         Ø       Image: Cooler 1: (6.4);       Sample Information       1. Sample labels present on bottles:         Ø       Image: Cooler 1: (6.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Sample Information       1. Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1: (7.4);       Sample Information         Image: Cooler 1: (7.4);       Image: Cooler 1 | fc14325       Client: SGS ALASKA       Project: 1241074         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX       Airbill #'s: 642042704324         asured) °C: Cooler 1: (3.4);       rrected) °C: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (3.4);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (3.4);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (A.G);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (A.G);       Image: Cooler 1: (4.4);       Image: Cooler 1: (4.4);         Image: Cooler 1: (Bag)       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Bag)       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Cooler 1: (Cooler 1: (Cooler 1: (5.2);       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Bag)       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);       Image: Cooler 1: (5.2);         Image: Cooler 1: (Cooler | fc14325       Client: SGS ALASKA       Project: 1241074         3/26/2024 9:45:00 AM       Delivery Method:       FEDEX       Airbill #'s: 642042704324         asured) °C: Cooler 1: (3.4);       rrected) °C: Cooler 1: (4.4);       Sample Information       Y or N         V       O       1. Sample Information       Y or N       O         V       O       1. Sample Information       Y or N       O         V       O       1. Sample Information       Y or N       O         V       O       1. Sample Information       Y or N       O         V       O       3. Sufficient volume/containers recv'd for analysis       O       O         IR Gun       4. Condition of sample:       Intact       Intact       Intact       O         Ice (Bag)       Sample received within HT       Intact       O       O       O       O       O         :       Image: Conspositing instructions clear       Intact       Intact       O       O       O       O       O         ::       Image: Conspositing instructions clear       Image: C |  |  |

#### SGS - Orlando Sample Receipt Summary

FC14325: Chain of Custody

Page 2 of 2

5.1 5



**Section 6** 

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

# Method Blank Summary Job Number: FC14325

| Account:<br>Project: | SGSAKA SGS N<br>1241074     | lorth Ame      | rica, Inc                   |                 |                         |                          |                             |
|----------------------|-----------------------------|----------------|-----------------------------|-----------------|-------------------------|--------------------------|-----------------------------|
| Sample<br>GLL3068-MB | <b>File ID</b><br>LL88265.D | <b>DF</b><br>1 | <b>Analyzed</b><br>03/27/24 | <b>By</b><br>JR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a | Analytical Batch<br>GLL3068 |
| The QC report        | ted here applies to         | o the follo    | wing samples:               |                 | ]                       | Method: RSKS             | OP-147/175                  |
| FC14325-1, FC        | 214325-2                    |                |                             |                 |                         |                          |                             |
| CAS No. Co           | ompound                     |                | Result F                    | RL              | Units Q                 |                          |                             |

| 74-82-8 | Methane | ND | 0.50 | ug/l |
|---------|---------|----|------|------|
| 74-84-0 | Ethane  | ND | 1.0  | ug/l |
| 74-85-1 | Ethene  | ND | 1.0  | ug/l |

Page 1 of 1



# Blank Spike/Blank Spike Duplicate Summary

| Job Number: | FC14325                       |
|-------------|-------------------------------|
| Account:    | SGSAKA SGS North America, Inc |
| Project:    | 1241074                       |

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| GLL3068-BS  | LL88263.D | 1  | 03/27/24 | JR | n/a       | n/a        | GLL3068          |
| GLL3068-BSD | LL88264.D | 1  | 03/27/24 | JR | n/a       | n/a        | GLL3068          |
|             |           |    |          |    |           |            |                  |

#### The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FC14325-1, FC14325-2

| CAS No. | Compound | Spike<br>ug/l | BSP<br>ug/l | BSP<br>% | BSD<br>ug/l | BSD<br>% | RPD | Limits<br>Rec/RPD |
|---------|----------|---------------|-------------|----------|-------------|----------|-----|-------------------|
| 74-82-8 | Methane  | 108           | 103         | 95       | 106         | 98       | 3   | 62-139/30         |
| 74-84-0 | Ethane   | 219           | 212         | 97       | 218         | 100      | 3   | 67-141/30         |
| 74-85-1 | Ethene   | 290           | 289         | 100      | 298         | 103      | 3   | 68-141/30         |

# Matrix Spike Summary

| Job Number: | FC14325                   |     |
|-------------|---------------------------|-----|
| Account:    | SGSAKA SGS North America, | Inc |
| Project:    | 1241074                   |     |

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| FC14325-2MS | LL88269.D | 1  | 03/27/24 | JR | n/a       | n/a        | GLL3068          |
| FC14325-2   | LL88267.D | 1  | 03/27/24 | JR | n/a       | n/a        | GLL3068          |
|             |           |    |          |    |           |            |                  |

### The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FC14325-1, FC14325-2

| CAS No. | Compound | FC14325-2<br>ug/l Q | Spike<br>ug/l | MS<br>ug/l | MS<br>% | Limits |
|---------|----------|---------------------|---------------|------------|---------|--------|
| 74-82-8 | Methane  | 293                 | 108           | 400        | 99      | 62-139 |
| 74-84-0 | Ethane   | ND                  | 219           | 217        | 99      | 67-141 |
| 74-85-1 | Ethene   | ND                  | 290           | 299        | 103     | 68-141 |

6.3.1

# **Duplicate Summary**

| Job Number: | FC14325                       |
|-------------|-------------------------------|
| Account:    | SGSAKA SGS North America, Inc |
| Project:    | 1241074                       |

| Sample       | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|--------------|-----------|----|----------|----|-----------|------------|------------------|
| FC14325-1DUP | LL88268.D | 1  | 03/27/24 | JR | n/a       | n/a        | GLL3068          |
| FC14325-1    | LL88266.D | 1  | 03/27/24 | JR | n/a       | n/a        | GLL3068          |
|              |           |    |          |    |           |            |                  |

### The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FC14325-1, FC14325-2

| CAS No. | Compound | FC14325-1<br>ug/l Q | DUP<br>ug/l Q | RPD | Limits |
|---------|----------|---------------------|---------------|-----|--------|
| 74-82-8 | Methane  | 308                 | 317           | 3   | 30     |
| 74-84-0 | Ethane   | ND                  | ND            | nc  | 30     |
| 74-85-1 | Ethene   | ND                  | ND            | nc  | 30     |



Page 1 of 1



# ADEC Contaminated Sites Program Laboratory Data Review Checklist

| Completed By:    | William<br>Watts<br>May 9, 2024 | CS Site<br>Name:  | Kiewit Pacific<br>Company, 2050<br>Peger Road,<br>Fairbanks,<br>Alaska | Lab Name:              | SGS North<br>America Inc. |
|------------------|---------------------------------|-------------------|------------------------------------------------------------------------|------------------------|---------------------------|
| Title:           | Project<br>Manager              | ADEC File<br>No.: | 102.38.164                                                             | Lab<br>Report<br>No.:  | 1241074                   |
| Consulting Firm: | <b>NORTECH</b> ,<br>Inc.        | Hazard ID<br>No.: | 25680                                                                  | Lab<br>Report<br>Date: | April 4,<br>2024          |

*Note:* Any N/A or No box checked must have an explanation in the comments box.

#### 1. Laboratory

- a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses?
   Yes ⊠ No □ N/A □ Comments:
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

```
\mathsf{Yes} \boxtimes \mathsf{No} \Box \mathsf{N/A} \Box
```

Comments: Except for Light Gases (methane, ethane, and ethene) analysis by EPA Method RSK175, all sample analyses were performed by SGS North America Inc. in Anchorage, Alaska. Samples for Light Gases analysis were transferred to SGS-Orlando, Florida network laboratory. The Light Gases analysis was conducted to evaluate natural source zone depletion at the site.

#### 2. Chain of Custody (CoC)

a. Is the CoC information completed, signed, and dated (including released/received by)?

```
Yes \boxtimes No \square N/A \square
Comments:
```

b. Were the correct analyses requested?

Yes No No N/A Analyses requested: DRO by AK102, VOCs by EPA Method 8260D, and Natural Attenuation Parameters: Methane/Ethane/Ethane by EPA Method RSKSOP 147/175, Nitrate and Sulfate by EPA Method 300.0, and Total and Dissolved Iron and Manganese by EPA Method 6020B. Comments:

#### 3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Cooler temperature(s): 3.5° C and 4.4° C

Sample temperature(s): Click or tap here to enter text. Comments:

- b. Is the sample preservation acceptable acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?
   Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- c. Is the sample condition documented broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?
   Yes ⊠ No □ N/A □
   Comments: The samples were received in good condition.
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
   Yes □ No □ N/A ⊠
   Comments: There were no discrepancies.

e. Is the data quality or usability affected?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: Data quality and usability are not affected.

#### 4. Case Narrative

a. Is the case narrative present and understandable? Yes ⊠ No □ N/A □ Comments:

```
b. Are there discrepancies, errors, or QC failures identified by the lab?
Yes ⊠ No □ N/A □
Comments:
1240966013(1757104MS) (1757109) MS
6020B - Metals MS recoveries for Iron and Manganese do not meet QC criteria. The post
digestion spike was successful.
```

c. Were all the corrective actions documented?
 Yes □ No □ N/A ⊠
 Comments: No corrective actions were necessary.

d. What is the effect on data quality/usability according to the case narrative? Comments: There is no effect on data quality or usability according to the case

narrative.

#### 5. Sample Results

- Are the correct analyses performed/reported as requested on CoC?
   Yes ⊠ No □ N/A □
   Comments:
- b. Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments:
- c. Are all soils reported on a dry weight basis?
   Yes □ No □ N/A ⊠
   Comments: There were no soil samples submitted with this work order.
- d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?
   Yes ⊠ No □ N/A □

Comments:

e. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

#### 6. QC Samples

- a. Method Blank
  - Was one method blank reported per matrix, analysis, and 20 samples? Yes ⋈ No □ N/A □ Comments:
  - ii. Are all method blank results less than LOQ (or RL)?
     Yes ⊠ No □
     Comments:
  - iii. If above LoQ or RL, what samples are affected? Comments: No samples are affected. Method blank results are below LOQs.
  - iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: No samples are affected. No data flags are necessary.

v. Data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

#### b. Laboratory Control Sample/Duplicate (LCS/LCSD)

Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

- ii. Metals/Inorganics Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
   Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes ⊠ No □ N/A □ Comments:
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
   Yes ⊠ No □ N/A ⊠
   Comments: Click or tap here to enter text.
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: No samples are affected.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$  Comments: No samples are affected. No data flags are necessary.

#### vii. Is the data quality or usability affected?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$  Comments: Data quality and usability are not affected.

#### c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\Box$  No  $\boxtimes$  N/A  $\Box$ Comments: MS/MSD samples were not required for this project, and the lab did not run a MS/MSD with the batch. According to the lab, when there is not sufficient volume for MS/MSD analyses an LCS/LCSD is run.

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: MS/MSD were run on a laboratory batch sample not associated with this project.

iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes No N/A Comments: 1240966013(1757104MS) (1757109) MS 6020B - Metals MS recoveries for Iron and Manganese do not meet QC criteria. The post digestion spike was successful.

 iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: No samples are affected.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: No samples are affected. No data flags are necessary.

- vii. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.
- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples?

Yes 🛛 No 🗆 N/A 🗆

Comments: Click or tap here to enter text.

- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
   Yes □ No □ N/A ⊠
   Comments: Click or tap here to enter text.
- iv. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.

#### e. Trip Blanks

- Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- ii. Are all results less than LoQ or RL?
  Yes ⊠ No □ N/A □
  Comments: Click or tap here to enter text.
- iii. If above LoQ or RL, what samples are affected? Comments: No samples are affected.
- iv. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.

#### f. Field Duplicate

i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

Yes  $\Box$  No  $\boxtimes$  N/A  $\Box$ Comments: One field duplicate pair was required for the project and was submitted with a subsequent laboratory work order. A field duplicate was not submitted with this laboratory work order.

ii. Was the duplicate submitted blind to lab?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: See 6.f.i above.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$$

Where  $R_1$  = Sample Concentration

R<sub>2</sub> = Field Duplicate Concentration

Is the data quality or usability affected? (Explain)

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: See 6.f.i above.

iv. Is the data quality or usability affected? (Explain)

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: See 6.f.i above.

#### g. Decontamination or Equipment Blanks

i. Were decontamination or equipment blanks collected?

Yes 🗆 No 🖂 N/A 🗆

Comments: One equipment blank was required for the project and was submitted with a subsequent laboratory work order. An equipment blank was not submitted with this laboratory work order.

ii. Are all results less than LoQ or RL?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: See 6.g.i above.

- iii. If above LoQ or RL, specify what samples are affected. Comments: See 6.g.i above.
- iv. Are data quality or usability affected? Yes □ No □ N/A ⊠ Comments: See 6.g.i above.

#### 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Are they defined and appropriate?

Yes ⊠ No □ N/A □

Comments: No additional flags or qualifiers are necessary for this work order.



#### Laboratory Report of Analysis

To: Nortech 2400 College Road Fairbanks, AK 99707 (907)452-5688

Report Number: **1241160** 

Client Project: Former Kiewit Fac-2050 Peger

Dear William Watts,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc. Stephen C. Ede Martin C. Ede 2024.04.09 07:59:09-08'00'

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 04/08/2024 4:57:59PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group



#### **Case Narrative**

SGS Client: Nortech SGS Project: 1241160 Project Name/Site: Former Kiewit Fac-2050 Peger Project Contact: William Watts

Refer to sample receipt form for information on sample condition.

\*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/08/2024 4:58:01PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group



#### Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270E, 8270E-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

| *                        | The analyte has exceeded allowable regulatory or control limits.                     |
|--------------------------|--------------------------------------------------------------------------------------|
| !                        | Surrogate out of control limits.                                                     |
| В                        | Indicates the analyte is found in a blank associated with the sample.                |
| CCV/CVA/CVB              | Continuing Calibration Verification                                                  |
| CCCV/CVC/CVCA/CVCB       | Closing Continuing Calibration Verification                                          |
| CL                       | Control Limit                                                                        |
| DF                       | Analytical Dilution Factor                                                           |
| DL                       | Detection Limit (i.e., maximum method detection limit)                               |
| E                        | The analyte result is above the calibrated range.                                    |
| GT                       | Greater Than                                                                         |
| IB                       | Instrument Blank                                                                     |
| ICV                      | Initial Calibration Verification                                                     |
| J                        | The quantitation is an estimation.                                                   |
| LCS(D)                   | Laboratory Control Spike (Duplicate)                                                 |
| LLQC/LLIQC               | Low Level Quantitation Check                                                         |
| LOD                      | Limit of Detection (i.e., 3/4 of the LOQ)                                            |
| LOQ                      | Limit of Quantitation (i.e., reporting or practical quantitation limit)              |
| LT                       | Less Than                                                                            |
| MB                       | Method Blank                                                                         |
| MS(D)                    | Matrix Spike (Duplicate)                                                             |
| ND                       | Indicates the analyte is not detected.                                               |
| RPD                      | Relative Percent Difference                                                          |
| TNTC                     | Too Numerous To Count                                                                |
| U                        | Indicates the analyte was analyzed for but not detected.                             |
| o                        |                                                                                      |
| Sample summaries which i | nclude a result for "I otal Solids" have already been adjusted for moisture content. |
| All DRO/RRO analyses are | Integrated per SOP.                                                                  |

Print Date: 04/08/2024 4:58:04PM

Note:



| Sample Summary   |                              |                    |                 |                               |  |  |  |
|------------------|------------------------------|--------------------|-----------------|-------------------------------|--|--|--|
| Client Sample ID | Lab Sample ID                | <b>Collected</b>   | <b>Received</b> | <u>Matrix</u>                 |  |  |  |
| MW-4             | 1241160001                   | 03/26/2024         | 03/27/2024      | Water (Surface, Eff., Ground) |  |  |  |
| MW-5             | 1241160002                   | 03/26/2024         | 03/27/2024      | Water (Surface, Eff., Ground) |  |  |  |
| EB-1             | 1241160003                   | 03/26/2024         | 03/27/2024      | Water (Surface, Eff., Ground) |  |  |  |
| MW-4             | 1241160004                   | 03/26/2024         | 03/27/2024      | Water (Surface, Eff., Ground) |  |  |  |
| MW-5             | 1241160005                   | 03/26/2024         | 03/27/2024      | Water (Surface, Eff., Ground) |  |  |  |
|                  |                              |                    |                 |                               |  |  |  |
| Method           | Method Des                   | scription          |                 |                               |  |  |  |
| SW6020B          | Dissolved N                  | letals by ICP-MS   |                 |                               |  |  |  |
| AK102            | DRO Low V                    | olume (W)          |                 |                               |  |  |  |
| EPA 300.0        | Ion Chromatographic Analysis |                    |                 |                               |  |  |  |
| EPA 300.0        | Ion Chroma                   | tographic Analysis | ; (W)           |                               |  |  |  |
| SW6020B          | Metals by ICP-MS             |                    |                 |                               |  |  |  |



| <b>Detectable Results Sun</b> | nmary |
|-------------------------------|-------|
|-------------------------------|-------|

| Client Sample ID: MW-4     |                       |        |              |
|----------------------------|-----------------------|--------|--------------|
| Lab Sample ID: 1241160001  | Parameter             | Result | <u>Units</u> |
| Metals by ICP/MS           | Iron                  | 99500  | ug/L         |
|                            | Manganese             | 2420   | ug/L         |
| Semivolatile Organic Fuels | Diesel Range Organics | 0.774  | mg/L         |
| Waters Department          | Sulfate               | 0.259  | mg/L         |
| Client Sample ID: MW-5     |                       |        |              |
| Lab Sample ID: 1241160002  | <u>Parameter</u>      | Result | <u>Units</u> |
| Metals by ICP/MS           | Iron                  | 16000  | ug/L         |
|                            | Manganese             | 1550   | ug/L         |
| Waters Department          | Sulfate               | 20.8   | mg/L         |
| Client Sample ID: MW-4     |                       |        |              |
| Lab Sample ID: 1241160004  | <u>Parameter</u>      | Result | <u>Units</u> |
| Dissolved Metals by ICP/MS | Iron                  | 102000 | ug/L         |
|                            | Manganese             | 2410   | ug/L         |
| Client Sample ID: MW-5     |                       |        |              |
| Lab Sample ID: 1241160005  | <u>Parameter</u>      | Result | <u>Units</u> |
| Dissolved Metals by ICP/MS | Iron                  | 17100  | ug/L         |
|                            | Manganese             | 1560   | ug/L         |
|                            |                       |        |              |

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

| <b>SGS</b>                                                                                                                                              |                                                          |                              |                                                                                                                                       |                                                                               |                     |                            |                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------|----------------------------|---------------------------------------------------|
| Client Sample ID: MW-4<br>Client Project ID: Former Kiewit Fac-2050 Peger<br>Lab Sample ID: 1241160001<br>Lab Project ID: 1241160                       |                                                          | r                            | Collection Date: 03/26/24 13:00<br>Received Date: 03/27/24 10:00<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                               |                     |                            |                                                   |
| Results by <b>Metals by ICP/M</b> <u>Parameter</u> Iron Manganese                                                                                       | I <b>S</b><br><u>Result</u> <u>Qual</u><br>99500<br>2420 | <u>LOQ/CL</u><br>500<br>2.00 | <u>DL</u><br>150<br>0.620                                                                                                             | <u>Units</u><br>ug/L<br>ug/L                                                  | <u>DF</u><br>5<br>5 | <u>Allowable</u><br>Limits | Date Analyzed<br>04/05/24 19:26<br>04/05/24 19:26 |
| Batch Information<br>Analytical Batch: MMS1225<br>Analytical Method: SW6020<br>Analyst: HGS<br>Analytical Date/Time: 04/05<br>Container ID: 1241160001- | .0<br>iB<br>i/24 19:26<br>D                              |                              | Prep Batch:<br>Prep Methoo<br>Prep Date/T<br>Prep Initial V<br>Prep Extract                                                           | MXX36541<br>d: SW3010A<br>ime: 04/01/24 13<br>Vt./Vol.: 25 mL<br>: Vol: 25 mL | :49                 |                            |                                                   |

| - Results of <b>MW-4</b>                                                                                                                        |                                    |                        |                                                                              |                                                                           |                |                                   |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|-----------------------------------|----------------|
| Client Sample ID: <b>MW-4</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241160001<br>Lab Project ID: 1241160 |                                    | er                     | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:     | )                                                                         |                |                                   |                |
| Results by Semivolatile Organic                                                                                                                 | Fuels                              |                        | _                                                                            |                                                                           |                |                                   |                |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                       | <u>Result</u> <u>Qual</u><br>0.774 | <u>LOQ/CL</u><br>0.577 | <u>DL</u><br>0.192                                                           | <u>Units</u><br>mg/L                                                      | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed  |
| Surrogates                                                                                                                                      |                                    |                        |                                                                              |                                                                           |                |                                   |                |
| 5a Androstane (surr)                                                                                                                            | 77.7                               | 50-150                 |                                                                              | %                                                                         | 1              |                                   | 04/04/24 01:59 |
| Batch Information                                                                                                                               |                                    |                        |                                                                              |                                                                           |                |                                   |                |
| Analytical Batch: XFC16808<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/04/24 07<br>Container ID: 1241160001-A       | 1:59                               |                        | Prep Batch:<br>Prep Method<br>Prep Date/Ti<br>Prep Initial W<br>Prep Extract | XXX49302<br>: SW3520C<br>me: 04/02/24 17<br>/t./Vol.: 260 mL<br>Vol: 1 mL | :00            |                                   |                |

| Results of MW-4                                                                                                    |                                                    |                        |                                                                                |                                                                          |                         |                                   |                                        |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------|-----------------------------------|----------------------------------------|
| Client Sample ID: <b>MW</b> -<br>Client Project ID: <b>Form</b><br>Lab Sample ID: 124116<br>Lab Project ID: 124116 | <b>4<br/>er Kiewit Fac-2050 Pege</b><br>;0001<br>0 | r                      | Collection Da<br>Received Da<br>Matrix: Water<br>Solids (%):<br>Location:      | ate: 03/26/24 13<br>te: 03/27/24 10<br>r (Surface, Eff.,                 | 3:00<br>):00<br>Ground) | )                                 |                                        |
| Results by Waters Depa                                                                                             | artment                                            |                        |                                                                                |                                                                          |                         |                                   |                                        |
| <u>Parameter</u><br>Nitrate-N                                                                                      | <u>Result</u> <u>Qual</u><br>0.200 U               | <u>LOQ/CL</u><br>0.200 | <u>DL</u><br>0.0700                                                            | <u>Units</u><br>mg/L                                                     | <u>DF</u><br>1          | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>03/27/24 18:18 |
| Sulfate                                                                                                            | 0.259                                              | 0.200                  | 0.0500                                                                         | mg/L                                                                     | 1                       |                                   | 03/27/24 18:18                         |
| Batch Information                                                                                                  |                                                    |                        |                                                                                |                                                                          |                         |                                   |                                        |
| Analytical Batch: WIC6<br>Analytical Method: EPA<br>Analyst: EBH<br>Analytical Date/Time: 0                        | 567<br>. 300.0<br>3/27/24 18:18                    |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | WXX15175<br>: METHOD<br>me: 03/27/24 13<br>/t./Vol.: 10 mL<br>Vol: 10 ml | :30                     |                                   |                                        |

| Results of MW-5                                                                                                                                         |                             |        |                                                                                                                                       |                                                                              |           |               |                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|---------------|----------------|--|
| Client Sample ID: <b>MW-5</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241160002<br>Lab Project ID: 1241160         |                             |        | Collection Date: 03/26/24 11:00<br>Received Date: 03/27/24 10:00<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                              |           |               |                |  |
| Results by Metals by ICP/N                                                                                                                              | 15                          |        |                                                                                                                                       |                                                                              |           | Allowable     |                |  |
| Parameter                                                                                                                                               | Result Qual                 | LOQ/CL | <u>DL</u>                                                                                                                             | Units                                                                        | <u>DF</u> | <u>Limits</u> | Date Analyzed  |  |
| Iron                                                                                                                                                    | 16000                       | 500    | 150                                                                                                                                   | ug/L                                                                         | 5         |               | 04/05/24 17:20 |  |
| Batch Information<br>Analytical Batch: MMS1225<br>Analytical Method: SW6020<br>Analyst: HGS<br>Analytical Date/Time: 04/05<br>Container ID: 1241160002- | 50<br>0B<br>5/24 17:20<br>D |        | Prep Batch:<br>Prep Methoc<br>Prep Date/T<br>Prep Initial V<br>Prep Extract                                                           | MXX36541<br>I: SW3010A<br>ime: 04/01/24 13:<br>Vt./Vol.: 25 mL<br>Vol: 25 mL | :49       |               |                |  |

| Results of MW-5                                                                                                                                 |                                      |                        |                                                                                                                                       |                                                                             |                |                                   |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|-----------------------------------|---------------------------------------|
| Client Sample ID: <b>MW-5</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241160002<br>Lab Project ID: 1241160 |                                      |                        | Collection Date: 03/26/24 11:00<br>Received Date: 03/27/24 10:00<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                             |                |                                   |                                       |
| Results by Semivolatile Organic                                                                                                                 | c Fuels                              |                        |                                                                                                                                       |                                                                             |                |                                   |                                       |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                       | <u>Result</u> <u>Qual</u><br>0.605 U | <u>LOQ/CL</u><br>0.605 | <u>DL</u><br>0.202                                                                                                                    | <u>Units</u><br>mg/L                                                        | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyze</u><br>04/04/24 02:12 |
| Surrogates                                                                                                                                      |                                      |                        |                                                                                                                                       |                                                                             |                |                                   |                                       |
| 5a Androstane (surr)                                                                                                                            | 78.7                                 | 50-150                 |                                                                                                                                       | %                                                                           | 1              |                                   | 04/04/24 02:12                        |
| Batch Information                                                                                                                               |                                      |                        |                                                                                                                                       |                                                                             |                |                                   |                                       |
| Analytical Batch: XFC16808<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/04/24 0<br>Container ID: 1241160002-A        | 2:12                                 |                        | Prep Batch:<br>Prep Methoc<br>Prep Date/T<br>Prep Initial V<br>Prep Extract                                                           | XXX49302<br>d: SW3520C<br>ime: 04/02/24 17<br>Vt./Vol.: 248 mL<br>Vol: 1 mL | :00            |                                   |                                       |

| Results of MW-5                                                                                                                                               |                                      |                        |                                                                                                                                          |                                                                           |                |                                   |                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|-----------------------------------|---------------------------------------|--|
| Client Sample ID: <b>MW-5</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241160002<br>Lab Project ID: 1241160               |                                      |                        | Collection Date: 03/26/24 11:00<br>Received Date: 03/27/24 10:00<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location:    |                                                                           |                |                                   |                                       |  |
| Results by Waters Departme                                                                                                                                    | nt                                   |                        |                                                                                                                                          |                                                                           |                |                                   |                                       |  |
| <u>Parameter</u><br>Nitrate-N                                                                                                                                 | <u>Result</u> <u>Qual</u><br>0.200 U | <u>LOQ/CL</u><br>0.200 | <u>DL</u><br>0.0700                                                                                                                      | <u>Units</u><br>mg/L                                                      | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyze</u><br>03/27/24 18:55 |  |
| Sulfate                                                                                                                                                       | 20.8                                 | 2.00                   | 0.500                                                                                                                                    | mg/L                                                                      | 10             |                                   | 03/27/24 19:14                        |  |
| Batch Information<br>Analytical Batch: WIC6567<br>Analytical Method: EPA 300.0<br>Analyst: EBH<br>Analytical Date/Time: 03/27/2<br>Container ID: 1241160002-C | )<br>14 18:55                        |                        | Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract                                                           | WXX15175<br>: METHOD<br>me: 03/27/24 13;<br>/t./Vol.: 10 mL<br>Vol: 10 mL | :30            |                                   |                                       |  |
| Analytical Batch: WIC6567<br>Analytical Method: EPA 300.0<br>Analyst: EBH<br>Analytical Date/Time: 03/27/24 19:14<br>Container ID: 1241160002-C               |                                      |                        | Prep Batch: WXX15175<br>Prep Method: METHOD<br>Prep Date/Time: 03/27/24 13:30<br>Prep Initial Wt./Vol.: 10 mL<br>Prep Extract Vol: 10 mL |                                                                           |                |                                   |                                       |  |

| Client Semple ID: EP 1                                                                                        |                                      |                        |                                                                               | ato: 03/26/24 1                                                           | 2.15                    |                                   |                                        |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------|-----------------------------------|----------------------------------------|
| Client Sample ID: EB-1<br>Client Project ID: Former Ki<br>Lab Sample ID: 124116000<br>Lab Project ID: 1241160 | iewit Fac-2050 Pege<br>3             |                        | Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:                       | nte: 03/26/24 10<br>nte: 03/27/24 10<br>r (Surface, Eff.,                 | 3:45<br>):00<br>Ground) | )                                 |                                        |
| Results by Semivolatile Org                                                                                   | janic Fuels                          |                        |                                                                               |                                                                           |                         |                                   |                                        |
| <u>Parameter</u><br>Diesel Range Organics                                                                     | <u>Result</u> <u>Qual</u><br>0.600 U | <u>LOQ/CL</u><br>0.600 | <u>DL</u><br>0.200                                                            | <u>Units</u><br>mg/L                                                      | <u>DF</u><br>1          | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzec</u><br>04/04/24 02:24 |
| Surrogates                                                                                                    |                                      |                        |                                                                               |                                                                           |                         |                                   |                                        |
| 5a Androstane (surr)                                                                                          | 80.5                                 | 50-150                 |                                                                               | %                                                                         | 1                       |                                   | 04/04/24 02:24                         |
| Batch Information                                                                                             |                                      |                        |                                                                               |                                                                           |                         |                                   |                                        |
| Analytical Batch: XFC16808<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/04/        | '24 02:24<br>A                       |                        | Prep Batch:<br>Prep Method<br>Prep Date/Til<br>Prep Initial W<br>Prep Extract | XXX49302<br>: SW3520C<br>me: 04/02/24 17<br>/t./Vol.: 250 mL<br>Vol: 1 mL | :00                     |                                   |                                        |

| Results of <b>MW-4</b>                                                                                                                          |             |      |                                                                          |                 |     |           |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|--------------------------------------------------------------------------|-----------------|-----|-----------|----------------|
| Client Sample ID: <b>MW-4</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241160004<br>Lab Project ID: 1241160 |             |      | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location: |                 |     |           |                |
| Results by Dissolved Metals by                                                                                                                  | ICP/MS      |      |                                                                          |                 |     |           |                |
|                                                                                                                                                 |             |      |                                                                          |                 | 55  | Allowable |                |
|                                                                                                                                                 | Result Qual |      | <u>DL</u>                                                                | <u>Units</u>    |     | Limits    | Date Analyzed  |
| Iron                                                                                                                                            | 102000      | 500  | 150                                                                      | ug/L            | 5   |           | 04/05/24 17:23 |
| Manganese                                                                                                                                       | 2410        | 2.00 | 0.620                                                                    | ug/L            | 5   |           | 04/05/24 17:23 |
| Batch Information                                                                                                                               |             |      |                                                                          |                 |     |           |                |
| Analytical Batch: MMS12250                                                                                                                      |             |      | Prep Batch:                                                              | MXX36541        |     |           |                |
| Analytical Method: SW6020B                                                                                                                      |             |      | Prep Method                                                              | : SW3010A       |     |           |                |
| Analyst: HGS                                                                                                                                    |             |      | Prep Date/Ti                                                             | me: 04/01/24 13 | :49 |           |                |
| Analytical Date/Time: 04/05/24 1                                                                                                                | 7:23        |      | Prep Initial W                                                           | /t./Vol.: 25 mL |     |           |                |
|                                                                                                                                                 |             |      |                                                                          |                 |     |           |                |

| -Results of <b>MW-5</b>                                                                                                           |                 |        |                                                                          |                                                          |                        |                            |                |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------------------------------------------------------------------------|----------------------------------------------------------|------------------------|----------------------------|----------------|
| Client Sample ID: <b>MW-5</b><br>Client Project ID: <b>Former Kiewi</b> t<br>Lab Sample ID: 1241160005<br>Lab Project ID: 1241160 | : Fac-2050 Pege | r      | Collection Da<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location: | ate: 03/26/24 1<br>ate: 03/27/24 10<br>r (Surface, Eff., | 1:00<br>):00<br>Ground | )                          |                |
| Results by <b>Dissolved Metals by</b>                                                                                             | ICP/MS          |        |                                                                          |                                                          |                        |                            |                |
| Parameter_                                                                                                                        | Result Qual     | LOQ/CL | <u>DL</u>                                                                | Units                                                    | DF                     | <u>Allowable</u><br>Limits | Date Analyze   |
| Iron                                                                                                                              | 17100           | 500    | 150                                                                      | ug/L                                                     | 5                      |                            | 04/05/24 17:25 |
| Manganese                                                                                                                         | 1560            | 2.00   | 0.620                                                                    | ug/L                                                     | 5                      |                            | 04/05/24 17:25 |
|                                                                                                                                   |                 |        |                                                                          |                                                          |                        |                            |                |
| Batch Information                                                                                                                 |                 |        |                                                                          |                                                          |                        |                            |                |
| Batch Information Analytical Batch: MMS12250                                                                                      |                 |        | Prep Batch:                                                              | MXX36541                                                 |                        |                            |                |
| Batch Information<br>Analytical Batch: MMS12250<br>Analytical Method: SW6020B                                                     |                 |        | Prep Batch:<br>Prep Method                                               | MXX36541<br>I: SW3010A                                   |                        |                            |                |
| Batch Information<br>Analytical Batch: MMS12250<br>Analytical Method: SW6020B<br>Analyst: HGS                                     |                 |        | Prep Batch:<br>Prep Method<br>Prep Date/Ti                               | MXX36541<br>I: SW3010A<br>me: 04/01/24 13                | :49                    |                            |                |
# SGS

| Blank ID: MB for HBN 1<br>Blank Lab ID: 1757996 | 874471 [MXX/36541     | ]      | Matrix:                  | Water (Surfac                      | e, Eff., Ground) |
|-------------------------------------------------|-----------------------|--------|--------------------------|------------------------------------|------------------|
| QC for Samples:<br>1241160001, 1241160002       | 2, 1241160004, 124116 | 0005   |                          |                                    |                  |
| Results by <b>SW6020B</b>                       |                       |        |                          |                                    |                  |
| Parameter                                       | Results               | LOQ/CL | DL                       | LOD                                | <u>Units</u>     |
| Iron                                            | 375U                  | 500    | 150                      | 375                                | ug/L             |
| Manganese                                       | 1.50U                 | 2.00   | 0.620                    | 1.50                               | ug/L             |
| atch Information                                |                       |        |                          |                                    |                  |
| Analytical Batch: MMS                           | \$12249               |        | Prep Batcl               | h: MXX36541                        |                  |
| Analytical Method: SW                           | /6020B                |        | Prep Meth                | od: SW3010A                        |                  |
|                                                 | 7800                  |        | Prep Date<br>Prep Initia | /Time: 4/1/2024<br>TWt /Vol : 25 m | 4 1:49:06PM      |
| Analyst: HGS                                    |                       |        |                          | 1 1 1 1 0 1 2 0 11                 |                  |

Print Date: 04/08/2024 4:58:11PM

| SGS |  |
|-----|--|
|     |  |

| Results by SW6020B         Blank Spike (ug/L)         Parameter       Spike       Result       Rec (%)       CL         ron       5000       5230       105       (87-118)         // Anganese       500       493       99       (87-115)         Batch Information       Prep Batch: MXX36541         Analytical Batch: MMS12249       Prep Method: SW3010A         Analytical Method: SW6020B       Prep Date/Time: 04/01/2024 13:49         Spike Information       Prep Date/Time: 04/01/2024 13:49         Analyst: HGS       Spike Init Wt./vol.: S000 ug/L Extract Vol: 25 mL | QC for Samples: 12411600    | 01, 124110 | 60002, 124    | 1160004, 1241  | Matrix: Water (Surface, Eff., Ground)<br>160005 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|---------------|----------------|-------------------------------------------------|
| Blank Spike (ug/L)       Spike       Result       Rec (%)       CL         ron       5000       5230       105       (87-118)         Manganese       500       493       99       (87-115)         Batch Information         Analytical Batch:       MMS12249         Analytical Method:       SW6020B       Prep Method:       SW3010A         Instrument:       P7 Agilent 7800       Prep Date/Time:       04/01/2024 13:49         Analyst:       HGS       Spike Init Wt./Vol.:       5000 ug/L       Extract Vol: 25 mL                                                        | Results by SW6020B          |            |               |                |                                                 |
| ParameterSpikeResultRec (%)CLIron50005230105(87-118)Manganese50049399(87-115)Batch InformationAnalytical Batch:MMS12249<br>Analytical Method:SW6020B<br>Instrument:Prep Batch:MX36541<br>Prep Date/Time:04/01/2024Instrument:P7 Agilent 7800<br>                                                                                                                                                                                                                                                                                                                                      |                             |            | Blank Spik    | e (ug/L)       |                                                 |
| ron50005230105(87-118)Manganese50049399(87-115)Batch InformationAnalytical Batch:MMS12249<br>Analytical Method:SW6020B<br>Instrument:Prep Batch:MXX36541<br>Prep Method:SW3010A<br>Prep Date/Time:Analyst:HGSHGSPrep Date/Time:04/01/2024 13:49<br>Spike Init Wt./Vol.:Spike Init Wt./Vol.:Stract Vol:                                                                                                                                                                                                                                                                                | Parameter                   | Spike      | <u>Result</u> | <u>Rec (%)</u> | CL                                              |
| Manganese 500 493 99 (87-115)<br>Batch Information<br>Analytical Batch: MMS12249<br>Analytical Method: SW6020B<br>Instrument: P7 Agilent 7800<br>Analyst: HGS Prep Date/Time: 04/01/2024 13:49<br>Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL<br>Dupe Init Wt./Vol.: Extract Vol: 25 mL                                                                                                                                                                                                                                                                                         | ron                         | 5000       | 5230          | 105            | (87-118)                                        |
| Batch Information       Prep Batch: MXX36541         Analytical Batch: SW6020B       Prep Method: SW3010A         Instrument: P7 Agilent 7800       Prep Date/Time: 04/01/2024 13:49         Analyst: HGS       Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:                                                                                                                                                                                                                                                                                    | langanese                   | 500        | 493           | 99             | (87-115)                                        |
| Analytical Batch: MMS12249Prep Batch: MXX36541Analytical Method: SW6020BPrep Method: SW3010AInstrument: P7 Agilent 7800Prep Date/Time: 04/01/2024 13:49Analyst: HGSSpike Init Wt./Vol.: 5000 ug/LExtract Vol: 25 mLDupe Init Wt./Vol.:Extract Vol:                                                                                                                                                                                                                                                                                                                                    | Batch Information           |            |               |                |                                                 |
| Analytical Method: SW6020B       Prep Method: SW3010A         Instrument: P7 Agilent 7800       Prep Date/Time: 04/01/2024 13:49         Analyst: HGS       Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL Dupe Init Wt./Vol.: Extract Vol:                                                                                                                                                                                                                                                                                                                                        | Analytical Batch: MMS12249  |            |               |                | Prep Batch: MXX36541                            |
| Instrument: P7 Agilent 7800<br>Analyst: HGS<br>Prep Date/Time: 04/01/2024 13:49<br>Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL<br>Dupe Init Wt./Vol.: Extract Vol:                                                                                                                                                                                                                                                                                                                                                                                                              | Analytical Method: SW6020B  |            |               |                | Prep Method: SW3010A                            |
| Analyst. <b>NGS</b> Spike Init Wt./Vol.: 5000 ug/E Extract Vol. 25 InE<br>Dupe Init Wt./Vol.: Extract Vol:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Instrument: P7 Agilent 7800 |            |               |                | Prep Date/Time: 04/01/2024 13:49                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst. HOS                |            |               |                | Dupe Init Wt./Vol.: Extract Vol. 20 me          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |            |               |                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |            |               |                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |            |               |                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |            |               |                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |            |               |                |                                                 |

Print Date: 04/08/2024 4:58:15PM

\_



#### Matrix Spike Summary

Original Sample ID: 1758010 MS Sample ID: 1758012 MS MSD Sample ID: 1758013 MSD Analysis Date: 04/05/2024 12:56 Analysis Date: 04/05/2024 12:58 Analysis Date: 04/05/2024 13:00 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241160001, 1241160002, 1241160004, 1241160005

|                                                                        |                              | Ma    | atrix Spike ( | ug/L)                | Spik                            | e (ug/L)                            |                            |            |                |        |
|------------------------------------------------------------------------|------------------------------|-------|---------------|----------------------|---------------------------------|-------------------------------------|----------------------------|------------|----------------|--------|
| Parameter                                                              | Sample                       | Spike | Result        | <u>Rec (%)</u>       | Spike                           | Result                              | <u>Rec (%)</u>             | <u>CL</u>  | <u>RPD (%)</u> | RPD CL |
| ron                                                                    | 8520                         | 5000  | 14200         | 00 113               | 5000                            | 13100                               | 93                         | 87-118     | 7.55           | (< 20) |
| Vanganese                                                              | 740                          | 500   | 1260          | 105                  | 500                             | 1240                                | 100                        | 87-115     | 2.06           | (< 20) |
| Batch Information                                                      | ]                            |       |               |                      |                                 |                                     |                            |            |                |        |
| Analytical Batch: MM<br>Analytical Method: SI<br>Instrument: P7 Agiler | IS12249<br>W6020B<br>nt 7800 |       |               | Prep<br>Prep<br>Prep | Batch: N<br>Method:<br>Date/Tim | /IXX36541<br>3010 H20<br>ne: 4/1/20 | ) Digest for<br>24 1:49:06 | Metals ICF | P-MS           |        |
| Analyst: HGS                                                           |                              |       |               | Prep                 | o Initial Wt                    | ./Vol.: 25.                         | 00mL                       |            |                |        |
| Analyst: HGS<br>Analytical Date/Time:                                  | 4/5/2024 12:58:00            | PM    |               | Prep<br>Prep         | ) Initial Wt<br>Extract \       | /Vol.: 25.<br>/ol: 25.00            | 00mL<br>mL                 |            |                |        |
| Analyst: HGS<br>Analytical Date/Time:                                  | 4/5/2024 12:58:00            | PM    |               | Prep<br>Prep         | o Initial Wt                    | :./Vol.: 25.<br>/ol: 25.00          | 00mL<br>mL                 |            |                |        |
| Analyst: HGS<br>Analytical Date/Time:                                  | 4/5/2024 12:58:00            | PM    |               | Prep<br>Prep         | o Initial Wt                    | :./Vol.: 25.<br>/ol: 25.00          | 00mL<br>mL                 |            |                |        |
| Analyst: HGS<br>Analytical Date/Time:                                  | 4/5/2024 12:58:00            | PM    |               | Prep<br>Prep         | o Initial Wt                    | :./Vol.: 25.00<br>/ol: 25.00        | 00mL<br>mL                 |            |                |        |
| Analyst: HGS<br>Analytical Date/Time:                                  | 4/5/2024 12:58:00            | PM    |               | Prep<br>Prep         | o Initial Wf                    | :./Vol.: 25.<br>/ol: 25.00          | 00mL<br>mL                 |            |                |        |
| Analyst: HGS<br>Analytical Date/Time:                                  | 4/5/2024 12:58:00            | PM    |               | Prep<br>Prep         | o Initial Wf                    | :./Vol.: 25.<br>/ol: 25.00          | 00mL<br>mL                 |            |                |        |

Print Date: 04/08/2024 4:58:17PM

### Mothod Blank

SGS

| Blank ID: MB for HBN 187<br>Blank Lab ID: 1757426 | 74020 [WXX/15175] |        | Matrix: \  | Water (Surface | e, Eff., Ground) |
|---------------------------------------------------|-------------------|--------|------------|----------------|------------------|
| QC for Samples:<br>1241160001, 1241160002         |                   |        |            |                |                  |
| Results by EPA 300.0                              |                   |        |            |                |                  |
| Parameter_                                        | Results           | LOQ/CL | DL         | LOD            | Units            |
| Nitrate-N                                         | 0.150U            | 0.200  | 0.0700     | 0.150          | mg/L             |
| Sulfate                                           | 0.150U            | 0.200  | 0.0500     | 0.150          | mg/L             |
| Batch Information                                 |                   |        |            |                |                  |
| Analytical Batch: WIC656                          | 67                |        | Prep Batch | : WXX15175     |                  |
| Analytical Method: EPA                            | 300.0             |        | Prep Metho | od: METHOD     |                  |
|                                                   | n compact IC flex |        | Prep Date/ | Time: 3/27/202 | 24 1:30:00PM     |
| Instrument: 930 Metrohm                           |                   |        |            |                |                  |

Print Date: 04/08/2024 4:58:18PM



| Blank Spike Summary                                                                               |                                 |               |                |                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------|---------------------------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank Spike ID: LCS for H<br>Blank Spike Lab ID: 17574<br>Date Analyzed: 03/27/20                 | BN 1241160  <br>427<br>24 15:13 | WXX1517       | 75]            |                                                                                                                                                                                            |
| QC for Samples: 12411                                                                             | 60001, 124116                   | 60002         |                | Matrix: Water (Surface, Eff., Ground)                                                                                                                                                      |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
| Results by EPA 300.0                                                                              |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 | Blank Spike   | e (mg/L)       |                                                                                                                                                                                            |
| Parameter                                                                                         | <u>Spike</u>                    | <u>Result</u> | <u>Rec (%)</u> | <u>CL</u>                                                                                                                                                                                  |
| Nitrate-N                                                                                         | 5                               | 4.90          | 98             | (90-110)                                                                                                                                                                                   |
| Sulfate                                                                                           | 5                               | 4.91          | 98             | (90-110)                                                                                                                                                                                   |
| Batch Information                                                                                 |                                 |               |                |                                                                                                                                                                                            |
| Analytical Batch: WIC6567<br>Analytical Method: EPA 30<br>Instrument: 930 Metrohm<br>Analyst: EBH | 0.0<br>compact IC fle           | ĸ             |                | Prep Batch: <b>WXX15175</b><br>Prep Method: <b>METHOD</b><br>Prep Date/Time: <b>03/27/2024 13:30</b><br>Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL<br>Dupe Init Wt./Vol.: Extract Vol: |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |
|                                                                                                   |                                 |               |                |                                                                                                                                                                                            |

Print Date: 04/08/2024 4:58:21PM



#### Matrix Spike Summary

Original Sample ID: 1757424 MS Sample ID: 1757429 MS MSD Sample ID: 1757430 MSD

QC for Samples: 1241160001, 1241160002

Analytical Date/Time: 3/27/2024 8:09:00PM

Analysis Date: 03/27/2024 19:51 Analysis Date: 03/27/2024 20:09 Analysis Date: 03/27/2024 20:28 Matrix: Water (Surface, Eff., Ground)

| Results by EPA 300.0       |                 | _            |              |                |              |             |                |            |                |        |
|----------------------------|-----------------|--------------|--------------|----------------|--------------|-------------|----------------|------------|----------------|--------|
|                            |                 | Ma           | trix Spike ( | mg/L)          | Spike        | e Duplicate | e (mg/L)       |            |                |        |
| Parameter                  | <u>Sample</u>   | <u>Spike</u> | Result       | <u>Rec (%)</u> | <u>Spike</u> | Result      | <u>Rec (%)</u> | CL         | <u>RPD (%)</u> | RPD CL |
| Nitrate-N                  | 0.404J          | 20.0         | 20.8         | 102            | 20.0         | 20.9        | 103            | 90-110     | 0.44           | (< 15) |
| Sulfate                    | 40.6            | 97           | 20.0         | 40.5           | 97           | 90-110      | 0.07           | (< 15 )    |                |        |
| Batch Information          |                 |              |              |                |              |             |                |            |                |        |
| Analytical Batch: WIC6567  | ,               |              |              | Prep           | Batch: \     | NXX15175    | 5              |            |                |        |
| Analytical Method: EPA 30  | 0.0             |              |              | Prep           | Method:      | EPA 300     | .0 Extraction  | n Waters/L | iquids         |        |
| Instrument: 930 Metrohm of | compact IC flex |              |              | Prep           | Date/Tin     | ne: 3/27/2  | 024 1:30:0     | 0PM        |                |        |
| Analyst: FBH               |                 |              |              | Prer           | hitial W     | t /Vol · 10 | 00ml           |            |                |        |

Prep Extract Vol: 10.00mL



#### Matrix Spike Summary

Original Sample ID: 1757425 MS Sample ID: 1757431 MS MSD Sample ID: Analysis Date: 03/27/2024 22:01 Analysis Date: 03/27/2024 22:19 Analysis Date: Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241160001, 1241160002

|                                                                                                                              |                                                      | Ma       | trix Spike ( | x Spike (mg/L) Spike Duplicate (m    |                                                                                                                                                                                |        |                |        |                |        |  |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|--------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------|----------------|--------|--|
| Parameter                                                                                                                    | <u>Sample</u>                                        | Spike    | Result       | <u>Rec (%)</u>                       | Spike                                                                                                                                                                          | Result | <u>Rec (%)</u> | CL     | <u>RPD (%)</u> | RPD CL |  |
| Nitrate-N                                                                                                                    | 0.300U                                               | 10.0     | 10.1         | 101                                  |                                                                                                                                                                                |        |                | 90-110 |                |        |  |
| Sulfate                                                                                                                      | 14.4                                                 | 10.0     | 24.1         | 97                                   |                                                                                                                                                                                |        |                | 90-110 |                |        |  |
| Analytical Batch: WIC650<br>Analytical Method: EPA 3<br>Instrument: 930 Metrohm<br>Analyst: EBH<br>Analytical Date/Time: 3/2 | 67<br>300.0<br>1 compact IC flex<br>27/2024_10:19:00 | (<br>OPM |              | Prep<br>Prep<br>Prep<br>Prep<br>Prep | Prep Batch: WXX15175<br>Prep Method: EPA 300.0 Extraction Waters/Liquids<br>Prep Date/Time: 3/27/2024 1:30:00PM<br>Prep Initial Wt./Vol.: 10.00mL<br>Prep Extract Vol: 10.00mL |        |                |        |                |        |  |

# SGS

| -Method Blank                                         |                |        |                          |                                      |                  |
|-------------------------------------------------------|----------------|--------|--------------------------|--------------------------------------|------------------|
| Blank ID: MB for HBN 1874564<br>Blank Lab ID: 1758245 | [XXX/49302]    |        | Matrix:                  | Water (Surface                       | e, Eff., Ground) |
| QC for Samples:<br>1241160001, 1241160002, 124116     | 60003          |        |                          |                                      |                  |
| Results by AK102                                      |                |        |                          |                                      |                  |
| Parameter                                             | <u>Results</u> | LOQ/CL | <u>DL</u>                | LOD                                  | <u>Units</u>     |
| Diesel Range Organics                                 | 0.450U         | 0.600  | 0.200                    | 0.450                                | mg/L             |
| Surrogates                                            |                |        |                          |                                      |                  |
| 5a Androstane (surr)                                  | 75.2           | 60-120 |                          | 0                                    | %                |
| 3atch Information                                     |                |        |                          |                                      |                  |
| Analytical Batch: XFC16808                            |                |        | Prep Batcl               | h: XXX49302                          |                  |
| Analytical Method: AK102                              |                |        | Prep Meth                | od: SW3520C                          |                  |
|                                                       |                |        |                          | A 1/3 //3/3/3/3/                     |                  |
| Instrument: Agilent 7890B F                           |                |        | Prep Date<br>Prep Initia | /Time: 4/2/2024<br>I Wt /Vol · 250 r | 5:00:00PM        |

Print Date: 04/08/2024 4:58:25PM



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241160 [XXX49302] Blank Spike Lab ID: 1758246 Date Analyzed: 04/03/2024 20:37 Spike Duplicate ID: LCSD for HBN 1241160 [XXX49302] Spike Duplicate Lab ID: 1758247 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241160001, 1241160002, 1241160003

| Results by AK102                                                     |                                                                      |                    | _                                            |                                                     |                                                    |                       |           |                |        |
|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------|-----------|----------------|--------|
|                                                                      |                                                                      | Blank Spike        | e (mg/L)                                     | S                                                   | pike Duplic                                        | cate (mg/L)           |           |                |        |
| <u>Parameter</u>                                                     | Spike                                                                | Result             | <u>Rec (%)</u>                               | Spike                                               | Result                                             | <u>Rec (%)</u>        | <u>CL</u> | <u>RPD (%)</u> | RPD CL |
| Diesel Range Organics                                                | 20                                                                   | 19.5               | 98                                           | 20                                                  | 18.2                                               | 91                    | (75-125)  | 7.20           | (< 20) |
| Surrogates                                                           |                                                                      |                    |                                              |                                                     |                                                    |                       |           |                |        |
| 5a Androstane (surr)                                                 | 0.4                                                                  |                    | 115                                          | 0.4                                                 |                                                    | 116                   | (60-120)  | 0.29           |        |
| Batch Information                                                    |                                                                      |                    |                                              |                                                     |                                                    |                       |           |                |        |
| Analytical Batch: <b>XFC16808</b><br>Analytical Method: <b>AK102</b> | Analytical Batch: <b>XFC16808</b><br>Analytical Method: <b>AK102</b> |                    |                                              |                                                     | o Batch: X<br>o Method:                            | XX49302<br>SW3520C    |           |                |        |
| Instrument: <b>Agilent 7890B F</b><br>Analyst: <b>BRP</b>            |                                                                      | Pre<br>Spil<br>Dup | o Date/Tim<br>ke Init Wt./\<br>ve Init Wt./\ | e: <b>04/02/202</b><br>/ol.: 0.4 mg<br>/ol.: 0.4 mg | 2 <b>4 17:00</b><br>//L Extract \<br>/L Extract \/ | /ol: 1 mL<br>ol: 1 mL |           |                |        |

Print Date: 04/08/2024 4:58:28PM



#### SGS North America Inc. CHAIN OF CUSTODY RECORD

### 1241160

365980 00

|          | CLIENT:                 | Nortech                                                       | · · ·                          |               |                           |             | ln:                     | struct<br>Omiss | ions:<br>sions         | Sect<br>may         | tions 1<br>delay t                | - 5 r<br>he or      | nust l<br>nset o | oe fille<br>f anal         | ed out.<br>ysis.                          |              |                 | Page of                                |
|----------|-------------------------|---------------------------------------------------------------|--------------------------------|---------------|---------------------------|-------------|-------------------------|-----------------|------------------------|---------------------|-----------------------------------|---------------------|------------------|----------------------------|-------------------------------------------|--------------|-----------------|----------------------------------------|
|          | CONTACT:                | William Watts                                                 | PHONE #: 907-452-              | 5688          |                           | Sec         | tion 3                  |                 |                        |                     |                                   | Pro                 | eservat          | ive                        |                                           |              |                 | 1 ago 7 - 5 7 -                        |
| ection 1 | PROJECT<br>NAME:        | Former Kiewit Facility -<br>2050 Peger Rd<br>O: William Watts | PROJECT/<br>PWSID/<br>PERMIT#: | am.watts@noi  | techengr.com              | #<br>C<br>O | Comp                    | HC              | HC                     | Nor                 | e HCI                             | Nor                 | e Non            | e Hur                      | 0 <sup>3</sup> HNO                        | <u>,</u>     | 4               |                                        |
| S        |                         |                                                               | Profile #:                     | C             | ,                         | N<br>T      | Grab                    |                 | 8                      |                     |                                   | 0.0                 | 0.0              | anese                      | 6020                                      |              | NO <sup>-</sup> | TE:<br>e following analyses            |
|          | INVOICE TO              | :<br>Nortech                                                  | QUOTE #:<br>P.O. #: 24-1008    |               |                           | A<br>I<br>N | MI<br>(Multi-<br>incre- | K102            | EPA 826<br>.ist)       | D SIM               | Ethane/<br>EPA                    | EPA 30              | EPA 30           | ind Mang<br>20             | iron and<br>e by EPA<br>red)              |              | and             | /or compound list:<br>EX, Metals, PFAS |
|          | RESERVED<br>for lab use | SAMPLE IDENTIFICA                                             | FION DATE<br>mm/dd/yy          | TIME<br>HH:MM | MATRIX/<br>MATRIX<br>CODE | E<br>R<br>S | mental)                 | DRO by A        | VOCs by F<br>(Custom L | PAHs by<br>EPA 8270 | Methane/F<br>Ethene by<br>RSK 175 | Nitrate by          | Sulfate by       | Total Iron a<br>by EPA 602 | Dissolved I<br>Manganese<br>(Field Filter |              | F               | REMARKS/LOC ID                         |
|          | TAD (4A                 | mw-4                                                          | 3/26/24                        | 1300          | Warek                     | 5           | GRAS                    | ×               |                        |                     |                                   | *                   | X                | ×                          | ×                                         |              |                 |                                        |
|          | TROGEN                  | mw-5                                                          | 3/26/24                        | 1100          | Water                     | .5          | GROG                    | X               |                        |                     |                                   | ×                   | $\times$         | $\star$                    | ×                                         |              | _               |                                        |
| 2        | 346                     | EB-1                                                          | 3/26/24                        | 1345          | Waren                     | 2           | Geno                    | X               |                        |                     |                                   |                     |                  |                            | <u> </u>                                  |              |                 |                                        |
| fo<br>I  |                         |                                                               |                                |               |                           |             |                         |                 |                        |                     |                                   |                     |                  |                            |                                           |              |                 |                                        |
| Sec      |                         |                                                               |                                |               |                           |             |                         |                 |                        |                     |                                   |                     |                  |                            |                                           |              | _               |                                        |
|          |                         |                                                               |                                |               |                           |             |                         |                 |                        |                     |                                   |                     |                  |                            |                                           |              |                 |                                        |
|          |                         | · · · · · · · · · · · · · · · · · · ·                         |                                |               |                           |             |                         |                 |                        |                     |                                   |                     |                  |                            |                                           |              |                 |                                        |
|          |                         |                                                               |                                |               |                           |             | -                       |                 |                        |                     |                                   |                     |                  |                            |                                           |              |                 |                                        |
|          |                         |                                                               |                                |               |                           |             |                         |                 |                        | <u> </u>            |                                   |                     |                  |                            |                                           |              | -               |                                        |
| $\vdash$ |                         | 3                                                             | Data                           | Time          | Received By:              | 1           |                         |                 | 7                      | Sec                 | tion 4                            | DC                  | D Proj           | ect? Ye                    | es No                                     | Data De      | liveral         | ble Requirements:                      |
|          | Relinquish              | еа ву: (1)                                                    | - 3/2 G/2                      | 1447          |                           |             |                         | <               | 7                      |                     |                                   | 1                   |                  |                            |                                           |              | ADE             | C Level II                             |
|          | Wille                   | an_L. Walls                                                   | - Data                         | Time          | Received Bi               | <u> </u>    |                         |                 |                        | Co                  | oler ID:                          | rnarou              | nd Tim           | e and/o                    | or Specia                                 | l Instructio | ns:             |                                        |
| 5        | Reiinquisne             | 30 By: (2)                                                    | > 3/1/10                       | 1545          | heederved by:             |             |                         |                 |                        | Stand               | ard TAT                           | / Nitra             | te Has           | Short H                    | lold                                      |              |                 |                                        |
| ct io    | Baliroutich             | ad By: (3)                                                    | Date                           | Time          | Received By:              |             | <                       |                 |                        | For V               | OCs: Re                           | port B <sup>-</sup> | TEX; 1,          | 2,4-TME                    | 3; 1,3,5-T                                | MB; and N    | aphtha          | lene                                   |
| es.      |                         | 50 Dy. (0)                                                    |                                |               |                           |             | $\supset$               |                 |                        | Ten                 | ip Blank                          | °C:                 | 1                | 2.6                        | ×                                         | Chain        | of Cus          | tody Seal: (Circle)                    |
|          | Relinquish              | ed By: (4)                                                    | Date                           | Time          | Received For              | Labora      | tory By:                |                 |                        |                     |                                   | or Ar               | nbient           | []                         |                                           | INTAC        | T BR            | OKEN ABSENT                            |
|          |                         |                                                               | 3/27/24                        | 10:00         | <u>I</u> ere              | my          | ۵×۰                     | سلا             |                        |                     | De                                | livery              | Viethod          | Hand                       | Delivery                                  | ] Comme      | rical D         | elivery [ ]                            |

http://www.sgs.com/terms-and-conditions



## 1241160

### SAMPLE RECEIPT FORM

|                                                      | Project  | Mana          | ger Cor     | npletion                                                    |
|------------------------------------------------------|----------|---------------|-------------|-------------------------------------------------------------|
| Was all necessary information recorded on the        | /Yes     | ) No          | N/A         |                                                             |
| COC upon receipt? (temperature, COC seals,           |          | 1             |             |                                                             |
| etc.?)                                               |          |               |             |                                                             |
| Was temperature between 0-6° C?                      | Xes)     | No            | N/A         | If "No", are the samples either exempt* or sampled <8       |
|                                                      |          |               |             | hours prior to receipt?                                     |
|                                                      |          | 1             |             |                                                             |
| Were all analyses received within holding time*?     | Yes      | No            | N/A         |                                                             |
|                                                      |          |               |             |                                                             |
| Was a method specified for each analysis,            | Yes      | ) No          | N/A         |                                                             |
| where applicable? If no, please note correct         |          | 1             |             | Specialized Dilmake                                         |
| methods.                                             |          |               |             | sprinter minute                                             |
| Are compound lists specified, where applicable?      | Yes      | No            | N/A         |                                                             |
| For project specific or special compound lists       | -        | 1             |             | En tal Dag                                                  |
| please note correct analysis code.                   |          |               |             | Je list on coc                                              |
| If rush was requested by the client, was the         | Yes      | No            | NA          | If "NO" what is the approved TAT2                           |
| requested TAT approved?                              |          |               | 52          |                                                             |
| If SEDD Deliverables are required, were              | Yes      | No            | N/A         | If "NO" contact client for information                      |
| Location ID's and an NPDL Number provided?           |          |               |             |                                                             |
|                                                      | Sampl    | e i ogi       | in Com      |                                                             |
| Do ID's on sample containers match COC?              | Wes      | No.           | ΙΝ/Δ        |                                                             |
|                                                      |          |               |             |                                                             |
| If provided on containers, do dates/times            | Yes      | No            |             | Note: If times differ at hr record data its to the          |
| collected match COC?                                 |          |               |             | login per COC                                               |
| Were all sample containers received in good          | ttes     | No.           |             |                                                             |
| condition?                                           | 100      | $\mathcal{V}$ | איי         |                                                             |
| Were proper containers                               | 1        | No            |             | Noto: If 200 8/6020 Tatal Materia                           |
| (type/mass/volume/preservative) received for all     | 🖑 )      |               |             | preserve and note HNO2 let here:                            |
| samples?                                             |          |               |             | If 200.8/6020 Dissolved Metals are received upprocerved lag |
| *See form F-083 "Sample Guide"                       |          |               |             | in for LABFILTER and do not preserve.                       |
|                                                      |          |               |             | For all non-metals methods, inform Project Manager,         |
|                                                      |          |               |             |                                                             |
| Were Trip Blanks (VOC, GBO, Low-Level Ho             | Voc      | No            | (NVA)       |                                                             |
| etc.) received with samples, where applicable*?      | 105      |               |             |                                                             |
| Were all VOA vials free of headspace >6mm?           | Vor      | No            | KNUA        |                                                             |
|                                                      | 163      |               |             |                                                             |
| Were all soil VOA samples received field             | Ves      | No            | <b>NIA</b>  |                                                             |
| extracted with Methanol?                             | 163      |               |             |                                                             |
| Did all soil VOA samples have an                     | Van      | Nie           | t wal       |                                                             |
| accompanying unpreserved container for %             | res      | INO           | (A/A)       |                                                             |
| solids?                                              |          |               |             |                                                             |
| If special handling is required were containers      | Voc      | No            | CAUTA       |                                                             |
| labelled appropriately? e.g. MI/ISM foreign          | res      | INO           | (IN/A)      |                                                             |
| soils, lab filter, Ref Lab, limited volume           |          |               | $  \rangle$ |                                                             |
| For Rush/Short Holding time, was the lab             | Van      | No            |             |                                                             |
| notified?                                            | res      | INO           | N/A         | Shark 11.12                                                 |
| For any question answered "NO" was the               | Vaa      |               |             | OTISET FOID                                                 |
| Project Manager notified?                            | res      | INO           | N/A         | PM Initials:                                                |
| Was Peer Review of sample                            | <u> </u> | Nie           |             |                                                             |
| numbering/labelling completed?                       |          | INO           | N/A         | Reviewer Initials:                                          |
| Additional Notes/Clarification where Applicable incl | uding r  | oolutie       |             |                                                             |
|                                                      | aung re  | solutio       | DI DI "NO   | answers when a change order is not attached:                |
|                                                      |          |               |             |                                                             |
|                                                      |          |               |             |                                                             |
|                                                      |          |               |             |                                                             |
|                                                      |          |               |             |                                                             |
|                                                      |          |               |             |                                                             |
|                                                      |          |               |             |                                                             |



#### **Sample Containers and Preservatives**

| <u>Container Id</u> | Preservative             | <u>Container</u><br>Condition | <u>Container Id</u> | <u>Preservative</u> | <u>Container</u><br><u>Condition</u> |
|---------------------|--------------------------|-------------------------------|---------------------|---------------------|--------------------------------------|
| 1241160001-A        | HCL to pH < 2            | ОК                            |                     |                     |                                      |
| 1241160001-B        | HCL to $pH < 2$          | OK                            |                     |                     |                                      |
| 1241160001-C        | No Preservative Required | OK                            |                     |                     |                                      |
| 1241160001-D        | HNO3 to pH < 2 $$        | OK                            |                     |                     |                                      |
| 1241160002-A        | HCL to pH < 2            | ОК                            |                     |                     |                                      |
| 1241160002-В        | HCL to pH < 2            | ОК                            |                     |                     |                                      |
| 1241160002-C        | No Preservative Required | OK                            |                     |                     |                                      |
| 1241160002-D        | HNO3 to pH $< 2$         | ОК                            |                     |                     |                                      |
| 1241160003-A        | HCL to pH < 2            | ОК                            |                     |                     |                                      |
| 1241160003-В        | HCL to pH < 2            | ОК                            |                     |                     |                                      |
| 1241160004-A        | HNO3 to pH < 2           | OK                            |                     |                     |                                      |
| 1241160005-A        | HNO3 to $pH < 2$         | ОК                            |                     |                     |                                      |

#### Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

BU - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.

### ADEC Contaminated Sites Program Laboratory Data Review Checklist

| Completed By:    | William<br>Watts<br>May 10,<br>2024 | CS Site<br>Name:  | Kiewit Pacific<br>Company, 2050<br>Peger Road,<br>Fairbanks,<br>Alaska | Lab Name:              | SGS North<br>America Inc. |
|------------------|-------------------------------------|-------------------|------------------------------------------------------------------------|------------------------|---------------------------|
| Title:           | Project<br>Manager                  | ADEC File<br>No.: | 102.38.164                                                             | Lab<br>Report<br>No.:  | 1241160                   |
| Consulting Firm: | <i>NORTECH</i> ,<br>Inc.            | Hazard ID<br>No.: | 25680                                                                  | Lab<br>Report<br>Date: | April 9,<br>2024          |

*Note:* Any N/A or No box checked must have an explanation in the comments box.

### 1. Laboratory

- a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses?
   Yes ⊠ No □ N/A □ Comments:
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

```
Yes \Box No \Box N/A \boxtimes
```

Comments: All sample analyses were performed by SGS North America Inc. in Anchorage, Alaska.

### 2. Chain of Custody (CoC)

- a. Is the CoC information completed, signed, and dated (including released/received by)?
   Yes ⊠ No □ N/A □
   Comments:
- b. Were the correct analyses requested?

Yes ⊠ No □ N/A □ Analyses requested: DRO by AK102 and Natural Attenuation Parameters: Nitrate and Sulfate by EPA Method 300.0 and Total and Dissolved Iron and Manganese by EPA Method 6020B. Comments:

#### 3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to  $6^{\circ}$  C)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Cooler temperature(s): 2.6° C

Sample temperature(s): Click or tap here to enter text. Comments:

- b. Is the sample preservation acceptable acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?
   Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- c. Is the sample condition documented broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?
   Yes ⊠ No □ N/A □
   Comments: The samples were received in good condition.
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
   Yes □ No □ N/A ⊠
   Comments: There were no discrepancies.
- e. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.

### 4. Case Narrative

- a. Is the case narrative present and understandable? Yes ⊠ No □ N/A □ Comments:
- b. Are there discrepancies, errors, or QC failures identified by the lab? Yes □ No ⊠ N/A □
   Comments: There were no discrepancies, errors, or QC failures.
- c. Were all the corrective actions documented?
   Yes □ No □ N/A ⊠
   Comments: No corrective actions were necessary.

d. What is the effect on data quality/usability according to the case narrative? Comments: There is no effect on data quality or usability according to the case

narrative.

#### 5. Sample Results

- Are the correct analyses performed/reported as requested on CoC?
   Yes ⊠ No □ N/A □
   Comments:
- b. Are all applicable holding times met? Yes ⊠ No □ N/A □ Comments:
- c. Are all soils reported on a dry weight basis?
   Yes □ No □ N/A ⊠
   Comments: There were no soil samples submitted with this work order.
- d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?
   Yes ⊠ No □ N/A □

Comments:

e. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

### 6. QC Samples

- a. Method Blank
  - Was one method blank reported per matrix, analysis, and 20 samples? Yes ⋈ No □ N/A □ Comments:
  - ii. Are all method blank results less than LOQ (or RL)?
     Yes ⊠ No □
     Comments:
  - iii. If above LoQ or RL, what samples are affected? Comments: No samples are affected. Method blank results are below LOQs.
  - iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: No samples are affected. No data flags are necessary.

v. Data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

#### b. Laboratory Control Sample/Duplicate (LCS/LCSD)

Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 Yes ⋈ No □ N/A □

Comments: Click or tap here to enter text.

- ii. Metals/Inorganics Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
   Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
   Yes ⊠ No □ N/A □

Comments:

- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
   Yes ⊠ No □ N/A ⊠
   Comments: Click or tap here to enter text.
- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: No samples are affected.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

#### vii. Is the data quality or usability affected?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$  Comments: Data quality and usability are not affected.

- c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
  - i. Organics Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\Box$  No  $\boxtimes$  N/A  $\Box$ Comments: MS/MSD samples were not required for this project, and the lab did not run a MS/MSD for DRO with the batch. According to the lab, when there is not sufficient volume for MS/MSD analyses an LCS/LCSD is run.

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
   Yes ⊠ No □ N/A □
   Comments:
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: No samples are affected.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: No samples are affected. No data flags are necessary.

- vii. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.
- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - i. Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
  Yes ⊠ No □ N/A □
  Comments: Click or tap here to enter text.
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
   Yes □ No □ N/A ⊠

Comments: Click or tap here to enter text.

iv. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

#### e. Trip Blanks

- Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes □ No ⊠ N/A □
   Comments: Samples for volatiles analysis were not submitted with this laboratory work order.
- ii. Are all results less than LoQ or RL?
   Yes □ No □ N/A ⊠
   Comments: Click or tap here to enter text.
- iii. If above LoQ or RL, what samples are affected? Comments: See 6.e.i above.
- iv. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.

### f. Field Duplicate

i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

Yes  $\Box$  No  $\boxtimes$  N/A  $\Box$ Comments: One field duplicate pair was required for the project and was submitted with a subsequent laboratory work order. A field duplicate was not submitted with this laboratory work order.

ii. Was the duplicate submitted blind to lab?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: See 6.f.i above.

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$$

Where  $R_1$  = Sample Concentration

R<sub>2</sub> = Field Duplicate Concentration

Is the data quality or usability affected? (Explain)

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: See 6.f.i above.

iv. Is the data quality or usability affected? (Explain)
 Yes □ No □ N/A ⊠
 Comments: See 6.f.i above.

#### g. Decontamination or Equipment Blanks

- Were decontamination or equipment blanks collected? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
- ii. Are all results less than LoQ or RL? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
- iii. If above LoQ or RL, specify what samples are affected. Comments: No samples are affected.
- iv. Are data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.

#### 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

#### a. Are they defined and appropriate?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ 

Comments: No additional flags or qualifiers are necessary for this work order.



### To: Nortech 2400 College Road Fairbanks, AK 99707 (907)452-5688 Report Number: 1241194 Client Project: Former Kiewit Fac-2050 Peger Dear William Watts, Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote. If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have. Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs. Sincerely, Stephen C. Ede SGS North America Inc. Stann C. Ede 2024.04.11 09:34:56 -08'00' Jennifer Dawkins Date Project Manager Jennifer.Dawkins@sgs.com

Laboratory Report of Analysis

Print Date: 04/10/2024 4:54:23PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group



#### **Case Narrative**

#### SGS Client: Nortech SGS Project: 1241194 Project Name/Site: Former Kiewit Fac-2050 Peger Project Contact: William Watts

Refer to sample receipt form for information on sample condition.

#### 1241124004(1757750MS) (1757754) MS

300.0 - Anions - MS recovery for sulfate is outside of QC criteria. Refer to LCS for accuracy requirements.

#### 1241124002(1757749MSD) (1757756) MSD

300.0 - Anions - MSD recovery for sulfate is outside of QC criteria. Refer to LCS for accuracy requirements.

#### LCS for HBN 1874669 [VXX/41057 (1758432) LCS

8260D - LCS recovery for 1,1,2,2-tetrachloroethane does not meet QC criteria. This analyte was not reported above LOQ in associated samples.

#### LCSD for HBN 1874669 [VXX/4105 (1758433) LCSD

8260D - LCSD recovery for 1,1,2,2-tetrachloroethane does not meet QC criteria. This analyte was not reported above LOQ in associated samples.

RSK-175 Methane/Ethane/Ethene were analyzed by SGS of Orlando, FL.

\*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/10/2024 4:54:25PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group



| Report of | Manual | Integrations |
|-----------|--------|--------------|
|-----------|--------|--------------|

| Laboratory ID   | <u>Client Sample ID</u>        | Analytical Batch | Analyte              | <u>Reason</u> |
|-----------------|--------------------------------|------------------|----------------------|---------------|
| 8270E SIM LV (P | PAH)                           |                  |                      |               |
| 1241194002      | MW-3                           | XMS14200         | Acenaphthene         | RP            |
| 1241194002      | MW-3                           | XMS14200         | Fluorene             | RP            |
| 1241194005      | MW-300                         | XMS14200         | Acenaphthene         | RP            |
| 1241194005      | MW-300                         | XMS14200         | Phenanthrene         | RP            |
| 1758197         | MB for HBN 1874554 [XXX/49299] | XMS14200         | Pyrene               | RP            |
| 1758198         | LCS for HBN 1874554 [XXX/49299 | XMS14200         | Anthracene           | RP            |
| 1758198         | LCS for HBN 1874554 [XXX/49299 | XMS14200         | Benzo[a]pyrene       | RP            |
| 1758198         | LCS for HBN 1874554 [XXX/49299 | XMS14200         | Benzo[b]Fluoranthene | BLC           |
| 1758198         | LCS for HBN 1874554 [XXX/49299 | XMS14200         | Benzo[k]fluoranthene | RP            |
| 1758198         | LCS for HBN 1874554 [XXX/49299 | XMS14200         | Chrysene             | RP            |
| 1758199         | LCSD for HBN 1874554 [XXX/4929 | XMS14200         | 2-Methylnaphthalene  | RP            |
| 1758199         | LCSD for HBN 1874554 [XXX/4929 | XMS14200         | Anthracene           | RP            |
| 1758199         | LCSD for HBN 1874554 [XXX/4929 | XMS14200         | Benzo[b]Fluoranthene | BLC           |
| 1758199         | LCSD for HBN 1874554 [XXX/4929 | XMS14200         | Benzo[k]fluoranthene | RP            |
| 1758199         | LCSD for HBN 1874554 [XXX/4929 | XMS14200         | Chrysene             | RP            |
| 1758426         | CVC for HBN 1874658 (XMS/14200 | XMS14200         | Benzo[a]pyrene       | RP            |
| 1758426         | CVC for HBN 1874658 (XMS/14200 | XMS14200         | Benzo[b]Fluoranthene | BLC           |
| 1758426         | CVC for HBN 1874658 (XMS/14200 | XMS14200         | Benzo[k]fluoranthene | RP            |
| 1758426         | CVC for HBN 1874658 (XMS/14200 | XMS14200         | Chrysene             | RP            |

Manual Integration Reason Code Descriptions

#### Code Description

- O Original Chromatogram
- M Modified Chromatogram
- SS Skimmed surrogate
- BLG Closed baseline gap
- RP Reassign peak name
- PIR Pattern integration required
- IT Included tail
- SP Split peak
- RSP Removed split peak
- FPS Forced peak start/stop
- BLC Baseline correction
- PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.



#### Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270E, 8270E-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

| *                        | The analyte has exceeded allowable regulatory or control limits.                    |
|--------------------------|-------------------------------------------------------------------------------------|
| !                        | Surrogate out of control limits.                                                    |
| В                        | Indicates the analyte is found in a blank associated with the sample.               |
| CCV/CVA/CVB              | Continuing Calibration Verification                                                 |
| CCCV/CVC/CVCA/CVCB       | Closing Continuing Calibration Verification                                         |
| CL                       | Control Limit                                                                       |
| DF                       | Analytical Dilution Factor                                                          |
| DL                       | Detection Limit (i.e., maximum method detection limit)                              |
| E                        | The analyte result is above the calibrated range.                                   |
| GT                       | Greater Than                                                                        |
| IB                       | Instrument Blank                                                                    |
| ICV                      | Initial Calibration Verification                                                    |
| J                        | The quantitation is an estimation.                                                  |
| LCS(D)                   | Laboratory Control Spike (Duplicate)                                                |
| LLQC/LLIQC               | Low Level Quantitation Check                                                        |
| LOD                      | Limit of Detection (i.e., 3/4 of the LOQ)                                           |
| LOQ                      | Limit of Quantitation (i.e., reporting or practical quantitation limit)             |
| LT                       | Less Than                                                                           |
| MB                       | Method Blank                                                                        |
| MS(D)                    | Matrix Spike (Duplicate)                                                            |
| ND                       | Indicates the analyte is not detected.                                              |
| RPD                      | Relative Percent Difference                                                         |
| TNTC                     | Too Numerous To Count                                                               |
| U                        | Indicates the analyte was analyzed for but not detected.                            |
| 0                        |                                                                                     |
| Sample summaries which i | nclude a result for "Total Solids" have already been adjusted for moisture content. |
| All DRO/RRO analyses are | Integrated per SOP.                                                                 |

Print Date: 04/10/2024 4:54:29PM

Note:



#### **Sample Summary** Client Sample ID Lab Sample ID Matrix **Collected Received** MW-2 1241194001 Water (Surface, Eff., Ground) 03/27/2024 03/28/2024 MW-3 Water (Surface, Eff., Ground) 1241194002 03/27/2024 03/28/2024 MW-4 1241194003 03/26/2024 03/28/2024 Water (Surface, Eff., Ground) MW-5 1241194004 03/26/2024 03/28/2024 Water (Surface, Eff., Ground) MW-300 Water (Surface, Eff., Ground) 1241194005 03/27/2024 03/28/2024 EB-1 1241194006 03/26/2024 03/28/2024 Water (Surface, Eff., Ground) TB-2 1241194007 03/26/2024 03/28/2024 Water (Surface, Eff., Ground) MW-2 1241194008 03/27/2024 03/28/2024 Water (Surface, Eff., Ground) MW-3 1241194009 03/27/2024 03/28/2024 Water (Surface, Eff., Ground)

| Method Description                       |
|------------------------------------------|
| 8270 PAH SIM GC/MS LV                    |
| Dissolved Metals by ICP-MS               |
| DRO Low Volume (W)                       |
| Ion Chromatographic Analysis             |
| Ion Chromatographic Analysis (W)         |
| Metals by ICP-MS                         |
| Volatile Organic Compounds(W)Custom List |
|                                          |



#### **Detectable Results Summary** Client Sample ID: MW-2 Lab Sample ID: 1241194001 Parameter Result Units 50900 ug/L Metals by ICP/MS Iron Manganese 2980 ug/L **Diesel Range Organics** 3.16 Semivolatile Organic Fuels mg/L 1,2,4-Trimethylbenzene 135 ug/L Volatile GC/MS 1,3,5-Trimethylbenzene 55.7 ug/L 10.8 Ethylbenzene ug/L Naphthalene 26.7 ug/L o-Xylene 43.9 ug/L P & M -Xylene 72.0 ug/L Xylenes (total) 116 ug/L Client Sample ID: MW-3 Lab Sample ID: 1241194002 Parameter Result Units 57800 Metals by ICP/MS ug/L Iron Manganese 2770 ug/L **Polynuclear Aromatics GC/MS** 1-Methylnaphthalene 0.289 ug/L 2-Methylnaphthalene 0.183 ug/L Acenaphthene 0.322 ug/L 0.225 Fluorene ug/L 0.483 Naphthalene ug/L **Diesel Range Organics** 7.11 Semivolatile Organic Fuels mg/L Volatile GC/MS 1,2,4-Trimethylbenzene 7.26 ug/L 1,3,5-Trimethylbenzene 3.13 ug/L Benzene 1.19 ug/L Naphthalene 4.72 ug/L o-Xylene ug/L 1.41 P & M -Xylene 2.37 ug/L Toluene 1.54 ug/L Xylenes (total) 3.78 ug/L Waters Department Sulfate 3.39 mg/L Client Sample ID: MW-4 Lab Sample ID: 1241194003 Parameter Result Units Volatile GC/MS Benzene 1.02 ug/L

Print Date: 04/10/2024 4:54:32PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com



. -

.

.....

~...

. .

#### **Detectable Results Summary**

| Client Sample ID: MW-300    |                        |               |              |
|-----------------------------|------------------------|---------------|--------------|
| Lab Sample ID: 1241194005   | Parameter              | Result        | <u>Units</u> |
| Polynuclear Aromatics GC/MS | 1-Methylnaphthalene    | 0.556         | ug/L         |
|                             | 2-Methylnaphthalene    | 0.457         | ug/L         |
|                             | Acenaphthene           | 0.276         | ug/L         |
|                             | Fluorene               | 0.322         | ug/L         |
|                             | Naphthalene            | 0.754         | ug/L         |
| Semivolatile Organic Fuels  | Diesel Range Organics  | 3.10          | mg/L         |
| Volatile GC/MS              | 1,2,4-Trimethylbenzene | 5.70          | ug/L         |
|                             | 1,3,5-Trimethylbenzene | 2.50          | ug/L         |
|                             | Benzene                | 1.20          | ug/L         |
|                             | Naphthalene            | 3.42          | ug/L         |
|                             | o-Xylene               | 1.27          | ug/L         |
|                             | P & M -Xylene          | 2.19          | ug/L         |
|                             | Toluene                | 1.53          | ug/L         |
|                             | Xylenes (total)        | 3.46          | ug/L         |
| Client Sample ID: MW-2      |                        |               |              |
| Lab Sample ID: 1241194008   | Parameter              | <u>Result</u> | <u>Units</u> |
| Dissolved Metals by ICP/MS  | Iron                   | 49100         | ug/L         |
| -                           | Manganese              | 2880          | ug/L         |
| Client Sample ID: MW-3      |                        |               |              |
| Lab Sample ID: 1241194009   | Parameter              | Result        | <u>Units</u> |
| Dissolved Metals by ICP/MS  | Iron                   | 44900         | ug/L         |
| -                           | Manganese              | 2550          | ug/L         |

Print Date: 04/10/2024 4:54:32PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

| Results of <b>MW-2</b>                                                                                                                       |                                    |                                                                                                                                       |                                                                             |                                                                               |                |                                   |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|-----------------------------------|---------------------------------|
| Client Sample ID: <b>MW-2</b><br>Client Project ID: <b>Former Kiewit</b><br>Lab Sample ID: 1241194001<br>Lab Project ID: 1241194             |                                    | Collection Date: 03/27/24 12:20<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                             |                                                                               | )              |                                   |                                 |
| Results by <b>Metals by ICP/MS</b>                                                                                                           |                                    |                                                                                                                                       |                                                                             |                                                                               |                |                                   |                                 |
| <u>Parameter</u><br>Iron                                                                                                                     | <u>Result</u> <u>Qual</u><br>50900 | <u>LOQ/CL</u><br>500                                                                                                                  | <u>DL</u><br>150                                                            | <u>Units</u><br>ug/L                                                          | <u>DF</u><br>5 | <u>Allowable</u><br><u>Limits</u> | Date Analyzec<br>04/05/24 17:28 |
| Manganese                                                                                                                                    | 2980                               | 4.00                                                                                                                                  | 1.24                                                                        | ug/L                                                                          | 10             |                                   | 04/08/24 15:17                  |
| Batch Information                                                                                                                            |                                    |                                                                                                                                       |                                                                             |                                                                               |                |                                   |                                 |
| Analytical Batch: MMS12251<br>Analytical Method: SW6020B<br>Analyst: HGS<br>Analytical Date/Time: 04/08/24 1<br>Container ID: 1241194001-G   | 5:17                               |                                                                                                                                       | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | MXX36541<br>d: SW3010A<br>ime: 04/01/24 13<br>Vt./Vol.: 25 mL<br>t Vol: 25 mL | :49            |                                   |                                 |
| Analytical Batch: MMS12250<br>Analytical Method: SW6020B<br>Analyst: HGS<br>Analytical Date/Time: 04/05/24 1:<br>Container ID: 12/41194001 G | 7:28                               |                                                                                                                                       | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extrad  | MXX36541<br>d: SW3010A<br>ime: 04/01/24 13<br>Vt./Vol.: 25 mL<br>t Vol: 25 ml | :49            |                                   |                                 |

| Results of MW-2                                                                                                                                             |                                   |                        |                                                                                                                                       |                                                                                 |                |                                   |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|-----------------------------------|---------------------------------|
| Client Sample ID: <b>MW-2</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241194001<br>Lab Project ID: 1241194             |                                   | r                      | Collection Date: 03/27/24 12:20<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                                 |                |                                   |                                 |
| Results by Semivolatile Organ                                                                                                                               | nic Fuels                         |                        |                                                                                                                                       |                                                                                 |                |                                   |                                 |
| <u>Parameter</u><br>Diesel Range Organics                                                                                                                   | <u>Result</u> <u>Qual</u><br>3.16 | <u>LOQ/CL</u><br>0.591 | <u>DL</u><br>0.197                                                                                                                    | <u>Units</u><br>mg/L                                                            | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed<br>04/04/24 04:16 |
| <b>Surrogates</b><br>5a Androstane (surr)                                                                                                                   | 81.7                              | 50-150                 |                                                                                                                                       | %                                                                               | 1              |                                   | 04/04/24 04:16                  |
| Batch Information<br>Analytical Batch: XFC16808<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/04/24<br>Container ID: 1241194001-D | ↓ 04:16                           |                        | Prep Batch:<br>Prep Methor<br>Prep Date/T<br>Prep Initial V<br>Prep Extract                                                           | XXX49303<br>d: SW3520C<br>'ime: 04/02/24 17:<br>Nt./Vol.: 254 mL<br>t Vol: 1 mL | 30             |                                   |                                 |

## SGS

#### Results of MW-2

Client Sample ID: **MW-2** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194001 Lab Project ID: 1241194 Collection Date: 03/27/24 12:20 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                           |        |           |              |    | Allowable |                |
|------------------------------|---------------------------|--------|-----------|--------------|----|-----------|----------------|
| Parameter                    | <u>Result</u> <u>Qual</u> | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | Limits    | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 135                       | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:07 |
| 1,3,5-Trimethylbenzene       | 55.7                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/03/24 18:58 |
| Benzene                      | 0.400 U                   | 0.400  | 0.120     | ug/L         | 1  |           | 04/01/24 15:07 |
| Ethylbenzene                 | 10.8                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:07 |
| Naphthalene                  | 26.7                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:07 |
| o-Xylene                     | 43.9                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:07 |
| P & M -Xylene                | 72.0                      | 2.00   | 0.620     | ug/L         | 1  |           | 04/01/24 15:07 |
| Toluene                      | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:07 |
| Xylenes (total)              | 116                       | 3.00   | 1.00      | ug/L         | 1  |           | 04/01/24 15:07 |
| Surrogates                   |                           |        |           |              |    |           |                |
| 1,2-Dichloroethane-D4 (surr) | 102                       | 81-118 |           | %            | 1  |           | 04/01/24 15:07 |
| 4-Bromofluorobenzene (surr)  | 111                       | 85-114 |           | %            | 1  |           | 04/01/24 15:07 |
| Toluene-d8 (surr)            | 101                       | 89-112 |           | %            | 1  |           | 04/01/24 15:07 |
|                              |                           |        |           |              |    |           |                |

#### **Batch Information**

Analytical Batch: VMS23167 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/01/24 15:07 Container ID: 1241194001-A

Analytical Batch: VMS23173 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/03/24 18:58 Container ID: 1241194001-B Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 04/01/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX41057 Prep Method: SW5030B Prep Date/Time: 04/03/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

| SGS                                                                                                                                                            |                                                 |                                 |                                                                                                                                       |                                                                                |                     |                                   |                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|-----------------------------------|----------------------------------------------------------|
| Client Sample ID: MW-2<br>Client Project ID: Former Kiewit Fac-2050 Peger<br>Lab Sample ID: 1241194001<br>Lab Project ID: 1241194                              |                                                 | r                               | Collection Date: 03/27/24 12:20<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                                |                     |                                   |                                                          |
| Results by Waters Departmen                                                                                                                                    | nt                                              |                                 |                                                                                                                                       |                                                                                |                     |                                   |                                                          |
| <u>Parameter</u><br>Nitrate-N<br>Sulfate                                                                                                                       | <u>Result</u> <u>Qual</u><br>0.200 U<br>0.200 U | <u>LOQ/CL</u><br>0.200<br>0.200 | <u>DL</u><br>0.0700<br>0.0500                                                                                                         | <u>Units</u><br>mg/L<br>mg/L                                                   | <u>DF</u><br>1<br>1 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>03/28/24 14:43<br>03/28/24 14:43 |
| Batch Information<br>Analytical Batch: WIC6568<br>Analytical Method: EPA 300.0<br>Analyst: EBH<br>Analytical Date/Time: 03/28/24<br>Container ID: 1241194001-F | 4 14:43                                         |                                 | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract                                                           | WXX15179<br>d: METHOD<br>iime: 03/28/24 12:<br>Nt./Vol.: 10 mL<br>t Vol: 10 mL | :00                 |                                   |                                                          |

| - Results of MW-3                                                                                                                               |                                    |                      |                                                                             |                                                                               |                |                                   |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|-----------------------------------|----------------|
| Client Sample ID: <b>MW-3</b><br>Client Project ID: <b>Former Kiewit Fac-2050 Peger</b><br>Lab Sample ID: 1241194002<br>Lab Project ID: 1241194 |                                    |                      | Collection D<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:     | ate: 03/27/24 09<br>ate: 03/28/24 09<br>er (Surface, Eff.,                    | I              |                                   |                |
| - Results by Metals by ICP/MS                                                                                                                   |                                    |                      |                                                                             |                                                                               |                |                                   |                |
| <u>Parameter</u><br>Iron                                                                                                                        | <u>Result</u> <u>Qual</u><br>57800 | <u>LOQ/CL</u><br>500 | <u>DL</u><br>150                                                            | <u>Units</u><br>ug/L                                                          | <u>DF</u><br>5 | <u>Allowable</u><br><u>Limits</u> | Date Analyzed  |
| Manganese                                                                                                                                       | 2770                               | 4.00                 | 1.24                                                                        | ug/L                                                                          | 10             |                                   | 04/08/24 15:20 |
| Batch Information                                                                                                                               |                                    |                      |                                                                             |                                                                               |                |                                   |                |
| Analytical Batch: MMS12251<br>Analytical Method: SW6020B<br>Analyst: HGS<br>Analytical Date/Time: 04/08/24<br>Container ID: 1241194002-I        | 15:20                              |                      | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | MXX36541<br>d: SW3010A<br>ime: 04/01/24 13<br>Vt./Vol.: 25 mL<br>t Vol: 25 mL | :49            |                                   |                |
| Analytical Batch: MMS12250<br>Analytical Method: SW6020B<br>Analyst: HGS<br>Analytical Date/Time: 04/05/24<br>Container ID: 1241194002-I        | 17:30                              |                      | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | MXX36541<br>d: SW3010A<br>ime: 04/01/24 13<br>Vt./Vol.: 25 mL<br>t Vol: 25 mL | 49             |                                   |                |

#### Results of MW-3

Client Sample ID: **MW-3** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194002 Lab Project ID: 1241194 Collection Date: 03/27/24 09:50 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Polynuclear Aromatics GC/MS

|                                |                           |        |           |              |    | Allowable |                |
|--------------------------------|---------------------------|--------|-----------|--------------|----|-----------|----------------|
| <u>Parameter</u>               | <u>Result</u> <u>Qual</u> | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | Limits    | Date Analyzed  |
| 1-Methylnaphthalene            | 0.289                     | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| 2-Methylnaphthalene            | 0.183                     | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Acenaphthene                   | 0.322                     | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Acenaphthylene                 | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Anthracene                     | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Benzo(a)Anthracene             | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Benzo[a]pyrene                 | 0.0192 U                  | 0.0192 | 0.00596   | ug/L         | 1  |           | 04/03/24 21:11 |
| Benzo[b]Fluoranthene           | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Benzo[g,h,i]perylene           | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Benzo[k]fluoranthene           | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Chrysene                       | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Dibenzo[a,h]anthracene         | 0.0192 U                  | 0.0192 | 0.00596   | ug/L         | 1  |           | 04/03/24 21:11 |
| Fluoranthene                   | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Fluorene                       | 0.225                     | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Indeno[1,2,3-c,d] pyrene       | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Naphthalene                    | 0.483                     | 0.0962 | 0.0298    | ug/L         | 1  |           | 04/03/24 21:11 |
| Phenanthrene                   | 0.0962 U                  | 0.0962 | 0.0298    | ug/L         | 1  |           | 04/03/24 21:11 |
| Pyrene                         | 0.0481 U                  | 0.0481 | 0.0144    | ug/L         | 1  |           | 04/03/24 21:11 |
| Surrogates                     |                           |        |           |              |    |           |                |
| 2-Methylnaphthalene-d10 (surr) | 78.6                      | 38-100 |           | %            | 1  |           | 04/03/24 21:11 |
| Fluoranthene-d10 (surr)        | 71.6                      | 30-111 |           | %            | 1  |           | 04/03/24 21:11 |
|                                |                           |        |           |              |    |           |                |

#### **Batch Information**

Analytical Batch: XMS14200 Analytical Method: 8270E SIM LV (PAH) Analyst: HMW Analytical Date/Time: 04/03/24 21:11 Container ID: 1241194002-F Prep Batch: XXX49299 Prep Method: SW3535A Prep Date/Time: 04/02/24 14:00 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

| SGS                                                                                                                                    |                            |                                                                                                                                           |                    |                      |                |                                   |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|----------------|-----------------------------------|----------------------------------------|
| Results of MW-3                                                                                                                        |                            | _                                                                                                                                         | Collection D       | ata: 02/27/24.00     |                |                                   |                                        |
| Client Sample ID: MW-3<br>Client Project ID: Former Kie<br>Lab Sample ID: 1241194002<br>Lab Project ID: 1241194                        | r                          | Collection Date: 03/27/24 09:50<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location:     |                    |                      |                |                                   |                                        |
| Results by Semivolatile Orga                                                                                                           | nic Fuels                  |                                                                                                                                           |                    |                      |                |                                   |                                        |
| <u>Parameter</u><br>Diesel Range Organics                                                                                              | <u>Result</u> Qual<br>7.11 | <u>LOQ/CL</u><br>0.602                                                                                                                    | <u>DL</u><br>0.201 | <u>Units</u><br>mg/L | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>04/04/24 04:28 |
| Surrogates                                                                                                                             |                            |                                                                                                                                           |                    |                      |                |                                   |                                        |
| 5a Androstane (surr)                                                                                                                   | 96                         | 50-150                                                                                                                                    |                    | %                    | 1              |                                   | 04/04/24 04:28                         |
| Batch Information                                                                                                                      |                            |                                                                                                                                           |                    |                      |                |                                   |                                        |
| Analytical Batch: XFC16808<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/04/24<br>Container ID: 1241194002-D |                            | Prep Batch: XXX49303<br>Prep Method: SW3520C<br>Prep Date/Time: 04/02/24 17:30<br>Prep Initial Wt./Vol.: 249 mL<br>Prep Extract Vol: 1 mL |                    |                      |                |                                   |                                        |

Print Date: 04/10/2024 4:54:34PM

## SGS

#### Results of MW-3

Client Sample ID: **MW-3** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194002 Lab Project ID: 1241194 Collection Date: 03/27/24 09:50 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                    |        |           |              |    | Allowable |                |
|------------------------------|--------------------|--------|-----------|--------------|----|-----------|----------------|
| <u>Parameter</u>             | <u>Result</u> Qual | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | Limits    | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 7.26               | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:22 |
| 1,3,5-Trimethylbenzene       | 3.13               | 1.00   | 0.310     | ug/L         | 1  |           | 04/03/24 19:13 |
| Benzene                      | 1.19               | 0.400  | 0.120     | ug/L         | 1  |           | 04/01/24 15:22 |
| Ethylbenzene                 | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:22 |
| Naphthalene                  | 4.72               | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:22 |
| o-Xylene                     | 1.41               | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:22 |
| P & M -Xylene                | 2.37               | 2.00   | 0.620     | ug/L         | 1  |           | 04/01/24 15:22 |
| Toluene                      | 1.54               | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:22 |
| Xylenes (total)              | 3.78               | 3.00   | 1.00      | ug/L         | 1  |           | 04/01/24 15:22 |
| Surrogates                   |                    |        |           |              |    |           |                |
| 1,2-Dichloroethane-D4 (surr) | 101                | 81-118 |           | %            | 1  |           | 04/01/24 15:22 |
| 4-Bromofluorobenzene (surr)  | 106                | 85-114 |           | %            | 1  |           | 04/01/24 15:22 |
| Toluene-d8 (surr)            | 101                | 89-112 |           | %            | 1  |           | 04/01/24 15:22 |
|                              |                    |        |           |              |    |           |                |

#### **Batch Information**

Analytical Batch: VMS23167 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/01/24 15:22 Container ID: 1241194002-A

Analytical Batch: VMS23173 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/03/24 19:13 Container ID: 1241194002-B Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 04/01/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX41057 Prep Method: SW5030B Prep Date/Time: 04/03/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

| Results of MW-3                                                                                                                                                      |                                      |                                                                                                                                       |                                                                                          |                                                                                  |                |                                   |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------|-----------------------------------|----------------------------------------|
| Client Sample ID: <b>MW-3</b><br>Client Project ID: <b>Former K</b><br>Lab Sample ID: 124119400<br>Lab Project ID: 1241194                                           | r                                    | Collection Date: 03/27/24 09:50<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                                          |                                                                                  |                |                                   |                                        |
| Results by Waters Departm                                                                                                                                            | lent                                 |                                                                                                                                       |                                                                                          |                                                                                  |                |                                   |                                        |
| <u>Parameter</u><br>Nitrate-N                                                                                                                                        | <u>Result</u> <u>Qual</u><br>0.200 U | <u>LOQ/CL</u><br>0.200                                                                                                                | <u>DL</u><br>0.0700                                                                      | <u>Units</u><br>mg/L                                                             | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>03/28/24 15:01 |
| Sulfate<br>Batch Information<br>Analytical Batch: WIC6568<br>Analytical Method: EPA 300<br>Analyst: EBH<br>Analytical Date/Time: 03/28<br>Container ID: 1241194002-I | 3.39<br>0.0<br>/24 15:01<br>H        | 0.200                                                                                                                                 | 0.0500<br>Prep Batch:<br>Prep Method:<br>Prep Date/Tir<br>Prep Initial W<br>Prep Extract | mg/L<br>WXX15179<br>: METHOD<br>ne: 03/28/24 12<br>/t./Vol.: 10 mL<br>Vol: 10 mL | 1              |                                   | 03/28/24 15:01                         |

## SGS

#### Results of MW-4

Client Sample ID: **MW-4** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194003 Lab Project ID: 1241194 Collection Date: 03/26/24 13:00 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                    |        |           |              |    | Allowable     |                |
|------------------------------|--------------------|--------|-----------|--------------|----|---------------|----------------|
| <u>Parameter</u>             | <u>Result</u> Qual | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | <u>Limits</u> | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:07 |
| 1,3,5-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:07 |
| Benzene                      | 1.02               | 0.400  | 0.120     | ug/L         | 1  |               | 04/01/24 16:07 |
| Ethylbenzene                 | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:07 |
| Naphthalene                  | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:07 |
| o-Xylene                     | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:07 |
| P & M -Xylene                | 2.00 U             | 2.00   | 0.620     | ug/L         | 1  |               | 04/01/24 16:07 |
| Toluene                      | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:07 |
| Xylenes (total)              | 3.00 U             | 3.00   | 1.00      | ug/L         | 1  |               | 04/01/24 16:07 |
| Surrogates                   |                    |        |           |              |    |               |                |
| 1,2-Dichloroethane-D4 (surr) | 108                | 81-118 |           | %            | 1  |               | 04/01/24 16:07 |
| 4-Bromofluorobenzene (surr)  | 100                | 85-114 |           | %            | 1  |               | 04/01/24 16:07 |
| Toluene-d8 (surr)            | 99.3               | 89-112 |           | %            | 1  |               | 04/01/24 16:07 |
|                              |                    |        |           |              |    |               |                |

#### Batch Information

Analytical Batch: VMS23167 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/01/24 16:07 Container ID: 1241194003-A Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 04/01/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL
#### Results of MW-5

Client Sample ID: **MW-5** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194004 Lab Project ID: 1241194 Collection Date: 03/26/24 11:00 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                    |        |           |              |    | Allowable     |                |
|------------------------------|--------------------|--------|-----------|--------------|----|---------------|----------------|
| <u>Parameter</u>             | <u>Result</u> Qual | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | <u>Limits</u> | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:22 |
| 1,3,5-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:22 |
| Benzene                      | 0.400 U            | 0.400  | 0.120     | ug/L         | 1  |               | 04/01/24 16:22 |
| Ethylbenzene                 | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:22 |
| Naphthalene                  | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:22 |
| o-Xylene                     | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:22 |
| P & M -Xylene                | 2.00 U             | 2.00   | 0.620     | ug/L         | 1  |               | 04/01/24 16:22 |
| Toluene                      | 1.00 U             | 1.00   | 0.310     | ug/L         | 1  |               | 04/01/24 16:22 |
| Xylenes (total)              | 3.00 U             | 3.00   | 1.00      | ug/L         | 1  |               | 04/01/24 16:22 |
| Surrogates                   |                    |        |           |              |    |               |                |
| 1,2-Dichloroethane-D4 (surr) | 103                | 81-118 |           | %            | 1  |               | 04/01/24 16:22 |
| 4-Bromofluorobenzene (surr)  | 102                | 85-114 |           | %            | 1  |               | 04/01/24 16:22 |
| Toluene-d8 (surr)            | 100                | 89-112 |           | %            | 1  |               | 04/01/24 16:22 |
|                              |                    |        |           |              |    |               |                |

#### Batch Information

Analytical Batch: VMS23167 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/01/24 16:22 Container ID: 1241194004-A Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 04/01/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of MW-300

Client Sample ID: **MW-300** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194005 Lab Project ID: 1241194 Collection Date: 03/27/24 10:00 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Polynuclear Aromatics GC/MS

|                                |                           |        |           |              |           | Allowable |                |
|--------------------------------|---------------------------|--------|-----------|--------------|-----------|-----------|----------------|
| <u>Parameter</u>               | <u>Result</u> <u>Qual</u> | LOQ/CL | <u>DL</u> | <u>Units</u> | <u>DF</u> | Limits    | Date Analyzed  |
| 1-Methylnaphthalene            | 0.556                     | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| 2-Methylnaphthalene            | 0.457                     | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Acenaphthene                   | 0.276                     | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Acenaphthylene                 | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Anthracene                     | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Benzo(a)Anthracene             | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Benzo[a]pyrene                 | 0.0196 U                  | 0.0196 | 0.00608   | ug/L         | 1         |           | 04/03/24 21:28 |
| Benzo[b]Fluoranthene           | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Benzo[g,h,i]perylene           | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Benzo[k]fluoranthene           | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Chrysene                       | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Dibenzo[a,h]anthracene         | 0.0196 U                  | 0.0196 | 0.00608   | ug/L         | 1         |           | 04/03/24 21:28 |
| Fluoranthene                   | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Fluorene                       | 0.322                     | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Indeno[1,2,3-c,d] pyrene       | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Naphthalene                    | 0.754                     | 0.0980 | 0.0304    | ug/L         | 1         |           | 04/03/24 21:28 |
| Phenanthrene                   | 0.0980 U                  | 0.0980 | 0.0304    | ug/L         | 1         |           | 04/03/24 21:28 |
| Pyrene                         | 0.0490 U                  | 0.0490 | 0.0147    | ug/L         | 1         |           | 04/03/24 21:28 |
| Surrogates                     |                           |        |           |              |           |           |                |
| 2-Methylnaphthalene-d10 (surr) | 85.7                      | 38-100 |           | %            | 1         |           | 04/03/24 21:28 |
| Fluoranthene-d10 (surr)        | 71.9                      | 30-111 |           | %            | 1         |           | 04/03/24 21:28 |
|                                |                           |        |           |              |           |           |                |

#### **Batch Information**

Analytical Batch: XMS14200 Analytical Method: 8270E SIM LV (PAH) Analyst: HMW Analytical Date/Time: 04/03/24 21:28 Container ID: 1241194005-F Prep Batch: XXX49299 Prep Method: SW3535A Prep Date/Time: 04/02/24 14:00 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

| Results of MW-300                                                                                                                                          |                                                                                                                                     |                        |                                                                             |                                                                                                                                       |                |                                   |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|----------------------------------------|
| Client Sample ID: <b>MW-300</b><br>Client Project ID: <b>Former Ki</b><br>Lab Sample ID: 1241194005<br>Lab Project ID: 1241194                             | Client Sample ID: MW-300<br>Client Project ID: Former Kiewit Fac-2050 Peger<br>Lab Sample ID: 1241194005<br>Lab Project ID: 1241194 |                        | Collection D<br>Received Da<br>Matrix: Wate<br>Solids (%):<br>Location:     | Collection Date: 03/27/24 10:00<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                |                                   |                                        |
| Parameter<br>Diesel Range Organics                                                                                                                         | Result Qual<br>3.10                                                                                                                 | <u>LOQ/CL</u><br>0.545 | <u>DL</u><br>0.182                                                          | <u>Units</u><br>mg/L                                                                                                                  | <u>DF</u><br>1 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyzed</u><br>04/04/24 05:43 |
| Surrogates<br>5a Androstane (surr)                                                                                                                         | 82.3                                                                                                                                | 50-150                 |                                                                             | %                                                                                                                                     | 1              |                                   | 04/04/24 05:43                         |
| Batch Information<br>Analytical Batch: XFC16808<br>Analytical Method: AK102<br>Analyst: BRP<br>Analytical Date/Time: 04/04/2<br>Container ID: 1241194005-D | 24 05:43                                                                                                                            |                        | Prep Batch:<br>Prep Methor<br>Prep Date/T<br>Prep Initial V<br>Prep Extract | XXX49303<br>d: SW3520C<br>ime: 04/02/24 17:<br>Vt./Vol.: 275 mL<br>: Vol: 1 mL                                                        | :30            |                                   |                                        |

#### Results of MW-300

Client Sample ID: **MW-300** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194005 Lab Project ID: 1241194 Collection Date: 03/27/24 10:00 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                           |        |           |              |    | Allowable |                |
|------------------------------|---------------------------|--------|-----------|--------------|----|-----------|----------------|
| <u>Parameter</u>             | <u>Result</u> <u>Qual</u> | LOQ/CL | <u>DL</u> | <u>Units</u> | DF | Limits    | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 5.70                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:38 |
| 1,3,5-Trimethylbenzene       | 2.50                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/03/24 19:28 |
| Benzene                      | 1.20                      | 0.400  | 0.120     | ug/L         | 1  |           | 04/01/24 15:38 |
| Ethylbenzene                 | 1.00 U                    | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:38 |
| Naphthalene                  | 3.42                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:38 |
| o-Xylene                     | 1.27                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:38 |
| P & M -Xylene                | 2.19                      | 2.00   | 0.620     | ug/L         | 1  |           | 04/01/24 15:38 |
| Toluene                      | 1.53                      | 1.00   | 0.310     | ug/L         | 1  |           | 04/01/24 15:38 |
| Xylenes (total)              | 3.46                      | 3.00   | 1.00      | ug/L         | 1  |           | 04/01/24 15:38 |
| Surrogates                   |                           |        |           |              |    |           |                |
| 1,2-Dichloroethane-D4 (surr) | 101                       | 81-118 |           | %            | 1  |           | 04/01/24 15:38 |
| 4-Bromofluorobenzene (surr)  | 106                       | 85-114 |           | %            | 1  |           | 04/01/24 15:38 |
| Toluene-d8 (surr)            | 102                       | 89-112 |           | %            | 1  |           | 04/01/24 15:38 |
|                              |                           |        |           |              |    |           |                |

#### **Batch Information**

Analytical Batch: VMS23167 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/01/24 15:38 Container ID: 1241194005-A

Analytical Batch: VMS23173 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/03/24 19:28 Container ID: 1241194005-B Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 04/01/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX41057 Prep Method: SW5030B Prep Date/Time: 04/03/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

#### Results of EB-1

Client Sample ID: **EB-1** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194006 Lab Project ID: 1241194 Collection Date: 03/26/24 13:45 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                    |        |           |       |    | Allowable |                |
|------------------------------|--------------------|--------|-----------|-------|----|-----------|----------------|
| <u>Parameter</u>             | <u>Result</u> Qual | LOQ/CL | <u>DL</u> | Units | DF | Limits    | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 16:37 |
| 1,3,5-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 16:37 |
| Benzene                      | 0.400 U            | 0.400  | 0.120     | ug/L  | 1  |           | 04/01/24 16:37 |
| Ethylbenzene                 | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 16:37 |
| Naphthalene                  | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 16:37 |
| o-Xylene                     | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 16:37 |
| P & M -Xylene                | 2.00 U             | 2.00   | 0.620     | ug/L  | 1  |           | 04/01/24 16:37 |
| Toluene                      | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 16:37 |
| Xylenes (total)              | 3.00 U             | 3.00   | 1.00      | ug/L  | 1  |           | 04/01/24 16:37 |
| Surrogates                   |                    |        |           |       |    |           |                |
| 1,2-Dichloroethane-D4 (surr) | 102                | 81-118 |           | %     | 1  |           | 04/01/24 16:37 |
| 4-Bromofluorobenzene (surr)  | 105                | 85-114 |           | %     | 1  |           | 04/01/24 16:37 |
| Toluene-d8 (surr)            | 101                | 89-112 |           | %     | 1  |           | 04/01/24 16:37 |
|                              |                    |        |           |       |    |           |                |

#### Batch Information

Analytical Batch: VMS23167 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/01/24 16:37 Container ID: 1241194006-A Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 04/01/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

#### Results of TB-2

Client Sample ID: **TB-2** Client Project ID: **Former Kiewit Fac-2050 Peger** Lab Sample ID: 1241194007 Lab Project ID: 1241194 Collection Date: 03/26/24 00:00 Received Date: 03/28/24 09:15 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

#### Results by Volatile GC/MS

|                              |                    |        |           |       |    | Allowable |                |
|------------------------------|--------------------|--------|-----------|-------|----|-----------|----------------|
| <u>Parameter</u>             | <u>Result</u> Qual | LOQ/CL | <u>DL</u> | Units | DF | Limits    | Date Analyzed  |
| 1,2,4-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 22:42 |
| 1,3,5-Trimethylbenzene       | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 22:42 |
| Benzene                      | 0.400 U            | 0.400  | 0.120     | ug/L  | 1  |           | 04/01/24 22:42 |
| Ethylbenzene                 | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 22:42 |
| Naphthalene                  | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 22:42 |
| o-Xylene                     | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 22:42 |
| P & M -Xylene                | 2.00 U             | 2.00   | 0.620     | ug/L  | 1  |           | 04/01/24 22:42 |
| Toluene                      | 1.00 U             | 1.00   | 0.310     | ug/L  | 1  |           | 04/01/24 22:42 |
| Xylenes (total)              | 3.00 U             | 3.00   | 1.00      | ug/L  | 1  |           | 04/01/24 22:42 |
| Surrogates                   |                    |        |           |       |    |           |                |
| 1,2-Dichloroethane-D4 (surr) | 99.5               | 81-118 |           | %     | 1  |           | 04/01/24 22:42 |
| 4-Bromofluorobenzene (surr)  | 103                | 85-114 |           | %     | 1  |           | 04/01/24 22:42 |
| Toluene-d8 (surr)            | 101                | 89-112 |           | %     | 1  |           | 04/01/24 22:42 |
|                              |                    |        |           |       |    |           |                |

#### Batch Information

Analytical Batch: VMS23168 Analytical Method: SW8260D Analyst: JY Analytical Date/Time: 04/01/24 22:42 Container ID: 1241194007-A Prep Batch: VXX41049 Prep Method: SW5030B Prep Date/Time: 04/01/24 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

| Results of MW-2                                                                                                                          |                                                                                                                                           |        |                                                                                                                                       |                                                                             |         |                                   |             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|-----------------------------------|-------------|--|--|--|
| Client Sample ID: <b>MW-2</b><br>Client Project ID: <b>Former Kiew</b><br>.ab Sample ID: 1241194008<br>.ab Project ID: 1241194           | it Fac-2050 Pege                                                                                                                          | r      | Collection Date: 03/27/24 12:20<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                             |         |                                   |             |  |  |  |
| Results by <b>Dissolved Metals by</b>                                                                                                    | ICP/MS                                                                                                                                    |        |                                                                                                                                       |                                                                             |         |                                   |             |  |  |  |
| Parameter<br>ron                                                                                                                         | <u>Result</u> <u>Qual</u><br>49100                                                                                                        | LOQ/CL | <u>DL</u><br>150                                                                                                                      | <u>Units</u><br>ug/l                                                        | DF<br>5 | <u>Allowable</u><br><u>Limits</u> | Date Analy  |  |  |  |
| langanese                                                                                                                                | 2880                                                                                                                                      | 4.00   | 1.24                                                                                                                                  | ug/L                                                                        | 10      |                                   | 04/08/24 15 |  |  |  |
| Analytical Batch: MMS12251<br>Analytical Method: SW6020B<br>Analyst: HGS<br>Analytical Date/Time: 04/08/24<br>Container ID: 1241194008-A | Prep Batch: MXX36541<br>Prep Method: SW3010A<br>Prep Date/Time: 04/01/24 13:49<br>Prep Initial Wt./Vol.: 25 mL<br>Prep Extract Vol: 25 mL |        |                                                                                                                                       |                                                                             |         |                                   |             |  |  |  |
| Analytical Batch: MMS12250<br>Analytical Method: SW6020B<br>Analyst: HGS<br>Analytical Date/Time: 04/05/24<br>Container ID: 1241194008-A | 17:33                                                                                                                                     |        | Prep Batch:<br>Prep Methoc<br>Prep Date/Ti<br>Prep Initial V<br>Prep Extract                                                          | MXX36541<br>d: SW3010A<br>ime: 04/01/24 13<br>Vt./Vol.: 25 mL<br>Vol: 25 mL | :49     |                                   |             |  |  |  |

Print Date: 04/10/2024 4:54:34PM

| Results of MW-3                                                                                                                                                            |                                    |                      |                                                                                                                                       |                                                                                |                |                                   |                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|-----------------------------------|-------------------------------------|--|
| Client Sample ID: MW-3<br>Client Project ID: Former Kiewit Fac-2050 Peger<br>Lab Sample ID: 1241194009<br>Lab Project ID: 1241194<br>Results by Dissolved Metals by ICP/MS |                                    |                      | Collection Date: 03/27/24 09:50<br>Received Date: 03/28/24 09:15<br>Matrix: Water (Surface, Eff., Ground)<br>Solids (%):<br>Location: |                                                                                |                |                                   |                                     |  |
| Results by <b>Dissolved Meta</b>                                                                                                                                           | s by ICP/MS                        |                      |                                                                                                                                       |                                                                                |                |                                   |                                     |  |
| <u>Parameter</u><br>Iron                                                                                                                                                   | <u>Result</u> <u>Qual</u><br>44900 | <u>LOQ/CL</u><br>500 | <u>DL</u><br>150                                                                                                                      | <u>Units</u><br>ug/L                                                           | <u>DF</u><br>5 | <u>Allowable</u><br><u>Limits</u> | <u>Date Analyz</u><br>04/05/24 17:3 |  |
| Manganese                                                                                                                                                                  | 2550                               | 4.00                 | 1.24                                                                                                                                  | ug/L                                                                           | 10             |                                   | 04/08/24 15:2                       |  |
| Batch Information<br>Analytical Batch: MMS1225<br>Analytical Method: SW6020<br>Analyst: HGS<br>Analytical Date/Time: 04/08<br>Container ID: 1241194009-                    | 1<br> B<br> /24 15:25<br>A         |                      | Prep Batch:<br>Prep Methoo<br>Prep Date/T<br>Prep Initial V<br>Prep Extract                                                           | MXX36541<br>d: SW3010A<br>ime: 04/01/24 13<br>Vt./Vol.: 25 mL<br>t Vol: 25 mL  | 49             |                                   |                                     |  |
| Analytical Batch: MMS1225<br>Analytical Method: SW6020<br>Analyst: HGS<br>Analytical Date/Time: 04/05<br>Container ID: 1241194009-                                         | 0<br>)B<br>/24 17:35<br>A          |                      | Prep Batch:<br>Prep Method<br>Prep Date/T<br>Prep Initial V<br>Prep Extract                                                           | MXX36541<br>d: SW3010A<br>iime: 04/01/24 13<br>Nt./Vol.: 25 mL<br>t Vol: 25 mL | :49            |                                   |                                     |  |

Print Date: 04/10/2024 4:54:34PM

| Method Blank                                     |                      |        |                           |                  |                  |
|--------------------------------------------------|----------------------|--------|---------------------------|------------------|------------------|
| Blank ID: MB for HBN 18<br>Blank Lab ID: 1757996 | 874471 [MXX/36541    | l      | Matrix:                   | Water (Surfac    | e, Eff., Ground) |
| QC for Samples:<br>1241194001, 1241194002        | , 1241194008, 124119 | 4009   |                           |                  |                  |
| Results by <b>SW6020B</b>                        |                      |        |                           |                  |                  |
| Parameter                                        | Results              | LOQ/CL | <u>DL</u>                 | LOD              | <u>Units</u>     |
| Iron                                             | 375U                 | 500    | 150                       | 375              | ug/L             |
| Manganese                                        | 1.50U                | 2.00   | 0.620                     | 1.50             | ug/L             |
| atch Information                                 |                      |        |                           |                  |                  |
| Analytical Batch: MMS                            | 12249                |        | Prep Batcl                | h: MXX36541      |                  |
| Analytical Method: SW                            | 6020B                |        | Prep Meth                 | od: SW3010A      |                  |
| Instrument: P7 Agilent                           | 7800                 |        | Prep Date                 | /Time: 4/1/202   | 4 1:49:06PM      |
| Analyst: HGS                                     | 1/5/2024 12:45:00DM  |        | Prep Initia<br>Prop Extra | I Wt./Vol.: 25 m | ۱L               |
| *                                                | I/5/2024 12:45:00PM  |        | Prep Extra                | act Vol: 25 mL   |                  |

| SGS |  |
|-----|--|
|     |  |

| Date Analyzed: 04/05/2                                                                           | 024 12:47         |             |                | Matrix: Water (Surface, Eff., Ground)                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------|-------------------|-------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QC for Samples: 1241                                                                             | 194001, 124119    | 94002, 1241 | 194008, 1241   | 194009                                                                                                                                                                                         |
| Results by SW6020B                                                                               |                   |             | _              |                                                                                                                                                                                                |
| Devenueter                                                                                       | Creike            | Blank Spike | e (ug/L)       |                                                                                                                                                                                                |
|                                                                                                  | Spike             | Result      | <u>Rec (%)</u> |                                                                                                                                                                                                |
| Iron<br>Manganese                                                                                | 5000<br>500       | 5230<br>493 | 105<br>99      | (87-118)<br>(87-115)                                                                                                                                                                           |
| Batch Information                                                                                |                   |             |                |                                                                                                                                                                                                |
| Analytical Batch: MMS12:<br>Analytical Method: SW60<br>Instrument: P7 Agilent 78<br>Analyst: HGS | 249<br>20B<br>300 |             |                | Prep Batch: <b>MXX36541</b><br>Prep Method: <b>SW3010A</b><br>Prep Date/Time: <b>04/01/2024 13:49</b><br>Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 25 mL<br>Dupe Init Wt./Vol.: Extract Vol: |



#### Matrix Spike Summary

Original Sample ID: 1758010 MS Sample ID: 1758012 MS MSD Sample ID: 1758013 MSD Analysis Date: 04/05/2024 12:56 Analysis Date: 04/05/2024 12:58 Analysis Date: 04/05/2024 13:00 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194001, 1241194002, 1241194008, 1241194009

| Parameter<br>ron<br>Manganese<br>Batch Information<br>Analytical Batch: MMS122<br>Analytical Method: SW602<br>Instrument: P7 Agilent 780 | <u>Sample</u><br>8520<br>740 | <u>Spike</u><br>5000<br>500 | <u>Result</u><br>14200<br>1260 | <u>Rec (%)</u><br>113<br>105 | <u>Spike</u><br>5000       | <u>Result</u><br>13100 | <u>Rec (%)</u><br>93 | <u>CL</u><br>87-118 | <u>RPD (%)</u><br>7 55 | RPD CL  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|----------------------------|------------------------|----------------------|---------------------|------------------------|---------|
| ron<br>Manganese<br>Batch Information<br>Analytical Batch: MMS122<br>Analytical Method: SW602<br>Instrument: P7 Agilent 780              | 8520<br>740                  | 5000<br>500                 | 14200<br>1260                  | 113<br>105                   | 5000                       | 13100                  | 93                   | 87-118              | 7 55                   | (< 20)  |
| Manganese<br>Batch Information<br>Analytical Batch: MMS122<br>Analytical Method: SW602<br>Instrument: P7 Agilent 780                     | 740                          | 500                         | 1260                           | 105                          | =                          |                        |                      |                     | 1.00                   | (< 20 ) |
| Batch Information<br>Analytical Batch: MMS122<br>Analytical Method: SW602<br>Instrument: P7 Agilent 780                                  | 40                           |                             |                                |                              | 500                        | 1240                   | 100                  | 87-115              | 2.06                   | (< 20 ) |
| Analytical Batch: MMS122<br>Analytical Method: SW602<br>Instrument: P7 Agilent 780                                                       | 10                           |                             |                                |                              |                            |                        |                      |                     |                        |         |
| Analytical Method: SW602<br>Instrument: P7 Agilent 780                                                                                   | 49                           |                             |                                | Prep                         | Batch: N                   | /IXX36541              |                      |                     |                        |         |
| Instrument: P7 Agilent 780                                                                                                               | 0B                           |                             |                                | Prep                         | Method:                    | 3010 H20               | Digest for           | Metals ICF          | P-MS                   |         |
| Analyst: HGS                                                                                                                             | 0                            |                             |                                | Prep                         | ) Date/ I in<br>Initial Wt | 1e: 4/1/20             | 24 1:49:06<br>00ml   | РМ                  |                        |         |
| Analytical Date/Time: 4/5/2                                                                                                              | 2024 12:58:00                | PM                          |                                | Prep                         | Extract \                  | /ol: 25.00             | nL                   |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |
|                                                                                                                                          |                              |                             |                                |                              |                            |                        |                      |                     |                        |         |

#### Method Blank

Blank ID: MB for HBN 1874496 [VXX/41047] Blank Lab ID: 1758093 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1241194001, 1241194002, 1241194003, 1241194004, 1241194005, 1241194006

| Results by SW8260D           |                |        |           |       |       |
|------------------------------|----------------|--------|-----------|-------|-------|
| ,                            |                |        |           |       |       |
| <u>Parameter</u>             | <u>Results</u> | LOQ/CL | <u>DL</u> | LOD   | Units |
| 1,2,4-Trimethylbenzene       | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L  |
| 1,3,5-Trimethylbenzene       | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L  |
| Benzene                      | 0.300U         | 0.400  | 0.120     | 0.300 | ug/L  |
| Ethylbenzene                 | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L  |
| Naphthalene                  | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L  |
| o-Xylene                     | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L  |
| P & M -Xylene                | 1.50U          | 2.00   | 0.620     | 1.50  | ug/L  |
| Toluene                      | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L  |
| Xylenes (total)              | 2.25U          | 3.00   | 1.00      | 2.25  | ug/L  |
| Surrogates                   |                |        |           |       |       |
| 1,2-Dichloroethane-D4 (surr) | 93.7           | 81-118 |           | 0     | %     |
| 4-Bromofluorobenzene (surr)  | 106            | 85-114 |           | 0     | %     |
| Toluene-d8 (surr)            | 102            | 89-112 |           | 0     | %     |
|                              |                |        |           |       |       |

#### **Batch Information**

Analytical Batch: VMS23167 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Analytical Date/Time: 4/1/2024 11:52:00AM Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 4/1/2024 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241194 [VXX41047] Blank Spike Lab ID: 1758094 Date Analyzed: 04/01/2024 12:08 Spike Duplicate ID: LCSD for HBN 1241194 [VXX41047] Spike Duplicate Lab ID: 1758095 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194001, 1241194002, 1241194003, 1241194004, 1241194005, 1241194006

#### Results by SW8260D

|                              |       | Blank Spike | e (ug/L)       | :            | Spike Dupli | cate (ug/L)    |          |                |        |
|------------------------------|-------|-------------|----------------|--------------|-------------|----------------|----------|----------------|--------|
| Parameter                    | Spike | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result      | <u>Rec (%)</u> | CL       | <u>RPD (%)</u> | RPD CL |
| 1,2,4-Trimethylbenzene       | 30    | 35.3        | 118            | 30           | 33.2        | 111            | (79-124) | 6.10           | (< 20) |
| 1,3,5-Trimethylbenzene       | 30    | 36.2        | 121            | 30           | 33.6        | 112            | (75-124) | 7.40           | (< 20) |
| Benzene                      | 30    | 32.7        | 109            | 30           | 32.1        | 107            | (79-120) | 1.80           | (< 20) |
| Ethylbenzene                 | 30    | 32.8        | 109            | 30           | 32.3        | 108            | (79-121) | 1.70           | (< 20) |
| Naphthalene                  | 30    | 31.5        | 105            | 30           | 34.0        | 113            | (61-128) | 7.50           | (< 20) |
| o-Xylene                     | 30    | 31.9        | 106            | 30           | 32.6        | 109            | (78-122) | 2.20           | (< 20) |
| P & M -Xylene                | 60    | 65.3        | 109            | 60           | 64.8        | 108            | (80-121) | 0.68           | (< 20) |
| Toluene                      | 30    | 32.2        | 107            | 30           | 31.4        | 105            | (80-121) | 2.30           | (< 20) |
| Xylenes (total)              | 90    | 97.2        | 108            | 90           | 97.5        | 108            | (79-121) | 0.29           | (< 20) |
| Surrogates                   |       |             |                |              |             |                |          |                |        |
| 1,2-Dichloroethane-D4 (surr) | 30    |             | 90             | 30           |             | 100            | (81-118) | 11.30          |        |
| 4-Bromofluorobenzene (surr)  | 30    |             | 105            | 30           |             | 100            | (85-114) | 4.70           |        |
| Toluene-d8 (surr)            | 30    |             | 102            | 30           |             | 101            | (89-112) | 1.30           |        |

#### **Batch Information**

Analytical Batch: VMS23167 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Prep Batch: VXX41047 Prep Method: SW5030B Prep Date/Time: 04/01/2024 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 04/10/2024 4:54:47PM

SGS North America Inc.

#### Method Blank

Blank ID: MB for HBN 1874550 [VXX/41049] Blank Lab ID: 1758175

QC for Samples: 1241194007

#### Results by SW8260D

| <u>Parameter</u>             | <b>Results</b> | LOQ/CL | <u>DL</u> | LOD   | <u>Units</u> |
|------------------------------|----------------|--------|-----------|-------|--------------|
| 1,2,4-Trimethylbenzene       | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| 1,3,5-Trimethylbenzene       | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| Benzene                      | 0.300U         | 0.400  | 0.120     | 0.300 | ug/L         |
| Ethylbenzene                 | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| Naphthalene                  | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| o-Xylene                     | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| P & M -Xylene                | 1.50U          | 2.00   | 0.620     | 1.50  | ug/L         |
| Toluene                      | 0.750U         | 1.00   | 0.310     | 0.750 | ug/L         |
| Xylenes (total)              | 2.25U          | 3.00   | 1.00      | 2.25  | ug/L         |
| Surrogates                   |                |        |           |       |              |
| 1,2-Dichloroethane-D4 (surr) | 99.1           | 81-118 |           | 0     | %            |
| 4-Bromofluorobenzene (surr)  | 103            | 85-114 |           | 0     | %            |
| Toluene-d8 (surr)            | 102            | 89-112 |           | 0     | %            |

#### **Batch Information**

Analytical Batch: VMS23168 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: JY Analytical Date/Time: 4/1/2024 12:10:00PM Prep Batch: VXX41049 Prep Method: SW5030B Prep Date/Time: 4/1/2024 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Matrix: Water (Surface, Eff., Ground)



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241194 [VXX41049] Blank Spike Lab ID: 1758176 Date Analyzed: 04/01/2024 12:26 Spike Duplicate ID: LCSD for HBN 1241194 [VXX41049] Spike Duplicate Lab ID: 1758177 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194007

| Results | by | SW | 826 | 0D |  |
|---------|----|----|-----|----|--|
|         |    |    |     |    |  |

|                              |              | Blank Spike | e (ug/L)       | :            | Spike Dupli | cate (ug/L)    |          |                |         |
|------------------------------|--------------|-------------|----------------|--------------|-------------|----------------|----------|----------------|---------|
| <u>Parameter</u>             | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result      | <u>Rec (%)</u> | CL       | <u>RPD (%)</u> | RPD CL  |
| 1,2,4-Trimethylbenzene       | 30           | 29.9        | 100            | 30           | 29.4        | 98             | (79-124) | 1.60           | (< 20)  |
| 1,3,5-Trimethylbenzene       | 30           | 32.4        | 108            | 30           | 31.7        | 106            | (75-124) | 2.10           | (< 20)  |
| Benzene                      | 30           | 31.2        | 104            | 30           | 30.7        | 102            | (79-120) | 1.60           | (< 20)  |
| Ethylbenzene                 | 30           | 30.6        | 102            | 30           | 30.5        | 102            | (79-121) | 0.52           | (< 20)  |
| Naphthalene                  | 30           | 29.4        | 98             | 30           | 30.0        | 100            | (61-128) | 2.00           | (< 20)  |
| o-Xylene                     | 30           | 31.7        | 106            | 30           | 31.8        | 106            | (78-122) | 0.32           | (< 20)  |
| P & M -Xylene                | 60           | 63.1        | 105            | 60           | 62.8        | 105            | (80-121) | 0.43           | (< 20)  |
| Toluene                      | 30           | 30.2        | 101            | 30           | 30.1        | 100            | (80-121) | 0.30           | (< 20)  |
| Xylenes (total)              | 90           | 94.7        | 105            | 90           | 94.6        | 105            | (79-121) | 0.18           | (< 20 ) |
| Surrogates                   |              |             |                |              |             |                |          |                |         |
| 1,2-Dichloroethane-D4 (surr) | 30           |             | 94             | 30           |             | 92             | (81-118) | 1.90           |         |
| 4-Bromofluorobenzene (surr)  | 30           |             | 101            | 30           |             | 100            | (85-114) | 0.70           |         |
| Toluene-d8 (surr)            | 30           |             | 101            | 30           |             | 101            | (89-112) | 0.89           |         |

#### **Batch Information**

Analytical Batch: VMS23168 Analytical Method: SW8260D Instrument: Agilent 7890-75MS Analyst: JY Prep Batch: VXX41049 Prep Method: SW5030B Prep Date/Time: 04/01/2024 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 04/10/2024 4:54:54PM

SGS North America Inc.

#### Method Blank

Blank ID: MB for HBN 1874669 [VXX/41057] Blank Lab ID: 1758431 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194001, 1241194002, 1241194005

| Results by SW8260D           |         |        |           |       |              |
|------------------------------|---------|--------|-----------|-------|--------------|
| Parameter                    | Results | LOQ/CL | <u>DL</u> | LOD   | <u>Units</u> |
| Surrogates                   | 0.7500  | 1.00   | 0.310     | 0.750 | ug/L         |
| 1,2-Dichloroethane-D4 (surr) | 99.8    | 81-118 |           | 0     | %            |
| 4-Bromofluorobenzene (surr)  | 109     | 85-114 |           | 0     | %            |
| Toluene-d8 (surr)            | 99.8    | 89-112 |           | 0     | %            |

#### **Batch Information**

Analytical Batch: VMS23173 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Analytical Date/Time: 4/3/2024 3:07:00PM Prep Batch: VXX41057 Prep Method: SW5030B Prep Date/Time: 4/3/2024 6:00:00AM Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241194 [VXX41057] Blank Spike Lab ID: 1758432 Date Analyzed: 04/03/2024 16:08 Spike Duplicate ID: LCSD for HBN 1241194 [VXX41057] Spike Duplicate Lab ID: 1758433 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194001, 1241194002, 1241194005

| Results by SW8260D           |              |             | _              |              |             |                |          |                |        |
|------------------------------|--------------|-------------|----------------|--------------|-------------|----------------|----------|----------------|--------|
|                              |              | Blank Spike | e (ug/L)       | :            | Spike Dupli | cate (ug/L)    |          |                |        |
| <u>Parameter</u>             | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result      | <u>Rec (%)</u> | CL       | <u>RPD (%)</u> | RPD CL |
| 1,3,5-Trimethylbenzene       | 30           | 34.9        | 116            | 30           | 34.3        | 114            | (75-124) | 1.70           | (< 20) |
| Surrogates                   |              |             |                |              |             |                |          |                |        |
| 1,2-Dichloroethane-D4 (surr) | 30           |             | 99             | 30           |             | 99             | (81-118) | 0.54           |        |
| 4-Bromofluorobenzene (surr)  | 30           |             | 106            | 30           |             | 107            | (85-114) | 0.75           |        |
| Toluene-d8 (surr)            | 30           |             | 100            | 30           |             | 99             | (89-112) | 1.40           |        |
|                              |              |             |                |              |             |                |          |                |        |

#### **Batch Information**

Analytical Batch: VMS23173 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS Analyst: JY Prep Batch: VXX41057 Prep Method: SW5030B Prep Date/Time: 04/03/2024 06:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

#### Method Blank

SG:

Blank ID: MB for HBN 1874168 [WXX/15179] Blank Lab ID: 1757751

QC for Samples: 1241194001, 1241194002

#### Matrix: Water (Surface, Eff., Ground)

| Results by EPA 300  | .0                                      |        |            |                                      |              |  |  |  |
|---------------------|-----------------------------------------|--------|------------|--------------------------------------|--------------|--|--|--|
| Parameter           | <u>Results</u>                          | LOQ/CL | DL         | LOD                                  | <u>Units</u> |  |  |  |
| Nitrate-N           | 0.150U                                  | 0.200  | 0.0700     | 0.150                                | mg/L         |  |  |  |
| Sulfate             | 0.150U                                  | 0.200  | 0.0500     | 0.150                                | mg/L         |  |  |  |
| Analytical Batch: V | VIC6568                                 |        | Prep Batch | · WXX15179                           |              |  |  |  |
| Analytical Method:  | EPA 300.0                               |        | Prep Metho | od: METHOD                           |              |  |  |  |
| Instrument: 930 Me  | Instrument: 930 Metrohm compact IC flex |        |            | Prep Date/Time: 3/28/2024 12:00:00PM |              |  |  |  |
| Analyst: EBH        | Analyst: EBH                            |        |            | Prep Initial Wt./Vol.: 10 mL         |              |  |  |  |
| Analytical Date/Tim | e: 3/28/2024 1:47:38PM                  |        | Prep Extra | ct Vol: 10 mL                        |              |  |  |  |



| Blank Spike (mg/L)    Parameter  Spike  Result  Rec (%)  CL    Nitrate-N  5  4.81  96  (90-110)    Sulfate  5  4.81  96  (90-110)    Batch Information  Prep Batch: WIC6568    Analytical Batch: WIC6568  Prep Batch: WXX15179    Analytical Method: EPA 300.0  Prep Method: METHOD    Instrument: 930 Metrohm compact IC flex  Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL Dupe Init Wt./Vol.: 5 mg/L Extract Vol:           | Blank Spike ID: LCS for H<br>Blank Spike Lab ID: 1757<br>Date Analyzed: 03/28/20<br>QC for Samples: 12411                                 | BN 1241194<br>752<br>24 14:06<br>94001, 124115 | [WXX1517<br>94002 | <b>'</b> 9]    | Matrix: Water (Surface, Eff., Ground)                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank Spike (mg/L)    Parameter  Spike  Result  Rec (%)  CL    Nitrate-N  5  4.81  96  (90-110)    Sulfate  5  4.81  96  (90-110)    Batch Information  Prep Batch: WXX15179    Analytical Batch: WIC6568  Prep Method: METHOD    Analytical Method: EPA 300.0  Prep Method: METHOD    Instrument: 930 Metrohm compact IC flex  Prep Date/Time: 03/28/2024 12:00    Analyst: EBH  Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL | Results by EPA 300.0                                                                                                                      |                                                |                   |                |                                                                                                                                                                                            |
| ParameterSpikeResultRec (%)CLNitrate-N54.8196(90-110)Sulfate54.8196(90-110)Batch InformationPrep Batch: WXX15179Analytical Batch: WIC6568<br>Analytical Method: EPA 300.0<br>Instrument: 930 Metrohm compact IC flex<br>Analyst: EBHPrep Method: METHOD<br>Prep Date/Time: 03/28/2024 12:00<br>Spike Init Wt./Vol.: 5 mg/LExtract Vol: 10 mL<br>Dupe Init Wt./Vol.: 6 tract Vol:                                                 |                                                                                                                                           |                                                | Blank Spike       | e (mg/L)       |                                                                                                                                                                                            |
| Nitrate-N  5  4.81  96  (90-110)    Sulfate  5  4.81  96  (90-110)    Batch Information  (90-110)  (90-110)    Analytical Batch: WIC6568<br>Analytical Method: EPA 300.0<br>Instrument: 930 Metrohm compact IC flex<br>Analyst: EBH  Prep Batch: WXX15179<br>Prep Method: METHOD<br>Prep Date/Time: 03/28/2024 12:00<br>Spike Init Wt./Vol.: 5 mg/L  Extract Vol: 10 mL<br>Dupe Init Wt./Vol.: Extract Vol:                      | Parameter                                                                                                                                 | <u>Spike</u>                                   | Result            | <u>Rec (%)</u> | <u>CL</u>                                                                                                                                                                                  |
| Sulfate  5  4.81  96  (90-110)    Batch Information                                                                                                                                                                                                                                                                                                                                                                              | Nitrate-N                                                                                                                                 | 5                                              | 4.81              | 96             | (90-110)                                                                                                                                                                                   |
| Batch Information    Analytical Batch: WIC6568  Prep Batch: WXX15179    Analytical Method: EPA 300.0  Prep Method: METHOD    Instrument: 930 Metrohm compact IC flex  Prep Date/Time: 03/28/2024 12:00    Analyst: EBH  Spike Init Wt./Vol.: 5 mg/L    Extract Vol:  10 mL    Dupe Init Wt./Vol.:  Extract Vol:                                                                                                                  | Sulfate                                                                                                                                   | 5                                              | 4.81              | 96             | (90-110)                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | Batch Information<br>Analytical Batch: WIC6568<br>Analytical Method: EPA 300.0<br>Instrument: 930 Metrohm compact IC flex<br>Analyst: EBH |                                                |                   |                | Prep Batch: <b>WXX15179</b><br>Prep Method: <b>METHOD</b><br>Prep Date/Time: <b>03/28/2024 12:00</b><br>Spike Init Wt./Vol.: 5 mg/L Extract Vol: 10 mL<br>Dupe Init Wt./Vol.: Extract Vol: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |                                                |                   |                |                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |                                                |                   |                |                                                                                                                                                                                            |



#### Matrix Spike Summary

Original Sample ID: 1757750 MS Sample ID: 1757754 MS MSD Sample ID: Analysis Date: 03/28/2024 18:25 Analysis Date: 03/28/2024 18:43 Analysis Date: Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194001, 1241194002

| Results by EPA 300.0                                                                                                                                                                   |               |       | _            |       |                                                                                                                                                                                 |       |             |                |        |                |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|--------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|----------------|--------|----------------|--------|
|                                                                                                                                                                                        |               | Ma    | trix Spike ( | mg/L) |                                                                                                                                                                                 | Spike | e Duplicate | e (mg/L)       |        |                |        |
| Parameter                                                                                                                                                                              | <u>Sample</u> | Spike | Result       | Rec   | <u>(%)</u>                                                                                                                                                                      | Spike | Result      | <u>Rec (%)</u> | CL     | <u>RPD (%)</u> | RPD CL |
| Nitrate-N                                                                                                                                                                              | 1.66          | 5.00  | 6.53         | 97    |                                                                                                                                                                                 |       |             |                | 90-110 |                |        |
| Sulfate                                                                                                                                                                                | 13.8          | 5.00  | 18.1         | 86    | *                                                                                                                                                                               |       |             |                | 90-110 |                |        |
| Batch Information<br>Analytical Batch: WIC6568<br>Analytical Method: EPA 300.0<br>Instrument: 930 Metrohm compact IC flex<br>Analyst: EBH<br>Analytical Date/Time: 3/28/2024 6:43:49PM |               |       |              |       | Prep Batch: WXX15179<br>Prep Method: EPA 300.0 Extraction Waters/Liquids<br>Prep Date/Time: 3/28/2024 12:00:00PM<br>Prep Initial Wt./Vol.: 10.00mL<br>Prep Extract Vol: 10.00mL |       |             |                |        |                |        |



#### Matrix Spike Summary

Original Sample ID: 1757749 MS Sample ID: 1757755 MS MSD Sample ID: 1757756 MSD

QC for Samples: 1241194001, 1241194002

Analysis Date: 03/28/2024 19:02 Analysis Date: 03/28/2024 19:20 Analysis Date: 03/28/2024 19:39 Matrix: Water (Surface, Eff., Ground)

| Results by EPA 300.0     |               |       | _            |                |              |               |                |        |                |         |
|--------------------------|---------------|-------|--------------|----------------|--------------|---------------|----------------|--------|----------------|---------|
|                          |               | Ma    | trix Spike ( | mg/L)          | Spike        | e Duplicate   | e (mg/L)       |        |                |         |
| Parameter                | <u>Sample</u> | Spike | Result       | <u>Rec (%)</u> | <u>Spike</u> | <u>Result</u> | <u>Rec (%)</u> | CL     | <u>RPD (%)</u> | RPD CL  |
| Nitrate-N                | 0.268J        | 10.0  | 10.3         | 101            | 10.0         | 10.4          | 101            | 90-110 | 0.58           | (< 15)  |
| Sulfate                  | 19.5          | 10.0  | 29.1         | 96             | 10.0         | 30.8          | 113 *          | 90-110 | 5.60           | (< 15 ) |
| Batch Information        |               |       |              |                |              |               |                |        |                |         |
| Analytical Batch: WIC656 | 8             |       |              | Prep           | Batch: \     | NXX15179      | 9              |        |                |         |

Analytical Datch: W100000 Analytical Method: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analyst: EBH Analytical Date/Time: 3/28/2024 7:20:00PM Prep Batch: WXX15179 Prep Method: EPA 300.0 Extraction Waters/Liquids Prep Date/Time: 3/28/2024 12:00:00PM Prep Initial Wt./Vol.: 10.00mL Prep Extract Vol: 10.00mL

#### Method Blank

Blank ID: MB for HBN 1874554 [XXX/49299] Blank Lab ID: 1758197 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194002, 1241194005

#### Results by 8270E SIM LV (PAH)

| <u>Parameter</u>               | <u>Results</u> | LOQ/CL | <u>DL</u> | LOD    | <u>Units</u> |
|--------------------------------|----------------|--------|-----------|--------|--------------|
| 1-Methylnaphthalene            | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| 2-Methylnaphthalene            | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Acenaphthene                   | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Acenaphthylene                 | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Anthracene                     | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Benzo(a)Anthracene             | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Benzo[a]pyrene                 | 0.0150U        | 0.0200 | 0.00620   | 0.0150 | ug/L         |
| Benzo[b]Fluoranthene           | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Benzo[g,h,i]perylene           | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Benzo[k]fluoranthene           | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Chrysene                       | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Dibenzo[a,h]anthracene         | 0.0150U        | 0.0200 | 0.00620   | 0.0150 | ug/L         |
| Fluoranthene                   | 0.0291J        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Fluorene                       | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Indeno[1,2,3-c,d] pyrene       | 0.0375U        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Naphthalene                    | 0.0750U        | 0.100  | 0.0310    | 0.0750 | ug/L         |
| Phenanthrene                   | 0.0750U        | 0.100  | 0.0310    | 0.0750 | ug/L         |
| Pyrene                         | 0.0247J        | 0.0500 | 0.0150    | 0.0375 | ug/L         |
| Surrogates                     |                |        |           |        |              |
| 2-Methylnaphthalene-d10 (surr) | 75             | 38-100 |           | 0      | %            |
| Fluoranthene-d10 (surr)        | 82.7           | 30-111 |           | 0      | %            |
|                                |                |        |           |        |              |

#### **Batch Information**

Analytical Batch: XMS14200 Analytical Method: 8270E SIM LV (PAH) Instrument: Agilent 8890 GC/MS SYA Analyst: HMW Analytical Date/Time: 4/3/2024 8:23:00PM Prep Batch: XXX49299 Prep Method: SW3535A Prep Date/Time: 4/2/2024 2:00:00PM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 04/10/2024 4:55:09PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241194 [XXX49299] Blank Spike Lab ID: 1758198 Date Analyzed: 04/03/2024 20:39 Spike Duplicate ID: LCSD for HBN 1241194 [XXX49299] Spike Duplicate Lab ID: 1758199 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194002, 1241194005

#### Results by 8270E SIM LV (PAH)

|                                | Blank Spike (ug/L) Spike Duplicate (ug/L) |        |                |              |        | cate (ug/L)    |          |                |        |
|--------------------------------|-------------------------------------------|--------|----------------|--------------|--------|----------------|----------|----------------|--------|
| <u>Parameter</u>               | <u>Spike</u>                              | Result | <u>Rec (%)</u> | <u>Spike</u> | Result | <u>Rec (%)</u> | CL       | <u>RPD (%)</u> | RPD CL |
| 1-Methylnaphthalene            | 2                                         | 1.35   | 67             | 2            | 1.30   | 65             | (41-115) | 3.50           | (< 20) |
| 2-Methylnaphthalene            | 2                                         | 1.31   | 65             | 2            | 1.28   | 64             | (39-114) | 2.20           | (< 20) |
| Acenaphthene                   | 2                                         | 1.43   | 72             | 2            | 1.45   | 72             | (48-114) | 0.85           | (< 20) |
| Acenaphthylene                 | 2                                         | 1.50   | 75             | 2            | 1.46   | 73             | (35-121) | 2.40           | (< 20) |
| Anthracene                     | 2                                         | 1.69   | 84             | 2            | 1.61   | 81             | (53-119) | 4.40           | (< 20) |
| Benzo(a)Anthracene             | 2                                         | 1.53   | 77             | 2            | 1.52   | 76             | (59-120) | 0.91           | (< 20) |
| Benzo[a]pyrene                 | 2                                         | 1.60   | 80             | 2            | 1.57   | 79             | (53-120) | 1.60           | (< 20) |
| Benzo[b]Fluoranthene           | 2                                         | 1.54   | 77             | 2            | 1.53   | 76             | (53-126) | 1.20           | (< 20) |
| Benzo[g,h,i]perylene           | 2                                         | 1.42   | 71             | 2            | 1.45   | 72             | (44-128) | 1.80           | (< 20) |
| Benzo[k]fluoranthene           | 2                                         | 1.73   | 87             | 2            | 1.66   | 83             | (54-125) | 4.50           | (< 20) |
| Chrysene                       | 2                                         | 1.59   | 79             | 2            | 1.62   | 81             | (57-120) | 2.20           | (< 20) |
| Dibenzo[a,h]anthracene         | 2                                         | 1.58   | 79             | 2            | 1.59   | 80             | (44-131) | 0.65           | (< 20) |
| Fluoranthene                   | 2                                         | 1.51   | 75             | 2            | 1.51   | 76             | (58-120) | 0.29           | (< 20) |
| Fluorene                       | 2                                         | 1.50   | 75             | 2            | 1.49   | 75             | (50-118) | 0.34           | (< 20) |
| Indeno[1,2,3-c,d] pyrene       | 2                                         | 1.51   | 76             | 2            | 1.51   | 75             | (48-130) | 0.16           | (< 20) |
| Naphthalene                    | 2                                         | 1.33   | 67             | 2            | 1.29   | 65             | (43-114) | 3.20           | (< 20) |
| Phenanthrene                   | 2                                         | 1.53   | 77             | 2            | 1.49   | 75             | (53-115) | 2.70           | (< 20) |
| Pyrene                         | 2                                         | 1.46   | 73             | 2            | 1.46   | 73             | (53-121) | 0.04           | (< 20) |
| Surrogates                     |                                           |        |                |              |        |                |          |                |        |
| 2-Methylnaphthalene-d10 (surr) | 2                                         |        | 75             | 2            |        | 72             | (38-100) | 4.50           |        |
| Fluoranthene-d10 (surr)        | 2                                         |        | 83             | 2            |        | 84             | (30-111) | 1.10           |        |

#### **Batch Information**

Analytical Batch: XMS14200 Analytical Method: 8270E SIM LV (PAH) Instrument: Agilent 8890 GC/MS SYA Analyst: HMW Prep Batch: XXX49299 Prep Method: SW3535A Prep Date/Time: 04/02/2024 14:00 Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 04/10/2024 4:55:12PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

| Method Blank                                          | Method Blank   |                                       |                                    |                    |              |  |  |
|-------------------------------------------------------|----------------|---------------------------------------|------------------------------------|--------------------|--------------|--|--|
| Blank ID: MB for HBN 1874565<br>Blank Lab ID: 1758248 |                | Matrix: Water (Surface, Eff., Ground) |                                    |                    |              |  |  |
| QC for Samples:<br>1241194001, 1241194002, 12411      | 94005          |                                       |                                    |                    |              |  |  |
| Results by AK102                                      |                |                                       |                                    |                    |              |  |  |
| Parameter                                             | <u>Results</u> | LOQ/CL                                | DL                                 | LOD                | <u>Units</u> |  |  |
| Diesel Range Organics                                 | 0.112U         | 0.150                                 | 0.0500                             | 0.112              | mg/L         |  |  |
| Surrogates                                            |                |                                       |                                    |                    |              |  |  |
| 5a Androstane (surr)                                  | 68.9           | 60-120                                |                                    | 0                  | %            |  |  |
| Batch Information                                     |                |                                       |                                    |                    |              |  |  |
| Analytical Batch: XFC16808                            |                |                                       | Prep Batch                         | : XXX49303         |              |  |  |
| Analytical Method: AK102                              |                |                                       | Prep Method: SW3520C               |                    |              |  |  |
| Instrument: Agilent 7890B F                           |                |                                       | Prep Date/Time: 4/2/2024 5:30:00PM |                    |              |  |  |
| Instrument: Agilent 7890B F                           |                |                                       | Dron Initial                       | V//t /V/01 · 1/1/1 |              |  |  |



#### Blank Spike Summary

Blank Spike ID: LCS for HBN 1241194 [XXX49303] Blank Spike Lab ID: 1758249 Date Analyzed: 04/04/2024 05:18 Spike Duplicate ID: LCSD for HBN 1241194 [XXX49303] Spike Duplicate Lab ID: 1758250 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1241194001, 1241194002, 1241194005

| [       |    |     |    |
|---------|----|-----|----|
| Results | hv | AK1 | 02 |

|                             |              | Blank Spike | 5              | Spike Duplie | cate (mg/L)   |                |               |                |        |
|-----------------------------|--------------|-------------|----------------|--------------|---------------|----------------|---------------|----------------|--------|
| <u>Parameter</u>            | <u>Spike</u> | Result      | <u>Rec (%)</u> | <u>Spike</u> | Result        | <u>Rec (%)</u> | <u>CL</u>     | <u>RPD (%)</u> | RPD CL |
| Diesel Range Organics       | 5            | 4.45        | 89             | 5            | 4.80          | 96             | (75-125)      | 7.70           | (< 20) |
| Surrogates                  |              |             |                |              |               |                |               |                |        |
| 5a Androstane (surr)        | 0.1          |             | 108            | 0.1          |               | 115            | (60-120)      | 6.50           |        |
| Batch Information           |              |             |                |              |               |                |               |                |        |
| Analytical Batch: XFC16808  |              |             |                | Pre          | p Batch: X    | XX49303        |               |                |        |
| Analytical Method: AK102    |              |             |                | Pre          | p Method:     | SW3520C        |               |                |        |
| Instrument: Agilent 7890B F |              |             |                | Pre          | p Date/Tim    | e: 04/02/202   | 4 17:30       |                |        |
| Analyst: BRP                |              |             |                | Spil         | ke Init Wt./\ | /ol.: 0.1 mg   | I/L Extract V | /ol: 1 mL      |        |
|                             |              |             |                | Dup          | e Init Wt./\  | /ol.: 0.1 mg   | /L Extract Vo | ol: 1 mL       |        |



#### SGS North America Inc. CHAIN OF CUSTODY RECORD





|           |                  |                                                                                   |                        |               |                           |                                                                                                      |                         |                |                                        |                     | 76                               | 2              | DU              | 1.51                    | )                                     | <u> </u> | uə.əyə                |                                                                        |
|-----------|------------------|-----------------------------------------------------------------------------------|------------------------|---------------|---------------------------|------------------------------------------------------------------------------------------------------|-------------------------|----------------|----------------------------------------|---------------------|----------------------------------|----------------|-----------------|-------------------------|---------------------------------------|----------|-----------------------|------------------------------------------------------------------------|
|           | CLIENT:          | Nortech                                                                           |                        |               |                           |                                                                                                      | in                      | struc<br>Omis: | tions:<br>sions                        | Sect<br>may         | tions 1<br>delay t               | - 5 r<br>he or | nust<br>nset c  | be fille<br>of anal     | ed out.<br>ysis.                      |          |                       | Page 1 of 1                                                            |
|           | CONTACT:         | William Watts PHON                                                                | E #:<br>907-452-       | 5688          |                           | Sect                                                                                                 | tion 3                  |                |                                        |                     |                                  | Pr             | eserva          | tive                    |                                       |          |                       |                                                                        |
| section 1 | PROJECT<br>NAME: | Former Kiewit Facility - PROJEC<br>2050 Peger Rd PERMIT<br>O: William Watts E-MAI | CT/<br>#:<br>L: willia | m.watts@nor   | echengr.com               | #<br>C<br>O                                                                                          | Comp                    | HC             | , HC                                   | Nor                 | e HCI                            | Nor            | e Hor<br>lysis* | .e +++++                | 3 <sup>3</sup> HNO                    | $\sim$   | **                    |                                                                        |
| S<br>S    |                  | Profile                                                                           | <br>e #:               |               | -                         | N<br>T                                                                                               | Grab                    |                |                                        |                     |                                  | 0              | o.              | asar                    | 020                                   |          |                       | NOTE:<br>*The following analyses                                       |
|           | INVOICE TO       | D: QUOT<br>Nortech P.O. #                                                         | E #:<br>: 24-1008      |               |                           | A<br>I<br>N                                                                                          | MI<br>(Multi-<br>incre- | K102           | EPA 8260<br>List)                      | MIS D               | Ethane/<br>/ EPA                 | / EPA 300      | y EPA 300       | and Manga<br>20         | Iron and<br>e by EPA 6<br>red)        |          |                       | require specific method<br>and/or compound list:<br>BTEX, Metals, PFAS |
|           | RESERVED         | SAMPLE IDENTIFICATION                                                             | DATE<br>mm/dd/yy       | TIME<br>HH:MM | MATRIX/<br>MATRIX<br>CODE | E<br>R<br>S                                                                                          | mental)                 | DRO by A       | VOCs by<br>(Custom                     | PAHs by<br>EPA 8270 | Methane/<br>Ethene by<br>RSK 175 | Nitrate by     | Sulfate b       | Total Iron<br>by EPA 60 | Dissolved<br>Manganes<br>(Field Filte |          |                       | REMARKS/LOC ID                                                         |
|           | (AJ)(#           | MW-2                                                                              | 3/27/2024              | 1220          | Water                     | 11                                                                                                   | Grab                    | X              | х                                      |                     | х                                | Х              | Х               | X                       | X                                     |          |                       |                                                                        |
| 1         | DALLY9A          | MW-3                                                                              | 3/27/2024              | 950           | Water                     | 13                                                                                                   | Grab                    | x              | x                                      | х                   | X                                | Х              | X               | X                       | X                                     |          |                       |                                                                        |
|           | 3 AF)            | MW-4                                                                              | 3/26/2024              | 1300          | Water                     | 6                                                                                                    | Grab                    |                | X                                      |                     | X                                |                |                 | · ·                     |                                       |          |                       |                                                                        |
| ы         | GAD              | MW-5                                                                              | 3/26/2024              | 1100          | Water                     | 6                                                                                                    | Grab                    |                | X                                      |                     | X                                |                |                 |                         |                                       |          |                       |                                                                        |
| lec       | GAG              | MW-300                                                                            | 3/27/2024              | 1000          | Water                     | 7                                                                                                    | Grab                    | X              | X                                      | X                   |                                  |                |                 |                         |                                       |          |                       |                                                                        |
| ľ         | GAD              | EB-1                                                                              | 3/26/2024              | 1345          | Water                     | 3                                                                                                    | Grab                    |                | X                                      |                     |                                  |                |                 |                         |                                       |          |                       |                                                                        |
|           | (7 AC)           | ТВ-2                                                                              | -                      | · <u>-</u>    | Water                     | 3                                                                                                    | -                       |                | X                                      |                     |                                  |                |                 |                         |                                       |          |                       | Lab Prep Trip Blank                                                    |
|           |                  |                                                                                   |                        |               |                           |                                                                                                      |                         |                | +                                      |                     |                                  |                |                 |                         |                                       |          |                       |                                                                        |
|           |                  |                                                                                   |                        |               |                           |                                                                                                      |                         |                | 1                                      |                     | ·                                |                |                 |                         |                                       |          |                       |                                                                        |
| F         | Relinquist       | ned By: (1)                                                                       | Date<br>3/21/24        | Time          | Received By:              | 7                                                                                                    |                         |                | <del>7</del>                           | Sec                 | ction 4                          | DC             | DD Proj         | ject? Ye                | es No                                 | Data     | a Deliv               | verable Requirements:                                                  |
|           | nu               | can att                                                                           | 0,0,0                  | 7900<br>Time  | Dominand Bur              |                                                                                                      | Martin Contraction      | <i>c</i> (     | 10000000000000000000000000000000000000 | Co                  | oler ID:                         | rnarou         | nd Tin          | and/o                   | r Snecia                              | IInstru  | ctions                |                                                                        |
| ion 5     | Relinquish       | Relinquished By: (2) Date Time Received By:                                       |                        |               |                           |                                                                                                      |                         |                | Stand<br>No J-                         | lard TAT            | / Nitra                          | te Has         | Short H         |                         | MD: on                                | d Nan    | hthalono              |                                                                        |
|           | Relinquist       | ied By: (3)                                                                       | Date                   | Time          | Received By:              | ويتفر ويتفر والمتركب والمتركب والمتركب والمتركب والمتركب والمتركب والمتركب والمتركب والمتركب والمترك | $ \rightarrow $         |                |                                        | For V               | OCs: Re                          | port B         |                 | ,2,4-1 ME               | 5; 1,3,5-1                            | wв; an   | и мар                 |                                                                        |
| 1         | Relinquist       | ned By: (4)                                                                       | Date                   | Time          | Received For              | Laborat                                                                                              | tory By:                |                |                                        | Ten                 | np Blank                         | °C:            | 'J<br>nhiert    | <u>\</u>                |                                       | Chi<br>A | ain of<br>WC_F<br>ACT |                                                                        |
|           | - Connection     |                                                                                   | 3/28/24                | 9:15          | Jar                       | المراجعة                                                                                             | Gr                      | . M            |                                        |                     |                                  |                |                 | 1 J                     | Dollivor                              |          | monto                 | al Delivery [ ]                                                        |
|           |                  |                                                                                   | 17 77                  |               |                           | J                                                                                                    |                         |                |                                        |                     | De                               | nvery          | vietnoc         | i. Hano                 | Delivery                              |          | mento                 | al Penkelà l'1                                                         |

http://www.sgs.com/terms-and-conditions

21 MARA

- -

Anc 2.1 °C D30

Page 43 of 68 F083-Blank\_COC\_20181228



# 1241194

### SAMPLE RECEIPT FORM

|                                                                                                                                                | Project I | Manag    | er Com   | pletion                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Was all necessary information recorded on the (<br>COC upon receipt? (temperature, COC seals, etc.?)                                           | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| Was temperature between 0-6°C?                                                                                                                 | Yes       | ) No     | N/A      | If "No", are the samples either exempt* or sampled <8 hours prior to receipt?                                                                                                                                                                                  |
| Were all analyses received within holding time*?                                                                                               | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| Was a method specified for each analysis,<br>where applicable? If no, please note correct<br>methods.                                          | (Yes)     | No       | N/A      | specktad Nitrate                                                                                                                                                                                                                                               |
| Are compound lists specified, where applicable?<br>For project specific or special compound lists<br>please note correct analysis code.        | (Yes)     | > No     | N/A      | See Coc                                                                                                                                                                                                                                                        |
| If rush was requested by the client, was the requested TAT approved?                                                                           | Yes       | No (     | N/A      | ) If "NO", what is the approved TAT?                                                                                                                                                                                                                           |
| If SEDD Deliverables are required, were<br>Location ID's and an NPDL Number provided?                                                          | Yes       | No       | N/A      | Jf "NO", contact client for information.                                                                                                                                                                                                                       |
|                                                                                                                                                | Sample    | e Logir  | n Comp   | bletion                                                                                                                                                                                                                                                        |
| Do ID's on sample containers match COC?                                                                                                        | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| If provided on containers, do dates/times<br>collected match COC?                                                                              | Yes -     | No       | N/A      | Note: If times differ <1 hr., record details below and login per COC.                                                                                                                                                                                          |
| Were all sample containers received in good condition?                                                                                         | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| Were proper containers<br>(type/mass/volume/preservative) received for all<br>samples?<br>*See form F-083 "Sample Guide"                       | (Yes)     | No       | N/A      | Note: If 200.8/6020 Total Metals are received unpreserved,<br>preserve and note HNO3 lot here:<br>If 200.8/6020 Dissolved Metals are received unpreserved, log<br>in for LABFILTER and do not preserve.<br>For all non-metals methods, inform Project Manager. |
| Were Trip Blanks (VOC, GRO, Low-Level Hg, etc.) received with samples, where applicable*?                                                      | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| Were all VOA vials free of headspace >6mm?                                                                                                     | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| Were all soil VOA samples received field<br>extracted with Methanol?                                                                           | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| Did all soil VOA samples have an<br>accompanying unpreserved container for %<br>solids?                                                        | Yes       | No (     | N/A      |                                                                                                                                                                                                                                                                |
| If special handling is required, were containers<br>labelled appropriately? e.g. MI/ISM, foreign<br>soils, lab filter, Ref Lab, limited volume | Yes       | No       | N/A      |                                                                                                                                                                                                                                                                |
| For Rush/Short Holding time, was the lab notified?                                                                                             | Yes       | > No     | N/A      | Short Hold                                                                                                                                                                                                                                                     |
| For any question answered "NO", was the<br>Project Manager notified?                                                                           | Yes       | No       | N/A      | PM Initials:                                                                                                                                                                                                                                                   |
| Was Peer Review of sample<br>numbering/labelling completed?                                                                                    | Yes       | ) No     | N/A      | Reviewer Initials: JLb                                                                                                                                                                                                                                         |
| Additional Notes/Clarification where Applicable, inc                                                                                           | luding r  | esolutio | on of "N | o" answers when a change order is not attached:                                                                                                                                                                                                                |
|                                                                                                                                                |           |          |          |                                                                                                                                                                                                                                                                |



#### **Sample Containers and Preservatives**

| Container Id | Preservative             | <u>Container</u> | Container Id | Preservative | <u>Container</u> |
|--------------|--------------------------|------------------|--------------|--------------|------------------|
|              |                          | <u>condition</u> |              |              | <u>condition</u> |
| 1241194001-A | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194001-B | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194001-C | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194001-D | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194001-E | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194001-F | No Preservative Required | OK               |              |              |                  |
| 1241194001-G | HNO3 to pH $< 2$         | OK               |              |              |                  |
| 1241194001-H | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194001-I | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194001-J | HCL to pH < 2            | OK               |              |              |                  |
| 1241194002-A | HCL to pH < 2            | OK               |              |              |                  |
| 1241194002-B | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194002-C | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194002-D | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194002-E | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194002-F | No Preservative Required | OK               |              |              |                  |
| 1241194002-G | No Preservative Required | OK               |              |              |                  |
| 1241194002-H | No Preservative Required | OK               |              |              |                  |
| 1241194002-I | HNO3 to pH < 2 $$        | OK               |              |              |                  |
| 1241194002-J | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194002-K | HCL to pH < 2            | OK               |              |              |                  |
| 1241194002-L | HCL to pH < 2            | OK               |              |              |                  |
| 1241194003-A | HCL to pH < 2            | OK               |              |              |                  |
| 1241194003-B | HCL to pH < 2            | OK               |              |              |                  |
| 1241194003-C | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194003-D | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194003-E | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194003-F | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194004-A | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194004-B | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194004-C | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194004-D | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194004-E | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194004-F | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194005-A | HCL to pH < 2            | ОК               |              |              |                  |
| 1241194005-B | HCL to pH < 2            | OK               |              |              |                  |
| 1241194005-C | HCL to pH < 2            | OK               |              |              |                  |
| 1241194005-D | HCL to pH < 2            | OK               |              |              |                  |
| 1241194005-E | HCL to pH < 2            | OK               |              |              |                  |
| 1241194005-F | No Preservative Required | OK               |              |              |                  |
| 1241194005-G | No Preservative Required | OK               |              |              |                  |
| 1241194006-A | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194006-B | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194006-0 | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194007-4 | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194007-B | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194007-C | HCL to $pH < 2$          | OK               |              |              |                  |
| 1241194008-A | HNO3 to pH < 2           | OK               |              |              |                  |
| 1241194009-A | HNO3 to pH < 2           | OK               |              |              |                  |

Container Id

<u>Preservative</u>

<u>Container</u> Condition Container Id

<u>Preservative</u>

Container Condition

#### Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

 $\operatorname{\mathsf{BU}}$  - The container was received with headspace greater than 6mm.

DM - The container was received damaged.

FR - The container was received frozen and not usable for Bacteria or BOD analyses.

IC - The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.

NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis

requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN - Insufficient sample quantity provided.



### **Orlando**, FL

The results set forth herein are provided by SGS North America Inc.

Technical Report for

SGS North America, Inc

1241194

SGS Job Number: FC14511



Sampling Date: 03/27/24

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 justin.nelson@sgs.com; env.alaska.reflabteam@sgs.com

ATTN: Justin Nelson

Total number of pages in report: 22



Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Client Service contact: Andrea Colby 407-425-6700 Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • Page 47 of 68

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com



1 of 22

04/08/24

**Automated Report** 

e-Hardcopy 2.0

### **Table of Contents**

#### -1-

| Section 1: Sample Summary<br>Section 2: Case Narrative/Conformance Summary | 3<br>4 |
|----------------------------------------------------------------------------|--------|
| Section 3: Summary of Hits                                                 | 5      |
| Section 4: Sample Results                                                  | 6      |
| <b>4.1:</b> FC14511-1: MW-2                                                | 7      |
| <b>4.2:</b> FC14511-2: MW-3                                                | 8      |
| <b>4.3:</b> FC14511-3: MW-4                                                | 9      |
| <b>4.4:</b> FC14511-4: MW-5                                                | 10     |
| Section 5: Misc. Forms                                                     | 11     |
| 5.1: Chain of Custody                                                      | 12     |
| Section 6: GC Volatiles - QC Data Summaries                                | 14     |
| 6.1: Method Blank Summary                                                  | 15     |
| 6.2: Blank Spike/Blank Spike Duplicate Summary                             | 17     |
| 6.3: Matrix Spike Summary                                                  | 19     |
| 6.4: Duplicate Summary                                                     | 21     |



### Sample Summary

SGS North America, Inc

1241194

Job No:

| Sample<br>Number                                                                                                         | Collected<br>Date | Time By | N<br>Received C | fatrix<br>Code Type | Client<br>Sample ID |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|---------|-----------------|---------------------|---------------------|--|--|--|--|--|
| This report contains results reported as ND = Not detected. The following applies:Organics ND= Not detected above the RL |                   |         |                 |                     |                     |  |  |  |  |  |
| FC14511-1                                                                                                                | 03/27/24          | 12:20   | 04/03/24 A      | Q Water             | MW-2                |  |  |  |  |  |
| FC14511-2                                                                                                                | 03/27/24          | 09:50   | 04/03/24 A      | Q Water             | MW-3                |  |  |  |  |  |
| FC14511-3                                                                                                                | 03/27/24          | 13:00   | 04/03/24 A      | Q Water             | MW-4                |  |  |  |  |  |
| FC14511-4                                                                                                                | 03/27/24          | 11:00   | 04/03/24 A      | Q Water             | MW-5                |  |  |  |  |  |

### SAMPLE DELIVERY GROUP CASE NARRATIVE

| Client: | SGS North America, Inc | Job No: | FC14511 |
|---------|------------------------|---------|---------|
|         |                        |         |         |

**Site:** 1241194

Report Date 4/9/2

e 4/9/2024 1:35:01 AM

On 04/03/2024, 4 Sample(s), 0 Trip Blank(s), 0 Equip. Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. - Orlando. at a maximum corrected temperature of 3.2 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. - Orlando Job Number of FC14511 was assigned to the project.

Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### GC Volatiles By Method RSKSOP-147/175

Matrix: AQ Batch ID: GLL3074

Sample(s) FC14504-1DUP, FC14504-3MS were used as the QC samples indicated.

Matrix: AQ Batch ID: GLL3075

Sample(s) FC14542-1DUP, FC14542-3MS were used as the QC samples indicated.

SGS North America Inc. - Orlando certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc.-Orlando is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:

Gutierrez, Kenneth John L. Report Generation

Summary of Hits Job Number: FC14511 Account: SGS Nort SGS North America, Inc Project: 1241194 Collected: 03/27/24

| Lab Sample ID<br>Analyte | Client Sample ID | Result/<br>Qual | RL   | MDL | Units | Method         |
|--------------------------|------------------|-----------------|------|-----|-------|----------------|
| FC14511-1                | MW-2             |                 |      |     |       |                |
| Methane                  |                  | 3450            | 5.0  |     | ug/l  | RSKSOP-147/175 |
| FC14511-2                | MW-3             |                 |      |     |       |                |
| Methane                  |                  | 1460            | 1.0  |     | ug/l  | RSKSOP-147/175 |
| FC14511-3                | MW-4             |                 |      |     |       |                |
| Methane                  |                  | 735             | 0.50 |     | ug/l  | RSKSOP-147/175 |
| FC14511-4                | MW-5             |                 |      |     |       |                |
| Methane                  |                  | 251             | 0.50 |     | ug/l  | RSKSOP-147/175 |

ω





Orlando, FL

4

Sample Results

Report of Analysis



| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | nple ID: MW-2<br>le ID: FC1451<br>AQ - W<br>RSKSO<br>1241194 | 1-1<br>ater<br>P-147/175<br>4 |           |       |        |        | D<br>D<br>P | Pate Sampled:<br>Pate Received:<br>Patercent Solids: | 03/27/24<br>04/03/24<br>n/a |
|----------------------------------------------------------|--------------------------------------------------------------|-------------------------------|-----------|-------|--------|--------|-------------|------------------------------------------------------|-----------------------------|
|                                                          | File ID                                                      | DF                            | Analyzed  | I     | By     | Prep l | Date        | Prep Batc                                            | h Analytical Batch          |
| Run #1                                                   | LL88426.D                                                    | 1                             | 04/04/24  | 12:26 | JR     | n/a    |             | n/a                                                  | GLL3074                     |
| Run #2                                                   | LL88436.D                                                    | 10                            | 04/04/24  | 13:44 | JR     | n/a    |             | n/a                                                  | GLL3074                     |
|                                                          | Initial Volume                                               | Headspac                      | ce Volume | Volu  | me Inj | jected | Temp        | erature                                              |                             |
| Run #1                                                   | 38.0 ml                                                      | 5.1 ml                        |           | 500 i | ıl     |        | 21 De       | eg. C                                                |                             |
| Run #2                                                   | 38.0 ml                                                      | 5.1 ml                        |           | 500 ι | ıl     |        | 21 De       | eg. C                                                |                             |
| CAS No.                                                  | Compound                                                     |                               | Resul     | t     | RL     | Units  | Q           |                                                      |                             |
| 74-82-8                                                  | Methane                                                      |                               | 3450      | 1     | 5.0    | ug/l   |             |                                                      |                             |
| 74-84-0                                                  | Ethane                                                       |                               | ND        |       | 1.0    | ug/l   |             |                                                      |                             |
| 74-85-1                                                  | Ethene                                                       |                               | ND        |       | 1.0    | ug/l   |             |                                                      |                             |

**Report of Analysis** 

(a) Result is from Run# 2

ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



4.1 **4** 

J = Indicates an estimated value
| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | nple ID: MW-3<br>le ID: FC1451<br>AQ - W<br>RSKSO<br>1241194 | 1-2<br>fater<br>P-147/175<br>4 | 5                 |          |         | D<br>D<br>Pe | ate Sampled:<br>ate Received:<br>ercent Solids: | 03/27/24<br>04/03/24<br>n/a |
|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------|-------------------|----------|---------|--------------|-------------------------------------------------|-----------------------------|
|                                                          | File ID                                                      | DF                             | Analyzed          | By       | Prep 1  | Date         | Prep Batc                                       | h Analytical Batch          |
| Run #1                                                   | LL88427.D                                                    | 1                              | 04/04/24          | 12:34 JR | n/a     |              | n/a                                             | GLL3074                     |
| Run #2                                                   | LL88459.D                                                    | 1                              | 04/05/24          | 12:49 JR | n/a     |              | n/a                                             | GLL3075                     |
|                                                          | Initial Volume                                               | Headspa                        | ace Volume        | Volume I | njected | Temp         | erature                                         |                             |
| Run #1                                                   | 37.5 ml                                                      | 5.0 ml                         |                   | 500 ul   |         | 21 De        | g. C                                            |                             |
| Run #2                                                   | 38.0 ml                                                      | 5.0 ml                         |                   | 250 ul   |         | 21 De        | g. C                                            |                             |
| CAS No.                                                  | Compound                                                     |                                | Result            | RL       | Units   | Q            |                                                 |                             |
| 74-82-8                                                  | Methane                                                      |                                | 1460 <sup>a</sup> | 1.0      | ug/l    |              |                                                 |                             |
| 74-84-0                                                  | Ethane                                                       |                                | ND                | 1.0      | ug/l    |              |                                                 |                             |
| 74-85-1                                                  | Ethene                                                       |                                | ND                | 1.0      | ug/l    |              |                                                 |                             |

**Report of Analysis** 

(a) Result is from Run# 2

ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

4.2 **4** 



J = Indicates an estimated value

SGS North America Inc.

**Report of Analysis** 

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | nple ID: MW-4<br>le ID: FC1451<br>AQ - W<br>RSKSO<br>1241194 | 1-3<br>ater<br>P-147/175<br>4 |            |                |                    |        | D<br>D<br>P   | ate Sampled:<br>ate Received:<br>ercent Solids: | 03/27/24<br>04/03/24<br>n/a |
|----------------------------------------------------------|--------------------------------------------------------------|-------------------------------|------------|----------------|--------------------|--------|---------------|-------------------------------------------------|-----------------------------|
|                                                          | File ID                                                      | DF                            | Analyzed   | l              | By                 | Prep I | Date          | Prep Batcl                                      | h Analytical Batch          |
| Run #1<br>Run #2                                         | LL88428.D                                                    | 1                             | 04/04/24   | 12:43          | JR                 | n/a    |               | n/a                                             | GLL3074                     |
| Run #1<br>Run #2                                         | <b>Initial Volume</b><br>38.0 ml                             | Headspa<br>5.0 ml             | ice Volume | Volui<br>500 u | <b>me Inj</b><br>1 | ected  | Temp<br>21 De | <b>erature</b><br>g. C                          |                             |
| CAS No.                                                  | Compound                                                     |                               | Result     | t i            | RL                 | Units  | Q             |                                                 |                             |
| 74-82-8                                                  | Methane                                                      |                               | 735        |                | 0.50               | ug/l   |               |                                                 |                             |
| 74-84-0                                                  | Ethane                                                       |                               | ND         |                | 1.0                | ug/l   |               |                                                 |                             |
| 74-85-1                                                  | Ethene                                                       |                               | ND         |                | 1.0                | ug/l   |               |                                                 |                             |

ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 55 of 68

N = Indicates presumptive evidence of a compound

4.3



J = Indicates an estimated value

SGS North America Inc.

**Report of Analysis** 

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | nple ID: MW-5<br>le ID: FC1451<br>AQ - W<br>RSKSO<br>1241194 | 1-4<br>'ater<br>P-147/175<br>4 |                          |                            |                      | D<br>D<br>P   | Pate Sampled:<br>Pate Received:<br>ercent Solids: | 03/27/24<br>04/03/24<br>n/a   |
|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------|--------------------------|----------------------------|----------------------|---------------|---------------------------------------------------|-------------------------------|
| Run #1<br>Run #2                                         | <b>File ID</b><br>LL88431.D                                  | <b>DF</b><br>1                 | <b>Analyzed</b> 04/04/24 | <b>By</b><br>13:06 JR      | Prep I<br>n/a        | Date          | <b>Prep Batc</b><br>n/a                           | h Analytical Batch<br>GLL3074 |
| Run #1<br>Run #2                                         | <b>Initial Volume</b><br>37.0 ml                             | Headspa<br>5.0 ml              | ace Volume               | <b>Volume In</b><br>500 ul | jected               | Temp<br>21 De | erature<br>eg. C                                  |                               |
| CAS No.                                                  | Compound                                                     |                                | Result                   | RL                         | Units                | Q             |                                                   |                               |
| 74-82-8<br>74-84-0<br>74-85-1                            | Methane<br>Ethane<br>Ethene                                  |                                | 251<br>ND<br>ND          | 0.50<br>1.0<br>1.0         | ug/l<br>ug/l<br>ug/l |               |                                                   |                               |

ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 1 of 1

4.4

J = Indicates an estimated value



Orlando, FL

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

#### SGS North America Inc. CHAIN OF CUSTODY RECORD



Locations Nationwide Alaska Florida New Jersey Colorado

North Carolina

Texas

|                         |                       |                  |              |                           |             |                           |                     |      |           | -(       |         | 4       | 511            | Virginia<br><u>www.u</u> | Louisiana<br><u>is.sgs.com</u> |
|-------------------------|-----------------------|------------------|--------------|---------------------------|-------------|---------------------------|---------------------|------|-----------|----------|---------|---------|----------------|--------------------------|--------------------------------|
| CLIENT:                 | SGS North Ame         | erica Inc Ala    | ska Division |                           | SG          | S Refere                  | ence:               |      |           | S        | GS,     | Orla    | ando FL        |                          | Barra 4 of 4                   |
| CONTACT:                | Justin Nelson         | PHONE NO:        | (907) 56     | 52-2343                   | Add         | tional                    | Comm                | ents | : All     | soils    | repo    | rt ou   | t in dry weigl | nt unless                | Pageron                        |
| PROJECT                 | 12/110/               | PWSID#:          |              |                           | #           | Preserv                   |                     |      |           |          |         |         |                |                          |                                |
| NAME:                   | 1241134               | NPDL#:           |              |                           | c           | Used:                     | *                   |      |           |          |         |         |                |                          |                                |
| REPORTS TO              | : Justin.Nelson       | E-MAIL:          | Justin.Nelso | n@sgs.com                 | 0           | TYPE                      |                     |      |           |          |         |         |                |                          |                                |
|                         |                       | Env.Alaska.      | RefLabTeam   | @sgs.com                  | T           | C =<br>COMP               | je                  |      |           |          |         |         |                |                          |                                |
| INVOICE TO:             | SGS - Alaska          | QUOTE #:         |              |                           | A           | G =                       | e ar                |      |           |          |         |         |                |                          |                                |
| env.alask               | a.accounting@sgs.com  | P.O. #:          | 1241         | 194                       | I<br>N      | MI =                      | - Me                |      |           |          |         |         |                |                          |                                |
| RESERVED<br>for lab use | SAMPLE IDENTIFICATION | DATE<br>mm/dd/yy | тіме<br>ННММ | MATRIX/<br>MATRIX<br>CODE | E<br>R<br>S | Incre-<br>mental<br>Soils | RSK-175<br>Ethane/E |      |           |          | MS      | MSD     | SGS lab #      |                          | Location ID                    |
| 1                       | MW-2                  | 3/27/2024        | 12:20        | Water                     | 3           |                           | X                   |      |           |          |         |         | 1241194001     |                          | 2                              |
| 2                       | MW-3                  | 3/27/2024        | 9:50         | Water                     | 3           |                           | X                   |      |           |          |         |         | 1241194002     |                          |                                |
| 3                       | MW-4                  | 3/27/2024        | 13:00        | Water                     | 3           |                           | X                   |      |           | 12       |         |         | 1241194003     |                          |                                |
| 4                       | MW-5                  | 3/27/2024        | 11:00        | Water                     | 3           |                           | X                   |      |           | _        |         |         | 1241194004     |                          |                                |
|                         |                       |                  |              |                           |             | -                         |                     |      |           |          |         |         |                |                          |                                |
|                         |                       |                  |              |                           |             |                           |                     |      |           | - 1      | NITTA   | 100     | <u> </u>       | ZA                       |                                |
|                         |                       |                  |              |                           |             | -                         |                     |      |           |          | 3011/4  | L ASS   | SSMENT         |                          |                                |
|                         |                       |                  |              |                           | -           | -                         |                     | -    |           | -        | _       | -       |                | it                       | Comment demands                |
|                         |                       |                  |              |                           | -           |                           |                     | -    |           | L        | ABEL    | VERI    | CATION         | A                        | /                              |
| Relinquished            | By: (1)               | Date             | Time         | Received                  | Bv          |                           |                     |      |           | roioct   | 2       | 1 21415 | NO             | Data Dalla               | wolite Operation antos         |
| Λ.                      | /                     |                  |              |                           | <i></i>     |                           |                     |      | Banar     |          |         |         |                | Data Delive              | erable Requirements.           |
| WU                      | n                     | 4/1/24           | 1115         |                           |             |                           |                     |      | If J- Rep | ort as [ |         | LOQ.    | NO             |                          | Level 2                        |
| Relinquished            | By: (2)               | Date             | Time         | Received                  | By:         |                           |                     |      | Cooler    | ID:      |         | -       |                |                          |                                |
|                         |                       |                  |              |                           |             |                           |                     |      | Rec       | luest    | ed Tı   | ırnar   | ound Time ai   | nd-or Spe                | cial Instructions:             |
| Relinquished            | By: (3)               | Date             | Time         | Received                  | By:         |                           |                     |      |           |          |         |         |                |                          |                                |
|                         |                       |                  |              |                           |             |                           |                     |      | Temp      | Blank    | \$°C:+} | 4       |                | Chain of (               | Custody Seal: (Circle)         |
| Relinquished            | By: (4)               | Date             | Time         | Received                  | For         | boratory                  | 1 By: 91.<br>3/04   | 5    |           |          | or Ar   | nbient  | :[]            | INTACT                   | BROKEN ABSENT                  |
|                         |                       | L                |              | P                         | -           | 04/0                      | 3124                | _    |           | _        |         |         |                |                          |                                |

[X 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [ ]5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (10) 350-1557 http://www.sgs.com/terms and conditions.htm

REVIEWED Colu

F088\_COC\_REF\_LAB\_20190411

FC14511: Chain of Custody Page 1 of 2

| Job Number:                                                                                                                                                                                                                                                                               | fc14511 Client:                                                                                                                                                                                                                    | SGS ALASKA               |                                                                                                                                                                                                                   | Project: 1241194                                                                                                                                                                                                                                                                                                            | Project: 1241194                                                                            |    |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----|------|--|--|
| Date / Time Received:                                                                                                                                                                                                                                                                     | 4/3/2024 9:15:00 AM                                                                                                                                                                                                                | Delivery Method:         | FED EX                                                                                                                                                                                                            | Airbill #'s: 6420 4270 4633                                                                                                                                                                                                                                                                                                 | 3                                                                                           |    |      |  |  |
| Cooler Temps (Raw Mea<br>Cooler Temps (Cor                                                                                                                                                                                                                                                | asured) °C: Cooler 1: (2.2)<br>rrected) °C: Cooler 1: (3.2)                                                                                                                                                                        | •<br>•                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                             |                                                                                             |    |      |  |  |
| Cooler Information     1. Custody Seals Present:     2. Custody Seals Intact:     3. Temp criteria achieved:     4. Cooler temp verification:     5. Cooler media:     Trip Blank Information     1. Trip Blank present / cool     2. Trip Blank listed on COC     3. Type of TB Received | Y       or       N         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I | )<br>N/A<br><br>N/A<br>V | Sample Into<br>1. Sample Into<br>2. Samples p<br>3. Sufficient v<br>4. Condition<br>5. Sample re<br>6. Dates/Tim<br>7. VOCs hav<br>8. Bottles rec<br>9. Compositi<br>10. Voa Soil<br>11. % Solids<br>12. Residual | prmation<br>bels present on bottles:<br>presented properly<br>rolume/containers recv'd for analysis<br>of sample:<br>wov'd within HT<br>tes/IDs on COC match sample label<br>re headspace<br>beived for unspecified tests<br>ing instructions clear<br>Kits/Jars received past 48hrs?<br>Jar Received?<br>Chlorine Present? | Y<br>V<br>V<br>Intact<br>V<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U |    |      |  |  |
| Misc Information<br>Number of Encores: 24<br>Test Strip Lot #s:<br>Residual Chlorine Test S<br>Comments                                                                                                                                                                                   | 5 Gram 5 Gran<br>pH 0-3:226422<br>Strip Lot #                                                                                                                                                                                      | npH 10-12:<br>           |                                                                                                                                                                                                                   | lumber of Lab Filtered Metals:<br>Other: (Specify)pH 1.0 -                                                                                                                                                                                                                                                                  | 12.0                                                                                        | 22 | 2221 |  |  |

### SGS - Orlando Sample Receipt Summary

5 -1

G

FC14511: Chain of Custody Page 2 of 2



13 of 22



**Section 6** 

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

6

# Method Blank Summary

| Job Number: | FC14511                       |
|-------------|-------------------------------|
| Account:    | SGSAKA SGS North America, Inc |
| Project:    | 1241194                       |

|  | Sample H<br>GLL3074-MB I | F <b>ile ID</b><br>LL88410.D | <b>DF</b><br>1 | <b>Analyzed</b> 04/04/24 | <b>By</b><br>JR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a | <b>Analytical Batch</b><br>GLL3074 |
|--|--------------------------|------------------------------|----------------|--------------------------|-----------------|-------------------------|--------------------------|------------------------------------|
|--|--------------------------|------------------------------|----------------|--------------------------|-----------------|-------------------------|--------------------------|------------------------------------|

## The QC reported here applies to the following samples:

FC14511-1, FC14511-2, FC14511-3, FC14511-4

| CAS No. | Compound | Result | RL   | Units Q |
|---------|----------|--------|------|---------|
| 74-82-8 | Methane  | ND     | 0.50 | ug/l    |
| 74-84-0 | Ethane   | ND     | 1.0  | ug/l    |
| 74-85-1 | Ethene   | ND     | 1.0  | ug/l    |

Page 1 of 1

Method: RSKSOP-147/175

# Method Blank Summary Job Number: FC14511

| Account:<br>Project:           | SGSAKA SGS N<br>1241194       | North Ame      | erica, Inc               |                 |                         |                          |                             |
|--------------------------------|-------------------------------|----------------|--------------------------|-----------------|-------------------------|--------------------------|-----------------------------|
| <b>Sample</b><br>GLL3075-M     | <b>File ID</b><br>B LL88442.D | <b>DF</b><br>1 | <b>Analyzed</b> 04/05/24 | <b>By</b><br>JR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a | Analytical Batch<br>GLL3075 |
| <b>The QC rep</b><br>FC14511-2 | orted here applies to         | o the follo    | owing samples:           |                 |                         | Method: RSKS             | OP-147/175                  |
| CAS No.                        | Compound                      |                | Result H                 | RL              | Units Q                 |                          |                             |
| 74-82-8                        | Methane                       |                | ND 0                     | .50             | ug/l                    |                          |                             |





# Blank Spike/Blank Spike Duplicate Summary

| Job Number: | FC14511                       |
|-------------|-------------------------------|
| Account:    | SGSAKA SGS North America, Inc |
| Project:    | 1241194                       |

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| GLL3074-BS  | LL88408.D | 1  | 04/04/24 | JR | n/a       | n/a        | GLL3074          |
| GLL3074-BSD | LL88409.D | 1  | 04/04/24 | JR | n/a       | n/a        | GLL3074          |
| GLL3074-BSD | LL88409.D | 1  | 04/04/24 | JR | n/a       | n/a        | G                |

#### The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FC14511-1, FC14511-2, FC14511-3, FC14511-4

| CAS No. | Compound | Spike<br>ug/l | BSP<br>ug/l | BSP<br>% | BSD<br>ug/l | BSD<br>% | RPD | Limits<br>Rec/RPD |
|---------|----------|---------------|-------------|----------|-------------|----------|-----|-------------------|
| 74-82-8 | Methane  | 108           | 93.0        | 86       | 98.6        | 91       | 6   | 62-139/30         |
| 74-84-0 | Ethane   | 219           | 185         | 84       | 201         | 92       | 8   | 67-141/30         |
| 74-85-1 | Ethene   | 290           | 245         | 84       | 274         | 94       | 11  | 68-141/30         |

Page 1 of 1

# Blank Spike/Blank Spike Duplicate Summary

| Job Number: | FC14511                       |
|-------------|-------------------------------|
| Account:    | SGSAKA SGS North America, Inc |
| Project:    | 1241194                       |

| Sample<br>GLL3075-BS<br>GLL3075-BSD                                           | <b>File ID</b><br>LL88440.D<br>LL88441.D | <b>DF</b><br>1<br>1 | <b>Analyzed</b><br>04/05/24<br>04/05/24 | <b>By</b><br>JR<br>JR | <b>Prep Date</b><br>n/a<br>n/a | e Pi<br>n/<br>n/ | r <b>ep Batc</b> l<br>a<br>a | h Analytical Batch<br>GLL3075<br>GLL3075 |
|-------------------------------------------------------------------------------|------------------------------------------|---------------------|-----------------------------------------|-----------------------|--------------------------------|------------------|------------------------------|------------------------------------------|
| The QC reported here applies to the following samples: Method: RSKSOP-147/175 |                                          |                     |                                         |                       |                                |                  |                              |                                          |
| FC14511-2                                                                     |                                          |                     |                                         |                       |                                |                  |                              |                                          |
| CAS No. Con                                                                   | pound                                    | Sp<br>ug            | ike BSP<br>/l ug/l                      | BSP<br>%              | BSD<br>ug/l                    | BSD<br>%         | RPD                          | Limits<br>Rec/RPD                        |

**೧** 

Page 1 of 1

Page 64 of 68

\* = Outside of Control Limits.

# Matrix Spike Summary

| Job Number: | FC14511                      |   |
|-------------|------------------------------|---|
| Account:    | SGSAKA SGS North America, In | с |
| Project:    | 1241194                      |   |

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| FC14504-3MS | LL88416.D | 1  | 04/04/24 | JR | n/a       | n/a        | GLL3074          |
| FC14504-3   | LL88412.D | 1  | 04/04/24 | JR | n/a       | n/a        | GLL3074          |
|             |           |    |          |    |           |            |                  |

#### The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FC14511-1, FC14511-2, FC14511-3, FC14511-4

| CAS No. | Compound | FC14504-3<br>ug/l Q | Spike<br>ug/l | MS<br>ug/l | MS<br>% | Limits |
|---------|----------|---------------------|---------------|------------|---------|--------|
| 74-82-8 | Methane  | 0.50 U              | 108           | 95.2       | 88      | 62-139 |
| 74-84-0 | Ethane   | 1.0 U               | 219           | 196        | 89      | 67-141 |
| 74-85-1 | Ethene   | 1.0 U               | 290           | 268        | 92      | 68-141 |

Page 1 of 1

6.3.1



# Matrix Spike Summary

| Job Number: | FC14511                   |     |
|-------------|---------------------------|-----|
| Account:    | SGSAKA SGS North America, | Inc |
| Project:    | 1241194                   |     |

| <b>Sample</b><br>FC14542-3MS<br>FC14542-3 | <b>File ID</b><br>LL88448.D<br>LL88444.D | <b>DF</b><br>1<br>1 | <b>Analyzed</b><br>04/05/24<br>04/05/24 | <b>By</b><br>JR<br>JR | <b>Prep Date</b><br>n/a<br>n/a | <b>Prep Batch</b><br>n/a<br>n/a | <b>Analytical Batch</b><br>GLL3075<br>GLL3075 |
|-------------------------------------------|------------------------------------------|---------------------|-----------------------------------------|-----------------------|--------------------------------|---------------------------------|-----------------------------------------------|
| The QC reported                           | here applies to                          | the followi         | ng samples:                             |                       | Μ                              | lethod: RSKSC                   | <b>D</b> P-147/175                            |
| FC14511-2                                 |                                          |                     |                                         |                       |                                |                                 |                                               |

|         |          | FC14542 | 2-3 | Spike | MS   | MS |        |
|---------|----------|---------|-----|-------|------|----|--------|
| CAS No. | Compound | ug/l    | Q   | ug/l  | ug/l | %  | Limits |
| 74-82-8 | Methane  | 0.50 U  |     | 108   | 98.2 | 91 | 62-139 |

6.3.2

### Duplicate Summary Job Number: FC14511

Job Number:FC14511Account:SGSAKA SGS North America, IncProject:1241194

| Sample       | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|--------------|-----------|----|----------|----|-----------|------------|------------------|
| FC14504-1DUP | LL88415.D | 1  | 04/04/24 | JR | n/a       | n/a        | GLL3074          |
| FC14504-1    | LL88411.D | 1  | 04/04/24 | JR | n/a       | n/a        | GLL3074          |
|              |           |    |          |    |           |            |                  |

#### The QC reported here applies to the following samples:

Method: RSKSOP-147/175

FC14511-1, FC14511-2, FC14511-3, FC14511-4

| CAS No. | Compound | FC14504-1<br>ug/l Q | DUP<br>ug/l Q | RPD | Limits |
|---------|----------|---------------------|---------------|-----|--------|
| 74-82-8 | Methane  | 0.50 U              | ND            | nc  | 30     |
| 74-84-0 | Ethane   | 1.0 U               | ND            | nc  | 30     |
| 74-85-1 | Ethene   | 1.0 U               | ND            | nc  | 30     |



Page 1 of 1

# **Duplicate Summary**

| Job Number: | FC14511                       |
|-------------|-------------------------------|
| Account:    | SGSAKA SGS North America, Inc |
| Project:    | 1241194                       |

| <b>Sample</b><br>FC14542-1DUP<br>FC14542-1 | <b>File ID</b><br>LL88447.D<br>LL88443.D | <b>DF</b><br>1<br>1 | <b>Analyzed</b> 04/05/24 04/05/24 | <b>By</b><br>JR<br>JR | <b>Prep Date</b><br>n/a<br>n/a | <b>Prep Batch</b><br>n/a<br>n/a | Analytical Batch<br>GLL3075<br>GLL3075 |
|--------------------------------------------|------------------------------------------|---------------------|-----------------------------------|-----------------------|--------------------------------|---------------------------------|----------------------------------------|
| The QC reported                            | here applies to                          | the follow          | ving samples:                     |                       | ]                              | Method: RSKS                    | OP-147/175                             |
| FC14511-2                                  |                                          |                     |                                   |                       |                                |                                 |                                        |

|         |          | FC14542-1 | DUP  |   |     |        |
|---------|----------|-----------|------|---|-----|--------|
| CAS No. | Compound | ug/l Q    | ug/l | Q | RPD | Limits |
| 74-82-8 | Methane  | 0.50 U    | ND   |   | nc  | 30     |

Page 1 of 1

\* = Outside of Control Limits.

# ADEC Contaminated Sites Program Laboratory Data Review Checklist

| Completed By:    | William<br>Watts<br>May 10,<br>2024 | CS Site<br>Name:  | Kiewit Pacific<br>Company, 2050<br>Peger Road,<br>Fairbanks,<br>Alaska | Lab Name:              | SGS North<br>America Inc. |
|------------------|-------------------------------------|-------------------|------------------------------------------------------------------------|------------------------|---------------------------|
| Title:           | Project<br>Manager                  | ADEC File<br>No.: | 102.38.164                                                             | Lab<br>Report<br>No.:  | 1241194                   |
| Consulting Firm: | <i>NORTECH</i> ,<br>Inc.            | Hazard ID<br>No.: | 25680                                                                  | Lab<br>Report<br>Date: | April 11,<br>2024         |

*Note:* Any N/A or No box checked must have an explanation in the comments box.

#### 1. Laboratory

- a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses?
   Yes ⊠ No □ N/A □ Comments:
- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

```
\mathsf{Yes} \boxtimes \mathsf{No} \Box \mathsf{N/A} \Box
```

Comments: Except for Light Gases (methane, ethane, and ethene) analysis by EPA Method RSK175, all sample analyses were performed by SGS North America Inc. in Anchorage, Alaska. Samples for Light Gases analysis were transferred to SGS-Orlando, Florida network laboratory. The Light Gases analysis was conducted to evaluate natural source zone depletion at the site.

### 2. Chain of Custody (CoC)

a. Is the CoC information completed, signed, and dated (including released/received by)?

```
Yes \boxtimes No \square N/A \square
Comments:
```

b. Were the correct analyses requested?

Yes No No N/A Analyses requested: DRO by AK102, VOCs by EPA Method 8260D, PAHs by EPA Method 8270E SIM, and Natural Attenuation Parameters: Methane/Ethane/Ethene by EPA Method RSKSOP 147/175, Nitrate and Sulfate by EPA Method 300.0, and Total and Dissolved Iron and Manganese by EPA Method 6020B.

Comments:

#### 3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Cooler temperature(s): 2.1° C and 3.2° C

Sample temperature(s): Click or tap here to enter text. Comments:

b. Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- c. Is the sample condition documented broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?
   Yes ⊠ No □ N/A □
   Comments: The samples were received in good condition.
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?
   Yes □ No □ N/A ⊠
   Comments: There were no discrepancies.
- e. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.

#### 4. Case Narrative

- a. Is the case narrative present and understandable?
   Yes ⊠ No □ N/A □
   Comments:
- b. Are there discrepancies, errors, or QC failures identified by the lab?

Yes No N/A Comments: 1241124004(1757750MS) (1757754) MS 300.0 - Anions - MS recovery for sulfate is outside of QC criteria. Refer to LCS for accuracy requirements.

1241124002(1757749MSD) (1757756) MSD 300.0 - Anions - MSD recovery for sulfate is outside of QC criteria. Refer to LCS for accuracy

#### requirements.

- c. Were all the corrective actions documented?
   Yes □ No □ N/A ⊠
   Comments: No corrective actions were necessary.
- d. What is the effect on data quality/usability according to the case narrative? Comments: There is no effect on data quality or usability according to the case

narrative.

#### 5. Sample Results

- Are the correct analyses performed/reported as requested on CoC?
   Yes ⊠ No □ N/A □
   Comments:
- b. Are all applicable holding times met?
   Yes ⊠ No □ N/A □
   Comments:
- c. Are all soils reported on a dry weight basis?
   Yes □ No □ N/A ⊠
   Comments: There were no soil samples submitted with this work order.
- d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?
   Yes ⊠ No □ N/A □

Comments:

e. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

### 6. QC Samples

- a. Method Blank
  - Was one method blank reported per matrix, analysis, and 20 samples? Yes ⋈ No □ N/A □ Comments:
  - ii. Are all method blank results less than LOQ (or RL)?
     Yes ⊠ No □
     Comments:

- iii. If above LoQ or RL, what samples are affected? Comments: No samples are affected. Method blank results are below LOQs.
- iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\hfill\square$  No  $\hfill\square$  N/A  $\hfill\square$  Comments: No samples are affected. No data flags are necessary.

v. Data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

#### b. Laboratory Control Sample/Duplicate (LCS/LCSD)

 Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- ii. Metals/Inorganics Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
   Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes ⊠ No □ N/A □ Comments:
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
   Yes ⊠ No □ N/A ⊠

Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: No samples are affected.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: No samples are affected. No data flags are necessary.

vii. Is the data quality or usability affected?
 Yes □ No □ N/A ⊠
 Comments: Data quality and usability are not affected.

## c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\Box$  No  $\boxtimes$  N/A  $\Box$ Comments: MS/MSD samples were not required for this project, and the lab did not run a MS/MSD for DRO, VOCs, and PAHs with the batch. According to the lab, when there is not sufficient volume for MS/MSD analyses an LCS/LCSD is run.

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- iii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
   Yes ⊠ No □ N/A □ Comments:
- iv. Precision Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: No samples are affected.
- vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: No samples are affected. No data flags are necessary.

#### vii. Is the data quality or usability affected?

Yes  $\Box$  No  $\Box$  N/A  $\boxtimes$ Comments: Data quality and usability are not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
  - Are surrogate/IDA recoveries reported for organic analyses field, QC, and laboratory samples?
     Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

- ii. Accuracy Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
  Yes ⊠ No □ N/A □
  Comments: Click or tap here to enter text.
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
  Yes □ No □ N/A ⊠
  Comments: Click or tap here to enter text.
- iv. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.

### e. Trip Blanks

- Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- ii. Are all results less than LoQ or RL? Yes ⊠ No □ N/A □ Comments: Click or tap here to enter text.
- iii. If above LoQ or RL, what samples are affected? Comments: No samples are affected.
- iv. Is the data quality or usability affected?
   Yes □ No □ N/A ⊠
   Comments: Data quality and usability are not affected.
- f. Field Duplicate
  - i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

 $\mathsf{Yes}\,\boxtimes\;\;\mathsf{No}\,\square\;\;\;\mathsf{N/A}\,\square$ 

Comments: Field duplicate pair MW-3/MW-300 was submitted with this laboratory work order.

ii. Was the duplicate submitted blind to lab?

Yes  $\boxtimes$  No  $\square$  N/A  $\square$ Comments: Click or tap here to enter text.

 iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2}\right)} \right| X \ 100$$

Where  $R_1$  = Sample Concentration

 $R_2$  = Field Duplicate Concentration

#### Is the data quality or usability affected? (Explain)

 $\mathsf{Yes} \square \mathsf{No} \boxtimes \mathsf{N/A} \square$ 

Comments: Thirteen analytes were detected in the duplicate pair. Five analytes had RPDs greater than the 30% recommended for water ranging from 31.9% to 85.6%. The associated well was pumped dry, was slow to recharge, and purge water from the well exhibited petroleum odor. The RPD exceedances are attributed to non-homogenous sample matrix.

#### iv. Is the data quality or usability affected? (Explain)

Yes 🛛 No 🗆 N/A 🗆

Comments: Data quality and usability are not adversely affected. The higher value of each detected analyte in the duplicate pair was consistent with previous sampling events and was used for decision purposes.

#### g. Decontamination or Equipment Blanks

i. Were decontamination or equipment blanks collected? Yes ⊠ No □ N/A □

Comments: Click or tap here to enter text.

- ii. Are all results less than LoQ or RL?
   Yes ⊠ No □ N/A □
   Comments: Click or tap here to enter text.
- iii. If above LoQ or RL, specify what samples are affected. Comments: No samples are affected.
- iv. Are data quality or usability affected? Yes □ No □ N/A ⊠

Comments: Data quality and usability are not affected.

## 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

### a. Are they defined and appropriate?

Yes 🛛 No 🗆 N/A 🗆

Comments: No additional flags or qualifiers are necessary for this work order.