SUBMITTED TO: The Krausz Companies, Inc. 44 Montgomery Street, Suite 2388 San Francisco, CA. 94104

^{BY:} Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, Alaska 99709

(907) 479-0600 www.shannonwilson.com

ANNUAL GROUNDWATER MONITORING AND 2018 VAPOR INTRUSION REPORT Bentley Mall East Satellite FAIRBANKS, ALASKA

SHANNON & WILSON

July 2019 Shannon & Wilson No: 101926-006

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

The Krausz Companies, Inc. 44 Montgomery Street, Suite 2388 San Francisco, CA. 94104

Attn: Mr. David Pyle

RE: ANNUAL GROUNDWATER MONITORING AND 2018 VAPOR INTRUSION REPORT, BENTLEY MALL EAST SATELLITE , FAIRBANKS, ALASKA

Shannon & Wilson participated in this project as a consultant to The Krausz Companies, Inc. Our scope of services was specified in our *Annual Groundwater Monitoring and 3-Year Vapor Intrusion Evaluation Work Plan* dated October 29, 2018, along with our proposals and cost estimates dated October 03, 2018 and January 22, 2019. Our services are provided under Master Services Agreement Number KCI-2016 and the January 22, 2019 proposal task order signed by you on March 14, 2019.

This report was prepared and reviewed by:

Sheila Hinckley Environmental Scientist IV *Role: Primary Author and Project Manager*

Chris Darrah Vice President *Role: Supervisor and Reviewer*

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

1	Intr	oduction1
	1.1	Project Objectives1
	1.2	Scope of Services1
2	Site	Description And Project Summary
	2.1	Site Description2
	2.2	Project Summary
	2.3	Contaminants of Potential Concern and Cleanup Levels
	2.4	Further Discussion of Chloroform as a COPC
	2.5	Data Quality Objectives and Regulatory Comparison Criteria
3	Con	ceptual Site Model
4	Fiel	d Activities7
	4.1	Monitoring Well Survey7
	4.2	Monitoring Well Sampling7
	4.3	Indoor Air Sampling at Private Properties
	4.4	Investigative Derived Waste
	4.5	Sample Custody, Storage, and Transport9
5	Ana	lytical Results9
	5.1	Monitoring Well Samples9
	5.2	Indoor-Air Samples
6	Qua	lity Assurance/Quality Control
7	Disc	russion
	7.1	Monitoring Well Sampling
	7.2	Indoor-Air Sampling at Private Properties11
8	Reco	ommendations
9	Clos	Sure12
10	Refe	erences14

Exhibits

Exhibit 2-1: Various drums and containers at VIP Cleaners. Note the two 55-gallon PCE
drums. The BMES upgradient monitoring well MW-1R is shown in the right foreground2
Exhibit 4-1: 24-hour Indoor Air Sample IA1-2018.

Tables

Table 1:	2018 Groundwater Results
Table 2:	2018 Residential Indoor-Air Results

Figures

Figure 1: Site Vicinity Figure 2: 2018 Results - Exceeding Regulatory Levels

Appendices

Appendix A: Conceptual Site Model - Updated Appendix B: Monitoring Well Sample Logs Appendix C: Indoor Air Sampling Logs Appendix D: Monitoring Well survey Appendix E: Analytical Laboratory Reports Appendix F: ADEC Laboratory Data Review Checklists Appendix G: Quality Assurance and Quality Control Summary Important Information

°C	degrees Celsius
AAC	Alaska Administrative Code
ADEC	Alaska Department of Environmental Conservation
bgs	below ground surface
BIQ	Building Inventory and Indoor Air Sampling Questionnaire
BMES	Bentley Mall East Satellite
CCV	continuing calibration verification
CUL	cleanup level
COPC	contaminant of potential concern
COC	chain of custody
CSM	conceptual site model
1,2-DCA	1,2-Dichloroethane
1,2-DCE	1,2-dichlorethene
DL	detection limit
DQO	data quality objective
EPA	Environmental Protection Agency
ERG	Environmental Resource Group
Eurofins	eurofins Air Toxics, Inc.
FNSB	Fairbanks North Star Borough
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LDRC	Laboratory Data-Review Checklist
LOD	limit of detection
LOQ	limit of quantitation
MS	matrix spike
MSD	matrix spike duplicate
μg/L	microgram per liter
μg/m³	microgram per cubic meter
NRC	NRC Alaska, LLC
PAN	parcel account number
PCE	tetrachloroethene
QA	quality assurance
QC	quality control
RPD	relative percent difference
SGS	SGS North America, Inc.
SVE	soil-vapor extraction
TCE	trichloroethene
1,2,3-TCP	1,2,3-trichloropropane
USGS	United States Geological Survey
VI	vapor intrusion
VOC	volatile organic compound
Work Plan	Annual Groundwater Monitoring and 3-Year Vapor Intrusion Evaluation Work Plan

ACRONYMS

1 INTRODUCTION

This report summarizes our Fall 2018 field efforts associated with the Bentley Mall East Satellite (BMES) building, located at 20 College Road in Fairbanks, Alaska (Figure 1). The BMES building is located in the southeast corner of the Bentley Mall property (parcel account number [PAN] 93181); it is listed by the Alaska Department of Environmental Conservation (ADEC) as a contaminated site (ADEC File 102.38.122), as a result of chlorinated-solvent contamination having been detected in soil and groundwater at the site. Chlorinated solvents are present in the groundwater extending west through the Charles Slater residential subdivision.

Shannon & Wilson prepared this report in compliance with ADEC regulations Title 18 Chapter 75 of the Alaska Administrative Code (18 AAC 75.335) and applicable ADEC guidance.

1.1 Project Objectives

The overall study goal was to evaluate groundwater quality in the area downgradient (west) of the BMES building and assess the potential for vapor intrusion (VI) into homes and buildings within the affected area. Our objectives were to collect and analyze groundwater and indoor-air samples.

1.2 Scope of Services

Our scope of services included implementing our *Annual Groundwater Monitoring and 3-Year Vapor Intrusion Evaluation Work Plan* (Work Plan) and preparing this report. Prior to field activities in 2018, the services described in the Work Plan were verbally approved by the ADEC's Project Manager, James Fish. The October 29, 2018 Work Plan was officially approved by the ADEC on December 19, 2018.

Field activities included:

- Conducting a groundwater-elevation survey at 13 monitoring wells.
- Collecting analytical groundwater samples from the 13 existing monitoring wells.
- Collecting follow-up indoor-air samples from two private properties within the groundwater plume extent, where October 2017 analytical concentrations exceeded ADEC Target Levels for chloroform.

This report includes a summary of field activities, analytical laboratory results, conclusions, and recommendations relevant to future management of the site. We have updated the

conceptual site model (CSM) presented in the work plan and provide the graphic form in Appendix A.

The authorized scope of services was based on the Work Plan. Our scope of services did not include:

- Performing an audit for regulatory compliance.
- Evaluating the presence of contaminants or naturally occurring materials, other than those for which our analyses were performed.

If a service is not specifically indicated in this report, do not assume that it was performed.

2 SITE DESCRIPTION AND PROJECT SUMMARY

Below is a description of the site and a summary of historical evaluations through the 2018 field activities.

2.1 Site Description

The BMES building is located at 20 College Road in Fairbanks, Alaska, situated on the southeast corner of the Bentley Mall property (parcel 93181; Figure 1). Tetrachloroethene (PCE) and trichloroethene (TCE) have been detected in the groundwater at and downgradient of the BMES property. The ADEC considers the BMES site to be a source of this contamination, although other suspected sources have also been identified, including VIP Cleaners directly upgradient from BMES building.

Exhibit 2-1: Various drums and containers at VIP Cleaners. Note the two 55-gallon PCE drums. The BMES upgradient monitoring well MW-1R is shown in the right foreground.

The groundwater-contaminant plume extends west of the site into the Charles Slater residential subdivision; public water and sewer service serve this area. Based on previous site-specific groundwater investigations and current survey data, groundwater flow direction is to the west and northwest.

Our study boundaries comprise the suspected source area in the vicinity of the BMES structure, and the groundwater-contaminant plume extending west of the site into the Charles Slater residential subdivision.

2.2 Project Summary

The BMES site was added to the ADEC's Contaminated Sites Database in April 2003 following detections of PCE and TCE in soil and groundwater samples collected as part of a Phase II Environmental Site Assessment. The Phase II report noted a dry cleaner in operation at the BMES building for several years in the 1980s; however, the investigation was unable to pinpoint the PCE and TCE source area due to physical proximity to an upgradient dry cleaning facility known to use products containing PCE. ERG was contracted to conduct additional site characterization activities and an August 2003 soil-gas survey indicated the historical dry-cleaning operation at the BMES building appeared to be the source of PCE and TCE at the BMES property. The results of the survey also indicated the wastewater line from the BMES building may be a preferential pathway of PCE.

In April 2005, indoor-air samples were collected by ERG from the BMES building, McDonalds, and Wells Fargo Bank; PCE and TCE were detected above target levels at the BMES building and Wells Fargo at that time. Thirteen monitoring wells (MW-1 to MW-13) were installed and sampled in fall 2005; sample results suggested a PCE and TCE plume extending off-site in a westerly direction.

Soil-vapor extraction (SVE) systems were installed around the BMES and Wells Fargo Bank buildings in September 2006 and remained active for five years. PCE and TCE concentrations in the source area decreased during this time and in August 2011, ADEC approved ERG's request to shut down the SVE systems citing approval of a groundwatermonitoring schedule. Groundwater PCE and TCE concentrations at the time were not below ADEC cleanup levels (CULs).

ERG collected 30 passive soil gas samples along the Noyes Street sewer line in October 2010. Sample results indicated relatively low levels of PCE were detected and appeared to be in a clustered formation near 620 and 640 Noyes Street. They concluded it may be indicative of a leaking sewer or storm drain. In February 2013, ADEC met with ERG to discuss the fall 2012 results that reported increasing concentrations of PCE in MW-1, a monitoring well upgradient of the BMES building. ADEC subsequently followed up with letters to the owners of VIP Cleaners Inc. (Figure 1) and the BMES. In the BMES letter dated April 22, 2013, ADEC reopened BMES as a contaminated site and required further evaluation of vapor intrusion risks associated with the groundwater plume.

ERG collected 11 soil-gas samples in September 2015 from the Charles Slater subdivision to assess whether further investigation at the residences was necessary. Soil-gas samples were collected from seven private properties in the Charles Slater subdivision in March 2016. Soil-gas sample results for four of the private properties exceeded or nearly exceeded ADEC target levels for PCE, TCE or 1,2-dichlorethene (1,2-DCE). ERG also collected indoor-air samples from 120 Ina Street in November 2015 and January 2016; chlorinated solvents were not detected above ADEC target levels in these samples.

The Owner retained Shannon & Wilson, Inc. in 2016 as their environmental consultant. Shannon & Wilson conducted a winter 2016 sampling event (December 2016 and January 2017) collecting indoor-air samples from seven commercial businesses and soil-gas samples from properties in the Charles Slater subdivision using sampling ports installed by ERG. ADEC target levels for PCE and TCE were not exceeded during this sampling event with the exception of PCE from the AutoZone indoor-air sample.

In June 2017, ADEC requested additional samples be collected from the sampling ports to verify the lower concentrations noted between the March 2016 and winter 2016 sampling events. In October and November 2017, we collected soil-gas, sub-slab, and indoor-air samples from residential properties and indoor-air from the AutoZone and Wild Wings. PCE and TCE results from our October/November 2017 VI sampling event were comparable to the winter 2016 sampling event. Contaminants of potential concern (COPCs) were below ADEC target levels with following the exceptions at private locations:

- chloroform, from soil-gas sample *SV-13* and sub-slab sample *SS1A*, and
- PCE and TCE in soil-gas field duplicate sample pair *SVR4B/SVR40B*.

Groundwater sampling conducted in October 2017 resulted in COPC analytical detections exceeding ADEC regulatory limits in nine of the 13 monitoring wells. Mann-Kendall trend analysis indicated evidence of:

- increasing trends of PCE and TCE in MW-1, MW-8, and MW-11,
- decreasing trends of PCE in MW-2, MW-3, MW-4, MW-7, MW-10, and MW-13, and
- decreasing trends of TCE in MW-2, MW-4, MW-7, and MW-10

In the May 2018 comments to our *Bentley Mall East Satellite 2017 Soil Gas and Groundwater Assessment Report,* ADEC requested a work plan to cover a three-year time frame for continued annual groundwater monitoring and once every three years for VI monitoring. See our October 2018 *Annual Groundwater Monitoring and 3-Year Vapor Intrusion Evaluation Work Plan* for further details.

2.3 Contaminants of Potential Concern and Cleanup Levels

The COPCs associated with this site include PCE, PCE degradation constituents (TCE, 1,2-DCE, and vinyl chloride), and, added at ADEC's request, chloroform.

2.4 Further Discussion of Chloroform as a COPC

In 2017, chloroform was added to the VI COPCs for the site at the request of the ADEC in their response to our 2017 Soil Gas and Groundwater Assessment Work Plan. The ADEC comment states: "The compound chloroform has also been found in groundwater above its cleanup level, has been found in soil gas above target levels, and is also a volatile compound with VI target levels available. So this compound should be considered a COC for the site..."

Upon further consideration and research on chloroform, we are requesting this analyte be removed from the groundwater and VI COPC list for the BMES site. This request is based upon:

- 1. According to the Environmental Protection Agency (EPA) chloroform fact sheet and the United States Geological Survey (USGS) *Scientific Report 2004-5137*), chloroform produced in chemical manufacturing is used primarily for the production of hydrochlorofluorocarbon-22 (HCFC-22) also known as R-22. R-22 is a refrigerant used in air conditioners and freezers. This compound is not unique to dry cleaning facilities.
- 2. Chloroform is not a degradation product of PCE. Chloroform is a degradation product of carbon tetrachloride. Carbon tetrachloride disappeared from use at dry cleaner sites nationwide in the 1950's and was primarily replaced with PCE (https://drycleancoalition.org/reference.cfm). The BMES building was built in 1976 according to FNSB records, and to our knowledge carbon tetrachloride was not used in dry cleaner operations there. We do not know the history of VIP Cleaners located upgradient from BMES.
- 3. According to Richard Rago a contributor to *Background Indoor Air Concentrations* (Environmental Protection Agency) *EPA* 530-*R*-10-001 (Richard Rago, written communication, May 3, 2019), background air studies have detected chloroform at concentrations in the same range and higher than the result from sample *IA1-2018*.
- 4. According to Stephen Ede of SGS North America, Inc. (SGS) (Stephen Ede, written communication, May 17, 2019) the laboratory has detected chloroform where no

indications of anthropogenic contamination are known; chloroform can be naturally occurring.

- 5. Of the 226 dry cleaning sites profiles listed in The State Coalition for Remediation of Dry Cleaners database, only four sites have chloroform as a COPC.
- 6. According to the USGS's *Scientific Report 2006-5015 and Scientific Report 2004-5137*, many sources of chloroform exist including: a variety of natural sources, municipally supplied chlorinated water, the practice of well disinfection through shock chlorination, laundry waste-water containing bleach, leaking sewer lines, septic systems, refrigerants, and numerous other household products.
- 7. Upgradient sources of chloroform are suspected as evidenced by higher chloroform concentrations in monitoring wells upgradient of the former BMES dry cleaning facility, MW-1R and MW-14.

2.5 Data Quality Objectives and Regulatory Comparison Criteria

Our analytical approach and performance criteria are in compliance with ADECs Data Quality Objectives (DQOs), Checklists, Quality Assurance (QA) requirements for Laboratory Data, and Sample Handling Technical Memorandum dated March 2017. We collected groundwater and indoor-air samples to be analyzed for select volatile organic compounds (VOCs); the above COPCs and their degradation products are included in the modified VOC lists.

To evaluate groundwater sample concentrations, we compared the analytical data to 18 AAC 75.341 *Table C Groundwater Cleanup Levels* (October 2018).

To evaluate air-sample concentrations, we compared the analytical data to residential ADEC target levels listed in Appendix D: DEC Indoor Air Target Levels from ADECs *Vapor Intrusion Guidance* (November 2017). We also compared both geometric isomers of 1,2-DCE (*cis*-1,2-dichloroethene and *trans*-1,2-dichloroethene) to the site-specific indoor-air target levels provided by ADEC in a September 20, 2017 email.

3 CONCEPTUAL SITE MODEL

A CSM describes potential pathways between a contaminant source and possible receptors (i.e., people, animals, and plants) and is used to determine who may be at risk of exposure to those contaminants. We summarize the suspected contaminant sources, migration and exposure pathways, and potential receptors on the Human Health Conceptual Site Model Graphic Form in Appendix A. Based on our understanding of site conditions and historical information from the former dry-cleaning business located in the BMES building, potentially contaminated media include surface and subsurface soil, groundwater, and air. Contaminants that reach the groundwater table are presumed to be subject to transport with groundwater flow away from the source areas. Potential receptors include construction workers, residents, commercial or industrial workers, and other site visitors. Potential exposure routes include dermal contact with, and incidental ingestion of, contaminated soils and groundwater, and exposure to vapors in outdoor and indoor air.

4 FIELD ACTIVITIES

This section summarizes field activities performed in November 2018, to implement the ADEC-approved Work Plan.

Our field activity and sample collection logs are included in Appendix B through C. Appendix C also includes an ADEC Building Inventory and Indoor Air Sampling Questionnaire (BIQ) for the first-time sample location at the Monroe Catholic School.

4.1 Monitoring Well Survey

We subcontracted with Design Alaska, Inc. to conduct a vertical and horizontal survey of the monitoring wells on November 5, 2018.

Note that five monitoring wells were decommissioned, and four replacement wells installed between May and September 2018 as part of the BMES Starbucks upgrades. Details regarding the decommissioning and installation of these monitoring wells are reported separately, and not discussed in this report.

We calculated the groundwater gradient information using the hydraulic gradient calculator available at the EPA *On-line Tools for Site Assessment Calculation* website. We utilized the November 2018 survey data in conjunction with the depth to water measurements collected on November 1, 2018 to complete the groundwater gradient calculations. Based on the elevation data, we estimate the groundwater flow direction is west north-west with a heading of approximately 298 degrees from north.

4.2 Monitoring Well Sampling

On November 1, 2018, Shannon & Wilson staff sampled each of the site's thirteen monitoring wells. Additionally, we collected two field duplicate samples *MW*-101R and

MW-108, and one equipment blank sample *EB-11*, for the same analyses of VOCs as the monitoring well project samples.

Prior to sampling, we measured the depth to water from the top of the well casing at each well location. From each well, we purged the water to prepare for sampling using a submersible pump with new, non-reusable sampling equipment. We set the pump within the screened interval of each well using the low-flow sampling technique. We collected water-quality parameters in the field at least three minutes apart using a YSI Professional Plus multi-parameter meter. We calibrated the field-equipment according to the manufacturers' instructions.

We purged each well until water-quality parameters (pH, conductivity, temperature, dissolved oxygen, oxidation/reduction potential, and clarity) stabilized or three well-casing volumes were purged, prior to sample collection. We collected groundwater samples into laboratory-provided containers. Appendix B includes copies of our monitoring well sampling logs.

4.3 Indoor Air Sampling at Private Properties

Exhibit 4-1: 24-hour Indoor Air Sample *IA1-2018*.

We collected indoor-air samples from two private properties on November 15, 2018 at the request of ADEC. During the previous sampling event in October 2017, these two locations exceeded ADEC target levels for chloroform in their soil-gas and sub-slab samples.

The indoor-air samples were collected over a 24-hour period using 6-liter canisters with flow controllers, provided by the analytical laboratory. We collected the samples from the lowest floor of the building in high-use areas within the breathing zone (3 to 5 feet off the ground).

Indoor-air sample collection logs are presented in Appendix C and include an ADEC BIQ for the sample collected at Monroe Catholic School.

4.4 Investigative Derived Waste

Decontamination water and purge water generated during groundwater sampling activities were considered hazardous waste due to known contamination at the BMES site. Two 55gallon drums of water were temporarily stored near the east side of the BMES building, until disposal through NRC Alaska, LLC completion on November 7, 2018. Other sampling equipment that cannot be readily decontaminated, such as pump-discharge tubing was disposed of as the Fairbanks North Star Borough (FNSB) landfill.

4.5 Sample Custody, Storage, and Transport

After groundwater sample collection, we wrapped the sample containers in bubble wrap and placed them in hard-plastic coolers with adequate quantities of frozen ice-substitute to maintain sample temperatures between 0 degrees Celsius (°C) and 6 °C until the samples reached the laboratory. A trip blank and "temperature blank" provided by the laboratory was packed and maintained with the samples for the duration of our custody. Shannon & Wilson maintained custody of the samples until submitting them to the laboratory for analysis.

We delivered water samples to the SGS receiving office in Fairbanks on November 02, 2019, with a requested "standard turnaround" time of 14 days.

After air-sample collection, we completed a chain of custody (COC) form and placed the sample canister inside the laboratory provided container for shipment. We maintained custody of the samples at all times until submitting them to the laboratory. We placed custody seals on the container and shipped the sample to Eurofins Air Toxics, Inc. (Eurofins) via FedEx.

5 ANALYTICAL RESULTS

Summaries of the analytical results are presented in Tables 1 and 2. The analytical laboratory reports and corresponding ADEC Laboratory Data-Review Checklists (LDRCs) are included in Appendices E and F, respectively. Figure 2 presents monitoring well and indoor air sample results exceeding regulatory levels.

5.1 Monitoring Well Samples

The November 2018 analytical results had detections for 11 VOCs in one or more project samples and are consistent with historical results (Table 1). These detections were less than ADEC cleanup levels listed in Table 1, with the following exceptions:

- PCE was detected in project samples MW-1R, MW-101R, MW-2R, MW-4R, MW-5, MW-6, and MW-12 at concentrations ranging between 42.9 microgram per liter (μg/L) and 217 μg/L.
- TCE was detected in project samples MW-5, MW-6, MW-9, MW-10, and MW-12 at concentrations ranging between 5.50 μg/L and 11.1 μg/L.

- 1,2-Dichloroethane (1,2-DCA) was detected in project sample MW-1R and its field duplicate MW-101R at concentrations of 2.35 µg/L and 2.46 µg/L, respectively.
- Chloroform was detected in project samples MW-1R, MW-101R, MW-2R, and MW-3R at concentrations ranging between 4.09 μg/L and 18.8 μg/L.

There were no additional analytes detected in the current sampling event exceeding CULs. 1,2,3-trichloropropane (1,2,3-TCP) was not detected in the project samples but had LODs above ADEC CULs. We cannot determine if this analyte is present in project samples above the CUL Groundwater analytical results exceeding ADEC cleanup levels are shown on Figure 2.

5.2 Indoor-Air Samples

The November 2018 analytical results had detections for PCE and chloroform in project samples *IA1-2018* and *IA13-2018*, exceeding their respective LODs (Table 2). These detections were less than ADEC target levels with the exception of chloroform in project sample *IA1-2018*.

There were no additional analytes detected in the current sampling event exceeding laboratories reporting limit. Indoor-air analytical results exceeding ADEC target levels are shown on Figure 2.

6 QUALITY ASSURANCE/QUALITY CONTROL

Shannon & Wilson staff performed a QA/quality control (QC) assessment for the laboratory reports provided by SGS and Eurofins. Additional information is presented in SGS laboratory report 1189525 and Eurofins laboratory report 1811275 (Appendix E). Details regarding the results of our QA review are presented in corresponding LDRCs (Appendix F). Individual data results affected by QA/QC failures are "flagged" on Tables 1 and 2, where applicable.

The QA/QC assessment for the both the groundwater and indoor-air samples are summarized in Appendix G. Shannon & Wilson personnel conducted field activities in accordance with standard QA/QC procedures; the samples are considered representative of site conditions at the locations and times they were obtained. The QA assessment in Appendix G identifies analytical results that were qualified due to QC failures reported by the laboratory. Based on the QA review, no datum was rejected as unusable due to QC failures, and the completeness goal of obtaining 90-percent useable data was met. In the opinion of Shannon & Wilson, the data produced by SGS and Eurofins for this project are suitable for characterizing groundwater water quality and indoor-air quality at the locations sampled.

7 DISCUSSION

7.1 Monitoring Well Sampling

Overall, the analytical results of samples collected during the 2018 sampling event were consistent with historical results. Nine of the 13 monitoring wells contained COPCs exceeding ADEC CULs for one or more of the following analytes: PCE, TCE, and 1,2-DCE (Figure 2).

All 13 monitoring wells contained detectable amounts of PCE, with results ranging from 0.850J μ g/L to 217 μ g/L. Note the estimated concentration of 0.850J μ g/L at MW-3R is the deepest monitoring well in the network with a total well depth of approximately 45 feet below ground surface (bgs). The remaining wells have total well depths that range from approximately 20 to 30 feet bgs.

The highest PCE concentration was detected in the project sample and duplicate from MW-1R, located along the eastern property line of the Bentley Mall properties. The presence of PCE, 1,2-DCA, and chloroform at the upgradient well MW-1R, located between the former BMES dry cleaning business and the active VIP Cleaners business, suggests contaminated groundwater may be migrating onto the BMES site from an upgradient source.

The analyte 1,2,3-TCP was not detected in the project samples but had LODs (0.500 μ g/L) above ADEC CULs. We cannot determine if this analyte is present in project samples above the CUL of 0.0075 μ g/L. However, we note that 1,2,3-TCP was analyzed by the method listed in the ADEC-approved Work Plan. Since the analyte was not a COPC, a more sensitive method was not recommended in the Work Plan for this analyte.

7.2 Indoor-Air Sampling at Private Properties

Following soil-gas chloroform detections exceeding ADEC target levels at two residential locations, we collected one indoor-air sample (*IA1-2018* and *IA13-2018*) from each location at the request of ADEC (Table 2).

PCE and chloroform were detected in both project samples at concentrations less than ADEC residential indoor-air target levels, with the exception of chloroform detected in project sample *IA1-2018* at a concentration of 3.20 microgram per cubic meter (μ g/m³), exceeding the target level of 1.2 μ g/m³.

We calculated screening levels based on attenuation factors using the 2017 soil-gas chloroform concentration of 13 μ g/m³ and an attenuation factor of 0.1. The EPAs Vapor Intrusion Screening Level (VISL) equation conservatively predicted an expected indoor air chloroform concentration level of 1.3 μ g/m³. The analytical indoor air sample is higher, indicating the indoor-air concentration from sample *IA1-2018* may be the result of indoor or background source(s).

8 **RECOMMENDATIONS**

Based on analytical results and further chloroform research, we recommend the following regarding the BMES site:

- Continue with the current monitoring schedule as described in the Work Plan: annual groundwater monitoring of the current monitoring well network, and VI sampling every three years.
- As we recommended in our June 2019 *Bentley Mall East Satellite Site Investigation* report, we recommend the continued evaluation for the presences of an upgradient source; to include site-characterization at the VIP property.
- We recommend chloroform be removed as a COPC for groundwater and VI (Section 2.4).

9 CLOSURE

This report was prepared for the exclusive use of KE Bentley One, LLC and KGC Bentley Two, LLC., ADEC, and their representatives for evaluating remaining chlorinated-solvent contamination near the BMES building in Fairbanks, Alaska. Our conclusions and recommendations are based on:

- The limitations of our approved scope, schedule, and budget described in our proposals dated October 3, 2018 and January 22, 2019.
- Our understanding of the project and information provided by the ADEC and the Owner.
- Site conditions we observed during our visits in November 2018.
- The results of analytical testing performed on groundwater and air samples we collected.
- The requirements in Alaska's 18 AAC 75.341 *Table C Groundwater Cleanup Levels* (October 2018), and ADEC Vapor Intrusion Guidance for Contaminated Sites (November 2017).

Our observations are specific to the locations, depths, and times noted on the logs and may not be applicable to all areas of the site. No amount of sampling can precisely predict the characteristics, quality, or distribution of subsurface and site conditions. Potential sources of variation include, but are not limited to:

- The different conditions between sampling locations.
- Variations in the presence, distribution, and concentration of contaminants at our sampling locations; our tests may not represent the highest contaminant concentrations at the site.
- The passage of time or intervening causes (natural and manmade) may result in changes to site and subsurface conditions.
- Contaminant concentrations may change in response to natural conditions, chemical reactions, and/or other events.

If substantial time has elapsed between submission of this report and the start of activities or action based upon it, we should be retained to review the applicability of the conclusions and recommendations, considering the lapsed time or changed conditions.

This report should not be used for other purposes without our review, and it should not be used without our approval if any of the following occurs:

- Conditions change due to natural forces or human activity under, at, or adjacent to the site.
- Assumptions stated in this report have changed.
- Project details change, or new information becomes available such that our conclusions may be affected.
- The site ownership or land use has changed.
- Regulations, laws, or cleanup levels change.
- The site's regulatory status has changed.

If any of these occurs, we should be retained to review the applicability of our recommendations.

State and/or federal agencies may require reporting of the information included in this report. Shannon & Wilson does not assume the responsibility for reporting these findings and therefore has not, and will not, disclose the results of this study unless specifically requested and authorized by KE Bentley One, LLC and KGC Bentley Two, LLC., or as required by law. Regulatory agencies may reach different conclusions than Shannon & Wilson. We have prepared the attachment, Important Information about Your

Geotechnical/Environmental Report, to assist you and others in understanding the uses and limitations of our reports.

10 REFERENCES

- Alaska Department of Environmental Conservation (ADEC), 2017, 18 AAC 75: Oil and other hazardous substances pollution control: Juneau, Alaska, available <u>http://dec.alaska.gov/commish/regulations.aspx</u>
- Alaska Department of Environmental Conservation (ADEC), 2018, 18 AAC 75.345 Table C– Groundwater Cleanup Levels October, available: https://dec.alaska.gov/spar/regulations
- Alaska Department of Environmental Conservation (ADEC), 2017, Field Sampling Guidance, available: <u>http://dec.alaska.gov/spar/csp/guidance-forms/</u>
- Alaska Department of Environmental Conservation (ADEC), 2017, Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites: Juneau, Alaska, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, 7 p., March, available: http://dec.alaska.gov/spar/csp/guidanceforms/
- Alaska Department of Environmental Conservation (ADEC), 2017, Vapor Intrusion Guidance, Contaminated Site Program, November, available: http://dec.alaska.gov/spar/csp/guidance-forms/
- Ede, Stephen, 2017, Written Communication with Sheila Hinckley, Shannon & Wilson, Inc., Fairbanks, Alaska.
- Rago, Richard, 2017, Background Concentrations of Chloroform in Indoor Air, Written Communication with Sheila Hinckley, Shannon & Wilson, Inc., Fairbanks, Alaska.
- State Coalition for Remediation of Drycleaners, available: https://drycleancoalition.org/
- US Environmental Protection Agency (EPA), 2011, Background Indoor Air Concentrations of Volatile Organic Compounds in North America Residences (1990-2005): A Compilation of Statistics for Assessing Vapor Intrusion, available: https://www.epa.gov/vaporintrusion/background-indoor-air-concentrationsvolatile-organic-compounds-north-american

- US Environmental Protection Agency (EPA), 2012, EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings, available: https://www.epa.gov/vaporintrusion/epas-vapor-intrusion-database-evaluationand-characterization-attenuation-factors
- United States Geological Survey (USGS), 2006, Ivahnenko, Tamara, and Zogorski, J.S., Sources and occurrence of chloroform and other trihalomethanes in drinkingwater supply wells in the United States, 1986–2001: U.S. Geological Survey Scientific Investigations Report 2006 – 5015, available: <u>https://pubs.usgs.gov/sir/2006/5015/</u>
- United States Geological Survey (USGS), 2006, Ivahnenko, Tammy, and Barbash, J.E., Chloroform in the hydrologic system—Sources, transport, fate, occurrence, and effects on human health and aquatic organisms: U.S. Geological Survey Scientific Investigations Report 2004-5137, available: <u>https://pubs.usgs.gov/sir/2004/5137/</u>

Table 1 - 2018 Groundwater Results

	ADEC	Location	M	W-1R	MW-2R	MW-3R	MW-4R	MW-5	MW-6	MW-7	M	W-8	MW-9	MW-10	MW-11	MW-12	MW-13
Analyte	Cleanup Level	Units	PS	DUP	PS	DUP	PS	PS	PS	PS	PS						
1,1,1,2-Tetrachloroethane	5.7	µg/L	1.00	1.05	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	<0.250	<0.250	<0.250
1,1,1-Trichloroethane	8,000	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500
1,1,2,2-Tetrachloroethane	0.76	µg/L	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	<0.250
1,1,2-Trichloroethane	0.41	μg/L	<0.200	<0.200	< 0.200	< 0.200	< 0.200	<0.200	< 0.200	<0.200	< 0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
1,1-Dichloroethane	28	µg/L	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500
1,1-Dichloroethene	280	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
1,1-Dichloropropene	—	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
1,2,3-Trichlorobenzene	7	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
1,2,3-Trichloropropane	0.0075	µg/L	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
1,2,4-Trichlorobenzene	4	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500
1,2,4-Trimethylbenzene	56	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500
1,2-Dibromo-3-chloropropane	_	µg/L	<5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	< 5.00	<5.00
1,2-Dibromoethane	0.075	µg/L	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
1,2-Dichlorobenzene	300	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500
1,2-Dichloroethane	1.7	µg/L	2.35	2.46	< 0.250	0.440J	0.270J	0.5	0.260J	< 0.250	< 0.250	<0.250	0.330J	0.360J	<0.250	0.220J	0.170J
1,2-Dichloropropane	8.2	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	<0.500	< 0.500
1,3,5-Trimethylbenzene	60	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500
1,3-Dichlorobenzene	300	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500
1,3-Dichloropropane	—	µg/L	<0.250	< 0.250	< 0.250	<0.250	<0.250	<0.250	< 0.250	<0.250	< 0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	< 0.250
1,4-Dichlorobenzene	4.8	µg/L	<0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	<0.250	< 0.250	<0.250	<0.250	< 0.250
2,2-Dichloropropane	_	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	<0.500	< 0.500
2-Butanone (MEK)	5,600	µg/L	<5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00	< 5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00
2-Chlorotoluene	—	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
2-Hexanone	38	µg/L	<5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00	< 5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00
4-Chlorotoluene	—	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
4-Methyl-2-pentanone (MIBK)	6,300	µg/L	<5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00	< 5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00
Benzene	4.6	µg/L	<0.200	<0.200	0.240J	0.240J	<0.200	0.180J	< 0.200	<0.200	<0.200	<0.200	<0.200	0.130J	<0.200	0.150J	< 0.200
Bromobenzene	62	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
Bromochloromethane	—	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
Bromodichloromethane	1.3	µg/L	0.420J	0.440J	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250
Bromoform	33	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
Bromomethane	7.5	µg/L	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50
Carbon disulfide	810	µg/L	<5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Carbon tetrachloride	4.6	µg/L	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500
Chlorobenzene	78	µg/L	<0.250	<0.250	<0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	<0.250	<0.250	< 0.250	<0.250	< 0.250	< 0.250
Chloroethane	21,000	µg/L	<0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500
Chloroform	2.2	µg/L	18.2	18.8	7.13	4.09	< 0.500	0.700J	0.870J	< 0.500	0.450J	0.460J	0.400J	< 0.500	<0.500	0.710J	1.95

Bentley Mall East Satellite

Annual Groundwater Monitoring and 2018 Vapor Intrusion Report

Table 1 - 2018 Groundwater Results

	ADEC	Location	MV	V-1R	MW-2R	MW-3R	MW-4R	MW-5	MW-6	MW-7	М	W-8	MW-9	MW-10	MW-11	MW-12	MW-13
Analyte	Cleanup Level	Units	PS	DUP	PS	DUP	PS	PS	PS	PS	PS						
Chloromethane	190	µg/L	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
cis-1,2-Dichloroethene	36	µg/L	< 0.500	< 0.500	1.89	0.440J	< 0.500	1.6	1.29	2.34	1.15	1.17	3.73	1.21	1.11	0.750J	< 0.500
cis-1,3-Dichloropropene	4.7	µg/L	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250	< 0.250	< 0.250	< 0.250	<0.250
Dibromochloromethane	8.7	µg/L	<0.250	< 0.250	< 0.250	<0.250	< 0.250	<0.250	< 0.250	<0.250	< 0.250	< 0.250	<0.250	<0.250	< 0.250	< 0.250	<0.250
Dibromomethane	8.3	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500
Dichlorodifluoromethane	200	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500
Ethylbenzene	15	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500
Hexachlorobutadiene	1.4	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500
Isopropylbenzene	450	µg/L	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500
Methylene chloride	110	µg/L	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50
Methyl-t-butyl ether	140	µg/L	< 5.00	<5.00	<5.00	< 5.00	< 5.00	<5.00	< 5.00	< 5.00	< 5.00	<5.00	< 5.00	<5.00	<5.00	< 5.00	<5.00
Naphthalene	1.7	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500
n-Butylbenzene	1,000	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500
n-Propylbenzene	660	µg/L	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500
o-Xylene	190	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500	<0.500	<0.500
P & M -Xylene	190	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
p-Isopropyltoluene	_	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500
sec-Butylbenzene	2,000	µg/L	<0.500	< 0.500	<0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500	< 0.500	<0.500
Styrene	1,200	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500
tert-Butylbenzene	690	µg/L	<0.500	< 0.500	<0.500	<0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	< 0.500	<0.500	<0.500	< 0.500	< 0.500	<0.500
Tetrachloroethene (PCE)	41	µg/L	217	214	211	0.850J	42.9	80.7	48.4	5.57	3.78	3.85	25.5	31	4.36	177	23.4
Toluene	1,100	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	0.450J	< 0.500	< 0.500	< 0.500	< 0.500	0.310J	<0.500	< 0.500	< 0.500	< 0.500	<0.500
Total Xylenes	190	µg/L	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50
trans-1,2-Dichloroethene	360	µg/L	< 0.500	< 0.500	< 0.500	< 0.500	0.710J	0.400J	< 0.500	< 0.500	9.98	10.3	3.71	0.330J	8.18	< 0.500	<0.500
trans-1,3-Dichloropropene	4.7	µg/L	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500	< 0.500	< 0.500	<0.500	<0.500
Trichloroethene (TCE)	2.8	µg/L	1.08	1.06	1.94	<0.500	1.48	11.1	5.77	2.69	1.45	1.47	7.35	6.48	1.8	5.5	<0.500
Trichlorofluoromethane	5200	µg/L	39.9	41.2	16.1	1.53	5.35	4.73	3.87	< 0.500	< 0.500	< 0.500	<0.500	< 0.500	3.18	2.02	1.86
Trichlorotrifluoroethane	10,000	µg/L	< 5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	< 5.00	< 5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	<5.00	<5.00
Vinyl acetate	410	µg/L	< 5.00	<5.00	<5.00	< 5.00	<5.00	<5.00	< 5.00	< 5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Vinyl chloride	0.19	µg/L	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750	< 0.0750

NOTES:

PS = project sample

PS = project sample
DUP = field-duplicate sample
Bold = LOD or concentration exceed ADEC cleanup level
< = analyte not reported above specific LOD
— = ADEC cleanup level not established
J = estimated result, detected below the LOQ; flag applied by the laboratory
ADEC cleanup levels obtained from 18 AAC 75.341 *Table C Groundwater Cleanup Levels* (October 2018).
ADEC = Alaska Department of Environmental Conservation; LOD = limit of detection; LOQ = limit of quantitation; µg/L = microgram per liter

Bentley Mall East Satellite

Annual Groundwater Monitoring and 2018 Vapor Intrusion Report

Table 2 - 2018 RESIDENTIAL INDOOR-AIR RESULTS

		ADEC Target		Sample Identification			
Analyte	CAS Number	Levels	Units	IA1-2018	IA13-2018		
Chloroform	67-66-3	1.2	µg/m³	3.20	0.150		
1,1,1-Trichloroethane (TCA)	71-55-6	3,800	µg/m³	<0.180	<0.170		
1,1-Dichloroethane (1,1-DCE)	75-34-3	18	µg/m³	<0.130	<0.120		
1,1-Dichloroethene (1,1-DCE)	75-35-4	79	µg/m³	<0.0640	<0.0610		
cis-1,2-Dichloroethene (1,2-DCE)	156-59-2	8.3 †	µg/m³	<0.130	<0.120		
trans-1,2-Dichloroethene (1,2-DCE)	156-60-5	83.4 †	µg/m³	<0.640	<0.610		
Tetrachloroethene (PCE)	127-18-4	41	µg/m³	2.00	0.290		
Trichloroethene (TCE)	79-01-6	2.0	µg/m³	<0.170	<0.170		
Vinyl Chloride	75-01-4	1.7	µg/m³	<0.0410	< 0.0400		

NOTES:

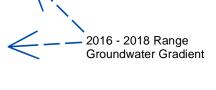
t = ADEC e-mail (September 20, 2017) on Proposed Screening Levels, where no ADEC target levels have been established.

< = Analyte not detected above specific reporting limit. Reporting limit listed.</p>

Bold = Analyte concentration exceeds ADEC Target Level.

Indoor-Air samples collected on November 16, 2018 and analyzed by method TO-15 SIM Modified.

ADEC Target Levels obtained from November 2017 ADEC Vapor Intrusion Guidance for Residential Indoor-Air.


ADEC = Alaska Department of Environmental Conservation; CAS = Chemical Abstracts Service; $\mu g/m^3$ = micrograms per cubic meter

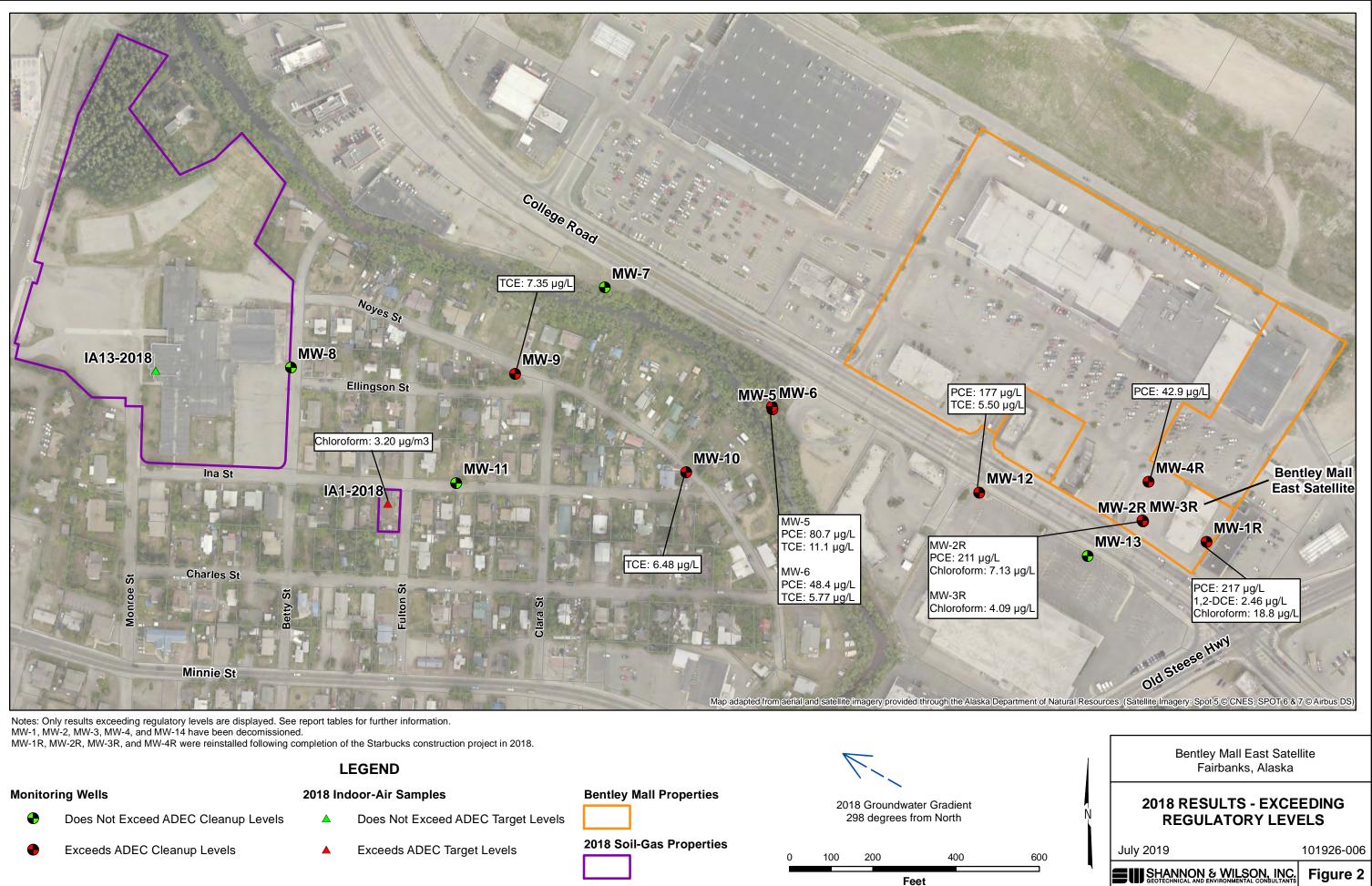
200

400

Feet

800

Residential Vapor Intrusion Properties


Commercial Vapor Intrusion Property

<u>July 2019</u>

1,200

101926-006

SHANNON & WILSON, INC. Figure 1

Appendix A Conceptual Site Model

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site:			Instructions: Follow the numbered consider contaminant concentration use controls when describing path	ons or	engine			ət	
Completed I	By:		5,				(5)		
(1) Check the media could be directly by the release.	(2) that For each medium identified in (1), follow the	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. <u>The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.</u>	expo "F" fo futur	osure pathy or future re re receptor	eptors pe way: Entr ceptors, s, or "I" f : & Fu	otentially er "C" for "C/F" for or insigni uture	r current r both cl ificant e Rece	eptors
Media	Transport Mechanisms	Exposure Media	Exposure Pathway/Route	/	ers	espa user,	orker ^{Ssiste}	, unsu	; / /
Surface Soil (0-2 ft bgs)	Direct release to surface soil check soil Migration to subsurface check soil Migration to groundwater Volatilization check air			Residents (adute of the second	Commercial or children) Commercial or industrial workers Site visit	or recreational Construct	Farmers or subsistement	Subsistence consuma-	Other
	Runoff or erosion check surface water		dental Soil Ingestion						
	Uptake by plants or animals <u>check biota</u>	soil Der	mal Absorption of Contaminants from Soil						
	Other (list):	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	alation of Fugitive Dust						
Subsurface Soil (2-15 ft bgs)	Direct release to subsurface soil check soil Migration to groundwater check groundwater Volatilization check air Uptake by plants or animals check biota Other (list):	groundwater Der	estion of Groundwater mal Absorption of Contaminants in Groundwater alation of Volatile Compounds in Tap Water						
	Direct release to groundwater check groundwater								
Ground-	Volatilization check air	Inha	alation of Outdoor Air						
water	Flow to surface water body <u>check surface water</u> Flow to sediment <u>check sediment</u>	air Inha	alation of Indoor Air						
	Uptake by plants or animals check biota		alation of Fugitive Dust						
	Direct release to surface water check surface water	l Inge	estion of Surface Water						
Surface	Volatilization <u>check air</u>	surface water	mal Absorption of Contaminants in Surface Water						-
Water	Sedimentation <u> check sediment</u> Uptake by plants or animals <u> check biota</u>		alation of Volatile Compounds in Tap Water						
	Other (list): Direct release to sediment Check sediment Resuspension, runoff, or erosion Check surface water	sediment Dire	ect Contact with Sediment						
Sediment	Uptake by plants or animals <u>check biota</u> Other (list):	biota Inge	estion of Wild or Farmed Foods						

Revised, 4/11/2010

Appendix B Monitoring Well Sample Logs

Owner/Client	BMES	1				Project N	0.101926-007
Location	BMES						te 11/1/18
Sampling Personnel	VIC		10		-	We	MW-4
Weather Conditions		Ai	r Temp. (°F	17		Time starte	and the second division of the second divisio
Weather Conditions			<u>, , , , , , , , , , , , , , , , , , , </u>		- Tir	ne complete	
Sample No.	MW-4R		Time	10:07			
Duplicate	BARRO -	1000	Time		-		
Equipment Blank	_		_ Time	- 10 07	4		
Purging Method	Mega Mansoan portable / dedicate	ed pump	Approvia	Di nate Total F	iameter and Tr Depth of Well I	ype of Casin	g 2" PUC
Pumping Start					Depth of Well E		
Purge Rate (gal./min.)			weast		pth to Water E		
Pumping End	1007				ce (if frozen) E		
	19			Depth to I		Water in We	
Pump Set Depth Belo							And and a local division of the second divisi
	ubing (ft.) 30					allons per foo allons in We	
TruPoly 1	ubing (ft.)	÷.			Purge Water		
			Durge We	tor Dispose		volume (gai	bohind starbuck
Monument Condition	Good		Fuige Wa		- 55 July	ann	BOMING STORAGE
Casing Condition	Good						
- _ Wiring Condition _(dedicated pumps)							
Measuring Point (MP)_	Top of Casing (TOC)	N	Monur leasuremen	ment type: it method:	Stickup (Rod & level	/ Flushmour / Tape meas	
Top-of-casing to mon	iment (ft.)			Da	talogger type	n/a	
Monument to ground si			1		ogger serial #		
Monumont to ground of			- Me		ble length (ft.)		
	t and operational egible on outside of w frost-jacking	ell Na					
- Character 20							
Notes					*		
		WELLO	ASING VOL	UMES			
Diameter of Well [ID-inches]	СМТ	11/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6
	0.000255	0.00	J 0.17	0.30	0.00	1.0	11. 110

MM-C Well No.

Field Parameter Instrument	YSI	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations	clear	
Notes	-	

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
9:53	pump 4	started				
9:54	5.1	226	671	6.13	279.1	clear
9:57	51	1.29	620	6.33	263.3	cleor
10:00	5.3		626	6.42	246.2	elear
10:03	5.3	0.96	672	6.47	237.6	clear
10:06	53		622	6.48	2312	clear
10:07	sample ,	collected				
				,		
					1	
					- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	н
		1				
		·		1		
2						

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

SMA

Analysis	Sample Containers	Preservatives	Du
VBC			
			므
			므

NW Well No.

Owner/Client	BMES	×			Project No.	101926-002
Location	BMES			7.1	Date	
Sampling Personnel	YIC		-		Well	MW-3R
Weather Conditions	SUNNY	Air Temp. (°F	17	2	Time started	10:30
	1000 1		are the second	— Tim	e completed	1115
Sample No.	MIN-3R	Time	11:08			
Duplicate	-	Time		-		
Equipment Blank	MW-3R	Time				
		4				
	Mega Monso					o' our
	portable / dedica			ameter and Ty		7 PVC
Pumping Start	10:48			Depth of Well B		
Purge Rate (gal./min.)		Measu		Depth of Well B		
Pumping End	11:08			pth to Water B		14.26
	10 -		Depth to I	ce (if frozen) B		· •
Pump Set Depth Belo	ow MP (ft.) ~ (5.5			Feet of V	Vater in Well	31.3
KuriTec T	Tubing (ft.)	- 50		Gal	lons per foot	0.17
	Fubing (ft.)			Ga	llons in Well	5.32
		-		Purge Water V	/olume (gal.)	~10
	10 11	Purge Wa	ter Disposa	1 55 gull	a drun	
Monument Condition	Guest					A
Monument Condition _	Cite 1					
Casing Condition	Good					
- Wiring Condition						
	(i					
(dedicated pumps)_						
Measuring Point (MP)	Top of Casing (TOC)	Monur Measuremer	ment type: ht method:	Stickup Rod & level /	Flushmount Tape measu	е
and a second second	0.32	-			1.1	
Top-of-casing to monu				talogger type _		
Monument to ground su	urface (ft.)			ogger serial #	n/a	
		Me	easured cab	ole length (ft.)	n/a	
Lock presen	t and operational					
	egible on outside of v	vell				
	frost-jacking	Nr				
C = 100000000000000000000000000000000000		V				
Notes						
10100						
		WELL CASING VOL	UMES			
Diameter of Well [ID-inches]	CMT	11/4 2	3	4	6	8

0.38

0.17

0.000253

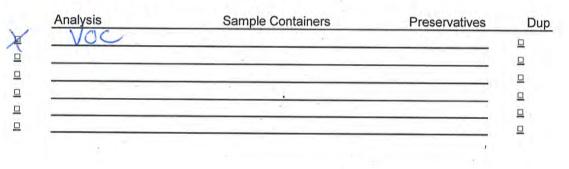
Gallons per lineal foot

0.08

0.66

1.5

2.6


Field Parameter Instrument Y > Circle one: Rarameters stabilized	or >3 well volumes purged
Sample Observations	
Notes	

	Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
49	10-18 10-50 10-55 10-55 11-01 11-01 11-04	10-20-20-20-20-20-20-20-20-20-20-20-20-20	0.77 0.14 0.12 0.12 0.12 0.12 0.10 0.11 0.11	3// 9 338.5 339.2 339.4 339.6 339.6 339.6 339.6	696 687 668 677 675 675 676	212.6 200.9 1846 1742 1642 1595 1574	Clear clear clear clear clear clear clear clear
		sample	collecter				

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

. sont

NO.

Owner/Client	RIMES		Project No.	101.926-002
Location	EMES		Date	and the second se
Sampling Personnel	KLC			MW-2.C
Weather Conditions		Air Temp. (°F) 7	_ Time started	10:30
weather conditions,	Shand			10
Sample No. Duplicate Equipment Blank Purging Method Pumping Start Purge Rate (gal./min.) Pumping End Pump Set Depth Belo KuriTec	MW-JR Mega Monson portable / dedicated pum, 1/ 22 ~0.5	p Di Approximate Total D Measured Total D Depth to I	Time completed iameter and Type of Casing Depth of Well Below MP (ft.) Depth of Well Below MP (ft.) Depth to Water Below MP (ft.) ce (if frozen) Below MP (ft.) Feet of Water in Well Gallons per foot Gallons in Well Purge Water Volume (gal.)	11:46 2" pVC 21:77 14:27 7.5 0.17 13 7
Shines the stars when	Gud	Purge Water Disposa	155 gallon dru	~~~
Monument Condition	Good			· · · · · · · · · · · · · · · · · · ·
Casing Condition				
(dedicated pumps)_				
Measuring Point (MP)_	Top of Casing (TOC)	Monument type: Measurement method:	Stickup / Flushmount Rod & level / Tape measur	е
Top-of-casing to mon	ument (ft.) $Q. > 1$	Dat	talogger type n/a	
Monument to ground si	urface (ft.)	Datalo	ogger serial # n/a	
		Measured cab		
🖉 Well name l	t and operational egible on outside of well frost-jacking	ġ		
Notes				
		nout comments		
	WELL	CASING VOLUMES		
Diameter of Well [ID-inches]	CMT 11/4	2 3	4 6	8

0.08

0.17

0.38

0.66

1.5

0.000253

Gallons per lineal foot

MW-JR Well No.

2.6

Field Parameter Instrument	YSE
Sample Observations	clear
Notes	-

5

Circle one: Parameters stabilized or >3 well volumes purged

- 1

	FIELD	PARAMETERS	[stabilization criteria]
--	-------	------------	--------------------------

	Temp. (°C)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)		ORP (mV)	-month languard
Time	[± 3%]	[±10%]	[± 3%]	[± 0.1]	[± 10 mV]	Water Clarity (visual)
11:22	Duno	start			1.1.1.1.1.1.1	
11 33	541	3.40	638	6.10	161.0	clear
11:26	5.8	3.10	630	6.76	1007	dea
11 29	53	2.67	609	6.80	160.3	clear
1132	5.4	2.44	612	6.80	161.3	clear
11.35	5.3	241	609	6.79	161.8	clear
11:36	Scaple	Cillecter		1.000	1.1.2	11 M
	1					
1.221.2	Contract of the					· · · · · · · · · · · · · · · · · · ·
	1					
		The second second				
		10 IN 10 IN				
			-			
					1940 - C	· · · · · · · · · · · · · · · · · · ·

Laboratory SGS

smt

Sample Containers	Preservatives	Du
		므
		므
		므
· · · ·		므
t		므
		므
	Sample Containers	Sample Containers Preservatives

MW-2R Well No.

	DATE		Print No 101020 CC
Owner/Client	BMES		Project No. 01936-00
Location	EMES		Date u/1/18
Sampling Personnel	KLC		Well Mw-12
Weather Conditions	Sunny Air	r Temp. (°F) 🛛	Time started (2:00
			Time completed 12:48
Sample No.	MW-12	Time 12:35	
Duplicate		Time	
Equipment Blank	<u> </u>	Time	
Equipment blank	-		
Pump	Megg Monsoon	A CALL ON SALE	
	portable / dedicated pump	Diameter	and Type of Casing <u>2" PVC</u>
Pumping Start		Approximate Total Depth of	
urge Rate (gal./min.)			Well Below MP (ft.) 20.2/
Pumping End	12:35	the second se	Vater Below MP (ft.) 13.95
		Depth to Ice (if fro	ozen) Below MP (ft.)
Pump Set Depth Belo	ow MP (ft.) 🗸 🖇	F	eet of Water in Well 6.76
KuriTec	Tubing (ft.) 30		Gallons per foot 0.17
	Tubing (ft.) $+$	×	Gallons in Well
Пироју		Burne)	
		Purge	Nater Volume (gal.)
	C	Purge Water Disposal 55	eller arm
Monument Condition	Closed		
Casing Condition	Good		
Wiring Condition	-		
(dedicated pumps)			
(
easuring Point (MP)_		Monument type: Stickup	
	nil.	easurement method: Rod &	level XTape measure
op-of-casing to mon	ument (ft.)0. 95	Datalogger	type n/a
onument to ground s	urface (ft.)	Datalogger se	erial # n/a
	1422	Measured cable lengt	
Leak present	t and anarational	medodred odbie lengt	
	nt and operational		
	egible on outside of well		
Evidence of	frost-jacking No		
		1 6	
Notes <u>Cat</u> (asing to allow plug	to the	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
-			

WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8 2.6 1.5 0.66 0.000253 0.08 0.17 0.38 Gallons per lineal foot

MW-12 Well No.

4 Field Parameter Instrument Sample Observations lea Notes

Circle one: Parameters stabilized or >3 well volumes purged

FIELD PARAMETERS [stabilization criteria]						
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	.pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
12:31	pump :	forted		-25.55/	1.	
12:22	5.9	3.28	1083	6.56	2013	slightly tubid
12:25	5.8	2.99	1055	6-56	2023	cleart
12:28	57	2.22	1016	6.58	201.6	cloar
10-31	5.7	1.97	455	6.60	200.7	Clear
12:34	5.7	1.77	906	6.62	200.3	clear
12:35	Sampk	Callecter				
1.		1			·	
		1		÷.		
1						
·		(· · · · · · · · · · · · · · · · · · ·	
		-			-	

Laboratory SGS

5mH

Analysis	Sample Containers	Preservatives	Du
VOC			므
			므
			므
			旦

MW-12 Well No.

Owner/Client	BMES		Project No. 101976-00
Location	RMGS		Date 1////s
Sampling Personnel	Lic		Well to MW-13
Weather Conditions		Air Temp. (°F) 5	Time started (250 Time completed 13:35
Sample No. Duplicate Equipment Blank	MW-13	Time <u>13:19</u> Time Time	
Pump			אותיע
	portable / dedicated pump	Diameter and	d Type of Casing <u><i>PVC</i></u>
Pumping Start		Approximate Total Depth of We	
Purge Rate (gal./min.) _		Measured Total Depth of We	
Pumping End	1319	and the second	er Below MP (ft.) <u>/ / ス</u>
		Depth to Ice (if froze	n) Below MP (ft.)
Pump Set Depth Belo	ow MP (ft.) ~ 18 42	Feet	of Water in Well 619
KuriTec 1	ow MP (ft.) <u>~ 18 42</u> Fubing (ft.) <u>3 d</u>		Gallons per foot 0/2
	Fubing (ft.)		Gallons in Well
		Purge Wat	ter Volume (gal.) 7
	1	Purge Water Disposal 55	sollar dian
Monument Condition	Good		
Casing Condition	Gove		
- Wiring Condition _ (dedicated pumps) _			10
Measuring Point (MP) _		Monument type: <i>Stickup</i> Measurement method: <i>Rod & lev</i>	/ Flushmount el / Tape measure
Tax of eaching to make	·	Detelegentu	
Top-of-casing to monu		Datalogger ty	
Monument to ground su	urface (ft.)	Datalogger serial	
		Measured cable length (f	t.)n/a
	t and operational		
🚊 🛛 Well name le	egible on outside of well		
Evidence of	frost-jacking		<u></u>
and the	1	$, C_1$	
Notes Chit	cosing - so plu	2 will tak	
	- 1 -		K
			the second se

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1¼	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

MW-B Well No.

2

Field Parameter Instrument	VF	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations	clear	
Notes	-	0

FIELD PARAMETERS [stabilization criteria] Temp. Dissolved (°C) Oxygen (mg/L) Conductivity (µS/cm) pH ORP (mV) Time [± 3%] [±10%] [± 3%] [± 0.1] [± 10 mV] Water Clarity (visual) 13:05 pump started 13:06 979 8.6 673 208 G 5.06 deer digity they g 13:01 207.6 6.2 0.70 643 Slightly tube 6.61 13:12 675 6.2 0.85 207.2 elear " 6 62 687 13-15 6.2 0.84 6.63 206.3 Choran 632 6.2 0.87 clear 3:18 6.63 2063 319 collecter Sample

Laboratory SGS

5m H

Analysis	Sample Containers	Preservatives	Du
Vac			
			므
			므
			므
			므

3 Well No.

Owner/Client	BIMES					Project No.	01926-00
Location 75	MES				-	Date	
Sampling Personnel	VIC				-	Well	MW-7
Weather Conditions	lear	Ai	r Temp. (°F)	15	5	Time started	14 08
			<u>, , , , , , , , , , , , , , , , , , , </u>	4	- т	ime completed	14:48
Sample No Duplicate Equipment Blank	4w-7		_ Time _ Time _ Time	1435	-		F
Pump	iga Monsee				a the state		מוקייר
Purging Method pol	the state of the s	ed pump				Type of Casing	
Pumping Start						Below MP (ft.)	
Purge Rate (gal./min.)			Measu			Below MP (ft.)	
Pumping End	135					Below MP (ft.)	18 82
	-			Depth to I		Below MP (ft.)	
Pump Set Depth Below M	P (ft.)			0.018		Water in Well	
KuriTec Tubir	ng (ft.) <u>35</u>					allons per foot	
TruPoly Tubir	ig (ft.)					Gallons in Well	
			South the		Purge Water	Volume (gal.)	Ŧ
Monument Condition Casing Condition Wiring Condition	1						-1
(dedicated pumps)							
Measuring Point (MP) <u>Top</u> Top-of-casing to monumer Monument to ground surfac	nt (ft.) 0.34	36	leasurement	Da Datalo	The second se		0
LOCK present and Well name legibl Evidence of frost	e on outside of we	ell No	le				
Notes			2				
-		WELLOA		IMES			
amotor of Mall IID in-hard	СМТ					e	0
ameter of Well [ID-inches] allons per lineal foot	0.000253	1¼ 0.08	2 0.17	3 0.38	4 0.66	6 1.5	8 2.6
anono per intear root	0.000200	0.00	0.17	0.00	0.00	1.0	2.0

MW · 7 Well No.

Field Parameter Instrument	YSF	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations	Clear .	
Notes	~	

	•	FIE	LD PARAMETERS [st	abilization c	riteria]	
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1422 1422 1425 1428	10m 50 57	5 orted 1.05 1.79 1.52	451.5 468.7 473.2	6.79	7143 703.1 1870	slightly to by clear clear
14:34 14:34 14:35	5.7. 5.7 Sample	139 136 collected	473 5 476,2	6.83	173.8 166.8	clea
						* *
						а. С. С. С

Laboratory SGS

Sml

Analysis	Sample Containers	Preservatives	Du
VOC.			므
			므
			므
			므
	· · · · · · · · · · · · · · · · · · ·		므
			므

Well No.

Owner/Client	BMES					Project No.	101926-002
Location	Vic				-		11/1/18
Sampling Personnel	BMES					Well	
Weather Conditions	SUMMY	A	ir Temp. (°F	181	77	Time started	16:00
	Schure				7 1	ime completed	16:50
Sample No.	MW-IR		Tim	634			
Duplicate	MW-101R		— Tim	= 16 24	t -		
Equipment Blank			Tim	Statement of the local division of the local	5		
Pump	Mega Monso	-	4.5				
Purging Method				D	iameter and	Type of Casing	2" pvc
Pumping Start	16:20	<u>ic</u> u pump		nate Total I	Depth of Wel	Below MP (ft.)	~
Purge Rate (gal./min.)			Meas	ured Total I	Depth of Wel	Below MP (ft.)	21.07
Pumping End			mode			Below MP (ft.)	
r aniping End _						Below MP (ft.)	
Pump Set Depth Below	w MP (ft.) ~19					f Water in Well	6.61
KuriTec T	ubing (ft.) 35					Gallons per foot	0,17
TruPoly T		-				Gallons in Well	11
		-				r Volume (gal.)	2
	A		Purge Wa	ter Disposa	al <u>55</u>		m
Monument Condition	yod					f the t	
Casing Condition	Simol				-		
Wiring Condition	_						
(dedicated pumps)							
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0			_				
Measuring Point (MP)	Top of Casing (TOC)		Monu	ment type:	Stickup	/Flushmount	
and the second of =			Measuremer	nt method:	Rod & level	/ Tape measur	e
						\sim	
Top-of-casing to monu	ment (ft.)	56		Da	atalogger type	e n/a	
Monument to ground su		h			ogger serial #		
		-	- M		ole length (ft.)		· · · · · · · · · · · · · · · · · · ·
Lock present	and operational		17	Jucurou cu.	ono nonigin (na)		
	gible on outside of v	المر					
Evidence of f		ven	No			4	
Evidence of I	lost-jacking					÷	
Notes	*				· · · · ·		
10100							
-							
1.1.1							
		1	ASING VOL	1	1	r	
Diameter of Well [ID-inches]	CMT	11/4	. 2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Nell

Field Parameter Instrument	YSF	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations	Elear	
Notes	1	
	1.01.15	

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
16:20	pump	start	0.0			
16:21	88	4.01	620	6.4	205.8	tubig
634	8.3	3.16	589	6.64	2025	Slightly tubin
1627	00	3.27	577	6.59	201.7	clear
16:33	8.5	3.40	558	6.63	2022	clear
16:34	Sample		3.50	6.90	202.8	clear
10-21	Julian	Callecter				
		1. 2				
					A	
		1				
				-		
		Alter Contract				

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

Smith

Analysis	Sample Containers	Preservatives	D
Var			A
	1		<u> </u>
			므
			므
	· · · · · · · · · · · · · · · · · · ·		

MW-IR Well No.

1

6

Owner/Client	BMES		Project No. 101926-001
	MW-	9	Date ((/ () 198
Sampling Personnel			Well IAW TO MW-9
Weather Conditions	10° Clear A	sir Temp. (°F) 10	Time started
Equipment Blank Pump (Purging Method Pumping Start Purge Rate (gal./min.) Pumping End	Mega Monsoon Pro portable / dedicated pump 1059 0,23	Time Time Time Diameter and T Approximate Total Depth of Well Measured Total Depth of Well Depth to Water Depth to Ice (if frozen)	ype of Casing <u>2' PVC</u> Below MP (ft.) <u>20,44'</u> Below MP (ft.) <u>10,78'</u> Below MP (ft.) <u>10,78'</u>
Pump Set Depth Beit	Fubing (ft.) $35'$		
	Fubing (ft.)		allons per foot <u>0.17</u> Gallons in Well <u>1.184</u>
TUPOly			
Monument Condition	Good	Purge Water Disposal <u>Drums</u>	
Casing Condition <u>(</u>	3000		
- Wiring Condition (dedicated pumps) Measuring Point (MP)		Monument type: Stickup	Flushmount
		Measurement method: Rod & level	/Tape measure
Top-of-casing to mon	ument (ft.) <u>0, 83</u>	Datalogger type	n/a
Monument to ground si	urface (ft)	Datalogger serial #	
inenennen te greatta e		Measured cable length (ft.)	the second se
Well name le	It and operational m/m egible on outside of well n/h frost-jacking <u>no</u>		
		1	
Notes		/	
	/		
(<u>-</u>			
	1. (
and the second		ASING VOLUMES	
Diameter of Well [ID-inches]	CMT 11/	2 3 4	6 8

0.17

0.38

0.66

0.08

0.000253

Gallons per lineal foot

2.6

1.5

Field Parameter Instrument Sample Observations 3,5 gal Durach Notes

Circle one Parameters stabilized or >3 well volumes purged 1.64

FIELD PARAMETERS [stabilization criteria] Temp. Dissolved (°C) Conductivity (µS/cm) pH ORP (mV) Oxygen (mg/L) Time [± 0.1] Water Clarity (visual) [± 3%] [±10%] [± 3%] [± 10 mV] 1059 18.07 451.8 6.65 298.1 Clear 2.6 1102 4.2 6.52 7.43 4321 247.5 1105 4.2 436.2 6.51 297.1 6.6% 413 297.3 1108 6.00 434.1 6.51 1111 412 4.53 434.1 6.53 295.1 4.3 V 11134 6,53 432.4 294.9 Lo. 53 Sa 11110 DR time

Laboratory SGS

Analysis	Sample Containers	Preservatives	Du
VOC	3 NOAS	HCL	<u>_</u>
			므
		= X_ (므

N

Owner/Client BME	5					Project No.	101926-000
Location MW-	1D				- ·	Date	11/1/18
Sampling Personnel FLG					_	Well	MW-10
Weather Conditions CLAN		Ai	r Temp. (°F)	10	_	Time started	
					Ti	me completed	1240
Sample No. <u>MW-1</u>	0		_ Time	1225	_		
Duplicate			Time		- .		
Equipment Blank			_ Time		_		
- 64	. <i>t</i>	×					
Pump <u>Mega</u>	<u>Manina</u>	r Vr⊘					n our
Purging Method <u>portable</u>		ed pump	. .			ype of Casing	
Pumping Start					-	Below MP (ft.)	
Purge Rate (gal./min.)			Measu			Below MP (ft.)	
Pumping End <u>19.485</u>	-					Below MP (ft.)	
	11-1			Depth to le	• •	Below MP (ft.)	
Pump Set Depth Below MP (ft.) KuriTec Tubing (ft.)	16.5	-				Water in Well	
Kurilec lubing (ft.)	<u> </u>	-				allons per foot	
TruPoly Tubing (ft.)		-				allons in Well	
						Volume (gal.)	
			Purge Wat	er Disposal	Truco	· · · · · · · · · · · · · · · · · · ·	
Monument Condition							
Casing Condition							
		~~					
Wiring Condition N/VA							
(dedicated pumps)							
Measuring Point (MP) <u>Top of Ca</u>	sing (TOC)	-	Monun	n ent type :	Stickup	/Elushmount	>
		N	leasuremen	t method:	Rod & level	/Tape measu	ire>
Top-of-casing to monument (ft.)			_	Dat	alogger type	n/a	
Monument to ground surface (ft.)	6.68		-	Datalo	gger serial #	n/a	
			– Me	asured cab	le length (ft.)	n/a	
Lock present and oper	rational /	n/#			,		<u> </u>
U Well name legible on o	outside of w	ell					
Evidence of frost-jacki		no					
	0						
Notes			And a start of the				
		/	per la construcción de la constr				
		/					
		/					
		WELL CA	SING VOL	JMES			
Diameter of Well [ID-inches]	СМТ	1¼	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Field Parameter Instrument Sample Observations Notes Circle one Parameters stabilized or 63 well volumes purged

FIELD PARAMETERS	[stabilization criteria]	
------------------	--------------------------	--

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1202	4.2	6.20	436,3	6.77	104.8	Cloudy
1205	5.1	4.59	448.8	6.78	77.8	Slighty Claudy
1208	53	3,30	450.6	6.81	56.9	Clear
1211	5:4	2.72	451.2	6.82	45.3	
1214	5.8	2.33	455.1	6.83	33.2	
1217	5.6	1,83	453.4	6.84	22,0	
1200	5.6	1.50	453.7	6.85	16.0	
1223	5.6	1,49	449.8	10.85	18.0	V
1225	Sam	ple time				
		:				

Laboratory SGS

Analysis	Sample Containers	Preservatives	Du
NOC	3 VOA	HCL	
			므
			므

SMH

Owner/Client B	MES		Project No. 10	01926-00
Location M			Date	
Sampling Personnel	FLG		Well N	W-11
Weather Conditions	> Clear Air	Temp. (°F) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Time started	
a production of the second		Tin	ne completed	335
Sample No. M	W-11	Time 1315		
Duplicate		lime		
Equipment Blank	W=IIL EB-11	Time 1325		
Pump Ma	ga Mongoon Pro			
the second se	ortable / dedicated pump	Diameter and Ty	pe of Casing	2' PVC
Pumping Start		Approximate Total Depth of Well B		
Purge Rate (gal./min.)		Measured Total Depth of Well B		20,16
Pumping End 13		Depth to Water B		11.115
	<u></u>	Depth to Ice (if frozen) B	and the second	11105
Pump Set Depth Below M	AP (ft) 181		Vater in Well	9.11
	ng (ft.) 25		llons per foot	0.17
TruPoly Tubi			allons in Well	1.54
That ony Fabr		Purge Water V		25
		Purge Water Disposal	(gui)	
Monument Condition Go	bod	Taige Water Disposal		
Casing Condition	od			
Wiring Condition \mathcal{N}	1A			
(dedicated pumps)	\$* _			
Measuring Point (MP) <u>70</u>			Flushmount Tape measure	>
Top-of-casing to monume	ent (ft.) $(0, 7)^{\prime}$	Datalogger type	n/a	
Monument to ground surface	ce (ft.)	Datalogger serial #	n/a	
	and the second se	Measured cable length (ft.)	n/a	
Lock present an	nd operational N/A		10.0	-0
E submit fitters at the	ble on outside of well \mathcal{N}			
Well name legib Evidence of fros				
Notes		/		
	/			
	/			
	to a first the			
		SING VOLUMES	· · · · ·	
Diameter of Wall [ID inchas]	CMT 11/		C	0

 Diameter of Well [ID-inches]
 CMT
 1¼
 2
 3
 4
 6
 8

 Gallons per lineal foot
 0.000253
 0.08
 0.17
 0.38
 0.66
 1.5
 2.6

Field Parameter Instrument ______ Sample Observations ______

Circle one: Parameters stabilized or >3 well volumes purged

Notes

FIELD PARAMETERS [stabilization criteria]							
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)	
13/51	6.0	7,49	573	6.33	list. in	2 Contraction	
13/04	7.3	6,47	591	6.79	162.8	1	
1303	nort la	5.8	5 a ig	(0.84)	Maria, M		
「例かり	7.5	5.34	594	(0.93)	171.11		
	7.6	5,91	595	10.80	172.3	\checkmark	
	<u>ි</u> . ා.	and the state of the		-			
		<u>N</u>					
· · · · · · · · · · · · · · · · · · ·							
						i	

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

SMA

Sample Containers Preservatives Analysis Dup B. Charm. 1471 X 1/140 AFT

Owner/Client B	MES					Project No.	101926-00
Location	N-Si				_		111118
Sampling Personnel 🔄 🖂						Well	N. 201 - 23.
Weather Conditions	Clear	A	ir Temp. (°F)	15		Time started	
					— т	ime completed	
							•
Sample No. <u>//</u>	W-8		Time	1416			
Duplicate _ M ·	N-108		Time	1406			
Sample No. <u>M</u> Duplicate <u>M</u> Equipment Blank	······································		Time				
Pump <u>Mar</u> Purging Method <u>port</u> Pumping Start <u>1350</u> Purge Rate (gal./min.) <u>O.177</u> Pumping End <u>141</u> Pump Set Depth Below MF KuriTec Tubing TruPoly Tubing Monument Condition <u>Gas</u>	<pre></pre>	ed pump	Approxim Measu	ate Total I red Total I De Depth to	Depth of Well Depth of Well epth to Water Ice (if frozen) Feet o G Purge Wate	Type of Casing Below MP (ft.) Below MP (ft.) Below MP (ft.) Below MP (ft.) f Water in Well Gallons per foot Gallons in Well r Volume (gal.)	20.07 11.04 9.03 0.17 1.53 3.0
Wiring Condition N	A						
Measuring Point (MP)	of Casing (TOC)	Ň	Monun Ieasuremen	ient type: method:	Stickup Rod & level	/ Flushmount / Tape measur	e , and
Top-of-casing to monument	(ff) 0.50	5		Da	atalogger type	n/a	
Monument to ground surface	(ft) (ft)	·	_		ogger serial #		<u></u>
	()		- Ma		ble length (ft.)		
 Lock present and Well name legible Evidence of frost-j 	on outside of w					-	
Notes							
		·			·····		
		WELL CA	SING VOL	JMES			
Diameter of Well [ID-inches]	СМТ	1¼	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Field Parameter Instrument _____ Sample Observations

Field Parameter Instrument _____ Circle one: Parameters stabilized or >3 well volumes purged

Notes ~

~

		FIE	LD PARAMETERS [st	abilization ci	riteria]	
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1356	59	7.32	573		194,0	Clear
1209	6.4	6.31	58%	la Tla	1057	
14100	7.4	5.46	602	6.83	197.6	
1403	Ţ.	5.23	604	lor 180	198,4	
1462		5, <u>}</u>	605	6.36	190, 9	
1411	Ţ	5,10	605	6. Ste	21127	
1414	Γ.Y	5.07	603	10.36	2.500	×.
1416	Same	Dan Hirv.	n Nov,#1			
		<i>t</i>				

FIELD PARAMETERS [stabilization criteria]

Laboratory <u>SGS</u>

	Analysis	Sample Containers	Preservatives	Dup
<u>P</u>	Voc	3 19		X
	×			<u> </u>
	· · · ·			<u> </u>
				Ē
		<u></u>		

Owner/Client	BMES						Project No.	101926-04
Location	MW-(Ĵ.				—	Date	
Sampling Personnel	PL6						Well	Mys-Lo
Weather Conditions	Clean		Air	⁻ Temp. (°F) 10		Time started	1602
_						- T	ime completed	1651
Sample No.				Time	1100			
Sample No Duplicate	<u></u>	0		- Time	1633	-		
Equipment Blank				- Time				
				_ Time		-		
	o /	e .	j.					
		Monsee		•	D			2 m
Purging Method		/ dedicat	ea pump	A			Type of Casing	2" PVC
Pumping Start		-				-	Below MP (ft.)	
Purge Rate (gal./min.)		-		Meas		-	Below MP (ft.)	21,16
Pumping End	1633	-				•	Below MP (ft.)	1651
					Depth to I	• • • •	Below MP (ft.)	h. 1. 1
Pump Set Depth Belo	WMP(ft.)	19,16	-				Water in Well	4.65
		et a sta Al a stan	-				allons per foot	0.17
TruPoly T	ubing (ft.)		-				Sallons in Well	0.79
				D	. D'	Purge Water	Volume (gal.)	4.6
Manuna ant Canalitica							~	
Monument Condition	Lock Ro	w on i	cap in b	rstan				
- Coning Condition								
Casing Condition	1000d							
-				<u></u>				
Wiring Condition	/ IA							
(dedicated pumps)	V/ 4A						· · · · ·	
(dedicated pumpe)_						··		
Measuring Doint (MD)	Top of Co	aina (TOC)		Monur	nont tuno	Stickup	/ Eluchmount	
Measuring Point (MP)	TOP OF Ca	sing (TOC)					/Flushmount	
			IVI	easuremer	it method.	Rou & level	/ Tape measu	
Top-of-casing to monu	(mont (ft)	1. 131			Da	taloggar tupo	pla	
				-		talogger type		
Monument to ground su	mace (ii.)	102				ogger serial #		
			1			le length (ft.)		
Lock presen					Red Int	r. Dunel Loc	er i Price	
Well name le	-		ell NO					
Evidence of	frost-jacki	ng	ND				-	
	·							
Notes		1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -						
	/							
/								
			WELL CA		UMES			
Diameter of Well [ID-inches]		CMT	11/4	/2	3	4	6	8
Gallons per lineal foot		0.000253	0.08	/ 0.17	0.38	0.66	1.5	2.6

Field Parameter Instrument _ Sample Observations _ Notes _ Circle one: (Parameters stabilized_or >3 well volumes purged

10103

		FIE	LD PARAMETERS [sta	abilization cr	riteria]	
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	рН [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1613	3.0	4,90	500	6.86	143.2	A Region How The Start I a
1616	4.3	S. Asi		12.24		the state of the second s
1619	5	national de la constante de l	538	6.33	145.5	
1622.	5,8		540	5. S.A.	140.0	
1623		1,82-	563	6.31	142.9	
Mars	5,4	1.96	576	6.80	131.0	
1631		1.76		(s. St		V
1632	<u> </u>		i ali			
				·		
		L				
			1			

FIELD PARAMETERS [stabilization criteria]

Laboratory SGS

	Analysis	Sample Containers	Preservatives	Dup
e (NOC	ACCE	HCL	
<u> </u>				
	<u></u>			<u> </u>
	·			

Owner/Client_BM	ES				_	Project No.	101926-00
Location MW	- 5				_		11/11/18
Sampling Personnel <u>FL</u>					_		MW-S
Weather Conditions <u>15</u>	lear	Ai	r Temp. (°F) 15		Time started	
					Ti	me completed	1555
Sample No. MW	- 5		Time	1549			
Duplicate			Time)	_		
Equipment Blank			_ Time				
- 44		₩2×-~~2					
Pump <u>Mega</u>			9	D:	amator and T		>"nur
Purging Method <u>portab</u>	and the second	<u>e</u> a pump	Approvin			ype of Casing	6 PVC
Pumping Start 1526					-	Below MP (ft.)	<u> </u>
Purge Rate (gal./min.)	<u>.</u>		Measu			Below MP (ft.)	29.41
Pumping End <u>154</u>						Below MP (ft.)	16.59
Rump Set Depth Bolow MD (4) 0			Depth to I	. ,	Below MP (ft.)	
Pump Set Depth Below MP (L) <u> </u>	-				Water in Well	12.82
KuriTec Tubing(TruPoly Tubing(allons per foot _. Sallons in Well	0.17
	(.)	-					
					-	Volume (gal.)	9.2
)		Purge wa	ler Disposal	Drum		
					,		
Casing Condition 🧾							
Wiring Condition 🕢 / 🍋							
(dedicated pumps)							
Measuring Point (MP) Top of	Casing (TOC)		Monur	nent type: (Stickup	/ Flush <u>mo</u> unt	
	<i>submig</i> (100)	- N	leasuremen			/Tape measu	re
						A REAL PROPERTY AND A REAL	and a summary day and first
Top-of-casing to monument (f			_		alogger type		
Monument to ground surface (f	t.) <u> (, 78</u>		_		gger serial #		
			Me	easured cab	le length (ft.)	n/a	
Lock present and op		n c					
Well name legible o		vell ∽⊅					
Evidence of frost-jac	king	nu					
· ·							
Notes							
							<u> </u>
and the second							
and the second se	ì						
		WELLO	ASING VOL				
Diameter of Well [ID-inches]	СМТ	11/4		3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6
	•					-	_

Well No. MW-5

Sample Observations Notes

SmH Field Parameter Instrument _____ Circle one (Parameters stabilized or >3 well volumes purged

FIELD PARAMETERS	[stabilization criteria]
------------------	--------------------------

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1526	3.2	10.44	448.83	6,84	161.0	Cloudy
1529	4,2	4,45	456.8	6.72	152.2	Slightly Cloudy
1532	4.4	7.88	458.1	6.72	143.0	Clear J
1535	4.4	2.46	458.5	6.71	136.8	
1538	4.6	2,12	460.5	6.75	124.2	
1541	4,6	1.98	461.6	6.74	123.5	
1544	4.6	1.94	460.5	6.75	127.3	
1547	4.6	1.74	460.5	6.76	121.2	Y
1549	<u>Sa</u>	mple tà				

Laboratory SGS

	Analysis	Sample Containers	Preservatives	Dup
À	VDC	BNOA	Heh	□
			· · · · · · · · · · · · · · · · · · ·	므
				므

Appendix C Indoor Air Sampling Logs

CONTENTS

- Sample Collection Logs
- ADEC Building Inventory and Indoor Air Sampling Questionnaire

SHANNON & WILSON, INC.

INDOOR AIR SAMPLING LOG

Weather 10°F, cloudy Sampling personnel 5mH Sample No. TA1-2018 Date (start) 11/15/15Time (start) 1435 Duplicate Date (end) 11/16/18 Time (end) 1438 Duplicate Date (end) 11/16/18 Time (end) 1438 Sample Location: Date (start) 11/15/15Time (end) 1438 Sample Location: Date (end) 11/16/18 Time (end) 1438 Sample Location: Date (start) 11/15/15Time (etart) 1435 Sample Location: Date (end) 11/16/18 Time (etart) 1435 Sample Location: Sample SS14 and SS18 collected in 2017. Sample height (ft.) 4'10" Above ground surface Canister ID 6L0987 Relative humidity 80% Canister volume (L) 6 Barometric pressure 30 02 inHg Canister vacuum (in. Hg) 30 Initial Laboratory Eurofins Canister vacuum (in. Hg) 6 Final Analysis To-15 Mod. fied Notes: <th>Owner/Occupant <u>Dana Smith</u> Location <u>518 Fulton Stre</u> <u>Fairbanks Ak</u>. Mailing Address</th> <th> Date <u>11/15/18</u> Time 14.30</th>	Owner/Occupant <u>Dana Smith</u> Location <u>518 Fulton Stre</u> <u>Fairbanks Ak</u> . Mailing Address	Date <u>11/15/18</u> Time 14.30
Date (end) 11/16/18 Time (end) 1438 Duplicate Date (start) Sample Location: Date (start) Date (end) Time (end) Sample Location: Downstaires Market (ft.) Date (start) Sample height (ft.) Alore proximity to sub- stab Sample height (ft.) Alore start Sample height (ft.) Alore start Relative humidity 80% Canister Volume (L) Barometric pressure Canister vacuum (in. Hg) 30 Initial Laboratory Canister vacuum (in. Hg) Generation	Weather <u>10°F</u> , <u>cloudy</u>	Sampling personnel <u>Sm H</u>
Date (end) Time (end) Sample Location: Dates failes. Laundry and boiler	Sample No. <u>T.A 1 - 2018</u>	Date (start) <u>11/15/18</u> Time (start) <u>1435</u> Date (end) <u>11/16/18</u> Time (end) <u>1438</u>
<u>Samples SSTA and SSTB collected in 2017</u> . <u>Samples SSTA and SSTB collected in 2017</u> . <u>Sample height (ft.) 4'10''</u> Above ground surface <u>Canister ID 640987</u> <u>Canister volume (L) 6</u> <u>Relative humidity 80%</u> <u>Barometric pressure 30 02 in Hog</u> <u>Canister vacuum (in. Hg) 30</u> <u>Initial</u> <u>Canister vacuum (in. Hg) 6</u> <u>Final</u> <u>Laboratory Eurofins</u> <u>Analysis To-15 Mod. fied</u>	Duplicate	
<u>Stab ports; directly between sub-slab</u> <u>samples SSTA and SSTB collected in 2017</u> . Sample height (ft.) <u>4'10''</u> Above ground surface <u>Canister ID 640987</u> Canister volume (L) <u>6</u> Relative humidity <u>80%</u> Barometric pressure <u>30.02 in Hay</u> <u>Canister vacuum (in. Hg) <u>30</u> Canister vacuum (in. Hg) <u>6</u> Final <u>Laboratory EuroPins</u> Analysis <u>TO-15 Model field</u></u>	Sample Location: Downstairs	. Laundry and boiler
Samples SSTA and SSTB collected in 2017. Samples SSTA and SSTB collected in 2017. Sample height (ft.) 4'10'' Above ground surface Canister ID 640987 Relative humidity 80% Canister volume (L) 6 Relative humidity 80% Barometric pressure 30.02 in Hg Canister vacuum (in. Hg) 30 Initial Laboratory Canister vacuum (in. Hg) 6 Final Analysis	room. In close	proximity to sub-
Sample height (ft.) 4'10'' Above ground surface Canister ID 640987 Relative humidity 80% Canister volume (L) 6 Barometric pressure 30.08 in Hg Canister vacuum (in. Hg) 30 Initial Laboratory EuroPins Canister vacuum (in. Hg) 6 Final Analysis To-15 Mod. Field	slab ports; di	
Canister ID 640987. Relative humidity 80% Canister volume (L) 6 Barometric pressure 30 08 in Hg. Canister vacuum (in. Hg) 30 Initial Canister vacuum (in. Hg) 6 Initial Canister vacuum (in. Hg) 6 Final	samples SSIA	and SSIB collected in 2017.
Canister volume (L) 6 Barometric pressure 30.03 in Hg Canister vacuum (in. Hg) 30 Initial Laboratory EuroPins Canister vacuum (in. Hg) 6 Final Analysis To-15 Mod. field		0,
Canister vacuum (in. Hg) 30 Initial Laboratory EuroPins Canister vacuum (in. Hg) 6 Final Analysis To-15 Mod. fied		
Canister vacuum (in. Hg) <u>6</u> Final Analysis <u>TO-15 Mod</u> fied		
		to location; see initial ory Questionnaire conducted 17, 2017.

SHANNON & WILSON, INC.

		SHANNON & WILSON, INC
School District Building Supervisor,	INDOOR AIR SAMPLING	G LOG
Building Supervisor	Jacobson	Project number 01926 - 005
Location 615 M	Ionroe Street	Project name 2018 Indoor- Air BMI
Fairbo	inks Ak.	Date 11/15/18
Mailing Address 1316 Pege	er Rd. Fairbanks	Time <u>[445</u>
Weather 10°F	, cloudy_	Sampling personnel <u>SMH</u>
Sample No. <u>TA13</u>	<u>-2018</u> Da Da	ate (start) <u>11/15/18</u> Time (start) <u>1507</u> Date (end) <u>11/16/18</u> Time (end) <u>1453</u>
Duplicate		ate (start)Time (start) Date (end)Time (end)
Sample Location: <u>Insi</u> <u>the wes</u> <u>stab por</u>	+ wall; neo	apel. Closest to ar outside sub-
Sample height (ft.)	<u>4'5″</u> Above gra	round surface Relative humidity
Canister volume (L)		Barometric pressure <u>30.08 in Ho</u>
Canister vacuum (in. Hg) Canister vacuum (in. Hg)	<u>30</u> Initial <u>5</u> Final	Laboratory <u>EuroPins</u> Analysis <u>TO-15 Modifi</u> ed
Notes: <u>Fille</u> Question <u>approximate</u> <u>mainly</u> focu <u>collection</u>	d out Build aire (BIQ) ly 80,000 f. s' on the o (The Chope	ing Inventory The building is the building is the inventory area of rample

Project # Special Instructions/Notes: Project # Special Instructions/Notes: Project # Special Instructions/Notes: Can # Start Sampling Can # Controller # Date Time Date Time Date Time
Flow Date Time I 7 4 3 I 1 7 4 3 Date
Flow Information Start Sampling Stop Sampling Flow Information Information Controller # Date Time 1343 IV/S/VS S034
Start Sampling Stop Sampling Information Information Date Time Date Time Date Model
Start Sampling Information Stop Samp Informatic # Date Time Date Time Date IVIS/IS ISO/IS IVIS/IS
Date Time Date 11/15/18 1435 11/16/18 11 11/15/18 15.0 T 11/16/19 1
7 1831 11/15/18 1435 11/16/18 143
201743 11/15/18 1507 11/16/19 145
Date Time Received by: (Signature/Affiliation)
Date Time Received by: (Signature/Affiliation)
Date Time Received by: (Signature/Affiliation)
Lab Use Only
Custody Seals Intact? Yes No None

APPENDIX I

DEC Building Survey and Indoor Air Sampling Questionnaire

	ALASKA DEPARTMENT OF ENVIRONMENAL CONSERVATION BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE					
abc gas wo	BUILDING INVENTORY AND INDOOR AIR SAMPLING QUESTIONNAIRE The school is comprised of approximately 80,000 ft ² . For the his single indoor-arc sample, the main bass of this BIQ is the chapel. Is form should be prepared by a person familiar with indoor air assessments with assistance from a person knowledgeable but the building. Complete this form for each building where interior samples (e.g., indoor air, crawl space, or subslab soil samples) will be collected. Section I of this form should be used to assist in choosing an investigative strategy during recomplete the used to assist in identification of complicating factors during a presampling liding walk-through.					
Pre	parer's Name Sheila Hinckley Date/Time Prepared 11/15/18 at ~1400					
Pre	parer's Affiliation Shannon Wilson, Inc. Phone No. 907-479.0600					
Pur	pose of Investigation Indoor - Air Sample Collection					
SE	CTION I: BUILDING INVENTORY					
ι.	OCCUPANT OR BUILDING PERSONNEL; Plant Manager					
	Interviewed: Y/N					
	Last NameFirst Name					
	Address 615 Monroe Street					
	City Fairbanks					
	Phone No. 907-374-9521 - Cindy Jacobson (Building Supervise					
	Number of Occupants/people at this location ~ 300 Age of Occupants \sqrt{ncious}					
	OWNER or LANDLORD: (Check if same as occupant) Monroe Cathistic School Interviewed: Y/N See contact # above					
	Interviewed: Y/N See contact # about					
	Last NameFirst Name					
	Address					
	City					
	Phone No.					
	BUILDING CHARACTERISTICS					
	Type of Building: (Circle appropriate response.)					

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouse/Condo Other
If multiple units, how i	many?	
If the property is comm	nercial, what type?	
Business types(s)	School	
Does it include resid	dences (i.e., multi-use)? Y (N	If yes, how many?
Other characteristics:		claurooms on the west side of the schoo
Number of floors	1-2	Building age Unknown
Is the building insul	ated? Y / N	How airtight? Tight / Average / Not Tight
Have occupants notice	d chemical odors in the build	ding? Y/N
AIRFLOW Use air current tubes, 1	racer smoke, or knowledge	
AIRFLOW Use air current tubes, t describe:	racer smoke, or knowledge	
If yes, please describe:	racer smoke, or knowledge	about the building to evaluate airflow patterns and qualitativ
AIRFLOW Use air current tubes, t describe: Airflow between floors M/A	racer smoke, or knowledge	about the building to evaluate airflow patterns and qualitativ

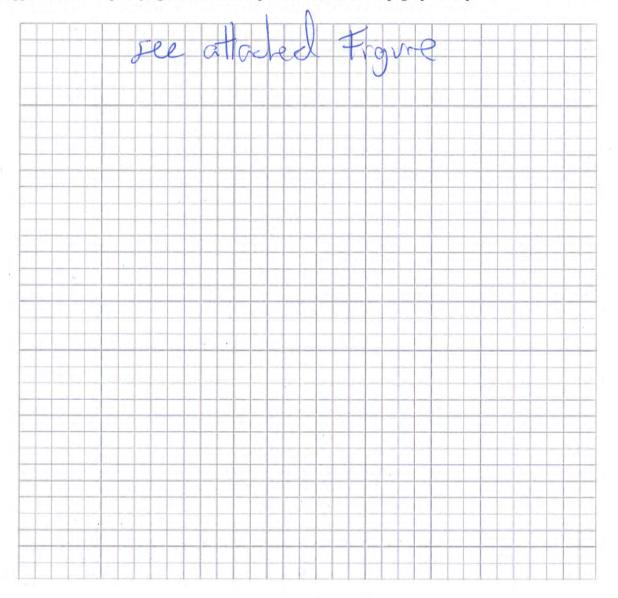
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply.)

a. Above-grade construction:	wood frame	log	concrete	brick
unknown	constructed o with enclosed		constructed on with open air s	
b. Basement type:	full	crawlspace	slab-on-grade	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	unsealed	sealed	sealed with	
e. Foundation walls:	poured	block	stone	other
f. Foundation walls:	unsealed	sealed	sealed with	
g. The basement is:	wet	damp	dry	
h. The basement is: unk inter		unfinished	partially finish	ed
i. Sump present?	YN -n	one obs	erved	
j. Water in sump?	Y / N / not ap	plicable		
Basement or lowest level depth be	low grade	lab on a	role (feet).	
5. HEATING, VENTING, and A Type of heating system(s) used) AIR CONDITIC	ONING (Circl	e all that apply.)	
Space heaters		Rad	t water baseboard diant floor tdoor wood boiler	
Natural gas Electric	Fuel oil Propane Coal	Ker Sol	rosene ar	
Domestic hot water tank is fue	eled by:			
Boiler/furnace is located in:	Base	ment C	Dutdoors N	Main floor Other Mechanical Roo
Do any of the heating appliand Type of air conditioning or ve		n this buildin		
Central air	Window units	sunt op	en windows	None
Commercial HVAG	Heat-recovery s	ystem Pas	sive air system	
Are there air distribution duc	a fut we had a			
Are mere an ustribution duc	ts present?	Y /	N	

ń

_						
Is there a	adon mitigation syst	em for the building/	structure? Y / N	Date of Installatio	on	
Is the syst	m active or passive?	Active/Passiv	e			
OCCUPA	NCY					
ls baseme	t/lowest level occupi	ed? Full-time	Occasionally	Seldom	Almost never	
Level	General Use of Ea	ch Floor (e.g., family	v room, bedroom,	laundry, works	hop, or storage).	
	Alan	2				
Basement	_ NON	al build				
1 st Floor	Che	land	fl t		at was fol	
and retain	1 CLETON	mo la	1 loor al	horthw	tell aren al Jehas	
2 nd Floor	_Classroo					
2 nd Floor 3 rd Floor	Classioc					
3 rd Floor	ND SEWAGE					

9. FLOOR PLANS


Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note that.

See attached Figures **Basement:** Lobby RA DQ room room room Res Rest Chapel Entrance room noon (Main) room strance K Exterior Doors Main Sample Indoor-Air IA13-2018 ¢ D C 8 0 Sail-Gas Sample (collected in 2017) **First Floor:**

10. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (e.g., industries, gas stations, repair shops, landfills, etc.), outdoor air sampling locations and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the location of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

SECTION II: INDOOR AIR SAMPLING QUESTIONNAIRE

This section should be completed during a presampling walk-through. If indoor air sources of COCs are identified and removed, consider ventilating the building prior to sampling. However, ventilation and heating systems should be operating normally for 24 hours prior to sampling.

a) 1. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Is there an attached garage?	YIN
Does the garage have a separate heating unit?	YININA
Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, or car)	Y / N /NA Please specify
Has the building ever had a fire? Unknown	Y / N When?
Is a kerosene or unvented gas space heater present?	Y/N Where? not in chapel
Is there a workshop or hobby/craft area?	Y / N Where and type
Is there smoking in the building?	Y / W How frequently?
Has painting/staining been done in the last six months?	Y / Where and when?
Is there new carpet, drapes or other textiles?	Y / N Where and when?
Is there a kitchen exhaust fan?	N If yes, where is it vented?
Is there a bathroom exhaust fan?	Y N If yes, where is it vented?
Is there a clothes dryer?	Y / N If yes, is it vented outside? Y / N
Are cleaning products, cosmetic products, or pesticides u	used that could interfere with indoor air sampling? Y/N
If yes, please describe	
	Y/N unknown any of the below examples ng or a laboratory, auto mechanic or auto body shop, painting as a boiler mechanic, pesticide applicator, or cosmetologist?)
If yes, what types of solvents are used?	
If yes, are his/her/their clothes washed at work? Y	N
Do any of the building occupants regularly use or work a	at a dry-cleaning service? (Circle appropriate response)
Yes, use dry cleaning regularly (weekly)	No
Yes, use dry cleaning infrequently (monthly or less)	Unknown
Yes, work at a dry cleaning services	

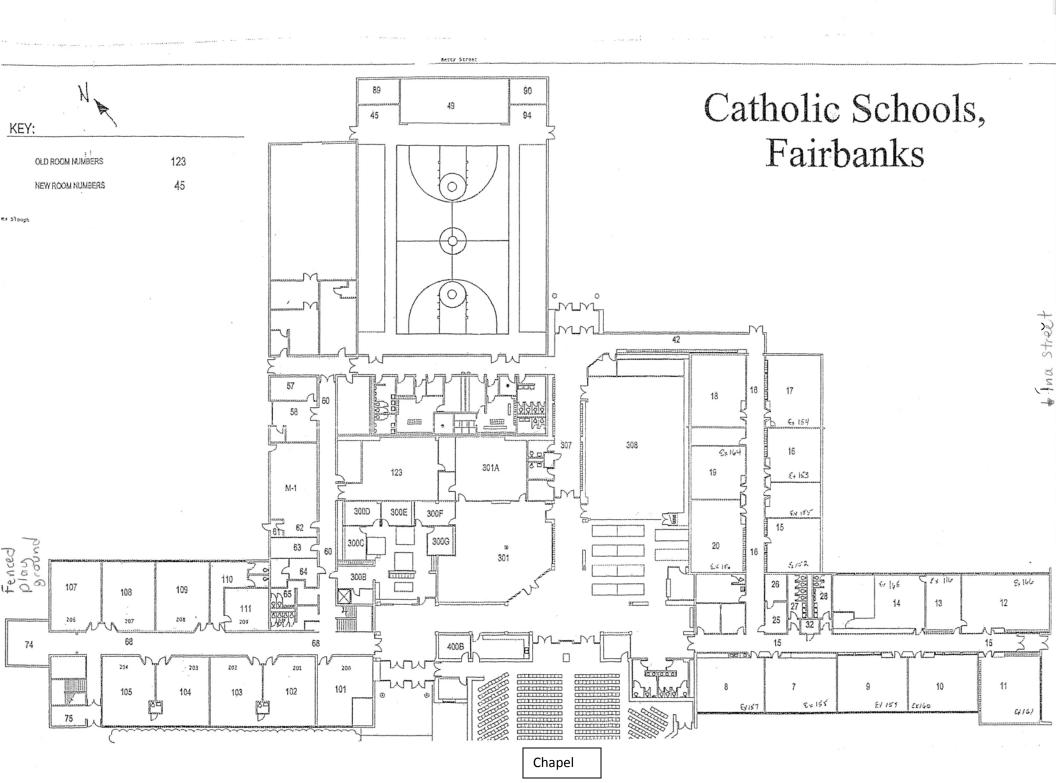
2. PRODUCT INVENTORY FORM (For use during building walk-through.)

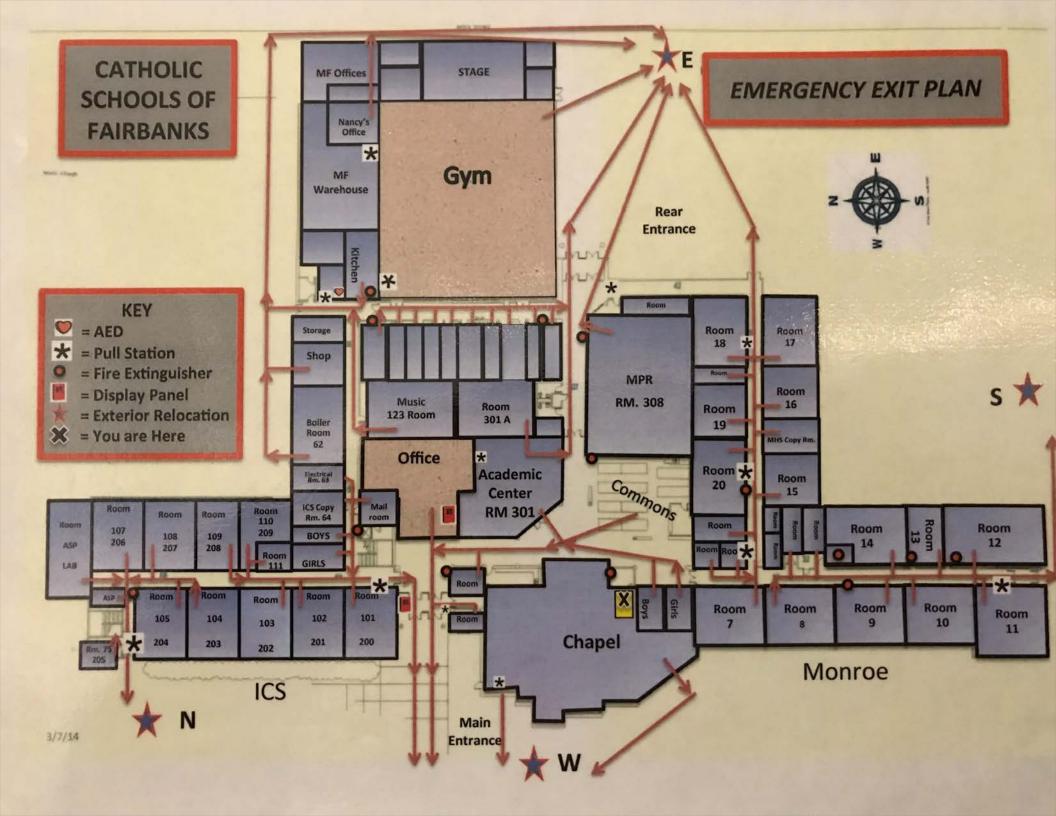
Make and model of field instrument used:

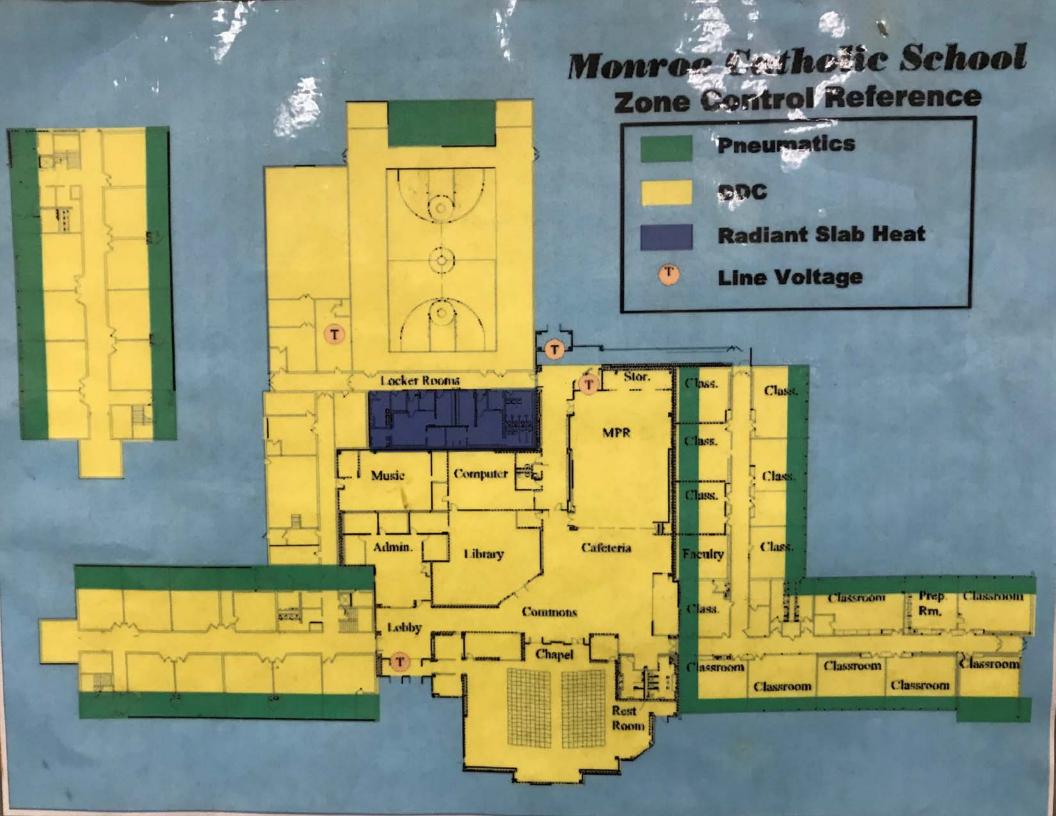
List specific products found in the residence that have the potential to affect indoor air quality:

Location	Product Description	Site (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo ² <u>Y / N</u>
N	p products	obr	erved	in the ch	apel	
		-				
		1				-
					P	

¹ Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**.


² Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.


This form was modified from:


ITRC (Interstate Technology and Regulatory Council). 2007. Vapor Intrusion Pathway: A Practical Guideline. VI-1. Washington, D.C.: Interstate Technology and Regulatory Council, Vapor Intrusion Team. Available at: www.itrcweb.org.

The Alaska Department of Environmental Conservation's Contaminated Sites Program protects human health and the environment by managing the cleanup of contaminated soil and groundwater in Alaska.For more information, please contact our staff at the Contaminated Sites Program closest to you: Juneau: 907-465-5390 / Anchorage: 907-269-7503 Fairbanks: 907-451-2153 / Kenai: 907-262-5210

Appendix D Monitoring Well Survey

CONTENTS

- Design Alaska, Inc. Survey
- EPA OnSite Gradient Calculation

MONITOR WELL SURVEY

BENTLEY MALL EAST SATELLITE Fairbanks, Alaska

		ATE PLANE AD83, USft.	NAVD88 ELEVATION			
WELL ID	NORTHING	EASTING	PVC PIPE	GROUND		
BM-MW-1R	3968800.00	1375862.06	446.23	446.6		
BM-MW-2R	3968848.89	1375709.75	445.96	446.4		
BM-MW-3R	3968850.74	1375708.13	445.99	446.4		
BM-MW-4R	3968943.56	1375723.21	444.79	445.1		
BM-MW-5	3969118.40	1374819.90	447.73	446.1		
BM-MW-6	3969124.45	1374818.59	447.56	446.1		
BM-MW-7	3969410.57	1374417.21	449.67	447.2		
BM-MW-8	3969218.39	1373663.25	441.62	442.1		
BM-MW-9	3969203.76	1374201.91	441.46	442.3		
BM-MW-10	3968967.07	1374612.88	442.95	443.7		
BM-MW-11	3968941.18	1374060.37	441.82	442.6		
BM-MW-12	3968917.64	1375316.66	445.45	446.1		
BM-MW-13	3968766.05	1375576.75	445.87	446.5		

Surveyed November, 2018 Prepared For Shannon & Wilson

Design Alaska Inc. Architects • Engineers • Surveyors 601 College Road Fairbanks Alaska 99701 907 452 1241 Fax 907 456 6883 E-Mail mail@designalaska.com SMARTe - EPA OnSite Calculators http://www.smarte.org/smarte/RiskAssessment/Contamination/FateandT...

Appendix E Analytical Laboratory Reports

CONTENTS

- SGS Laboratory Work Order 1189931
- Eurofins Laboratory Work Order 1811545

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd Fairbanks, AK 99707

Report Number: 1189931

Client Project: 101926-002 BMES Annual GW

Dear Sheila Hinckley,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Stephen Ede 2018.11.07 15:54:08 -09'00'

Alaska Division Technical Director

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 11/07/2018 2:22:46PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks SGS Project: 1189931 Project Name/Site: 101926-002 BMES Annual GW Project Contact: Sheila Hinckley

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/07/2018 2:22:46PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 11/07/2018 2:22:47PM

Sample Summary										
Client Sample ID	Lab Sample ID	Collected	Received	Matrix						
MW-5	1189931001	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-10	1189931002	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-11	1189931003	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
EB-11	1189931004	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-8	1189931005	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-108	1189931006	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-9	1189931007	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-6	1189931008	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
Trip Blank 1	1189931009	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-1R	1189931010	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-101R	1189931011	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-7	1189931012	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-13	1189931013	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-12	1189931014	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-2R	1189931015	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-3R	1189931016	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
MW-4	1189931017	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						
Trip Blank 2	1189931018	11/01/2018	11/03/2018	Water (Surface, Eff., Ground)						

<u>Method</u> SW8260C Method Description

Volatile Organic Compounds (W) FULL

Print Date: 11/07/2018 2:22:48PM

Detectable Results Summary Client Sample ID: MW-5 Lab Sample ID: 1189931001 Parameter Result Units 1,2-Dichloroethane 0.500 ug/L Volatile GC/MS Benzene 0.180J ug/L Chloroform 0.700J ug/L cis-1,2-Dichloroethene 1.60 ug/L Tetrachloroethene 80.7 ug/L trans-1,2-Dichloroethene 0.400J ug/L Trichloroethene 11.1 ug/L Trichlorofluoromethane 4.73 ug/L Client Sample ID: MW-10 Lab Sample ID: 1189931002 Units Parameter Result Volatile GC/MS 1,2-Dichloroethane 0.360J ug/L 0.130J Benzene ug/L cis-1,2-Dichloroethene 1.21 ug/L 31.0 Tetrachloroethene ug/L trans-1.2-Dichloroethene 0.330J ug/L Trichloroethene 6.48 ug/L Client Sample ID: MW-11 Lab Sample ID: 1189931003 Parameter Result Units cis-1,2-Dichloroethene 1.11 ug/L Volatile GC/MS Tetrachloroethene 4.36 ug/L trans-1.2-Dichloroethene 8.18 ug/L Trichloroethene 1.80 ug/L Trichlorofluoromethane 3.18 ug/L Client Sample ID: MW-8 Lab Sample ID: 1189931005 Parameter Units Result Volatile GC/MS Chloroform 0.450J ug/L cis-1,2-Dichloroethene 1.15 ug/L Tetrachloroethene 3.78 ug/L trans-1,2-Dichloroethene 9.98 ug/L Trichloroethene 1.45 ug/L Client Sample ID: MW-108 Lab Sample ID: 1189931006 Parameter Result Units Volatile GC/MS Chloroform 0.460J ug/L cis-1,2-Dichloroethene 1.17 ug/L Tetrachloroethene 3.85 ug/L Toluene 0.310J ug/L trans-1.2-Dichloroethene 10.3 ug/L Trichloroethene 1.47 ug/L

Print Date: 11/07/2018 2:22:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary Client Sample ID: MW-9 Lab Sample ID: 1189931007 Parameter Result Units 1,2-Dichloroethane 0.330J ug/L Volatile GC/MS Chloroform 0.400J ug/L cis-1,2-Dichloroethene 3.73 ug/L Tetrachloroethene 25.5 ug/L trans-1.2-Dichloroethene 3.71 ug/L Trichloroethene 7.35 ug/L Client Sample ID: MW-6 Lab Sample ID: 1189931008 Parameter Result Units 1,2-Dichloroethane 0.260J ug/L Volatile GC/MS Chloroform 0.870J ug/L cis-1,2-Dichloroethene 1.29 ug/L Tetrachloroethene 48.4 ug/L Trichloroethene 5.77 ug/L Trichlorofluoromethane 3.87 ug/L Client Sample ID: MW-1R Lab Sample ID: 1189931010 Parameter Result Units 1,1,1,2-Tetrachloroethane 1.00 ug/L Volatile GC/MS 1,2-Dichloroethane 2.35 ug/L Bromodichloromethane 0.420J ug/L Chloroform 18.2 ug/L Tetrachloroethene 217 ug/L Trichloroethene 1.08 ug/L Trichlorofluoromethane 39.9 ug/L Client Sample ID: MW-101R Lab Sample ID: 1189931011 Units Parameter Result Volatile GC/MS 1,1,1,2-Tetrachloroethane 1.05 ug/L 1,2-Dichloroethane 2.46 ug/L Bromodichloromethane 0.440J ug/L Chloroform 18.8 ug/L Tetrachloroethene 214 ug/L Trichloroethene 1.06 ug/L Trichlorofluoromethane 41.2 ug/L Client Sample ID: MW-7 Lab Sample ID: 1189931012 Units Parameter **Result** 2.34 Volatile GC/MS cis-1.2-Dichloroethene ug/L Tetrachloroethene 5.57 ug/L Trichloroethene 2.69 ug/L

Print Date: 11/07/2018 2:22:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary Client Sample ID: MW-13 Lab Sample ID: 1189931013 Parameter Result Units 1,2-Dichloroethane 0.170J ug/L Volatile GC/MS Chloroform 1.95 ug/L Tetrachloroethene 23.4 ug/L Trichlorofluoromethane 1.86 ug/L Client Sample ID: MW-12 Lab Sample ID: 1189931014 Parameter Result Units Volatile GC/MS 1,2-Dichloroethane 0.220J ug/L Benzene 0.150J ug/L Chloroform 0.710J ug/L cis-1.2-Dichloroethene 0.750J ug/L Tetrachloroethene 177 ug/L Trichloroethene 5.50 ug/L Trichlorofluoromethane 2.02 ug/L Client Sample ID: MW-2R Lab Sample ID: 1189931015 Units Parameter Result 0.240J Volatile GC/MS Benzene ug/L Chloroform 7.13 ug/L cis-1,2-Dichloroethene 1.89 ug/L Tetrachloroethene 211 ug/L Trichloroethene 1.94 ug/L Trichlorofluoromethane 16.1 ug/L Client Sample ID: MW-3R Lab Sample ID: 1189931016 Parameter Result Units 1,2-Dichloroethane 0.440J ug/L Volatile GC/MS 0.240J ug/L Benzene Chloroform 4.09 ug/L cis-1,2-Dichloroethene 0.440J ug/L 0.850J Tetrachloroethene ug/L Trichlorofluoromethane 1.53 ug/L Client Sample ID: MW-4 Lab Sample ID: 1189931017 Result Units Parameter Volatile GC/MS 1,2-Dichloroethane 0.270J ug/L Tetrachloroethene 42.9 ug/L Toluene 0.450J ug/L trans-1,2-Dichloroethene 0.710J ug/L Trichloroethene 1.48 ug/L Trichlorofluoromethane 5.35 ug/L

Print Date: 11/07/2018 2:22:49PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **MW-5** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931001 Lab Project ID: 1189931 Collection Date: 11/01/18 15:49 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	<u>Linits</u> <u>Date Analyzed</u> 11/05/18 14:52
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:52
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	11/05/18 14:52
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:52
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	11/05/18 14:52
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,2-Dichloroethane	0.500	0.500	0.150	ug/L	1	11/05/18 14:52
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:52
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:52
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:52
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:52
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:52
Benzene	0.180 J	0.400	0.120	ug/L	1	11/05/18 14:52
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:52
Bromoform	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
Bromomethane	2.50 U	5.00	1.50	ug/L	1	11/05/18 14:52
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:52
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:52
Chloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:52

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **MW-5** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931001 Lab Project ID: 1189931 Collection Date: 11/01/18 15:49 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Chloroform	0.700 J	1.00	0.310	ug/L	1		11/05/18 14:52
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
cis-1,2-Dichloroethene	1.60	1.00	0.310	ug/L	1		11/05/18 14:52
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:52
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:52
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:52
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 14:52
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:52
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 14:52
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Tetrachloroethene	80.7	1.00	0.310	ug/L	1		11/05/18 14:52
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
trans-1,2-Dichloroethene	0.400 J	1.00	0.310	ug/L	1		11/05/18 14:52
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:52
Trichloroethene	11.1	1.00	0.310	ug/L	1		11/05/18 14:52
Trichlorofluoromethane	4.73	1.00	0.310	ug/L	1		11/05/18 14:52
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:52
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 14:52
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 14:52
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		11/05/18 14:52
4-Bromofluorobenzene (surr)	103	85-114		%	1		11/05/18 14:52
Toluene-d8 (surr)	102	89-112		%	1		11/05/18 14:52

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Results of MW-5

Client Sample ID: **MW-5** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931001 Lab Project ID: 1189931 Collection Date: 11/01/18 15:49 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 14:52 Container ID: 1189931001-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

SG

Client Sample ID: **MW-10** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931002 Lab Project ID: 1189931 Collection Date: 11/01/18 12:25 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 15:07
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 15:07
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,2-Dichloroethane	0.360 J	0.500	0.150	ug/L	1		11/05/18 15:07
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
Benzene	0.130 J	0.400	0.120	ug/L	1		11/05/18 15:07
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 15:07
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

SG

Client Sample ID: **MW-10** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931002 Lab Project ID: 1189931 Collection Date: 11/01/18 12:25 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
cis-1,2-Dichloroethene	1.21	1.00	0.310	ug/L	1		11/05/18 15:07
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:07
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 15:07
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 15:07
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Tetrachloroethene	31.0	1.00	0.310	ug/L	1		11/05/18 15:07
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
trans-1,2-Dichloroethene	0.330 J	1.00	0.310	ug/L	1		11/05/18 15:07
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Trichloroethene	6.48	1.00	0.310	ug/L	1		11/05/18 15:07
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:07
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:07
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 15:07
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 15:07
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		11/05/18 15:07
4-Bromofluorobenzene (surr)	103	85-114		%	1		11/05/18 15:07
Toluene-d8 (surr)	99.6	89-112		%	1		11/05/18 15:07

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-10

Client Sample ID: **MW-10** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931002 Lab Project ID: 1189931 Collection Date: 11/01/18 12:25 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 15:07 Container ID: 1189931002-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

SG

Client Sample ID: **MW-11** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931003 Lab Project ID: 1189931 Collection Date: 11/01/18 13:15 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analy	zed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 1	5:22
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 1	5:22
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	11/05/18 1	5:22
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	11/05/18 1	5:22
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	11/05/18 1	5:22
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 1	5:22
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	11/05/18 1	5:22
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 1	5:22
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 1	5:22
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	11/05/18 1	5:22
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 1	5:22
Benzene	0.200 U	0.400	0.120	ug/L	1	11/05/18 1	5:22
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 1	5:22
Bromoform	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
Bromomethane	2.50 U	5.00	1.50	ug/L	1	11/05/18 1	5:22
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	11/05/18 1	5:22
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 1	5:22
Chloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 1	5:22

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 14 of 75

SG

Client Sample ID: **MW-11** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931003 Lab Project ID: 1189931 Collection Date: 11/01/18 13:15 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u> Chloroform	<u>Result Qual</u> 0.500 U	LOQ/CL	DL	Units	DF	Allowable	Data Arrahmari
Chloroform	0.500 U			01110		<u>Limits</u>	Date Analyzed
		1.00	0.310	ug/L	1		11/05/18 15:22
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
cis-1,2-Dichloroethene	1.11	1.00	0.310	ug/L	1		11/05/18 15:22
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:22
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:22
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:22
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 15:22
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:22
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 15:22
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Tetrachloroethene	4.36	1.00	0.310	ug/L	1		11/05/18 15:22
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
trans-1,2-Dichloroethene	8.18	1.00	0.310	ug/L	1		11/05/18 15:22
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:22
Trichloroethene	1.80	1.00	0.310	ug/L	1		11/05/18 15:22
Trichlorofluoromethane	3.18	1.00	0.310	ug/L	1		11/05/18 15:22
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:22
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 15:22
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 15:22
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		11/05/18 15:22
4-Bromofluorobenzene (surr)	101	85-114		%	1		11/05/18 15:22
Toluene-d8 (surr)	99.7	89-112		%	1		11/05/18 15:22

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-11

Client Sample ID: **MW-11** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931003 Lab Project ID: 1189931 Collection Date: 11/01/18 13:15 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 15:22 Container ID: 1189931003-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 16 of 75

Results of EB-11

SG

Client Sample ID: **EB-11** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931004 Lab Project ID: 1189931 Collection Date: 11/01/18 13:25 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 15:38
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 15:38
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 15:38
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 15:38
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 17 of 75

Results of EB-11

SG

Client Sample ID: **EB-11** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931004 Lab Project ID: 1189931 Collection Date: 11/01/18 13:25 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:38
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 15:38
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 15:38
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:38
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:38
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 15:38
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 15:38
Surrogates							
1,2-Dichloroethane-D4 (surr)	109	81-118		%	1		11/05/18 15:38
4-Bromofluorobenzene (surr)	102	85-114		%	1		11/05/18 15:38
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 15:38

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of EB-11

Client Sample ID: **EB-11** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931004 Lab Project ID: 1189931 Collection Date: 11/01/18 13:25 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 15:38 Container ID: 1189931004-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 19 of 75

SG

Client Sample ID: **MW-8** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931005 Lab Project ID: 1189931 Collection Date: 11/01/18 14:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 15:53
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 15:53
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 15:53
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 15:53
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 20 of 75

SG

Client Sample ID: **MW-8** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931005 Lab Project ID: 1189931 Collection Date: 11/01/18 14:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.450 J	1.00	0.310	ug/L	1		11/05/18 15:53
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
cis-1,2-Dichloroethene	1.15	1.00	0.310	ug/L	1		11/05/18 15:53
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 15:53
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 15:53
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 15:53
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Tetrachloroethene	3.78	1.00	0.310	ug/L	1		11/05/18 15:53
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
trans-1,2-Dichloroethene	9.98	1.00	0.310	ug/L	1		11/05/18 15:53
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Trichloroethene	1.45	1.00	0.310	ug/L	1		11/05/18 15:53
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 15:53
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 15:53
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 15:53
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 15:53
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		11/05/18 15:53
4-Bromofluorobenzene (surr)	103	85-114		%	1		11/05/18 15:53
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 15:53

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Page 21 of 75

Results of MW-8

Client Sample ID: **MW-8** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931005 Lab Project ID: 1189931 Collection Date: 11/01/18 14:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 15:53 Container ID: 1189931005-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

SG

Client Sample ID: **MW-108** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931006 Lab Project ID: 1189931 Collection Date: 11/01/18 14:06 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 16:08
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 16:08
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 16:08
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 16:08
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **MW-108** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931006 Lab Project ID: 1189931 Collection Date: 11/01/18 14:06 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter_	Result Qual					Allowable	
		LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Chloroform	0.460 J	1.00	0.310	ug/L	1		11/05/18 16:08
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
cis-1,2-Dichloroethene	1.17	1.00	0.310	ug/L	1		11/05/18 16:08
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:08
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 16:08
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 16:08
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Tetrachloroethene	3.85	1.00	0.310	ug/L	1		11/05/18 16:08
Toluene	0.310 J	1.00	0.310	ug/L	1		11/05/18 16:08
trans-1,2-Dichloroethene	10.3	1.00	0.310	ug/L	1		11/05/18 16:08
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Trichloroethene	1.47	1.00	0.310	ug/L	1		11/05/18 16:08
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:08
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:08
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 16:08
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 16:08
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		11/05/18 16:08
4-Bromofluorobenzene (surr)	102	85-114		%	1		11/05/18 16:08
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 16:08

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-108

Client Sample ID: MW-108 Client Project ID: 101926-002 BMES Annual GW Lab Sample ID: 1189931006 Lab Project ID: 1189931 Collection Date: 11/01/18 14:06 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 16:08 Container ID: 1189931006-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

SG

Client Sample ID: **MW-9** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931007 Lab Project ID: 1189931 Collection Date: 11/01/18 11:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyze
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 16:2
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 16:2
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	11/05/18 16:2
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	11/05/18 16:2
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	11/05/18 16:2
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,2-Dichloroethane	0.330 J	0.500	0.150	ug/L	1	11/05/18 16:2
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	11/05/18 16:2
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 16:2
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 16:2
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	11/05/18 16:2
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 16:2
Benzene	0.200 U	0.400	0.120	ug/L	1	11/05/18 16:2
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 16:2
Bromoform	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
Bromomethane	2.50 U	5.00	1.50	ug/L	1	11/05/18 16:2
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	11/05/18 16:2
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 16:2
Chloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 16:2

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 26 of 75

SG

Client Sample ID: **MW-9** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931007 Lab Project ID: 1189931 Collection Date: 11/01/18 11:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.400 J	1.00	0.310	ug/L	1		11/05/18 16:23
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
cis-1,2-Dichloroethene	3.73	1.00	0.310	ug/L	1		11/05/18 16:23
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:23
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:23
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:23
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 16:23
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:23
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 16:23
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Tetrachloroethene	25.5	1.00	0.310	ug/L	1		11/05/18 16:23
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
trans-1,2-Dichloroethene	3.71	1.00	0.310	ug/L	1		11/05/18 16:23
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Trichloroethene	7.35	1.00	0.310	ug/L	1		11/05/18 16:23
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:23
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:23
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 16:23
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 16:23
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		11/05/18 16:23
4-Bromofluorobenzene (surr)	103	85-114		%	1		11/05/18 16:23
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 16:23

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-9

Client Sample ID: **MW-9** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931007 Lab Project ID: 1189931 Collection Date: 11/01/18 11:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 16:23 Container ID: 1189931007-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 28 of 75

SG

Client Sample ID: **MW-6** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931008 Lab Project ID: 1189931 Collection Date: 11/01/18 16:33 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 16:39
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 16:39
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,2-Dichloroethane	0.260 J	0.500	0.150	ug/L	1		11/05/18 16:39
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 16:39
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 16:39
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **MW-6** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931008 Lab Project ID: 1189931 Collection Date: 11/01/18 16:33 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.870 J	1.00	0.310	ug/L	1		11/05/18 16:39
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
cis-1,2-Dichloroethene	1.29	1.00	0.310	ug/L	1		11/05/18 16:39
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:39
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 16:39
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 16:39
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Tetrachloroethene	48.4	1.00	0.310	ug/L	1		11/05/18 16:39
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:39
Trichloroethene	5.77	1.00	0.310	ug/L	1		11/05/18 16:39
Trichlorofluoromethane	3.87	1.00	0.310	ug/L	1		11/05/18 16:39
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:39
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 16:39
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 16:39
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		11/05/18 16:39
4-Bromofluorobenzene (surr)	105	85-114		%	1		11/05/18 16:39
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 16:39

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-6

Client Sample ID: **MW-6** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931008 Lab Project ID: 1189931 Collection Date: 11/01/18 16:33 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 16:39 Container ID: 1189931008-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 31 of 75

SG

Client Sample ID: **Trip Blank 1** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931009 Lab Project ID: 1189931 Collection Date: 11/01/18 11:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits Date Analyze
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:2
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:2
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	11/05/18 14:2
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:2
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	11/05/18 14:2
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:2
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:2
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:2
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:2
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:2
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:2
Benzene	0.200 U	0.400	0.120	ug/L	1	11/05/18 14:2
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:2
Bromoform	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
Bromomethane	2.50 U	5.00	1.50	ug/L	1	11/05/18 14:2
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	11/05/18 14:2
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/05/18 14:2
Chloroethane	0.500 U	1.00	0.310	ug/L	1	11/05/18 14:2

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 32 of 75

SG

Client Sample ID: **Trip Blank 1** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931009 Lab Project ID: 1189931 Collection Date: 11/01/18 11:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:21
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:21
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:21
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 14:21
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:21
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 14:21
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:21
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:21
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 14:21
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 14:21
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		11/05/18 14:21
4-Bromofluorobenzene (surr)	102	85-114		%	1		11/05/18 14:21
Toluene-d8 (surr)	102	89-112		%	1		11/05/18 14:21

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **Trip Blank 1** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931009 Lab Project ID: 1189931 Collection Date: 11/01/18 11:16 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 14:21 Container ID: 1189931009-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 34 of 75

SG

Client Sample ID: **MW-1R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931010 Lab Project ID: 1189931 Collection Date: 11/01/18 16:34 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	1.00	0.500	0.150	ug/L	1		11/05/18 16:54
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:54
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 16:54
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 16:54
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,2-Dichloroethane	2.35	0.500	0.150	ug/L	1		11/05/18 16:54
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:54
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:54
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 16:54
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Bromodichloromethane	0.420 J	0.500	0.150	ug/L	1		11/05/18 16:54
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 16:54
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:54
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

SG

Client Sample ID: **MW-1R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931010 Lab Project ID: 1189931 Collection Date: 11/01/18 16:34 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	18.2	1.00	0.310	ug/L	1		11/05/18 16:54
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:54
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 16:54
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 16:54
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 16:54
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Tetrachloroethene	217	10.0	3.10	ug/L	10		11/06/18 15:30
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 16:54
Trichloroethene	1.08	1.00	0.310	ug/L	1		11/05/18 16:54
Trichlorofluoromethane	39.9	1.00	0.310	ug/L	1		11/05/18 16:54
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 16:54
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 16:54
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 16:54
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		11/05/18 16:54
4-Bromofluorobenzene (surr)	102	85-114		%	1		11/05/18 16:54
Toluene-d8 (surr)	103	89-112		%	1		11/05/18 16:54

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-1R Client Project ID: 101926-002 BMES Annual GW Lab Sample ID: 1189931010 Lab Project ID: 1189931

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18548 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/06/18 15:30 Container ID: 1189931010-A

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 16:54 Container ID: 1189931010-A Collection Date: 11/01/18 16:34 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX33511 Prep Method: SW5030B Prep Date/Time: 11/06/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group Page 37 of 75

Results of MW-101R

SG

Client Sample ID: **MW-101R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931011 Lab Project ID: 1189931 Collection Date: 11/01/18 16:24 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	1.05	0.500	0.150	ug/L	1		11/05/18 17:09
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:09
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 17:09
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 17:09
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,2-Dichloroethane	2.46	0.500	0.150	ug/L	1		11/05/18 17:09
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:09
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:09
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 17:09
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Bromodichloromethane	0.440 J	0.500	0.150	ug/L	1		11/05/18 17:09
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 17:09
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:09
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 38 of 75

Results of MW-101R

SG

Client Sample ID: **MW-101R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931011 Lab Project ID: 1189931 Collection Date: 11/01/18 16:24 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	18.8	1.00	0.310	ug/L	1		11/05/18 17:09
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:09
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:09
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 17:09
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 17:09
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Tetrachloroethene	214	10.0	3.10	ug/L	10		11/06/18 15:47
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:09
Trichloroethene	1.06	1.00	0.310	ug/L	1		11/05/18 17:09
Trichlorofluoromethane	41.2	1.00	0.310	ug/L	1		11/05/18 17:09
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:09
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 17:09
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 17:09
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	81-118		%	1		11/05/18 17:09
4-Bromofluorobenzene (surr)	101	85-114		%	1		11/05/18 17:09
Toluene-d8 (surr)	102	89-112		%	1		11/05/18 17:09

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-101R

Client Sample ID: **MW-101R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931011 Lab Project ID: 1189931

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18548 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/06/18 15:47 Container ID: 1189931011-A

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 17:09 Container ID: 1189931011-A Collection Date: 11/01/18 16:24 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX33511 Prep Method: SW5030B Prep Date/Time: 11/06/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group Page 40 of 75

SG

Client Sample ID: **MW-7** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931012 Lab Project ID: 1189931 Collection Date: 11/01/18 14:35 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 17:24
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 17:24
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 17:24
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 17:24
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **MW-7** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931012 Lab Project ID: 1189931 Collection Date: 11/01/18 14:35 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
cis-1,2-Dichloroethene	2.34	1.00	0.310	ug/L	1		11/05/18 17:24
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:24
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 17:24
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 17:24
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Tetrachloroethene	5.57	1.00	0.310	ug/L	1		11/05/18 17:24
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Trichloroethene	2.69	1.00	0.310	ug/L	1		11/05/18 17:24
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:24
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:24
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 17:24
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 17:24
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	81-118		%	1		11/05/18 17:24
4-Bromofluorobenzene (surr)	103	85-114		%	1		11/05/18 17:24
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 17:24

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 42 of 75

Results of MW-7

Client Sample ID: **MW-7** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931012 Lab Project ID: 1189931 Collection Date: 11/01/18 14:35 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 17:24 Container ID: 1189931012-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 43 of 75

SG

Client Sample ID: **MW-13** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931013 Lab Project ID: 1189931 Collection Date: 11/01/18 13:19 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 17:40
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 17:40
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,2-Dichloroethane	0.170 J	0.500	0.150	ug/L	1		11/05/18 17:40
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 17:40
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 17:40
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group

Page 44 of 75

SG

Client Sample ID: **MW-13** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931013 Lab Project ID: 1189931 Collection Date: 11/01/18 13:19 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	1.95	1.00	0.310	ug/L	1		11/05/18 17:40
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:40
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 17:40
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 17:40
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Tetrachloroethene	23.4	1.00	0.310	ug/L	1		11/05/18 17:40
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:40
Trichlorofluoromethane	1.86	1.00	0.310	ug/L	1		11/05/18 17:40
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:40
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 17:40
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 17:40
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		11/05/18 17:40
4-Bromofluorobenzene (surr)	104	85-114		%	1		11/05/18 17:40
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 17:40

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 45 of 75

Results of MW-13

Client Sample ID: MW-13 Client Project ID: 101926-002 BMES Annual GW Lab Sample ID: 1189931013 Lab Project ID: 1189931 Collection Date: 11/01/18 13:19 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 17:40 Container ID: 1189931013-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 46 of 75

SG

Client Sample ID: **MW-12** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931014 Lab Project ID: 1189931 Collection Date: 11/01/18 12:35 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:55
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:55
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 17:55
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:55
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 17:55
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,2-Dichloroethane	0.220 J	0.500	0.150	ug/L	1		11/05/18 17:55
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:55
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:55
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:55
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:55
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:55
Benzene	0.150 J	0.400	0.120	ug/L	1		11/05/18 17:55
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:55
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 17:55
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 17:55
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 17:55
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 17:55

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 47 of 75

SG

Client Sample ID: **MW-12** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931014 Lab Project ID: 1189931 Collection Date: 11/01/18 12:35 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF		Date Analyzed
Chloroform	0.710 J	1.00	0.310	ug/L	1	1	11/05/18 17:55
Chloromethane	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
cis-1,2-Dichloroethene	0.750 J	1.00	0.310	ug/L	1	1	11/05/18 17:55
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	1	11/05/18 17:55
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	1	11/05/18 17:55
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Freon-113	5.00 U	10.0	3.10	ug/L	1	1	11/05/18 17:55
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	1	11/05/18 17:55
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	1	11/05/18 17:55
Naphthalene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
o-Xylene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	1	11/05/18 17:55
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Styrene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Tetrachloroethene	177	1.00	0.310	ug/L	1	1	11/05/18 17:55
Toluene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	1	11/05/18 17:55
Trichloroethene	5.50	1.00	0.310	ug/L	1	1	11/05/18 17:55
Trichlorofluoromethane	2.02	1.00	0.310	ug/L	1	1	11/05/18 17:55
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	1	11/05/18 17:55
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	1	11/05/18 17:55
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	1	11/05/18 17:55
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1	1	11/05/18 17:55
4-Bromofluorobenzene (surr)	102	85-114		%	1	1	11/05/18 17:55
Toluene-d8 (surr)	103	89-112		%	1	1	11/05/18 17:55

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-12

Client Sample ID: MW-12 Client Project ID: 101926-002 BMES Annual GW Lab Sample ID: 1189931014 Lab Project ID: 1189931 Collection Date: 11/01/18 12:35 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 17:55 Container ID: 1189931014-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 49 of 75

SG

Client Sample ID: **MW-2R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931015 Lab Project ID: 1189931 Collection Date: 11/01/18 11:36 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits Date	e Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/0	5/18 18:10
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	11/0	5/18 18:10
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	11/0	5/18 18:10
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	11/0	5/18 18:10
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	11/0	5/18 18:10
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	11/0	5/18 18:10
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	11/0	5/18 18:10
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/0	5/18 18:10
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	11/0	5/18 18:10
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	11/0	5/18 18:10
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	11/0	5/18 18:10
Benzene	0.240 J	0.400	0.120	ug/L	1	11/0	5/18 18:10
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	11/0	5/18 18:10
Bromoform	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
Bromomethane	2.50 U	5.00	1.50	ug/L	1	11/0	5/18 18:10
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	11/0	5/18 18:10
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	11/0	5/18 18:10
Chloroethane	0.500 U	1.00	0.310	ug/L	1	11/0	5/18 18:10

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 50 of 75

SG

Client Sample ID: **MW-2R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931015 Lab Project ID: 1189931 Collection Date: 11/01/18 11:36 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF		Date Analyzed
Chloroform	7.13	1.00	0.310	ug/L	1	1	1/05/18 18:10
Chloromethane	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
cis-1,2-Dichloroethene	1.89	1.00	0.310	ug/L	1	1	1/05/18 18:10
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1	1	1/05/18 18:10
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1	1	1/05/18 18:10
Dibromomethane	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Freon-113	5.00 U	10.0	3.10	ug/L	1	1	1/05/18 18:10
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Methylene chloride	2.50 U	5.00	1.00	ug/L	1	1	1/05/18 18:10
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1	1	1/05/18 18:10
Naphthalene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
o-Xylene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1	1	1/05/18 18:10
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Styrene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Tetrachloroethene	211	10.0	3.10	ug/L	10	1	1/06/18 16:04
Toluene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	1	1/05/18 18:10
Trichloroethene	1.94	1.00	0.310	ug/L	1	1	1/05/18 18:10
Trichlorofluoromethane	16.1	1.00	0.310	ug/L	1	1	1/05/18 18:10
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1	1	1/05/18 18:10
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1	1	1/05/18 18:10
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1	1	1/05/18 18:10
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1	1	1/05/18 18:10
4-Bromofluorobenzene (surr)	102	85-114		%	1	1	1/05/18 18:10
Toluene-d8 (surr)	104	89-112		%	1	1	1/05/18 18:10

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **MW-2R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931015 Lab Project ID: 1189931

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18548 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/06/18 16:04 Container ID: 1189931015-A

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 18:10 Container ID: 1189931015-A Collection Date: 11/01/18 11:36 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Prep Batch: VXX33511 Prep Method: SW5030B Prep Date/Time: 11/06/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group Page 52 of 75

SG

Client Sample ID: **MW-3R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931016 Lab Project ID: 1189931 Collection Date: 11/01/18 11:08 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 18:25
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 18:25
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,2-Dichloroethane	0.440 J	0.500	0.150	ug/L	1		11/05/18 18:25
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
Benzene	0.240 J	0.400	0.120	ug/L	1		11/05/18 18:25
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 18:25
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SG

Client Sample ID: **MW-3R** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931016 Lab Project ID: 1189931 Collection Date: 11/01/18 11:08 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter_	Result Qual	LOQ/CL	DL	Units	DF	Limits	Date Analyzed
Chloroform	4.09	1.00	0.310	ug/L	1		11/05/18 18:25
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
cis-1,2-Dichloroethene	0.440 J	1.00	0.310	ug/L	1		11/05/18 18:25
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:25
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 18:25
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 18:25
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Tetrachloroethene	0.850 J	1.00	0.310	ug/L	1		11/05/18 18:25
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:25
Trichlorofluoromethane	1.53	1.00	0.310	ug/L	1		11/05/18 18:25
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:25
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 18:25
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 18:25
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		11/05/18 18:25
4-Bromofluorobenzene (surr)	102	85-114		%	1		11/05/18 18:25
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 18:25

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 54 of 75

Results of MW-3R

Client Sample ID: MW-3R Client Project ID: 101926-002 BMES Annual GW Lab Sample ID: 1189931016 Lab Project ID: 1189931 Collection Date: 11/01/18 11:08 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 18:25 Container ID: 1189931016-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

SG

Client Sample ID: **MW-4** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931017 Lab Project ID: 1189931 Collection Date: 11/01/18 10:07 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 18:41
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 18:41
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,2-Dichloroethane	0.270 J	0.500	0.150	ug/L	1		11/05/18 18:41
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 18:41
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 18:41
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 56 of 75

SG

Client Sample ID: **MW-4** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931017 Lab Project ID: 1189931 Collection Date: 11/01/18 10:07 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 18:41
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 18:41
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 18:41
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Tetrachloroethene	42.9	1.00	0.310	ug/L	1		11/05/18 18:41
Toluene	0.450 J	1.00	0.310	ug/L	1		11/05/18 18:41
trans-1,2-Dichloroethene	0.710 J	1.00	0.310	ug/L	1		11/05/18 18:41
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 18:41
Trichloroethene	1.48	1.00	0.310	ug/L	1		11/05/18 18:41
Trichlorofluoromethane	5.35	1.00	0.310	ug/L	1		11/05/18 18:41
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 18:41
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 18:41
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 18:41
Surrogates							
1,2-Dichloroethane-D4 (surr)	106	81-118		%	1		11/05/18 18:41
4-Bromofluorobenzene (surr)	102	85-114		%	1		11/05/18 18:41
Toluene-d8 (surr)	101	89-112		%	1		11/05/18 18:41

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-4

Client Sample ID: **MW-4** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931017 Lab Project ID: 1189931 Collection Date: 11/01/18 10:07 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 18:41 Container ID: 1189931017-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 58 of 75

SG

Client Sample ID: **Trip Blank 2** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931018 Lab Project ID: 1189931 Collection Date: 11/01/18 10:07 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	Allowable Limits	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		11/05/18 14:37
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		11/05/18 14:37
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
Benzene	0.200 U	0.400	0.120	ug/L	1		11/05/18 14:37
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
Bromoform	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Bromomethane	2.50 U	5.00	1.50	ug/L	1		11/05/18 14:37
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
Chloroethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Member of SGS Group Page 59 of 75

SG

Client Sample ID: **Trip Blank 2** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931018 Lab Project ID: 1189931 Collection Date: 11/01/18 10:07 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Chloromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		11/05/18 14:37
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Freon-113	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Methylene chloride	2.50 U	5.00	1.00	ug/L	1		11/05/18 14:37
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
Naphthalene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
o-Xylene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		11/05/18 14:37
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Styrene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Toluene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		11/05/18 14:37
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		11/05/18 14:37
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		11/05/18 14:37
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		11/05/18 14:37
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		11/05/18 14:37
4-Bromofluorobenzene (surr)	104	85-114		%	1		11/05/18 14:37
Toluene-d8 (surr)	99.1	89-112		%	1		11/05/18 14:37

Print Date: 11/07/2018 2:22:50PM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **Trip Blank 2** Client Project ID: **101926-002 BMES Annual GW** Lab Sample ID: 1189931018 Lab Project ID: 1189931 Collection Date: 11/01/18 10:07 Received Date: 11/03/18 10:25 Matrix: Water (Surface, Eff., Ground) Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Analyst: FDR Analytical Date/Time: 11/05/18 14:37 Container ID: 1189931018-A Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/18 00:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:50PM

J flagging is activated

Member of SGS Group

Page 61 of 75

Method Blank

Blank ID: MB for HBN 1788711 [VXX/33503] Blank Lab ID: 1487017

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189931001, 1189931002, 1189931003, 1189931004, 1189931005, 1189931006, 1189931007, 1189931008, 1189931009, 1189931010, 1189931011, 1189931012, 1189931013, 1189931014, 1189931015, 1189931016, 1189931017, 1189931018

Results by SW8260C

Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	1.50	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 11/07/2018 2:22:52PM

SGS North America Inc.

Method Blank

Blank ID: MB for HBN 1788711 [VXX/33503] Blank Lab ID: 1487017

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189931001, 1189931002, 1189931003, 1189931004, 1189931005, 1189931006, 1189931007, 1189931008, 1189931009, 1189931010, 1189931011, 1189931012, 1189931013, 1189931014, 1189931015, 1189931016, 1189931017, 1189931018

Results by SW8260C						
Parameter	Results		LOQ/CL	DL	<u>Units</u>	
Chloromethane	0.500U		1.00	0.310	ug/L	
cis-1,2-Dichloroethene	0.500U		1.00	0.310	ug/L	
cis-1,3-Dichloropropene	0.250U		0.500	0.150	ug/L	
Dibromochloromethane	0.250U		0.500	0.150	ug/L	
Dibromomethane	0.500U		1.00	0.310	ug/L	
Dichlorodifluoromethane	0.500U		1.00	0.310	ug/L	
Ethylbenzene	0.500U		1.00	0.310	ug/L	
Freon-113	5.00U		10.0	3.10	ug/L	
Hexachlorobutadiene	0.500U		1.00	0.310	ug/L	
Isopropylbenzene (Cumene)	0.500U		1.00	0.310	ug/L	
Methylene chloride	2.50U		5.00	1.00	ug/L	
Methyl-t-butyl ether	5.00U		10.0	3.10	ug/L	
Naphthalene	0.500U		1.00	0.310	ug/L	
n-Butylbenzene	0.500U		1.00	0.310	ug/L	
n-Propylbenzene	0.500U		1.00	0.310	ug/L	
o-Xylene	0.500U		1.00	0.310	ug/L	
P & M -Xylene	1.00U		2.00	0.620	ug/L	
sec-Butylbenzene	0.500U		1.00	0.310	ug/L	
Styrene	0.500U		1.00	0.310	ug/L	
tert-Butylbenzene	0.500U		1.00	0.310	ug/L	
Tetrachloroethene	0.500U		1.00	0.310	ug/L	
Toluene	0.500U		1.00	0.310	ug/L	
trans-1,2-Dichloroethene	0.500U		1.00	0.310	ug/L	
trans-1,3-Dichloropropene	0.500U		1.00	0.310	ug/L	
Trichloroethene	0.500U		1.00	0.310	ug/L	
Trichlorofluoromethane	0.500U		1.00	0.310	ug/L	
Vinyl acetate	5.00U		10.0	3.10	ug/L	
Vinyl chloride	0.0750U		0.150	0.0500	ug/L	
Xylenes (total)	1.50U		3.00	1.00	ug/L	
Surrogates						
1,2-Dichloroethane-D4 (surr)	104		81-118		%	
4-Bromofluorobenzene (surr)	103		85-114		%	
Toluene-d8 (surr)	100		89-112		%	

Print Date: 11/07/2018 2:22:52PM

SGS North America Inc.

Method Blank								
	V 1788711 [VXX/33503] I7	Matri	Matrix: Water (Surface, Eff., Ground)					
	002, 1189931003, 1189931004, 1 [,] 011, 1189931012, 1189931013, 1 [,]							
Parameter	Results	LOQ/CL	DL	<u>Units</u>				
Batch Information								
Analytical Batch: VM								
	MS18541	Prep Ba	atch: VXX335)3				
Analytical Method:	SW8260C	Prep Me	ethod: SW503	0B				
Analytical Method: S Instrument: Agilent Analyst: FDR	SW8260C	Prep Me Prep Da	ethod: SW503	0B /2018 12:00:00AM				

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189931 [VXX33503] Blank Spike Lab ID: 1487018 Date Analyzed: 11/05/2018 13:06 Spike Duplicate ID: LCSD for HBN 1189931 [VXX33503] Spike Duplicate Lab ID: 1487019 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189931001, 1189931002, 1189931003, 1189931004, 1189931005, 1189931006, 1189931007, 1189931008, 1189931009, 1189931010, 1189931011, 1189931012, 1189931013, 1189931014, 1189931015, 1189931016, 1189931017, 1189931018

Results by SW8260C

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
Parameter	Spike	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
1,1,1,2-Tetrachloroethane	30	29.5	98	30	29.7	99	(78-124)	0.68	(< 20)
1,1,1-Trichloroethane	30	30.4	101	30	30.4	101	(74-131)	0.03	(< 20)
1,1,2,2-Tetrachloroethane	30	29.7	99	30	30.3	101	(71-121)	2.00	(< 20)
1,1,2-Trichloroethane	30	29.1	97	30	29.9	100	(80-119)	2.40	(< 20)
1,1-Dichloroethane	30	29.7	99	30	29.9	100	(77-125)	0.77	(< 20)
1,1-Dichloroethene	30	29.1	97	30	29.1	97	(71-131)	0.10	(< 20)
1,1-Dichloropropene	30	31.3	104	30	31.0	103	(79-125)	0.96	(< 20)
1,2,3-Trichlorobenzene	30	28.5	95	30	29.4	98	(69-129)	3.00	(< 20)
1,2,3-Trichloropropane	30	28.7	96	30	29.2	97	(73-122)	1.70	(< 20)
1,2,4-Trichlorobenzene	30	29.7	99	30	29.7	99	(69-130)	0.07	(< 20)
1,2,4-Trimethylbenzene	30	29.9	100	30	29.8	99	(79-124)	0.20	(< 20)
1,2-Dibromo-3-chloropropane	30	29.3	98	30	30.7	102	(62-128)	4.60	(< 20)
1,2-Dibromoethane	30	28.7	96	30	29.6	99	(77-121)	3.20	(< 20)
1,2-Dichlorobenzene	30	29.4	98	30	29.4	98	(80-119)	0.00	(< 20)
1,2-Dichloroethane	30	29.8	99	30	30.6	102	(73-128)	2.60	(< 20)
1,2-Dichloropropane	30	30.3	101	30	30.6	102	(78-122)	1.10	(< 20)
1,3,5-Trimethylbenzene	30	29.8	99	30	29.3	98	(75-124)	1.70	(< 20)
1,3-Dichlorobenzene	30	29.3	98	30	29.2	97	(80-119)	0.31	(< 20)
1,3-Dichloropropane	30	29.7	99	30	30.3	101	(80-119)	1.80	(< 20)
1,4-Dichlorobenzene	30	29.9	100	30	30.0	100	(79-118)	0.43	(< 20)
2,2-Dichloropropane	30	33.5	112	30	33.3	111	(60-139)	0.69	(< 20)
2-Butanone (MEK)	90	76.3	85	90	81.9	91	(56-143)	7.10	(< 20)
2-Chlorotoluene	30	30.2	101	30	30.1	100	(79-122)	0.33	(< 20)
2-Hexanone	90	82.8	92	90	87.2	97	(57-139)	5.20	(< 20)
4-Chlorotoluene	30	30.5	102	30	30.0	100	(78-122)	1.60	(< 20)
4-Isopropyltoluene	30	30.4	101	30	29.7	99	(77-127)	2.20	(< 20)
4-Methyl-2-pentanone (MIBK)	90	85.2	95	90	90.1	100	(67-130)	5.60	(< 20)
Benzene	30	29.7	99	30	29.8	99	(79-120)	0.44	(< 20)
Bromobenzene	30	29.4	98	30	29.0	97	(80-120)	1.20	(< 20)
Bromochloromethane	30	28.6	95	30	29.2	97	(78-123)	2.20	(< 20)
Bromodichloromethane	30	30.6	102	30	31.3	104	(79-125)	2.30	(< 20)
Bromoform	30	30.0	100	30	30.8	103	(66-130)	2.70	(< 20)
Bromomethane	30	33.2	111	30	34.2	114	(53-141)	2.90	(< 20)
Carbon disulfide	45	44.7	99	45	44.6	99	(64-133)	0.43	(< 20)

Print Date: 11/07/2018 2:22:53PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189931 [VXX33503] Blank Spike Lab ID: 1487018 Date Analyzed: 11/05/2018 13:06 Spike Duplicate ID: LCSD for HBN 1189931 [VXX33503] Spike Duplicate Lab ID: 1487019 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189931001, 1189931002, 1189931003, 1189931004, 1189931005, 1189931006, 1189931007, 1189931008, 1189931009, 1189931010, 1189931011, 1189931012, 1189931013, 1189931014, 1189931015, 1189931016, 1189931017, 1189931018

Results by SW8260C

		Blank Spike	e (ug/L)	Spike Duplicate (ug/L)					
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Carbon tetrachloride	30	31.6	105	30	31.6	105	(72-136)	0.10	(< 20)
Chlorobenzene	30	27.5	92	30	27.8	93	(82-118)	1.20	(< 20)
Chloroethane	30	26.6	89	30	27.5	92	(60-138)	3.00	(< 20)
Chloroform	30	28.5	95	30	28.7	96	(79-124)	0.77	(< 20)
Chloromethane	30	34.2	114	30	34.1	114	(50-139)	0.32	(< 20)
cis-1,2-Dichloroethene	30	29.5	99	30	29.7	99	(78-123)	0.64	(< 20)
cis-1,3-Dichloropropene	30	31.8	106	30	32.4	108	(75-124)	1.90	(< 20)
Dibromochloromethane	30	30.2	101	30	31.0	103	(74-126)	2.60	(< 20)
Dibromomethane	30	29.5	98	30	30.1	100	(79-123)	2.10	(< 20)
Dichlorodifluoromethane	30	36.1	120	30	35.7	119	(32-152)	1.20	(< 20)
Ethylbenzene	30	29.5	98	30	29.8	99	(79-121)	1.00	(< 20)
Freon-113	45	45.5	101	45	45.4	101	(70-136)	0.09	(< 20)
Hexachlorobutadiene	30	30.7	102	30	29.3	98	(66-134)	4.70	(< 20)
Isopropylbenzene (Cumene)	30	29.9	100	30	29.5	98	(72-131)	1.20	(< 20)
Methylene chloride	30	29.3	98	30	29.5	98	(74-124)	0.75	(< 20)
Methyl-t-butyl ether	45	44.9	100	45	46.2	103	(71-124)	2.90	(< 20)
Naphthalene	30	29.7	99	30	31.3	104	(61-128)	5.30	(< 20)
n-Butylbenzene	30	31.8	106	30	30.7	102	(75-128)	3.50	(< 20)
n-Propylbenzene	30	30.6	102	30	29.8	99	(76-126)	2.80	(< 20)
o-Xylene	30	29.1	97	30	29.5	98	(78-122)	1.30	(< 20)
P & M -Xylene	60	58.3	97	60	57.8	96	(80-121)	0.83	(< 20)
sec-Butylbenzene	30	30.9	103	30	30.0	100	(77-126)	3.10	(< 20)
Styrene	30	29.8	99	30	30.3	101	(78-123)	1.90	(< 20)
tert-Butylbenzene	30	29.6	99	30	29.4	98	(78-124)	0.44	(< 20)
Tetrachloroethene	30	28.7	96	30	28.6	95	(74-129)	0.38	(< 20)
Toluene	30	27.5	92	30	27.6	92	(80-121)	0.40	(< 20)
trans-1,2-Dichloroethene	30	29.7	99	30	29.5	98	(75-124)	0.54	(< 20)
trans-1,3-Dichloropropene	30	31.8	106	30	32.5	108	(73-127)	2.20	(< 20)
Trichloroethene	30	29.5	98	30	29.5	99	(79-123)	0.14	(< 20)
Trichlorofluoromethane	30	30.5	102	30	30.8	103	(65-141)	1.00	(< 20)
Vinyl acetate	30	36.0	120	30	37.4	125	(54-146)	3.90	(< 20)
Vinyl chloride	30	32.0	107	30	31.7	106	(58-137)	0.97	(< 20)
Xylenes (total)	90	87.4	97	90	87.3	97	(79-121)	0.10	(< 20)

Print Date: 11/07/2018 2:22:53PM

SGS North America Inc.

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189931 [VXX33503] Blank Spike Lab ID: 1487018 Date Analyzed: 11/05/2018 13:06 Spike Duplicate ID: LCSD for HBN 1189931 [VXX33503] Spike Duplicate Lab ID: 1487019 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1189931001, 1189931002, 1189931003, 1189931004, 1189931005, 1189931006, 1189931007, 1189931008, 1189931009, 1189931010, 1189931011, 1189931012, 1189931013, 1189931014, 1189931015, 1189931016, 1189931017, 1189931018

	District Orable							
Blank Spike (%)				Spike Dup	icate (%)			
oike	Result	<u>Rec (%)</u>	Spike	Result	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
	98.4	98	30	99.1	99	(81-118)	0.64	
	103	103	30	101	101	(85-114)	1.40	
	98.1	98	30	98.5	99	(89-112)	0.41	
		98.4 103	98.4 98 103 103	98.4 98 30 103 103 30	98.4 98 30 99.1 103 103 30 101	98.4 98 30 99.1 99 103 103 30 101 101	98.4 98 30 99.1 99 (81-118) 103 103 30 101 101 (85-114)	98.4 98 30 99.1 99 (81-118) 0.64 103 103 30 101 101 (85-114) 1.40

Batch Information

Analytical Batch: VMS18541 Analytical Method: SW8260C Instrument: Agilent 7890-75MS Analyst: FDR Prep Batch: VXX33503 Prep Method: SW5030B Prep Date/Time: 11/05/2018 00:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:53PM

SGS

Method Blank Blank ID: MB for HBN 1788777 [VXX/33511] Matrix: Water (Surface, Eff., Ground) Blank Lab ID: 1487300 QC for Samples: 1189931010, 1189931011, 1189931015 Results by SW8260C LOQ/CL <u>Units</u> Parameter **Results** DL Tetrachloroethene 0.500U 1.00 0.310 ug/L Sf uor ateg 1,2-Dichloroethane-D4 (surr) 94.7 81-118 % 4-Bromofluorobenzene (surr) 102 85-114 % Toluene-d8 (surr) 89-112 % 97.1 Batsh onloumation Analytical Batch: VMS18548 Prep Batch: VXX33511 Analytical Method: SW8260C Prep Method: SW5030B Instrument: VPA 780/5975 GC/MS Prep Date/Time: 11/6/2018 12:00:00AM Analyst: FDR Prep Initial Wt./Vol.: 5 mL

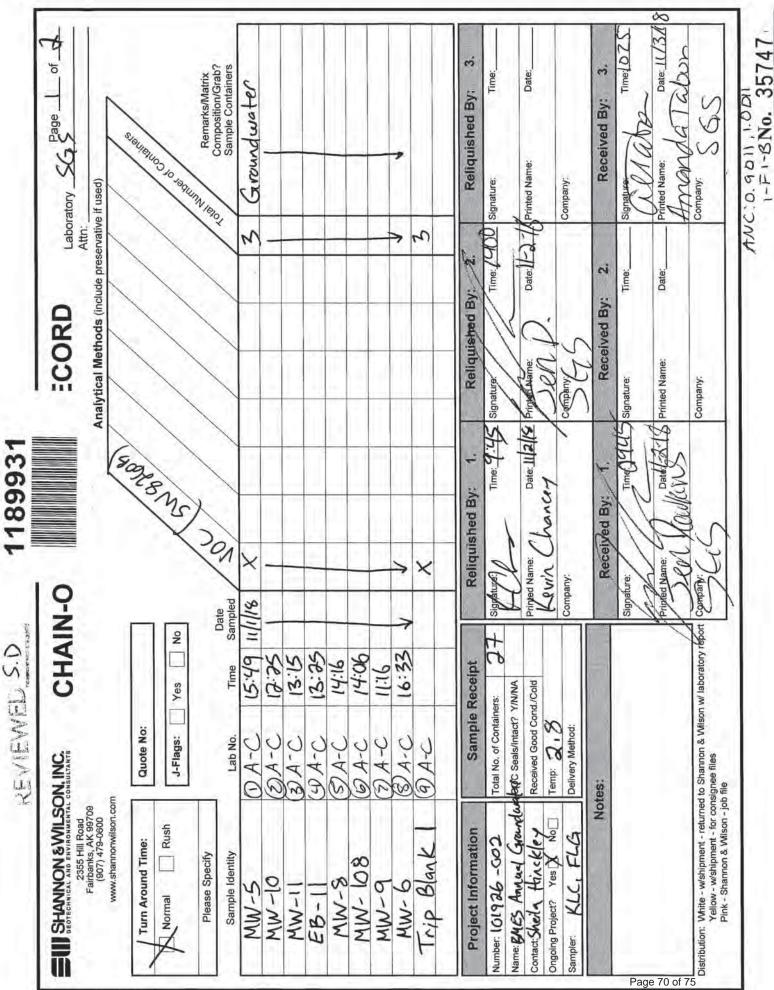
Prep Extract Vol: 5 mL

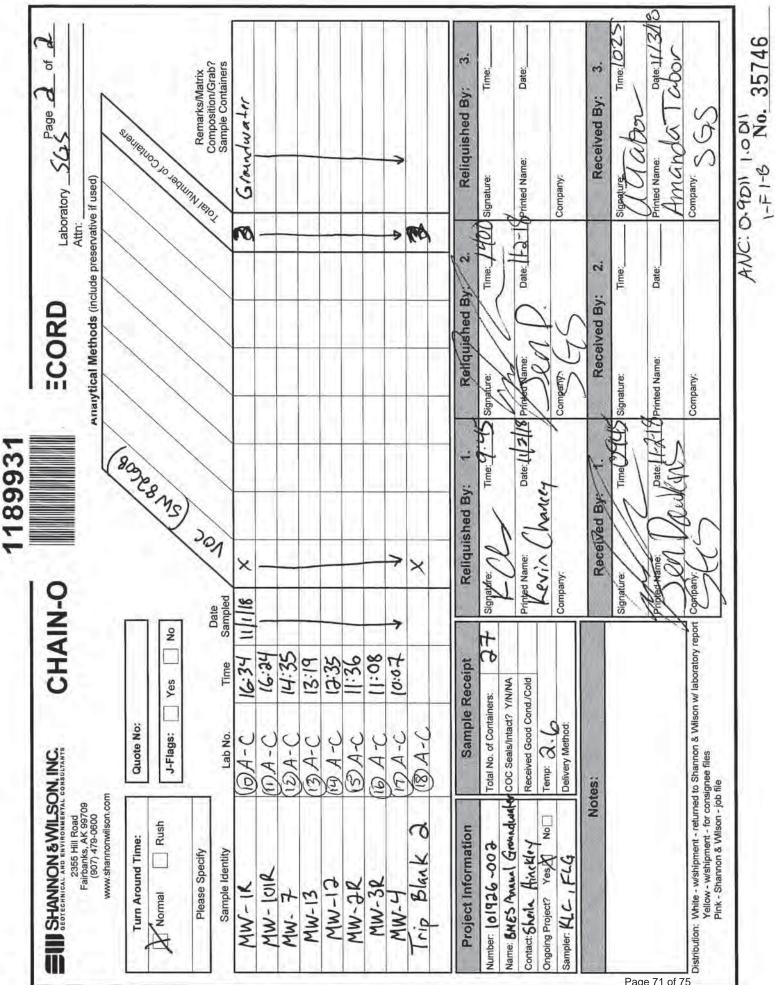
Print Date: 11/07/2018 2:22:55PM

Analytical Date/Time: 11/6/2018 12:15:00PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1189931 [VXX33511] Blank Spike Lab ID: 1487301 Date Analyzed: 11/06/2018 12:32 Spike Duplicate ID: LCSD for HBN 1189931 [VXX33511] Spike Duplicate Lab ID: 1487302 Matrix: Water (Surface, Eff., Ground)


QC for Samples: 1189931010, 1189931011, 1189931015


		Blank Spike	; (ug/L)	S	Spike Duplie	cate (ug/L)			
Parameter	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Tetrachloroethene	30	31.7	106	30	30.6	102	(74-129)	3.70	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30	90.6	91	30	91	91	(81-118)	0.48	
4-Bromofluorobenzene (surr)	30	103	103	30	103	103	(85-114)	0.81	
Toluene-d8 (surr)	30	97.9	98	30	96.2	96	(89-112)	1.80	

Batch Information

Analytical Batch: VMS18548 Analytical Method: SW8260C Instrument: VPA 780/5975 GC/MS Analyst: FDR Prep Batch: VXX33511 Prep Method: SW5030B Prep Date/Time: 11/06/2018 00:00 Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 11/07/2018 2:22:55PM

Page 71 of 75

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	C	onditi	on:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable. COC accompanied samples?	Yes	No	avia	Exemption permitted if sampler hand
Tompareture block amples?	(Tes	No	N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C) $If > 6°C$, were samples collected <8 hours ago?	Yes Yes Yes	No No No	NTRO N	DExemption permitted if chilled & collected <8hrs ago
Cooler ID:				Note: Identify containers received at non-compliant temperature. Use form FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:	Tracl	king/A	B#:	- Princip Interaction
	Or se	e atta	ched	
For samples received with payment, note amount (\$) and whe				cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)? Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other:	Tes	No	N/A	Note: some samples are sent to Anchorage without inspection by SGS Fairbanks personnel.
Vere Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	(Yes)	No	N/A	Ann hal
For RUSH/SHORT Hold Time, were COC/Bottles flagged ccordingly? Was Rush/Short HT email sent, if applicable?	Yes	No No	NA	see pelow
# Trip blank 1 W/page 1 Trip blank 2 W/page	09	Sa P	mpli	es. nples.
Note to Client: any "no" circled above indicates non-compliance w	ith standard	procedi	ures and ma	y impact data quality.

SGS

e-Sam<u>ple Receipt Form</u>

SGS	SGS Workorder #:	1	1899	31		8 9 9 3 1
Rev	view Criteria	Condition (Yes,	No, N/A	Exc	eptions No	oted below
<u>Chain of</u>	Custody / Temperature Requir				rmitted if sam	pler hand carries/delivers.
	Were Custody Seals intact? Note # & lo	ocation yes	1-front 1-b	ack		
	COC accompanied sar					
	n/a **Exemption permitted if o	chilled & colle	cted <8 hou	-		
		yes	Cooler ID:	1	@	0.9 °C Therm. ID: D11
		yes	Cooler ID:	2	@	1.0 °C Therm. ID: D11
lemperatu	ire blank compliant* (i.e., 0-6 °C after		Cooler ID:		@	°C Therm. ID:
		n/a	Cooler ID:		@	°C Therm. ID:
*If \6º	C, were samples collected <8 hours	n/a	Cooler ID:		@	°C Therm. ID:
11 20		ago? n/a				
	If <0°C, were sample containers ice	free? n/a				
temperature ["] will be docu "COOLER TEMP" will be n	ed <u>without</u> a temperature blank, the " umented in lieu of the temperature bl noted to the right. In cases where nei er temp can be obtained, note "ambie "ch	lank & ither a				
	rs received at non-compliant tempera Ise form FS-0029 if more space is ne					
	ocumentation / Sample Condition Re /ere samples received within holding		Note: Refer	r to form F-083 "S	ample Guide'	' for specific holding times.
Do samples match COC	** (i.e.,sample IDs,dates/times colle	cted)? ves				
	differ <1hr, record details & login per					
Were analyses requested u	unambiguous? (i.e., method is specifi analyses with >1 option for ana					
			n	/a ***Exemption	permitted for	metals (e.g,200.8/6020A).
Were proper containers	(type/mass/volume/preservative***)					
	Volatile / LL-Hg Requ					
	i.e., VOAs, LL-Hg) in cooler with sam					as Trip Blank 1 (sample 9 2 as Trip Blank 2 (sample
	s free of headspace (i.e., bubbles ≤ 6		18)			
	soil VOAs field extracted with MeOH+					
Note to Clier	nt: Any "No", answer above indicates non	n-compliance	with standar	d procedures and	d may impact	data quality.
	Additional	l notes (if a	pplicable)	:		

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> Condition	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1189931001-A	HCL to pH < 2 $$	ОК	1189931017-C	HCL to $pH < 2$	OK
1189931001-B	HCL to pH < 2	OK	1189931018-A	HCL to $pH < 2$	OK
1189931001-C	HCL to $pH < 2$	OK	1189931018-B	HCL to $pH < 2$	OK
1189931002-A	HCL to pH < 2	OK	1189931018-C	HCL to $pH < 2$	OK
1189931002-B	HCL to pH < 2	ОК			
1189931002-C	HCL to pH < 2	ОК			
1189931003-A	HCL to pH < 2	OK			
1189931003-B	HCL to pH < 2	ОК			
1189931003-C	HCL to pH < 2	ОК			
1189931004-A	HCL to pH < 2	ОК			
1189931004-B	HCL to pH < 2	ОК			
1189931004-C	HCL to pH < 2 $$	ОК			
1189931005-A	HCL to pH < 2	ОК			
1189931005-B	HCL to pH < 2	ОК			
1189931005-C	HCL to pH < 2 $$	ОК			
1189931006-A	HCL to pH < 2 $$	ОК			
1189931006-B	HCL to pH < 2	ОК			
1189931006-C	HCL to pH < 2 $$	ОК			
1189931007-A	HCL to pH < 2 $$	ОК			
1189931007-B	HCL to pH < 2	ОК			
1189931007-C	HCL to pH < 2	ОК			
1189931008-A	HCL to pH < 2	ОК			
1189931008-B	HCL to pH < 2	ОК			
1189931008-C	HCL to pH < 2	ОК			
1189931009-A	HCL to pH < 2	OK			
1189931009-B	HCL to pH < 2	OK			
1189931009-C	HCL to pH < 2	ОК			
1189931010-A	HCL to pH < 2	OK			
1189931010-B	HCL to pH < 2	ОК			
1189931010-C	HCL to pH < 2	ОК			
1189931011-A	HCL to pH < 2	ОК			
1189931011-B	HCL to pH < 2	ОК			
1189931011-C	HCL to pH < 2	OK			
1189931012-A	HCL to pH < 2	ОК			
1189931012-B	HCL to pH < 2	ОК			
1189931012-C	HCL to pH < 2	ОК			
1189931013-A	HCL to pH < 2	OK			
1189931013-B	HCL to pH < 2	OK			
1189931013-C	HCL to pH < 2	OK			
1189931014-A	HCL to pH < 2	OK			
1189931014-B	HCL to pH < 2	OK			
1189931014-C	HCL to $pH < 2$	OK			
1189931015-A	HCL to pH < 2	OK			
1189931015-B	HCL to pH < 2	OK			
1189931015-C	HCL to pH < 2	OK			
1189931016-A	HCL to pH < 2	OK			
1189931016-B	HCL to pH < 2	OK			
1189931016-C	HCL to pH < 2	OK			
1189931017-A	HCL to pH < 2	OK			
1189931017-B	HCL to pH < 2	OK			
					Page 74 of 75

Container Id

Preservative

<u>Container</u> Condition Container Id

Preservative

Container Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized
- container and therefore was not suitable for analysis.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

12/6/2018 Ms. Sheila Hinckley Shannon & Wilson, Inc. 2355 Hill Road

Fairbanks AK 99709

Project Name: 2018 Indoor-Air Project #: 101926-005 Workorder #: 1811545

Dear Ms. Sheila Hinckley

The following report includes the data for the above referenced project for sample(s) received on 11/26/2018 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 SIM are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1811545

Work Order Summary

CLIENT:	Ms. Sheila Hinckley Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, AK 99709	BILL TO:	Ms. Sheila Hinckley Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, AK 99709
PHONE:	907-479-0600	P.O. #	
FAX:	907-479-5691	PROJECT #	101926-005 2018 Indoor-Air
DATE RECEIVED:	11/26/2018	CONTACT:	Kelly Buettner
DATE COMPLETED:	12/06/2018		

FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	IA1-2018	Modified TO-15 SIM	4.9 "Hg	5.2 psi
02A	IA13-2018	Modified TO-15 SIM	3.9 "Hg	5.1 psi
03A	Lab Blank	Modified TO-15 SIM	NA	NA
04A	CCV	Modified TO-15 SIM	NA	NA
05A	LCS	Modified TO-15 SIM	NA	NA
05AA	LCSD	Modified TO-15 SIM	NA	NA

CERTIFIED BY:

layes ind

DATE: <u>12/06/18</u>

RECEIPT

FINAL

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E8 , LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP CA009332018-10, VA NELAP - 9505, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019. Eurofins Air Toxics LLC. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Shannon & Wilson, Inc. Workorder# 1811545

Two 6 Liter Summa Canister (SIM Certified) samples were received on November 26, 2018. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is $ RSD with 10% of compounds allowed out to < 40\% RSD$
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference<br with 10% of compounds allowed out up to =40%.; flag<br and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

🛟 eurofins

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

Page 3 of 11

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: IA1-2018

Lab ID#: 1811545-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Chloroform	0.032	0.66	0.16	3.2
Tetrachloroethene	0.032	0.30	0.22	2.0

Client Sample ID: IA13-2018

Lab ID#: 1811545-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Chloroform	0.031	0.031	0.15	0.15
Tetrachloroethene	0.031	0.043	0.21	0.29

Client Sample ID: IA1-2018 Lab ID#: 1811545-01A MODIFIED EPA METHOD TO-15 GC/MS SIM

Т

File Name: 21112911sim Dil. Factor: 1.62		Date of Collection: 11/16/18 14:38:00 Date of Analysis: 11/29/18 03:39 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected	
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected	
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected	
1,1-Dichloroethane	0.032	Not Detected	0.13	Not Detected	
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected	
Chloroform	0.032	0.66	0.16	3.2	
1,1,1-Trichloroethane	0.032	Not Detected	0.18	Not Detected	
Trichloroethene	0.032	Not Detected	0.17	Not Detected	
Tetrachloroethene	0.032	0.30	0.22	2.0	

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	89	70-130

Client Sample ID: IA13-2018 Lab ID#: 1811545-02A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	21112912sim 1.55	2410	of Collection: 11/ of Analysis: 11/29	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.061	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
1,1-Dichloroethane	0.031	Not Detected	0.12	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Chloroform	0.031	0.031	0.15	0.15
1,1,1-Trichloroethane	0.031	Not Detected	0.17	Not Detected
Trichloroethene	0.031	Not Detected	0.17	Not Detected
Tetrachloroethene	0.031	0.043	0.21	0.29

Container Type: 6 Liter Summa Canister (SIM Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	86	70-130

Client Sample ID: Lab Blank Lab ID#: 1811545-03A MODIFIED EPA METHOD TO-15 GC/MS SIM

Т

File Name: Dil. Factor:	21112910sim 1.00	2 410	of Collection: NA of Analysis: 11/29	9/18 02:44 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
Chloroform	0.020	Not Detected	0.098	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	87	70-130

Client Sample ID: CCV Lab ID#: 1811545-04A MODIFIED EPA METHOD TO-15 GC/MS SIM

Т

File Name: Dil. Factor:	21112902sim 1.00	Date of Collection: NA Date of Analysis: 11/2	-
Compound		%Recovery	
Vinyl Chloride		88	
1,1-Dichloroethene		80	
trans-1,2-Dichloroethene		87	
1,1-Dichloroethane		91	
cis-1,2-Dichloroethene		86	
Chloroform		97	
1,1,1-Trichloroethane		89	
Trichloroethene		88	
Tetrachloroethene		86	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: LCS Lab ID#: 1811545-05A MODIFIED EPA METHOD TO-15 GC/MS SIM

Т

File Name: Dil. Factor:	21112903sim 1.00	Date of Collec Date of Analys	tion: NA sis: 11/29/18 09:32 AM
Compound		%Recovery	Method Limits
Vinyl Chloride		88	70-130
1,1-Dichloroethene		77	70-130
trans-1,2-Dichloroethene		92	70-130
1,1-Dichloroethane		87	70-130
cis-1,2-Dichloroethene		78	70-130
Chloroform		94	70-130
1,1,1-Trichloroethane		88	70-130
Trichloroethene		88	70-130
Tetrachloroethene		87	70-130

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: LCSD Lab ID#: 1811545-05AA MODIFIED EPA METHOD TO-15 GC/MS SIM

Т

File Name: Dil. Factor:	21112904sim 1.00	Date of Collect Date of Analys	tion: NA is: 11/29/18 10:09 AM
Compound		%Recovery	Method Limits
Vinyl Chloride		88	70-130
1,1-Dichloroethene		78	70-130
trans-1,2-Dichloroethene		92	70-130
1,1-Dichloroethane		88	70-130
cis-1,2-Dichloroethene		78	70-130
Chloroform		94	70-130
1,1,1-Trichloroethane		88	70-130
Trichloroethene		90	70-130
Tetrachloroethene		88	70-130

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	96	70-130

- MI EVELO	Î	For Labor	ry Use Only	AVBIICE	L L						
180 Blue Ravine Rd. Suite B, Folsom, CA 95630	5630 PIU:	Workorder #:		- T + O	١.				-		
Phone (800) 985-5955; Fax (916) 351-8279								bage	page-6f [
Shannon J Wi	<u>lo</u> n	Special In	structions/Notes:	4. 1			Turnard	ound Time (R	tush surchar	Turnaround Time (Rush surcharges may apply)	5
(d)	ر ت	0) è	See list pro	provided by	500	Stal	Standard		Rush	(sbe	(specify)
lanager:	Project # 10193 (r 001	w las-	annon i Mi	how	tor		Canister V	Canister Vacuum/Pressure	sure	Requested Analyses	Inalyses
Site Name: Bentley Mall E.	East Satellite	2	r r	genal	,tes,			Lab Use Only	İΤ	1007	
on(Locati) Can #	Flow Controller #	Start Sampling Information		Stop Sampling Information	(6H ni) h	(6H ni)		⁹ H / ² N (bisd)	WIS N SI-	
			Date Time		Date Time	eitint	leni7	ece		, .01	
<u>A1-2018</u>	52073	1831	28418/18/19	5 11/1	6/18 14 38	1.1		-	╈		
024 IA 43 - 2018	612580	1743	11/15/18/150	国ナ	6/18 1453	<u> </u>	5				
				<u> </u>							
											-
Reinquished py: (Signature/Attiliation) Kharila H. L. L. L. L. Shan now	2'Whon	Date 11/19/18	3 10900		Received by: (Signature/Affiliation)	Affiliation)	14	Date	11.118	Lime 2 &	80
Relinquished by: (Signature/Affiliation)		Date	Time	Receiv	Received by: (Signature/Affiliation)	Affiliation)		Date	0,107	Time	
Relinquished by: (Signature/Affiliation)		Date	Time	Receiv	Received by: (Signature/Affiliation)	Affiliation)		Date		Time	
			Lab Use Only K								
Shipper Name: LP U2Y	Custody Seals Intact?	Yes	No	None)							
Sample Transportation Notice: Relinquishing signature on this document indicates that samples are shipped in compliance with all applicable local. State, Federal, and international laws, regulations, and ordinances of	Inature on this document	indicates that sar	nples are shipped in c	ompliénce wi	th all applicable loc	al, State, I	Federal, an	d internationa	al laws, require	ations and ordi	nancas of
any king. Reinquising signature also indicates agreement to hold harmless, defend, and indemnify Eurofins Air Toxics against any claim, demand, or action, of any kind, related to the collection, handling, of shipping of	reement to hold harmless	s, defend, and inc	lemnify Eurofins Air ሲ	xitos against	any claim, demanc	l, or action	, of any kin	d, related to th	he collection,	handling, of sh	hipping of
		sar	nples. D.O.T Hotline (300) 467-492	2					5	

Analysis Request /Canister Chain of Custody

Contins Air Toxics

Appendix F ADEC Laboratory Data Review Checklists

CONTENTS

- Work Order 1189931
- Work Order 1811545

Laboratory Data Review Checklist

Completed By:

Sheila Hinckley

Title:

Environmental Scientist

Date:

December 11, 2018

CS Report Name:

Bentley Mall East Satellite

Report Date:

November 07, 2018

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

SGS North America Laboratories, Inc. (SGS)

Laboratory Report Number:

1189931

ADEC File Number:

102.38.122

Hazard Identification Number:

4033

1189931

1. Laboratory

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

		Yes	C No	Comments:
	b.	If the sa	mples were tran	sferred to another "network" laboratory or sub-contracted to an
	0.		1	s the laboratory performing the analyses ADEC CS approved?
		© Yes	No	Comments:
А	naly	ses were	performed by S	GS in Anchorage, AK.
Cha	in of	Custody	<u>(CoC)</u>	
a.	. Co	C inform	nation completed	d, signed, and dated (including released/received by)?
		Yes	© No	Comments:
b	. Co	orrect Ana	alyses requested	?
		-	_	
		Yes	© No	Comments:
		• Yes	© No	Comments:
Labo	orato		© No e Receipt Docu	
Labo a.		ry Sampl	e Receipt Docu	
		ry Sampl	e Receipt Docu	mentation
		ry Sampl mple/coo	e Receipt Docu ler temperature	<u>mentation</u> documented and within range at receipt (0° to 6° C)?
a.	. Sa	ry Sampl mple/coo • Yes mple pres	e Receipt Docu ler temperature © No	mentation documented and within range at receipt (0° to 6° C)? Comments: rable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,
a.	. Sa	mple/coo Yes mple pres	e Receipt Docu ler temperature © No servation accept	mentation documented and within range at receipt (0° to 6° C)? Comments: rable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,
a.	. Sa . Sa Vo	mple/coo Yes mple presolatile Ch Yes	e Receipt Docu ler temperature © No servation accept lorinated Solver © No	mentation documented and within range at receipt (0° to 6° C)? Comments: able – acidified waters, Methanol preserved VOC soil (GRO, BTEX, nts, etc.)?

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

_	• Yes	© No	Comments:			
	There were no discrepancies noted in the sample receipt documentation.					
e. Data quality or usability affected?						
	Comments:					
No; see above.						
4.	Case Narrati	ve				
	a. Present a	nd understan	lable?			
	© Ye	s 🔿 No	Comments:			
	h Diserence		an OC failungs identified by the lab?			
	-		or QC failures identified by the lab?			
	⊂ Ye	s 💿 No	Comments:			
	There were r	o discrepanc	ies, errors, or QC failures reported in the case narrative.			
	c. Were all	corrective ac	ions documented?			
	⊖ Ye	s 💿 No	Comments:			
	Corrective ad	ctions were n	ot required.			
	d. What is t	he effect on c	ata quality/usability according to the case narrative?			
			Comments:			
	The case nar	rative does no	ot specify an effect on data quality or usability.			
5. <u>Sa</u>	amples Results					
	a. Correct a	nalyses perfo	rmed/reported as requested on COC?			
	© Ye	s 🔿 No	Comments:			
	b. All applie	cable holding	times met?			
	© Ye	s 🔿 No	Comments:			

c. All soils reported on a dry weight basis?

○ Yes • No Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

🖸 Yes 🛛 💿 No

Comments:

The reported limits of detection (LODs) were below the groundwater cleanup levels for the requested analytes with the exception of 1,2,3-trichloropropane.

e. Data quality or usability affected?

• Yes • No Comments:

We cannot assess if 1,2,3-trichloropropane is present in the project sample at a concentration greater than the groundwater cleanup levels but less than the LOD.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Ses	C No	Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No Comments:

iii. If above LOQ, what samples are affected?

Comments:

None; VOCs were not detected in the method blank samples.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

N/A; no samples were affected.

v. Data quality or usability affected?

Comments:

No; see above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes • No Comments:

LCS/LCSD and MS/MSD samples were reported for analysis of VOCs.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes [⊙] No Comments:

Metals/Inorganics analyses were not requested with this work order.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

• Yes • No

Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes • No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ⊙ No Comments:

No; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

N/A; see above.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

• Yes • No Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes	🔿 No	Comments:
-----	------	-----------

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

🔿 Yes 🛛 💿 No

Comments:

N/A; there were no reported surrogate-recovery failures.

iv. Data quality or usability affected?

Comments:

No; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?(If not, enter explanation below.)
 - Yes No
- Comments:
- ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes	© No	Comments:

- iii. All results less than LOQ?
- Yes No Comments:

1189931

iv. If above LOQ, what samples are affected?

Comments:

None; project analytes were not detected in the trip blank.

v. Data quality or usability affected?

Comments:

No; see above.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes • No Comments:

ii. Submitted blind to lab?

• Yes • No Comments:

The field-duplicate pairs MW-1R/MW-101R and MW-8/MW-108 were submitted with this work order.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

• Yes • No

Comments:

The analytical precision demonstrated between the field-duplicate samples was within the project specific DQOs (30% for water samples), where calculable, for all analytes.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

No; see above.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

• Yes • No • Not Applicable

Equipment blank sample *EB-11* was submitted with this work order.

1189931

i. All results less than LOQ?

• Yes O No

- Comments:
- ii. If above LOQ, what samples are affected?

Comments:

N/A; see above.

iii. Data quality or usability affected?

Comments:

No; see above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

© Yes [⊙] No Comments:

Additional data flags or qualifiers are not required.

Laboratory Data Review Checklist for Air Samples

Completed by:	Sheila Hinckle	у				
Title: Environmental Scien		Scientist		Date:	Dec 7, 2018	
CS Report Name:	Bentley Mall E	ast Satellite		Report Date:	Dec 6, 2018	
Consultant Firm:	Shannon & Wi	lson, Inc.				
Laboratory Name:	Eurofins Air To	oxics, Inc.	Laboratory Report Nu	mber: 1811545	nber: 1811545	
ADEC File Number:	102.38.122		ADEC Haz ID:	4033		
1. Laboratory						
a. Did a NEL	AP certified labo	ratory receive an	d <u>perform</u> all of the subm	itted sample ana	lyses?	
• Yes	\bigcirc No	○ NA (Plea	se explain.)	Comments	:	
*			etwork" laboratory or sub nalyses NELAP approved		n alternate	
⊖ Yes	○ No ● NA (Please explain.) Comments:		•			
Samples	were analyzed by	y Eurofins of Fo	lsom, CA; a NELAP cer	tified laboratory	7.	
2. Chain of Custody	(COC)					
a. COC inform	nation completed	, signed, and date	ed (including released/reco	eived by)?		
• Yes	⊖ No	🔿 NA (Plea	se explain.)	Comments	:	
	1					
• Yes	lyses requested?	○NA (Please	e explain)	Comments:		
	0 110					
3. Laboratory Samp	le Receipt Docu	mentation				
*		*	ected in gas tight, opaque/o hecked, recorded upon rec			
• Yes	\bigcirc No			Comments:		

Documentation of the sample condition was not provided in a sample receipt form. However, the case narrative noted that the samples were received in good condition and in the appropriate containers.

b. If there were any discrepancies, were they documented? For example, incorrect sample containers/ preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum etc.?

○ Yes	\bigcirc No	• NA (Please explain)	Comments:			
-	-	vas not provided but the laboratory not appropriate containers.	ted that the samples were received in			
c. Data quali	ty or usability a	ffected? (Please explain.)				
⊖ Yes	• No	ONA (Please explain)	Comments:			
See above	е.					
Case Narrative						
a. Present and	d understandab	le?				
• Yes	⊖ No	○NA (Please explain)	Comments:			
b. Discrepar	ncies, errors or (QC failures identified by the lab?				
⊖ Yes	• No	○NA (Please explain)	Comments:			
There w	ere no analytica	al discrepancies, errors, or QC failures	s noted in the case narrative.			
c. Were all	corrective actio	ns documented?				
⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:			
Correcti	ve actions were	e not required.				
d. What is	d. What is the effect on data quality/usability according to the case narrative?					
			Comments:			
None; s	ee above.					
Samples Results	<u>.</u>					
a. Correct a	nalyses perform	ned/reported as requested on COC?				
• Yes	○ No	○NA (Please explain)	Comments:			
b. Samples	b. Samples analyzed within 30 days of collection or within the time required by the method?					
• Yes	⊖ No	○ NA (Please explain)	Comments:			
c. Are the project?	reported PQLs 1	ess than the Target Screening Level or t	the minimum required detection level for t			
• Yes	\bigcirc No	○NA (Please explain)	Comments:			

	d.	Data	quality	or	usability	affected?
--	----	------	---------	----	-----------	-----------

Comments:

No; see above.

6. <u>QC Samples</u>

- a. Method Blank
 - i. One method blank reported per analysis and 20 samples?

• Yes	\bigcirc No	○ NA (Please explain)	Comments:	

ii. All method blank results less than PQL?

• Yes	🔿 No	\bigcirc NA (Please explain)	Comments:
-------	------	--------------------------------	-----------

iii. If above PQL, what samples are affected?

Comments: None; project analytes were not detected in the method blank.

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

Project analytes were not detected in the method blank.	
v. Data quality or usability affected? (Please explain.) Comments:	

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. One LCS/LCSD or one LCS and a sample/sample duplicate pair reported per analysis and 20 samples?

• Yes	\bigcirc No	○NA (Please explain)	Comments:

ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable.

• Yes	\bigcirc No	○NA (Please explain)	Comments:	

iii. Precision - All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable.

Yes O No O NA (Please explain) Comments:
 The RPDs were calculated by Shannon & Wilson and were less than 20% as recommended for the method by the National Functional Guidelines.

iv. If %R or RPD is outside of acceptable limits, what samples are affected?

ΟY	es 🔿 No	• NA (Please explain)	Comments:			
The	analytical accura	cy and precision were demonstrate	ed to be within acceptance criteria.			
v. Do tl	ne affected sampl	e(s) have data flags? If so, are the da	ata flags clearly defined?			
\bigcirc Ye	es 🔿 No	• NA (Please explain)	Comments:			
Qual	ification was not	required; see above.				
vi. Data	quality or usabil	ity affected? (Please explain.)				
			Comments:			
No;	see above.					
c. Surrogates						
U U	surrogate recover	ies reported for field, QC and labora	tory samples?			
ΟY	es 🔿 No	CNA (Please explain)	Comments:			
	specified DQOs,		hin method or laboratory limits? And Comments:			
		(Flease explain)				
iii. Do t defined	·	with failed surrogate recoveries hav	ve data flags? If so, are the data flags clear			
ΟY	Yes 🔿 No	• NA (Please explain)	Comments:			
The	re were no surro	gate recovery failures associated w	with this work order.			
iv. Data	quality or usabil	ity affected? (Please explain.)	Comments:			
No;	see above.					
d. Field Dupl	icate					
i. One	field duplicate su	bmitted per analysis and 10 type (so	il gas, indoor air etc.) samples?			
• Y	Yes 🔿 No	○NA (Please explain)	Comments:			
	A field-duplicate pair was not submitted with this work order. However, field-duplicate samples are submitted at the required frequency for the overall project.					
ii. Subı	nitted blind to lat	b ?				
ΟY	res 🔿 No	• NA (Please explain)	Comments:			
N/A	; see above.					

iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 25 %)

RPD (%) = Absolute Value of: $(\underline{R_{1-}R_{2}}) \times 100$	
$((R_{1+} R_2)/2)$	

W	here $R_1 = S_1$	Sample Conce	entration	
	$R_2 = I$	Field Duplicat	e Concentration	
	⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
	N/A; see a	lbove.		
iv.]	Data qualit	y or usability a	Comments:	
	No; see at	oove.		
e. Field Bl	ank (If not	used explain	why).	
\bigcirc Yes	\bigcirc N	0	NA (Please explain)	Comments:
		project were r sed cross-con	1 1	ment, so there is no practical potential
i. A	All results l	ess than PQL?	2	
(⊖ Yes	\bigcirc No	• NA (Please explain)	Comments:
	A field bla	ink sample wa	as not required for this project.	
ii.	If above PO	QL, what samp	Comments:	
1	N/A; a fiel	d blank sampl	e was not required for this proje	ct.
iii. I	Data qualit	y or usability a	affected? (Please explain.)	
				Comments:
	No; see ab	oove.		
7. Other Data Fl a. Define	lags/Qualif d and appro			
⊖ Yes	s O ľ	No O	NA (Please explain)	Comments:

Additional data flags or qualifiers are not required.

Reset Form

Appendix G Quality Assurance and Quality Control Summary

G.1 OVERVIEW

QC/QA procedures assist in producing data of acceptable quality and reliability. We reviewed the analytical results for laboratory QC samples and conducted our own QA assessment for this project. We reviewed the COC records and laboratory receipt forms to check that custody was not breached, sample-holding times were met, the groundwater samples were kept chilled (between 0 °C and 6 °C) during shipping, and the appropriate vacuum remained in the indoor-air sample canisters, where required.

Our QA-review procedures allowed us to document the accuracy and precision of the analytical data, as well as check that the analyses were sufficiently sensitive to meet project-specific DQOs.

Laboratory QC procedures included evaluating surrogate recovery, performing continuing calibration checks, and analyzing method blanks, laboratory control samples (LCS), and matrix spikes (MS) to assess accuracy and precision. LCS, LCS duplicate (LCSD), MS, MS duplicate (MSD), and surrogate recovery analyses were performed to evaluate the accuracy of the analytical process. Analytical precision was assessed by comparing the results of duplicate analyses performed on LCS/LCSD, MS/MSD, and duplicate-sample pairs.

QC procedures in the field included using single-use equipment to reduce the potential for sample cross-contamination. We used a new, clean pair of nitrile gloves when sampling at each monitoring well and indoor-air location. The laboratory report contains a case narrative and forms documenting sample-receipt conditions. Details regarding the results of our QA review are presented below.

Refer to the SGS laboratory report 1189931, Eurofins laboratory report 1811545, and corresponding ADEC LDRCs (Appendix E and F, respectively) for additional information.

G.2 SAMPLE HANDLING

Groundwater samples were hand delivered to SGS in Fairbanks, Alaska. We completed COC forms, which were signed upon delivery to the SGS Fairbanks office. The samples were then repackaged by SGS and shipped to the SGS laboratory in Anchorage, Alaska. The laboratory noted that the samples were received in good condition and within the acceptable temperature range of 0 °C to 6 °C. Indoor-air samples were shipped to Eurofins in California, via FedEx. We completed a COC form and placed it inside the box of the canisters for shipment. We maintained custody of the samples at all times until submitting them to Eurofins via FedEx.

The project samples were received in good condition and properly preserved: refer to the LDRCs for details.

G.3 ANALYTICAL SENSITIVITY

The laboratory's detection limit (DL) is the lowest analyte concentration that can be measured. The laboratory's limit of quantitation (LOQ) is the lowest analyte concentration that can be routinely measured in the sampled matrix with confidence, the point at which a concentration is considered quantitative. Sample matrix, instrument performance, sample dilutions, and other factors may affect the DL and LOQ. Analytes may be present in samples at concentrations below the DL. In cases where analytes were not detected at concentrations above their DL, the analytical results are presented in our data-summary table with reference to their LODs. If the analyte is detected between the DL and the LOQ, its concentration is considered an estimate; in our tables, this value is flagged with a 'J'. The flag is applied by the laboratory.

Laboratory results meet the sensitivity DQOs listed in the ADEC-approved Work Plan for the COCPs. However, the analyte 1,2,3-trichloropropane was not detected in the groundwater samples but had an LOD greater than the ADEC CUL for that analyte. We cannot assess if this analyte is present in the samples at a concentration greater than the ADEC CUL but less than the laboratory's ability to reliably detect an analyte for the given method.

To evaluate the potential for cross-contamination between samples or introduction of contamination from an outside source, laboratory-supplied trip blanks are carried with groundwater samples in their cooler during sampling and shipping. Trip blanks were analyzed as part of this sampling event for VOCs. The laboratory reported there were no detections in the trip blanks.

Laboratory method blanks were also analyzed in association with groundwater and indoorair samples collected for this project to check for contributions to the analytical results possibly attributable to laboratory-based contamination. There were no detections in the method blank samples.

One groundwater equipment blank was collected to assess the possibility of sample contamination from sampling equipment. The equipment blank was collected post decontamination after collecting the project samples from monitoring well MW-11. The equipment blank was analyzed by the same test methods as the original sample. There were no detections in the equipment blank sample.

G.4 ACCURACY

Accuracy refers to determining the correct analyte concentration and is a comparison between the measured value and a known or expected value. Laboratory analytical accuracy may be assessed through the analyte recoveries from LCS/LCSD analyses and MS/MSD analyses, and the recovery of analyte surrogates (for organic analytes) added to project samples. The LCS/LCSDs are spikes of known analyte concentrations added to a clean matrix; the MS/MSDs are spikes of known analyte concentrations in a matrix similar to field samples.

The laboratories' LCS, LCSD, MS, MSD, and surrogate recoveries were within laboratory acceptance criteria.

The laboratory also assess analytical-batch accuracy using recovery information from continuing calibration verification (CCV) samples. Assessment of CCV recoveries is beyond the scope of a Level II data review. However, there were no CCV failures reported by the laboratory.

G.5 PRECISION

We collected field-duplicate samples at a frequency of ten percent of the total number of samples to evaluate the precision of analytical measurements and reproducibility of our sampling technique. Two duplicate samples were collected; one from monitoring well MW-1R and one from monitoring well MW-8. The field-duplicate samples were submitted "blind" (i.e., the laboratory could not identify it as a duplicate) with sample names of *MW*-*101R* and *MW*-*108*, respectively. The duplicate was analyzed by the same test methods as the original sample. To evaluate the precision of the data, we calculated the relative percent difference (RPD; difference between the sample and its duplicate divided by the mean of the two). RPDs can be evaluated only if the results of the analyses for both the sample and its duplicate are reported above the DL.

The data quality objective for water samples' RPD is 30 percent. Where concentrations were reported in both samples, we calculated the RPDs. The RPDs were within acceptance criteria.

Laboratory analytical precision can also be assessed by comparing the results of duplicate analyses performed on LCS/LCSD, MS/MSD, and laboratory-duplicate samples, and evaluating the associated RPDs. The data quality objective is 20 percent for the laboratory QC samples. The laboratory LCS/LSCD, MS/MSD, and laboratory-duplicate sample RPDs were within laboratory acceptance criteria.

G.6 DATA QUALITY SUMMARY

By conducting our field activities in general accordance with our standard QA/QC procedures, the samples we collected are considered representative of site conditions at the locations and times they were obtained. Based on our QA review, no datum was rejected as unusable due to QC failures, and our completeness goal of obtaining 90-percent useable data was met. In our opinion, the data produced by the SGS and Eurofins laboratories for this project are suitable for characterizing groundwater and indoor-air quality at the locations sampled.

Important Information

About Your Environmental Report

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied

judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was pre

pared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland