

SUSTAINABLE ENVIRONMENT, ENERGY, HEALTH & SAFETY PROFESSIONAL SERVICES

December 9, 2022

Sent via email to: statefarmfireclaims@statefarm.com

NORTECH, Inc.

.

Accounting Office: 2400 College Rd **Fairbanks**, AK 99709 907.452.5688 907.452.5694 Fax

3105 Lakeshore Drive Suite A106 **Anchorage**, AK 99517 907.222.2445 907.222.0915 Fax

•

5438 Shaune Drive Suite B **Juneau**, AK 99801 907.586.6813 907.586.6819 Fax

www.nortechengr.com

Casualty Claim Specialist State Farm Insurance P.O. Box 106169 Atlanta, Georgia, 30348

ATTN: Trevor Crum

RE: Groundwater Monitoring and Soil Assessment

4886 Drake Street, Fairbanks, Alaska – Claim Number: <u>02-G019-269</u>

Trevor,

NORTECH has completed soil gas sampling, groundwater monitoring, and free product collection at 4886 Drake Street (The Site) in Fairbanks, Alaska. The following is a brief synopsis of the background, scope of work, methodology, field activities, and sampling results, with a discussion including conclusions and recommendations.

Background

In August 2002, the 1,000-gallon buried heating oil tank was filled with fuel oil, and within a few weeks, the tank was empty. During the inspection, the tank was removed and found to be rusted and corroded. A new 500-gallon above-ground storage tank (AST) was installed. Four test holes were excavated in October 2003: Test Hole #1, in the location of the former heating oil tank, was the only test hole where free product was present in the soil and groundwater. A monitoring well was installed at this location. On June 4, 2004, this monitoring well had 18" of free product floating on the water table.

On June 13, 2004, over 106 tons of contaminated soil was removed from the area of the former tank area and thermally remediated at Organic Incineration Technology, Inc. (OIT). A recovery well and passive vapor extraction system were installed.

Between September 2008 and December 2009, seven free product monitoring events and one groundwater sampling event were completed at the Site. Results presented in the August 6, 2010, Summary Report concluded that groundwater typically drops below the bottom of the groundwater monitoring wells and remains until spring melt and summer precipitation increases groundwater elevation to be observed in the monitoring wells. Groundwater contaminant concentrations have been below ADEC's pre-2016 cleanup levels in each of the perimeter monitoring wells since 2004.

The 2017 groundwater results showed Laboratory results show VOCs relating to a heating oil release, including BTEX compounds, were not detected at or above the laboratory detection limits. DRO contaminants were not detected at or above the laboratory detection limits in MW-3 and MW-4. DRO compounds were detected below the ADEC 2017 cleanup levels in MW-1 and MW-2.

Scope of Work and Objectives

Based on ADEC site visits and comments, **NORTECH** developed the March 2022 work plan, which outlined the following activities:

- Complete groundwater sampling of groundwater monitoring wells MW-1 and MW-2.
- Evaluate the soil conditions using a soil boring to identify subsurface soil contaminant concentrations between the former tank location and the house
- Decommission MW-3 and 4, the soil vent system, and the recovery well
- Create a report documenting and discussing fieldwork and laboratory analysis results.

Methodology

Field personnel completed groundwater sampling in accordance with the 2022 work plan, the ADEC Field Sampling Guidance, dated January 2022 (FSG), and **NORTECH's** Lab Sampling Plan v4.

Groundwater Sampling

Based on the known release, prior sampling results, and work plan, groundwater sampling was limited to MW-1 and MW-2 for Diesel Range Organics (DRO) analysis. SGS Environmental Services in Anchorage, Alaska, was the analytical laboratory for this project.

Depth to groundwater and total depth were measured in each well using an electronic oil/water interface level indicator probe. Water clarity was evaluated by visual observation before the water entered the flow-through cell. Water parameters were measured during purging using a calibrated YSI ProDSS water quality meter. Water quality parameters were considered stable when three successive readings, collected 3-5 minutes apart, were within five parameters of temperature, dissolved oxygen, conductivity, pH, and oxidation-reduction potential (ORP), or three to five well volumes had been removed from the well. The parameters and visual clarity were monitored and recorded.

MW-1 was sampled using a peristaltic pump and disposable tubing because the submersible pump does not fit in the bore of MW-1. To prevent VOC loss, the peristaltic pump was operated at the lowest practicable setting so that air bubbles were not entrained with the water during purging and sampling.

After purging, water samples were collected directly from the pump discharge tubing into laboratory-supplied sample bottles as outlined in the 2022 FSG. New disposable gloves were worn to collect samples, and gloves were changed between sample locations.

Soil Boring Sampling

One soil boring was advanced by the Drilling Company of North Pole, Alaska, using a truck-mounted drill rig capable of direct-push and hollow-stem auger drilling methods. Soil borings were advanced to 12.0 feet (ft) below ground surface (bgs).

Each soil core retrieved from the soil boring was opened and inspected for visual and olfactory indications of contamination. Soil recovery within the body was measured, and soil types were classified on a soil boring log form. Field screening was completed by **NORTECH** using a photoionization detector (PID) by headspace monitoring.

Following field screening, two soil samples were collected by **NORTECH**; one was collected within the vadose and one in the smear zone based on elevated PID readings or locations with visual and olfactory indications of contamination.

PID Field Screening

A hand-held MiniRAE Air Monitor/Photoionization Detector was used to field screen the soils for total volatile organic compounds (tVOCs), including petroleum and solvent-related compounds. The PID field-screening instrument allows semi-quantitative real-time (<15 minutes) analysis. The PID yields semi-quantitative concentrations in parts per million (ppm) for tVOCs as referenced to a 100-ppm isobutylene gas standard.

PID field screening was completed using a 10.6 electron volt (eV) lamp. Headspace screening consisted of partially filling a clean re-sealable bag with freshly uncovered soil. The bag was closed, and headspace vapors were allowed to develop for 10 minutes. The bag was shaken at the beginning and end of the soil headspace development period for 15 seconds each.

The soil headspace was tested in a heated vehicle after the soil was warmed to a temperature of 40°F. The PID probe was inserted into the bag, and vapors were drawn from the bag above the soils and analyzed for tVOCs. The PID reading was then recorded in the field book.

Laboratory Sample Collection Procedures

Soil samples selected for laboratory analysis were collected into laboratory-supplied containers for submission to the laboratory. Disposable gloves were worn to collect samples, and gloves were changed between samples.

Soil samples for volatile analyses were collected by collecting 50 grams of soil placed in prelabeled, pre-weighed jars and immediately immersed with a methanol preservative provided by the laboratory. DRO sample containers were filled with soil and were discretely identified using laboratory-supplied labels. All samples were placed in coolers, cooled to 4±2 °C, and delivered to SGS.

Laboratory Sample Analysis

The laboratory was SGS North America Inc. (SGS), an ADEC-approved laboratory in Anchorage, Alaska. Soil samples were submitted to SGS for analysis by the following methods:

- Diesel Range Organics (DRO) by Method AK102
- Volatile Organic Compounds (VOCs) by EPA Method 8260D
- Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270 SIMS

Groundwater samples were analyzed for DRO by Method AK 102.

Quality Assurance/Quality Control

Quality Assurance/Quality Control (QA/QC) objectives were followed as described in the ADEC 2022 FSG. Laboratory QA/QC procedures included analysis of method blanks, laboratory control spike samples (LCS) and LCS duplicates (LCSD), and matrix spike samples (MS) and MS duplicates (MSD).

Field Activities

Groundwater Sampling

On June 8, 2022, **NORTECH** personnel visited the site to monitor groundwater from the one-inch sand point advanced through the 4-inch ABS well bottom of MW-1. A submersible pump does not fit in the bore of MW-1; therefore, purging and sampling were completed using a peristaltic pump. Because of a mismatch in tubing sizes between the peristaltic pump and flow cell, water quality parameters were not collected. The well was purged of over three well

volumes (1.25 gallons). After purging, a DRO primary (MW-1) and duplicate (MW11) sample were collected.

MW-2 was sampled using a submersible pump set to the lowest possible flow rate. Initially, groundwater parameters were collected but not completed because the well was purged dry due to the well's low recharge rate. After allowing the well to recharge for fifteen minutes, samples were collected for DRO analysis. All samples were delivered to SGS for analysis. Laboratory results are summarized in Table 1 and discussed below.

Soil Assessment

The Drilling Company of North Pole, Alaska, advanced soil boring, using a truck-mounted drill rig implementing direct-push and hollow-stem auger drilling methods. A QEP oversaw drilling activities and performed soil logging on the continuous core produced using the Macro-Core system. The QEP visually inspected, classified, and logged the soil following the ADEC FSG. A MiniRAE 3000 Handheld Air Monitor PID was used to field screen soils for volatile organic compound contamination at two-foot intervals.

Two analytical samples were collected from the soil with the highest reading in the vadose and the smear zone. The soil boring was documented on a drilling log form. One duplicate sample was collected from the smear zone and submitted blind to the laboratory in the same manner as the other samples for analysis. The results of the field duplicate sample were compared to the corresponding primary sample.

Well Decommissioning

The Drilling Company personnel arrived on site at 0800 on September 21, 2022. **NORTECH** personnel met with Rod Drumhiller of the Drilling Company to decommission MW-3, and MW-4, the soil vents, and the recovery well.

Two 4" ABS vertical pipes from the soil vent system were pulled intact from the borehole and filled with native soil and gravel. Bentonite was not used because the vents are above the static groundwater level.

Initially, the Drilling Company removed the galvanized 1-inch well point and pipe from MW-3. A chain was attached to the hydraulic ram on the drill rig and the top of the 4-inch ABS pipe to pull the ABS pipe out of the ground. The well broke at the ground surface, so an inside well cutter was used to cut the well 16 inches below grade. Because of the cold weather, we did not mix up a bentonite slurry and pump it down the well using a tremie pipe. Bentonite chips were poured into the well to five feet below grade and hydrated. Sand was added to 6 inches below grade, and native soil was used to fill the top six inches of the borehole to match the existing grade.

MW-4 was decommissioned by pulling the galvanized 1-inch well point from the ABS pipe. A chain was attached to the hydraulic ram on the drill rig and the top of the 4-inch ABS pipe to pull the ABS pipe out of the ground. The well was removed intact, and the bore remained open to the bottom. Bentonite chips were poured into the well five feet below grade and hydrated. Sand was added to 6 inches below grade, and native soil was used to fill the top six inches of the borehole to match the existing grade.

The 12-inch corrugated steel recovery well could not be pulled, so the top two feet of the well were removed using a cutting torch. Two feet of bentonite grout was placed in the well, hydrated, and then sand was added to 6 inches below grade. Native soil was used to fill the top six inches of the borehole to match the existing grade.

Results with Discussion

Groundwater Results

The 2022 analytical results are summarized in Table 1, along with the field duplicate quality control summary. A summary of the historical results for each well is presented in Table 3. The well locations are shown in Figure 3. Copies of the laboratory analytical report and the ADEC Laboratory Data Review Checklist (LDRC) are attached to this report.

The primary contaminant of concern at this site is DRO. A total of three groundwater samples (including one field duplicate) were collected from the MW-1 and MW-2, the site's perimeter monitoring wells.

DRO contaminants were not detected at or above the laboratory detection limits in the MW-1 primary sample and MW-2. DRO compounds were detected at the limit of quantification in the duplicate sample from MW-1. Laboratory detection limits were below the ADEC cleanup levels.

Eight groundwater monitoring events have been conducted over 18 years since DRO was identified in 2005 at MW-4, just above the cleanup level. Based on each monitoring well (MW-1 through MW-4) consistently meeting cleanup levels since 2005, analysis of groundwater is no longer necessary at this site. MW-1 and MW-2 should be decommissioned along with the other non-essential onsite hardware.

QA/QC Results and Discussion, Groundwater

A field duplicate sample was collected and submitted blind to the laboratory. The primary and duplicate sample pair results were used to calculate the relevant percent difference (RPD). The RPD results for each duplicate pair are shown at the bottom of the respective summary in Table 1 (groundwater). ADEC considers an acceptable RPD in a groundwater duplicate pair at 30% or less. The RPD is not calculated if a compound was not detected in either sample. The DRO results were not calculable because the primary sample was below the limit of quantification, while the duplicate detected DRO at the limit of quantification. *NORTECH* also reviewed the laboratory reports for other quality control issues using the ADEC Laboratory Data Review Checklist. A review of the reports did not identify any concerns that affect data usability for closure as described in this report. The checklist is included as an attachment to the laboratory report.

Soil Boring Assessment

A summary showing detected compounds and other compounds of specific potential concern is included in Table 3 (vadose zone and smear zone). Laboratory results were compared to ADEC Soil Cleanup Levels listed in 18 Alaska Administrative Code (AAC) 75.341 Table B2 Migration to Groundwater (most stringent) as amended through November 7, 2020.

The vadose zone sample (V1) was collected five feet below the ground surface (bgs). There were no odors, petroleum staining, or other indicators of petroleum contamination. The soil was ungraded sandy gravel with cobbles to two inches. Headspace samples were collected at two feet and five feet below the ground, and the results were 0.02 parts per million (ppm) for both samples. The results indicate typical background conditions. No DRO or VOC compounds were detected at or above the limit of quantitation (LOQ) in the vadose zone sample. The LOQ for 1,2,3-Trichloropropane, 1,2-Dibromoethane (EDB), and Dibromochloromethane exceed their respective ADEC cleanup levels; however, these compounds are not associated with heating oil. The elevated LOQs for these chemicals are not a concern. PAH testing was not conducted in the vadose zone sample.

The smear zone samples (V2 and duplicate V22) were collected from seven to nine feet bgs. There was a strong petroleum odor and petroleum sheen, and the PID results were elevated. DRO compounds were detected at 29,600 and 21,600 in the primary and duplicate samples, respectively. VOC results indicated 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, naphthalene, and total xylenes significantly exceed cleanup levels. An additional five compounds were detected below cleanup levels.

The LOQ for twenty-eight VOC compounds exceeded cleanup levels. A discussion with the laboratory indicated that they had to dilute the samples because of the gross contamination in the smear zone sample to avoid instrument damage. The elevated LOQs do not change the conclusion that the chemicals of concern for heating oil are significantly above the cleanup levels and that heating oil grossly impacts the smear zone soil at this location.

PAH compounds, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were detected significantly above the cleanup level in the smear zone sample. An additional four PAH compounds were detected below cleanup levels.

QA/QC results and discussion

An LDRC was completed for each laboratory work order and is included following each laboratory report in Attachment 2. The SGS laboratory reports case narratives were reviewed against the ADEC LDRC for potential laboratory QC issues. Field duplicate pairs are a QC check on field sampling techniques and laboratory error. Precision, expressed as the relative percent difference (RPD) between field duplicate sample results, is an indication of consistency in sampling, sample handling, preservation, and laboratory analysis. The RPD was calculated as a percentage of the average of those results. Detected results from the samples with detected analytes were less than fifty percent (50%) and meet data quality objectives for soil. with no impact to usability. DRO and naphthalene in one sample pair and PFAS compounds in two sample pairs had RPDs greater than 50%. As discussed in the soil results, many analytes had elevated LOQs above ADEC cleanup standards. LOQ compounds. The elevated LOQs do not change the conclusion that the chemicals of concern for heating oil are significantly above the cleanup levels and that heating oil grossly impacts the smear zone soil at this location. The results are considered usable as discussed above.

Summary

Eight groundwater monitoring events have been conducted since DRO was identified just above the cleanup level in 2005 at MW-4. Since that time, no groundwater analyte has exceeded its cleanup level Based on the perimeter wells consistently meeting cleanup levels (18 years), analysis of groundwater was no longer considered necessary at MW-3 and MW-4 and have been decommissioned. These 2022 results confirm MW-1 and MW-2 also meet cleanup levels, and decommissioning these wells is recommended. These long-term conditions observed in the perimeter monitoring wells suggest that the gross contamination observed at the recovery well and the soil boring has not significantly migrated, confirming the plume is stable. Natural attenuation will slowly remediate the remaining smear zone soil contamination.

The soil boring shows that the gross contamination from the source area has migrated at least 10 feet to the south and has impacted smear zone soils within six feet of the house. Based on the non-detect vadose zone soil results and the non-detect 2017 soil gas results, the soils above the smear zone have not been impacted, and the inhalation of indoor air exposure pathway is incomplete. In addition, the inspection of the interior space indicates indoor air testing would be confounded by the solvents and petroleum stored in the attached garage and the mechanical work that the homeowner conducts in the garage. Based on these factors, further assessment of the potential vapor intrusion concern is not recommended.

Conclusions and Recommendations

NORTECH has completed the scope of work requested by ADEC to facilitate the evaluation of this Site for closure. Based on the review of this data and the historical information for the Site, **NORTECH** has developed the following Site conclusions and recommendations:

Groundwater Characterization

- Groundwater perimeter well data from 2005 through 2022 indicate contaminant concentrations were consistently below ADEC contaminant cleanup levels
 - Results indicated that the plume is stable
 - The groundwater data provide direct evidence that the site meets the cleanup objectives at the property boundaries
 - o MW-3 and MW-4 were decommissioned in 2022
 - Groundwater monitoring of at MW-1 and MW-2 can be discontinued and the wells decommissioned

Soil Boring Results

- Smear zone contamination historically observed in the source area has migrated 6 feet north of the house
 - The remaining contamination observed in the smear zone has not impacted soil at the property boundaries
 - The vadose zone soils background PID results, no petroleum odors, or indicators, and non-detect results indicate the vadose zone has not been impacted
- The 2017 soil gas results, coupled with the vadose zone results, provide multiple lines of evidence that the soil gas pathway for inhalation of indoor air is incomplete

Project Management Recommendations

- Based on the observed site conditions, the Site may qualify for closure with institutional controls
- Develop a work plan and submit it to the ADEC for decommissioning MW-1 and MW-2

Please get in touch with either of the undersigned at your earliest convenience if you have any questions about the data presented in the report or the Site in general.

Sincerely, **NORTECH**

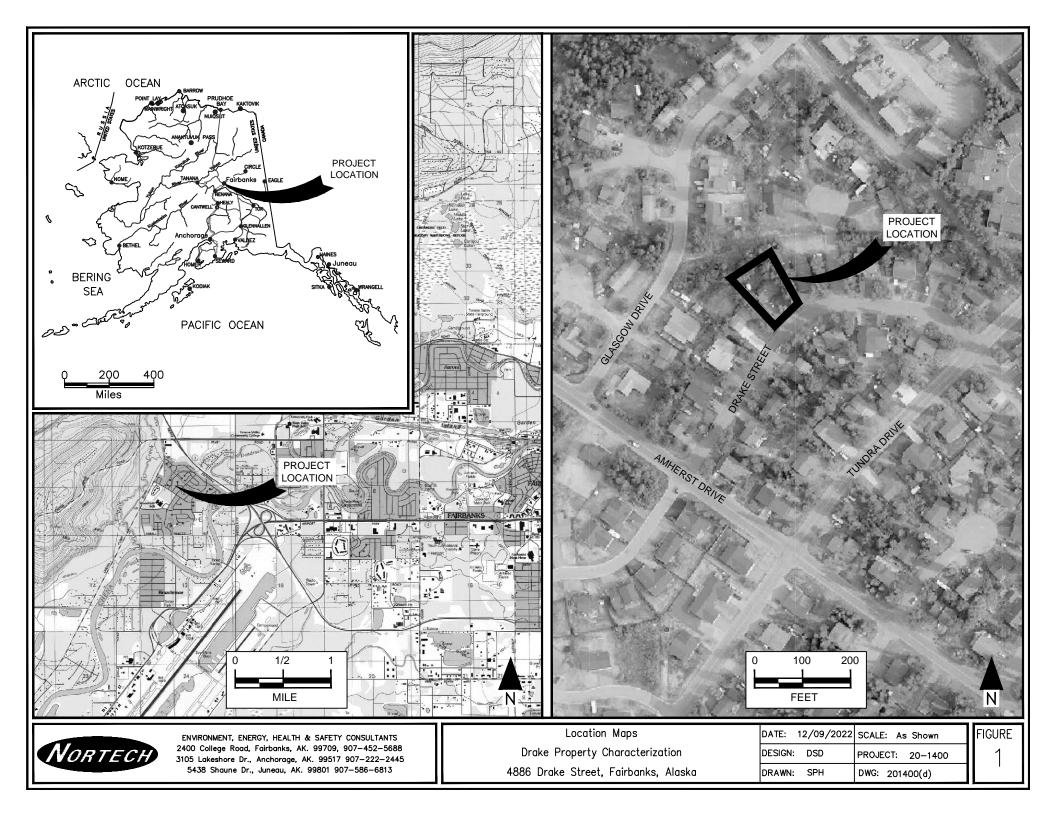
Doug Dusek,

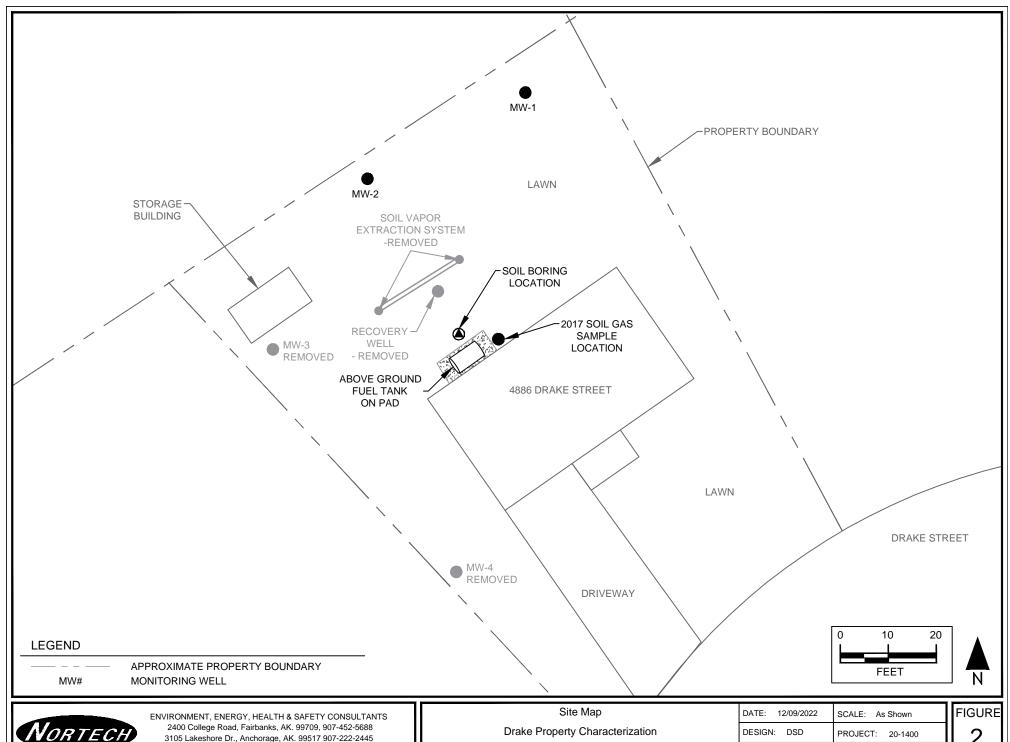
Environmental Specialist

Peter Beardsley, PE

Principal, Environmental Engineer

for Boods of


Attachments: Figures


Photos

Tables – Groundwater, Soil Results and, Groundwater Historical Summary

Laboratory Reports and Lab Quality Checklists

Attachment 1

5438 Shaune Dr., Juneau, AK. 99801 907-586-6813

4886 Drake Street, Fairbanks, Alaska

DATE: 12/09/2022	SCALE: As Shown
DESIGN: DSD	PROJECT: 20-1400
DRAWN: SPH	DWG: 201400(d)

Attachment 2

Photo 1: (MW3) pulling the galvanized well pipe out of existing ABS piping

Photo 2: Removing MW4 by pulling the galvanized pipe from the ABS well pipe first and then the ABS pipe. Bentonite was added from the well bottom to 5' bgs, sand to 6" bgs, and native fill to grade.

Photo 3: Advancing soil boring near the between the recovery well and the house.

Photo 4: Soil boring showing saturated, very fine sand with strong petroleum

Photo 5: Photo showing view of the culvert and above-ground tank

Photo 6: Cut the culvert recovery 2' below ground level with an acetylene torch

Photo 7: Pouring bentonite chips into the recovery well. After installing the chips, they were hydrated.

Photo 8: The culvert well was filled with 2' of bentonite, sand to 6" BGS, and native soil to grade.

Attachment 3

Table 1
2022 Drake Groundwater Monitoring

Sample ID:	ADEC Cleanup Level	MW-1	MW-11 Dup of MW-1	MW-2					
DRO mg/L									
DRO	1.5	0.600 U	0.006	0.577U					

# U	Compound was not detected above the limit of quantitation
Shade	Compound was detected below the ADEC cleanup level
Bold	Compound was detected above the ADEC cleanup level

Table 2
Quality Control Summary Table

Sample ID	MW-4	MW-5	RPD
Analyte	mg/kg	mg/kg	%
DRO	NC	NC	NC

Note:

RPD Relative Percent Difference

NC Not calculable

Table 2
Detected 2022 Soil Boring Results

Sample ID							
Analyte	ADEC Clean Up Levels	V1	V2	V22	Trip		
D	iesel Range Organics B	y AK 102 (mį	g/kg)				
Diesel Range Organics	250.00	20.6 U	29600	21600	NT		
	VOCs by SW 8260	D (ug/kg)					
1,2,4-Trimethylbenzene	610	54.4 U	14000	13900	99.9 U		
1,3,5-Trimethylbenzene	660	13.6 U	5540	5450	25.0 U		
4-Isopropyltoluene		43.5 U	981 U	661	80.0 U		
Ethylbenzene	130	13.6 U	3040	2730	25.0 U		
Naphthalene	38.0	13.6 U	9840	10000	25.0 U		
n-Propylbenzene	9100	13.6 U	2540	2410	25.0 U		
o-Xylene		13.6 U	8640	8370	25.0 U		
P & M -Xylene		27.2 U	13800	12400	50.0 U		
sec-Butylbenzene	42000	13.6 U	888	850	25.0 U		
Xylenes (total)	1500	40.8 U	22400	20700	75.0 U		
	PAHs by 8270D SI	M (mg/kg)					
1-Methylnaphthalene	410	NT	64700	50800	NT		
2-Methylnaphthalene	1300	NT	86400	68500	NT		
Acenaphthene	37000	NT	1970	1440	NT		
Fluoranthene	590000	NT	318	324 U	NT		
Fluorene	36000	NT	9100	6750	NT		
Naphthalene	38.0	NT	39500	32100	NT		
Phenanthrene	39000	NT	18200	14200	NT		

U Compound was not detected above the limit of quantitation
Shade Compound was detected below the ADEC cleanup level
Bold Compound was detected above the ADEC cleanup level
Light Shade LOQ Above ADEC Clean Up Level

QA/QC Sample Results Summary

QA/QC Sample Results Summary										
Sample ID	V2	V22	RPD							
Analyte	mg/L	mg/L	%							
Benzene	0.177	0.121	37.58%							
1,2,4-Trimethylbenzene	14000	13900	0.72%							
1,3,5-Trimethylbenzene	5540	5450	1.64%							
Ethylbenzene	3040	2730	10.75%							
Naphthalene	9840	10000	1.61%							
1-Methylnaphthalene	64700	50800	24.07%							
2-Methylnaphthalene	86400	68500	23.11%							
DRO	29600	21600	31.25%							
Xylenes (total)	22400	20700	7.89%							

RPD Relative Percent Difference

Table 3
Historical Groundwater Results

Well ID	Doto	DBO	Panzana	Taluana	Ethyl-	Total	Lab
well ib	Date	DRO	Benzene	Toluene	benzene	Xylenes	Comment
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	
	DEC Limits	1.5	0.005	1.0	0.7	10	
ADE	C Limits 2017	1.5	0.0046	1.1	0.0	0.19	
MW-1	Fall 2004	1.19	0.00050U	0.00200U	0.00200U	0.00200U	
	Spring 2005	0.313U	0.00050U	0.00200U	0.00200U	0.00200U	
	S05 Dup	0.309U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2005	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	Spring 2006	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2007	0.311U	0.000622	0.00200U	0.00250	0.00642	
	Fall 2008	0.41	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2017	0.954	0.0004U	0.0001U	0.0001U	0.003U	
	June 8, 2022	0.006	NT	NT	NT	NT	
NAVA/ O	Fall 2004	0.011	0.0005011	0.0000011	0.0000011	0.00610	
MW-2	Fall 2004	0.911	0.00050U	0.00200U	0.00200U	0.00618	
	Spring 2005	0.306U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2005	0.300U	0.00050U	0.00200U	0.00200U	0.00461	
	Spring 2006	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2007	0.309U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2008	0.385U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2017	0.577U	0.0004U	0.0001U	0.0001U	0.003U	
	June 8, 2022	0.577U	NT	NT	NT	NT	
MW-3	Fall 2004	0.422	0.00050U	0.00200U	0.00200U	0.00200U	
	Spring 2005	0.323U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2005	0.300U	0.00050U	0.00200U	0.00200U	0.00317	
	Spring 2006	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	S06 Dup	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2007	0.314U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2008	0.357U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2017	0.766	0.0004U	0.0001U	0.0001U	0.003U	
MW-4	Fall 2004	1.81	0.00050U	0.00200U	0.00200U	0.00200U	
10100-4	Spring 2005	0.309U	0.00050U	0.002000	0.002000	0.002000	
	Fall 2005	0.300U	0.00050U	0.00200U	0.0043 0.00200U	0.00200U	
	F05 Dup	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	Spring 2006	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2007	0.300U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2008	0.357U	0.00050U	0.00200U	0.00200U	0.00200U	
	Fall 2017	1.25	0.00030U	0.002000 0.0001U	0.002000 0.0001U	0.002000 0.003U	
	1 411 2011	1.20	0.00040	0.00010	0.00010	0.0000	
Notos:	11	_	d was not dat				

Notes: U Compound was not detected

NT Not Taken

shade Result is below ADEC regulatory limit, but above detection limit bold Result is above ADEC regulatory limit

Attachment 4

Laboratory Report of Analysis

To: Nortech

2400 College Road Fairbanks, AK 99709

Report Number: 1222857

Client Project: 20-1400 Drake

Dear Doug Dusek,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen C. Ede

Starten C. Ede 2022.06.21

11:32:17 -08'00'

Jennifer Dawkins

Project Manager

Jennifer.Dawkins@sgs.com

Date

Print Date: 06/21/2022 10:31:07AM Results via Engage

SGS North America Inc.

Case Narrative

SGS Client: Nortech SGS Project: 1222857 Project Name/Site: 20-1400 Drake Project Contact: Doug Dusek

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 06/21/2022 10:31:08AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 05/31/2022 for Fluoride by EPA 300.0 and Nitrate as N by SM 4500NO3-F) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 06/21/2022 10:31:10AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>
MW-1	1222857001	06/08/2022	06/08/2022	Water (Surface, Eff., Ground)
MW-2	1222857002	06/08/2022	06/08/2022	Water (Surface, Eff., Ground)
MW-11	1222857003	06/08/2022	06/08/2022	Water (Surface, Eff., Ground)

MethodMethod DescriptionAK102DRO Low Volume (W)

Print Date: 06/21/2022 10:31:11AM

Detectable Results Summary

Client Sample ID: MW-11
Lab Sample ID: 1222857003
Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics Result 0.600

Units mg/L

Print Date: 06/21/2022 10:31:12AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-1

Client Sample ID: MW-1

Client Project ID: **20-1400 Drake** Lab Sample ID: 1222857001 Lab Project ID: 1222857 Collection Date: 06/08/22 09:50 Received Date: 06/08/22 16:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	Result Qual 0.600 U	LOQ/CL 0.600	<u>DL</u> 0.200	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 06/17/22 16:02
Surrogates							
5a Androstane (surr)	77.5	50-150		%	1		06/17/22 16:02

Batch Information

Analytical Batch: XFC16261 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/17/22 16:02 Container ID: 1222857001-A Prep Batch: XXX46431 Prep Method: SW3520C Prep Date/Time: 06/16/22 16:20 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 06/21/2022 10:31:14AM

Results of MW-2

Client Sample ID: MW-2

Client Project ID: **20-1400 Drake** Lab Sample ID: 1222857002 Lab Project ID: 1222857 Collection Date: 06/08/22 10:45 Received Date: 06/08/22 16:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.577 U	0.577	0.192	mg/L	1	Limits	06/17/22 16:12
Surrogates 5a Androstane (surr)	85	50-150		%	1		06/17/22 16:12

Batch Information

Analytical Batch: XFC16261 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/17/22 16:12 Container ID: 1222857002-A Prep Batch: XXX46431 Prep Method: SW3520C Prep Date/Time: 06/16/22 16:20 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 06/21/2022 10:31:14AM

Results of MW-11

Client Sample ID: **MW-11**Client Project ID: **20-1400 Drake**Lab Sample ID: 1222857003
Lab Project ID: 1222857

Collection Date: 06/08/22 09:30 Received Date: 06/08/22 16:48 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.600	0.600	0.200	mg/L	1	Limits	06/17/22 16:42
Surrogates 5a Androstane (surr)	77.3	50-150		%	1		06/17/22 16:42

Batch Information

Analytical Batch: XFC16261 Analytical Method: AK102

Analyst: MDT

Analytical Date/Time: 06/17/22 16:42 Container ID: 1222857003-A Prep Batch: XXX46431 Prep Method: SW3520C Prep Date/Time: 06/16/22 16:20 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 06/21/2022 10:31:14AM

Method Blank

Blank ID: MB for HBN 1837986 [XXX/46431]

Blank Lab ID: 1668360

QC for Samples:

1222857001, 1222857002, 1222857003

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.200
 mg/L

Surrogates

5a Androstane (surr) 86.7 60-120 %

Batch Information

Analytical Batch: XFC16261 Prep Batch: XXX46431 Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B R Prep Date/Time: 6/16/2022 4:20:10PM

Analyst: MDT Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 6/17/2022 1:09:00PM Prep Extract Vol: 1 mL

Print Date: 06/21/2022 10:31:15AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1222857 [XXX46431]

Blank Spike Lab ID: 1668361 Date Analyzed: 06/17/2022 13:19 Spike Duplicate ID: LCSD for HBN 1222857

[XXX46431]

Spike Duplicate Lab ID: 1668362 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1222857001, 1222857002, 1222857003

Results by AK102

	E	Blank Spike	(mg/L)	8	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	18.7	94	20	22.0	110	(75-125)	15.90	(< 20)
Surrogates									
5a Androstane (surr)	0.4		84	0.4		99	(60-120)	15.90	

Batch Information

Analytical Batch: XFC16261 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: MDT

Prep Batch: XXX46431
Prep Method: SW3520C

Prep Date/Time: 06/16/2022 16:20

Spike Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 0.4 mg/L Extract Vol: 1 mL

Print Date: 06/21/2022 10:31:18AM

SGS North America Inc. CHAIN OF CUSTODY RECORD

1222857 % 52 ₽ M

The following analyses require compound list: BTEX, Metals, REMARKS/LOC ID specific method and/or NOTE: PFAS Instructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis. Preservative Profile #: 049 Sample Type Comp Grab Section 3 Ξ 0 0 Z F < − **z** ш с о dosg Losek Chourechengling MATRIX/ MATRIX CODE 3 ~5688 9.50 57:01 9:30 TIME HH:MM $\frac{907-45}{20-140}$ Project/Permit Number: 20-140 NPDL Number(DOD): 618/22 DATE mm/dd/yy PHONE #: E-MAIL: P.O.#: SAMPLE IDENTIFICATION 17W-1 MW-2 MW-11 DISOR CONTACT: 055 CK ھ PROJECT NAME: RESERVED for lab use DRBXA REPORTS TO: 120JG INVOICE TO: 5000 图 378 SAB CLIENT: Comments Section 1 Section 2

SGS Sample Receipt (Lab Use Only)	Chain of Custody Seal Condition		No COC Seal Location(s):	If more than three coolers are received, or for documentation of non-compliant coolers, use form FS-			ach an email change order Intials:	Conditions Page 11 of 14	
SGS Samp	Delivery Method: Client Commercial	Did each cooler have a	corresponding COC	Cooler ID Temperature (°C)	1 Sauce Davy), (Note: It temp. is outside 0.6° and samples were not taken <8 hours ago OR are waste samples, Olient or PM should initial here or attach an email change order to proceed with analysis. If ice is present, note on form F102B.	http://www.sgs.com/terms-and-conditions
Turnaround Time Requested	Standard	Rush	Requested Rush Report Date:	TIME: A RECEIVED BY:	11:19/10 bent/	535 Chre 16		No. YECEVED BY WAS	Laboratory Use Only
	sted	EQUIS	Other:	DATE:	72/8/9	1/8/0)	1 1	- E	
DOD Project? YES NO	Data Deliverables Requested	DataView SEDD	Level 4 ERPIMS	RELINQUISHED BY:	1/4 1/1	Menneth	08		

e-Sample Receipt Form FBK

SGS Workorder #: Nortech

Nortech

Paulau Calta		L				l 		
Review Criteria Condition Chain of Custody / Temperature Requirement			n (Yes,			eptions Note		
				ĮΥ	es Exemption pe	rmitted if sampl	er hand carries/deliver	S.
Were Custo	ody Seals intact? Note # &	10 12 21	-					
	COC accompanied sa		-					
	ved in COC corresponding		لــــــــا					
the state of the s	**Exemption permitted if			cted <8 hou	ırs ago, or for san	nples where chil		
Temperature blank co	er CF)?		Cooler ID:		@	°C Therm. ID:		
			Cooler ID:		@	°C Therm. ID:		
If samples received without a temperature bla documented instead & "COOLER TEMP" will be no			Cooler ID:		@	°C Therm. ID:		
be noted if neither is	Timod Will		Cooler ID:		@	°C Therm. ID:		
		and the second						
*If >6°C, were sai	mples collected <8 hours	s ago?	Yes	chilling no	ot required			
If <0°C, we	ere sample containers ic	e free?						
di d								
Note: Identify containers received								
Use form FS	6-0029 if more space is r	needed.	•					
Holding Time / Documentation				Note: Refe	r to form F-083 "S	Sample Guide" f	or specific holding time	es.
Do samples match COC** (i.e.,sam			N/C					
**Note: If times differ <1hr, rec	and the state of		1					
***Note: If sample information on containers differs						**		
Were samples in good conditi	on (no leaks/cracks/brea	akage)?	Yes					
Were analytical requests clear? (i.e., r	method is specified for a	nalvses						
	for analysis (Ex: BTEX,							
			Yes	***				
Were Trip Blanks (i.e., VOAs,	tana ay 📆 ay	77						
Were all water VOA vials free of he		4.0						
	eld extracted with MeOF							
For Rush/Short Hold Time, w	as RUSH/Short HT ema	ail sent?	N/A					
Note to Client: Any "No"	, answer above indicates no	on-compl	iance	with standa	rd procedures an	d may impact d	ata quality.	
	Addition	al notes	s (if a	pplicable) :			
SGS Profile #	3419	954			34	1954		
					THE RE			
								•

Page 13 of 14

COC	e-Sample Receipt Form						
202	SGS Workorder #:	1222857	1222857				
F	Review Criteria	Condition (Yes, No, N/A	Exceptions Noted below				
Chain of Custo	ody / Temperature Requirements	Note: Temperature and CC	DC seal information is found on the chain of custody form				
DOD only: Did all s	sample coolers have a corresponding C	COC? N/A					
	If <0°C, were sample containers ice	free? N/A					
	Note containers receive	d with ice:					
	ontainers received at non-compliant ten	s needed)					
			ample Guide" for specific holding times and sample containers.				
	ples received within analytical holding						
Do sample	e labels match COC? Record discrepar	ncies. Yes					
	n containers differs from COC, default i mes differ <1hr, record details & login p						
	Were analytical requests of	lear? Yes					
	for analyses with multiple option for me 11 vs 8260, Metals 6020 vs 200.8)	ethod					
	ners (type/mass/volume/preservative)u						
Note: Exemption for	or metals analysis by 200.8/6020 in wa	ter.					
Volatile Analysis F	Requirements (VOC, GRO, LL-Hg	etc)					
-	ed with a corresponding % solids conta						
	(e.g., VOAs, LL-Hg) in cooler with sam						
•	s free of headspace (e.g., bubbles ≤ 6i						
	il VOAs field extracted with Methanol+l						
Note to Client: A	ny "No", answer above indicates non-c	ompliance with standard proc	edures and may impact data quality.				
		otes (if applicable):	, , , , ,				

F102b_SRFpm_20210526

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1222857001-A 1222857001-B 1222857002-A 1222857002-B 1222857003-A	HCL to pH < 2	ОК ОК ОК ОК ОК			
1222857003-B	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

6/12/2022 Page 14 of 14

Laboratory Data Review Checklist

Completed By:	
Doug Dusek	
Title:	
Environmental Specialist	
Date:	
December 8, 2022	
CS Report Name:	
20-1400 Drake	
Report Date:	
6/21/2022	
Consultant Firm:	
NORTECH	
Laboratory Name:	
SGS	
Laboratory Report Number:	
1222857	
ADEC File Number:	
43316;14<4	
Hazard Identification Number:	
3956	

July 2017 Page 1

1222	2857									
1.	<u>Labo</u>	orato:	<u>y</u>							
	a.	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?								
			• Yes	□ No		Comments:				
		b.					" laboratory or sub-c the analyses ADEC			
			Yes	◯ No		Comments:				
	na	a								
2.	<u>Chai</u>	in of	Custody	(CoC)						
	a.	Co	C inform	ation complet	ed, signed, aı	nd dated (includi	ng released/received	by)?		
			• Yes	○ No		Comments:				
	b.	Co	rrect Ana	alyses requeste	ed?					
			• Yes	◯ No		Comments:				
3.	<u>Labo</u>	oratoi	ry Sampl	e Receipt Doc	<u>eumentation</u>					
	a.	Sar	nple/coo	ler temperatur	e documente	ed and within ran	ge at receipt (0° to 6°	° C)?		
			Yes	□ No		Comments:				
	b.			servation acce lorinated Solv	•	ified waters, Met	hanol preserved VO	C soil (GRO, BTEX,		
			Yes	□ No		Comments:				
	c.	Sar	nple con	dition docume	ented – broke	n, leaking (Meth	anol), zero headspac	e (VOC vials)?		
			Yes	◯ No		Comments:				

July 2017 Page 2

12228	57			
	d.		oreservation, sample temp	they documented? For example, incorrect sample perature outside of acceptable range, insufficient or missing
		Yes	No	Comments:
	e.	Data quality	or usability affected?	
				Comments:
4	. <u>C</u> a	ase Narrative	2	
	а.	Present and	l understandable?	
	-	© Yes	□ No	Comments:
	b.	Discrepanc	eies, errors, or QC failures	s identified by the lab?
		Yes	⊙ No	Comments:
	c.	Were all co	orrective actions documen	nted?
		Yes	□ No	Comments:
	na	ı		
	d.	What is the	e effect on data quality/us	ability according to the case narrative?
				Comments:
	na	l		
5. <u>S</u>	amp	les Results		
			alyses performed/reported	Las requested on COC?
	a.			•
		• Yes	□ No	Comments:
	L h	All applies	ble holding times mot?	
	υ.		ble holding times met?	Commentar
		Yes	O No	Comments:

Page 3 **July 2017**

c.	All soils rep	ported on a dry v	weight basis?
	Yes	☐ No	Comments:
na			
d.	Are the reported the project?		than the Cleanup Level or the minimum required detection level for
	© Yes	□ No	Comments:
e.	Data quality	y or usability aff	Fected?
	Yes	No	Comments:
QC Sa	amples		
a.	Method Bla	ınk	
	i. One	method blank re	eported per matrix, analysis and 20 samples?
	• Yes	□ No	Comments:
	ii. All 1	method blank res	sults less than limit of quantitation (LOQ)?
	• Yes	□ No	Comments:
	iii. If ab	ove LOQ, what	samples are affected?
			Comments:
	iv. Do t	the affected samp	ple(s) have data flags? If so, are the data flags clearly defined?
	Yes	□ No	Comments:
na			
	v. Data	a quality or usab	ility affected?

July 2017 Page 4

1222857		

b.	Laboratory Co	ontrol Sample/D	ruplicate (LCS/LCSD)
	_		LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD ods, LCS required per SW846)
	Yes	No	Comments:
	ii. Metals. 20 sam	_	ne LCS and one sample duplicate reported per matrix, analysis and
	Yes	No	Comments:
na			
	And pr	oject specified l	t recoveries (%R) reported and within method or laboratory limits? DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, K103 60%-120%; all other analyses see the laboratory QC pages)
	• Yes	No	Comments:
	laborat LCS/L	tory limits? And CSD, MS/MSD	e percent differences (RPD) reported and less than method or l project specified DQOs, if applicable. RPD reported from o, and or sample/sample duplicate. (AK Petroleum methods 20%; all laboratory QC pages)
	• Yes	No	Comments:
	v. If %R	or RPD is outsic	de of acceptable limits, what samples are affected?
			Comments:
na			
	vi. Do the	affected sample	e(s) have data flags? If so, are the data flags clearly defined?
	Yes	No	Comments:
na			
	vii. Data qı	uality or usabilit	ty affected? (Use comment box to explain.)
	_	•	Comments:
Na			

July 2017 Page 5

c. S	urrogates -	– Organics Only	y
	i. Are	surrogate recove	eries reported for organic analyses – field, QC and laboratory sa
	• Yes	□ No	Comments:
	And	project specifie	cent recoveries (%R) reported and within method or laboratory led DQOs, if applicable. (AK Petroleum methods 50-150 %R; all oratory report pages)
	• Yes	◯ No	Comments:
		the sample results clearly defined	ts with failed surrogate recoveries have data flags? If so, are the
	Yes	○ No	Comments:
na			
	iv. Data	ı quality or usab	pility affected?
		1	Comments:
d. T	rip blank -	– Volatile analys	ses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Wa
<u>S</u>	<u>oil</u>	·	
		1 0	rted per matrix, analysis and for each cooler containing volatile
	-	ples? ot, enter explan	ation below.)
	Yes	◯ No	Comments:
no v	ocs		
			transport the trip blank and VOA samples clearly indicated on ament explaining why must be entered below)
	Yes	No	Comments:
			Comments.

Comments:

July 2017 Page 6

O No

O Yes

Where $R_1 = Sample Conce$	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
v. Data quality or usability affected? Comments: Field Duplicate i. One field duplicate submitted per matrix, analysis Yes No Comments: ii. Submitted blind to lab? Yes No Comments: iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R1 ((R1+))) Where R1 = Sample Conce R2 = Field Duplicate Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
Field Duplicate i. One field duplicate submitted per matrix, analysis Yes No Comments: ii. Submitted blind to lab? Yes No Comments: iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R1 ((R1+ Where R1 = Sample Conce R2 = Field Duplicate of Comments: Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
Field Duplicate i. One field duplicate submitted per matrix, analysis Yes No Comments: ii. Submitted blind to lab? Yes No Comments: iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R1 ((R1+ Where R1 = Sample Conce R2 = Field Duplicate of Comments: Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
Field Duplicate i. One field duplicate submitted per matrix, analysis Yes No Comments: ii. Submitted blind to lab? Yes No Comments: iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R1 / ((R1+))) Where R1 = Sample Concerned R2 = Field Duplicate R2 = Field Duplicate R3 / ((R1+)) Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
i. One field duplicate submitted per matrix, analysis Yes No Comments: ii. Submitted blind to lab? Yes No Comments: iii. Precision − All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R₁ ((R₁+ Where R₁ = Sample Conce R₂ = Field Duplicate Types No Comments: Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
i. One field duplicate submitted per matrix, analysis Yes No Comments: ii. Submitted blind to lab? Yes No Comments: iii. Precision − All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R₁ ((R₁+ Where R₁ = Sample Conce R₂ = Field Duplicate Types No Comments: Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
ii. Submitted blind to lab? Yes No Comments: iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R1 / ((R1+))) Where R1 = Sample Conce R2 = Field Duplicate Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	(RPD) less than specified DQOs? $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
ii. Submitted blind to lab? Yes No Comments: iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R ₁ ((R ₁ + Where R ₁ = Sample Conce R ₂ = Field Duplicate Yes No Comments: ot calculable iv. Data quality or usability affected? (Use the comments)	$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R1 ((R1+ Where R1 = Sample Conce R2 = Field Duplicate Ot calculable iv. Data quality or usability affected? (Use the comments)	$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R1 ((R1+ Where R1 = Sample Conce R2 = Field Duplicate Ot calculable iv. Data quality or usability affected? (Use the comments)	$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
iii. Precision – All relative percent differences (RPD) (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of:(R_1 ((R_1 + (R_2 + R_2 + R_3)))))) Where R_1 = Sample Conce R_2 = Field Duplicate The provided HTML of the comments: ot calculable iv. Data quality or usability affected? (Use the comments)	$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
(Recommended: 30% water, 50% soil) RPD (%) = Absolute value of:	$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
(Recommended: 30% water, 50% soil) RPD (%) = Absolute value of:	$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
(Recommended: 30% water, 50% soil) RPD (%) = Absolute value of:	$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Concentration
$((R_1 + R_1 = Sample Conce R_2 = Field Duplicate R_2 = Field Dup$	Concentration
	Concentration
R ₂ = Field Duplicat The results of the results o	
ot calculable iv. Data quality or usability affected? (Use the comm	
ot calculable iv. Data quality or usability affected? (Use the comm	
iv. Data quality or usability affected? (Use the comm	
Comments:	comment box to explain why or why
Decontamination or Equipment Blank (If not applicable,	cable, a comment stating why must be
below).	, <u>, , , , , , , , , , , , , , , , , , </u>

July 2017 Page 7

22285	7
	i. All results less than LOQ?
	Yes No Comments:
	ii. If above LOQ, what samples are affected?
	Comments:
	iii. Data quality or usability affected?
	Comments:
7. <u>Ot</u>	ther Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	Yes No Comments:

July 2017 Page 8

Laboratory Report of Analysis

To: Nortech

2400 College Road Fairbanks, AK 99709

Report Number: 1226505

Client Project: Drake

Dear Doug Dusek,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Stephen C. Ede

Starten C. Ede 2022.11.16

08:10:24 -09'00'

Jennifer Dawkins Project Manager

Jennifer.Dawkins@sgs.com

SGS North America Inc.

Date

Print Date: 11/15/2022 4:50:13PM Results via Engage

Page 1 of 45

Case Narrative

SGS Client: Nortech SGS Project: 1226505 Project Name/Site: Drake Project Contact: Doug Dusek

Refer to sample receipt form for information on sample condition.

V2 (1226505002) PS

AK102 - Surrogate recovery for 5a-androstane does not meet QC criteria due to matrix interference.

8270D SIM - PAH Surrogate recoveries for 2-methylnaphthalene-d10 and fluoranthene-d10 do not meet QC criteria due to matrix interference.

8270D SIM - PAH The LOQs are elevated due to sample dilution. The sample was diluted due to a high concentration of non-target compounds.

V22 (1226505003) PS

AK102 - Surrogate recovery for 5a-androstane does not meet QC criteria due to matrix interference.

8270D SIM - PAH Surrogate recoveries for 2-methylnaphthalene-d10 and fluoranthene-d10 do not meet QC criteria due to matrix interference.

8270D SIM - PAH The LOQs are elevated due to sample dilution. The sample was diluted due to a high concentration of non-target compounds.

1226608007MS (1694871) MS

8270D SIM - PAH Surrogate recovery for 2-methylnapthhalene-d10 does not meet QC criteria due to matrix interference. 8270D SIM - PAH MS recoveries for acenaphthene and pyrene do not meet QC criteria. Refer to LCS for accuracy requirements.

8270D SIM - PAH The LOQs are elevated due to sample dilution. The sample was diluted due to a high concentration of non-target compounds.

1226608007MSD (1694872) MSD

8270D SIM - PAH Surrogate recovery for 2-methylnapthhalene-d10 does not meet QC criteria due to matrix interference. 8270D SIM - PAH MSD recoveries for acenaphthene, fluorene, and pyrene do not meet QC criteria. Refer to LCS for accuracy requirements.

8270D SIM - PAH The LOQs are elevated due to sample dilution. The sample was diluted due to a high concentration of non-target compounds.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 11/15/2022 4:50:14PM

	Report of Manual Integrations										
<u>Laboratory ID</u>	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason							
8270D SIM (PAH)										
1694872	1226608007MSD	XMS13440	Benzo(a)Anthracene	RP							
SW8260D											
1226505002	V2	VMS22102	4-Isopropyltoluene	SP							
1226505003	V22	VMS22102	4-Isopropyltoluene	SP							

Manual Integration Reason Code Descriptions

Code	Description
0	Original Chromatogram
M	Modified Chromatogram
SS	Skimmed surrogate
BLG	Closed baseline gap
RP	Reassign peak name
PIR	Pattern integration required
ΙΤ	Included tail
SP	Split peak
RSP	Removed split peak
FPS	Forced peak start/stop
BLC	Baseline correction

All DRO/RRO analysis are integrated per SOP.

Peak not found by software

Print Date: 11/15/2022 4:50:16PM

PNF

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 11/15/2022 4:50:17PM

SGS North America Inc. |200 West Potter Drive, Anchorage, AK 99518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
V1	1226505001	10/20/2022	10/25/2022	Soil/Solid (dry weight)
V2	1226505002	10/20/2022	10/25/2022	Soil/Solid (dry weight)
V22	1226505003	10/20/2022	10/25/2022	Soil/Solid (dry weight)
Trip	1226505004	10/20/2022	10/25/2022	Soil/Solid (dry weight)

Method Description

8270D SIM (PAH) 8270 PAH SIM Semi-Volatiles GC/MS

AK102 Diesel Range Organics (S)
SM21 2540G Percent Solids SM2540G
SW8260D VOC 8260 (S) Field Extracted

Detectable Results Summary Client Sample ID: V2 Lab Sample ID: 1226505002 Parameter Result Units 64700 1-Methylnaphthalene **Polynuclear Aromatics GC/MS** ug/kg 2-Methylnaphthalene 86400 ug/kg Acenaphthene 1970 ug/kg Fluoranthene 318 ug/kg Fluorene 9100 ug/kg Naphthalene 39500 ug/kg Phenanthrene 18200 ug/kg Diesel Range Organics 29600 mg/kg Semivolatile Organic Fuels 1,2,4-Trimethylbenzene 14000 **Volatile GC/MS** ug/kg 1,3,5-Trimethylbenzene 5540 ug/kg Ethylbenzene 3040 ug/kg Isopropylbenzene (Cumene) 1370 ug/kg Naphthalene 9840 ug/kg n-Propylbenzene 2540 ug/kg 8640 o-Xylene ug/kg P & M -Xylene 13800 ug/kg 888 sec-Butylbenzene ug/kg Xylenes (total) 22400 ug/kg Client Sample ID: V22 Lab Sample ID: 1226505003 <u>Parameter</u> Result <u>Units</u> 50800 1-Methylnaphthalene ug/kg Polynuclear Aromatics GC/MS 2-Methylnaphthalene 68500 ug/kg Acenaphthene 1440 ug/kg Fluorene 6750 ug/kg Naphthalene 32100 ug/kg Phenanthrene 14200 ug/kg Semivolatile Organic Fuels **Diesel Range Organics** 21600 mg/kg 1,2,4-Trimethylbenzene 13900 **Volatile GC/MS** ug/kg 1,3,5-Trimethylbenzene 5450 ug/kg 4-Isopropyltoluene 661 ug/kg Ethylbenzene 2730 ug/kg

Print Date: 11/15/2022 4:50:19PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Isopropylbenzene (Cumene)

Naphthalene

o-Xylene

n-Propylbenzene

sec-Butylbenzene

P & M -Xylene

Xylenes (total)

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

1250

10000

2410

8370

12400

20700

850

Client Sample ID: V1
Client Project ID: Drake
Lab Sample ID: 1226505001
Lab Project ID: 1226505

Collection Date: 10/20/22 10:20 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):95.6 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	20.6 U	20.6	9.28	mg/kg	1	Limits	10/31/22 17:57
Surrogates 5a Androstane (surr)	85.7	50-150		%	1		10/31/22 17:57

Batch Information

Analytical Batch: XFC16392 Analytical Method: AK102

Analyst: HMW
Analytical Date/Tin

Analytical Date/Time: 10/31/22 17:57 Container ID: 1226505001-A Prep Batch: XXX47263 Prep Method: SW3550C Prep Date/Time: 10/31/22 09:30 Prep Initial Wt./Vol.: 30.462 g Prep Extract Vol: 5 mL

Client Sample ID: V1 Client Project ID: Drake Lab Sample ID: 1226505001 Lab Project ID: 1226505 Collection Date: 10/20/22 10:20 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):95.6 Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	10.9 U	10.9	3.37	ug/kg	1	10/26/22 14:4
1,1,1-Trichloroethane	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,1,2,2-Tetrachloroethane	1.09 U	1.09	0.337	ug/kg	1	10/26/22 14:4
1,1,2-Trichloroethane	0.544 U	0.544	0.272	ug/kg	1	10/26/22 14:4
1,1-Dichloroethane	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,1-Dichloroethene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,1-Dichloropropene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,2,3-Trichlorobenzene	54.4 U	54.4	16.3	ug/kg	1	10/26/22 14:4
1,2,3-Trichloropropane	1.09 U	1.09	0.337	ug/kg	1	10/26/22 14:4
1,2,4-Trichlorobenzene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,2,4-Trimethylbenzene	54.4 U	54.4	16.3	ug/kg	1	10/26/22 14:4
1,2-Dibromo-3-chloropropane	54.4 U	54.4	16.9	ug/kg	1	10/26/22 14:4
1,2-Dibromoethane	0.816 U	0.816	0.408	ug/kg	1	10/26/22 14:4
1,2-Dichlorobenzene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,2-Dichloroethane	1.09 U	1.09	0.381	ug/kg	1	10/26/22 14:4
1,2-Dichloropropane	5.44 U	5.44	2.72	ug/kg	1	10/26/22 14:4
1,3,5-Trimethylbenzene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,3-Dichlorobenzene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
1,3-Dichloropropane	5.44 U	5.44	1.69	ug/kg	1	10/26/22 14:4
1,4-Dichlorobenzene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
2,2-Dichloropropane	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
2-Butanone (MEK)	136 U	136	42.4	ug/kg	1	10/26/22 14:4
2-Chlorotoluene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
2-Hexanone	65.2 U	65.2	32.6	ug/kg	1	10/26/22 14:4
4-Chlorotoluene	10.9 U	10.9	5.44	ug/kg	1	10/26/22 14:4
4-Isopropyltoluene	43.5 U	43.5	21.7	ug/kg	1	10/26/22 14:4
4-Methyl-2-pentanone (MIBK)	136 U	136	42.4	ug/kg	1	10/26/22 14:4
Acetone	136 U	136	59.8	ug/kg	1	10/26/22 14:4
Benzene	6.80 U	6.80	2.12	ug/kg	1	10/26/22 14:4
Bromobenzene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
Bromochloromethane	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
Bromodichloromethane	1.09 U	1.09	0.337	ug/kg	1	10/26/22 14:4
Bromoform	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4
Bromomethane	10.9 U	10.9	4.35	ug/kg	1	10/26/22 14:4
Carbon disulfide	54.4 U	54.4	16.9	ug/kg	1	10/26/22 14:4
Carbon tetrachloride	6.80 U	6.80	2.12	ug/kg	1	10/26/22 14:4
Chlorobenzene	13.6 U	13.6	4.24	ug/kg	1	10/26/22 14:4

Client Sample ID: V1 Client Project ID: Drake Lab Sample ID: 1226505001 Lab Project ID: 1226505 Collection Date: 10/20/22 10:20 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):95.6 Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroethane	109 U	109	33.7	ug/kg	1		10/26/22 14:40
Chloroform	3.26 U	3.26	1.63	ug/kg	1		10/26/22 14:40
Chloromethane	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
cis-1,2-Dichloroethene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
cis-1,3-Dichloropropene	6.80 U	6.80	2.12	ug/kg	1		10/26/22 14:40
Dibromochloromethane	2.72 U	2.72	0.816	ug/kg	1		10/26/22 14:40
Dibromomethane	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
Dichlorodifluoromethane	54.4 U	54.4	16.3	ug/kg	1		10/26/22 14:40
Ethylbenzene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
Freon-113	54.4 U	54.4	16.9	ug/kg	1		10/26/22 14:40
Hexachlorobutadiene	10.9 U	10.9	3.37	ug/kg	1		10/26/22 14:40
Isopropylbenzene (Cumene)	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
Methylene chloride	54.4 U	54.4	16.9	ug/kg	1		10/26/22 14:40
Methyl-t-butyl ether	54.4 U	54.4	16.9	ug/kg	1		10/26/22 14:40
Naphthalene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
n-Butylbenzene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
n-Propylbenzene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
o-Xylene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
P & M -Xylene	27.2 U	27.2	8.16	ug/kg	1		10/26/22 14:40
sec-Butylbenzene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
Styrene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
tert-Butylbenzene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
Tetrachloroethene	6.80 U	6.80	2.12	ug/kg	1		10/26/22 14:40
Toluene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
trans-1,2-Dichloroethene	13.6 U	13.6	4.24	ug/kg	1		10/26/22 14:40
trans-1,3-Dichloropropene	6.80 U	6.80	2.12	ug/kg	1		10/26/22 14:40
Trichloroethene	5.44 U	5.44	1.74	ug/kg	1		10/26/22 14:40
Trichlorofluoromethane	27.2 U	27.2	8.16	ug/kg	1		10/26/22 14:40
Vinyl acetate	54.4 U	54.4	16.9	ug/kg	1		10/26/22 14:40
Vinyl chloride	0.435 U	0.435	0.136	ug/kg	1		10/26/22 14:40
Xylenes (total)	40.8 U	40.8	12.4	ug/kg	1		10/26/22 14:40
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	71-136		%	1		10/26/22 14:40
4-Bromofluorobenzene (surr)	113	55-151		%	1		10/26/22 14:40
Toluene-d8 (surr)	94.9	85-116		%	1		10/26/22 14:40

Client Sample ID: V1
Client Project ID: Drake
Lab Sample ID: 1226505001
Lab Project ID: 1226505

Collection Date: 10/20/22 10:20 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):95.6 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS22102 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/26/22 14:40 Container ID: 1226505001-B Prep Batch: VXX39396
Prep Method: SW5035A
Prep Date/Time: 10/20/22 10:20
Prep Initial Wt./Vol.: 116.123 g
Prep Extract Vol: 30.1648 mL

Client Sample ID: V2 Client Project ID: Drake Lab Sample ID: 1226505002 Lab Project ID: 1226505

Collection Date: 10/20/22 10:35 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):78.6 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	64700	6250	1560	ug/kg	200		11/08/22 21:39
2-Methylnaphthalene	86400	6250	1560	ug/kg	200		11/08/22 21:39
Acenaphthene	1970	313	78.1	ug/kg	10		11/08/22 00:14
Acenaphthylene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Anthracene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Benzo(a)Anthracene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Benzo[a]pyrene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Benzo[b]Fluoranthene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Benzo[g,h,i]perylene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Benzo[k]fluoranthene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Chrysene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Dibenzo[a,h]anthracene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Fluoranthene	318	313	78.1	ug/kg	10		11/08/22 00:14
Fluorene	9100	6250	1560	ug/kg	200		11/08/22 21:39
Indeno[1,2,3-c,d] pyrene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Naphthalene	39500	5000	1250	ug/kg	200		11/08/22 21:39
Phenanthrene	18200	6250	1560	ug/kg	200		11/08/22 21:39
Pyrene	313 U	313	78.1	ug/kg	10		11/08/22 00:14
Surrogates							
2-Methylnaphthalene-d10 (surr)	638 *	58-103		%	10		11/08/22 00:14
Fluoranthene-d10 (surr)	287 *	54-113		%	10		11/08/22 00:14

Batch Information

Analytical Batch: XMS13441 Analytical Method: 8270D SIM (PAH)

Analyst: NGG

Analytical Date/Time: 11/08/22 00:14 Container ID: 1226505002-A

Analytical Batch: XMS13443

Analytical Method: 8270D SIM (PAH)

Analyst: NGG

Analytical Date/Time: 11/08/22 21:39

Container ID: 1226505002-A

Prep Batch: XXX47282 Prep Method: SW3550C Prep Date/Time: 11/02/22 13:30 Prep Initial Wt./Vol.: 22.902 g Prep Extract Vol: 5 mL

Prep Batch: XXX47282 Prep Method: SW3550C Prep Date/Time: 11/02/22 13:30 Prep Initial Wt./Vol.: 22.902 g Prep Extract Vol: 5 mL

Client Sample ID: V2 Client Project ID: Drake Lab Sample ID: 1226505002 Lab Project ID: 1226505

Collection Date: 10/20/22 10:35 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):78.6 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	29600	253	114	mg/kg	10	Limits	11/01/22 14:39
Surrogates 5a Androstane (surr)	240 *	50-150		%	10		11/01/22 14:39

Batch Information

Analytical Batch: XFC16393 Analytical Method: AK102 Analyst: MAP

Analytical Date/Time: 11/01/22 14:39

Container ID: 1226505002-A

Prep Batch: XXX47263 Prep Method: SW3550C Prep Date/Time: 10/31/22 09:30 Prep Initial Wt./Vol.: 30.215 g Prep Extract Vol: 5 mL

Client Sample ID: **V2**Client Project ID: **Drake**Lab Sample ID: 1226505002
Lab Project ID: 1226505

Collection Date: 10/20/22 10:35 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):78.6 Location:

Results by Volatile GC/MS

Deremeter	Popult Ougl	1.00/01		Llaita	DE	Allowable Deta Analyzad
Parameter 1,1,1,2-Tetrachloroethane	<u>Result Qual</u> 245 U	LOQ/CL 245	<u>DL</u> 76.0	<u>Units</u> ug/kg	<u>DF</u> 10	<u>Limits</u> <u>Date Analyzed</u> 10/26/22 14:58
1,1,1-Trichloroethane	307 U	307	95.6	ug/kg ug/kg	10	10/26/22 14:58
1,1,2,2-Tetrachloroethane	24.5 U	24.5	7.60	ug/kg ug/kg	10	10/26/22 14:58
1,1,2-Trichloroethane	12.3 U	12.3	6.13	ug/kg ug/kg	10	10/26/22 14:58
1,1-Dichloroethane	307 U	307	95.6	ug/kg ug/kg	10	10/26/22 14:58
1.1-Dichloroethene	307 U	307	95.6	ug/kg ug/kg	10	10/26/22 14:58
1,1-Dichloropropene	307 U	307	95.6		10	10/26/22 14:58
1,2,3-Trichlorobenzene	1230 U	1230	368	ug/kg	10	10/26/22 14:58
	24.5 U	24.5	7.60	ug/kg	10	10/26/22 14:58
1,2,3-Trichloropropane	24.5 U	307		ug/kg		
1,2,4-Trichlorobenzene	14000		95.6	ug/kg	10 10	10/26/22 14:58 10/26/22 14:58
1,2,4-Trimethylbenzene		1230	368	ug/kg		
1,2-Dibromo-3-chloropropane	1230 U	1230	380	ug/kg	10	10/26/22 14:58
1,2-Dibromoethane	18.4 U	18.4	9.20	ug/kg	10	10/26/22 14:58
1,2-Dichlorobenzene	307 U	307	95.6	ug/kg	10	10/26/22 14:58
1,2-Dichloroethane	24.5 U	24.5	8.58	ug/kg	10	10/26/22 14:58
1,2-Dichloropropane	123 U	123	61.3	ug/kg	10	10/26/22 14:58
1,3,5-Trimethylbenzene	5540	307	95.6	ug/kg	10	10/26/22 14:58
1,3-Dichlorobenzene	307 U	307	95.6	ug/kg	10	10/26/22 14:58
1,3-Dichloropropane	123 U	123	38.0	ug/kg	10	10/26/22 14:58
1,4-Dichlorobenzene	307 U	307	95.6	ug/kg	10	10/26/22 14:58
2,2-Dichloropropane	307 U	307	95.6	ug/kg	10	10/26/22 14:58
2-Butanone (MEK)	3070 U	3070	956	ug/kg	10	10/26/22 14:58
2-Chlorotoluene	307 U	307	95.6	ug/kg	10	10/26/22 14:58
2-Hexanone	1470 U	1470	736	ug/kg	10	10/26/22 14:58
4-Chlorotoluene	245 U	245	123	ug/kg	10	10/26/22 14:58
4-Isopropyltoluene	981 U	981	490	ug/kg	10	10/26/22 14:58
4-Methyl-2-pentanone (MIBK)	3070 U	3070	956	ug/kg	10	10/26/22 14:58
Acetone	3070 U	3070	1350	ug/kg	10	10/26/22 14:58
Benzene	153 U	153	47.8	ug/kg	10	10/26/22 14:58
Bromobenzene	307 U	307	95.6	ug/kg	10	10/26/22 14:58
Bromochloromethane	307 U	307	95.6	ug/kg	10	10/26/22 14:58
Bromodichloromethane	24.5 U	24.5	7.60	ug/kg	10	10/26/22 14:58
Bromoform	307 U	307	95.6	ug/kg	10	10/26/22 14:58
Bromomethane	245 U	245	98.1	ug/kg	10	10/26/22 14:58
Carbon disulfide	1230 U	1230	380	ug/kg	10	10/26/22 14:58
Carbon tetrachloride	153 U	153	47.8	ug/kg	10	10/26/22 14:58
Chlorobenzene	307 U	307	95.6	ug/kg	10	10/26/22 14:58

Client Sample ID: **V2**Client Project ID: **Drake**Lab Sample ID: 1226505002
Lab Project ID: 1226505

Collection Date: 10/20/22 10:35 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):78.6 Location:

Results by Volatile GC/MS

Parametet Result Qual LOQICL DL Units DE Limits Date Analyzed Chloroethane 2450 U 2450 U 73.6 ug/kg 10 10/26/22 14:58 Chloroform 73.6 U 73.6 36.8 ug/kg 10 10/26/22 14:58 Chloromethane 307 U 307 95.6 ug/kg 10 10/26/22 14:58 cis-1.2-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Dibromochloromethane 61.3 U 61.3 18.4 ug/kg 10 10/26/22 14:58 Dibromochloromethane 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 245 U 245 76.0 ug/kg 10 10/26/22 14:58 Ethylbenzene (Cumene) 1370 307	-			_			Allowable	
Chloroform 73.6 U 73.6 U 36.8 Uylkg 10 Uylkg 10 Uylkg 10 Uylkg/22 14:58 Chloromethane 307 U 307 95.6 Uylkg 10 Uylkg/22 14:58 10 Uylkg/22	<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>		Date Analyzed
Chloromethane 307 U 307 U 95.6 Ug/kg 10 10/26/22 14:58 dis-1,2-Dichloroethene cis-1,3-Dichloroethene 307 U 307 95.6 Ug/kg 10 10/26/22 14:58 dis-1,3-Dichloroptopene 153 U 153 47.8 Ug/kg 10 10/26/22 14:58 dis-1,3-Dichloroethene 61.3 U 61.3 U 47.8 Ug/kg 10 10/26/22 14:58 dis-1,3-Dichloroethene 307 U 307 95.6 Ug/kg 10 10/26/22 14:58 dis-1,3-Dichloroethene 307 U 307 95.6 Ug/kg 10 10/26/22 14:58 dis-1,3-Dichloroethene 1230 U 1230 388 Ug/kg 10 10/26/22 14:58 dis-1,3-Dichloroethene	Chloroethane	2450 U	2450	760	ug/kg	10		10/26/22 14:58
cis-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 cis-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Dibromomethane 61.3 U 61.3 18.4 ug/kg 10 10/26/22 14:58 Dibromomethane 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Dichlorodifluoromethane 1230 U 1230 368 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 245 U 245 76.0 ug/kg 10 10/26/22 14:58 Hexachlorobutadiene 245 U 245 76.0 ug/kg 10 10/26/22 14:58 Methylene chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-butyl ether 1230 U 1230 U 1230	Chloroform	73.6 U	73.6	36.8	ug/kg	10		10/26/22 14:58
cis-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Dibromochloromethane 61.3 U 61.3 18.4 ug/kg 10 10/26/22 14:58 Dibromochloromethane 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Ethylbenzene 345 U 245 76.0 ug/kg 10 10/26/22 14:58 Espon-113 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Isopropylbenzene (Cumene) 1370 307 95.6 ug/kg 10 10/26/22 14:58 Isopropylbenzene (Cumene) 1370 307 95.6 ug/kg 10 10/26/22 14:58 Methylne chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methylne chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methylne chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Naphthalene 9840 307 95.6 ug/kg 10 10/26/22 14:58 Naphthalene 9840 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 Sytynene 300 613 184 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 u	Chloromethane	307 U	307	95.6	ug/kg	10		10/26/22 14:58
Dibromochloromethane 61.3 U 61.3 d 18.4 ug/kg 10 10/26/22 14:58 Dibromomethane 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Dichlorodifluoromethane 1230 U 1230 368 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Freon-113 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Hexachlorobutadiene 245 U 245 76.0 ug/kg 10 10/26/22 14:58 Isopropylbenzene (Cumene) 1370 307 95.6 ug/kg 10 10/26/22 14:58 Methyl-t-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-t-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 N-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 8640 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg	cis-1,2-Dichloroethene	307 U	307	95.6	ug/kg	10		10/26/22 14:58
Dibromomethane 307 U 307 95.6 Ug/kg 10 10/26/22 14:58	cis-1,3-Dichloropropene	153 U	153	47.8	ug/kg	10		10/26/22 14:58
Dichlorodifluoromethane 1230 U 1230 S68 ug/kg 10 10/26/22 14:58 Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Freon-113 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Hexachlorobutadiene 245 U 245 76.0 ug/kg 10 10/26/22 14:58 Isopropylbenzene (Cumene) 1370 307 95.6 ug/kg 10 10/26/22 14:58 Methylene chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-L-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-L-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-L-butyl ether 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Poryblenzene 8640 307 95	Dibromochloromethane	61.3 U	61.3	18.4	ug/kg	10		10/26/22 14:58
Ethylbenzene 3040 307 95.6 ug/kg 10 10/26/22 14:58 Freon-113 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Hexachlorobutadiene 245 U 245 76.0 ug/kg 10 10/26/22 14:58 Isopropylbenzene (Cumene) 1370 307 95.6 ug/kg 10 10/26/22 14:58 Methylene chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-t-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-t-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Naphthalene 9840 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 308 307 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 309 U 309 95.6 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58	Dibromomethane	307 U	307	95.6	ug/kg	10		10/26/22 14:58
Freon-113 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Hexachlorobutadiene 245 U 245 76.0 ug/kg 10 10/26/22 14:58 Isopropylbenzene (Cumene) 1370 307 95.6 ug/kg 10 10/26/22 14:58 Methylene chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methylene chloride 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Methyl-t-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Naphthalene 9840 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58	Dichlorodifluoromethane	1230 U	1230	368	ug/kg	10		10/26/22 14:58
Hexachlorobutadiene	Ethylbenzene	3040	307	95.6	ug/kg	10		10/26/22 14:58
Sopropylbenzene (Cumene)	Freon-113	1230 U	1230	380	ug/kg	10		10/26/22 14:58
Methylene chloride 1230 U 1230 S80 ug/kg 10 10/26/22 14:58 Methyl-t-butyl ether 1230 U 1230 S80 ug/kg 10 10/26/22 14:58 Naphthalene 9840 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 P & M -Xylene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-	Hexachlorobutadiene	245 U	245	76.0	ug/kg	10		10/26/22 14:58
Methyl-t-butyl ether 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Naphthalene 9840 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 P & M -Xylene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 307 95.6 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/	Isopropylbenzene (Cumene)	1370	307	95.6	ug/kg	10		10/26/22 14:58
Naphthalene 9840 307 95.6 ug/kg 10 10/26/22 14:58 n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 P & M -Xylene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 tetr-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10	Methylene chloride	1230 U	1230	380	ug/kg	10		10/26/22 14:58
n-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 P & M - Xylene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Sturrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Methyl-t-butyl ether	1230 U	1230	380	ug/kg	10		10/26/22 14:58
n-Propylbenzene 2540 307 95.6 ug/kg 10 10/26/22 14:58 o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 P & M - Xylene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichlorothene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorothene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorothoroethene 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 123 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl acetate 123 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Naphthalene	9840	307	95.6	ug/kg	10		10/26/22 14:58
o-Xylene 8640 307 95.6 ug/kg 10 10/26/22 14:58 P & M -Xylene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	n-Butylbenzene	307 U	307	95.6	ug/kg	10		10/26/22 14:58
P & M -Xylene 13800 613 184 ug/kg 10 10/26/22 14:58 sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Vinyl acetate 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400	n-Propylbenzene	2540	307	95.6	ug/kg	10		10/26/22 14:58
sec-Butylbenzene 888 307 95.6 ug/kg 10 10/26/22 14:58 Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 224	o-Xylene	8640	307	95.6	ug/kg	10		10/26/22 14:58
Styrene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 tert-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10	P & M -Xylene	13800	613	184	ug/kg	10		10/26/22 14:58
tert-Butylbenzene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	sec-Butylbenzene	888	307	95.6	ug/kg	10		10/26/22 14:58
Tetrachloroethene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Styrene	307 U	307	95.6	ug/kg	10		10/26/22 14:58
Toluene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	tert-Butylbenzene	307 U	307	95.6	ug/kg	10		10/26/22 14:58
trans-1,2-Dichloroethene 307 U 307 95.6 ug/kg 10 10/26/22 14:58 trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Tetrachloroethene	153 U	153	47.8	ug/kg	10		10/26/22 14:58
trans-1,3-Dichloropropene 153 U 153 47.8 ug/kg 10 10/26/22 14:58 Trichloroethene 123 U 123 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Toluene	307 U	307	95.6	ug/kg	10		10/26/22 14:58
Trichloroethene 123 U 123 U 39.2 ug/kg 10 10/26/22 14:58 Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 % 10 10/26/22 14:58	trans-1,2-Dichloroethene	307 U	307	95.6	ug/kg	10		10/26/22 14:58
Trichlorofluoromethane 613 U 613 184 ug/kg 10 10/26/22 14:58 Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 % 10 10/26/22 14:58	trans-1,3-Dichloropropene	153 U	153	47.8	ug/kg	10		10/26/22 14:58
Vinyl acetate 1230 U 1230 380 ug/kg 10 10/26/22 14:58 Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10 10/26/22 14:58	Trichloroethene	123 U	123	39.2	ug/kg	10		10/26/22 14:58
Vinyl chloride 9.81 U 9.81 3.07 ug/kg 10 10/26/22 14:58 Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10 10/26/22 14:58	Trichlorofluoromethane	613 U	613	184	ug/kg	10		10/26/22 14:58
Xylenes (total) 22400 920 280 ug/kg 10 10/26/22 14:58 Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Vinyl acetate	1230 U	1230	380	ug/kg	10		10/26/22 14:58
Surrogates 1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Vinyl chloride	9.81 U	9.81	3.07	ug/kg	10		10/26/22 14:58
1,2-Dichloroethane-D4 (surr) 104 71-136 % 10 10/26/22 14:58	Xylenes (total)	22400	920	280	ug/kg	10		10/26/22 14:58
	Surrogates							
4-Bromofluorobenzene (surr) 64.6 55-151 % 10 10/26/22 14:58	1,2-Dichloroethane-D4 (surr)	104	71-136		%	10		10/26/22 14:58
	4-Bromofluorobenzene (surr)	64.6	55-151		%	10		10/26/22 14:58
Toluene-d8 (surr) 96.2 85-116 % 10 10/26/22 14:58	Toluene-d8 (surr)	96.2	85-116		%	10		10/26/22 14:58

Client Sample ID: **V2**Client Project ID: **Drake**Lab Sample ID: 1226505002
Lab Project ID: 1226505

Collection Date: 10/20/22 10:35 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):78.6 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS22102 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/26/22 14:58 Container ID: 1226505002-B Prep Batch: VXX39396 Prep Method: SW5035A Prep Date/Time: 10/20/22 10:35 Prep Initial Wt./Vol.: 93.379 g Prep Extract Vol: 44.9917 mL

Client Sample ID: **V22**Client Project ID: **Drake**Lab Sample ID: 1226505003
Lab Project ID: 1226505

Collection Date: 10/20/22 10:45 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):76.9 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	50800	3240	809	ug/kg	100		11/08/22 21:55
2-Methylnaphthalene	68500	3240	809	ug/kg	100		11/08/22 21:55
Acenaphthene	1440	324	80.9	ug/kg	10		11/08/22 00:30
Acenaphthylene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Anthracene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Benzo(a)Anthracene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Benzo[a]pyrene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Benzo[b]Fluoranthene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Benzo[g,h,i]perylene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Benzo[k]fluoranthene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Chrysene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Dibenzo[a,h]anthracene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Fluoranthene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Fluorene	6750	324	80.9	ug/kg	10		11/08/22 00:30
Indeno[1,2,3-c,d] pyrene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Naphthalene	32100	2590	647	ug/kg	100		11/08/22 21:55
Phenanthrene	14200	3240	809	ug/kg	100		11/08/22 21:55
Pyrene	324 U	324	80.9	ug/kg	10		11/08/22 00:30
Surrogates							
2-Methylnaphthalene-d10 (surr)	559 *	58-103		%	10		11/08/22 00:30
Fluoranthene-d10 (surr)	237 *	54-113		%	10		11/08/22 00:30

Batch Information

Analytical Batch: XMS13441 Analytical Method: 8270D SIM (PAH)

Analyst: NGG

Analytical Date/Time: 11/08/22 00:30 Container ID: 1226505003-A

Analytical Batch: XMS13443

Analytical Method: 8270D SIM (PAH)

Analyst: NGG

Analytical Date/Time: 11/08/22 21:55 Container ID: 1226505003-A Prep Batch: XXX47282 Prep Method: SW3550C Prep Date/Time: 11/02/22 13:30 Prep Initial Wt./Vol.: 22.624 g Prep Extract Vol: 5 mL

Prep Batch: XXX47282 Prep Method: SW3550C Prep Date/Time: 11/02/22 13:30 Prep Initial Wt./Vol.: 22.624 g Prep Extract Vol: 5 mL

Client Sample ID: V22 Client Project ID: Drake Lab Sample ID: 1226505003 Lab Project ID: 1226505

Collection Date: 10/20/22 10:45 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):76.9 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	21600	259	117	mg/kg	10		11/01/22 14:49
Surrogates							
5a Androstane (surr)	185 *	50-150		%	10		11/01/22 14:49

Batch Information

Analytical Batch: XFC16393 Analytical Method: AK102 Analyst: MAP

Analytical Date/Time: 11/01/22 14:49

Container ID: 1226505003-A

Prep Batch: XXX47263 Prep Method: SW3550C Prep Date/Time: 10/31/22 09:30 Prep Initial Wt./Vol.: 30.094 g Prep Extract Vol: 5 mL

Client Sample ID: **V22**Client Project ID: **Drake**Lab Sample ID: 1226505003
Lab Project ID: 1226505

Collection Date: 10/20/22 10:45 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):76.9 Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date Analyzed
1,1,1,2-Tetrachloroethane	126 U	126	39.0	ug/kg	5	10/26/22 15:15
1,1,1-Trichloroethane	157 U	157	49.1	ug/kg	5	10/26/22 15:15
1,1,2,2-Tetrachloroethane	12.6 U	12.6	3.90	ug/kg	5	10/26/22 15:15
1,1,2-Trichloroethane	6.30 U	6.30	3.15	ug/kg	5	10/26/22 15:15
1,1-Dichloroethane	157 U	157	49.1	ug/kg	5	10/26/22 15:15
1,1-Dichloroethene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
1,1-Dichloropropene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
1,2,3-Trichlorobenzene	630 U	630	189	ug/kg	5	10/26/22 15:15
1,2,3-Trichloropropane	12.6 U	12.6	3.90	ug/kg	5	10/26/22 15:15
1,2,4-Trichlorobenzene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
1,2,4-Trimethylbenzene	13900	630	189	ug/kg	5	10/26/22 15:15
1,2-Dibromo-3-chloropropane	630 U	630	195	ug/kg	5	10/26/22 15:15
1,2-Dibromoethane	9.44 U	9.44	4.72	ug/kg	5	10/26/22 15:15
1,2-Dichlorobenzene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
1,2-Dichloroethane	12.6 U	12.6	4.41	ug/kg	5	10/26/22 15:15
1,2-Dichloropropane	63.0 U	63.0	31.5	ug/kg	5	10/26/22 15:15
1,3,5-Trimethylbenzene	5450	157	49.1	ug/kg	5	10/26/22 15:15
1,3-Dichlorobenzene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
1,3-Dichloropropane	63.0 U	63.0	19.5	ug/kg	5	10/26/22 15:15
1,4-Dichlorobenzene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
2,2-Dichloropropane	157 U	157	49.1	ug/kg	5	10/26/22 15:15
2-Butanone (MEK)	1570 U	1570	491	ug/kg	5	10/26/22 15:15
2-Chlorotoluene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
2-Hexanone	755 U	755	378	ug/kg	5	10/26/22 15:15
4-Chlorotoluene	126 U	126	63.0	ug/kg	5	10/26/22 15:15
4-Isopropyltoluene	661	504	252	ug/kg	5	10/26/22 15:15
4-Methyl-2-pentanone (MIBK)	1570 U	1570	491	ug/kg	5	10/26/22 15:15
Acetone	1570 U	1570	693	ug/kg	5	10/26/22 15:15
Benzene	78.7 U	78.7	24.6	ug/kg	5	10/26/22 15:15
Bromobenzene	157 U	157	49.1	ug/kg	5	10/26/22 15:15
Bromochloromethane	157 U	157	49.1	ug/kg	5	10/26/22 15:15
Bromodichloromethane	12.6 U	12.6	3.90	ug/kg	5	10/26/22 15:15
Bromoform	157 U	157	49.1	ug/kg	5	10/26/22 15:15
Bromomethane	126 U	126	50.4	ug/kg	5	10/26/22 15:15
Carbon disulfide	630 U	630	195	ug/kg	5	10/26/22 15:15
Carbon tetrachloride	78.7 U	78.7	24.6	ug/kg	5	10/26/22 15:15
Chlorobenzene	157 U	157	49.1	ug/kg	5	10/26/22 15:15

Client Sample ID: **V22**Client Project ID: **Drake**Lab Sample ID: 1226505003
Lab Project ID: 1226505

Collection Date: 10/20/22 10:45 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):76.9 Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroethane	1260 U	1260	390	ug/kg	5		10/26/22 15:15
Chloroform	37.8 U	37.8	18.9	ug/kg	5		10/26/22 15:15
Chloromethane	157 U	157	49.1	ug/kg	5		10/26/22 15:15
cis-1,2-Dichloroethene	157 U	157	49.1	ug/kg	5		10/26/22 15:15
cis-1,3-Dichloropropene	78.7 U	78.7	24.6	ug/kg	5		10/26/22 15:15
Dibromochloromethane	31.5 U	31.5	9.44	ug/kg	5		10/26/22 15:15
Dibromomethane	157 U	157	49.1	ug/kg	5		10/26/22 15:15
Dichlorodifluoromethane	630 U	630	189	ug/kg	5		10/26/22 15:15
Ethylbenzene	2730	157	49.1	ug/kg	5		10/26/22 15:15
Freon-113	630 U	630	195	ug/kg	5		10/26/22 15:15
Hexachlorobutadiene	126 U	126	39.0	ug/kg	5		10/26/22 15:15
Isopropylbenzene (Cumene)	1250	157	49.1	ug/kg	5		10/26/22 15:15
Methylene chloride	630 U	630	195	ug/kg	5		10/26/22 15:15
Methyl-t-butyl ether	630 U	630	195	ug/kg	5		10/26/22 15:15
Naphthalene	10000	157	49.1	ug/kg	5		10/26/22 15:15
n-Butylbenzene	157 U	157	49.1	ug/kg	5		10/26/22 15:15
n-Propylbenzene	2410	157	49.1	ug/kg	5		10/26/22 15:15
o-Xylene	8370	157	49.1	ug/kg	5		10/26/22 15:15
P & M -Xylene	12400	315	94.4	ug/kg	5		10/26/22 15:15
sec-Butylbenzene	850	157	49.1	ug/kg	5		10/26/22 15:15
Styrene	157 U	157	49.1	ug/kg	5		10/26/22 15:15
tert-Butylbenzene	157 U	157	49.1	ug/kg	5		10/26/22 15:15
Tetrachloroethene	78.7 U	78.7	24.6	ug/kg	5		10/26/22 15:15
Toluene	157 U	157	49.1	ug/kg	5		10/26/22 15:15
trans-1,2-Dichloroethene	157 U	157	49.1	ug/kg	5		10/26/22 15:15
trans-1,3-Dichloropropene	78.7 U	78.7	24.6	ug/kg	5		10/26/22 15:15
Trichloroethene	63.0 U	63.0	20.1	ug/kg	5		10/26/22 15:15
Trichlorofluoromethane	315 U	315	94.4	ug/kg	5		10/26/22 15:15
Vinyl acetate	630 U	630	195	ug/kg	5		10/26/22 15:15
Vinyl chloride	5.04 U	5.04	1.57	ug/kg	5		10/26/22 15:15
Xylenes (total)	20700	472	144	ug/kg	5		10/26/22 15:15
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	71-136		%	5		10/26/22 15:15
4-Bromofluorobenzene (surr)	100	55-151		%	5		10/26/22 15:15
Toluene-d8 (surr)	95.9	85-116		%	5		10/26/22 15:15

Client Sample ID: **V22**Client Project ID: **Drake**Lab Sample ID: 1226505003
Lab Project ID: 1226505

Collection Date: 10/20/22 10:45 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%):76.9 Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS22102 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/26/22 15:15 Container ID: 1226505003-B Prep Batch: VXX39396
Prep Method: SW5035A
Prep Date/Time: 10/20/22 10:45
Prep Initial Wt./Vol.: 99.052 g
Prep Extract Vol: 47.9257 mL

Results of Trip

Client Sample ID: **Trip**Client Project ID: **Drake**Lab Sample ID: 1226505004
Lab Project ID: 1226505

Collection Date: 10/20/22 00:00 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	20.0 U	20.0	6.20	ug/kg	1		10/26/22 17:18
1,1,1-Trichloroethane	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,1,2,2-Tetrachloroethane	2.00 U	2.00	0.620	ug/kg	1		10/26/22 17:18
1,1,2-Trichloroethane	0.999 U	0.999	0.500	ug/kg	1		10/26/22 17:18
1,1-Dichloroethane	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,1-Dichloroethene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,1-Dichloropropene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,2,3-Trichlorobenzene	99.9 U	99.9	30.0	ug/kg	1		10/26/22 17:18
1,2,3-Trichloropropane	2.00 U	2.00	0.620	ug/kg	1		10/26/22 17:18
1,2,4-Trichlorobenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,2,4-Trimethylbenzene	99.9 U	99.9	30.0	ug/kg	1		10/26/22 17:18
1,2-Dibromo-3-chloropropane	99.9 U	99.9	31.0	ug/kg	1		10/26/22 17:18
1,2-Dibromoethane	1.50 U	1.50	0.750	ug/kg	1		10/26/22 17:18
1,2-Dichlorobenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,2-Dichloroethane	2.00 U	2.00	0.700	ug/kg	1		10/26/22 17:18
1,2-Dichloropropane	9.99 U	9.99	5.00	ug/kg	1		10/26/22 17:18
1,3,5-Trimethylbenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,3-Dichlorobenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
1,3-Dichloropropane	9.99 U	9.99	3.10	ug/kg	1		10/26/22 17:18
1,4-Dichlorobenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
2,2-Dichloropropane	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
2-Butanone (MEK)	250 U	250	78.0	ug/kg	1		10/26/22 17:18
2-Chlorotoluene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
2-Hexanone	120 U	120	60.0	ug/kg	1		10/26/22 17:18
4-Chlorotoluene	20.0 U	20.0	9.99	ug/kg	1		10/26/22 17:18
4-Isopropyltoluene	80.0 U	0.08	40.0	ug/kg	1		10/26/22 17:18
4-Methyl-2-pentanone (MIBK)	250 U	250	78.0	ug/kg	1		10/26/22 17:18
Acetone	250 U	250	110	ug/kg	1		10/26/22 17:18
Benzene	12.5 U	12.5	3.90	ug/kg	1		10/26/22 17:18
Bromobenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Bromochloromethane	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Bromodichloromethane	2.00 U	2.00	0.620	ug/kg	1		10/26/22 17:18
Bromoform	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Bromomethane	20.0 U	20.0	8.00	ug/kg	1		10/26/22 17:18
Carbon disulfide	99.9 U	99.9	31.0	ug/kg	1		10/26/22 17:18
Carbon tetrachloride	12.5 U	12.5	3.90	ug/kg	1		10/26/22 17:18
Chlorobenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18

Results of Trip

Client Sample ID: **Trip**Client Project ID: **Drake**Lab Sample ID: 1226505004
Lab Project ID: 1226505

Collection Date: 10/20/22 00:00 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroethane	200 U	200	62.0	ug/kg	1		10/26/22 17:18
Chloroform	6.00 U	6.00	3.00	ug/kg	1		10/26/22 17:18
Chloromethane	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
cis-1,2-Dichloroethene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
cis-1,3-Dichloropropene	12.5 U	12.5	3.90	ug/kg	1		10/26/22 17:18
Dibromochloromethane	5.00 U	5.00	1.50	ug/kg	1		10/26/22 17:18
Dibromomethane	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Dichlorodifluoromethane	99.9 U	99.9	30.0	ug/kg	1		10/26/22 17:18
Ethylbenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Freon-113	99.9 U	99.9	31.0	ug/kg	1		10/26/22 17:18
Hexachlorobutadiene	20.0 U	20.0	6.20	ug/kg	1		10/26/22 17:18
Isopropylbenzene (Cumene)	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Methylene chloride	99.9 U	99.9	31.0	ug/kg	1		10/26/22 17:18
Methyl-t-butyl ether	99.9 U	99.9	31.0	ug/kg	1		10/26/22 17:18
Naphthalene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
n-Butylbenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
n-Propylbenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
o-Xylene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
P & M -Xylene	50.0 U	50.0	15.0	ug/kg	1		10/26/22 17:18
sec-Butylbenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Styrene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
tert-Butylbenzene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
Tetrachloroethene	12.5 U	12.5	3.90	ug/kg	1		10/26/22 17:18
Toluene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:1
trans-1,2-Dichloroethene	25.0 U	25.0	7.80	ug/kg	1		10/26/22 17:18
trans-1,3-Dichloropropene	12.5 U	12.5	3.90	ug/kg	1		10/26/22 17:18
Trichloroethene	9.99 U	9.99	3.20	ug/kg	1		10/26/22 17:18
Trichlorofluoromethane	50.0 U	50.0	15.0	ug/kg	1		10/26/22 17:18
Vinyl acetate	99.9 U	99.9	31.0	ug/kg	1		10/26/22 17:18
Vinyl chloride	0.800 U	0.800	0.250	ug/kg	1		10/26/22 17:18
Xylenes (total)	75.0 U	75.0	22.8	ug/kg	1		10/26/22 17:18
urrogates							
1,2-Dichloroethane-D4 (surr)	101	71-136		%	1		10/26/22 17:18
4-Bromofluorobenzene (surr)	96.4	55-151		%	1		10/26/22 17:18
Toluene-d8 (surr)	94.8	85-116		%	1		10/26/22 17:18

Results of Trip

Client Sample ID: **Trip**Client Project ID: **Drake**Lab Sample ID: 1226505004
Lab Project ID: 1226505

Collection Date: 10/20/22 00:00 Received Date: 10/25/22 09:00 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS22102 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 10/26/22 17:18 Container ID: 1226505004-A Prep Batch: VXX39396 Prep Method: SW5035A Prep Date/Time: 10/20/22 00:00 Prep Initial Wt./Vol.: 50.029 g Prep Extract Vol: 25 mL

Blank ID: MB for HBN 1847424 [SPT/11670]

Blank Lab ID: 1694559

QC for Samples:

1226505001, 1226505002, 1226505003

Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>Parameter</u> <u>Results</u> Total Solids 100 LOQ/CL DL

<u>Units</u>

Batch Information

Analytical Batch: SPT11670 Analytical Method: SM21 2540G

Instrument: Analyst: APS

Analytical Date/Time: 10/28/2022 4:49:00PM

Print Date: 11/15/2022 4:50:22PM

Duplicate Sample Summary

Original Sample ID: 1226421002 Duplicate Sample ID: 1694561

QC for Samples:

1226505001, 1226505002, 1226505003

Analysis Date: 10/28/2022 16:49 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	79.9	79.8	%	0.12	(< 15)

Batch Information

Analytical Batch: SPT11670 Analytical Method: SM21 2540G

Instrument: Analyst: APS

Print Date: 11/15/2022 4:50:24PM

Duplicate Sample Summary

Original Sample ID: 1226557005 Duplicate Sample ID: 1694562

QC for Samples:

1226505001, 1226505002, 1226505003

Analysis Date: 10/28/2022 16:49 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

 NAME
 Original
 Duplicate
 Units
 RPD (%)
 RPD CL

 Total Solids
 80.6
 79.9
 %
 0.85
 (< 15)</td>

Batch Information

Analytical Batch: SPT11670 Analytical Method: SM21 2540G

Instrument: Analyst: APS

Print Date: 11/15/2022 4:50:24PM

Duplicate Sample Summary

Original Sample ID: 1226521003 Duplicate Sample ID: 1694563

QC for Samples:

Analysis Date: 10/28/2022 16:49 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

 NAME
 Original
 Duplicate
 Units
 RPD (%)
 RPD CL

 Total Solids
 83.6
 82.9
 %
 0.80
 (< 15)</td>

Batch Information

Analytical Batch: SPT11670 Analytical Method: SM21 2540G

Instrument: Analyst: APS

Print Date: 11/15/2022 4:50:24PM

Blank ID: MB for HBN 1847293 [VXX/39396]

Blank Lab ID: 1693760

QC for Samples:

1226505001, 1226505002, 1226505003, 1226505004

Matrix: Soil/Solid (dry weight)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	10.0U	20.0	6.20	ug/kg
1,1,1-Trichloroethane	12.5U	25.0	7.80	ug/kg
1,1,2,2-Tetrachloroethane	1.00U	2.00	0.620	ug/kg
1,1,2-Trichloroethane	0.500U	1.00	0.500	ug/kg
1,1-Dichloroethane	12.5U	25.0	7.80	ug/kg
1,1-Dichloroethene	12.5U	25.0	7.80	ug/kg
1,1-Dichloropropene	12.5U	25.0	7.80	ug/kg
1,2,3-Trichlorobenzene	50.0U	100	30.0	ug/kg
1,2,3-Trichloropropane	1.00U	2.00	0.620	ug/kg
1,2,4-Trichlorobenzene	12.5U	25.0	7.80	ug/kg
1,2,4-Trimethylbenzene	50.0U	100	30.0	ug/kg
1,2-Dibromo-3-chloropropane	50.0U	100	31.0	ug/kg
1,2-Dibromoethane	0.750U	1.50	0.750	ug/kg
1,2-Dichlorobenzene	12.5U	25.0	7.80	ug/kg
1,2-Dichloroethane	1.00U	2.00	0.700	ug/kg
1,2-Dichloropropane	5.00U	10.0	5.00	ug/kg
1,3,5-Trimethylbenzene	12.5U	25.0	7.80	ug/kg
1,3-Dichlorobenzene	12.5U	25.0	7.80	ug/kg
1,3-Dichloropropane	5.00U	10.0	3.10	ug/kg
1,4-Dichlorobenzene	12.5U	25.0	7.80	ug/kg
2,2-Dichloropropane	12.5U	25.0	7.80	ug/kg
2-Butanone (MEK)	125U	250	78.0	ug/kg
2-Chlorotoluene	12.5U	25.0	7.80	ug/kg
2-Hexanone	60.0U	120	60.0	ug/kg
4-Chlorotoluene	10.0U	20.0	10.0	ug/kg
4-Isopropyltoluene	40.0U	80.0	40.0	ug/kg
4-Methyl-2-pentanone (MIBK)	125U	250	78.0	ug/kg
Acetone	125U	250	110	ug/kg
Benzene	6.25U	12.5	3.90	ug/kg
Bromobenzene	12.5U	25.0	7.80	ug/kg
Bromochloromethane	12.5U	25.0	7.80	ug/kg
Bromodichloromethane	1.00U	2.00	0.620	ug/kg
Bromoform	12.5U	25.0	7.80	ug/kg
Bromomethane	10.0U	20.0	8.00	ug/kg
Carbon disulfide	50.0U	100	31.0	ug/kg
Carbon tetrachloride	6.25U	12.5	3.90	ug/kg
Chlorobenzene	12.5U	25.0	7.80	ug/kg
Chloroethane	100U	200	62.0	ug/kg

Blank ID: MB for HBN 1847293 [VXX/39396]

Blank Lab ID: 1693760

QC for Samples:

1226505001, 1226505002, 1226505003, 1226505004

Matrix: Soil/Solid (dry weight)

Results by SW8260D

Demonster	Desulte	1.00/01	DI	l laita
<u>Parameter</u> Chloroform	Results 3.00U	<u>LOQ/CL</u> 6.00	<u>DL</u> 3.00	<u>Units</u>
Chloromethane	12.5U	25.0	7.80	ug/kg
	12.5U	25.0 25.0	7.80 7.80	ug/kg
cis-1,2-Dichloroethene				ug/kg
cis-1,3-Dichloropropene	6.25U	12.5	3.90	ug/kg
Dibromochloromethane	2.50U	5.00	1.50	ug/kg
Dibromomethane	12.5U	25.0	7.80	ug/kg
Dichlorodifluoromethane	50.0U	100	30.0	ug/kg
Ethylbenzene	12.5U	25.0	7.80	ug/kg
Freon-113	50.0U	100	31.0	ug/kg
Hexachlorobutadiene	10.0U	20.0	6.20	ug/kg
Isopropylbenzene (Cumene)	12.5U	25.0	7.80	ug/kg
Methylene chloride	50.0U	100	31.0	ug/kg
Methyl-t-butyl ether	50.0U	100	31.0	ug/kg
Naphthalene	12.5U	25.0	7.80	ug/kg
n-Butylbenzene	12.5U	25.0	7.80	ug/kg
n-Propylbenzene	12.5U	25.0	7.80	ug/kg
o-Xylene	12.5U	25.0	7.80	ug/kg
P & M -Xylene	25.0U	50.0	15.0	ug/kg
sec-Butylbenzene	12.5U	25.0	7.80	ug/kg
Styrene	12.5U	25.0	7.80	ug/kg
tert-Butylbenzene	12.5U	25.0	7.80	ug/kg
Tetrachloroethene	6.25U	12.5	3.90	ug/kg
Toluene	12.5U	25.0	7.80	ug/kg
trans-1,2-Dichloroethene	12.5U	25.0	7.80	ug/kg
trans-1,3-Dichloropropene	6.25U	12.5	3.90	ug/kg
Trichloroethene	5.00U	10.0	3.20	ug/kg
Trichlorofluoromethane	25.0U	50.0	15.0	ug/kg
Vinyl acetate	50.0U	100	31.0	ug/kg
Vinyl chloride	0.400U	0.800	0.250	ug/kg
Xylenes (total)	37.5U	75.0	22.8	ug/kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	109	71-136		%
4-Bromofluorobenzene (surr)	102	55-151		%
Toluene-d8 (surr)	93	85-116		%
·				

Blank ID: MB for HBN 1847293 [VXX/39396]

Blank Lab ID: 1693760

QC for Samples:

1226505001, 1226505002, 1226505003, 1226505004

Matrix: Soil/Solid (dry weight)

Results by SW8260D

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS22102 Analytical Method: SW8260D Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 10/26/2022 11:45:00AM

Prep Batch: VXX39396 Prep Method: SW5035A

Prep Date/Time: 10/26/2022 6:00:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 11/15/2022 4:50:28PM

Blank Spike ID: LCS for HBN 1226505 [VXX39396]

Blank Spike Lab ID: 1693761 Date Analyzed: 10/26/2022 12:02

Matrix: Soil/Solid (dry weight)

QC for Samples: 1226505001, 1226505002, 1226505003, 1226505004

Results by SW8260D

		Blank Spike	(ug/kg)	
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>
1,1,1,2-Tetrachloroethane	750	803	107	(78-125)
1,1,1-Trichloroethane	750	791	105	(73-130)
1,1,2,2-Tetrachloroethane	750	725	97	(70-124)
1,1,2-Trichloroethane	750	793	106	(78-121)
1,1-Dichloroethane	750	763	102	(76-125)
1,1-Dichloroethene	750	782	104	(70-131)
1,1-Dichloropropene	750	765	102	(76-125)
1,2,3-Trichlorobenzene	750	767	102	(66-130)
1,2,3-Trichloropropane	750	756	101	(73-125)
1,2,4-Trichlorobenzene	750	773	103	(67-129)
1,2,4-Trimethylbenzene	750	812	108	(75-123)
1,2-Dibromo-3-chloropropane	750	817	109	(61-132)
1,2-Dibromoethane	750	802	107	(78-122)
1,2-Dichlorobenzene	750	760	101	(78-121)
1,2-Dichloroethane	750	760	101	(73-128)
1,2-Dichloropropane	750	777	104	(76-123)
1,3,5-Trimethylbenzene	750	827	110	(73-124)
1,3-Dichlorobenzene	750	771	103	(77-121)
1,3-Dichloropropane	750	763	102	(77-121)
1,4-Dichlorobenzene	750	773	103	(75-120)
2,2-Dichloropropane	750	787	105	(67-133)
2-Butanone (MEK)	2250	2380	106	(51-148)
2-Chlorotoluene	750	766	102	(75-122)
2-Hexanone	2250	2410	107	(53-145)
4-Chlorotoluene	750	767	102	(72-124)
4-Isopropyltoluene	750	833	111	(73-127)
4-Methyl-2-pentanone (MIBK)	2250	2380	106	(65-135)
Acetone	2250	2480	110	(36-164)
Benzene	750	756	101	(77-121)
Bromobenzene	750	748	100	(78-121)
Bromochloromethane	750	758	101	(78-125)
Bromodichloromethane	750	851	113	(75-127)
Bromoform	750	791	105	(67-132)
Bromomethane	750	658	88	(53-143)

Print Date: 11/15/2022 4:50:30PM

Blank Spike ID: LCS for HBN 1226505 [VXX39396]

Blank Spike Lab ID: 1693761 Date Analyzed: 10/26/2022 12:02

Matrix: Soil/Solid (dry weight)

QC for Samples: 1226505001, 1226505002, 1226505003, 1226505004

Results by SW8260D

Parameter Spike Result Rec (%) CL Carbon disulfide 1130 1250 1111 (68-132) Carbon tetrachloride 750 827 110 (70-135) Chloroethane 750 782 103 (59-139) Chloroform 750 762 102 (78-123) Chloroethane 750 762 102 (78-123) cis-1,2-Dichloroethene 750 742 99 (77-123) cis-1,3-Dichloropthene 750 784 113 (74-126) Dibromoethioromethane 750 779 104 (74-126) Dibromoethane 750 785 106 (78-125) Dibromoethane 750 785 106 (78-126) Dibromoethane 750 783 106 (29-149) Ethylbenzene 750 783 106 (78-122) Peen-113 1130 1200 106 (68-134) Hexachlorobutadiene 750			Blank Spike	(ug/kg)	
Carbon tetrachloride 750 827 110 (70-135) Chlorobenzene 750 739 99 (79-120) Chlorobenzene 750 775 103 (59-139) Chloromethane 750 762 102 (78-123) Chloromethane 750 682 91 (50-136) cis-1,2-Dichloroethene 750 742 99 (77-123) cis-1,3-Dichloropropene 750 784 113 (74-126) Dibromochloromethane 750 789 104 (74-126) Dibromomethane 750 795 106 (78-125) Dichlorodifluoromethane 750 795 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 120 106 (68-138) Hexachlorobutadiene 750 752 100 (68-134) Methyl-butyl ether 1130 1150 102 (73-125) Isaporophylbenzene (Cumene)	<u>Parameter</u>				<u>CL</u>
Chlorobenzene 750 739 99 (79-120) Chloroethane 750 752 103 (59-139) Chloroform 750 762 102 (78-123) Chloromethane 750 682 91 (50-136) cis-1,2-Dichloroethene 750 742 99 (77-123) cis-1,3-Dichloropropene 750 742 99 (77-123) Dibromochloromethane 750 779 104 (74-126) Dibromoethlane 750 795 106 (78-125) Dichlorodifluoromethane 750 795 106 (78-125) Dichlorodifluoromethane 750 795 106 (78-122) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 805 107 (68-134) Methyl-butyl ether 1133 1150 102 (73-125) Naphthalene chloride	Carbon disulfide	1130	1250	111	(63-132)
Chloroethane 750 775 103 (59-139) Chloroform 750 762 102 (78-123) Chloromethane 750 682 91 (50-136) cis-1,2-Dichloroethene 750 742 99 (77-123) cis-1,3-Dichloropropene 750 844 113 (74-126) Dibromochloromethane 750 779 104 (74-126) Dibromomethane 750 795 106 (78-125) Dichlorodifluoromethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 782 104 (70-128) Methyl-butyl ether 1130 1150 102 (73-125) Naphthalene 750 782 104 (70-128) n-Broylbenzene	Carbon tetrachloride	750	827	110	(70-135)
Chloroform 750 762 102 (78-123) Chloromethane 750 682 91 (50-136) cis-1,2-Dichloroethene 750 742 99 (77-123) cis-1,3-Dichloropropene 750 844 113 (74-126) Dibromomethane 750 795 106 (78-125) Dibromomethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (88-134) Methyl-L-butyl ether 1130 1150 102 (73-128) Methyl-L-butyl ether 1130 1150 102 (73-128) Naphthalene 750 782 104 (70-128) Nepthylbenzene 750 829 110 (70-128) P. & M - Xylene	Chlorobenzene	750	739	99	(79-120)
Chloromethane 750 682 91 (50-136) cis-1,2-Dichloroethene 750 742 99 (77-123) cis-1,3-Dichloropropene 750 844 113 (74-126) Dibromochloromethane 750 779 104 (74-126) Dibromomethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 752 100 (61-135) Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Brotylbenzene 750 829 110 (70-128) P & M -Xylene 750 822 104 (77-123) P & M -Xylene 750 816 109 (77-124) sec-Butylbenzene	Chloroethane	750	775	103	(59-139)
cis-1,2-Dichloroethene 750 742 99 (777-123) cis-1,3-Dichloropropene 750 844 113 (74-126) Dibromochloromethane 750 779 104 (74-126) Dibromomethane 750 795 106 (78-125) Dichlorodifluoromethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (68-134) Methyl-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Popylbenzene 750 829 110 (70-128) n-Propylbenzene 750 822 104 (77-123) p & M-Xylene 1500 1530 102 (77-124) sec-Butylbenzene	Chloroform	750	762	102	(78-123)
cis-1,3-Dichloropropene 750 844 113 (74-126) Dibromochloromethane 750 779 104 (74-126) Dibromomethane 750 795 106 (78-125) Dichlorodifluoromethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 (61-36) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (68-134) Methylene chloride 750 782 104 (70-128) Methylene chloride 750 782 104 (70-128) Methylet-butyl ether 1130 1150 102 (73-125) Naphthalene 750 829 110 (70-128) n-Propylbenzene 750 829 110 (70-128) n-Propylbenzene 750 782 104 (77-123) p & M. Aylene 1500	Chloromethane	750	682	91	(50-136)
Dibromochloromethane 750 779 104 (74-126) Dibromomethane 750 795 106 (78-125) Dichlorodifluoromethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (68-134) Methylene chloride 750 782 104 (70-128) Methylene chloride 750 782 104 (70-128) Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) Naphthalene 750 803 107 (73-125) Naphthalene 750 829 110 (70-128) Naphthalene 750 829 110 (77-124) sec-Butylbenzene 750	cis-1,2-Dichloroethene	750	742	99	(77-123)
Dibromomethane 750 795 106 (78-125) Dichlorodifluoromethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (86-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (68-134) Methyle-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 782 104 (70-128) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 829 110 (70-128) n-Propylbenzene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750<	cis-1,3-Dichloropropene	750	844	113	(74-126)
Dichlorodifluoromethane 750 793 106 (29-149) Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (68-134) Methylene chloride 750 782 104 (70-128) Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 883 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 816 109 (73-125) Tettachloroethene 750	Dibromochloromethane	750	779	104	(74-126)
Ethylbenzene 750 758 101 (76-122) Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (68-134) Methylene chloride 750 782 104 (70-128) Methylene chloride 750 782 104 (70-128) Methylene chloride 750 771 103 (62-129) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 829 110 (70-128) n-Propylbenzene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 816 109 (73-125) Tetrachloroethene 750	Dibromomethane	750	795	106	(78-125)
Freon-113 1130 1200 106 (66-136) Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (68-134) Methylene chloride 750 782 104 (70-128) Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 784 105 (77-121) trans-1,2-Dichloroethene 75	Dichlorodifluoromethane	750	793	106	(29-149)
Hexachlorobutadiene 750 752 100 (61-135) Isopropylbenzene (Cumene) 750 805 107 (68-134) Methylene chloride 750 782 104 (70-128) Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 </th <th>Ethylbenzene</th> <th>750</th> <th>758</th> <th>101</th> <th>(76-122)</th>	Ethylbenzene	750	758	101	(76-122)
Isopropylbenzene (Cumene) 750 805 107 (68-134) Methylene chloride 750 782 104 (70-128) Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 784 105 (74-125) trans-1,3-Dichloroethene 750 751 100 (71-130) Trichlorofluoromethane 750	Freon-113	1130	1200	106	(66-136)
Methylene chloride 750 782 104 (70-128) Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750	Hexachlorobutadiene	750	752	100	(61-135)
Methyl-t-butyl ether 1130 1150 102 (73-125) Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 <t< th=""><th>Isopropylbenzene (Cumene)</th><th>750</th><th>805</th><th>107</th><th>(68-134)</th></t<>	Isopropylbenzene (Cumene)	750	805	107	(68-134)
Naphthalene 750 771 103 (62-129) n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	Methylene chloride	750	782	104	(70-128)
n-Butylbenzene 750 829 110 (70-128) n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750	Methyl-t-butyl ether	1130	1150	102	(73-125)
n-Propylbenzene 750 803 107 (73-125) o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 829 111 (50-151) Vinyl acetate 750 753 100 (56-135)	Naphthalene	750	771	103	(62-129)
o-Xylene 750 782 104 (77-123) P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	n-Butylbenzene	750	829	110	(70-128)
P & M -Xylene 1500 1530 102 (77-124) sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	n-Propylbenzene	750	803	107	(73-125)
sec-Butylbenzene 750 822 110 (73-126) Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	o-Xylene	750	782	104	(77-123)
Styrene 750 791 105 (76-124) tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	P & M -Xylene	1500	1530	102	(77-124)
tert-Butylbenzene 750 816 109 (73-125) Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	sec-Butylbenzene	750	822	110	(73-126)
Tetrachloroethene 750 770 103 (73-128) Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	Styrene	750	791	105	(76-124)
Toluene 750 649 87 (77-121) trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	tert-Butylbenzene	750	816	109	(73-125)
trans-1,2-Dichloroethene 750 784 105 (74-125) trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	Tetrachloroethene	750	770	103	(73-128)
trans-1,3-Dichloropropene 750 751 100 (71-130) Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	Toluene	750	649	87	(77-121)
Trichloroethene 750 768 102 (77-123) Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	trans-1,2-Dichloroethene	750	784	105	(74-125)
Trichlorofluoromethane 750 801 107 (62-140) Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	trans-1,3-Dichloropropene	750	751	100	(71-130)
Vinyl acetate 750 829 111 (50-151) Vinyl chloride 750 753 100 (56-135)	Trichloroethene	750	768	102	(77-123)
Vinyl chloride 750 753 100 (56-135)	Trichlorofluoromethane	750	801	107	(62-140)
,	Vinyl acetate	750	829	111	(50-151)
Xylenes (total) 2250 2320 103 (78-124)	Vinyl chloride	750	753	100	(56-135)
	Xylenes (total)	2250	2320	103	(78-124)

Print Date: 11/15/2022 4:50:30PM

Blank Spike ID: LCS for HBN 1226505 [VXX39396]

Blank Spike Lab ID: 1693761 Date Analyzed: 10/26/2022 12:02

Matrix: Soil/Solid (dry weight)

QC for Samples: 1226505001, 1226505002, 1226505003, 1226505004

Results by SW8260D

	E	Blank Spike	(ug/kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	
Surrogates				
J	750		00	
1,2-Dichloroethane-D4 (surr)	750		99	
4-Bromofluorobenzene (surr)	750		101	
Toluene-d8 (surr)	750		96	

Batch Information

Analytical Batch: VMS22102
Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Prep Batch: VXX39396
Prep Method: SW5035A

Prep Date/Time: 10/26/2022 06:00

Spike Init Wt./Vol.: 750 ug/kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/15/2022 4:50:30PM

Original Sample ID: 1693762 MS Sample ID: 1693763 MS MSD Sample ID: 1693764 MSD Analysis Date: 10/26/2022 17:53 Analysis Date: 10/26/2022 13:13 Analysis Date: 10/26/2022 13:30 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1226505001, 1226505002, 1226505003, 1226505004

Results by SW8260D

	Matrix Spike (ug/kg)						Spike Duplicate (ug/kg)					
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL		
1,1,1,2-Tetrachloroethane	20.6U	1540	1720	111	1540	1690	110	78-125	1.30	(< 20)		
1,1,1-Trichloroethane	pethane 25.7U 1540 1650 107				1540	1630	106	73-130	1.40	(< 20)		
1,1,2,2-Tetrachloroethane	2.06U	1540	1540	100	1540	1530	99	70-124	0.44	(< 20)		
1,1,2-Trichloroethane	1.03U	1540	1660	107	1540	1640	106	78-121	1.10	(< 20)		
1,1-Dichloroethane	25.7U	1540	1550	100	1540	1540	100	76-125	0.93	(< 20)		
1,1-Dichloroethene	25.7U	1540	1580	102	1540	1550	100	70-131	1.90	(< 20)		
1,1-Dichloropropene	25.7U	1540	1590	103	1540	1580	102	76-125	1.00	(< 20)		
1,2,3-Trichlorobenzene	103U	1540	1660	108	1540	1650	107	66-130	0.30	(< 20)		
1,2,3-Trichloropropane	2.06U	1540	1620	105	1540	1600	104	73-125	1.00	(< 20)		
1,2,4-Trichlorobenzene	25.7U	1540	1620	105	1540	1600	104	67-129	1.30	(< 20)		
1,2,4-Trimethylbenzene	103U	1540	1670	108	1540	1660	108	75-123	0.74	(< 20)		
1,2-Dibromo-3-chloropropane	103U	1540	1660	108	1540	1650	107	61-132	0.58	(< 20)		
1,2-Dibromoethane	1.54U	1540	1660	108	1540	1660	108	78-122	0.13	(< 20)		
1,2-Dichlorobenzene	25.7U	1540	1580	103	1540	1570	102	78-121	1.00	(< 20)		
1,2-Dichloroethane	2.06U	1540	1560	101	1540	1540	100	73-128	1.30	(< 20)		
1,2-Dichloropropane	10.3U	1540	1620	105	1540	1600	104	76-123	0.77	(< 20)		
1,3,5-Trimethylbenzene	25.7U	1540	1750	113	1540	1730	112	73-124	1.30	(< 20)		
1,3-Dichlorobenzene	25.7U	1540	1610	104	1540	1580	103	77-121	1.80	(< 20)		
1,3-Dichloropropane	10.3U	1540	1580	103	1540	1570	102	77-121	1.00	(< 20)		
1,4-Dichlorobenzene	25.7U	1540	1630	105	1540	1610	104	75-120	1.00	(< 20)		
2,2-Dichloropropane	25.7U	1540	1680	109	1540	1650	107	67-133	1.60	(< 20)		
2-Butanone (MEK)	257U	4630	4840	105	4630	4720	102	51-148	2.40	(< 20)		
2-Chlorotoluene	25.7U	1540	1630	106	1540	1610	104	75-122	1.40	(< 20)		
2-Hexanone	124U	4630	4920	106	4630	4850	105	53-145	1.60	(< 20)		
4-Chlorotoluene	20.6U	1540	1620	105	1540	1630	106	72-124	0.39	(< 20)		
4-Isopropyltoluene	82.5U	1540	1750	113	1540	1750	114	73-127	0.49	(< 20)		
4-Methyl-2-pentanone (MIBK)	257U	4630	5040	109	4630	4940	107	65-135	1.80	(< 20)		
Acetone	257U	4630	4890	106	4630	4690	101	36-164	4.20	(< 20)		
Benzene	12.9U	1540	1570	102	1540	1560	101	77-121	0.88	(< 20)		
Bromobenzene	25.7U	1540	1550	101	1540	1550	101	78-121	0.17	(< 20)		
Bromochloromethane	25.7U	1540	1580	103	1540	1550	101	78-125	1.80	(< 20)		
Bromodichloromethane	2.06U	1540	1780	115	1540	1750	113	75-127	1.80	(< 20)		
Bromoform	25.7U	1540	1700	110	1540	1670	108	67-132	1.90	(< 20)		
Bromomethane	20.6U	1540	1460	95	1540	1470	95	53-143	0.37	(< 20)		
Carbon disulfide	103U	2310	2590	112	2310	2530	109	63-132	2.40	(< 20)		
Carbon tetrachloride	12.9U	1540	1730	112	1540	1700	110	70-135	1.80	(< 20)		
Chlorobenzene	25.7U	1540	1570	102	1540	1530	99	79-120	2.60	(< 20)		

Print Date: 11/15/2022 4:50:31PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Original Sample ID: 1693762 MS Sample ID: 1693763 MS MSD Sample ID: 1693764 MSD Analysis Date: 10/26/2022 17:53 Analysis Date: 10/26/2022 13:13 Analysis Date: 10/26/2022 13:30 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1226505001, 1226505002, 1226505003, 1226505004

Results by SW8260D

Matrix Spike				ug/kg)	Spike					
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Chloroethane	206U	1540	1610	104	1540	1570	102	59-139	2.10	(< 20)
Chloroform	6.15U	1540	1580	103	1540	1570	102	78-123	0.91	(< 20)
Chloromethane	25.7U	1540	1470	95	1540	1450	94	50-136	1.50	(< 20)
cis-1,2-Dichloroethene	25.7U	1540	1550	100	1540	1540	100	77-123	0.59	(< 20)
cis-1,3-Dichloropropene	12.9U	1540	1740	113	1540	1720	112	74-126	0.83	(< 20)
Dibromochloromethane	5.15U	1540	1620	105	1540	1590	103	74-126	1.40	(< 20)
Dibromomethane	25.7U	1540	1640	106	1540	1620	105	78-125	1.50	(< 20)
Dichlorodifluoromethane	103U	1540	1560	101	1540	1540	100	29-149	1.50	(< 20)
Ethylbenzene	25.7U	1540	1580	103	1540	1560	101	76-122	1.60	(< 20)
Freon-113	103U	2310	2510	109	2310	2460	106	66-136	2.20	(< 20)
Hexachlorobutadiene	20.6U	1540	1760	114	1540	1860	121	61-135	5.20	(< 20)
Isopropylbenzene (Cumene)	25.7U	1540	1680	109	1540	1650	107	68-134	1.80	(< 20)
Methylene chloride	103U	1540	1590	103	1540	1560	101	70-128	1.70	(< 20)
Methyl-t-butyl ether	103U	2310	2340	101	2310	2330	101	73-125	0.38	(< 20)
Naphthalene	25.7U	1540	1630	106	1540	1620	105	62-129	0.53	(< 20)
n-Butylbenzene	25.7U	1540	1770	115	1540	1760	114	70-128	0.78	(< 20)
n-Propylbenzene	25.7U	1540	1680	109	1540	1660	108	73-125	1.30	(< 20)
o-Xylene	25.7U	1540	1580	102	1540	1570	102	77-123	0.38	(< 20)
P & M -Xylene	51.5U	3090	3200	104	3090	3180	103	77-124	0.56	(< 20)
sec-Butylbenzene	25.7U	1540	1730	112	1540	1710	111	73-126	1.10	(< 20)
Styrene	25.7U	1540	1630	106	1540	1620	105	76-124	0.21	(< 20)
tert-Butylbenzene	25.7U	1540	1700	110	1540	1690	109	73-125	0.67	(< 20)
Tetrachloroethene	12.9U	1540	1670	108	1540	1640	106	73-128	1.90	(< 20)
Toluene	25.7U	1540	1410	91	1540	1400	91	77-121	0.71	(< 20)
trans-1,2-Dichloroethene	25.7U	1540	1650	107	1540	1600	104	74-125	2.90	(< 20)
trans-1,3-Dichloropropene	12.9U	1540	1540	100	1540	1540	100	71-130	0.31	(< 20)
Trichloroethene	10.3U	1540	1600	104	1540	1590	103	77-123	1.00	(< 20)
Trichlorofluoromethane	51.5U	1540	1940	126	1540	1810	117	62-140	6.90	(< 20)
Vinyl acetate	103U	1540	1710	111	1540	1690	109	50-151	1.20	(< 20)
Vinyl chloride	0.825U	1540	1620	105	1540	1600	104	56-135	1.70	(< 20)
Xylenes (total)	77.0U	4630	4770	103	4630	4750	103	78-124	0.50	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		1540	1530	99	1540	1510	98	71-136	1.30	
4-Bromofluorobenzene (surr)		2570	1990	77	2570	1980	77	55-151	0.42	
Toluene-d8 (surr)		1540	1520	99	1540	1520	98	85-116	0.11	

Print Date: 11/15/2022 4:50:31PM

Original Sample ID: 1693762 MS Sample ID: 1693763 MS

MSD Sample ID: 1693764 MSD

Analysis Date:

Analysis Date: 10/26/2022 13:13 Analysis Date: 10/26/2022 13:30 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1226505001, 1226505002, 1226505003, 1226505004

Results by SW8260D

Matrix Spike (%) Spike Duplicate (%)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Batch Information

Analytical Batch: VMS22102 Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 10/26/2022 1:13:00PM

Prep Batch: VXX39396

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 10/26/2022 6:00:00AM

Prep Initial Wt./Vol.: 24.31g Prep Extract Vol: 25.00mL

Print Date: 11/15/2022 4:50:31PM

SGS North America Inc.

| 200 West Potter Drive Anchorage, AK 95518 | t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1847418 [XXX/47263]

Blank Lab ID: 1694532

QC for Samples:

1226505001, 1226505002, 1226505003

Matrix: Soil/Solid (dry weight)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 10.0U
 20.0
 9.00
 mg/kg

Surrogates

5a Androstane (surr) 96.6 60-120 %

Batch Information

Analytical Batch: XFC16392 Prep Batch: XXX47263 Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B R Prep Date/Time: 10/31/2022 9:30:26AM

Analyst: HMW Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 10/31/2022 2:46:00PM Prep Extract Vol: 5 mL

Print Date: 11/15/2022 4:50:33PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1226505 [XXX47263]

Blank Spike Lab ID: 1694533 Date Analyzed: 10/31/2022 14:56 Spike Duplicate ID: LCSD for HBN 1226505

[XXX47263]

Spike Duplicate Lab ID: 1694534 Matrix: Soil/Solid (dry weight)

QC for Samples: 1226505001, 1226505002, 1226505003

Results by AK102

	E	Blank Spike	(mg/kg)	S	Spike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	667	612	92	667	622	93	(75-125)	1.60	(< 20)
Surrogates									
5a Androstane (surr)	16.7		98	16.7		98	(60-120)	0.65	

Batch Information

Analytical Batch: XFC16392 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: HMW

Prep Batch: XXX47263
Prep Method: SW3550C

Prep Date/Time: 10/31/2022 09:30

Spike Init Wt./Vol.: 16.7 mg/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 16.7 mg/kg Extract Vol: 5 mL

Print Date: 11/15/2022 4:50:35PM

Method Blank

Blank ID: MB for HBN 1847516 [XXX/47282]

Blank Lab ID: 1694869

QC for Samples:

1226505002, 1226505003

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

Parameter	Results	LOQ/CL	<u>DL</u>	Units
1-Methylnaphthalene	12.5U	25.0	6.25	ug/kg
2-Methylnaphthalene	12.5U	25.0	6.25	ug/kg
Acenaphthene	12.5U	25.0	6.25	ug/kg
Acenaphthylene	12.5U	25.0	6.25	ug/kg
Anthracene	12.5U	25.0	6.25	ug/kg
Benzo(a)Anthracene	12.5U	25.0	6.25	ug/kg
Benzo[a]pyrene	12.5U	25.0	6.25	ug/kg
Benzo[b]Fluoranthene	12.5U	25.0	6.25	ug/kg
Benzo[g,h,i]perylene	12.5U	25.0	6.25	ug/kg
Benzo[k]fluoranthene	12.5U	25.0	6.25	ug/kg
Chrysene	12.5U	25.0	6.25	ug/kg
Dibenzo[a,h]anthracene	12.5U	25.0	6.25	ug/kg
Fluoranthene	12.5U	25.0	6.25	ug/kg
Fluorene	12.5U	25.0	6.25	ug/kg
Indeno[1,2,3-c,d] pyrene	12.5U	25.0	6.25	ug/kg
Naphthalene	10.0U	20.0	5.00	ug/kg
Phenanthrene	12.5U	25.0	6.25	ug/kg
Pyrene	12.5U	25.0	6.25	ug/kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	93	58-103		%
Fluoranthene-d10 (surr)	94.5	54-113		%

Batch Information

Analytical Batch: XMS13440 Analytical Method: 8270D SIM (PAH)

Instrument: Agilent 8890 GC/MS US2210A024

Analyst: NGG

Analytical Date/Time: 11/5/2022 2:25:00AM

Prep Batch: XXX47282 Prep Method: SW3550C

Prep Date/Time: 11/2/2022 1:30:51PM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 11/15/2022 4:50:37PM

Blank Spike ID: LCS for HBN 1226505 [XXX47282]

Blank Spike Lab ID: 1694870 Date Analyzed: 11/05/2022 02:40

Matrix: Soil/Solid (dry weight)

QC for Samples: 1226505002, 1226505003

Results by 8270D SIM (PAH)

		Blank Spike	(ug/kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	111	105	95	(43-111)
2-Methylnaphthalene	111	110	99	(39-114)
Acenaphthene	111	108	97	(44-111)
Acenaphthylene	111	103	93	(39-116)
Anthracene	111	104	94	(50-114)
Benzo(a)Anthracene	111	109	98	(54-122)
Benzo[a]pyrene	111	103	93	(50-125)
Benzo[b]Fluoranthene	111	109	98	(53-128)
Benzo[g,h,i]perylene	111	98.8	89	(49-127)
Benzo[k]fluoranthene	111	108	97	(56-123)
Chrysene	111	108	97	(57-118)
Dibenzo[a,h]anthracene	111	103	93	(50-129)
Fluoranthene	111	109	98	(55-119)
Fluorene	111	106	96	(47-114)
Indeno[1,2,3-c,d] pyrene	111	103	92	(49-130)
Naphthalene	111	106	95	(38-111)
Phenanthrene	111	104	94	(49-113)
Pyrene	111	109	98	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	111		94	(58-103)
Fluoranthene-d10 (surr)	111		95	(54-113)

Batch Information

Analytical Batch: XMS13440
Analytical Method: 8270D SIM (PAH)

Instrument: Agilent 8890 GC/MS US2210A024

Analyst: NGG

Prep Batch: XXX47282
Prep Method: SW3550C

Prep Date/Time: 11/02/2022 13:30

Spike Init Wt./Vol.: 111 ug/kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 11/15/2022 4:50:39PM

Original Sample ID: 1226608007 MS Sample ID: 1694871 MS MSD Sample ID: 1694872 MSD

QC for Samples: 1226505002, 1226505003

Analysis Date: 11/05/2022 2:56
Analysis Date: 11/05/2022 3:12
Analysis Date: 11/05/2022 3:28
Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Mat	rix Spike (ι	ug/kg)	Spike	Duplicate	(ug/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	136U	121	120J	99	119	119J	100	43-111	0.35	(< 20)
2-Methylnaphthalene	136U	121	123J	102	119	121J	102	39-114	2.50	(< 20)
Acenaphthene	136U	121	135J	112 *	119	135J	114 *	44-111	0.11	(< 20)
Acenaphthylene	136U	121	132J	109	119	135J	114	39-116	2.20	(< 20)
Anthracene	136U	121	126J	105	119	129J	108	50-114	1.70	(< 20)
Benzo(a)Anthracene	136U	121	130J	107	119	129J	109	54-122	0.19	(< 20)
Benzo[a]pyrene	136U	121	125J	104	119	124J	105	50-125	0.73	(< 20)
Benzo[b]Fluoranthene	136U	121	133J	110	119	133J	112	53-128	0.16	(< 20)
Benzo[g,h,i]perylene	136U	121	121J	100	119	122J	103	49-127	0.90	(< 20)
Benzo[k]fluoranthene	136U	121	129J	106	119	129J	108	56-123	0.21	(< 20)
Chrysene	136U	121	132J	110	119	125J	105	57-118	5.60	(< 20)
Dibenzo[a,h]anthracene	136U	121	119J	98	119	118J	99	50-129	0.67	(< 20)
Fluoranthene	136U	121	139	115	119	139	117	55-119	0.01	(< 20)
Fluorene	136U	121	136	113	119	143	121 *	47-114	4.80	(< 20)
Indeno[1,2,3-c,d] pyrene	136U	121	119J	98	119	118J	99	49-130	1.10	(< 20)
Naphthalene	108U	121	121	100	119	119	100	38-111	1.70	(< 20)
Phenanthrene	136U	121	126J	105	119	125J	106	49-113	0.97	(< 20)
Pyrene	136U	121	174	103	119	202	128 *	55-117	14.70	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		121	159	131 *	119	171	144 *	58-103	7.60	
Fluoranthene-d10 (surr)		121	129	107	119	126	106	54-113	2.20	

Batch Information

Analytical Batch: XMS13440

Analytical Method: 8270D SIM (PAH)

Instrument: Agilent 8890 GC/MS US2210A024

Analyst: NGG

Analytical Date/Time: 11/5/2022 3:12:00AM

Prep Batch: XXX47282

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 11/2/2022 1:30:51PM

Prep Initial Wt./Vol.: 22.56g Prep Extract Vol: 5.00mL

Print Date: 11/15/2022 4:50:41PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS North America Inc. CHAIN OF CUSTODY RECORD

Preside: 341964 mmussas.com

	(of)					*The following analyses	require specific method	and/or compound itst. BTEX, Metals, PFAS	REMARKS/LOC ID						L C	202		~ •	equirements:					Seak (Circle)	N ABSENT	ery M
	Page				NOTE:	*The foll	require	and/or c BTEX, N	REMA				-			1226505			Data Deliverable Requirements:		al Instructions:			Chain of Custody Seak (Circle)	HITACT BROKEN	Delivery Method: Hand Delivery[] Commerical Delivery
 5 must be tilled out.	Omissions may delay the onset of analysis.	;	Preservative		!s _*														DOD Project? Yes No		Requested Turnaround Time and/or Special Instructions:		c-		or Ambient [] AUC 5	thod: Hand Delivery
Sections 1 - 5 mu	elay the ons	1	Pres		Analysis*														Section 4 DOD	Cooler ID:	sted Turnarour			Temp Blank °C:	or Amb	Delivery Me
tions: Section	sions may de						6	02	00 C	>	1	/ / /	<i>\</i>					2	Sect	Co	Redne			Temp		
Instructions:	Omiss	Section 3			Comp	Grab	Ξ		mental)	6	ģ	, n													oratory By:	
			3	# U (S o z	-			MATRIX R CODE	2010	2010	501L							Received By:		geived By:		Received By:		Received For Laboratory By:	J.
			5698		John W. P.C.	doss. Coare Core Town Town Town Town Town Town Town Town			TIME W	cz; 0/	10:35	145							Time Re	3	Time	(400/L)	Time		Time	00:00
,		PHONE #:	97-452-56	l	IAIF:	. <u>Co</u> Skrのと file #:	QUOTE #:	. #:	DATE mm/dd/yy	12/02/01			<u> </u>						Date	2) (2		16 R4122	Date			10125/22
		PHC		PRO. PWSI		Do O D Proj)NO	P.O. #:	SAMPLE IDENTIFICATION)	7	72	72.5													
	WOLTECH	ij	5 DUSER	20000	{ ë	OSER	: TO:	DUSK		1/1	112				12300				Relinanished Bv: (1)		Relinquished By: (2)	N V3	Refinquished By: (3)		Relinquished By: (4)	
CLIENT:	1/02	CONTACT:	2000	oction PROJECT NAME:	S REPORTS TO	00/16	INVOICE TO:	50.00	RESERVED for lab use	J AB	9.A.B		L	itoe	S				Relina			& noi	39S	N.	Reling	

http://www.sgs.com/terms-and-conditions

e-Sample Receipt Form FBK

SGS Workorder #:

Nortech

Nortech

Review Criter	Condition	n (Yes,	No, N/A	Exception	ns Noted	below	
Chain of Custody	/ Temperature Requiremen	ts	Yes	Exemption permitted	if sampler h	and carries/deliv	ers.
Were Custo	ody Seals intact? Note # & location	N/A					
	COC accompanied samples?	Yes				-	
DOD: Were samples receiv	red in COC corresponding coolers?	N/A					
	**Exemption permitted if chilled &	colle	cted <8 hours	ago, or for samples w	here chilling	is not required	
Temperature blank co	mpliant* (i.e., 0-6 °C after CF)?	Yes	Cooler ID:	1	1.	.1 °C Therm. ID:	D23
			Cooler ID:		@	°C Therm. ID:	
If samples received without a temperature bla documented instead & "COOLER TEMP" will be no	The State of the Control of the Cont		Cooler ID:		@	°C Therm. ID:	
be noted if neither is			Cooler ID:		@	°C Therm. ID:	
*If >6°C, were sar	nples collected <8 hours ago?						
If <0°C, we	re sample containers ice free?						
Note: Identify containers received							
Use form FS	-0029 if more space is needed.						
	on / Sample Condition Requirem		Note: Refer to	form F-083 "Sample	Guide" for s	pecific holding ti	mes.
Do samples match COC** (i.e.,sam		N/C				·	
**Note: If times differ <1hr, rec							
***Note: If sample information on containers differs							
vvere samples in good condition	on (no leaks/cracks/breakage)?	res					
Were analytical requests clear? (i.e., n	nethod is specified for analyses						
with multiple option	for analysis (Ex: BTEX, Metals)	Yes					
Word Trip Planks (i.e. VOAs	LL-Hg) in cooler with samples?						
	and the Pilian Laborator for the property of the first						
Were all water VOA vials free of hea	eld extracted with MeOH+BFB?	-					
	as RUSH/Short HT email sent?						-
Note to Client: Any "No",	answer above indicates non-compl	ance	with standard	procedures and may	impact data	quality.	
	Additional notes	(if a	pplicable):				
SGS Profile #	341954			3419.	54		
					J 1		
							а
,							
				·			

e-Sample Receipt Form

SGS Workorder #:

1226505

1226505

Review Criteria	Condition (Yes	No, N/A	Exceptions Noted below
Chain of Custody / Temperature Requirements		Note: T	emperature and COC seal information is found on the chain of custody form
DOD only: Did all sample coolers have a corresponding C			
If <0°C, were sample containers ice	free? N/A		
Note containers received	d with ice:		
Identify any containers received at non-compliant ten (Use form FS-0029 if more space is	s needed)		
lolding Time / Documentation / Sample Condition Requ			efer to form F-083 "Sample Guide" for specific holding times and sample containers.
Were samples received within analytical holding t			
Do sample labels match COC? Record discrepar	ncies. Yes		
Note: If information on containers differs from COC, default to information for login. If times differ <1hr, record details & login p			
Were analytical requests o	lear? Yes		
(i.e. method is specified for analyses with multiple option for me (Eg, BTEX 8021 vs 8260, Metals 6020 vs 200.8)			
Were proper containers (type/mass/volume/preservative)us Note: Exemption for metals analysis by 200.8/6020 in wat			
Volatile Analysis Requirements (VOC, GRO, LL-Hg,	etc.)		
Vere all soil VOAs received with a corresponding % solids conta	iner? Yes		
Were Trip Blanks (e.g., VOAs, LL-Hg) in cooler with sam	ples? Yes		
Were all water VOA vials free of headspace (e.g., bubbles ≤ 6r			
Were all soil VOAs field extracted with Methanol+			
Note to Client: Any "No", answer above indicates non-c			
Additional n	otes (if a	applic	cable):

F102b_SRFpm_20210526 Page 44 of 45

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1226505001-A 1226505001-B 1226505002-A 1226505002-B 1226505003-A 1226505003-B 1226505004-A	No Preservative Required Methanol field pres. 4 C No Preservative Required Methanol field pres. 4 C No Preservative Required Methanol field pres. 4 C Methanol field pres. 4 C	OK OK OK OK OK OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Page 45 of 45

Laboratory Data Review Checklist

Completed By:							
Doug Dusek							
Title:	Γitle:						
Environmental Specialist							
Date:							
December 8, 2022							
CS Report Name:							
Drake							
Report Date:							
11/16/22							
Consultant Firm:							
NORTECH							
Laboratory Name:							
SGS							
Laboratory Report Number:							
1226505							
ADEC File Number:							
100.38.191 1226505							
Hazard Identification Number:							
3956							

122	26505	í			
1.	Labo	<u>orato</u>	<u>ry</u>		
	a.	Di	d an ADI	EC CS approved laborator	y receive and <u>perform</u> all of the submitted sample analyses?
			• Yes	○ No	Comments:
		b.		-	another "network" laboratory or sub-contracted to an ratory performing the analyses ADEC CS approved?
			O Yes	○ No	Comments:
	na	ì			
2.	Chai	n of	Custody	(CoC)	
	a	Co	C inform	estion completed signed	and dated (including released/received by)?
	a.	C		-	
			• Yes	O No	Comments:
	b.	Co	rrect Ana	alyses requested?	
			• Yes	O No	Comments:
3.	Labo	orato	ry Sampl	e Receipt Documentation	
	a.	Sa	mple/coo	ler temperature document	ed and within range at receipt (0° to 6° C)?
			• Yes	O No	Comments:
	b.			servation acceptable – acid	dified waters, Methanol preserved VOC soil (GRO, BTEX,
			• Yes	O No	Comments:

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?

Comments:

July 2017 Page 2

O No

Yes

1	22	6	5	n	5
1	1.7.	n	7	u	٠,

5.

	d.	I. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?					
_		• Yes	○ No	Comments:			
	e.	Data quality	or usability affected?				
_				Comments:			
	no						
4.	<u>Ca</u>	ase Narrative					
	a. Present and understandable?						
		• Yes	O No	Comments:			
	b.	Discrepanc	ies, errors, or QC failures	s identified by the lab?			
		O Yes	No	Comments:			
	c.	Were all co	rrective actions documen	ited?			
		• Yes	O No	Comments:			
	na	l .					
	d.	What is the	effect on data quality/us	ability according to the case narrative?			
				Comments:			
		OQ are highe nclusions no		Carget compounds have high contamination levels but project			
Sa	mp	les Results					
	a.	Correct ana	alyses performed/reported	as requested on COC?			
		• Yes	O No	Comments:			
	b.	All applical	ble holding times met?				
		• Yes	O No	Comments:			

12265	05			
	c.	All soils rep	orted on a dry weigh	t basis?
		• Yes	O No	Comments:
	d.	Are the report the project?	orted LOQs less than	the Cleanup Level or the minimum required detection level for
		O Yes	No	Comments:
	Ta	arget compour	nds not affected	
	e.	Data quality	or usability affected	?
		Yes	No	Comments:
6. Q0	C Sa	amples		
		Method Bla	l	
	a.			ed per matrix, analysis and 20 samples?
		• Yes	© No	Comments:
		• ies	O No	Comments.
		ii. All n	nethod blank results	less than limit of quantitation (LOQ)?
		• Yes	O No	Comments:
		iii. If abo	ove LOQ, what samp	ples are affected?
				Comments:
		iv. Do th	he affected sample(s)	have data flags? If so, are the data flags clearly defined?

Not affected

Comments:

Comments:

July 2017 Page 4

v. Data quality or usability affected?

O Yes O No

na

1	22	_	5	Λ	5
ı	1.1	n	7	U	7

b. L	aboratory	Control Samp	le/Duplicate (LCS/LCSD)	
	_		CS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD nethods, LCS required per SW846)	
	• Yes	O No	Comments:	
		als/Inorganics amples?	- one LCS and one sample duplicate reported per matrix, analysis and	
	O Yes	O No	Comments:	
na				
	And	project specif	rcent recoveries (%R) reported and within method or laboratory limits? Tied DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, 6, AK103 60%-120%; all other analyses see the laboratory QC pages)	
	• Yes	O No	Comments:	
	iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)			
	Yes	O No	Comments:	
	v. If %	R or RPD is o	utside of acceptable limits, what samples are affected?	
			Comments:	
na				
	. D (1 66 4 1		
			mple(s) have data flags? If so, are the data flags clearly defined?	
	O Yes	O No	Comments:	
na				
	vii. Data	ı quality or usa	ability affected? (Use comment box to explain.)	
			Comments:	
Na				

1	22	6	5	n	5
1	1.7.	n	7	u	٠,

c. Surro	gates -	- Organics Only	
i.	Are	surrogate recoveries rep	ported for organic analyses – field, QC and laboratory samples?
•	Yes	○ No	Comments:
ii.	And	· -	overies (%R) reported and within method or laboratory limits? s, if applicable. (AK Petroleum methods 50-150 %R; all other report pages)
•	Yes	○ No	Comments:
iii		he sample results with a clearly defined?	failed surrogate recoveries have data flags? If so, are the data
О	Yes	○ No	Comments:
na			
iv	. Data	quality or usability aff	Fected?
			Comments:
Data usal	ole		
d. Trip b	olank –	- Volatile analyses only	(GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and
i.	samj	oles?	matrix, analysis and for each cooler containing volatile
		ot, enter explanation be	
•	Yes	O No	Comments:
ii.			ort the trip blank and VOA samples clearly indicated on the xplaining why must be entered below)
•	Yes	○ No	Comments:
iii	. All r	esults less than LOQ?	
•	Yes	O No	Comments:

4	~~	_	_	$\overline{}$	_
-1	22	h	51	П	15

	iv. If ab	ove LOQ, wh	at samples are affected?
			Comments:
	v. Data	quality or usa	bility affected?
			Comments:
Usa	able		
e.	Field Duplie	cate	
	i. One	field duplicate	e submitted per matrix, analysis and 10 project samples?
	• Yes	O No	Comments:
	ii. Subi	nitted blind to	lab?
	• Yes	O No	Comments:
		commended: 3	ntive percent differences (RPD) less than specified DQOs? 0% water, 50% soil) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
			Where $R_1 = Sample$ Concentration $R_2 = Field$ Duplicate Concentration
	• Yes	O No	Comments:
	iv. Data	quality or usa	bility affected? (Use the comment box to explain why or why not.) Comments:
Usa	able		
f.	Decontamir below).	nation or Equip	oment Blank (If not applicable, a comment stating why must be entered
	O Yes	O No O No	ot Applicable
na			

1226505			
	i. All results less than LOQ?		
	O Yes O No Co	omments:	
	ii. If above LOQ, what samples are affected?		
	Comments:		
	iii. Data quality or usability affected?		
	Co	omments:	
7. <u>O</u> 1	7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)		
	a. Defined and appropriate?		
	O Yes • No Co	omments:	