

TANANA COMMUNITY HALL BROWNFIELD ASSESSMENT REPORT MARCH 2017 FINAL

Prepared for:

555 Cordova Street Anchorage, AK 99501

Prepared by: Ahtna Engineering Services, LLC 1896 Marika Road, Suite 8 Fairbanks, AK 99709

APPROVAL PAGE

This report describing the Brownfield Assessment of the Tanana Community Hall site in Tanana, Alaska has been prepared for the Alaska Department of Environmental Conservation by Ahtna Engineering Services, LLC, with support from teaming partner Arctic Data Services, LLC.

ADEC Hazard ID: 26250 ADEC File ID: 780.57.004

Report Prepared by:

Leslie Davis

Ahtna Engineering Services, LLC

Environmental Scientist

Rodney Guritz

Arctic Data Services, LLC

Principal Chemist

Andrew Weller, PE

Ahtna Engineering Services, LLC

Project Manager

TABLE OF CONTENTS

APP	PROVAL PAGE	III
ACF	RONYMS AND ABBREVIATIONS	VII
1.0	INTRODUCTION	1
1.1	Background	1
1.2	Objectives	2
1.3	Scope of Work	2
1.4	Regulatory Framework	2
2.0	FIELD ACTIVITIES	5
2.1	Preliminary Site Visit	5
2.2	Shallow Test Pits	5
2.3	Soil Borings	6
2.4	Temporary Well Points	7
2.5	Piping Investigation	7
2.6	Waste Management	7
3.0	OBSERVATIONS AND RESULTS	9
3.1	Soil Test Pit Observations	9
3.2	Soil Field Screening	9
3.3	Analytical Soil Sampling	10
3	3.3.1 DRO and RRO Results	11
3	3.3.2 BTEX and PAH Results	12
3	3.3.3 RCRA Metals and PCB Results	14
3.4	Analytical Groundwater Sampling	15
3.5	Piping Investigation	15
4.0	QUALITY ASSURANCE REVIEW	17
5.0	CONCLUSIONS	
5.1	Fuel Impacts	19
5.2	PCBs and RCRA Metals	19
5.3	Piping Investigation	20
5.4	Conceptual Site Model	20
6.0	RECOMMENDATIONS	21
6	5.1.1 Remedial Alternatives	21
	6.1.1.1 Landfill Disposal	21
	6.1.1.2 Off-Site Transportation and Thermal Remediation	22
	6.1.1.3 Landfarming Following a Treatability Study	22
6	5.1.2 Preferred Remedial Alternative	23
7.0	REFERENCES	25
TAB	BLES IN TEXT	
Tabl	e 1: Cleanup Levels for Contaminants of Potential Concern	3
	e 2: Shallow Test Pit PID Screening Results	
	le 3: Soil Analytical Results - DRO/RRO	
	e 4: Soil Analytical Results - BTEX and PAH	
	e 5: Soil Analytical Results - RCRA Metals and PCBs	
	•	

TABLE APPENDED

Table 6: Groundwater Analytical Results

FIGURES

Figure 1 State and Site Vicinity Maps
Figure 2 Soil DRO and RRO Analytical Results
Figure 3 Soil BTEX, PAH, and RCRA Metals Analytical Results

APPENDICES

Appendix A	Logbook and Field Data Sheets
Appendix B	Photographic Log
Appendix C	Soil Boring and Test Pit Logs
Appendix D	Analytical Results
D-1	Data Quality Assessment
D-2	ADEC Data Review Checklist
D-3	Laboratory Data Report
Appendix E	Conceptual Site Model

ACRONYMS AND ABBREVIATIONS

a/lra	mioro grama nor kilo gram
	.micrograms per kilogram
μg/L	.micrograms per liter
	Alaska Administrative Code
	Alaska Department of Environmental Conservation
	Arctic Data Services, LLC
	.Ahtna Engineering Services, LLC
As	
	.below ground surface
	.benzene, toluene, ethylbenzene, and xylenes
	.contaminant of potential concern
cy	.cubic yard
DQA	.data quality assessment
DRO	.diesel range organics
ft	.feet
GeoTek	.GeoTek Alaska, Inc.
GRO	gasoline range organics
GWCL	groundwater cleanup level
in	inch
LOD	.limit of detection
mg/kg	.milligrams per kilogram
	.Municipal Solid Waste Landfill
	.notice to proceed
	property assessment and cleanup plan
	polycyclic aromatic hydrocarbons
	polychlorinated biphenyl
	photoionization detector
	parts per million
	Resource Conservation and Recovery Act
	residual range organics.
	Shannon & Wilson, Inc.
	soil cleanup level
	.sample delivery group
sq	
TP	=
	.Tanana Tribal Council
	.temporary well point
1 111	

1.0 INTRODUCTION

Under Notice-to-Proceed (NTP) CT 17-0000054 and Contract Number 18-8036-13 from the Alaska Department of Environmental Conservation (ADEC), Ahtna Engineering Services, LLC (Ahtna) has conducted a Brownfield Assessment at the Tanana Community Hall site to characterize impacts to soil and groundwater from historical releases of Bunker C contamination and delineate any remaining fuel transfer piping. The site is located in Tanana, Alaska and is a vacant lot comprising Lot 7, Block 11, Section 17, Township 4 North, Range 22 West, Fairbanks Meridian (Figures 1 and 2). The site has a Hazard ID of 26250 and an ADEC file number of 780.57.004. This report describes field activities that occurred in August 2016, including a site reconnaissance/outreach visit, soil and groundwater sampling for contaminants of potential concern (COPCs), and a piping investigation. It includes this introductory section, a summary of field activities and results, a quality assurance review, a summary of findings and conclusions, and provides recommendations for additional investigation and site remediation.

1.1 Background

The Tanana Community Hall site is comprised of a vacant lot at the intersection of First Avenue and Koyukuk Street (Figure 2). The lot is owned by the Tanana Tribal Council (TTC) and is currently used as parking for the adjacent community hall, as well as for outdoor community gatherings.

Contamination was identified at the site by the City of Tanana in 2013 while digging a drainage ditch along the southern boundary of Lot 7, Block 11. Following discovery of the soil contamination and a successful ADEC Brownfields Assessment and Cleanup application from the TTC, ADEC contracted Shannon & Wilson, Inc. (S&W) to prepare a property assessment and cleanup plan (PACP) for the site (S&W, 2015). The PACP included historical research, records review, local interviews, and a limited field investigation which partially delineated soil contamination using shallow test pits and trenches. A summary of findings from the PACP is presented in the *Tanana Community Hall Brownfield Assessment Work Plan* (Ahtna, 2016). Additional delineation of the vertical and horizontal extents of contamination was warranted and is the focus of this report.

Contamination at the site is likely attributable to releases of Bunker C fuel, used for historical barge operations along the Yukon and Tanana rivers. The COPCs at the site are:

- Residual range organics (RRO)
- Diesel range organics (DRO)
- Gasoline range organics (GRO)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX)
- Polycyclic aromatic hydrocarbons (PAHs)

In addition to the COPCs listed above, Resource Conservation and Recovery Act (RCRA) metals and polychlorinated biphenyls (PCBs) are COPCs, given that co-contamination of Bunker C fuel with these constituents is possible and PCB containing oil was reportedly used for dust control on roadways throughout Tanana in the past.

1.2 Objectives

The project objectives were to delineate the horizontal and vertical extents of Bunker C contamination present at the site; evaluate whether groundwater in the vicinity of the site has been impacted by contaminant migration; and to investigate whether fuel transfer piping is present at the site, and delineate its extent if present. Based on the findings of these investigations, the final project objective was to provide recommendations for additional work to delineate the nature and extent of contamination and identify potential sources.

1.3 Scope of Work

The original scope of work outlined in the NTP included the following tasks:

- Advance and sample at least seven shallow test pits (TPs) to 3 feet (ft) below ground surface (bgs) in areas of potential contamination. Analytes for soil samples included DRO, RRO, BTEX, and PAHs.
- Advance and sample three deep soil borings to groundwater, a maximum depth of 35 ft, or refusal, whichever is encountered first.
- Install, develop, sample, and remove three temporary well points (TWPs), co-located with deep soil borings. Analytes for groundwater samples included DRO, RRO, GRO, BTEX, and PAHs.
- Investigate whether fuel distribution piping is present on or near the property.
- Report field observations, findings, analytical results, conclusions, and recommendations.

The NTP was modified to include the use of a direct-push drill rig to complete the soil and groundwater investigations and the additional analyses of six soil samples for DRO and RRO and three soil samples for RCRA metals and PCBs.

1.4 Regulatory Framework

The regulatory framework for this project was developed under consideration of the following regulations and guidance documents:

- 18 Alaska Administrative Code (AAC) 75, Oil and Other Hazardous Substances Pollution Control, November 6, 2016.
- Policy Guidance on Developing Conceptual Site Models (CSM), ADEC Division of Spill Prevention and Response, Contaminated Sites Program, October 2010.
- Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, September 23, 2009.
- Field Sampling Guidance, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, March 2016.

Soil analytical results were compared to the most conservative Method Two soil cleanup levels (SCLs) for the "Under 40 Inch Zone" or "Migration to Groundwater" from Tables B1 and B2 of 18 AAC 75.341, effective November 6, 2016. Groundwater analytical results are compared to groundwater cleanup levels (GWCLs) from Table C of 18 AAC 75.345. Table 1 lists the cleanup

levels for the COPCs associated with the Bunker C contamination at the site. For PAHs, only those detected above cleanup levels in 2016 are listed for brevity.

TABLE 1: CLEANUP LEVELS FOR CONTAMINANTS OF POTENTIAL CONCERN

Compound	SCL (mg/kg)	GWCL (µg/L)
GRO	300*	2,200
DRO	250	1,500
RRO	10,000	1,100
Benzene	0.022	4.6
Toluene	6.7	1,100
Ethylbenzene	0.13	15
Xylenes (total)	1.5	190
1-Methylnaphthalene	0.41	11
2-Methylnaphthalene	1.3	36
Acenaphthene	37	530
Benzo(a)anthracene	0.28	0.12
Benzo(a)pyrene	0.20	0.034
Benzo(b)fluoranthene	2.0	0.34
Naphthalene	0.038	1.7
Arsenic	0.20	0.52*
Barium	2,100	3,800*
Cadmium	9.1	9.2*
Chromium (III)	100,000	22,000*
Lead	400	15*
Mercury	0.36	0.52*
Selenium	6.9	100*
Silver	11	94*
PCBs (total)	1.0	0.50*

Notes: mg/kg = milligrams per kilogram, μ/L = micrograms per liter * = not included in this field program

2.0 FIELD ACTIVITIES

This section describes the field activities performed by Ahtna and its teaming partner, Arctic Data Services (ADS) in August 2016. A preliminary site visit was conducted August 17, 2016 and field work was completed from August 23-25, 2016. All fieldwork and all field and laboratory quality assurance criteria for this project were conducted in accordance with the project work plan (Ahtna, 2016) and applicable ADEC procedures. The site visit was conducted by Rodney Guritz (ADS) and fieldwork was performed by Leslie Davis (Ahtna), both of whom are qualified environmental professionals as defined in 18 AAC 75.333.

The field logbook and data sheets document all field activities and are included as Appendix A. Photographs are presented in Appendix B. Finalized soil boring and test pit logs are in Appendix C.

2.1 Preliminary Site Visit

The objective of the site visit performed by ADS on August 17, 2016 was to coordinate with the land owners and local stakeholders and conduct a site walk-through to identify buried utilities and identify test pit locations. An Alaska Digline utility locate was submitted prior to conducting subsurface investigations. A sewer and water utility line operated by Too'gha utilities was located along the centerline of First Avenue and Koyukuk Street. The telephone provider, United Utilities, Inc., had an operator in the village, but did not have equipment to locate the telephone line. Ahtna made arrangements for the utility locate to be completed during the field sampling event.

A preliminary piping investigation was performed by beginning at the fuel pump located south of First Avenue (see Figure 2) and using a magnetometer to track the associated fuel lines. A linear signal was observed from the pump toward the site, but faded approximately 20 ft from the pump, prior to the road crossing (Site Sketch, Appendix A). No linear signals were observed north of the road within the site boundary. ADS investigated south of the pump station at the base of the Yukon River bank where they found remnants of 4 inch (in) diameter flexible hose and pipe fittings, but no permanent piping.

2.2 Shallow Test Pits

Ahtna returned to Tanana on August 23, 2016 and performed field sampling as outlined in the project work plan. Prior to subsurface work at the site, United Utilities, Inc. performed a utility locate and identified a buried communications line along the north side of First Avenue.

Ahtna excavated 14 shallow TPs to a depth of 3 ft bgs in most locations (Figure 2). Each TP was approximately 3 ft wide by 3 ft long. Four TP locations (TP-01, TP-02, TP-03, TP-13) were within the known area of Bunker C contamination, with excavations extending to at least one foot below the observed contamination layer. The remaining TP locations were placed to delineate the horizontal extent of contamination: three locations south of First Avenue, two locations west of Koyukuk Street, and five locations within Lots 7 and 8, Block 11 (Figure 2). Where no Bunker C contamination was observed, TPs were excavated to a depth of 2.5 to 3.0 ft bgs.

The City of Tanana provided a backhoe and operator for the excavation of shallow TPs on August 23, 2016 (Photo 1). Three test pits, TP-12, TP-13, and TP-14, were hand-dug to further refine the southwest extent of contamination after the backhoe was offsite on August 24, 2016.

During S&W's 2014 investigation, the Bunker C contamination layer did not register readings above background on a photoionization detector (PID). However, benzene concentrations were detected in analytical samples collected from directly below the visibly contaminated area at 0.75 ft bgs (S&W, 2015). Therefore, Ahtna collected soil samples for field screening using a MiniRAE 2000 PID from at least one location in each TP to screen for potential volatile contaminants. Unless otherwise noted, screening samples were collected from approximately one foot below the visible contaminated layer. The screening samples were collected directly from the TP sidewalls into disposable, quart-sized Ziploc® plastic bags. Bags were filled one-third to one-half full and warmed to at least 40 degrees Fahrenheit prior to screening. The PID screening results are presented in Table 2, Section 3.1.

Per the work plan, three samples and a duplicate were collected from the visibly contaminated layer to confirm 2014 results and support correlation of analytical results with visual observation. Four samples were collected from soil approximately one foot beneath the observed Bunker C contamination. The remaining eight samples were collected from TPs beyond the visibly contaminated area to the north, south, east, and west at a depth of 1.0 to 1.5 ft bgs, with the exception of TP-09. At location TP-09, the sample was collected at a depth of 2.1 to 2.3 ft bgs to account for the additional gravel fill associated with Koyukuk Street.

Analytical samples were collected using the discrete grab sampling procedures described in the work plan and ADEC's *Field Sampling Guidance*. Sampling was conducted with disposable stainless steel spoons to prevent cross-contamination. Samples were collected in order of decreasing volatility. For volatile analytes (BTEX), a target sample mass of 25-30 grams was collected and immediately preserved with 25 milliliters of methanol. For semi-volatile or non-volatile analyses (DRO, RRO, PAH, PCB, RCRA metals) sample jars were filled completely, leaving no headspace.

2.3 Soil Borings

On August 24, 2016, three soil borings were driven to a depth of 20 ft bgs using a Geoprobe® 6620 DT series direct push drill rig operated by GeoTek Alaska, Inc. (GeoTek). Two-inch diameter Geoprobe® continuous core samplers with polyethylene liners were used to collect soil cores in 5 ft intervals. Soil borings were advanced to groundwater, which was encountered at approximately 20 ft bgs. Soil boring logs are included in Appendix C. Soil cores were opened and in-situ PID field screening was performed at one foot intervals. Analytical soil samples were collected with disposable stainless steel spoons and following procedures described in the work plan and ADEC's *Field Sampling Guidance*.

Within the source area at SB-03, one sample was collected from the Bunker C contamination layer at a depth of 1.6 to 1.8 ft bgs, and one sample was collected from a depth of 5.5 to 6.0 ft bgs to confirm vertical delineation (Figure 2). A duplicate sample was also collected from the 5.5 to 6.0 ft bgs interval. At the two soil boring locations across First Avenue, SB-02 and SB-03, samples

were collected from the smear zone at the groundwater interface (18.3 to 18.7 ft bgs and 19.0 to 19.6 ft bgs, respectively). Soil boring samples were submitted for analysis of DRO and RRO.

Following sample collection, soil borings were filled with bentonite to a least one foot above the groundwater depth and backfilled to the surface with soil cuttings from the sample cores.

2.4 Temporary Well Points

Three TWPs were installed on August 25, 2016 at locations co-located with the deep soil borings (Figure 2).

Using the Geoprobe® 6620 DT series direct push drill rig, SP-16® groundwater samplers were used to advance TWPs to the desired sampling depths. At TWP-01 and TWP-02, the sampler was advanced to 25 ft bgs. The samplers were then pulled up to expose the 41-in long, stainless steel screen to groundwater. Prior to sampling, the TWPs were developed using a peristaltic pump surging along the length of the screen until the purge water was visibly free of sediment.

At location TWP-03, the SP-16® tooling was initially advanced to 14 ft bgs to capture a potential elevated water table based on saturated soil observations from SB-03. The attempt to purge water from the TWP was unsuccessful. It is assumed the saturated layer observed at SB-03 was a result of a frozen soil layer that had melted before the core could be profiled. The TWP tooling was removed and the boring was backfilled with cuttings to the surface. The drill rig was re-positioned approximately one foot away and the decontaminated SP-16® groundwater sampler was driven to 25 ft bgs, consistent with the other TWP depths. Groundwater was encountered and the TWP was successfully developed and subsequently sampled.

Groundwater samples were submitted for analysis of DRO, RRO, GRO, BTEX, and PAHs. Following sample collection, the well points were removed and decommissioned as outlined in the work plan.

2.5 Piping Investigation

Ahtna conducted a piping investigation utilizing a magnetometer to determine whether any fuel piping was present on Lot 7. Observations of piping near the pump made during the initial site visit were confirmed; an approximately 20 ft long linear signal was observed from the pump toward the site, but faded prior to the road crossing.

A 10-foot by 10-foot grid was established over the southern half of Lot 7, Block 11 and scanned with the magnetometer. Positive signals were marked and investigated to determine whether they were linear in nature. Observations and a site sketch were documented in the field notebook (Appendix A).

2.6 Waste Management

Excavated soils from the TP locations were used as backfill following sampling at each location. Soil from the deep soil borings was used to backfill the individual borings to surface grade. Efforts were made to place the soil back to the depth where it originated from.

ADEC

Purge water and drill tooling decontamination water was treated onsite with granular activated carbon and discharged to the ground surface. Disposable sampling supplies, including nitrile gloves, bags, soil core liners, and paper towels were bagged and disposed of at the Tanana Landfill.

3.0 OBSERVATIONS AND RESULTS

This section presents the field screening and analytical results from soil and groundwater samples collected at the site from August 23 to 25, 2016. Observations and results from the piping investigation are also included. The TP locations and results are illustrated on Figures 2 and 3. Photographs are presented in Appendix B. Analytical laboratory results are included as Appendix D.

3.1 Soil Test Pit Observations

Bunker C fuel oil contamination was observed in the southern portion of the Lot 7, Block 11 property boundary in a distinct 2 to 6 in thick layer at approximately 0.5 to 1.5 ft bgs. The TPs with this visibly contaminated layer included TP-01, TP-02, TP-03, and TP-14.

At TP-01, the tar layer was approximately 6 in thick on the west sidewall (Photo 2) and approximately 4 in think on the north sidewall (Photo 3). A 2.5 ft long, 2-in diameter metal pipe was observed partially buried to a depth of 1 ft bgs. A few small pieces of wood debris were observed in the pit.

During the excavation of TP-03, tar covered, 4 in thick wooden planks were encountered at approximately 1 ft bgs (Photo 4). Soil contaminated with Bunker C was observed both directly above and below the planks (Photo 5). Below the wooden plank, the tar layer was approximately 6 in thick. A strong hydrocarbon fuel odor was noted during the excavation at this location.

TP-02 had a relatively narrow tar layer, approximately 0.2 in thick at 1.0 to 1.2 bgs, when compared to the other TPs within the visibly contaminated area. No wood debris was observed at this location. A slight diesel odor was noted during excavation.

TP-13 and TP-14 were excavated by hand using a shovel. At TP-14, the tar layer was approximately 4 in thick. At TP-13, a dark layer of charred wood debris was observed from 1.0 to 1.4 ft bgs. However, the oily tar characteristics were not present in this layer.

No visible contamination was observed in the remaining TP locations.

Within the southern portion of Lot 7, Block 11, significant sheen was observed on the ground surface following rains during the field event.

3.2 Soil Field Screening

Field screening of TPs and deep soil borings was performed using a MiniRAE 2000 PID following procedures outlined in the work plan. All soil boring PID screening results were less than 1.5 parts per million (ppm) (Appendix C). Table 2 presents the results of field screening conducted at the shallow TP locations.

Location	Depth (ft bgs)	PID Result* (ppm)	Description	Associated Sample ID
TP-01	1.6	0.3	West sidewall; below tar layer	-
TP-02	2.0	113	North sidewall; one foot below tar layer	16-TAL-TP-02-2.2-2.5
TP-03	2.0	60.1	South sidewall; below tar layer	-
TP-04	2.0	3.3	East sidewall; no tar layer observed	16-TAL-TP-04-1.0-1.2
TP-05	1.5	1.1	North sidewall; no tar layer observed	16-TAL-TP-05-1.0-1.2
TP-06	1.8	1.6	North sidewall; no tar layer observed	16-TAL-TP-06-1.3-1.5
TP-07	1.8	0.9	South sidewall; no tar layer observed	16-TAL-TP-07-1.4-1.5
TP-08	1.5	0.7	East sidewall; no tar layer observed	16-TAL-TP-08-1.2-1.3
TP-09	2.0	0.8	East sidewall; no tar layer observed	16-TAL-TP-09-2.1-2.3
TP-10	1.5	0.7	East sidewall; no tar layer observed	16-TAL-TP-10-1.0-1.2
TP-11	1.8	0.6	North sidewall; no tar layer observed	16-TAL-TP-11-1.5-1.7
TP-12	1.8	0.1	East sidewall; no tar layer observed	-
TP-13	1.0 - 1.4	0.1	Directly from charred wood layer; no tar layer observed	-
117-13	1.9	0.1	Below charred wood layer; no tar layer observed	-
TP-14	1.0	62.5	Directly from tar layer	-

TABLE 2: SHALLOW TEST PIT PID SCREENING RESULTS

*Elevated PID results are in bold

ft bgs = feet below ground surface

 $PID = photoionization\ detector$

ppm = parts per million

Elevated PID results were observed at TP-02, TP-03, and from a screening sample collected directly from the tar layer at TP-14.

The highest PID reading (113 ppm) was observed at TP-02 at a depth of 2.0 ft bgs. As a result of the elevated PID reading, a co-located analytical soil sample was collected for DRO, RRO, PAH, BTEX, PCB, and metals. As noted in Section 3.2, TP-02 had a relatively narrow tar layer approximately 0.2 in thick at 1.0 to 1.2 bgs, when compared to the other TPs within the visibly contaminated area.

At TP-13, a dark layer of charred wood debris was observed from 1.0 to 1.4 ft bgs. The screening sample taking directly from this debris layer had a PID reading of 0.1 ppm. For comparison, a screening sample collected directly from the tar layer at TP-14 had a PID reading of 62.5 ppm.

3.3 Analytical Soil Sampling

Fifteen primary and one duplicate analytical soil samples were collected from the shallow TPs. The analytical program varied slightly by location and sample depth:

- All samples were submitted for analysis of DRO and RRO (Method AK 102/103).
- Three samples and one duplicate were collected from the visibly contaminated layer at TP-01, TP-02, and TP-03. At TP-03 the primary and duplicate samples collected from the tar layer were also submitted for BTEX (Method 8021B), PAHs (Method 8270D SIM), RCRA metals (Method SW6020A), and PCBs (Method SW8082A).

- Four samples were collected from one foot below the visibly contaminated layer to aid in vertical delineation at TP-01, TP-02, and TP-03. As discussed in Section 3.2, one of these samples (TP-02) was also submitted for BTEX, PAHs, RCRA metals, and PCBs.
- Eight samples were collected from the TPs in which no visibly contaminated layer was identified.
- Four primary and one duplicate analytical samples were collected from the soil borings and analyzed for DRO and RRO based on the rationale described in Section 2.3.

DRO and RRO results for the soil samples are presented in Table 3. BTEX and PAH results for the soil samples are presented in Table 4. PCBs and RCRA metals results are presented in Table 5. Figure 2 illustrates the DRO and RRO results. Figure 3 illustrates the BTEX, PAH, and RCRA metals results.

3.3.1 DRO and RRO Results

TABLE 3: SOIL ANALYTICAL RESULTS - DRO/RRO

Location	Depth (ft bgs)	Sample ID	Date	Duplicate	Tar Observed	DRO (mg/kg)	RRO (mg/kg)			
Shallow Test Pits										
	1.0 - 1.3	16-TAL-TP-01-1.0-1.3	8/23/2016		X	99,500	83,100			
TP-01	2.4 - 2.5	16-TAL-TP-01-2.4-2.5	8/23/2016			12.2 U	11.1 J			
	2.5 - 2.6	16-TAL-TP-01-2.5-2.6	8/23/2016			12.4 U	14.3 J			
TP-02	1.1 - 1.3	16-TAL-TP-02-1.1-1.3	8/23/2016		X	35,700	45,200			
11-02	2.2 - 2.5	16-TAL-TP-02-2.2-2.5	8/23/2016			189	324			
	1.5 - 1.8	16-TAL-TP-03-1.5-1.8	8/23/2016		X	66,900	67,400			
TP-03		16-TAL-TP-20-1.5-1.8	8/23/2016	X	X	71,000	70,700			
	2.8 - 3.0	16-TAL-TP-03-2.8-3.0	8/23/2016			11.8 U	16.8 J			
TP-04	1.0 - 1.2	16-TAL-TP-04-1.0-1.2	8/23/2016			11.3 U	20.2 J			
TP-05	1.0 - 1.2	16-TAL-TP-05-1.0-1.2	8/23/2016			10.3 J	48.3			
TP-06	1.3 - 1.5	16-TAL-TP-06-1.3-1.5	8/23/2016			8.82 J	44.2			
TP-07	1.4 - 1.5	16-TAL-TP-07-1.4-1.5	8/23/2016			52.5	333			
TP-08	1.2 - 1.3	16-TAL-TP-08-1.2-1.3	8/23/2016			4,210	<u>18,000</u>			
TP-09	2.1 - 2.3	16-TAL-TP-09-2.1-2.3	8/23/2016			112	721			
TP-10	1.0 - 1.2	16-TAL-TP-10-1.0-1.2	8/23/2016			67.0	399			
TP-11	1.5 - 1.7	16-TAL-TP-11-1.5-1.7	8/23/2016			24.9 J	150			
		Deep So	il Borings							
SB-01	18.3 - 18.7	16-TAL-SB-01-18.3-18.7	8/24/2016			7.63 J	19.6 J			
SB-02	19.0 - 19.6	16-TAL-SB-02-19.0-19.6	8/24/2016			7.87 J	20.0 J			
	1.6 - 1.8	16-TAL-SB-03-1.6-1.8	8/24/2016		X	12,400	31,400			
SB-03	5.5 - 6.0	16-TAL-SB-03-5.5-6.0	8/24/2016			8.25 J	27.5			
	5.5 - 6.0	16-TAL-SB-20-5.5-6.0	8/24/2016	X		11.9 U	21.1 J			
		DEC Cleanup Levels ¹				250	10,000			

Results above ADEC cleanup values are underlined & bolded.

ADEC = Alaska Department of Environmental Conservation DRO = diesel range organics RRO = residual range organics mg/kg = milligrams per kilogram ft bgs = feet below ground surface

 $^{^{\}left(1\right)}$ Most conservative values from 18 AAC 75.345, Tables B1 and B2

U = The analyte was not detected; value shown is the limit of detection

J = result qualified as estimated because it is less than the limit of quantification

Sample locations TP-01, TP-02, TP-03, and SB-03 were within the visibly contaminated area (Figure 2). Samples collected directly from the contaminated tar layer had DRO concentrations ranging from 12,400 mg/kg to 99,500 mg/kg. Concentrations of RRO ranged from 31,400 mg/kg to 70,700 mg/kg. At SB-03 a primary and duplicate sample were collected from 5.5 to 6.0 ft bgs to confirm vertical delineation within the visibly contaminated area. The DRO and RRO results at SB-03 were below 1/10th of the SCL or were not detected.

At one location beyond the visibly contaminated area, TP-08, concentrations of DRO and RRO exceeded SCLs with 4,210 mg/kg and 18,000 mg/kg, respectively. There were no obvious signs of contamination observed at this location either visually or through field screening with the PID.

DRO and RRO concentrations in soil samples collected from the groundwater smear zone, at depths ranging from 18.3 to 19.6 ft bgs and presumably downgradient from the contamination, were below $1/10^{th}$ of the SCLs.

3.3.2 BTEX and PAH Results

BTEX and PAH were analyzed in samples from the visibly contaminated layer at TP-03 and from one foot below the visibly contaminated layer at TP-02. Results are presented below in Table 4.

Benzene, ethylbenzene, and toluene were not detected in either location. Concentrations of oxylene were detected at less than $1/10^{th}$ the SCL.

Five PAH analytes (1-methylnaphthalene, acenaphthene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and naphthalene) were detected above their respective SCLs at TP-03. Dibenzo(a,h)anthracene was not detected, but the dibenzo(a,h)anthracene limit of detection (LOD) exceeded the SCL. At TP-02, no PAHs were detected above 1/10th of the SCLs.

TABLE 4: SOIL ANALYTICAL RESULTS - BTEX AND PAH

			Sample ID	16-TAL-TP-02-2.2-2.5	16-TAL-TP-03-1.5-1.8	16-TAL-TP-20-1.5-1.8
			Location	TP-02	TP-03	TP-03
		De	epth (ft bgs)	2.2 - 2.5	1.5 - 1.8	1.5 - 1.8
		Та	ar Observed		X	X
			Date	8/23/2016	8/23/2016	8/23/2016
			Duplicate			X
Analyte	Method	Units	Cleanup Level ¹			
1	BTEX					
Benzene		μg/kg	22	10.9 U	9.15 U	9.80 U
Ethylbenzene		μg/kg	130	21.9 U	18.3 U	19.6 U
Toluene		μg/kg	6,700	21.9 U	18.3 U	19.6 U
o-Xylene	8021B	μg/kg	1,500	17.5 J	110	142
m- & p-Xylene		μg/kg	1,500	43.8 U	36.5 U	39.1 U
Total Xylenes		μg/kg	1,500	17.5 J	110	142
Polycyclic Aro	matic Hyd		ıs			
1-Methylnaphthalene		μg/kg	410	3.06 U	13,800	17,900
2-Methylnaphthalene		μg/kg	1,300	2.02 J	1,215 U	1,225 U
Acenaphthene		μg/kg	37,000	3.06 U	33,400	37,400
Acenaphthylene		μg/kg	18,000	3.37 J	1,215 U	1,225 U
Anthracene		μg/kg	390,000	3.06 U	11,600	14,200
Benzo(a)anthracene		μg/kg	280	7.13	<u>7,660</u>	<u>8,250</u>
Benzo[a]pyrene		μg/kg	200	14.3	<u>4,200</u>	<u>4,130</u>
Benzo[b]fluoranthene		μg/kg	2,000	12.8	<u>3,250</u>	<u>2,990</u>
Benzo[g,h,i]perylene	8270D	μg/kg	2,300,000	6.97	1,660 J	1,500 J
Benzo[k]fluoranthene	SIM	μg/kg	20,000	3.28 J	2,620	1,225 U
Chrysene		μg/kg	82,000	7.75	19,600	20,000
Dibenzo[a,h]anthracene		μg/kg	200	2.13 J	1,215 U	1,225 U
Fluoranthene		μg/kg	590,000	6.68	1,215 U	5,950
Fluorene		μg/kg	36,000	3.06 U	21,800	25,600
Indeno[1,2,3-c,d]pyrene		μg/kg	2,000	4.55 J	1,215 U	1,225 U
Naphthalene		μg/kg	38	3.06 U	<u>2,300 J</u>	1,225 U
Phenanthrene		μg/kg	39,000	3.06 U	33,700	34,200
Pyrene Pagulta shave ADEC alcomo		μg/kg	87,000	23.5	30,100	31,100

Results above ADEC cleanup values are underlined & bolded.

⁽¹⁾ Most conservative values from 18 AAC 75.345, Tables B1 and B2

^{*}Sample results with limits of detection greater than the cleanup value are shaded gray.

ft bgs = feet below ground surface

μg/kg = micrograms per kilogram

U = The analyte was not detected; value shown is the limit of detection

J = result qualified as estimated because it is less than the limit of quantification

3.3.3 RCRA Metals and PCB Results

RCRA metals and PCBs were analyzed in samples collected from the visibly contaminated layer at TP-03 and from one foot below the visibly contaminated layer at TP-02. Results are presented in Table 5, below.

Arsenic (As) was detected at concentrations exceeding the SCLs in the samples collected at both locations. PCBs were not detected in any samples. However, due to interference, LODs were elevated above SCLs for total PCBs in the sample and duplicate from the visibly contaminated layer.

TABLE 5: SOIL ANALYTICAL RESULTS - RCRA METALS AND PCBS

			Commis ID	16-TAL-TP-02-2.2-2.5	16-TAL-TP-03-1.5-1.8	16-TAL-TP-20-1.5-1.8	
			Sample ID				
			Location	TP-02	TP-03	TP-03	
			epth (ft bgs)	2.2 - 2.5	1.5 - 1.8	1.5 - 1.8	
		T	ar Observed		X	X	
			Date	8/23/2016	8/23/2016 8/23/2016		
			Duplicate			X	
Analyte	Method	Units	Cleanup Level ¹				
	RCRA M	etals					
Arsenic		mg/kg	0.20	<u>10.1</u>	<u>5.02</u>	<u>4.67</u>	
Barium		mg/kg	2,100	453	185	191	
Cadmium		mg/kg	9.1	0.343	0.213	0.175 J	
Chromium	SW6020A	mg/kg	$100,000^2$	31.8	23.3	23.2	
Lead	SW6020A	mg/kg	400	9.45	8.51	8.20	
Mercury		mg/kg	0.36	0.0637	0.0316 J	0.0294 J	
Selenium		mg/kg	6.9	0.595 J	0.387 J	0.393 J	
Silver		mg/kg	11	0.0929 J	0.102 U	0.104 U	
Polych	lorinated Bip	henyls (PC	B)				
Aroclor-1016		μg/kg		30.4 U	121 U	122 U	
Aroclor-1221		μg/kg		122 U	482 U	486 U	
Aroclor-1232	CM/0002 A	μg/kg		30.4 U	121 U	122 U	
Aroclor-1242		μg/kg		30.4 U	121 U	122 U	
Aroclor-1248	SW8082A	μg/kg		30.4 U	121 U	122 U	
Aroclor-1254		μg/kg		30.4 U	121 U	122 U	
Aroclor-1260		μg/kg		30.4 U	121 U	122 U	
Total PCBs		μg/kg	1,000	304 U	1,210 U	1,220 U	

Results above ADEC cleanup values are underlined & bolded.

RCRA = Resource Conservation and Recovery Act

⁽¹⁾ Most conservative values from 18 AAC 75.345, Tables B1 and B2

 $^{^{\}left(2\right)}$ In absence of speciation data, cleanup level for chromium (III) is referenced

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

 $[\]mu g/kg = micrograms \ per \ kilogram$

U = The analyte was not detected; value shown is the limit of detection

J = result qualified as estimated because it is less than the limit of quantification

3.4 Analytical Groundwater Sampling

Groundwater samples were collected from temporary well points at locations TWP-01, TWP-02, and TWP-03 (Figures 2 and 3). TWP-03 was located within the source area on Lot 7, Block 11. TWP-01 and TWP-02 were located south of First Avenue. Groundwater samples were analyzed for DRO, RRO, BTEX, and PAHs. Results are presented in the appended Table 6.

No exceedances of ADEC GWCLs were observed in the groundwater samples. All analytes were reported as non-detects with one exception: DRO was detected in the duplicate sample collected at TWP-02 at an estimated concentration of 0.190 milligrams per liter (below the limit of quantitation).

3.5 Piping Investigation

The visibly contaminated area was scanned with a magnetometer which resulted in positive signals at random locations throughout the grid, but no linear signals were observed (Appendix A). Segments of 2-in diameter metal piping were observed scattered throughout the lot, with some segments partially buried. A broken segment of the 2-in diameter metal piping was encountered at TP-01 at 0.5 ft bgs during the excavation.

4.0 QUALITY ASSURANCE REVIEW

ADS conducted a data quality assessment (DQA) for the one sample delivery group (SDG) generated during this project, 1168490. The DQA, including a summary of qualified data and ADEC data review checklist, is included in Appendix D along with the analytical laboratory report. The following paragraph briefly summarizes the key findings of the DQA.

In general, sensitivity, precision, accuracy, representativeness, comparability, and completeness were acceptable for the purposes of this project. Several analytes had LODs that exceeded soil cleanup levels. However, samples with elevated LODs contained other analytes well above soil cleanup levels, so overall data usability was not affected. Five sample results were qualified due to blank contamination. Affected results were below the limit of quantification and well below relevant cleanup levels in each case. All project sample results were considered usable (no data were rejected), and a completeness score of 100% was calculated for this project.

5.0 CONCLUSIONS

5.1 Fuel Impacts

Consistent with the 2015 PACP report, apparent Bunker C fuel oil contamination was observed in the southern portion of the property boundary in a distinct 2 to 6 in thick layer at approximately 0.5 to 1.5 ft bgs. Analytical soil sampling within the visibly contaminated area identified concentrations of DRO, RRO, and six PAH analytes above ADEC SCLs. The estimated lateral boundary of Bunker C contamination is illustrated in Figures 2 and 3 in an approximately 5,500 square (sq) ft area. Volume estimates for the removal of Bunker C contaminated material is estimated at 600 bank cubic yards (cy) of soil, assuming the uppermost 3 ft bgs are removed.

Contamination at the site is not limited to the area defined by the visibly contaminated tar layer. At location TP-08 no obvious signs of contamination were observed. However, analytical results for DRO (4,210 mg/kg) and RRO (18,000 mg/kg) concentrations exceeded SCLs. S&W also reported exceedances of DRO and benzene from soil samples in this area that did not have directly observable contamination. PID field screening results were not elevated during either sampling event. An estimated lateral boundary of DRO/RRO contamination is illustrated on Figures 2 and 3. This area of contamination likely comes from a different source as the physical and chemical characteristics (visual evidence, odor, PID readings, and DRO/RRO chromatograms) are not the same as for the Bunker C contamination. According to the laboratory, the hydrocarbon signature observed in the DRO/RRO chromatogram for sample 16-TAL-TP-08-1.2-1.3 was consistent with a lube oil, not a fuel. This DRO/RRO contaminated area is estimated to be approximately 300 sq ft. Removal of the DRO/RRO contaminated soil would require an additional 20 bank cy of soil, if the upper most 2 feet of soil are excavated, although vertical delineation of this area has not been accomplished.

On the southern half of Lot 7, Block 11, significant sheen was observed on the ground surface following rains during the field event. As noted in the PACP, many community members have observed a similar sheen on the ground surface in the spring time during break-up season.

Analytical results show no evidence of vertical migration of COPCs in the soil. Bunker C contamination appears to be confined to the upper 2 ft bgs. Results from samples collected from the TWPs indicate no impacts to groundwater from historical releases of Bunker C contamination.

The northwest and northeast corners of the visibly contaminated tar layer were delineated by S&W (Figures 2 and 3). This report confirms the lateral extent of the tar layer as well as the additional COPCs to the east and west. However, the extent to which the visibly contaminated tar layer extends beneath First Avenue remains unknown; Ahtna was unable to refine the southern extent due to the presence of underground utilities (phone, water, and sewer). Additionally, uncertainty exist in regards to the northwest corner of the property boundary where DRO and RRO exceeded SCLs, but no visibly contaminated soil was observed.

5.2 PCBs and RCRA Metals

PCBs were not detected in the soil samples collected from the visibly contaminated tar layer or from the location near First Avenue; therefore, PCBs should not be considered a COPC at the site.

Of the RCRA metals, As was detected at concentrations exceeding ADEC SCLs. Arsenic concentrations ranged from 4.67 gm/kg to 10.1 mg/kg. Research indicates As, among other elements, occurs naturally in the state of Alaska at concentrations greater than the respective ADEC Method Two SCLs (ADEC, 2009; Gough et al., 1988). A U.S. Geological Survey study identified mean Alaska background concentrations for As in Alaska soil as 9.6 mg/kg. Data from five stream or pond sediment samples collected within a 9-mile radius of Tanana resulted in mean localized background concentrations for As of 9.2 mg/kg (National Geochemical Survey Data, 2016). These studies, along with the analytical data presented in this report, suggest that the site contains naturally occurring As concentrations above the ADEC Method Two SCLs.

5.3 Piping Investigation

Results of the piping investigation suggest there is no intact fuel distribution piping remaining on the site. Within Lot 7, no linear signals were detected. Piping on the south side of First Avenue appears to end approximately 10 ft from the road. The fuel pump remains near the site, located approximately 20 ft south of First Avenue (Figure 2). Residents reported that during installation of the sewer line which runs the centerline of the road (see sketch in field book, Appendix A), a 2-in diameter metal pipe containing diesel was encountered that crossed the road, toward the pump location. According to residents, an unknown amount of diesel was released during removal of the pipe. The soil was reportedly excavated, transported to the landfill, and buried.

5.4 Conceptual Site Model

The CSM was revised based on the analytical sampling results presented in this report. The ADEC CSM Graphic and Scoping Forms are included in Appendix E.

Impacted media includes surface soil, air, and biota. Groundwater has possible minimal impact from contamination with a DRO concentration nearly 1/10th of the GWCL. The vertical extent of Bunker C contamination does not extend below 2 ft bgs. Vertical extent of the DRO/RRO contamination in the vicinity of TP-08 remains unknown. Potential receptors at the site remain the same as identified in the 2015 PACP and include site visitors, trespassers, recreational users, and utility or construction workers. Potential future receptors include farmers.

Soil exposure pathways include incidental soil ingestion and dermal absorption of surface soils. Groundwater exposure pathways are considered potentially complete based on a DRO detection (0.190 mg/L) at more than 1/10th the GWCL. Surface water on the property consist of puddles during breakup and after rainfall that are impacted by runoff and erosion, thus dermal absorption is considered a complete pathway.

The exposure pathways via outdoor and indoor air remain complete. Potential exposure via indoor air at the Tanana Community Hall is unlikely due to a skirted crawlspace beneath the structure. However, additional data is required, thus the pathway is considered potentially complete.

The biota pathway is currently considered incomplete, but the potential for a community garden would complete this pathway.

6.0 RECOMMENDATIONS

Ahtna recommends proceeding with site cleanup based on the findings of this report and the 2015 *Tanana Community Hall Lot PACP* (S&W, 2015). Horizontal and vertical delineation of the Bunker C soil contamination is considered complete, with the exception of the southern extent beneath First Avenue. Sample results confirmed vertical migration of contaminants is limited, and contamination is confined to a thin, near-surface layer. Likewise, groundwater has possible minimal impact from contamination with DRO concentrations nearly 1/10th the GWCL.

While the Bunker C contamination has been adequately delineated, sample results from TP-08 and S&W's Test Pit 2 suggest another source of localized soil contamination from a residual-range petroleum hydrocarbon (Figures 2 and 3). During both sampling events, field observations and PID readings provided no indication of soil contamination, and the tar layer of Bunker C observed elsewhere on site was absent. Reviewing the DRO/RRO chromatogram for sample 16-TAL-TP-08-1.2-1.3, it appears the hydrocarbon signature is consistent with a non-volatile lube oil. However the origin of this localized contamination is unknown. Contamination in the vicinity of these two test pits could be further delineated at the time of excavation using a PetroFlag field screening kit or equivalent.

6.1.1 Remedial Alternatives

Contaminated soil from both locations, given its hydrophobic, recalcitrant nature, will likely be difficult to treat through landfarming or other forms of bioremediation. The constituents in Bunker C have extremely limited bioavailability, limiting the potential effectiveness of landfarming. Also, the presence of large timbers and charred wood debris contaminated with Bunker C further limits soil treatment options.

Approximately 5 cubic yards of Bunker C contaminated soil and wood debris removed during the 2014 ditch excavation is currently stored on a liner at the Landfill. This material should be included in the selected remedial action.

The following remedial alternatives could be employed to address contaminated surface soil, taking into account the nature of soil contamination at the site.

6.1.1.1 Landfill Disposal

Landfill disposal may be the most cost-effective and practicable option for soil and timbers contaminated with Bunker C. Under ADEC's solid waste management regulations, 18 AAC 60.025 allows for disposal of contaminated soil in a Class III municipal solid waste landfill if certain conditions are met, including a maximum volume of 500 cy and maximum allowable concentrations of petroleum hydrocarbons. DRO and RRO results exceed the maximum allowable concentrations from 18 AAC 60.025(b)(4) and the total volume will likely exceed 500 cy. However, disposal may still be allowed in accordance with 18 AAC 60.025(c),(d), and (e), as follows:

- (c) The department will approve the beneficial use within a Class III Municipal Solid Waste Landfill (MSWLF) of polluted soil that does not meet one or more of the criteria in (b) of this section, if the proposed use of the soil
 - (1) has a direct benefit to the community; a direct benefit to the community does not include providing compensation for the disposal of the polluted soil;
 - (2) can be accommodated within the established operational practices at the landfill or within the existing maintenance, closure, or expansion plans for the landfill; and
 - (3) will comply with the conditions and requirements in (d) and (e) of this section.
- (d) The disposal of polluted soil at a landfill other than a Class I MSWLF, an industrial solid waste landfill, a drilling waste landfill, or a Class III MSWLF, or the beneficial use of polluted soil under (c) of this section, will be approved on a case-by-case basis only if the owner of the polluted soil and the owner or operator of the landfill demonstrate, to the satisfaction of the department, that
 - (1) the waste in the landfill cannot be washed into nearby surface water, and leachate from the landfill cannot reach nearby surface water;
 - (2) the polluted soil, if it is disposed in the landfill, will not cause a threat to the public health, safety, or welfare, or to the environment;
 - (3) a practical potential does not exist for migration of a hazardous constituent from the landfill to an aquifer during the active life and post-closure care of the landfill; and
 - (4) the owner of the landfill agrees to implement institutional controls that the department determines are necessary for long-term protection of the public health, safety, and welfare and the environment.
- (e) The demonstration required under (d) of this section must be certified by a qualified groundwater scientist and based upon site-specific
 - (1) field-collected measurements, sampling, and analysis of physical, chemical, and biological processes affecting fate and transport of hazardous constituents; and
 - (2) hazardous constituent fate and transport predictions that anticipate maximum, likely migration and consider effects on public health, safety, and welfare and the environment.

6.1.1.2 Off-Site Transportation and Thermal Remediation

Given that the contamination is present in a thin layer and total soil volume is not excessive, offsite transportation (by barge) and thermal remediation may be an option for Bunker C contaminated soil. However, this alternative does not address the buried timbers contaminated by a layer of Bunker C. These would likely need to be disposed at the Tanana Landfill. The cost of this alternative is high, due to the costs of transportation and disposal.

6.1.1.3 Landfarming Following a Treatability Study

Landfarming of Bunker C contaminated soil should not be entirely ruled out. Bioavailability concerns could potentially be addressed by dilution and application of surfactants and/or oleophilic

fertilizer. However, in order to increase the likelihood of bioremediation effectiveness, a bench-scale treatability study using site-specific conditions and soil is recommended. ADEC could partner with the University of Alaska Fairbanks or other research institute to conduct such a study. However, the scale of contamination at the site is not likely to warrant the costs of such a study. As with off-site transportation and thermal remediation alternative, the contaminated timbers would need to be addressed separately.

6.1.2 Preferred Remedial Alternative

We recommend the ADEC pursue disposal of the contaminated soil and timbers from the site in the Tanana Landfill. This could be executed in conjunction with closure of a diesel-contaminated landfarm from the Tanana Power Company site. Soil from the Community Hall site should be disposed in a dedicated cell, for which landfarmed soils from the Tanana Power Company site could be used as cover. Given an adequate analysis of the leachability potential of the Bunker C and lube-oil contaminated soils, landfill disposal is the most cost-effective and practicable remedial alternative that is likely to provide long-term protection of public health, safety, welfare, and the environment.

7.0 REFERENCES

- Ahtna, 2016. Tanana Community Hall Brownfield Assessment Work Plan. Prepared for ADEC. August.
- Alaska Department of Environmental Conservation (ADEC), 2008. *Title 18 Alaska Administrative Code 75 Oil and Other Hazardous Substances Pollution Control*. October.
- ADEC, 2009. *Arsenic in Soil*. Technical Memorandum. Division of Spill Prevention and Response. March 2009.
- National Geochemical Survey Data: Alaska, 2016. Website: http://mrdata.usgs.gov/geochemistry/ngs-ak.html. Accessed 11-16-2016.
- Gough, L. P., R. C., Severson, and H. T. Shacklette. 1988. *Element Concentrations in Soils and Other Surficial Materials of Alaska*. U.S. Geological Survey Professional Paper 1458.
- Shannon & Wilson Inc. (2015). *Tanana Community Hall Lot Property Assessment and Cleanup Plan*. Fairbanks, AK.

TABLE 6

Table 6: Groundwater Analytical Results

Tanana Community Hall Brownfield Assessment Report Tanana, Alaska

			Sample ID	16-TAL-WP-01-21.5-25.0	16-TAL-WP-02-21.5-25.0	16-TAL-WP-20-21.5-25.0	16-TAL-WP-03-21.5-25.0
			Location	SB-01 / TWP-01	SB-02 /	TWP-02	SB-03 / TWP-03
			Date	8/25/2016	8/25/2016	8/25/2016	8/25/2016
			Duplicate			х	
Analyte	Method	Units	Cleanup Level ¹				
GRO	AK101	mg/L	2.2	0.100 UB	0.0500 U	0.0500 U	0.0500 U
DRO	AK102	mg/L	1.5	0.600 UB	0.588 UB	0.190 J	0.294 U
RRO	AK103	mg/L	1.1	0.250 U	0.245 U	0.245 U	0.245 U
	BTEX	-			-		
Benzene		μg/L	4.6	0.250 U	0.250 U	0.250 U	0.250 U
Ethylbenzene		μg/L	15	0.500 U	0.500 U	0.500 U	0.500 U
Toluene	8021B	μg/L	1,100	0.500 U	0.500 U	0.500 U	0.500 U
o-Xylene	00215	μg/L	190	0.500 U	0.500 U	0.500 U	0.500 U
m- & p-Xylene		μg/L	190	1.00 U	1.00 U	1.00 U	1.00 U
Total Xylenes		μg/L	190	-	-	-	-
Polycycli	Aromatic Hyd	lrocarbons					
1-Methylnaphthalene		μg/L	11	0.0254 U	0.0154 J	0.0240 U	0.0245 U
2-Methylnaphthalene		μg/L	36	0.0508 UB	0.0256 U	0.0240 U	0.0490 UB
Acenaphthene		μg/L	530	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Acenaphthylene		μg/L	260	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Anthracene		μg/L	43	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Benzo(a)anthracene		μg/L	0.12	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Benzo[a]pyrene		μg/L	0.034	0.0101 U	0.0103 U	0.00960 U	0.00980 U
Benzo[b]fluoranthene		μg/L	0.34	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Benzo[g,h,i]perylene	8270D	μg/L	0.26	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Benzo[k]fluoranthene	SIM LV	μg/L	0.80	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Chrysene		μg/L	2.0	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Dibenzo[a,h]anthracene		μg/L	0.034	0.0101 U	0.0103 U	0.00960 U	0.00980 U
Fluoranthene		μg/L	260	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Fluorene		μg/L	290	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Indeno[1,2,3-c,d]pyrene		μg/L	0.19	0.0254 U	0.0256 U	0.0240 U	0.0245 U
Naphthalene		μg/L	1.7	0.0510 U	0.0510 U	0.0481 U	0.0490 U
Phenanthrene		μg/L	170	0.0177 J	0.0180 J	0.0240 U	0.0245 U
Pyrene		μg/L	120	0.0254 U	0.0256 U	0.0240 U	0.0245 U

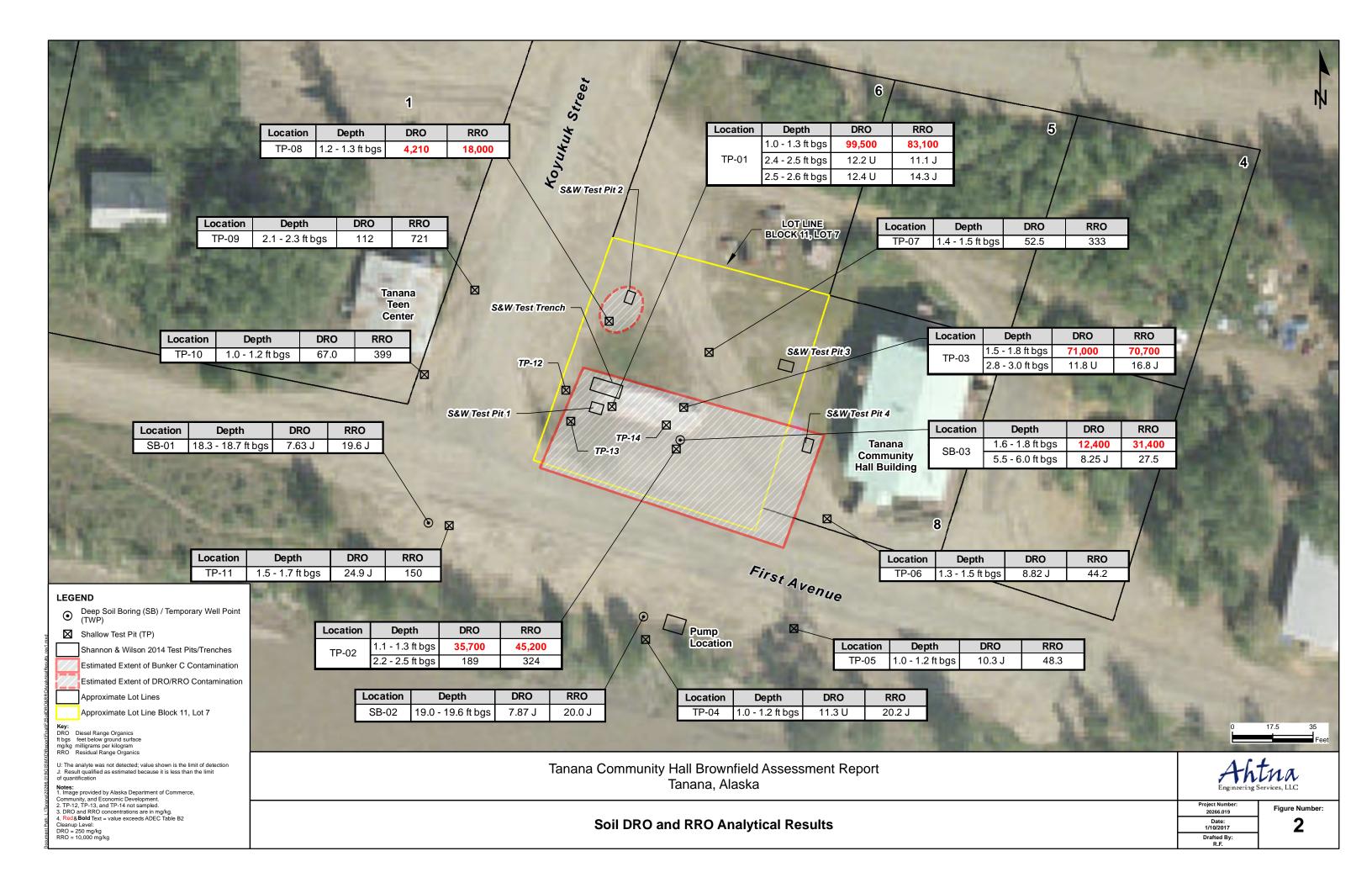

Results above ADEC cleanup values are underlined & bolded.

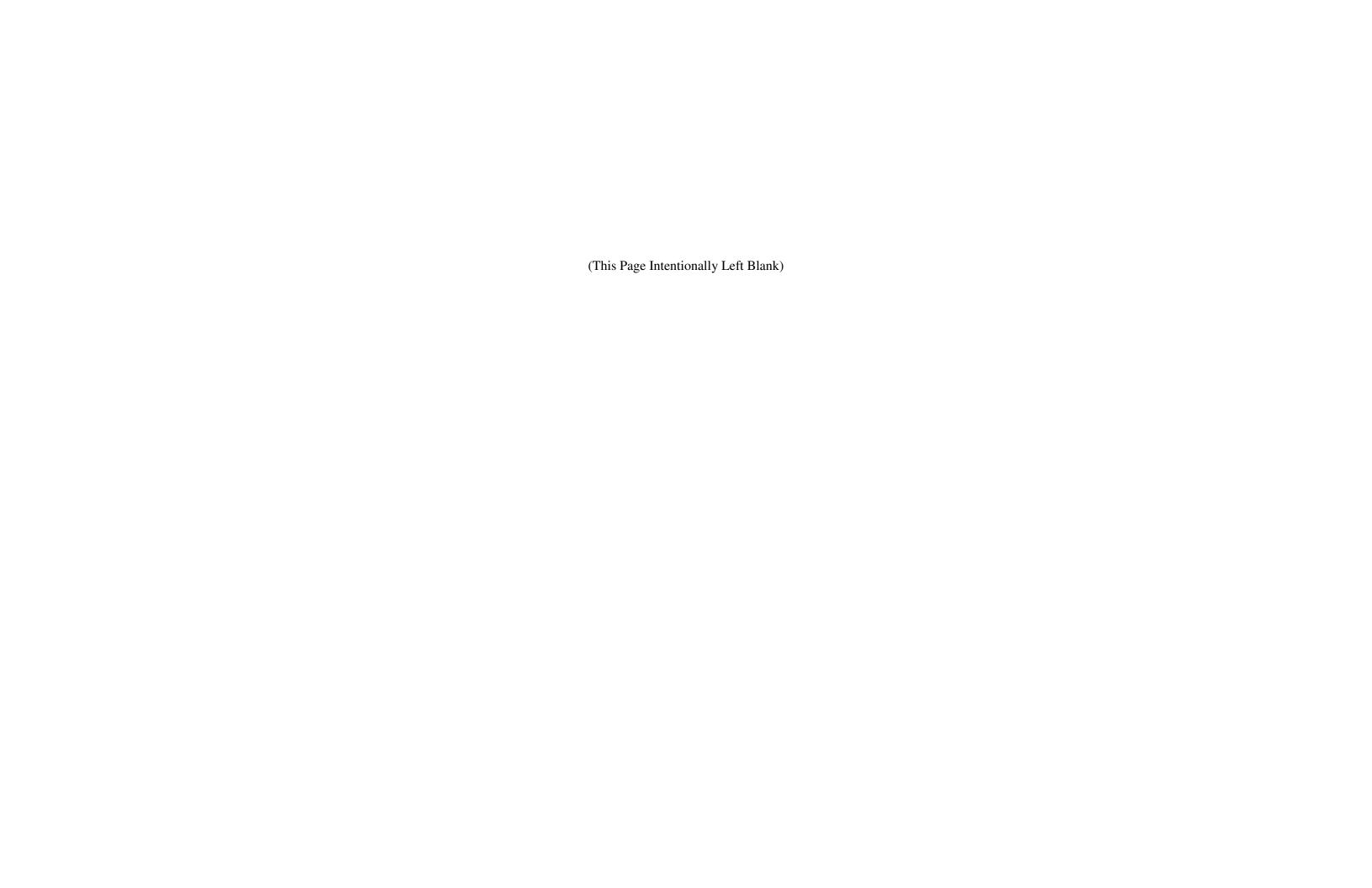
(1) Table C of 18 AAC 75.345 mg/L = milligrams per liter
µg/L = milrograms per liter

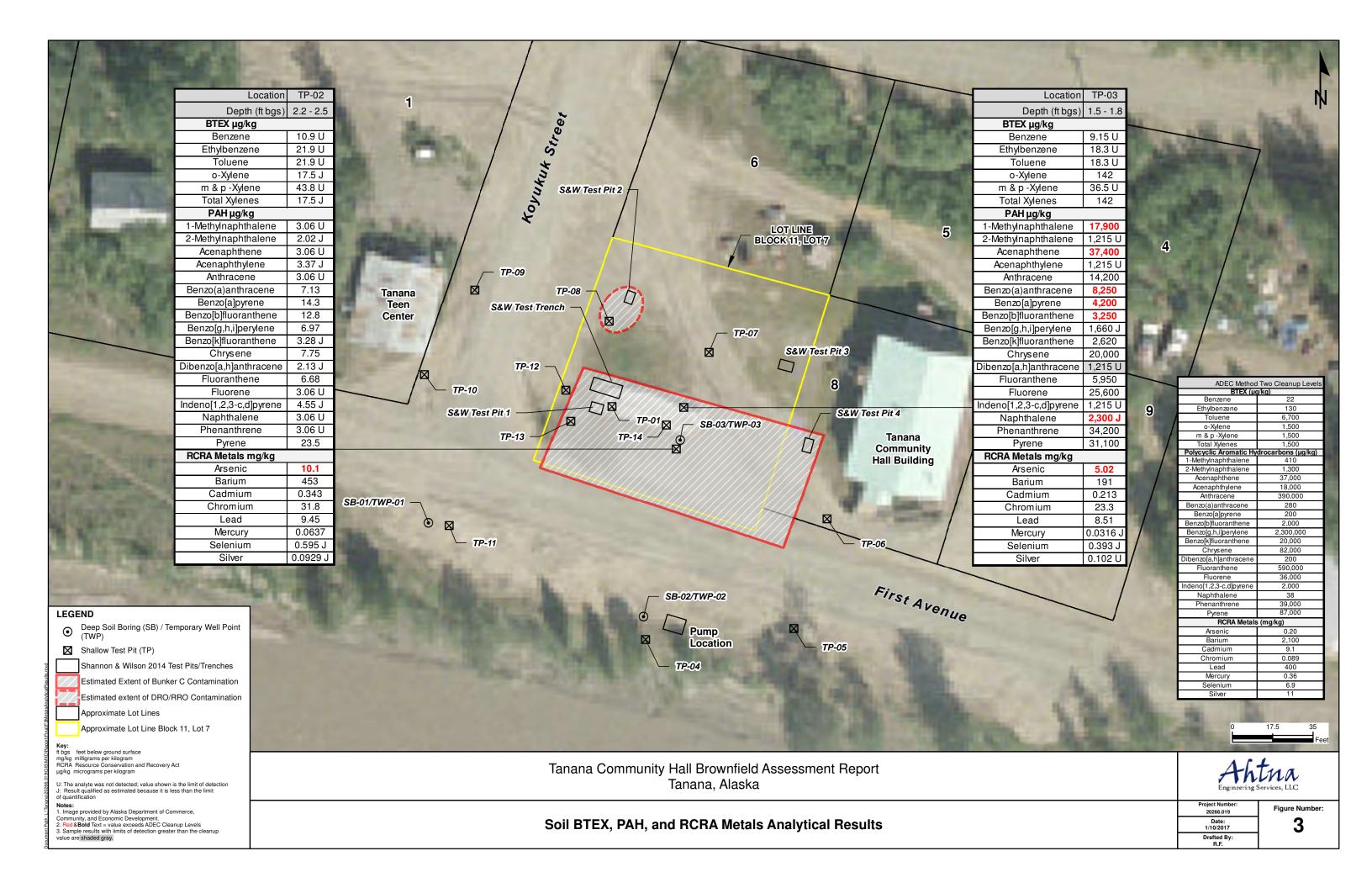
J = result qualified as estimated because it is less than the limit of quantification

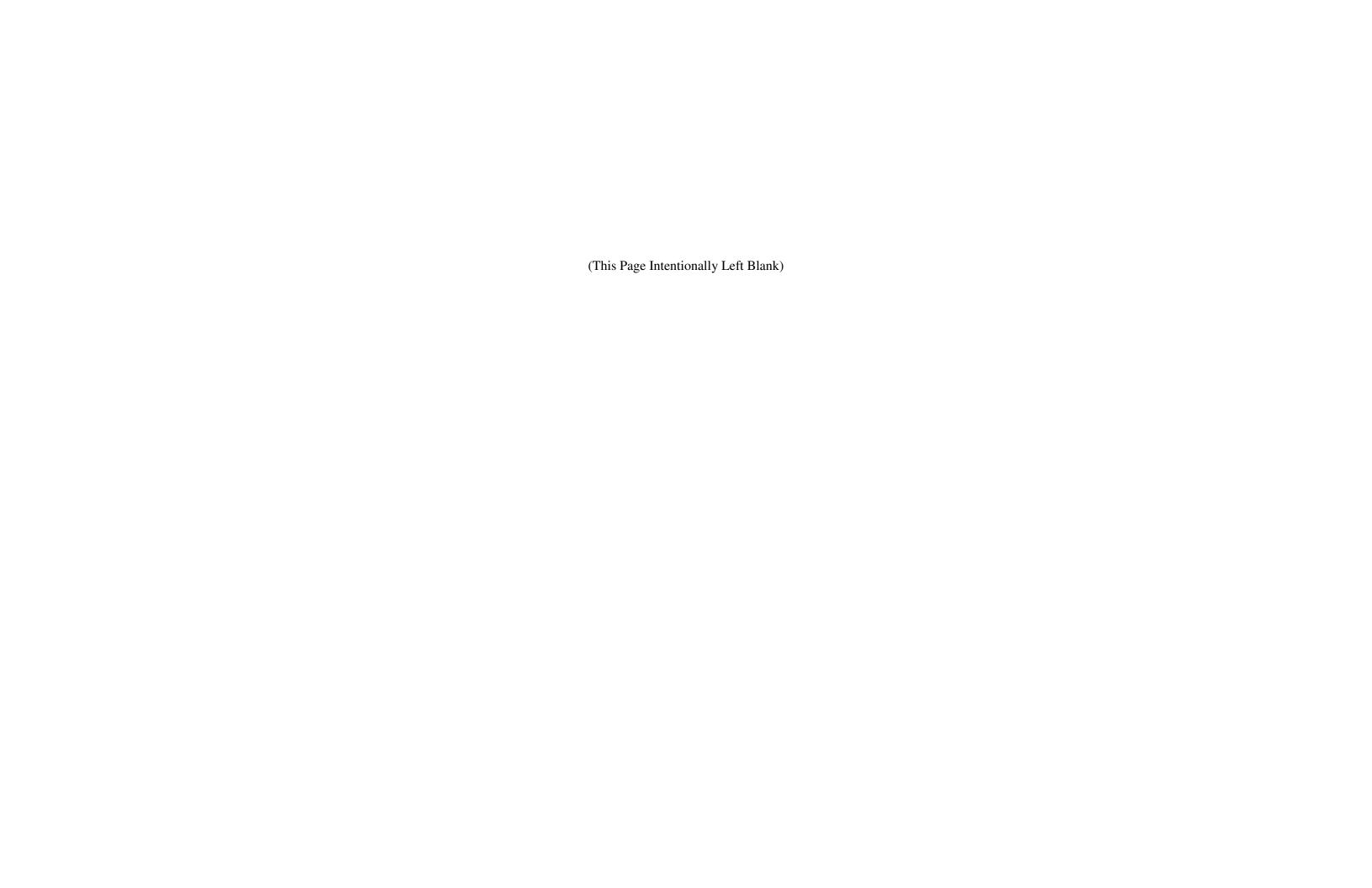

U = The analyte was not detected; value shown is the limit of detection

UB = Result considered not detected at the limit of quantitation, due to a similar detection in a corresponding method blank




FIGURES





APPENDIX A

LOGBOOK AND FIELD DATA SHEETS

=DEFYING= MOTHER NATURE™

SINCE 1916

This cover contains

- Rite in the Rain -

A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather.

Using a pencil or all-weather pen, Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.

JL DARLING LLC Tacoma, WA 98424-1017 USA www.RiteintheRain.com

> © 2014 Made in the USA US Pat No. 6,863,940

TANANA COMMUNITYHALL

ALL-WEATHER

FIELD

Nº 353-MX

PROJECT NO. 20266.019

1601733 \$ 17.278

BOOK 1

Ahtna Environmental, Inc.

Ahtna Environmental Incorporated 1896 Marika Road, Suite 8 Fairbanks, Alaska 99709 www.aeiak.com

Andrew Weller, PE Environmental Engineer

Phone: 907.374.4750 Celt: 907.590.7979 aweller@ahtna.net

Marra		aweiler@antna.i
Tyanie.	A Self Performing Government Serv	ices Contractor
	SBA Certified ANC 8(a)	FSC PEOP GISS

Address Ahtna
Environmental, Inc.

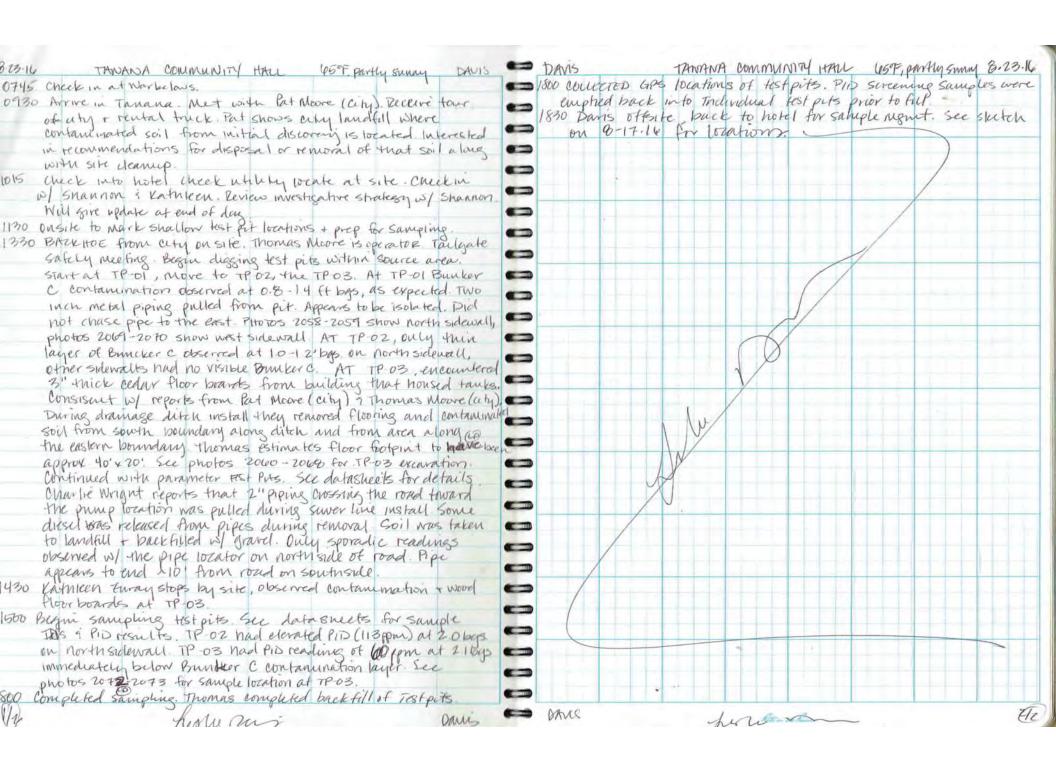
Ahtna Environmental Incorporated 1896 Marika Road, Suite 8 Fairbanks, Alaska 99709 www.aeiak.com

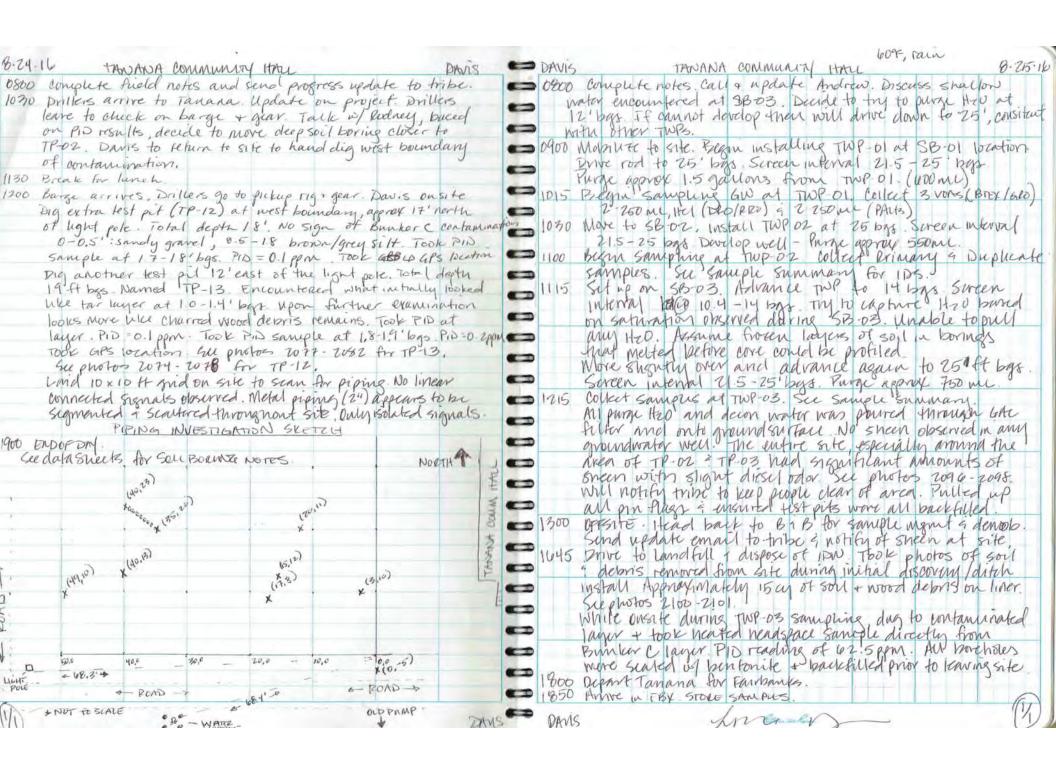
Leslie Davis Environmental Scientist

Phone: 907.374.4750 Cell: 907.750.4382 Idavis@ahtna.net

Phone A Self Performing Government Services Contractor

Email SBA Certified ANC S(a) SSC PRO- PRO- PRO- PRO- PRO- PRO- ORGANIS


Projects



ROG 8/17/16 Tanana Community Hall WAGO At we get chack in for flyght Tanana Community Hall Site 0736 -Fly FAIT-TAL Arrived in TAL 01626 Cot ride to tribal offices Mot Shannen Korthken is on her way (kity mgs) came I Kothken leters Turay Trick Chone 366-7166 366-7160 Got truck from the City Shannan Eshart Tribe 766-7177 1600 Picked up Kathleen and headed to the site. lovigha Charlie Wright XC1054 596-1364 Amazing weather, clear 165 F. Lot 1, Black 11 10 about the same as in JUFF Widtzen Citiu 266 1054 Pot Moura Cità Cynthia Erickson TananaCommercial 756-9123 SIW's 2014 Photographs. United Citil. 388-3426 Mike Pump along When River bank remans There is a 4-in Fund line surround from the pump toward the site undergrand Rump is a J. l. E. Mc Garan Co. pump Locks to be other than 1950, perhaps 1930s untage Charle wright stopped by (Toogha) 1130 He arready marked out motor and somer was which run down the ridde of Fort St. and Kondrule St. (see site sketch) Mike w/mited utilities (cent will be by later today to laste phone (me Electric appears to be overhead in the area Need to confirm w/ Tanan Power to. Began trying to track facil piping with the 1266 Pice heads straight from pump terrail las but Foxes to Ib fl. from plump Unable to profe up consistent linear stard on other side of road only small dips, likely from small turied pieces of motal. Scrantled down the bank to lock for dry sins **(1)** 100 of Fred header piping Partly subnermed right at base of store I found a pice fitting with tattered remarks of 4 m. flexible bose, Met with lat Mare and Seff weltzen 1340 at the City Pat will I hely operate the tackhoe

Rto marken

8/1	7/16 Tanana Comm. Hall RDG	Tonana	Comm Hall	RVC 8/17/	
5	went with but to look at landfarm by at the tandfill.	- H=10 F6.	11/		T FIT (TP) 8:23:16
6	Landfarm is from the old Tavara Power Co. 51te Another landfarm was creeted by the tribe from the ItIs Hapital site, but the (the tills it. (alled Mike GotT) re (united Utilities)		(610	Sturr in aves -	
	again. He has no locater with him or site but will a come tack out on Sunday to locate their line. Diajine remost has due today. Fleur TAL - & FAT	let 1 Black 10		G	5
00	Fler TAL - & FAI Arrived. Returned motal detector.				
		8	Service Se	Bloght	1
			I I TP c8	S ⊠ _{TP of}	Com.
		Toen Toen Carter		7 N-TP-03	8
		Ø TP-10	10 TP-12 M	TP0 \$505	TP-06
		Fact 4.		50415	
		6	SECTPII ANDRES	4	Ø TP05
ł				TROUGH THE	metal detector piping estimate
			Steep Bank		of Venes
			Tay Oane	Vulsan R	1 4 + /

1.74	ANA	corim.		12 #	OF SAMPLES	BACK 3						
	3.23.		+		AMPLE TYPE	Peo/	RRO					
GIST	DAV			_	ORTHING ASTING		= ==					
DEPT				Ε	LEVATION	-				(
	WATER DBSERVED (FEET BGS)	CAVING OBSERVED (FEET BGS)	QIA	TIME	SAMBOL (color			onstituents [part]	cle distribu	N AND NOTES ution and particle shape), densit positional environment, stratigra		55,
1					(CO)		ilty	Jan	21	WESTSIDE	EXPTION	
					0.8							
7						1>1	aml	er c	toer	-	2 20004	
1			X		1.4	4,	_			01.	is bas	
1						1		Y 1		beli	ow tar in	wee
4	- 1				2.5	br	nwa	silt				
						0.						1
					SA	NIST	5 60	war:	ED.	from West	4 NORT	14 512
7	1								-1.0	1-1.3 @	300	
1						Ĭ	FOR	PROIL	20			
+					1	VOETH	SIDE	WAL	74	5' from was -2.6 01	tsulcural	u
-								POIRE		2.0	710	1
	- 1			-	- -							
1												
1												
4					PH	DIDS:	.500	9-20	70	WEST SIDE	WALL	1
							20	20 70	59	· NUMER SIDE	WHIL	
1												
1												
- 1		-										-1

Ahtr Enginee	ia		METHOD	PIT LOG	PROJECT NUMBER:	TEST PIT NUMBER:	SHEET:
NT APEC	ile	M. th	# OF SAN SAMPLE NORTHIP EASTING	PLES 2 YPE SEE DO		ADDITIONAL NOTES:	
DÉPTH (FEET) WATER GUSSENVED (FEET BGS)	CAVING OBSERVED (FEET BGS)	PID	GROUP	icolar, major constituents/min		N AND NOTES ution and particle shape], density ositional environment, stratigra	
		8		SAMPLES 1 10-TAL-TP- DEO/PI	agor VICIO COLLECTED P-02-1.1- PRO/PAH/BIT		eth sidemi

htna			PIT LOG	PROJECT NUMBER:	TEST PIT NUMBER:	SHEET:
HALL 623-16 DOCK		# OF S	AMPLES 2 +	DUP	ADDITIONAL NOTES:	
OBSERVED CANING CANING OBSERVED CHEET BGS)	QIA .	TIME GROUP SYMBOL		SOIL DESCRIPTIO	Control of the Contro	. plasticity, cohesiven
	×		Drown Silt SAMPLE 14-TAI PUP ID: 16-TAI THOTOS: 20		PID. 5-1.8 0 EX/PANT/PUBE/ 5-1.8 0 EX/PANT/PUBE/ EX/PANT/PUBE	1325 METAS METAS METAS

Ahtna	3		PIT LOG	PROJECT NUMBER:	TEST PIT NUMBER:	SHEET:
PROJECT NAME TANK SITE CUMMUNI DATE 8.23.1 CLIENT ADEZ GEOLOGIST PAVIS TOTAL DEPTH 2.5	TY HALL	EQUIPM # OF SA	AMPLES		ADDITIONAL NOTES:	
Control of the Contro	OBSERVED (FEET BGS) PID	TIME	(color, major constituents/m		DN AND NOTES pution and particle shape], densit	
1— 1— 2— 3— 4— 5— 6— 7— 8— 9—	*		0.5 organ Sand 1.7 2.5 bro	y sill- wn silt IDS: 2-TP-04-1 E DEO/REO	PID: 3:3	PPM 1340

Ahtr	na		ΓEST	PIT LOG		TP-05	SHEET:
		<u></u>	# OF S	AMPLES SUE LETYPE 14	elon .	ADDITIONAL NOTES:	
TOTAL DEPTH		3	ELEVA		SOIL DESCRIPTI	ON AND NOTES	tv. plasticity, cohesiv
WATER OBSERVED [FEET BGS]	CAVING CAVING OBSERVED (FEET BGS)	Gl.	GROUP	(color, major constituents/n moisture co	ninor constituents (particle distr entent, fracturing, weathering, c	ibution and particle shape], densi epositional environment, stratigr	
0				0.4 orga	mies	NORTH	SIDEN
-			-	0			-
1-			-		י היבו	110000	
-		X				1.1 ppm	
2	+			25 bon	on sich		
				25 011			
3—							
				GAMI PLE	10'		
4_	1			110.77	H -T0-05	-1.0-1.2	@ 134
					te prolev		
				1	OD TPO/PA		
5-							
6—							
7—							
		-					
8—		-					
1 -							
9—			-				

F	htr	na		TEST PIT LOG	PROJECT NUMBER:	TEST PIT NUMBER:	SHEET:
PROJECT N. SITE DATE CLIENT GEOLOGIST TOTAL DEP	APE	3.16	COM	# OF SAMPLES SAMPLE TYPE NORTHING EASTING		ADDITIONAL NOTES:	
DEPTH (FEET)	WATER OBSERVED (FEET BGS)	CAVING OBSERVED (FEET BGS)	Old		SOIL DESCRIPTIO ts/minor constituents [particle distribu e content, fracturing, weathering, dep	ition and particle shape], densit	
0 — 1 — 2 — 2 3 — 4 — 5 — 6 — 7 — 8 — 9 — —			×	SAMPLE 16-TA	ygave! own sit 1P: 2-TP-06-1. Deo/ero	PID: I	1350

Ahtr	na		TEST	PIT LOG	PROJECT NUMBER:	TP-07	SHEET:
PROJECT NAME TATE SITE WWW DATE 9.73 CLIENT ADV GEOLOGIST DA TOTAL DEPTH	than		# OF S. SAMPI NORTH	AMPLES LE TYPE DO / HING NG		ADDITIONAL NOTES:	
DEPTH (FEET) WATER OUSSERVED (FEET HGS)	CAVING OBSERVED (FET BGS)	GIA.	GROUP SYMBOL	(color, major constituents/mi		ON AND NOTES bution and particle shape], densit spositional environment, stratigra	
1— 2— 3— 4— 5— 6— 7— 8— 9—		×		SAMPLE	own silt k bown wn silt.	silt 700	0.9 ppn

E	Thtr ingines	na		TI		PIT LOG	PROJECT NUMBER: 20266, 019	TEST PIT NUMBER:	SHEET: / of /
	NAME TA COMIN 8.23. ADEC ST DA	1 14	ALL		# OF SA	MENT PSTON AMPLES LE TYPE DO OU HING	o Son	ADDITIONAL NOTES:	
O DEPTH (FEET)	WATER OBSERVED (FEET BGS)	CAVING OBSERVED (FEET BGS)	GIR	TIME	SYMBOL	(color, major constituents/m	SOIL DESCRIPTIO	oution and particle shape], dens positional environment, stratig	raphic unit)
1- 2- 3- 4- 5- 6- 7- 8- 9-			N			For	N SIFT)-1.2-1.3	@1400

ihtna ngmeering	TEST PIT LOG	PROJECT NUMBER:	TP-09	SHEET:
NAME TANANA OMINI. HTAL 8.23.14 APEC TO DAMS	# OF SAMPLES	TCK HOE PRO SOIL	ADDITIONAL NOTES:	
WATER OBSERVED (FEET BGS) Z CAVING OBSERVED (FEET BGS)		SOIL DESCRIPTIO	ution and particle shape], densit	
	SAM	THI gavel FOR DEO/PRO	PID: 0.8	sppm

A	htr	na	***************************************	TI		PIT LOG	PROJECT NUMBER:	TEST PIT NUMBER:	SHEET:
OJECT NA	ME TA	NAN	A		EQUIP	MENT BACK	HOE	ADDITIONAL NOTES:	
E CO	MM	147	M		# OF SA	AMPLES			İ
TE (8.2	3.16			SAMPL	ETYPE DROPER	20		Ī
ENT _	ADE	<u></u>			NORTH	HING			1
OLOGIST	UAN	15			EASTIN				1
TAL DEPT		_		*	ELEVA	TION	SOIL DESCRIPTIO	N AND NOTES	
DEPTH (FEET	WATER OBSERVED (FEET BGS)	CAVING OBSERVED (FEET BGS)	PID	TIME	GROUP		inor constituents particle distrib ntent, fracturing, weathering, des	ution and particle shape], densit	
0									SIDENMU
		y				0.5 Billy	gravel	ENSI	2/20/10/10
						= al san	gravel dygravel k brown :		
1—	-				-	0.7	1 1-20	e. H	
			X			1.0 dar	E BIBUNI	PID:	0.7 ppm
						1 36	rown silt		
2-						2.2			
-									
3_									
						SAMPLE			
4—						16-	TAL-TP-	10-1.0-1	.2 0 14
				-	1-	FOR	PROTERO		
						, , ,			
5—									
	-					-			
6—	1		1						
-									
7_									
/	-		-						
-		1							
8—			1						
5						1,2			
9 —									
					1				

1	ihtr Inginee	na		TE	EST	PIT L	OG	PROJECT NUMBER:	TEST PIT NUMBER:	SHEET:
PROJECT	NAME TAT	SANA	7		METHO	DOLOGY /	BACK	HOE	ADDITIONAL NOTES:	
	comm				# OF SA	MPLES	1			
DATE	8 22				SAMPL	E TYPE				
CLIENT	ADEC				NORTH	ING				
GEOLOG	ST DA	wis			EASTIN	G				
TOTAL D	-	1.7			ELEVAT	TION	11	the time the time	<u> </u>	1000 1000 1700
DEPTH (FEET)	WATER OBSERVED (FELT BGS)	CAVING OBSERVED (FEET BGS)	PID	TIME	GROUP	(color, maj		SOIL DESCRIPTIO nor constituents (particle distributent, fracturing, weathering, de	ution and particle shape), densi	
0-							Agrico-III		NORTH SIDE	=WALL
-	-							T. C.	_	
1-	-					8.8	Sand	y gravel		7
-	-				-					
2-			X					PI	D: 0.4pp	m
	-		1.0			1			11	
-	1					V	1	-111		
3 -	-					2.7	brow	on silt		
_										
4-						SA	MPLE	15.		
-								L-TP-11	-1.5-12	@ 1415
5-									1.5 1.1	0 113
					× -		FOR	De0/880		
-	la se									
6-					+					
_										
,										
/-										
-	1									
8-	-									
_										
	-		-		-	+				
9-	1									
-										

E	nginee	na ering				PIT LOG	PROJECT NUMBER:	TP-12	SHEET:
E NT LOGIS		1.16	Com	M —	# OF S	AMPLES	ad Ong Ishore	approx. 17	north
ОЕРТН (FEET)	WATER OBSERVED (FEET BGS)	CAVING OBSERVED (FEET BGS)	Qu	TIME	GROUP	(color, major constituents/ moisture c	SOIL DESCRIPTIO minor constituents [particle distribu- content, fracturing, weathering, dep	ition and particle shapel, density	y, plasticity, cohesive phic unit)
_						0.5 Sand	y gravel		
-									
_			A			1.8 BYON	msiut	PID at 1.7 PID = 0.	-1.8' m
						NO GASV	not bunk	er c conta	culinat
					-		notos + 6pg		- ; = 1 = ; - = 1 = ; = ; -
				- 1 - 1					
-									
_									
-									
_									
_									

	SI	-			_		PROJECT NUMBER:	TEST PIT NUMBER:							
-	-Ihtr	าล		T	FST	PIT LOG	THOSECT WOMBER.	TEST FIT NOWIDER.	SHEET:						
1E	nginee	ering				70266.09 TP-13 1									
PROJECT N	IAME TAY	ANAC	CLOV	MN	METH	ODOLOGY/Shive!	hand die	ADDITIONAL NOTES:							
	Au .				• (2 - 2 - y c)	AMPLES	8	approx. 1	21 east						
DATE	8:20				-			appropri	L note						
					SAMP	LE TYPE		of ligh	at pole.						
CLIENT	ADE				NORTH	HING		see gps.							
GEOLOGIS		AVIS			EASTIN			300							
TOTAL DEP			3		ELEVA	TION									
ОЕРТН (FEET)	WATER OBSERVED (FEET BGS)	CAVING OBSERVED (FEET BGS)	9	TIME	GROUP	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	SOIL DESCRIPTION								
DEPTI	W/ OBSI	CAN	<u>a</u>	1	SYIM	(color, major constituents/m moisture co	sinor constituents (particle distrib ntent, fracturing, weathering, de	ution and particle shape], densit positional environment, stratigra	y, plasticity, cohesiveness, phic unit)						
0-															
	-				-	5 sandy	gravet -								
					-	www 5	rilt								
1-															
-						TAR LAYER	1.0-1.4'bys.								
-	-														
				-		3 brown	Silt								
2-					-										
						TOOK PIDE	01.9 bys = 0 tar/word lay	. I ppm							
3-					_	PID from	tar/word lay	er = 0.1 pp	m.						
			100		-										
_	- res		-			TAO LAMENT	Man also la	alaboral	= 1 / / / = :						
			-			In langur	may also be further ex	courred w	1000 desorts						
4-			-			_ vporc 8	within the	anara ion	,						
_									=						
			:												
5-															
					-										
		-1-1-													
6—															
0-															
-			-	_											
				-1-	-										
7-		-1-)-	-												
							e (e (e) e) + > -								
8-															
					_										
-															
9-															
ΙП															

E	ht	na	SOIL	BORING LOG	PROJECT NUMBER:	BORING NUMBER:	SHEET: of 2					
Project Name Client Date Drilling Company Boring Size Sample Method Total Depth Northing/ Easting	ADI B.2 Geo	4-16 Teck	Geologist Weather	DAVIS DAVIS	SANIPLE 11	LOCATION SKETCH/EXTRA FIELD NOTES: [surface condition, ie. Asphalt, grass] SAMPLE 113. 16-TAL-SB-01-18:3-18.7 01640						
DEPTH (FEET)	BLOWS/FT MCHES	INCHES REC'VED	USCS Classification (coloc)	major constituents/minor constitue	SOIL DESCRIPTION AND ents [particle distribution and particle shape], weathering, depositional environment, str.	density, plasticity, cohesiveness, n	naisture content, fracturing,					
3-4-5-	60	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	that !	ronon silt agreysilt	DAMP of dame							
6	40	201		newn sit,	danip							
9—		0.1		11.7 61								
-			Sil	iry graves	, damp m	lost /	GC					

F	igi	ti	n erir	3		SOIL	BORING LO	oG		NUMBER:	BORING NUMBER:	SHEET:		
Project Name Client Date Drilling Company	7	A7		1	<i>A</i>	Geologist Weather Rig Type/ Drilling	M HAZ				ON SKETCH/EXTRA FIELD ce condition, ie. Asphalt,			
Sample Method Total Depth Northing/ Easting					_	# of Samples Depth to GW								
DEPTH (FEET)	BLOWS/FT	INCHES	INCHES REC'VED	Glid	TIME	USCS Classification (color	, mājar caustituents/minor c	constituents (par	SOIL DESCRIP rticle distribution and thering, depositional	d particle shape],	density, plasticity, cohesiveness,	molsture content, fracturing,		
11				6,0		gra Sil	Moist Moist vel wisan	nd?, b	damp	da n	,	core,		
77—		S	TO THE	1 00 400		= 300 - 13a	ndg gra gravel	und,	grey + brown T gro	brown Mois	1. damp t vater sm	ear ton		

Ahtna	SOIL BORING LOG	PROJECT NUMBER: BORING NUMBER: SHEET: Of 2							
Project TANANA COV	MMINIT HALL	LOCATION SKETCH/EXTRA FIELD NOTES: N [surface condition, ie. Asphalt, grass]							
Client ADEC	Geologist								
Date 8.24 16	Weather	- set up on SB or @1645							
Company Geotek	Rig Type/ Drilling	SAMPLE ID:							
Boring Size Z (/	Hammer Drop	16-TAL-38-02-19.0-19.6							
Sample Method	# of Samples								
Total Depth 20	Depth to GW	TIME: 1735							
Northing/ Easting	Elevation								
BLOWS/FT HIGHES BRIVEN INCHES REC'VED PID	LIME Color, major constituents/minor constituents	SOIL DESCRIPTION AND NOTES							
O S N S N S N S N S N S N S N S N S N S	Color, major constituents/minor constituents	[particle distribution and particle shape], density, plasticity, cohesiveness, moisture content, fracturing, weathering, depositional environment, stratigraphic unit)							
	O. H IN DARK BROWN	SILT Damp							
	7,50	not some							
1- 100									
3									
2-00									
3									
4— 0,0									
5	BROWN SILT.	- DAMP							
5— OP		DAIO							
5 3.3									
- 70									
7- 110									
8- 0.5	& BROWN SIL	T-DAMP							
_ 1	Y								
a_ h.4	Sundy grav	ve grey brown / damp							
	1 3	orgonous following							

増い

E	hgi	ti	16			9	501	L BOI	RING	G LO	G			UE G	.019		BORING N	OZ	-	SHEET:
Project Name Client Date Drilling Company Boring Size Sample Method Total Depth Northing/ Easting	Hammer Drop # of Samples									LOCATION SUCTED INVESTIGATION							N 1			
DEPTH (FEET)	BLOWS/FT	MCHES	INCHES	Gld	TIME	USCS Classification	(00	ilor, major co	mstituents	/minor cor	nstituent	s (particle	e distribut	tion and pa	ON AND	densit	y, plasticity,	cahesiveness,	moisture s	ontent, fracturing,
12-13-15-		5		67		ia	4	San San	nd yg rdi	ran	gravel rac	ave (,	el.	, gr	ey.l	N	WN ,		uf m	P
6		3	الماران	0.0				gra	ve(Üly	4	an	rd	S	uz	4	bro			oist
, 0		Shal	ľ				2	51	14	1 50	m	d.	, b	100	۸ در	·	W	et		

		PROJECT NUMBER:	BORING NUMBER:	
Engineering	SOIL BORING LOG	10766.01	15B 03	SHEET:
Project TANANA (waln the	V	ON SKETCH/EXTRA FIELD NO	27
Client	Geologist DAMS	SAMPLE		
Date 8-24-16	Weather	Skinker	100.	
Drilling GEOTEK	Rig Type/	110-TAL-9	5B-03 ·1.4	e-1.8 @
Soring Size 7	Hammer	e 180		
Sample	Drop # of Samples		B-03 5.5-	6.0
Method	Depth to GW		1810	
Northing/ Easting	Elevation		6-TAZ-5B	-20-5.5-4
DEPTH LS SE SE SE SE SE	Itou	SOIL DESCRIPTION AND	1820 NOTES	
BLOWS/FT INCHES INCHES INCHES RECVED PID PID PID	See		density, plasticity, cohesiveness, mo	isture content, fracturing,
0			-	
- -		brown, do		0.73
1 8.0	i gown sravel, do	, dry		
37	inguistavel, do	Bunker C 1.1	-1.7	
7/6/4	12-16 wood 60	and		
2- 50 00 500	1. 6.13 jayero	f Buncker C		11
	12.5 - bown si	It dans	Heaten	,
		, , , , ,	07.0	heads
3— \ \\ \\ \\		C111	.0.	2 Tace
	-359 brown	1 SILFimore	st	1 ba
4_ 0,0		100	Heated 2.5.	PP
				12
	_ brown + 8re	en silt dan	an	-
5- 6.0	+ 31000.1161)	- (9 9 ()
- =	1			
- 3 NO				
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	- V			
-	<u>V</u>		4	
	7.2 brown s	it wet		I
	/			
8—	V .			-
	-85 bannas	It was i		,
e	12100011 31	it, wet to	saturat	cd
	-9.5 15 WOWN	g clay, 1	wet	
	VAIIV	iravel, w	et to sa	twated

	E	h	ti	na ering			so	IL BORING LOG		NUMBER:	BORING NUMBER:	SHEET:
	Project Name Client Date Drilling Company Boring Size	TA 81	An	EC	40	We Rig Dri	logist ather Type/ Illing	DAVIS		LOCATIO	N SKETCH/EXTRA FIELD e condition, ie. Asphalt, į	
	Sample Method Total Depth Northing/ Easting											
	DEPTH (FEET)	BLOWS/FT	INCHES	INCHES	92 J	USCS			eathering, depositional	particle shape], de environment, strat	insity, plasticity, cohesiveness, n graphic unit)	
to, to,	1 1				0.00		1		vel, to brown silt a	ofact onwn	y sativa , wet turated	brown
.	19-			0!	0	-	- 5	Sandy grav 11, boom, Sandy Grav	vel, le	non	Satura	:

V

APPENDIX B

PHOTOGRAPHIC LOG

Photograph 1: Excavation of TP-03 using backhoe provided by the City of Tanana.

Photograph 2: Bunker C tar layer observed on west sidewall of TP-01.

Photograph 3: Bunker C tar layer observed on north sidewall of TP-01.

Photograph 4: Wooden planks covered in tar, excavated from TP-03.

Photograph 5: Location TP-03 showing wood layer and Bunker C contamination. Samples were collected from tar layer and from the sidewall at the base of the test pit.

Photograph 6: Charred wood debris layer at TP-13.

Photograph 7: Screening soil cores at SB-01. View to the west.

Photograph 8: Deep soil boring location SB-02. Yukon River in background.

Photograph 9: Soil core from SB-03 showing wooden planks and Bunker C tar layers.

Photograph 10: Groundwater sampling setup at TWP-01. Yukon River in background.

Photograph 11: Geoprobe® 6620 DT series direct push drill rig installing TWP-03.

Photograph 12: Sheen observed on ground surface following rains.

Photograph 13: Material from 2014 ditch excavation stored at Tanana Landfill.

APPENDIX C

SOIL BORING AND TEST PIT LOGS

Aht Engineering Ser	SOIL BOF	RING	LOG Boring Number: SB-01 Project Number: 20266.019								
Project N	lame _Tanana Community Hall		Reco	overy Device Macro Core X/Y Coordinates 65.169659/-152.0	70416						
Site Tan	ana Community Hall		Devi	ce Diameter _2 -inch X/Y Datum _WGS84							
Client _A	ADEC		Samp	ple Method Macro Core Ground Elevation N/A							
Field Sci	entist/Engineer _Davis		# of 9	Samples 1 Elevation Datum N/A							
Date <u>8/</u>	24/2016		Drilli	ing Company GeoTek Alaska Extra Field Notes:							
Weather	60 °F, cloudy		Rig T	Rig Type Geoprobe 6620							
Total De	pth _20 feet		Ham	mer Drop & Weight N/A							
Boring Si	ize 2 -inch		Asso	ciated Points N/A							
ОЕРТН (ft)	ANALYTICAL SOIL SAMPLE ID	In Situ PID (ppm)	SOIL GRAPHIC	SOIL DESCRIPTION AND NOTES	RECOVERED LENGTH (in) / DRIVEN LENGTH (in)						
0		0.1									
		0.1		SILT brown; damp.							
_		0.1	600	GRAVEL damp.							
_		0.1		SILT brown; damp.							
_		0.1			39.5/60						
				SILT gray and brown; damp.							
_		0.1		Sizi gidy dina siomi, damp.							
5		0.1		SILT brown; damp.							
		0.1									
_		0.1			50.5/60						
		0.1									
10		0.1		SILTY GRAVEL moist.							
		0.0									
_		0.1		SANDY GRAVEL damp.							
				SILTY SAND brown; damp.	N/A						
		0.1									
15			60°C	SANDY GRAVEL damp.							
<u>15</u> _		0.2									
		0.1		GRAVEL WITH SAND brown and gray; damp.							
_		0.1		SANDY GRAVEL brown; moist.	/ / 48/60						
-		0.1	5000	GRAVEL wet.	46/00						
-	16-TAL-SB-01-18.3-18.7	0.2		Brown and gray; saturated.							
20											

Ahttua SOIL BORING LOG Boring Number: SB-02 Project Number: 20266.019									
Project N	lame Tanana Community Hall		Re	cove	ery Device Macro Core X/Y Coordinates _65.16954/-152.0705:	39			
	ana Community Hall				Diameter 2 -inch X/Y Datum WGS84				
Client _A	DEC		Sa	mple	Method Macro Core Ground Elevation N/A				
Field Sci	entist/Engineer _Davis			of Sar	mples <u>1</u> Elevation Datum <u>N/A</u>				
Date 8/	24/2016				Company GeoTek Alaska Extra Field Notes:				
Weather 60 °F, cloudy				g Typ	Geoprobe 6620				
	pth 20 feet			amme	er Drop & Weight N/A				
Boring Si	ze 2-inch		As	socia	ated Points N/A				
DЕРТН (ft)	ANALYTICAL SOIL SAMPLE ID	In Situ PID (ppm)		SOIL GRAPHIC	SOIL DESCRIPTION AND NOTES	RECOVERED LENGTH (in) / DRIVEN LENGTH (in)			
0									
		0.0			SILT dark brown; damp.	_			
		0.0			SILT brown; damp.				
		0.0				53/60			
		0.0							
		0.0							
5		0.0							
-		1.0							
		0.5				44.5/60			
		0.4				44.3/00			
 10		0.4			SANDY GRAVEL gray and brown; damp.				
10		0.1							
		0.0	00						
-		0.0	00	ے کے الم ا		45.5/55			
		0.0	55		SILTY GRAVEL brown; moist. SANDY GRAVEL gray and brown; damp.	45.5/60			
		0.0) 00 00 00	ے ان ہا					
<u>15</u>		0.0	60		GRAVELLY SAND brown; damp.				
			0 (∕ 。 ```	GRAVELLY SAND gray and brown; damp.				
		0.0	20		GRAVELLY SAND gray and brown; moist.	-			
		0.0	。 ()) °		55/60			
		0.0	, o C)		33,00			
	16-TAL-SB-02-19.0-19.6	0.0	,		SILTY SAND brown; wet.	-			
20		<u> </u>							

SOIL BORING LOG Boring Number: SB-03 Project Number: 20266.019											
		na Community Hall				ry Device Macro Core X/Y Coordinates 65.169739/-152.0711					
		nity Hall			Device Diameter 2 -inch X/Y Datum WGS84						
Client _A					Sample Method Macro Core Ground Elevation N/A						
Field Sci	entist/Engin	neer Davis		# o	of Samples <u>3</u> Elevation Datum <u>N/A</u>						
Date <u>8/24/2016</u>					lling	Company GeoTek Alaska Extra Field Notes:					
Weather	60 °F, cloud	dy		Rig	Тур	e Geoprobe 6620					
Total Depth 20 feet				Hai	mme	er Drop & Weight N/A					
Boring Si	ize 2-inch			Ass	ocia	ted Points N/A					
DEPTH (ft)		ANALYTICAL SOIL SAMPLE ID	In Situ PID (ppm)	SOII GRAPHIC		SOIL DESCRIPTION AND NOTES	RECOVERED LENGTH (in) / DRIVEN LENGTH (in)				
0	·		0.0	X-C J- (-	1:63						
			0.0	300	اه کا ایک	SANDY GRAVEL brown; damp.					
			0.0	0/0	~°9	GRAVEL gray; dry.					
	16-TAL	-SB-03-1.6-1.8			· / ·	\BUNKER C. NWOOD.					
			1.4			BUNKER C.	445/60				
			0.0			SILT brown; damp. SILT brown; moist.	44.5/60				
_			0.0			SILT gray and brown; damp.					
5			0.1								
_		-SB-03-5.5-6.0 -SB-20-5.5-6.0	0.3								
			0.0			SILT brown; wet.	43/60				
			0.1								
				////	////	SILT brown; wet to saturated.					
10				0 4 K		CLAY brown; wet. SILTY GRAVEL wet to saturated.					
10			0.0								
			0.0) 0	SANDY GRAVEL brown; wet to saturated.					
			0.0			SANDY GRAVEL brown; saturated.	55/60				
			0.0	00		CAMPY CUT I					
			0.1		اه ار ک	SANDY SILT brown; wet. SANDY GRAVEL brown; saturated.					
15			0.0		ے 'ہ (ہ°۔						
			0.0								
			0.0	SILT brown; saturated.							
			0.0		ر رهار	SANDY GRAVEL brown; saturated.					
			0.0		1	\SILT brown; saturated.					
20				$[\circ \bigcirc \circ]$		SANDY GRAVEL brown; saturated.					

Project Number: 20266.019 Test Pit Number: TP-01

Engineering Se	ervices, LLC					
Project N	Name <u>Ta</u>	nana Community Hall	Site Tanana C	ommunity Hall		Extra Field Notes:
Client _/	ADEC		Field Scientist/	Engineer Davis		
Date 8	/23/2016		Weather 65 °I	F, partly sunny		
Equipme	ent <u>Backh</u>	oe	Sample Metho	d Discrete grab		
Test Pit	Length (ft) 3	# of Samples	3		
Test Pit	Width (ft)	3	Depth to Groun	ndwater N/A		
Total De	pth _2.5 1	eet	Ground Elevati	on N/A		
		65.16979/-152.070611	Datum WGS8	4		
O DEPTH (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID	SOIL GRAPHIC		SOIL DESC	CRIPTION AND NOTES
1.0	0.3	16-TAL-TP-01-1.0-1.3		BUNKER C TAR. SILT brown.		
		16-TAL-TP-01-2.4-2.5 16-TAL-TP-01-2.5-2.6	<u> </u>	1	Bottom o	of test pit at 2.5 feet.

Project File. M:AESIPROJECT FILES - REORGANIZED'ADEC TOS/20266.019_TANANAN10_FIELD REPORTS'BORING LOGS/GINT TANANA, GPJ Library: M:AESIV AK ENVIRONMENTAL GROUP/GINTAES LIBRARY.GLB Data Template: AES DATA TEMPLATE.GDT

ervices, LLC							
Name <u>Ta</u>	nana Community Hall	Site	Tanana	Community Hall		Extra Field Notes:	
ADEC		Field	Scientis	t/Engineer Davis		_	
						_	
						_	
						_	
				' <u></u>		_	
						_	
rdinates _	65.169737/-152.070433	Datu	m WG	584		_	
PID (ppm)	ANALYTICAL SOIL SAMPLE ID		SOIL GRAPHIC		SOIL DES	SCRIPTION AND NOTES	
-				SANDY GRAVEL.			
_	16-TAL-TP-02-1.1-1.3			TAK.			
113	16-TAL-TP-02-2.2-2.5			SILT brown.			
					Rottom	of test nit at 2.5 feet	
	ADEC /23/2016 ent Backh Length (ft) Width (ft) pth 2.5 f rdinates (wdd)	NameTanana Community Hall ADEC //23/2016 ent _Backhoe Length (ft) _3 Width (ft) _3 pth2.5 feet rdinates65.169737/-152.070433 (@	Name	Name Tanana Community Hall ADEC Field Scientis Weather 65 Ent Backhoe Length (ft) 3 # of Samples Width (ft) 3 Depth to Gro spth 2.5 feet rdinates 65.169737/-152.070433 Site Tanana Field Scientis Weather 65 Sample Meth # of Samples Depth to Gro Ground Eleva Datum WGS DATUM WGS 16-TAL-TP-02-1.1-1.3	Name Tanana Community Hall ADEC Field Scientist/Engineer Davis Weather 65 °F, partly sunny Sample Method Discrete grab Hength (ft) 3 # of Samples 2 Width (ft) 3 Depth to Groundwater N/A Poth 2.5 feet Ground Elevation N/A Datum WGS84 TAR. SILT brown.	Name Tanana Community Hall ADEC Field Scientist/Engineer Davis Weather 65 °F, partly sunny Sample Method Discrete grab Length (ft) 3 # of Samples 2 Width (ft) 3 Depth to Groundwater N/A Popth 2.5 feet Ground Elevation N/A Patum WGS84 Field Scientist/Engineer Davis Weather 65 °F, partly sunny Backhoe Sample Method Discrete grab # of Samples 2 Depth to Groundwater N/A Patum WGS84 SOIL DESTRUCTION TAR. SILT brown.	Name Tanana Community Hall ADEC Field Scientist/Engineer Davis Weather 65 °F, partly sunny Sample Method Discrete grab Length (ft) 3 # of Samples 2 Width (ft) 3 Depth to Groundwater N/A Ground Elevation N/A Datum WGS84 SOIL DESCRIPTION AND NOTES 16-TAL-TP-02-1.1-1.3 FIAR. SILT brown.

Project Number: 20266.019 Test Pit Number: TP-03

Project	t Name <u>Ta</u>	nana Community Hall	Site Tanana Co	ommunity Hall	Extra Field Notes:
Client	ADEC		Field Scientist/	Engineer Davis	
Date _	8/23/2016		Weather 65 °F	, partly sunny	
Equipm	nent <u>Backh</u>	oe	Sample Method	Discrete grab	
Test Pit Test Pit	t Length (ft	3	# of Samples _3	}	
Test Pit	t Width (ft)	3	Depth to Groun	dwater N/A	
≝ Total D	Depth 3 fee	et	Ground Elevation	on N/A	
X/Y Co	ordinates _	65.169786/-152.070408	Datum WGS84	1	
Lotal Data Template: AES DATA O DEPTH (ft) O (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID	SOIL GRAPHIC		ERIPTION AND NOTES
ESIO AK ENVIRONMENTAL GROUP/GINTAES LIBRARY.GLB	- - - - 60.1	16-TAL-TP-03-1.5-1.8 16-TAL-TP-20-1.5-1.8 16-TAL-TP-03-2.8-3.0		HARDWOOD FLOORING SMEARED BUNKER C TAR. SILT brown.	D WITH TAR.
¥ 3.0		10-1AL-1P-U3-2.8-3.0		Datte:	of test pit at 3.0 feet.

Project File: M:\AES\PROJECT FILES - REORGANIZED\ADEC TOS\20286.019_TANANA\10_FIELD REPORTS\BORING LOGS\GINT TANANA.GPJ Library. M:\AE\

Project Number: 20266.019 Test Pit Number: TP-04

Project I	Name Ta	nana Community Hall	Site Tanana C	ommunity Hall		Extra Field Notes:		
Client _	ADEC		Field Scientist/	Engineer Davis		_		
Date 8	/23/2016		Weather 65 °I	F, partly sunny				
Equipme	ent <u>Backh</u>	oe	Sample Metho	d Discrete grab				
Test Pit	Length (ft) 3	# of Samples	1				
Test Pit	Width (ft)	3	Depth to Groun	ndwater N/A				
Total De	epth _2.5 f	eet	Ground Elevati	on N/A				
X/Y Coo	rdinates _	65.169513/-152.070536	Datum WGS8	Datum WGS84				
O DEPTH	PID (ppm)	ANALYTICAL SOIL SAMPLE ID	SOIL GRAPHIC		SOIL DESC	CRIPTION AND NOTES		
- AES				ORGANICS.				
		16-TAL-TP-04-1.0-1.2		SANDY SILT.				
2.0	3.3			SILT brown.				
Y EIN	J	l		I	Bottom o	of test pit at 2.5 feet.		

Project File: M:AESIPROJECT FILES - REORGANIZEDIADEC TOS/20266.019_TANANA\10_FIELD REPORTS/BORING LOGS\GINT TANANA,GPJ LIbrary; M:AES\0 AK

Project Number: 20266.019 Test Pit Number: TP-05

Project N	Name <u>Ta</u>	nana Community Hall	_	Site	Tana	ana C	ommunity Hall	Extra Field Notes:
Client _	Client ADEC					ntist/	Engineer Davis	
Date _8,	/23/2016		_ \	Weat	her	65 °I	F, partly sunny	
Equipme	ent <u>Backh</u>	oe	9	Samp	le M	etho	d Discrete grab	
Test Pit	Length (ft) 3	#	# of S	ampl	les :	1	
∢	Width (ft)		[Depth	ı to C	Grour	ndwater N/A	
Ш	epth _2.3 f		_ (Groui	nd Ele	evati	on N/A	
₹	X/Y Coordinates _65.169521/-152.070117					VGS8		
ig: AE	_		_				I	
O DEPTH	PID (ppm)	ANALYTICAL SOIL SAMPLE ID		SOIL GRAPHIC			S	OIL DESCRIPTION AND NOTES
0 4 1			711	71 7		<u> </u>	ORGANICS.	
1.0	-	16-TAL-TP-05-1.0-1.2					SILT brown.	
2.0 _	1.1							
		<u> </u>						Bottom of test pit at 2.3 feet.

Project File: M:VAESIPROJECT FILES - REORGANIZEDVADEC TOS/20266.019_TAMANA110_FIELD REPORTS/BORING LOGS/GINT TANANA GPJ LIbrary; M:VAES/0 AK E

Project Number: 20266.019 Test Pit Number: TP-06

	Project N	lame <u>Ta</u>	nana Community Hall	Site	Tanana	Community Hall		_ Extra Field Notes:
	Client _A	ADEC		Field	Scientis	t/Engineer _Davis	_	
	Date 8/	/23/2016		Wea	ther <u>65</u>	°F, partly sunny		_
_	Equipme	nt Backh	oe	Sam	ole Meth	od Discrete grab		
E.GD	Test Pit L	Length (ft) 3	# of	Samples	1		_
MPLA	Test Pit \	Width (ft)	3	Dept	h to Gro	undwater N/A		_
IA IE	Total De	pth 2.7 f	eet	Grou	nd Eleva	tion N/A		_
S DA			65.169649/-152.070014	Datu	ım <u>WG</u> S	584		_
ate: At			T	1				
LIBRARY.GLB Data Lempia	O DEPTH O (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID		SOIL GRAPHIC		SOIL DES	CRIPTION AND NOTES
ENVIRONMENTAL GROUP/GINTAES	1.0	1.6	16-TAL-TP-06-1.3-1.5			SILT brown.		
O AK L			•			•	Bottom	of test pit at 2.7 feet.

Project File: M:\AESIPROJECT FILES - REORGANIZED\ADEC TOS\20266.019_TANANA\10_FIELD REPORTS\BORING LOGS\GINT TANANA.GPJ Library: M:\AES\C

1	Ctara
7	nuna
Engineer	ing Services, LLC.

TEST PIT LOG

	-		nana Community Hall	Site Tanana Co	ommunity Hall	Extra Field Notes:
	Client _				Engineer Davis	
		23/2016				
٦ ا		nt <u>Backh</u>				
ATE.		ength (ft)				
TEMPI.		Nidth (ft)			<u> </u>	
DATA		pth 2.5 f		Ground Elevation		
te: AES	X/Y Coor	dinates _	65.169851/-152.070332	Datum WGS8	4	
3RARY.GLB Data Templa	DЕРТН (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID	SOIL GRAPHIC		SOIL DESCRIPTION AND NOTES
AES LIF	0.0		4		SANDY GRAVEL.	
L GINT	-			[6.6.26.56.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	SILT brown.	
SROUF	1.0					
NTAL (-		16-TAL-TP-07-1.4-1.5		SILT dark brown.	
ONME	2.0	0.9			SILT brown.	
-NIR						Bottom of test pit at 2.5 feet.
Project File: M:AESIPROJECT FILES - REORGANIZED/ADEC TOS/20266.019_TAWANA110_FIELD REPORTS/BORING LOGS/GINT TANANA, GPJ Lidrary; M:AESI/O AK ENVIRONMENTAL GROUP/GINTAES LIBRARY.GLB Data Template: AES DATA TEMPLATE.GDT						
roject File: M:\A						

Site Tanana Community Hall Site Tanana Community Hall Extra Field Notes: Client ABEC Field Scientisty Engineer Davis Site	D		C	Cita Tanana C		Ester Field Notes
Date 8/23/2016 Weather 65 °F, partly sunny Fourinment Backhoe Sample Method Discrete grah						Extra Field Notes:
Fauinment Backhoe Sample Method Discrete grah						
Test Pit Length (ft) 3	Fauinme					
Test Pit Width (ft) 3 Total Depth 2.5 feet Solid Depth 2.5 feet Solid Description And Notes Depth to Groundwater M/A Ground Elevation N/A Datum WGS84 Solid Description And Notes Solid Description And Notes Sandry GraveL 1.0 16-TAL-TP-08-1.2-1.3 Depth to Groundwater M/A Ground Elevation N/A Datum WGS84 Solid Description And Notes Sandry GraveL Solid Description and Notes Sandry GraveL Solid Description and Notes Bottom of test pit at 2.5 feet.	Test Pit I				•	
Total Depth 2.5 feet	Test Pit \					
X/Y Coordinates	Total De					
SOIL DESCRIPTION AND NOTES SOIL DESCRIPTION AND NOTES SILT. Bottom of test pit at 2.5 feet.	X/Y Coor					
SOIL DESCRIPTION AND NOTES SOIL DESCRIPTION AND NOTES SOIL DESCRIPTION AND NOTES SILT. Bottom of test pit at 2.5 feet.		_				
0.0 SANDY GRAVEL. 1.0 16-TAL-TP-08-1.2-1.3 SILT. Bottom of test pit at 2.5 feet.	DEPTH (ft)	PID (ppm)	NALYTICAL SOII SAMPLE ID	SOIL GRAPHIC		SOIL DESCRIPTION AND NOTES
1.0 0.7 16-TAL-TP-08-1.2-1.3 SILT. Bottom of test pit at 2.5 feet.	0.0		∢	000000000	SANDY GRAVEL.	
2.0 0.7 16-TAL-TP-08-1.2-1.3 SILT. Bottom of test pit at 2.5 feet.	1.0			200000		
Bottom of test pit at 2.5 feet.	<u> </u>		16-TAL-TP-08-1.2-1.3	n	SILT.	
Bottom of test pit at 2.5 feet.	20	0.7				
Bottom of test pit at 2.5 feet.	2.0					
	<u> </u>					Bottom of test pit at 2.5 feet.

Project Number: 20266.019 Test Pit Number: TP-09

	Engineering Ser	rvices, LLC					
	Project N	Name <u>Ta</u>	nana Community Hall	Site Tanana C	ommunity Hall	Extra Field Notes:	
	Client _A	ADEC		Field Scientist/	Engineer Davis		
	Date <u>8/</u>	/23/2016		Weather 65 °F	, partly sunny		
_	Equipme	nt <u>Backh</u>	oe	Sample Method	Discrete grab		
E.GD	Test Pit L	Length (ft)	3	# of Samples	1		
MPLA	Test Pit \	Width (ft)	3	Depth to Grour	ndwater N/A		
A IE	Total De	pth _2.5 f	eet	Ground Elevation	on N/A		
=S DA			65.169933/-152.070987	Datum WGS8	4		
ate: A					I		
LIBRARY.GLB Data Lempia	OEPTH (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID	SOIL GRAPHIC		SOIL DESC	RIPTION AND NOTES
ONMENTAL GROUP(GINTAES	1.0	0.8	16-TAL-TP-09-2.1-2.3		SILTY GRAVEL.		
Ý					0.2. 0.000	Pottom o	f tast nit at 2 E fact
۱Å						BOLLOTTI O	f test pit at 2.5 feet.

Project File: M:AESIPROJECT FILES - REORGANIZED/ADEC TOS/20286 019_TANANA.110_FIELD REPORTS/BORING LOGS/GINT TANANA.GPJ LIbrary. M:AES/0 A

Project Number: 20266.019 Test Pit Number: TP-10

Project	nana Community Hall	Si	te <u>Tanan</u>	ia Co	ommunity Hall	Extra Field Notes:	
Client	Client <u>ADEC</u> Date <u>8/23/2016</u>				ist/	Engineer Davis	
Date _8					55 °F	, partly sunny	
Equipm	ent <u>Backh</u>	oe	Sa	mple Me	thoc	Discrete grab	
Test Pit	Length (ft) <u>3</u>	# 0	of Sample	s _1	L	
≦ Test Pit	: Width (ft)	3	De	epth to Gr	oun	ndwater N/A	
≝ Total D	epth 2.2 f	eet	Gr	round Elev	vatio	on N/A	
X/Y Cod	ordinates	65.169835/-152.071137	Da	atum <u>W</u>	GS84	4	
ate: A	1	T .					
CIBRARY.GLB Data Templa O DEPTH O (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID		SOIL GRAPHIC			IL DESCRIPTION AND NOTES
TAES					7,0	SILTY GRAVEL.	
5 5 1.0	1		000			SANDY GRAVEL.	
1.0	1	16-TAL-TP-10-1.0-1.2				SILT dark brown.	
NTAL -	0.7					SILT brown.	
2.0	-						
NAME OF THE PROPERTY OF THE PR						В	ottom of test pit at 2.2 feet.

Project File: M:/AESIPROJECT FILES - REORGANIZEDIADEC TOS/20266.019_TANANA\10_FIELD REPORTS/BORING LOGS\GINT TANANA.GPJ Library; M:\AES\0 AK EN

Project Number: 20266.019 Test Pit Number: TP-11

Project I	Project Name Tanana Community Hall						ommunity Hall	Extra Field Notes:	
Client _		_ F	ield :	Scienti	ist/I	Engineer Davis			
Date 8	/23/2016		v	Weather 65 °F, partly sunny					
Equipme	ent <u>Backh</u>	ioe	s	ampl	le Met	thoc	Discrete grab		
Test Pit	Length (ft) 3	#	of Sa	ample	s _1	L		
Test Pit	Width (ft)	3	D	epth	to Gr	oun	dwater N/A		
Total De	pth _2.7 f	eet	G	iroun	ıd Elev	/atio	on N/A		
X/Y Coo	X/Y Coordinates _65.169655/-152.07108				n <u>W</u>	3S84	1		
(tf) OEPTH	PID (ppm)	ANALYTICAL SOIL SAMPLE ID		SOIL GRAPHIC				SOIL DESC	CRIPTION AND NOTES
			000	\mathcal{C}_{0}	$0, \sim$	\bigcirc	SANDY GRAVEL.		
1.0	_		0 0		0	0 1	SILT brown.		
<u> </u>		16-TAL-TP-11-1.5-1.7							
2.0	0.6								
-	- 0.0								
		1	_				1	Bottom o	of test pit at 2.7 feet.

Project File: M:'AESIPROJECT FILES - REORGANIZEDIADEC TOS/20266.019_TANANA\10_FIELD REPORTS/BORING LOGS/GINT TANANA,GPJ LIbrary, M:'AESI0 AK ENV

	e 1
1	1. trans
7	nina
Engine	ring Services, LLC

TEST PIT LOG

Client A Date 8/ Equipme Test Pit L Test Pit V Total Dep	ADEC 24/2016 nt Shovel ength (ft) Width (ft) pth 1.8 fe	1 1	Field Scientist/ Weather 60° Sample Metho # of Samples _ Depth to Grou	0 ndwater <u>N/A</u> on <u>N/</u> A			
O DEPTH (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID	SOIL GRAPHIC		DIL DESCRIPTION AND NOTES		
1.0		no analytical sample		SANDY GRAVEL. SILT brown.			
·	0.1			В	Bottom of test pit at 1.8 feet.		

Project Number: 20266.019 Test Pit Number: TP-13

Project N	nana Community Hall	Site	Tanar	na Co	Community Hall Extra Field Notes:			
Client _A	ADEC		_ Fiel	d Scient	ist/I	'Engineer Davis		
Date <u>8/</u>	24/2016		We	ather _6	60 °F	F, cloudy		
Equipme	nt Shove	I	San	nple Me	tho	od N/A		
Test Pit L	ength (ft) 1	# of	Sample	es _(0		
Test Pit \	Nidth (ft)	1	Dep	th to G	roun	ndwater N/A		
Total De	pth 1.9 f	eet	Gro	und Ele	vatio	ion N/A		
X/Y Coor	dinates	65.169774/-152.070728	Dat	Datum WGS84				
DEPTH (ft)	PID (ppm)	ANALYTICAL SOIL SAMPLE ID	SOIL GRAPHIC			SOIL DESCRIPTION AND NOTES		
0.0		·	0 		00	SANDY GRAVEL.		
1.0			ه النات		<u>ڙه ()</u>	SILT brown.		
1.0		no analytical sample	111/		///	TAR OR CHARRED WOOD/DEBRIS.		
-					//,	SILT brown.		
	0.1					Bottom of test pit at 1.9 feet.		

Project File. M:AESIPROJECT FILES - REORGANIZED'ADEC TOS/20266.019_TANANAN10_FIELD REPORTS'BORING LOGS/GINT TANANA, GPJ Library: M:AESIV AK ENVIRONMENTAL GROUP/GINTAES LIBRARY.GLB Data Template: AES DATA TEMPLATE.GDT

APPENDIX D

ANALYTICAL RESULTS

APPENDIX D-1

DATA QUALITY ASSESSMENT

\rctic Data Services LLC

PO BOX 345 ESTER, AK 99725 907-457-3147

Date: 11/18/2016

Project name: Tanana Community Hall Brownfield Assessment

Laboratories: SGS North America, Anchorage

Sample Delivery Groups: 1168490

Reviewed by: Rodney Guritz

Title: Principal Chemist Coduy 1

To: Leslie Davis

Ahtna Engineering Services, LLC 1896 Marika Road, Suite 8 Fairbanks, AK 99709

Data Quality Assessment

This letter summarizes the findings of a data quality assessment (DQA) conducted by Arctic Data Services, LLC (ADS) for the above-referenced project data. Precision, accuracy, sensitivity, representativeness, comparability, and completeness of the data was evaluated by reviewing laboratory-supplied quality assurance/quality control (QA/QC) information as well as conducting independent QA/QC checks on the data. The review was conducted in accordance with ADS standard data review procedures, informed by guidance from various state and federal documents, including the Alaska Department of Environmental Conservation (ADEC) Environmental Laboratory Data and Quality Assurance Requirements technical memorandum (2009), the US Environmental Protection Agency (USEPA) National Functional Guidelines for Superfund Organic Methods Data Review (2008), and the US Army Corps of Engineers (USACE) Engineering Manual (EM) 200-1-10 Guidance for Evaluating Performance-Based Chemical Data (2005). In the absence of project-specific control limits, analytical QC sample recoveries and RPDs were compared to laboratory control-charted limits. Field-duplicate RPDs were compared to ADEC-recommended data quality objectives (DQOs).

ADEC data review checklists were completed for each sample delivery group (SDG), and are attached to this DQA. Also attached is a table summarizing data qualified in the course of our review (Table 1). In the case where a sample result was affected by more than one sample-handling anomaly or QC failure, a determination was made as to which qualifier is most conservative, and only that qualifier is retained and reported. The following sections provide a summary of our findings for each QA/QC element reviewed; anomalies that had no impact to data quality are discussed in the ADEC data review checklist, and are not further described herein.

Sample Preservation, Handling, Custody, and Holding Times

Sample receipt forms were reviewed to check that samples were received in good condition, properly preserved, and within the required temperature range. Chain of custody forms were reviewed to confirm that

Tanana Community Hall Brownfield Assessment Data Quality Assessment 11/18/2016 Page 2 of 5

custody was not breached during sample handling. Dates of sample collection, preparation, and analysis were compared to check that method holding times were not exceeded.

There were no sample preservation, handling, custody, or holding-time anomalies that affected data quality for this project.

Analytical Sensitivity

Analytical sensitivity was evaluated by checking that reporting limits were below the applicable screening and/or cleanup levels where target analytes were not detected. Soil-sample LODs were compared to ADEC 18 AAC 75.340 (2012) Table B1 and B2 Soil Cleanup Levels (SCLs; under-40-inch zone, most-stringent pathway).

Soil-sample LODs were below soil cleanup levels for non-detect results, with the exception of dibenzo(a,h)anthracene, naphthalene, and total PCBs (sum of LODs for individual Aroclors) for sample 16-TAL-TP-03-1.5-1.8 and its duplicate 16-TAL-TP-20-1.5-1.8. DRO, RRO, and numerous PAHs exceeded SCLs in these samples. No individual Aroclors were detected in the samples, nor in the sample from nearby TP-02 which had acceptable LODs. Overall data usability is not affected by the elevated LODs.

Method Blanks

The laboratory analyzed and reported a method blank (MB) for each preparatory batch, to check for laboratory-based sample contamination. No analytes were detected above limits of quantitation (LOQs) in method blanks associated with project samples. However, multiple analytes were detected between the detection limit (DL) and LOQ in method blanks associated with soil analysis by 6020A and water analysis by 8270D SIM, AK102, and AK103. 2-Methylnaphthalene results for samples 16-TAL-WP-01-21.5-25.0 and 16-TAL-WP-03-21.5-25.0 and DRO results for samples 16-TAL-WP-01-21.5-25.0 and 16-TAL-WP-02-21.5-25.0 were below LOQs and within five times the corresponding MB concentration. These results are qualified 'UB' at the LOQ.

Trip Blanks

Trip blanks were submitted with soil samples for analysis by 8021B and water samples for analysis by AK101/8021B, to check for cross-contamination of samples during sampling, shipment, or storage. GRO was detected below the LOQ in the trip blank. GRO was also detected below the LOQ in sample 16-TAL-WP-01-21.5-25.0. This result is considered attributable to sample cross-contamination during shipment and/or storage, and is qualified 'UB' at the LOQ.

Tanana Community Hall Brownfield Assessment Data Quality Assessment 11/18/2016 Page 3 of 5

Laboratory Control Samples

The laboratory analyzed and reported a laboratory control sample (LCS) for each preparatory batch, to assess laboratory extraction efficiency and analytical accuracy. In some cases, LCS duplicates (LCSDs) were used to assess analytical precision; an LCSD was reported for each analysis employing Alaska Methods (AK101, AK102, AK103). LCS and LCSD recovery information and LCS/LCSD RPD information (where available) was reviewed. There were no LCS/LCSD recovery or RPD failures.

Matrix Spike Samples

The laboratory analyzed and reported matrix spike (MS) and MS duplicate (MSD) samples to check for potential matrix interference. MS/MSD recovery and RPDs were evaluated only if the parent sample (the sample spiked for the MS/MSD) was in the project-sample set. There were no MS/MSD recovery or RPD failures affecting project-sample data quality.

Surrogate Recovery

Samples submitted for analysis of organic compounds were spiked with analyte surrogates to evaluate extraction efficiency and to check for matrix interference. Surrogate recoveries were reviewed for each project sample and analysis. There were a number of surrogate recovery failures due to dilution; these failures do not affect data quality, as dilution compromises the ability to accurately recovery surrogate spikes. The only other surrogate recovery failures were for MS/MSD samples not associated with project samples.

Field Duplicates

Field duplicate samples were collected for soil and groundwater samples. The field-duplicate collection frequency met the 10% requirement in the FSP. RPDs between field-duplicate results were calculated where at least one of the results was quantitatively detected (above the PQL). In cases where one result was above the LOQ but the other result was not detected, an RPD was calculated using the PQL for the non-detect result.

RPDs met the ADEC-recommended DQOs of 50 percent for soil samples and 30 percent for water samples.

Other QC Anomalies

The laboratory noted no other QC anomalies affecting data quality or usability.

Given the discrepancy between field observations, PID readings, and DRO/RRO results for sample 16-TAL-TP-08-1.2-1.3, we requested a chromatogram and interpretation of the hydrocarbon signature from the laboratory. The hydrocarbon signature was distinct from the other samples with elevated DRO/RRO (attributed to Bunker C), and was consistent with a lube oil.

Tanana Community Hall Brownfield Assessment
Data Quality Assessment
11/18/2016
Page 4 of 5

Summary of Data Quality Indicators

The following sections summarize the findings of the above review with respect to the six data quality indicators: sensitivity, precision, accuracy, representativeness, comparability, and completeness.

Sensitivity

Sensitivity describes the ability of the sampling and analytical methodology to meet reporting-limit objectives. LODs were below relevant cleanup levels with a few exceptions. However, samples with LODs exceeding cleanup levels contained numerous other analytes well above cleanup levels. Sensitivity is deemed sufficient for purposes of this project.

Precision

Precision is a measure of the reproducibility of repetitive measurements. Precision was evaluated based on laboratory QC-sample and field-duplicate sample RPDs. There were no RPD failures affecting data quality. Precision is deemed acceptable for purposes of this project.

Accuracy

Accuracy is a measure of the correctness, or the closeness, between the true value and the quantity detected. Accuracy was evaluated based on analyte recoveries for laboratory QC samples and recovery of surrogate spikes for project samples. There were no recovery failures affecting data quality. Accuracy is deemed acceptable for purposes of this project.

Representativeness

Representativeness describes the degree to which data accurately and precisely represent site characteristics. Representativeness is affected by factors such as sample frequency and matrix or contaminant heterogeneity, as well as analytical performance (including sensitivity, accuracy, and precision) sample cross-contamination. Samples were collected in accordance with an approved work plan, analytical precision was acceptable, and the only results affected by detections in blank samples were below LOQs as well as relevant cleanup levels. Representativeness was deemed acceptable for purposes of this project.

Comparability

Comparability describes whether two data sets can be considered equivalent with respect to project goals. Comparability is affected by factors such as sampling methodology and analytical performance (including sensitivity, accuracy, and precision). Comparability was evaluated by checking that standard analytical methods were employed and analytical performance was acceptable. Comparability was acceptable for this project.

Tanana Community Hall Brownfield Assessment
Data Quality Assessment
11/18/2016
Page 5 of 5

Completeness

Completeness describes the amount of valid data obtained from the sampling event(s). It is calculated as the percentage of valid measurements compared to the total number of measurements. All project-sample results were considered usable (no data were rejected), and a completeness score of 100% was calculated for this project.

Conclusions and Limitations

Sensitivity, precision, accuracy, representativeness, comparability, and completeness were deemed acceptable, and the data are usable for the purposes of this project. Impacts to data usability from QC failures were minimal.

Our review was based solely on information provided by the analytical laboratory in the laboratory reports for the SDGs reviewed. We did not review instrument-level QC elements, such as calibration verification or internal standard response, except to the extent that the laboratory identified instrument-level anomalies in the case narrative. We did not conduct independent validation of the data (e.g. recalculating results based on instrument responses) or review any raw chemical data (e.g. chromatograms, other than for sample 16-TAL-TP-08-1.2-1.3).

Attachments:

Table 1 Summary of Qualified Data SGS 1168490 ADEC Data Review Checklist

Table 1 Summary of Qualified Data Tanana Community Hall Brownfield Assessment Data Quality Assessment

									Lab	Original			Final	
SampleID	Matrix	Method	Analyte	Units	LOQ	LOD	DL	Result	Flag	Result	QC Flags	Note	Flag	Final Result
16-TAL-WP-01-21.5-25.0	Water	8270D SIM	2-Methylnaphthalene	ug/L	0.0508	0.0254	0.0152	0.0178	J	0.0178 J	UB	1	UB	0.0508 UB
16-TAL-WP-03-21.5-25.0	Water	8270D SIM	2-Methylnaphthalene	ug/L	0.0490	0.0245	0.0147	0.0225	J	0.0225 J	UB	1	UB	0.0490 UB
16-TAL-WP-01-21.5-25.0	Water	AK102	DRO	mg/L	0.600	0.300	0.180	0.353	J	0.353 J	UB	1	UB	0.600 UB
16-TAL-WP-02-21.5-25.0	Water	AK102	DRO	mg/L	0.588	0.294	0.176	0.324	J	0.324 J	UB	1	UB	0.588 UB
16-TAL-WP-01-21.5-25.0	Water	AK101	GRO	mg/L	0.100	0.0500	0.0310	0.0338	J	0.0338 J	UB	2	UB	0.100 UB

Notes

- 1 Analyte was detected below the LOQ in the sample and a corresponding method blank.
- 2 Analyte was detected below the LOQ in the sample and a corresponding trip blank.
- J Estimated concentration; analyte was detected between the method detection limit and the practical quantitation limit
- UB Result considered not detected due to contamination identified at a similar concentration in a corresponding blank sample

LOQ Limit of quantitation

LOD Limit of detection

DL Detection limit

Page 1 of 1 DQA-16004

APPENDIX D-2

ADEC DATA REVIEW CHECKLIST

Laboratory Data Review Checklist

Completed by:	Rodney Guritz
Title:	Chemist Date: October 13, 2016
CS Report Name:	Tanana Community Hall Report Date: November 2016
Consultant Firm:	Arctic Data Services, LLC
Laboratory Name	SGS Anchorage Laboratory Report Number: 1168490
ADEC File Numb	er: 780.57.004 ADEC RecKey Number:
Samples	ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes \(\subseteq \text{No} \text{NA} \text{(Please explain.)} \) Were hand delivered to the SGS North America Inc. receiving office in Fairbanks and to their Anchorage laboratory for analysis.
laborat \[\sum_{Y} \]	amples were transferred to another "network" laboratory or sub-contracted to an alternate tory, was the laboratory performing the analyses ADEC CS approved? Yes \(\subseteq \text{No} \subseteq \text{NA} \text{(Please explain.)} \) Comments:
2. Chain of Custona. COC in	
	t analyses requested? Yes No NA (Please explain.) Comments:
a. Sample ☐ The sample	mple Receipt Documentation e/cooler temperature documented and within range at receipt (4° ± 2° C)? Yes \(\text{No} \) \(\text{NA} \) (Please explain.) Comments: mples were received at both locations between 0 °C and 6 °C, the acceptable temperature isted in EPA SW-846 and adopted by reference by ADEC (18 AAC 78.090).

	Volatile Chlorinated Solvents, etc.)?	ers, Methanol preserved VOC soil (GRO, B
	□■Yes □ No □NA (Please explain.)	Comments:
c.	Sample condition documented – broken, leaking □ ■ Yes □ No □NA (Please explain.)	g (Methanol), zero headspace (VOC vials)? Comments:
Ş	Samples were received in good condition.	
d.	If there were any discrepancies, were they docu containers/preservation, sample temperature our samples, etc.?	* '
	☐ Yes ☐ No ☐ NA (Please explain.)	Comments:
-	There were no sample-receiving discrepancies.	
e.	Data quality or usability affected? (Please expla	in.) Comments:
Ι	Data quality and usability were not affected.	
_		
	Narrative Prosent and understandable?	
	Narrative Present and understandable? □■Yes□ No □NA (Please explain.)	Comments:
	Present and understandable?	Comments:
	Present and understandable?	Comments:
a.	Present and understandable? □■Yes□ No □NA (Please explain.) Discrepancies, errors or QC failures identified by	by the lab?
a.	Present and understandable? □■Yes□ No □NA (Please explain.)	
a. b.	Present and understandable? □■Yes□ No □NA (Please explain.) Discrepancies, errors or QC failures identified by	oy the lab? Comments: noting a number of QC anomalies, includin PD failures, and MS/MSD recovery and RI
a. b.	Present and understandable? □■Yes□No□NA (Please explain.) Discrepancies, errors or QC failures identified to □■Yes□No□NA (Please explain.) The laboratory provided a detailed case narrative urrogate recovery failures, laboratory duplicate Railures. The following sections of this checklist actions.	oy the lab? Comments: noting a number of QC anomalies, includin PD failures, and MS/MSD recovery and RI
a. b.	Present and understandable? □■Yes□No□NA (Please explain.) Discrepancies, errors or QC failures identified boundaries. No□NA (Please explain.) The laboratory provided a detailed case narrative urrogate recovery failures, laboratory duplicate Railures. The following sections of this checklist actions.	oy the lab? Comments: noting a number of QC anomalies, includin PD failures, and MS/MSD recovery and RI
a. b. si	Present and understandable? □■Yes□No□NA (Please explain.) Discrepancies, errors or QC failures identified by the second of the	oy the lab? Comments: noting a number of QC anomalies, includin PD failures, and MS/MSD recovery and RI ddress these anomalies in detail. Comments:
a. b. si	Present and understandable? □■Yes□No□NA (Please explain.) Discrepancies, errors or QC failures identified bounded in the second of the seco	oy the lab? Comments: noting a number of QC anomalies, includin PD failures, and MS/MSD recovery and RI ddress these anomalies in detail. Comments:

	•	ses performed/reported as a No		? omments:	
		1			
b.		holding times met? No □NA (Please explain	.) Cc	omments:	
c.	-	ted on a dry weight basis? No □NA (Please explain		omments:	
d.	project?	ed PQLs less than the Clea No □ NA (Please explain	-	ninimum requ	ired detection level for
ę	and 16-TAL-7 LODs for indi TAL-TP-03-1	ed soil cleanup levels for de P-20-1.5-1.8) and naphthat vidual Aroclors exceeded 5-1.8 and duplicate 16-TA resulting usability affected?	alene (sample 16-T the Total PCB clea	AL-TP-20-1.5 nup level (1 n	5-1.8). The sum of ng/kg) for sample 16-
<u> </u>	Data quanty c	r usuomity unrecteur	Co	omments:	
		ected as described above. Soil cleanup level, so overal			
OC Sa	<u>mples</u> Method Blank				
		ethod blank reported per n No □NA (Please explain		1 20 samples? omments:	
	□∎Yes□ ii. All me		n PQL?		
a.	ii. All me	No □NA (Please explain	n PQL?	omments:	PQ:

iii. If above PQL, what samples are affected?

Comments:

Results within 5x the MB concentration are qualiconcentration, whichever is higher. Results between	en 5-10x the M	IB concentration	n are considered
estimated, biased high and qualified 'JH.' Results	greater than 10	Ox the MB conc	entration are not
considered affected. The following results were af	fected:		
Sample Analyte	Method	Result	Flagged result
16-TAL-WP-01-21.5-25.0 2-Methylnaphthalene			0.0508 UB ug/L
16-TAL-WP-03-21.5-25.0 2-Methylnaphthalene		_	0.0490 UB ug/L
		_	
16-TAL-WP-01-21.5-25.0 DRO	AK102	_	0.600 UB mg/L
16-TAL-WP-02-21.5-25.0 DRO	AK102	0.324 J mg/L	0.588 UB mg/L
iv. Do the affected sample(s) have data flag □ ■ Yes □ No □ NA (Please explain		e the data flags of Comments:	clearly defined?
See above			
v. Data quality or usability affected? (Plea	ise explain.) Comr	nents:	
Data quality affected as described above. Data us cleanup levels.	ability was not	affected as resu	ults were below
 i. Organics – One LCS/LCSD reported per required per AK methods, LCS required □■Yes□ No □NA (Please explain.) 	r matrix, analy		oles? (LCS/LCSD
ii. Metals/Inorganics – one LCS and one sa samples?□■Yes□ No □NA (Please explain.)	ample duplicate		natrix, analysis and 20
iii. Accuracy – All percent recoveries (%R) And project specified DQOs, if applicab AK102 75%-125%, AK103 60%-120%; □Yes □■No □NA (Please explain.)	ole. (AK Petrol all other anal Comr	eum methods: A yses see the labo nents:	AK101 60%-120%,
LCS/LCSD recoveries were within laboratory cor There were a number of MS/MSD recovery failur in our project sample set, so our results were not a	es; however th		oles spiked were not

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; a other analyses see the laboratory QC pages) □Yes □■ No □NA (Please explain.) Comments:
LCS/LCSD recoveries and RPDs were within laboratory control limits for each analysis. There were a number of MS/MSD RPD failures and one laboratory duplicate RPD failure; however the original samples were not in our project sample set, so our results were not affected.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
None of the recovery or RPD failures affected project samples.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? □ Yes □ No □ ■NA (Please explain.) Comments:
No sample results were affected.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data quality and usability were not affected.
c. Surrogates – Organics Only
i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory sample □■Yes □ No □NA (Please explain.) Comments:
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) □Yes □■No □NA (Please explain.) Comments:
There were a number of surrogate recovery failures for the DRO, RRO, and PAH analyses that were due to dilution of the samples. Results are not considered affected by surrogate recovery failures caused by sample dilution. There were also several surrogate recovery failures for MS/MSD samples for metals and PAH analysis. However, original samples spiked for the MS/MSDs were not in our project-sample set, so project-sample results are not affected.
 iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined? □ Yes □ No □ ■NA (Please explain.) Comments:
No sample results were affected by the surrogate recovery failures noted above.

Comments: Data quality and usability were not affected. d. Trip blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) □ ■ Yes □ No □NA (Please explain.) Comments: Trip blanks were submitted for GRO and BTEX analysis for soil and water. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) ☐ Yes ☐ No ☐ ■NA (Please explain.) Comments: Samples were submitted in a single cooler. iii. All results less than PQL? □ ■ Yes □ No □ NA (Please explain.) Comments: However GRO was detected between the DL and the LOQ in the water trip blank, at 0.0337 J mg/L. iv. If above POL, what samples are affected? Comments: GRO was detected at a similar concentration below the LOQ in sample 16-TAL-WP-01-21.5-25.0. This result is considered attributable to sample cross-contamination during shipment and/or storage, and is qualified UB at the LOQ (0.100 UB mg/L). v. Data quality or usability affected? (Please explain.) Comments: Data quality affected as described above. Impact to data usability was minimal as the affected result was an order of magnitude below the relevant cleanup level. e. Field Duplicate i. One field duplicate submitted per matrix, analysis and 10 project samples? \square Yes \square No \square NA (Please explain.) Comments: The following field-duplicate pairs were submitted: **Primary** Duplicate 16-TAL-TP-03-1.5-1.8 16-TAL-TP-20-1.5-1.8 16-TAL-SB-03-5.5-6.0 16-TAL-SB-20-5.5-6.0 16-TAL-WP-02-21.5-25.0 16-TAL-WP-20-21.5-25.0

iv. Data quality or usability affected? (Use the comment box to explain.)

ii. Submitted blind to lab?□ ■ Yes □ No □NA (Please explain.)	Comments:
iii. Precision – All relative percent differences (Recommended: 30% water, 50% soil)	RPD) less than specified DQOs?
RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)}$	x 100
Where $R_1 = \text{Sample Concentration}$	
R_1 = Field Duplicate Concentration	on
□Yes □■No □NA (Please explain.)	Comments:
RPDs were within recommended DQOs, where calcu	ılable.
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1 (1 111)
iv. Data quality or usability affected? (Use the c	
	Comments:
Data quality and usability were not affected.	
	•••
f. Decontamination or Equipment Blank (If not used e	•
□Yes □ No □■NA (Please explain.)	Comments:
Samples were collected using disposable or dedicated s not collected.	sampling equipment; equipment blanks were
: All regults loss than DOI 9	
i. All results less than PQL?	
□Yes □No □ ■NA (Please explain.)	Comments:
:: If shave DOL what complete are affected?	
ii. If above PQL, what samples are affected?	~
	Comments:
iii. Data quality or usability affected? (Please ex	xplain.)
	Comments:
Not applicable (see above).	

7.	<u>Other</u>	Data Flags/Qualifiers (ACOE, AFCEE, Lab Sp.	<u>pecific, etc.)</u>	
	a.	Defined and appropriate?		
		☐ Yes ☐ No ☐ ■NA (Please explain.)	Comments:	
		There were no other data flags or qualifiers.		

APPENDIX D-3

LABORATORY DATA REPORT

Laboratory Report of Analysis

To: Ahtna Engineering Svs

1896 Marika Road Suite 8 Fairbanks, AK 99709 (907)374-4750

Report Number: 1168490

Client Project: Tanana Community Hall

Dear Leslie Davis,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,

SGS North America Inc.

Justin Nelson

2016.10.04

10:57:54 -08'00'

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

SGS North America Inc. Environmental Services – Alaska Division Project Manager

Print Date: 10/03/2016 11:29:12AM

Case Narrative

SGS Client: Ahtna Engineering Svs SGS Project: 1168490

Project Name/Site: Tanana Community Hall
Project Contact: Leslie Davis

Refer to sample receipt form for information on sample condition.

16-TAL-TP-01-1.0-1.3 (1168490001) PS

AK102/103 - Surrogate recoveries for 5a-androstane (0%) and n-triacontane (0%) do not meet QC criteria due to sample dilution.

16-TAL-TP-02-1.1-1.3 (1168490004) PS

AK102/103 - Surrogate recoveries for 5a-androstane (0%) and n-triacontane (0%) do not meet QC criteria due to sample dilution.

16-TAL-TP-03-1.5-1.8 (1168490006) PS

AK102/103 - Surrogate recoveries for 5a-androstane (0%) and n-triacontane (0%) do not meet QC criteria due to sample dilution.

8270D SIM - PAH surrogate recovery for terphenyl-d14 (312%) and 2-fluorobiphenyl (281%) do not meet QC criteria due to sample dilution (20X).

16-TAL-TP-20-1.5-1.8 (1168490007) PS

AK102/103 - Surrogate recoveries for 5a-androstane (0%) and n-triacontane (0%) do not meet QC criteria due to sample dilution

8270D SIM - PAH surrogate recovery for 2-fluorobiphenyl (309%) do not meet QC criteria due to sample dilution (20X).

16-TAL-SB-03-1.6-1.8 (1168490019) PS

AK102/103 - Surrogate recoveries for 5a-androstane (0%) and n-triacontane (0%) do not meet QC criteria due to sample dilution.

1165033001(1349616DUP) (1349620) DUP

6020A - Metals Sample duplicate RPD for barium (33.6) does not meet QC criteria. Sample is non-homogenous for barium.

1165000013(1349567MS) (1349568) MS

6020A - Metals MS recoveries for barium (147%) and chromium (140%) do not meet QC criteria. The post digestion spike was successful.

1165033001(1349616MS) (1349617) MS

6020A - Metals MS recovery for barium (-338%) does not meet QC criteria. The post digestion spike was successful.

1165040005MS (1349823) MS

8270D SIM - PAH MS recoveries for several analytes do not meet QC criteria. Refer to the LCS for accuracy requirements.

8270D SIM - PAH surrogate recovery for terphenyl-d14 (144%) does not meet QC criteria, possibly due to a non-homogeneous sample.

1165000013(1349567MSD) (1349569) MSD

6020A - Metals MSD recoveries for barium (160%) and chromium (143%) do not meet QC criteria. The post digestion spike was successful.

1165033001(1349616MSD) (1349618) MSD

6020A - Metals MSD recoveries for chromium (129%) and barium (128%) do not meet QC criteria.

The post digestion spike was successful.

6020A - Metals MS/MSD RPD for barium (32.2) does not meet QC criteria. Refer to sample duplicate for RPD requirements.

1165040005MSD (1349824) MSD

Print Date: 10/03/2016 11:29:13AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Case Narrative

SGS Client: Ahtna Engineering Svs SGS Project: 1168490 Project Name/Site: Tanana Community Hall Project Contact: Leslie Davis

8270D SIM - PAH surrogate recovery for terphenyl-d14 (139%) does not meet QC criteria due to sample matrix. 8270D SIM - PAH MS recovery for several analyse does not meet QC criteria. Refer to the LCS for accuracy requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/03/2016 11:29:13AM

Report of Manual Integrations Client Sample ID Laboratory ID Analytical Batch Analyte Reason 8270D SIM (PAH) RP 1168490005 16-TAL-TP-02-2.2-2.5 XMS9647 Benzo(a)Anthracene RP 1168490005 16-TAL-TP-02-2.2-2.5 XMS9647 Benzo[b]Fluoranthene 1168490005 16-TAL-TP-02-2.2-2.5 XMS9647 Benzo[k]fluoranthene RP 1168490005 16-TAL-TP-02-2.2-2.5 XMS9647 RP Dibenzo[a,h]anthracene 1168490005 RP 16-TAL-TP-02-2.2-2.5 XMS9647 Fluoranthene 1168490005 16-TAL-TP-02-2.2-2.5 XMS9647 Indeno[1,2,3-c,d] pyrene RP 1168490006 16-TAL-TP-03-1.5-1.8 XMS9647 Benzo[b]Fluoranthene RP 16-TAL-TP-03-1.5-1.8 RP 1168490006 XMS9647 Benzo[g,h,i]perylene SP 1168490006 16-TAL-TP-03-1.5-1.8 XMS9647 Naphthalene 1168490007 16-TAL-TP-20-1.5-1.8 XMS9647 Benzo(a)Anthracene RP RP 1168490007 16-TAL-TP-20-1.5-1.8 XMS9647 Benzo[b]Fluoranthene 1168490007 16-TAL-TP-20-1.5-1.8 XMS9647 RP Benzo[g,h,i]perylene 1168490007 16-TAL-TP-20-1.5-1.8 XMS9647 Fluoranthene RP 1349823 1165040005MS XMS9647 Benzo(a)Anthracene RP RΡ 1349823 1165040005MS XMS9647 Benzo[a]pyrene 1349823 1165040005MS XMS9647 Benzo[b]Fluoranthene RP 1349823 1165040005MS XMS9647 Benzo[g,h,i]perylene RP 1349823 1165040005MS XMS9647 Benzo[k]fluoranthene RP RP 1349823 1165040005MS XMS9647 Chrysene 1349823 1165040005MS XMS9647 Fluoranthene RP 1349823 1165040005MS XMS9647 Pyrene RP 1349824 1165040005MSD XMS9647 RP Benzo(a)Anthracene RP 1349824 1165040005MSD XMS9647 Benzo[a]pyrene 1349824 1165040005MSD XMS9647 Benzo[b]Fluoranthene RP 1349824 1165040005MSD XMS9647 RP Benzo[g,h,i]perylene 1349824 1165040005MSD XMS9647 Benzo[k]fluoranthene RP 1349824 1165040005MSD XMS9647 Chrysene RP 1349824 1165040005MSD XMS9647 Fluoranthene RP RP 1349824 1165040005MSD XMS9647 Indeno[1,2,3-c,d] pyrene 1165040005MSD Phenanthrene RP 1349824 XMS9647 1349824 1165040005MSD RΡ XMS9647 Pyrene

Print Date: 10/03/2016 11:29:13AM

1355698

XMS9647

Indeno[1,2,3-c,d] pyrene

CCV for HBN 1744322 [XMS/9647]

BLC

Report of Manual Integrations

<u>Laboratory ID</u> <u>Client Sample ID</u> <u>Analytical Batch</u> <u>Analyte</u> <u>Reason</u>

Manual Integration Reason Code Descriptions

Code Description

O Original Chromatogram
M Modified Chromatogram
SS Skimmed surrogate
BLG Closed baseline gap
RP Reassign peak name
PIR Pattern integration required

IT Included tail SP Split peak

RSP Removed split peak FPS Forced peak start/stop BLC Baseline correction

PNF Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 10/03/2016 11:29:13AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8021B, 8082A, 8260B, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

D The analyte concentration is the result of a dilution.

DF Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.
F Indicates value that is greater than or equal to the DL

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.

JL The analyte was positively identified, but the quantitation is a low estimation.

LCS(D) Laboratory Control Spike (Duplicate)
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than

M A matrix effect was present.

MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.
Q QC parameter out of acceptance range.

R Rejected

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 10/03/2016 11:29:14AM

SGS North America Inc. | 200 West Potter Drive, Anchorage, AK 99518 | t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

-					
	Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
	16-TAL-TP-01-1.0-1.3	1168490001	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-01-2.4-2.5	1168490002	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-01-2.5-2.6	1168490003	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-02-1.1-1.3	1168490004	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-02-2.2-2.5	1168490005	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-03-1.5-1.8	1168490006	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-20-1.5-1.8	1168490007	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-03-2.8-3.0	1168490008	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-04-1.0-1.2	1168490009	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-05-1.0-1.2	1168490010	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-06-1.3-1.5	1168490011	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-07-1.4-1.5	1168490012	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-08-1.2-1.3	1168490013	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-09-2.1-2.3	1168490014	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-10-1.0-1.2	1168490015	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-TP-11-1.5-1.7	1168490016	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-SB-01-18.3-18.7	1168490017	08/24/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-SB-02-19.0-19.6	1168490018	08/24/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-SB-03-1.6-1.8	1168490019	08/24/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-SB-03-5.5-6.0	1168490020	08/24/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-SB-20-5.5-6.0	1168490021	08/24/2016	08/27/2016	Soil/Solid (dry weight)
	Trip Blank-01	1168490022	08/23/2016	08/27/2016	Soil/Solid (dry weight)
	16-TAL-WP-01-21.5-25.0	1168490023	08/25/2016	08/27/2016	Water (Surface, Eff., Ground)
	16-TAL-WP-02-21.5-25.0	1168490024	08/25/2016	08/27/2016	Water (Surface, Eff., Ground)
	16-TAL-WP-20-21.5-25.0	1168490025	08/25/2016	08/27/2016	Water (Surface, Eff., Ground)
	16-TAL-WP-03-21.5-25.0	1168490026	08/25/2016	08/27/2016	Water (Surface, Eff., Ground)
	Trip Blank-02	1168490027	08/25/2016	08/27/2016	Water (Surface, Eff., Ground)

Print Date: 10/03/2016 11:29:15AM

Sample Summary

<u>Client Sample ID</u> <u>Lab Sample ID</u> <u>Collected</u> <u>Received</u> <u>Matrix</u>

Method Description

8270D SIM LV (PAH) 8270 PAH SIM GC/MS Liq/Liq ext. LV 8270D SIM (PAH) 8270 PAH SIM Semi-Volatiles GC/MS

AK101 AK101/8021 Combo. SW8021B AK101/8021 Combo.

SW8021B BTEX 8021 prepped by AK101 Field Prep

AK102 Diesel/Residual Range Organics
AK103 Diesel/Residual Range Organics
AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water

SW6020A Metals by ICP-MS (S)
SM21 2540G Percent Solids SM2540G

SW8082A SW8082 PCB's

Print Date: 10/03/2016 11:29:15AM

Client Sample ID: 16-TAL-TP-01-1.0-1.3			
Lab Sample ID: 1168490001	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	99500	mg/Kg
	Residual Range Organics	83100	mg/Kg
Client Sample ID: 16-TAL-TP-01-2.4-2.5			
Lab Sample ID: 1168490002	Parameter	Result	Units
Semivolatile Organic Fuels	Residual Range Organics	11.1J	mg/Kg
Client Sample ID: 16-TAL-TP-01-2.5-2.6			
Lab Sample ID: 1168490003	Dorometer	Dogult	Llaita
•	Parameter Residual Range Organics	<u>Result</u> 14.3J	<u>Units</u> mg/Kg
Semivolatile Organic Fuels	Residual Range Organics	14.55	mg/rxg
Client Sample ID: 16-TAL-TP-02-1.1-1.3			
Lab Sample ID: 1168490004	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	35700	mg/Kg
	Residual Range Organics	45200	mg/Kg
Client Sample ID: 16-TAL-TP-02-2.2-2.5			
Lab Sample ID: 1168490005	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Arsenic	10.1	mg/Kg
-	Barium	453	mg/Kg
	Cadmium	0.343	mg/Kg
	Chromium	31.8	mg/Kg
	Lead	9.45	mg/Kg
	Mercury	0.0637	mg/Kg
	Selenium	0.595J	mg/Kg
	Silver	0.0929J	mg/Kg
Polynuclear Aromatics GC/MS	2-Methylnaphthalene	2.02J	ug/Kg
	Acenaphthylene	3.37J	ug/Kg
	Benzo(a)Anthracene	7.13	ug/Kg
	Benzo[a]pyrene	14.3	ug/Kg
	Benzo[b]Fluoranthene	12.8	ug/Kg
	Benzo[g,h,i]perylene	6.97	ug/Kg
	Benzo[k]fluoranthene	3.28J	ug/Kg
	Chrysene	7.75	ug/Kg
	Dibenzo[a,h]anthracene	2.13J	ug/Kg
	Fluoranthene	6.68	ug/Kg
	Indeno[1,2,3-c,d] pyrene	4.55J	ug/Kg
	Pyrene	23.5	ug/Kg
Semivolatile Organic Fuels	Diesel Range Organics	189	mg/Kg
	Residual Range Organics	324	mg/Kg
Volatile Fuels	o-Xylene	17.5J	ug/Kg

Print Date: 10/03/2016 11:29:16AM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

Volatile Fuels

Detectable Results Summary

01: 10 1 10 10 10 10 10 10 10 10 10 10 10 1			
Client Sample ID: 16-TAL-TP-03-1.5-1.8			
Lab Sample ID: 1168490006	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Arsenic	5.02	mg/Kg
	Barium	185	mg/Kg
	Cadmium	0.213	mg/Kg
	Chromium	23.3	mg/Kg
	Lead	8.51	mg/Kg
	Mercury	0.0316J	mg/Kg
	Selenium	0.387J	mg/Kg
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	13800	ug/Kg
-	Acenaphthene	33400	ug/Kg
	Anthracene	11600	ug/Kg
	Benzo(a)Anthracene	7660	ug/Kg
	Benzo[a]pyrene	4200	ug/Kg
	Benzo[b]Fluoranthene	3250	ug/Kg
	Benzo[g,h,i]perylene	1660J	ug/Kg
	Benzo[k]fluoranthene	2620	ug/Kg
	Chrysene	19600	ug/Kg
	Fluorene	21800	ug/Kg
	Naphthalene	2300J	ug/Kg
	Phenanthrene	33700	ug/Kg
	Pyrene	30100	ug/Kg
Semivolatile Organic Fuels	Diesel Range Organics	66900	mg/Kg
-	Residual Range Organics	67400	mg/Kg

o-Xylene

Print Date: 10/03/2016 11:29:16AM

110

ug/Kg

Client Sample ID: 16-TAL-TP-20-1.5-1.8 Lab Sample ID: 1168490007	Parameter	Result	Units
Metals by ICP/MS	Arsenic	4.67	mg/Kg
metals by for Amo	Barium	191	mg/Kg
	Cadmium	0.175J	mg/Kg
	Chromium	23.2	mg/Kg
	Lead	8.20	mg/Kg
	Mercury	0.0294J	mg/Kg
	Selenium	0.393J	mg/Kg
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	17900	ug/Kg
r orymadical 7 il omianos Germio	Acenaphthene	37400	ug/Kg
	Anthracene	14200	ug/Kg
	Benzo(a)Anthracene	8250	ug/Kg
	Benzo[a]pyrene	4130	ug/Kg
	Benzo[b]Fluoranthene	2990	ug/Kg
	Benzo[g,h,i]perylene	1500J	ug/Kg
	Chrysene	20000	ug/Kg
	Fluoranthene	5950	ug/Kg
	Fluorene	25600	ug/Kg
	Phenanthrene	34200	ug/Kg
	Pyrene	31100	ug/Kg
Semivolatile Organic Fuels	Diesel Range Organics	71000	mg/Kg
	Residual Range Organics	70700	mg/Kg
Volatile Fuels	o-Xylene	142	ug/Kg
Client Sample ID: 16-TAL-TP-03-2.8-3.0			
Lab Sample ID: 1168490008	Dorameter	Popult	Units
Semivolatile Organic Fuels	<u>Parameter</u> Residual Range Organics	<u>Result</u> 16.8J	mg/Kg
•	residual range organios	10.00	mg/rtg
Client Sample ID: 16-TAL-TP-04-1.0-1.2			
Lab Sample ID: 1168490009	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	20.2J	mg/Kg
Client Sample ID: 16-TAL-TP-05-1.0-1.2			
Lab Sample ID: 1168490010	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	10.3J	mg/Kg
· ·	Residual Range Organics	48.3	mg/Kg
Client Sample ID: 16-TAL-TP-06-1.3-1.5			
Lab Sample ID: 1168490011	Parameter	Dogult	Linita
•	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 8.82J	<u>Units</u> mg/Kg
Semivolatile Organic Fuels	Residual Range Organics	44.2	mg/Kg
	Acoldal Range Organics	77.4	mg/rxg
Client Sample ID: 16-TAL-TP-07-1.4-1.5			
Lab Sample ID: 1168490012	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	52.5	mg/Kg
	Residual Range Organics	333	mg/Kg

Print Date: 10/03/2016 11:29:16AM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

Client Sample ID: 16-TAL-TP-08-1.2-1.3			
Lab Sample ID: 1168490013	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	4210	mg/Kg
	Residual Range Organics	18000	mg/Kg
Client Sample ID: 16-TAL-TP-09-2.1-2.3			
Lab Sample ID: 1168490014	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	112	mg/Kg
	Residual Range Organics	721	mg/Kg
Client Sample ID: 16-TAL-TP-10-1.0-1.2			
Lab Sample ID: 1168490015	<u>Parameter</u>	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	67.0	mg/Kg
	Residual Range Organics	399	mg/Kg
Client Sample ID: 16-TAL-TP-11-1.5-1.7			
Lab Sample ID: 1168490016	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	24.9J	mg/Kg
3	Residual Range Organics	150	mg/Kg
Client Sample ID: 16-TAL-SB-01-18.3-18.7			
Lab Sample ID: 1168490017	Parameter	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	7.63J	mg/Kg
Comvolatile Organie i dels	Residual Range Organics	19.6J	mg/Kg
Client Sample ID: 16-TAL-SB-02-19.0-19.6	0 0		0 0
Lab Sample ID: 1168490018	Darameter	Dogult	Linita
Semivolatile Organic Fuels	Parameter Diesel Range Organics	<u>Result</u> 7.87J	<u>Units</u> mg/Kg
Semivolatile Organic Fuels	Residual Range Organics	20.0J	mg/Kg
	roomaan range organise	20.00	g/.tg
Client Sample ID: 16-TAL-SB-03-1.6-1.8	_		
Lab Sample ID: 1168490019	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	12400 31400	mg/Kg
	Residual Range Organics	31400	mg/Kg
Client Sample ID: 16-TAL-SB-03-5.5-6.0			
Lab Sample ID: 1168490020	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	8.25J	mg/Kg
	Residual Range Organics	27.5	mg/Kg
Client Sample ID: 16-TAL-SB-20-5.5-6.0			
Lab Sample ID: 1168490021	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Residual Range Organics	21.1J	mg/Kg
Client Sample ID: 16-TAL-WP-01-21.5-25.0			
Lab Sample ID: 1168490023	Parameter	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	2-Methylnaphthalene	0.0178J	ug/L
,	Phenanthrene	0.0177J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.353J	mg/L
Volatile Fuels	Gasoline Range Organics	0.0338J	mg/L

Print Date: 10/03/2016 11:29:16AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 16-TAL-WP-02-21.5-25.0	_		
Lab Sample ID: 1168490024	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.0154J	ug/L
	Phenanthrene	0.0180J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.324J	mg/L
Client Sample ID: 16-TAL-WP-20-21.5-25.0			
Lab Sample ID: 1168490025	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.190J	mg/L
Client Sample ID: 16-TAL-WP-03-21.5-25.0			
Lab Sample ID: 1168490026	Parameter	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	2-Methylnaphthalene	0.0225J	ug/L
Client Sample ID: Trip Blank-02			
Lab Sample ID: 1168490027	<u>Parameter</u>	Result	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	0.0337J	mg/L

Print Date: 10/03/2016 11:29:16AM

Results of 16-TAL-TP-01-1.0-1.3

Client Sample ID: 16-TAL-TP-01-1.0-1.3
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490001 Lab Project ID: 1168490 Collection Date: 08/23/16 13:00 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):87.7 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	99500	13600	4230	mg/Kg	20	Limits	09/10/16 06:37
Surrogates 5a Androstane (surr)	0 *	50-150		%	20		09/10/16 06:37

Batch Information

Analytical Batch: XFC12811 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/10/16 06:37 Container ID: 1168490001-A

Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.016 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	83100	2730	845	mg/Kg	4		09/08/16 11:18
Surrogates							
n-Triacontane-d62 (surr)	0 *	50-150		%	4		09/08/16 11:18

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/08/16 11:18 Container ID: 1168490001-A Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.016 g
Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM J flagging is activated

Results of 16-TAL-TP-01-2.4-2.5

Client Sample ID: 16-TAL-TP-01-2.4-2.5 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490002 Lab Project ID: 1168490 Collection Date: 08/23/16 13:05 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.8 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	12.2 U	24.3	7.52	mg/Kg	1	Limits	09/06/16 21:52
Surrogates 5a Androstane (surr)	88.5	50-150		%	1		09/06/16 21:52

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 21:52 Container ID: 1168490002-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.249 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	11.1 J	24.3	7.52	mg/Kg	1		09/06/16 21:52
Surrogates							
n-Triacontane-d62 (surr)	97.2	50-150		%	1		09/06/16 21:52

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 21:52 Container ID: 1168490002-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.249 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM J flagging is activated

Results of 16-TAL-TP-01-2.5-2.6

Client Sample ID: 16-TAL-TP-01-2.5-2.6
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490003 Lab Project ID: 1168490 Collection Date: 08/23/16 13:10 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):80.6 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	12.4 U	24.7	7.64	mg/Kg	1	Limits	09/06/16 22:03
Surrogates 5a Androstane (surr)	86.6	50-150		%	1		09/06/16 22:03

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 22:03 Container ID: 1168490003-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.192 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	14.3 J	24.7	7.64	mg/Kg	1		09/06/16 22:03
Surrogates							
n-Triacontane-d62 (surr)	95	50-150		%	1		09/06/16 22:03

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 22:03 Container ID: 1168490003-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.192 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM J flagging is activated

Results of 16-TAL-TP-02-1.1-1.3

Client Sample ID: 16-TAL-TP-02-1.1-1.3
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490004 Lab Project ID: 1168490 Collection Date: 08/23/16 13:15 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

۸ اا ما سام ال

Solids (%):89.3 Location:

Results by Semivolatile Organic Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	35700	2620	813	mg/Kg	4		09/08/16 11:28
Surrogates							
5a Androstane (surr)	0 *	50-150		%	4		09/08/16 11:28

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/08/16 11:28 Container ID: 1168490004-A

Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.127 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	45200	2620	813	mg/Kg	4		09/08/16 11:28
Surrogates							
n-Triacontane-d62 (surr)	0 *	50-150		%	4		09/08/16 11:28

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/08/16 11:28 Container ID: 1168490004-A Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.127 g
Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

J flagging is activated

Results of 16-TAL-TP-02-2.2-2.5

Client Sample ID: 16-TAL-TP-02-2.2-2.5 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490005 Lab Project ID: 1168490 Collection Date: 08/23/16 13:20 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.2 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	10.1	1.14	0.354	mg/Kg	10		09/09/16 13:12
Barium	453	0.857	0.268	mg/Kg	25		09/09/16 13:01
Cadmium	0.343	0.228	0.0708	mg/Kg	10		09/09/16 13:12
Chromium	31.8	0.457	0.148	mg/Kg	10		09/09/16 13:12
Lead	9.45	0.228	0.0708	mg/Kg	10		09/09/16 13:12
Mercury	0.0637	0.0457	0.0137	mg/Kg	10		09/09/16 13:12
Selenium	0.595 J	1.14	0.354	mg/Kg	10		09/09/16 13:12
Silver	0.0929 J	0.228	0.0708	mg/Kg	10		09/09/16 13:12

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A

Analyst: VDL

Analytical Date/Time: 09/09/16 13:12 Container ID: 1168490005-A

Prep Batch: MXX30150 Prep Method: SW3050B Prep Date/Time: 09/02/16 08:40 Prep Initial Wt./Vol.: 1.078 g Prep Extract Vol: 50 mL

Print Date: 10/03/2016 11:29:17AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com J flagging is activated

Client Sample ID: 16-TAL-TP-02-2.2-2.5
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490005 Lab Project ID: 1168490 Collection Date: 08/23/16 13:20 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.2 Location:

Results by Polychlorinated Biphenyls

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aroclor-1016	30.4 U	60.9	18.3	ug/Kg	1		09/10/16 16:23
Aroclor-1221	122 U	243	75.5	ug/Kg	1		09/10/16 16:23
Aroclor-1232	30.4 U	60.9	18.3	ug/Kg	1		09/10/16 16:23
Aroclor-1242	30.4 U	60.9	18.3	ug/Kg	1		09/10/16 16:23
Aroclor-1248	30.4 U	60.9	18.3	ug/Kg	1		09/10/16 16:23
Aroclor-1254	30.4 U	60.9	18.3	ug/Kg	1		09/10/16 16:23
Aroclor-1260	30.4 U	60.9	18.3	ug/Kg	1		09/10/16 16:23
Surrogates							
Decachlorobiphenyl (surr)	88	60-125		%	1		09/10/16 16:23

Batch Information

Analytical Batch: XGC9508 Analytical Method: SW8082A

Analyst: AEE

Analytical Date/Time: 09/10/16 16:23 Container ID: 1168490005-A Prep Batch: XXX36216 Prep Method: SW3550C Prep Date/Time: 09/06/16 08:28 Prep Initial Wt./Vol.: 22.753 g Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-02-2.2-2.5 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490005 Lab Project ID: 1168490

Collection Date: 08/23/16 13:20 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.2 Location:

Results by Polynuclear Aromatics GC/MS

Parameter	Result Qual	LOQ/CL	DI	Unite	DE	Allowable	Date Analyzed
	3.06 U	6.11	<u>DL</u> 1.83	<u>Units</u> ug/Kg	<u>DF</u> 1	<u>Limits</u>	09/29/16 07:52
1-Methylnaphthalene							
2-Methylnaphthalene	2.02 J	6.11	1.83	ug/Kg	1		09/29/16 07:52
Acenaphthene	3.06 U	6.11	1.83	ug/Kg	1		09/29/16 07:52
Acenaphthylene	3.37 J	6.11	1.83	ug/Kg	1		09/29/16 07:52
Anthracene	3.06 U	6.11	1.83	ug/Kg	1		09/29/16 07:52
Benzo(a)Anthracene	7.13	6.11	1.83	ug/Kg	1		09/29/16 07:52
Benzo[a]pyrene	14.3	6.11	1.83	ug/Kg	1		09/29/16 07:52
Benzo[b]Fluoranthene	12.8	6.11	1.83	ug/Kg	1		09/29/16 07:52
Benzo[g,h,i]perylene	6.97	6.11	1.83	ug/Kg	1		09/29/16 07:52
Benzo[k]fluoranthene	3.28 J	6.11	1.83	ug/Kg	1		09/29/16 07:52
Chrysene	7.75	6.11	1.83	ug/Kg	1		09/29/16 07:52
Dibenzo[a,h]anthracene	2.13 J	6.11	1.83	ug/Kg	1		09/29/16 07:52
Fluoranthene	6.68	6.11	1.83	ug/Kg	1		09/29/16 07:52
Fluorene	3.06 U	6.11	1.83	ug/Kg	1		09/29/16 07:52
Indeno[1,2,3-c,d] pyrene	4.55 J	6.11	1.83	ug/Kg	1		09/29/16 07:52
Naphthalene	3.06 U	6.11	1.83	ug/Kg	1		09/29/16 07:52
Phenanthrene	3.06 U	6.11	1.83	ug/Kg	1		09/29/16 07:52
Pyrene	23.5	6.11	1.83	ug/Kg	1		09/29/16 07:52
Surrogates							
2-Fluorobiphenyl (surr)	78.5	46-115		%	1		09/29/16 07:52
Terphenyl-d14 (surr)	94.1	58-133		%	1		09/29/16 07:52

Batch Information

Analytical Batch: XMS9647

Analytical Method: 8270D SIM (PAH)

Analyst: S.G

Analytical Date/Time: 09/29/16 07:52 Container ID: 1168490005-A

Prep Batch: XXX36210 Prep Method: SW3550C Prep Date/Time: 09/02/16 17:13 Prep Initial Wt./Vol.: 22.681 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-02-2.2-2.5
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490005 Lab Project ID: 1168490 Collection Date: 08/23/16 13:20 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.2 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	Date Analyzed
	189	24.3	7.52	mg/Kg	1	Limits	09/06/16 22:13
Surrogates 5a Androstane (surr)	91.5	50-150		%	1		09/06/16 22:13

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102 Analyst: NRO

Analytical Date/Time: 09/06/16 22:13 Container ID: 1168490005-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.46 g Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Residual Range Organics	324	24.3	7.52	mg/Kg	1		09/06/16 22:13
Surrogates n-Triacontane-d62 (surr)	90.3	50-150		%	1		09/06/16 22:13

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 22:13 Container ID: 1168490005-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.46 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-02-2.2-2.5 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490005 Lab Project ID: 1168490 Collection Date: 08/23/16 13:20 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.2 Location:

Results by Volatile Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	10.9 U	21.9	7.01	ug/Kg	1		09/01/16 21:04
Ethylbenzene	21.9 U	43.8	13.7	ug/Kg	1		09/01/16 21:04
o-Xylene	17.5 J	43.8	13.7	ug/Kg	1		09/01/16 21:04
P & M -Xylene	43.8 U	87.6	26.3	ug/Kg	1		09/01/16 21:04
Toluene	21.9 U	43.8	13.7	ug/Kg	1		09/01/16 21:04
Surrogates							
1,4-Difluorobenzene (surr)	95.2	72-119		%	1		09/01/16 21:04

Batch Information

Analytical Batch: VFC13271 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/01/16 21:04 Container ID: 1168490005-B Prep Batch: VXX29476 Prep Method: SW5035A Prep Date/Time: 08/23/16 13:20 Prep Initial Wt./Vol.: 47.76 g Prep Extract Vol: 33.9678 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-03-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490006 Lab Project ID: 1168490 Collection Date: 08/23/16 13:25 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):92.5 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	5.02	1.02	0.316	mg/Kg	10		09/09/16 16:45
Barium	185	0.305	0.0957	mg/Kg	10		09/09/16 16:45
Cadmium	0.213	0.204	0.0631	mg/Kg	10		09/09/16 16:45
Chromium	23.3	0.407	0.132	mg/Kg	10		09/09/16 16:45
Lead	8.51	0.204	0.0631	mg/Kg	10		09/09/16 16:45
Mercury	0.0316 J	0.0407	0.0122	mg/Kg	10		09/09/16 16:45
Selenium	0.387 J	1.02	0.316	mg/Kg	10		09/09/16 16:45
Silver	0.102 U	0.204	0.0631	mg/Kg	10		09/09/16 16:45

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A

Analyst: VDL

Analytical Date/Time: 09/09/16 16:45 Container ID: 1168490006-A Prep Batch: MXX30150 Prep Method: SW3050B Prep Date/Time: 09/02/16 08:40 Prep Initial Wt./Vol.: 1.062 g Prep Extract Vol: 50 mL

Client Sample ID: 16-TAL-TP-03-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490006 Lab Project ID: 1168490 Collection Date: 08/23/16 13:25 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):92.5 Location:

Results by Polychlorinated Biphenyls

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aroclor-1016	121 U	241	72.2	ug/Kg	1		09/10/16 16:44
Aroclor-1221	482 U	963	299	ug/Kg	1		09/10/16 16:44
Aroclor-1232	121 U	241	72.2	ug/Kg	1		09/10/16 16:44
Aroclor-1242	121 U	241	72.2	ug/Kg	1		09/10/16 16:44
Aroclor-1248	121 U	241	72.2	ug/Kg	1		09/10/16 16:44
Aroclor-1254	121 U	241	72.2	ug/Kg	1		09/10/16 16:44
Aroclor-1260	121 U	241	72.2	ug/Kg	1		09/10/16 16:44
Surrogates							
Decachlorobiphenyl (surr)	82	60-125		%	1		09/10/16 16:44

Batch Information

Analytical Batch: XGC9508 Analytical Method: SW8082A

Analyst: AEE

Analytical Date/Time: 09/10/16 16:44 Container ID: 1168490006-A Prep Batch: XXX36216 Prep Method: SW3550C Prep Date/Time: 09/06/16 08:28 Prep Initial Wt./Vol.: 5.052 g Prep Extract Vol: 5 mL

Client Sample ID: 16-TAL-TP-03-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490006 Lab Project ID: 1168490 Collection Date: 08/23/16 13:25 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):92.5 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	13800	2430	728	ug/Kg	20		09/29/16 08:13
2-Methylnaphthalene	1215 U	2430	728	ug/Kg	20		09/29/16 08:13
Acenaphthene	33400	2430	728	ug/Kg	20		09/29/16 08:13
Acenaphthylene	1215 U	2430	728	ug/Kg	20		09/29/16 08:13
Anthracene	11600	2430	728	ug/Kg	20		09/29/16 08:13
Benzo(a)Anthracene	7660	2430	728	ug/Kg	20		09/29/16 08:13
Benzo[a]pyrene	4200	2430	728	ug/Kg	20		09/29/16 08:13
Benzo[b]Fluoranthene	3250	2430	728	ug/Kg	20		09/29/16 08:13
Benzo[g,h,i]perylene	1660 J	2430	728	ug/Kg	20		09/29/16 08:13
Benzo[k]fluoranthene	2620	2430	728	ug/Kg	20		09/29/16 08:13
Chrysene	19600	2430	728	ug/Kg	20		09/29/16 08:13
Dibenzo[a,h]anthracene	1215 U	2430	728	ug/Kg	20		09/29/16 08:13
Fluoranthene	1215 U	2430	728	ug/Kg	20		09/29/16 08:13
Fluorene	21800	2430	728	ug/Kg	20		09/29/16 08:13
Indeno[1,2,3-c,d] pyrene	1215 U	2430	728	ug/Kg	20		09/29/16 08:13
Naphthalene	2300 J	2430	728	ug/Kg	20		09/29/16 08:13
Phenanthrene	33700	2430	728	ug/Kg	20		09/29/16 08:13
Pyrene	30100	2430	728	ug/Kg	20		09/29/16 08:13
Surrogates							
2-Fluorobiphenyl (surr)	281 *	46-115		%	20		09/29/16 08:13
Terphenyl-d14 (surr)	312 *	58-133		%	20		09/29/16 08:13

Batch Information

Analytical Batch: XMS9647

Analytical Method: 8270D SIM (PAH)

Analyst: S.G

Analytical Date/Time: 09/29/16 08:13 Container ID: 1168490006-A Prep Batch: XXX36210
Prep Method: SW3550C
Prep Date/Time: 09/02/16 17:13
Prep Initial Wt./Vol.: 5.01 g
Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-03-1.5-1.8 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490006 Lab Project ID: 1168490

Collection Date: 08/23/16 13:25 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):92.5 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	66900	2560	793	mg/Kg	4	Limits	09/08/16 11:39
Surrogates 5a Androstane (surr)	0 *	50-150		%	4		09/08/16 11:39

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK102 Analyst: NRO

Analytical Date/Time: 09/08/16 11:39 Container ID: 1168490006-A

Prep Batch: XXX36211 Prep Method: SW3550C Prep Date/Time: 09/02/16 20:32 Prep Initial Wt./Vol.: 5.072 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	67400	2560	793	mg/Kg	4		09/08/16 11:39
Surrogates							
n-Triacontane-d62 (surr)	0 *	50-150		%	4		09/08/16 11:39

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/08/16 11:39 Container ID: 1168490006-A

Prep Batch: XXX36211 Prep Method: SW3550C Prep Date/Time: 09/02/16 20:32 Prep Initial Wt./Vol.: 5.072 g Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-03-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490006 Lab Project ID: 1168490 Collection Date: 08/23/16 13:25 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):92.5 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	9.15 U	18.3	5.85	ug/Kg	1		09/01/16 20:45
Ethylbenzene	18.3 U	36.6	11.4	ug/Kg	1		09/01/16 20:45
o-Xylene	110	36.6	11.4	ug/Kg	1		09/01/16 20:45
P & M -Xylene	36.5 U	73.1	21.9	ug/Kg	1		09/01/16 20:45
Toluene	18.3 U	36.6	11.4	ug/Kg	1		09/01/16 20:45
Surrogates							
1,4-Difluorobenzene (surr)	95.1	72-119		%	1		09/01/16 20:45

Batch Information

Analytical Batch: VFC13271 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/01/16 20:45 Container ID: 1168490006-B Prep Batch: VXX29476 Prep Method: SW5035A Prep Date/Time: 08/23/16 13:25 Prep Initial Wt./Vol.: 41.562 g Prep Extract Vol: 28.1151 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-20-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490007 Lab Project ID: 1168490 Collection Date: 08/23/16 13:30 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):91.8 Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	4.67	1.04	0.323	mg/Kg	10		09/09/16 15:55
Barium	191	0.312	0.0979	mg/Kg	10		09/09/16 15:55
Cadmium	0.175 J	0.208	0.0646	mg/Kg	10		09/09/16 15:55
Chromium	23.2	0.417	0.135	mg/Kg	10		09/09/16 15:55
Lead	8.20	0.208	0.0646	mg/Kg	10		09/09/16 15:55
Mercury	0.0294 J	0.0417	0.0125	mg/Kg	10		09/09/16 15:55
Selenium	0.393 J	1.04	0.323	mg/Kg	10		09/09/16 15:55
Silver	0.104 U	0.208	0.0646	mg/Kg	10		09/09/16 15:55

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A

Analyst: VDL

Analytical Date/Time: 09/09/16 15:55 Container ID: 1168490007-A Prep Batch: MXX30152 Prep Method: SW3050B Prep Date/Time: 09/02/16 09:30 Prep Initial Wt./Vol.: 1.046 g Prep Extract Vol: 50 mL

Client Sample ID: 16-TAL-TP-20-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490007 Lab Project ID: 1168490 Collection Date: 08/23/16 13:30 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):91.8 Location:

Results by Polychlorinated Biphenyls

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aroclor-1016	122 U	243	72.9	ug/Kg	1		09/10/16 17:04
Aroclor-1221	486 U	972	301	ug/Kg	1		09/10/16 17:04
Aroclor-1232	122 U	243	72.9	ug/Kg	1		09/10/16 17:04
Aroclor-1242	122 U	243	72.9	ug/Kg	1		09/10/16 17:04
Aroclor-1248	122 U	243	72.9	ug/Kg	1		09/10/16 17:04
Aroclor-1254	122 U	243	72.9	ug/Kg	1		09/10/16 17:04
Aroclor-1260	122 U	243	72.9	ug/Kg	1		09/10/16 17:04
Surrogates							
Decachlorobiphenyl (surr)	75	60-125		%	1		09/10/16 17:04

Batch Information

Analytical Batch: XGC9508 Analytical Method: SW8082A

Analyst: AEE

Analytical Date/Time: 09/10/16 17:04 Container ID: 1168490007-A Prep Batch: XXX36216 Prep Method: SW3550C Prep Date/Time: 09/06/16 08:28 Prep Initial Wt./Vol.: 5.042 g Prep Extract Vol: 5 mL

Client Sample ID: 16-TAL-TP-20-1.5-1.8 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490007 Lab Project ID: 1168490

Collection Date: 08/23/16 13:30 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):91.8 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	17900	2450	735	ug/Kg	20		09/29/16 08:34
2-Methylnaphthalene	1225 U	2450	735	ug/Kg	20		09/29/16 08:34
Acenaphthene	37400	2450	735	ug/Kg	20		09/29/16 08:34
Acenaphthylene	1225 U	2450	735	ug/Kg	20		09/29/16 08:34
Anthracene	14200	2450	735	ug/Kg	20		09/29/16 08:34
Benzo(a)Anthracene	8250	2450	735	ug/Kg	20		09/29/16 08:34
Benzo[a]pyrene	4130	2450	735	ug/Kg	20		09/29/16 08:34
Benzo[b]Fluoranthene	2990	2450	735	ug/Kg	20		09/29/16 08:34
Benzo[g,h,i]perylene	1500 J	2450	735	ug/Kg	20		09/29/16 08:34
Benzo[k]fluoranthene	1225 U	2450	735	ug/Kg	20		09/29/16 08:34
Chrysene	20000	2450	735	ug/Kg	20		09/29/16 08:34
Dibenzo[a,h]anthracene	1225 U	2450	735	ug/Kg	20		09/29/16 08:34
Fluoranthene	5950	2450	735	ug/Kg	20		09/29/16 08:34
Fluorene	25600	2450	735	ug/Kg	20		09/29/16 08:34
Indeno[1,2,3-c,d] pyrene	1225 U	2450	735	ug/Kg	20		09/29/16 08:34
Naphthalene	1225 U	2450	735	ug/Kg	20		09/29/16 08:34
Phenanthrene	34200	2450	735	ug/Kg	20		09/29/16 08:34
Pyrene	31100	2450	735	ug/Kg	20		09/29/16 08:34
Surrogates							
2-Fluorobiphenyl (surr)	309 *	46-115		%	20		09/29/16 08:34
Terphenyl-d14 (surr)	104	58-133		%	20		09/29/16 08:34

Batch Information

Analytical Batch: XMS9647

Analytical Method: 8270D SIM (PAH)

Analyst: S.G

Analytical Date/Time: 09/29/16 08:34 Container ID: 1168490007-A

Prep Batch: XXX36210 Prep Method: SW3550C Prep Date/Time: 09/02/16 17:13 Prep Initial Wt./Vol.: 5.005 g Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-20-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490007 Lab Project ID: 1168490 Collection Date: 08/23/16 13:30 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):91.8 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	71000	2580	799	mg/Kg	4		09/08/16 11:49
Surrogates							
5a Androstane (surr)	0 *	50-150		%	4		09/08/16 11:49

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/08/16 11:49 Container ID: 1168490007-A

Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.07 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	70700	2580	799	mg/Kg	4		09/08/16 11:49
Surrogates							
n-Triacontane-d62 (surr)	0 *	50-150		%	4		09/08/16 11:49

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/08/16 11:49 Container ID: 1168490007-A Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.07 g
Prep Extract Vol: 5 mL

Client Sample ID: 16-TAL-TP-20-1.5-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490007 Lab Project ID: 1168490 Collection Date: 08/23/16 13:30 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):91.8 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	9.80 U	19.6	6.27	ug/Kg	1		09/01/16 20:27
Ethylbenzene	19.6 U	39.2	12.2	ug/Kg	1		09/01/16 20:27
o-Xylene	142	39.2	12.2	ug/Kg	1		09/01/16 20:27
P & M -Xylene	39.1 U	78.3	23.5	ug/Kg	1		09/01/16 20:27
Toluene	19.6 U	39.2	12.2	ug/Kg	1		09/01/16 20:27
Surrogates							
1,4-Difluorobenzene (surr)	96.3	72-119		%	1		09/01/16 20:27

Batch Information

Analytical Batch: VFC13271 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/01/16 20:27 Container ID: 1168490007-B Prep Batch: VXX29476 Prep Method: SW5035A Prep Date/Time: 08/23/16 13:30

Prep Initial Wt./Vol.: 39.247 g Prep Extract Vol: 28.2196 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-TP-03-2.8-3.0

Client Sample ID: 16-TAL-TP-03-2.8-3.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490008 Lab Project ID: 1168490

Collection Date: 08/23/16 13:35 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):84.5 Location:

Results by Semivolatile Organic Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	11.8 U	23.5	7.29	mg/Kg	1		09/06/16 22:24
Surrogates 5a Androstane (surr)	89.9	50-150		%	1		09/06/16 22:24

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 22:24 Container ID: 1168490008-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.205 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	16.8 J	23.5	7.29	mg/Kg	1		09/06/16 22:24
Surrogates							
n-Triacontane-d62 (surr)	100	50-150		%	1		09/06/16 22:24

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 22:24 Container ID: 1168490008-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.205 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-04-1.0-1.2
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490009 Lab Project ID: 1168490 Collection Date: 08/23/16 13:40 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):87.5 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	11.3 U	22.6	7.01	mg/Kg	1		09/06/16 22:34
Surrogates							
5a Androstane (surr)	89.8	50-150		%	1		09/06/16 22:34

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 22:34 Container ID: 1168490009-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.337 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	20.2 J	22.6	7.01	mg/Kg	1		09/06/16 22:34
Surrogates							
n-Triacontane-d62 (surr)	103	50-150		%	1		09/06/16 22:34

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 22:34 Container ID: 1168490009-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.337 g Prep Extract Vol: 1 mL

Client Sample ID: 16-TAL-TP-05-1.0-1.2
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490010 Lab Project ID: 1168490 Collection Date: 08/23/16 13:45 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):78.3 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	10.3 J	25.3	7.83	mg/Kg	1		09/06/16 22:45
Surrogates							
5a Androstane (surr)	90.4	50-150		%	1		09/06/16 22:45

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 22:45 Container ID: 1168490010-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.323 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	48.3	25.3	7.83	mg/Kg	1		09/06/16 22:45
Surrogates							
n-Triacontane-d62 (surr)	135	50-150		%	1		09/06/16 22:45

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 22:45 Container ID: 1168490010-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.323 g Prep Extract Vol: 1 mL

Client Sample ID: 16-TAL-TP-06-1.3-1.5
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490011 Lab Project ID: 1168490 Collection Date: 08/23/16 13:50 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.1 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	8.82 J	24.3	7.53	mg/Kg	1	Limits	09/06/16 22:55
Surrogates 5a Androstane (surr)	89.4	50-150		%	1		09/06/16 22:55

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 22:55 Container ID: 1168490011-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.437 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	44.2	24.3	7.53	mg/Kg	1		09/06/16 22:55
Surrogates							
n-Triacontane-d62 (surr)	124	50-150		%	1		09/06/16 22:55

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 22:55 Container ID: 1168490011-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.437 g Prep Extract Vol: 1 mL

Client Sample ID: 16-TAL-TP-07-1.4-1.5 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490012 Lab Project ID: 1168490 Collection Date: 08/23/16 13:55 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):75.1 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	52.5	26.2	8.12	mg/Kg	1		09/06/16 23:06
Surrogates							
5a Androstane (surr)	99.2	50-150		%	1		09/06/16 23:06

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 23:06 Container ID: 1168490012-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.498 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	333	26.2	8.12	mg/Kg	1		09/06/16 23:06
Surrogates							
n-Triacontane-d62 (surr)	110	50-150		%	1		09/06/16 23:06

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 23:06 Container ID: 1168490012-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.498 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-08-1.2-1.3 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490013 Lab Project ID: 1168490

Collection Date: 08/23/16 14:00 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):72.3 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Diesel Range Organics	4210	816	253	mg/Kg	1		09/08/16 12:00
Surrogates							
5a Androstane (surr)	108	50-150		%	1		09/08/16 12:00

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK102 Analyst: NRO

Analytical Date/Time: 09/08/16 12:00 Container ID: 1168490013-A

Prep Batch: XXX36211 Prep Method: SW3550C Prep Date/Time: 09/02/16 20:32 Prep Initial Wt./Vol.: 5.089 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	18000	816	253	mg/Kg	1		09/08/16 12:00
Surrogates							
n-Triacontane-d62 (surr)	74.9	50-150		%	1		09/08/16 12:00

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/08/16 12:00 Container ID: 1168490013-A

Prep Batch: XXX36211 Prep Method: SW3550C Prep Date/Time: 09/02/16 20:32 Prep Initial Wt./Vol.: 5.089 g Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-09-2.1-2.3
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490014 Lab Project ID: 1168490 Collection Date: 08/23/16 14:05 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):71.4 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Diesel Range Organics	112	27.7	8.58	mg/Kg	1		09/06/16 23:16
Surrogates							
5a Androstane (surr)	117	50-150		%	1		09/06/16 23:16

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 23:16 Container ID: 1168490014-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.355 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	721	27.7	8.58	mg/Kg	1		09/06/16 23:16
Surrogates							
n-Triacontane-d62 (surr)	127	50-150		%	1		09/06/16 23:16

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 23:16 Container ID: 1168490014-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.355 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-TP-10-1.0-1.2
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490015 Lab Project ID: 1168490 Collection Date: 08/23/16 14:10 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):72.5 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	67.0	27.3	8.45	mg/Kg	1		09/06/16 23:26
Surrogates							
5a Androstane (surr)	102	50-150		%	1		09/06/16 23:26

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 23:26 Container ID: 1168490015-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.345 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	399	27.3	8.45	mg/Kg	1		09/06/16 23:26
Surrogates							
n-Triacontane-d62 (surr)	119	50-150		%	1		09/06/16 23:26

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 23:26 Container ID: 1168490015-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.345 g Prep Extract Vol: 1 mL

Client Sample ID: 16-TAL-TP-11-1.5-1.7
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490016 Lab Project ID: 1168490 Collection Date: 08/23/16 14:15 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):78.1 Location:

Results by Semivolatile Organic Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	24.9 J	25.3	7.85	mg/Kg	1	Lillits	09/06/16 23:36
Surrogates							
5a Androstane (surr)	93.1	50-150		%	1		09/06/16 23:36

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 23:36 Container ID: 1168490016-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.348 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	150	25.3	7.85	mg/Kg	1		09/06/16 23:36
Surrogates							
n-Triacontane-d62 (surr)	115	50-150		%	1		09/06/16 23:36

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 23:36 Container ID: 1168490016-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.348 g Prep Extract Vol: 1 mL

Results of 16-TAL-SB-01-18.3-18.7

Client Sample ID: 16-TAL-SB-01-18.3-18.7 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490017 Lab Project ID: 1168490

Collection Date: 08/24/16 16:40 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):92.7 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	7.63 J	21.4	6.64	mg/Kg	1		09/06/16 23:47
Surrogates							
5a Androstane (surr)	90.3	50-150		%	1		09/06/16 23:47

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102 Analyst: NRO

Analytical Date/Time: 09/06/16 23:47 Container ID: 1168490017-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.231 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	19.6 J	21.4	6.64	mg/Kg	1		09/06/16 23:47
Surrogates							
n-Triacontane-d62 (surr)	98.9	50-150		%	1		09/06/16 23:47

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 23:47 Container ID: 1168490017-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.231 g Prep Extract Vol: 1 mL

Results of 16-TAL-SB-02-19.0-19.6

Client Sample ID: 16-TAL-SB-02-19.0-19.6 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490018 Lab Project ID: 1168490 Collection Date: 08/24/16 17:35 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):86.0 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	7.87 J	23.1	7.16	mg/Kg	1		09/06/16 23:57
Surrogates							
5a Androstane (surr)	88.4	50-150		%	1		09/06/16 23:57

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/06/16 23:57 Container ID: 1168490018-A

Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.207 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	20.0 J	23.1	7.16	mg/Kg	1		09/06/16 23:57
Surrogates							
n-Triacontane-d62 (surr)	98.1	50-150		%	1		09/06/16 23:57

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/06/16 23:57 Container ID: 1168490018-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.207 g Prep Extract Vol: 1 mL

Results of 16-TAL-SB-03-1.6-1.8

Client Sample ID: 16-TAL-SB-03-1.6-1.8
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490019 Lab Project ID: 1168490 Collection Date: 08/24/16 18:00 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

۸ اا ما سام ال

Solids (%):83.7 Location:

Results by Semivolatile Organic Fuels

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	12400	2850	884	mg/Kg	4		09/08/16 12:10
Surrogates							
5a Androstane (surr)	0 *	50-150		%	4		09/08/16 12:10

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/08/16 12:10 Container ID: 1168490019-A

Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.027 g
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	31400	2850	884	mg/Kg	4		09/08/16 12:10
Surrogates							
n-Triacontane-d62 (surr)	0 *	50-150		%	4		09/08/16 12:10

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/08/16 12:10 Container ID: 1168490019-A

Prep Batch: XXX36211
Prep Method: SW3550C
Prep Date/Time: 09/02/16 20:32
Prep Initial Wt./Vol.: 5.027 g
Prep Extract Vol: 5 mL

Results of 16-TAL-SB-03-5.5-6.0

Client Sample ID: 16-TAL-SB-03-5.5-6.0
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490020 Lab Project ID: 1168490 Collection Date: 08/24/16 18:10 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):81.3 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	8.25 J	24.4	7.57	mg/Kg	1		09/07/16 00:08
Surrogates							
5a Androstane (surr)	85.7	50-150		%	1		09/07/16 00:08

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/07/16 00:08 Container ID: 1168490020-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.217 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	27.5	24.4	7.57	mg/Kg	1		09/07/16 00:08
Surrogates							
n-Triacontane-d62 (surr)	98.5	50-150		%	1		09/07/16 00:08

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/07/16 00:08 Container ID: 1168490020-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.217 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-SB-20-5.5-6.0

Client Sample ID: 16-TAL-SB-20-5.5-6.0
Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490021 Lab Project ID: 1168490 Collection Date: 08/24/16 18:20 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%):82.4 Location:

Results by Semivolatile Organic Fuels

Parameter Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	11.9 U	23.9	7.40	mg/Kg	1		09/07/16 00:29
Surrogates							
5a Androstane (surr)	85.3	50-150		%	1		09/07/16 00:29

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/07/16 00:29 Container ID: 1168490021-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.491 g Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	21.1 J	23.9	7.40	mg/Kg	1		09/07/16 00:29
Surrogates							
n-Triacontane-d62 (surr)	116	50-150		%	1		09/07/16 00:29

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/07/16 00:29 Container ID: 1168490021-A Prep Batch: XXX36208 Prep Method: SW3550C Prep Date/Time: 09/02/16 14:12 Prep Initial Wt./Vol.: 30.491 g Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Trip Blank-01

Client Sample ID: Trip Blank-01

Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490022 Lab Project ID: 1168490 Collection Date: 08/23/16 08:00 Received Date: 08/27/16 10:30 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	6.35 U	12.7	4.08	ug/Kg	1		09/01/16 14:14
Ethylbenzene	12.8 U	25.5	7.95	ug/Kg	1		09/01/16 14:14
o-Xylene	12.8 U	25.5	7.95	ug/Kg	1		09/01/16 14:14
P & M -Xylene	25.5 U	51.0	15.3	ug/Kg	1		09/01/16 14:14
Toluene	12.8 U	25.5	7.95	ug/Kg	1		09/01/16 14:14
Surrogates							
1,4-Difluorobenzene (surr)	96.9	72-119		%	1		09/01/16 14:14

Batch Information

Analytical Batch: VFC13271 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/01/16 14:14 Container ID: 1168490022-A

Prep Batch: VXX29476
Prep Method: SW5035A
Prep Date/Time: 08/23/16 08:00
Prep Initial Wt./Vol.: 49.046 g
Prep Extract Vol: 25 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-WP-01-21.5-25.0

Client Sample ID: 16-TAL-WP-01-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490023 Lab Project ID: 1168490 Collection Date: 08/25/16 10:15 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
2-Methylnaphthalene	0.0178 J	0.0508	0.0152	ug/L	1		09/15/16 23:11
Acenaphthene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Acenaphthylene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Anthracene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Benzo(a)Anthracene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Benzo[a]pyrene	0.0101 U	0.0203	0.00630	ug/L	1		09/15/16 23:11
Benzo[b]Fluoranthene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Benzo[g,h,i]perylene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Benzo[k]fluoranthene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Chrysene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Dibenzo[a,h]anthracene	0.0101 U	0.0203	0.00630	ug/L	1		09/15/16 23:11
Fluoranthene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Fluorene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Indeno[1,2,3-c,d] pyrene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Naphthalene	0.0510 U	0.102	0.0315	ug/L	1		09/15/16 23:11
Phenanthrene	0.0177 J	0.0508	0.0152	ug/L	1		09/15/16 23:11
Pyrene	0.0254 U	0.0508	0.0152	ug/L	1		09/15/16 23:11
Surrogates							
2-Fluorobiphenyl (surr)	96	53-106		%	1		09/15/16 23:11
Terphenyl-d14 (surr)	84.7	58-132		%	1		09/15/16 23:11

Batch Information

Analytical Batch: XMS9620

Analytical Method: 8270D SIM LV (PAH)

Analyst: BRV

Analytical Date/Time: 09/15/16 23:11 Container ID: 1168490023-F Prep Batch: XXX36180
Prep Method: SW3520C
Prep Date/Time: 08/31/16 09:05
Prep Initial Wt./Vol.: 246 mL
Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-WP-01-21.5-25.0

Client Sample ID: 16-TAL-WP-01-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490023 Lab Project ID: 1168490 Collection Date: 08/25/16 10:15 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.353 J	0.600	0.180	mg/L	1		09/08/16 04:37
Surrogates							
5a Androstane (surr)	87.7	50-150		%	1		09/08/16 04:37

Batch Information

Analytical Batch: XFC12796 Analytical Method: AK102 Analyst: CRA

Analytical Date/Time: 09/08/16 04:37 Container ID: 1168490023-A

Prep Batch: XXX36226 Prep Method: SW3520C Prep Date/Time: 09/07/16 08:55 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.250 U	0.500	0.150	mg/L	1		09/08/16 04:37
Surrogates							
n-Triacontane-d62 (surr)	96.3	50-150		%	1		09/08/16 04:37

Batch Information

Analytical Batch: XFC12796 Analytical Method: AK103

Analyst: CRA

Analytical Date/Time: 09/08/16 04:37 Container ID: 1168490023-A

Prep Batch: XXX36226 Prep Method: SW3520C Prep Date/Time: 09/07/16 08:55 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Results of 16-TAL-WP-01-21.5-25.0

Client Sample ID: 16-TAL-WP-01-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490023 Lab Project ID: 1168490 Collection Date: 08/25/16 10:15 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.0338 J	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 09/06/16 04:15
Surrogates							
4-Bromofluorobenzene (surr)	110	50-150		%	1		09/06/16 04:15

Batch Information

Analytical Batch: VFC13277 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 09/06/16 04:15 Container ID: 1168490023-C

Prep Batch: VXX29500 Prep Method: SW5030B Prep Date/Time: 09/05/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		09/06/16 04:15
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:15
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:15
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/06/16 04:15
Toluene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:15
Surrogates							
1,4-Difluorobenzene (surr)	97.1	77-115		%	1		09/06/16 04:15

Batch Information

Analytical Batch: VFC13277 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/06/16 04:15 Container ID: 1168490023-C Prep Batch: VXX29500
Prep Method: SW5030B
Prep Date/Time: 09/05/16 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-WP-02-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490024 Lab Project ID: 1168490 Collection Date: 08/25/16 11:00 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0154 J	0.0512	0.0154	ug/L	1		09/15/16 23:32
2-Methylnaphthalene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Acenaphthene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Acenaphthylene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Anthracene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Benzo(a)Anthracene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Benzo[a]pyrene	0.0103 U	0.0205	0.00635	ug/L	1		09/15/16 23:32
Benzo[b]Fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Benzo[g,h,i]perylene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Benzo[k]fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Chrysene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Dibenzo[a,h]anthracene	0.0103 U	0.0205	0.00635	ug/L	1		09/15/16 23:32
Fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Fluorene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Indeno[1,2,3-c,d] pyrene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Naphthalene	0.0510 U	0.102	0.0318	ug/L	1		09/15/16 23:32
Phenanthrene	0.0180 J	0.0512	0.0154	ug/L	1		09/15/16 23:32
Pyrene	0.0256 U	0.0512	0.0154	ug/L	1		09/15/16 23:32
Surrogates							
2-Fluorobiphenyl (surr)	89.1	53-106		%	1		09/15/16 23:32
Terphenyl-d14 (surr)	86	58-132		%	1		09/15/16 23:32

Batch Information

Analytical Batch: XMS9620

Analytical Method: 8270D SIM LV (PAH)

Analyst: BRV

Analytical Date/Time: 09/15/16 23:32 Container ID: 1168490024-F Prep Batch: XXX36180
Prep Method: SW3520C
Prep Date/Time: 08/31/16 09:05
Prep Initial Wt./Vol.: 244 mL
Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Client Sample ID: 16-TAL-WP-02-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490024 Lab Project ID: 1168490 Collection Date: 08/25/16 11:00 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.324 J	0.588	0.176	mg/L	1		09/08/16 04:47
Surrogates							
5a Androstane (surr)	82.8	50-150		%	1		09/08/16 04:47

Batch Information

Analytical Batch: XFC12796 Analytical Method: AK102

Analyst: CRA

Analytical Date/Time: 09/08/16 04:47 Container ID: 1168490024-A

Prep Batch: XXX36226 Prep Method: SW3520C Prep Date/Time: 09/07/16 08:55 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.245 U	0.490	0.147	mg/L	1		09/08/16 04:47
Surrogates							
n-Triacontane-d62 (surr)	92.6	50-150		%	1		09/08/16 04:47

Batch Information

Analytical Batch: XFC12796 Analytical Method: AK103

Analyst: CRA

Analytical Date/Time: 09/08/16 04:47 Container ID: 1168490024-A Prep Batch: XXX36226 Prep Method: SW3520C Prep Date/Time: 09/07/16 08:55 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: 16-TAL-WP-02-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490024 Lab Project ID: 1168490 Collection Date: 08/25/16 11:00 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 09/06/16 04:33
Surrogates							
4-Bromofluorobenzene (surr)	110	50-150		%	1		09/06/16 04:33

Batch Information

Analytical Batch: VFC13277 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 09/06/16 04:33 Container ID: 1168490024-C Prep Batch: VXX29500 Prep Method: SW5030B Prep Date/Time: 09/05/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		09/06/16 04:33
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:33
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:33
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/06/16 04:33
Toluene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:33
Surrogates							
1,4-Difluorobenzene (surr)	95.4	77-115		%	1		09/06/16 04:33

Batch Information

Analytical Batch: VFC13277 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/06/16 04:33 Container ID: 1168490024-C Prep Batch: VXX29500
Prep Method: SW5030B
Prep Date/Time: 09/05/16 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 16-TAL-WP-20-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490025 Lab Project ID: 1168490 Collection Date: 08/25/16 11:05 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

D	D #0 1	1.00/01	D .		DE	Allowable	5 (4)
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		09/15/16 23:52
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		09/15/16 23:52
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		09/15/16 23:52
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/15/16 23:52
Surrogates							
2-Fluorobiphenyl (surr)	94.2	53-106		%	1		09/15/16 23:52
Terphenyl-d14 (surr)	88.2	58-132		%	1		09/15/16 23:52

Batch Information

Analytical Batch: XMS9620

Analytical Method: 8270D SIM LV (PAH)

Analyst: BRV

Analytical Date/Time: 09/15/16 23:52 Container ID: 1168490025-F Prep Batch: XXX36180
Prep Method: SW3520C
Prep Date/Time: 08/31/16 09:05
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-WP-20-21.5-25.0

Client Sample ID: 16-TAL-WP-20-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490025 Lab Project ID: 1168490 Collection Date: 08/25/16 11:05 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.190 J	0.588	0.176	mg/L	1		09/10/16 04:10
Summa mata a							
Surrogates							
5a Androstane (surr)	87.4	50-150		%	1		09/10/16 04:10

Batch Information

Analytical Batch: XFC12815 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/10/16 04:10 Container ID: 1168490025-A

Prep Batch: XXX36228
Prep Method: SW3520C
Prep Date/Time: 09/07/16 10:43
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.245 U	0.490	0.147	mg/L	1		09/10/16 04:10
Surrogates							
n-Triacontane-d62 (surr)	94.3	50-150		%	1		09/10/16 04:10

Batch Information

Analytical Batch: XFC12815 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/10/16 04:10 Container ID: 1168490025-A

Prep Batch: XXX36228
Prep Method: SW3520C
Prep Date/Time: 09/07/16 10:43
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM J flagging is activated

Results of 16-TAL-WP-20-21.5-25.0

Client Sample ID: 16-TAL-WP-20-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490025 Lab Project ID: 1168490 Collection Date: 08/25/16 11:05 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		09/06/16 04:52
Surrogates							
4-Bromofluorobenzene (surr)	110	50-150		%	1		09/06/16 04:52

Batch Information

Analytical Batch: VFC13277 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 09/06/16 04:52 Container ID: 1168490025-C Prep Batch: VXX29500
Prep Method: SW5030B
Prep Date/Time: 09/05/16 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		09/06/16 04:52
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:52
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:52
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/06/16 04:52
Toluene	0.500 U	1.00	0.310	ug/L	1		09/06/16 04:52
Surrogates							
1,4-Difluorobenzene (surr)	96.5	77-115		%	1		09/06/16 04:52

Batch Information

Analytical Batch: VFC13277 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/06/16 04:52 Container ID: 1168490025-C Prep Batch: VXX29500 Prep Method: SW5030B Prep Date/Time: 09/05/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-WP-03-21.5-25.0

Client Sample ID: 16-TAL-WP-03-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490026 Lab Project ID: 1168490 Collection Date: 08/25/16 12:15 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
2-Methylnaphthalene	0.0225 J	0.0490	0.0147	ug/L	1		09/16/16 00:13
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		09/16/16 00:13
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		09/16/16 00:13
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Naphthalene	0.0490 U	0.0980	0.0304	ug/L	1		09/16/16 00:13
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/16/16 00:13
Surrogates							
2-Fluorobiphenyl (surr)	83.2	53-106		%	1		09/16/16 00:13
Terphenyl-d14 (surr)	79.9	58-132		%	1		09/16/16 00:13

Batch Information

Analytical Batch: XMS9620

Analytical Method: 8270D SIM LV (PAH)

Analyst: BRV

Analytical Date/Time: 09/16/16 00:13 Container ID: 1168490026-F Prep Batch: XXX36180
Prep Method: SW3520C
Prep Date/Time: 08/31/16 09:05
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-WP-03-21.5-25.0

Client Sample ID: 16-TAL-WP-03-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490026 Lab Project ID: 1168490 Collection Date: 08/25/16 12:15 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.294 U	0.588	0.176	mg/L	1		09/10/16 04:21
Surrogates							
5a Androstane (surr)	78.3	50-150		%	1		09/10/16 04:21

Batch Information

Analytical Batch: XFC12815 Analytical Method: AK102

Analyst: NRO

Analytical Date/Time: 09/10/16 04:21 Container ID: 1168490026-A

Prep Batch: XXX36228 Prep Method: SW3520C Prep Date/Time: 09/07/16 10:43 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.245 U	0.490	0.147	mg/L	1		09/10/16 04:21
Surrogates							
n-Triacontane-d62 (surr)	91.7	50-150		%	1		09/10/16 04:21

Batch Information

Analytical Batch: XFC12815 Analytical Method: AK103

Analyst: NRO

Analytical Date/Time: 09/10/16 04:21 Container ID: 1168490026-A

Prep Batch: XXX36228
Prep Method: SW3520C
Prep Date/Time: 09/07/16 10:43
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:17AM

Results of 16-TAL-WP-03-21.5-25.0

Client Sample ID: 16-TAL-WP-03-21.5-25.0 Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490026 Lab Project ID: 1168490 Collection Date: 08/25/16 12:15 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable <u>Limits</u>	<u>Date Analyzed</u> 09/06/16 05:11
Surrogates							
4-Bromofluorobenzene (surr)	113	50-150		%	1		09/06/16 05:11

Batch Information

Analytical Batch: VFC13277 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 09/06/16 05:11 Container ID: 1168490026-C

Prep Batch: VXX29500 Prep Method: SW5030B Prep Date/Time: 09/05/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		09/06/16 05:11
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/06/16 05:11
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/06/16 05:11
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/06/16 05:11
Toluene	0.500 U	1.00	0.310	ug/L	1		09/06/16 05:11
Surrogates							
1,4-Difluorobenzene (surr)	97.5	77-115		%	1		09/06/16 05:11

Batch Information

Analytical Batch: VFC13277 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/06/16 05:11 Container ID: 1168490026-C

Prep Batch: VXX29500 Prep Method: SW5030B Prep Date/Time: 09/05/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Results of Trip Blank-02

Client Sample ID: Trip Blank-02

Client Project ID: Tanana Community Hall

Lab Sample ID: 1168490027 Lab Project ID: 1168490 Collection Date: 08/25/16 08:00 Received Date: 08/27/16 10:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 0.0337 J	LOQ/CL 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 09/06/16 01:08
Surrogates							
4-Bromofluorobenzene (surr)	114	50-150		%	1		09/06/16 01:08

Batch Information

Analytical Batch: VFC13277 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 09/06/16 01:08 Container ID: 1168490027-A

Prep Batch: VXX29500 Prep Method: SW5030B Prep Date/Time: 09/05/16 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		09/06/16 01:08
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/06/16 01:08
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/06/16 01:08
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/06/16 01:08
Toluene	0.500 U	1.00	0.310	ug/L	1		09/06/16 01:08
Surrogates							
1,4-Difluorobenzene (surr)	97.8	77-115		%	1		09/06/16 01:08

Batch Information

Analytical Batch: VFC13277 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 09/06/16 01:08 Container ID: 1168490027-A

Prep Batch: VXX29500
Prep Method: SW5030B
Prep Date/Time: 09/05/16 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:29:17AM

Blank ID: MB for HBN 1742560 [MXX/30150]

Blank Lab ID: 1349565

QC for Samples:

1168490005, 1168490006

Matrix: Soil/Solid (dry weight)

Results by SW6020A

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/Kg
Barium	0.150U	0.300	0.0940	mg/Kg
Cadmium	0.100U	0.200	0.0620	mg/Kg
Chromium	0.168J	0.400	0.130	mg/Kg
Lead	0.100U	0.200	0.0620	mg/Kg
Mercury	0.0200U	0.0400	0.0120	mg/Kg
Selenium	0.500U	1.00	0.310	mg/Kg
Silver	0.100U	0.200	0.0620	mg/Kg

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5

Analyst: VDL

Analytical Date/Time: 9/9/2016 1:08:16PM

Prep Batch: MXX30150 Prep Method: SW3050B

Prep Date/Time: 9/2/2016 8:40:43AM

Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Blank Spike ID: LCS for HBN 1168490 [MXX30150]

Blank Spike Lab ID: 1349566 Date Analyzed: 09/09/2016 11:39

Matrix: Soil/Solid (dry weight)

QC for Samples: 1168490005, 1168490006

Results by SW6020A

Blank Spike (mg/Kg)								
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	CL				
Arsenic	50	50.4	101	(82-118)				
Barium	50	49.9	100	(86-116)				
Cadmium	5	5.10	102	(84-116)				
Chromium	20	21.1	105	(83-119)				
Lead	50	52.7	105	(84-118)				
Mercury	0.5	0.527	105	(74-126)				
Selenium	50	49.6	99	(80-119)				
Silver	5	4.99	100	(83-118)				

Batch Information

Analytical Batch: MMS9529
Analytical Method: SW6020A

Instrument: Perkin Elmer NexIon P5

Analyst: VDL

Prep Batch: MXX30150
Prep Method: SW3050B

Prep Date/Time: 09/02/2016 08:40

Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1349567 MS Sample ID: 1349568 MS MSD Sample ID: 1349569 MSD

QC for Samples: 1168490005, 1168490006

Analysis Date: 09/09/2016 11:43 Analysis Date: 09/09/2016 11:48 Analysis Date: 09/09/2016 11:52 Matrix: Solid/Soil (Wet Weight)

Results by SW6020A

		Matı	rix Spike (n	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Arsenic	5.34	48.7	55.4	103	48.3	54.2	101	82-118	2.05	(< 20)
Barium	80.0	48.7	152	147 *	48.3	157	160 *	86-116	3.47	(< 20)
Cadmium	0.0791J	4.87	5.05	102	4.83	4.92	100	84-116	2.56	(< 20)
Chromium	13.9	19.5	41.2	140 *	19.3	41.6	143 *	83-119	1.08	(< 20)
Lead	5.32	48.7	55.3	102	48.3	53.9	101	84-118	2.47	(< 20)
Mercury	0.0239J	0.487	.523	103	0.483	0.530	105	74-126	1.31	(< 20)
Selenium	0.489U	48.7	51.5	106	48.3	49.5	102	80-119	3.98	(< 20)
Silver	0.0980U	4.87	4.85	100	4.83	4.69	97	83-118	3.33	(< 20)

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5

Analyst: VDL

Analytical Date/Time: 9/9/2016 11:48:21AM

Prep Batch: MXX30150

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 9/2/2016 8:40:43AM

Prep Initial Wt./Vol.: 1.03g Prep Extract Vol: 50.00mL

Bench Spike Summary

Original Sample ID: 1349567 MS Sample ID: 1349570 BND

MSD Sample ID:

QC for Samples: 1168490005, 1168490006

Analysis Date: 09/09/2016 11:43 Analysis Date: 09/09/2016 11:57

Analysis Date:

Matrix: Solid/Soil (Wet Weight)

Results by SW6020A

		Mat	rix Spike (r	ng/Kg)	Spike	Duplicate	(mg/Kg)		
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%) RPD CL
Barium	80.0	242	322	100				80-120	
Chromium	13.9	121	136	101				80-120	

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A

Instrument: Perkin Elmer NexIon P5

Analyst: VDL

Analytical Date/Time: 9/9/2016 11:57:18AM

Prep Batch: MXX30150

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 9/2/2016 8:40:43AM

Prep Initial Wt./Vol.: 1.03g Prep Extract Vol: 50.00mL

Blank ID: MB for HBN 1742573 [MXX/30152]

Blank Lab ID: 1349614

QC for Samples: 1168490007

Matrix: Soil/Solid (dry weight)

Results by SW6020A

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Arsenic	0.500U	1.00	0.310	mg/Kg
Barium	0.150U	0.300	0.0940	mg/Kg
Cadmium	0.100U	0.200	0.0620	mg/Kg
Chromium	0.200U	0.400	0.130	mg/Kg
Lead	0.100U	0.200	0.0620	mg/Kg
Mercury	0.0200U	0.0400	0.0120	mg/Kg
Selenium	0.500U	1.00	0.310	mg/Kg
Silver	0.100U	0.200	0.0620	mg/Kg

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5

Analyst: VDL

Analytical Date/Time: 9/9/2016 1:35:56PM

Prep Batch: MXX30152 Prep Method: SW3050B

Prep Date/Time: 9/2/2016 9:30:33AM

Prep Initial Wt./Vol.: 1 g Prep Extract Vol: 50 mL

Original Sample ID: 1349616 Duplicate Sample ID: 1349620

QC for Samples: 1168490007

Analysis Date: 09/09/2016 16:40 Matrix: Solid/Soil (Wet Weight)

Results by SW6020A

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Barium	715	509	mg/Kg	33.60*	(< 20)

Batch Information

Analytical Batch: MMS9529
Analytical Method: SW6020A

Instrument: Perkin Elmer Nexlon P5

Analyst: VDL

Prep Batch: MXX30152 Prep Method: SW3050B

Prep Date/Time: 9/2/2016 9:30:33AM

Blank Spike ID: LCS for HBN 1168490 [MXX30152]

Blank Spike Lab ID: 1349615 Date Analyzed: 09/09/2016 13:40

Matrix: Soil/Solid (dry weight)

QC for Samples: 1168490007

Results by SW6020A

Blank Spike (mg/Kg)								
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>				
Arsenic	50	50.6	101	(82-118)				
Barium	50	50.0	100	(86-116)				
Cadmium	5	5.20	104	(84-116)				
Chromium	20	20.9	105	(83-119)				
Lead	50	52.9	106	(84-118)				
Mercury	0.5	0.544	109	(74-126)				
Selenium	50	50.8	102	(80-119)				
Silver	5	5.22	104	(83-118)				

Batch Information

Analytical Batch: MMS9529
Analytical Method: SW6020A

Instrument: Perkin Elmer NexIon P5

Analyst: VDL

Prep Batch: MXX30152
Prep Method: SW3050B

Prep Date/Time: 09/02/2016 09:30

Spike Init Wt./Vol.: 50 mg/Kg Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1349616 MS Sample ID: 1349617 MS MSD Sample ID: 1349618 MSD

QC for Samples: 1168490007

Analysis Date: 09/09/2016 13:44 Analysis Date: 09/09/2016 13:49 Analysis Date: 09/09/2016 13:53 Matrix: Solid/Soil (Wet Weight)

Results by SW6020A

	Matrix Spike (mg/Kg)			Spike Duplicate (mg/Kg)						
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%	RPD CL
Arsenic	8.60	46.1	56.2	103	45.7	54.1	100	82-118	3.87	(< 20)
Barium	715	46.1	559	-338 *	45.7	773	128 *	86-116	32.20	* (< 20)
Cadmium	0.0990U	4.61	4.78	104	4.57	4.76	104	84-116	0.33	(< 20)
Chromium	3.37	18.5	22.4	103	18.3	26.9	129 *	83-119	18.10	(< 20)
Lead	7.79	46.1	54.3	101	45.7	56.1	106	84-118	3.16	(< 20)
Mercury	0.0561	0.461	.535	104	0.457	0.533	104	74-126	0.40	(< 20)
Selenium	0.494U	46.1	46.2	100	45.7	46.9	103	80-119	1.55	(< 20)
Silver	0.0990U	4.61	4.76	103	4.57	4.64	102	83-118	2.70	(< 20)

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A Instrument: Perkin Elmer Nexlon P5

Analyst: VDL

Analytical Date/Time: 9/9/2016 1:49:21PM

Prep Batch: MXX30152

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 9/2/2016 9:30:33AM

Prep Initial Wt./Vol.: 1.08g Prep Extract Vol: 50.00mL

Bench Spike Summary

Original Sample ID: 1349616 MS Sample ID: 1349619 BND

MSD Sample ID:

QC for Samples: 1168490007

Analysis Date: 09/09/2016 16:22 Analysis Date: 09/09/2016 16:36

Analysis Date:

Matrix: Solid/Soil (Wet Weight)

Results by SW6020A

		Mat	rix Spike (r	ng/Kg)	Spike	Duplicate	(mg/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Barium	715	1240	1840	91				80-120		
Chromium	3.37	124	124	98				80-120		

Batch Information

Analytical Batch: MMS9529 Analytical Method: SW6020A

Instrument: Perkin Elmer Nexlon P5

Analyst: VDL

Analytical Date/Time: 9/9/2016 4:36:21PM

Prep Batch: MXX30152

Prep Method: Soils/Solids Digest for Metals by ICP-MS

Prep Date/Time: 9/2/2016 9:30:33AM

Prep Initial Wt./Vol.: 1.01g Prep Extract Vol: 50.00mL

Blank ID: MB for HBN 1742568 [SPT/9986]

Blank Lab ID: 1349595

QC for Samples:

1168490001, 1168490002, 1168490003, 1168490004, 1168490005, 1168490006, 1168490007, 1168490008, 1168490009, 1168490010, 1168490011, 1168490012, 1168490013, 1168490014, 1168490015, 1168490016, 1168490017, 1168490018, 1168

Matrix: Soil/Solid (dry weight)

1168490019, 1168490020, 1168490021

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Batch Information

Analytical Batch: SPT9986 Analytical Method: SM21 2540G

Instrument: Analyst: RJA

Analytical Date/Time: 9/1/2016 5:46:00PM

Original Sample ID: 1165062005 Duplicate Sample ID: 1349597

QC for Samples:

Analysis Date: 09/01/2016 17:46 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

 NAME
 Original
 Duplicate
 Units
 RPD (%)
 RPD CL

 Total Solids
 85.7
 86.4
 %
 0.83
 (< 15)</td>

Batch Information

Analytical Batch: SPT9986 Analytical Method: SM21 2540G

Instrument: Analyst: RJA

Original Sample ID: 1165157006 Duplicate Sample ID: 1349598

QC for Samples: 1168490001

Analysis Date: 09/01/2016 17:46 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	99.9	99.9	%	0.03	(< 15)

Batch Information

Analytical Batch: SPT9986 Analytical Method: SM21 2540G

Instrument: Analyst: RJA

Original Sample ID: 1168490001 Analysis Date: 09/01/2016 17:46
Duplicate Sample ID: 1349599 Matrix: Soil/Solid (dry weight)

QC for Samples:

1168490001, 1168490002, 1168490003, 1168490004, 1168490005, 1168490006, 1168490007, 1168490008,

1168490009, 1168490010, 1168490011, 1168490012

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	87.7	88.8	%	1.20	(< 15)

Batch Information

Analytical Batch: SPT9986 Analytical Method: SM21 2540G

Instrument: Analyst: RJA

Original Sample ID: 1168490012 Analysis Date: 09/01/2016 17:46
Duplicate Sample ID: 1349600 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1168490002, 1168490003, 1168490004, 1168490005, 1168490006, 1168490007, 1168490008, 1168490009, \\1168490010, 1168490011, 1168490012, 1168490013, 1168490014, 1168490015, 1168490016, 1168490017, \\1168490017, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, 1168490018, 1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, 1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, 1168490018, \\1168490018, 1168490018, \\1168490018, 1168490018, \\1168490018, 1168490018, \\1168490018, 1168490018, \\1168490018, 1168490018, \\11684$

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	75.1	76.8	%	2.20	(< 15)

Batch Information

Analytical Batch: SPT9986 Analytical Method: SM21 2540G

Instrument: Analyst: RJA

Blank ID: MB for HBN 1742571 [VXX/29476]

Blank Lab ID: 1349607

QC for Samples:

1168490005, 1168490006, 1168490007, 1168490022

Matrix: Soil/Solid (dry weight)

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	6.25U	12.5	4.00	ug/Kg
Ethylbenzene	12.5U	25.0	7.80	ug/Kg
o-Xylene	12.5U	25.0	7.80	ug/Kg
P & M -Xylene	25.0U	50.0	15.0	ug/Kg
Toluene	12.5U	25.0	7.80	ug/Kg
Surrogates				
1,4-Difluorobenzene (surr)	98.1	72-119		%

Batch Information

Analytical Batch: VFC13271 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 9/1/2016 1:56:00PM

Prep Batch: VXX29476 Prep Method: SW5035A

Prep Date/Time: 9/1/2016 12:30:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Blank Spike ID: LCS for HBN 1168490 [VXX29476]

Blank Spike Lab ID: 1349608 Date Analyzed: 09/01/2016 12:23 Spike Duplicate ID: LCSD for HBN 1168490

[VXX29476]

Spike Duplicate Lab ID: 1349609 Matrix: Soil/Solid (dry weight)

QC for Samples: 1168490005, 1168490006, 1168490007, 1168490022

Results by SW8021B

	Е	Blank Spike	(ug/Kg)	S	pike Duplic	ate (ug/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	1250	1410	113	1250	1330	107	(75-125)	5.40	(< 20)
Ethylbenzene	1250	1340	107	1250	1260	101	(75-125)	6.00	(< 20)
o-Xylene	1250	1340	107	1250	1260	100	(75-125)	6.50	(< 20)
P & M -Xylene	2500	2730	109	2500	2550	102	(80-125)	6.70	(< 20)
Toluene	1250	1310	105	1250	1220	98	(70-125)	6.70	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	1250	99.1	99	1250	97.7	98	(72-119)	1.40	

Batch Information

Analytical Batch: VFC13271 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX29476
Prep Method: SW5035A

Prep Date/Time: 09/01/2016 00:30

Spike Init Wt./Vol.: 1250 ug/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 1250 ug/Kg Extract Vol: 25 mL

Matrix Spike Summary

Original Sample ID: 1168490005 MS Sample ID: 1349612 MS MSD Sample ID: 1349613 MSD Analysis Date: 09/01/2016 21:04 Analysis Date: 09/01/2016 21:22 Analysis Date: 09/01/2016 21:41 Matrix: Soil/Solid (dry weight)

QC for Samples: 1168490005, 1168490006, 1168490007, 1168490022

Results by SW8021B

		Mat	rix Spike (ι	ug/Kg)	Spike	Duplicate	(ug/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	10.9U	1613	1786	111	1613	1712	106	75-125	4.30	(< 20)
Ethylbenzene	21.9U	1613	1650	102	1613	1601	99	75-125	2.80	(< 20)
o-Xylene	17.5J	1613	1601	99	1613	1552	95	75-125	3.40	(< 20)
P & M -Xylene	43.8U	3227	3276	102	3227	3165	98	80-125	3.30	(< 20)
Toluene	21.9U	1613	1663	103	1613	1601	99	70-125	4.00	(< 20)
Surrogates										
1,4-Difluorobenzene (surr)		1613	1539	96	1613	1539	95	72-119	0.50	

Batch Information

Analytical Batch: VFC13271 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 9/1/2016 9:22:00PM

Prep Batch: VXX29476

Prep Method: AK101 Extraction (S) Prep Date/Time: 9/1/2016 12:30:00AM

Prep Initial Wt./Vol.: 47.76g Prep Extract Vol: 25.00mL

Blank ID: MB for HBN 1742670 [VXX/29500]

Blank Lab ID: 1350002

QC for Samples:

1168490023, 1168490024, 1168490025, 1168490026, 1168490027

Matrix: Water (Surface, Eff., Ground)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0310mg/L

Surrogates

4-Bromofluorobenzene (surr) 109 50-150 %

Batch Information

Analytical Batch: VFC13277 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 9/5/2016 11:54:00PM

Prep Batch: VXX29500 Prep Method: SW5030B

Prep Date/Time: 9/5/2016 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1168490 [VXX29500]

Blank Spike Lab ID: 1350005

Date Analyzed: 09/05/2016 23:16

Spike Duplicate ID: LCSD for HBN 1168490

[VXX29500]

Spike Duplicate Lab ID: 1350006

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1168490023, 1168490024, 1168490025, 1168490026, 1168490027

Results by AK101

	E	Blank Spike	(mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.970	97	1.00	0.979	98	(60-120)	1.00	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	114	114	0.0500	115	115	(50-150)	0.44	

Batch Information

Analytical Batch: VFC13277
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX29500
Prep Method: SW5030B

Prep Date/Time: 09/05/2016 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Blank ID: MB for HBN 1742670 [VXX/29500]

Blank Lab ID: 1350002

QC for Samples:

1168490023, 1168490024, 1168490025, 1168490026, 1168490027

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	97.8	77-115		%

Batch Information

Analytical Batch: VFC13277 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: ST

Analytical Date/Time: 9/5/2016 11:54:00PM

Prep Batch: VXX29500 Prep Method: SW5030B

Prep Date/Time: 9/5/2016 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank Spike ID: LCS for HBN 1168490 [VXX29500]

Blank Spike Lab ID: 1350003 Date Analyzed: 09/05/2016 22:58 Spike Duplicate ID: LCSD for HBN 1168490

[VXX29500]

Spike Duplicate Lab ID: 1350004 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168490023, 1168490024, 1168490025, 1168490026, 1168490027

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	100	107	107	100	113	113	(80-120)	5.50	(< 20)
Ethylbenzene	100	103	103	100	109	109	(75-125)	5.30	(< 20)
o-Xylene	100	105	105	100	109	109	(80-120)	3.10	(< 20)
P & M -Xylene	200	210	105	200	219	110	(75-130)	4.30	(< 20)
Toluene	100	99.7	100	100	106	106	(75-120)	6.50	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	95.8	96	50	98.8	99	(77-115)	3.10	

Batch Information

Analytical Batch: VFC13277 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: ST

Prep Batch: VXX29500
Prep Method: SW5030B

Prep Date/Time: 09/05/2016 06:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Blank ID: MB for HBN 1742437 [XXX/36180]

Blank Lab ID: 1348979

QC for Samples:

1168490023, 1168490024, 1168490025, 1168490026

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0158J	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Fluorobiphenyl (surr)	90.7	53-106		%
Terphenyl-d14 (surr)	91.8	58-132		%

Batch Information

Analytical Batch: XMS9620

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: BRV

Analytical Date/Time: 9/15/2016 4:16:00PM

Prep Batch: XXX36180 Prep Method: SW3520C

Prep Date/Time: 8/31/2016 9:05:39AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1168490 [XXX36180]

Blank Spike Lab ID: 1348980 Date Analyzed: 09/15/2016 16:37 Spike Duplicate ID: LCSD for HBN 1168490

[XXX36180]

Spike Duplicate Lab ID: 1348981 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168490023, 1168490024, 1168490025, 1168490026

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.75	88	2	1.79	90	(41-115)	2.50	(< 20)
2-Methylnaphthalene	2	1.82	91	2	1.82	91	(39-114)	0.14	(< 20)
Acenaphthene	2	2.11	106	2	2.11	106	(48-114)	0.12	(< 20)
Acenaphthylene	2	1.81	90	2	1.80	90	(35-121)	0.51	(< 20)
Anthracene	2	1.90	95	2	1.89	95	(53-119)	0.19	(< 20)
Benzo(a)Anthracene	2	1.84	92	2	1.80	90	(59-120)	2.30	(< 20)
Benzo[a]pyrene	2	2.15	108	2	2.07	103	(53-120)	4.20	(< 20)
Benzo[b]Fluoranthene	2	2.01	101	2	1.98	99	(53-126)	1.60	(< 20)
Benzo[g,h,i]perylene	2	2.23	111	2	2.15	108	(44-128)	3.40	(< 20)
Benzo[k]fluoranthene	2	2.07	104	2	2.00	100	(54-125)	3.50	(< 20)
Chrysene	2	1.94	97	2	1.88	94	(57-120)	3.30	(< 20)
Dibenzo[a,h]anthracene	2	2.21	110	2	2.15	107	(44-131)	2.80	(< 20)
Fluoranthene	2	1.77	88	2	1.72	86	(58-120)	2.90	(< 20)
Fluorene	2	1.88	94	2	1.92	96	(50-118)	2.50	(< 20)
Indeno[1,2,3-c,d] pyrene	2	2.23	111	2	2.16	108	(48-130)	3.40	(< 20)
Naphthalene	2	1.71	85	2	1.69	85	(43-114)	0.86	(< 20)
Phenanthrene	2	1.89	94	2	1.89	95	(53-115)	0.24	(< 20)
Pyrene	2	1.82	91	2	1.78	89	(53-121)	2.60	(< 20)
Surrogates									
2-Fluorobiphenyl (surr)	2	91.8	92	2	90.7	91	(53-106)	1.30	
Terphenyl-d14 (surr)	2	95.9	96	2	95.8	96	(58-132)	0.07	

Batch Information

Analytical Batch: XMS9620

Analytical Method: 8270D SIM LV (PAH)
Instrument: SVA Agilent 780/5975 GC/MS

Analyst: BRV

Prep Batch: XXX36180
Prep Method: SW3520C

Prep Date/Time: 08/31/2016 09:05

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Matrix Spike Summary

Original Sample ID: 1165063007 MS Sample ID: 1348982 MS MSD Sample ID: 1348983 MSD Analysis Date: 09/15/2016 19:23 Analysis Date: 09/15/2016 19:44 Analysis Date: 09/15/2016 20:04 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1168490023, 1168490024, 1168490025, 1168490026

Results by 8270D SIM LV (PAH)

	,	Ма	trix Spike (ug/L)	Spik	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0245U	2.03	1.61	79	2.02	1.74	86	41-115	8.00	(< 20)
2-Methylnaphthalene	0.0245U	2.03	1.65	81	2.02	1.80	89	39-114	8.70	(< 20)
Acenaphthene	0.0245U	2.03	1.97	97	2.02	2.08	103	48-114	5.10	(< 20)
Acenaphthylene	0.0245U	2.03	1.64	81	2.02	1.74	87	35-121	6.40	(< 20)
Anthracene	0.0245U	2.03	1.88	92	2.02	1.93	96	53-119	2.70	(< 20)
Benzo(a)Anthracene	0.0245U	2.03	1.79	88	2.02	1.79	89	59-120	0.28	(< 20)
Benzo[a]pyrene	0.00980U	2.03	2.03	100	2.02	2.11	104	53-120	3.60	(< 20)
Benzo[b]Fluoranthene	0.0245U	2.03	1.93	95	2.02	1.97	98	53-126	2.00	(< 20)
Benzo[g,h,i]perylene	0.0245U	2.03	2.1	103	2.02	2.13	106	44-128	1.80	(< 20)
Benzo[k]fluoranthene	0.0245U	2.03	1.91	94	2.02	1.84	92	54-125	3.60	(< 20)
Chrysene	0.0245U	2.03	1.83	90	2.02	1.92	95	57-120	5.00	(< 20)
Dibenzo[a,h]anthracene	0.00980U	2.03	2.13	105	2.02	2.15	107	44-131	0.89	(< 20)
Fluoranthene	0.0245U	2.03	1.61	79	2.02	1.67	83	58-120	3.40	(< 20)
Fluorene	0.0245U	2.03	1.8	89	2.02	1.92	95	50-118	6.30	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0245U	2.03	2.1	103	2.02	2.13	106	48-130	1.80	(< 20)
Naphthalene	0.0490U	2.03	1.58	78	2.02	1.67	83	43-114	5.90	(< 20)
Phenanthrene	0.0245U	2.03	1.78	88	2.02	1.89	94	53-115	5.80	(< 20)
Pyrene	0.0245U	2.03	1.66	82	2.02	1.72	85	53-121	3.50	(< 20)
Surrogates										
2-Fluorobiphenyl (surr)		2.03	1.73	85	2.02	1.90	94	53-106	9.50	
Terphenyl-d14 (surr)		2.03	1.75	86	2.02	1.92	95	58-132	9.60	

Batch Information

Analytical Batch: XMS9620

Analytical Method: 8270D SIM LV (PAH) Instrument: SVA Agilent 780/5975 GC/MS

Analyst: BRV

Analytical Date/Time: 9/15/2016 7:44:00PM

Prep Batch: XXX36180

Prep Method: 3520 Lig/Lig Ext for 8270 PAH SIM LV

Prep Date/Time: 8/31/2016 9:05:39AM

Prep Initial Wt./Vol.: 246.00mL Prep Extract Vol: 1.00mL

Blank ID: MB for HBN 1742601 [XXX/36208]

Blank Lab ID: 1349728

QC for Samples:

1168490002, 1168490003, 1168490005, 1168490008, 1168490009, 1168490010, 1168490011, 1168490012, 1168490014,

Matrix: Soil/Solid (dry weight)

1168490015, 1168490016, 1168490017, 1168490018, 1168490020, 1168490021

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/Kg

Surrogates

5a Androstane (surr) 84.8 60-120 %

Batch Information

Analytical Batch: XFC12799 Prep Batch: XXX36208
Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 9/2/2016 2:12:24PM

Analyst: NRO Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 9/6/2016 9:21:00PM Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1168490 [XXX36208]

Blank Spike Lab ID: 1349729

Date Analyzed: 09/06/2016 21:31

Spike Duplicate ID: LCSD for HBN 1168490

[XXX36208]

Spike Duplicate Lab ID: 1349730

Matrix: Soil/Solid (dry weight)

QC for Samples:

1168490002, 1168490003, 1168490005, 1168490008, 1168490009, 1168490010, 1168490011, 1168490012, 1168490014, 1168490015, 1168490016, 1168490017, 1168490018, 1168490020,

1168490021

Results by AK102

	BI	ank Spike (r	mg/Kg)	Sp	ike Duplica	te (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	167	154	93	167	146	88	(75-125)	5.60	(< 20)
Surrogates									
5a Androstane (surr)	3.33	96.3	96	3.33	89.6	90	(60-120)	7.20	

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: NRO

Prep Batch: XXX36208
Prep Method: SW3550C

Prep Date/Time: 09/02/2016 14:12

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Blank ID: MB for HBN 1742601 [XXX/36208]

Blank Lab ID: 1349728

QC for Samples:

1168490002, 1168490003, 1168490005, 1168490008, 1168490009, 1168490010, 1168490011, 1168490012, 1168490014,

Matrix: Soil/Solid (dry weight)

1168490015, 1168490016, 1168490017, 1168490018, 1168490020, 1168490021

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics10.0U20.06.20mg/Kg

Surrogates

n-Triacontane-d62 (surr) 101 60-120 %

Batch Information

Analytical Batch: XFC12799 Prep Batch: XXX36208
Analytical Method: AK103 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 9/2/2016 2:12:24PM

Analyst: NRO Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 9/6/2016 9:21:00PM Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1168490 [XXX36208]

Blank Spike Lab ID: 1349729

Date Analyzed: 09/06/2016 21:31

Spike Duplicate ID: LCSD for HBN 1168490

[XXX36208]

Spike Duplicate Lab ID: 1349730

Matrix: Soil/Solid (dry weight)

QC for Samples:

1168490002, 1168490003, 1168490005, 1168490008, 1168490009, 1168490010, 1168490011, 1168490012, 1168490014, 1168490015, 1168490016, 1168490017, 1168490018, 1168490020,

1168490021

Results by AK103

	В	lank Spike	(mg/Kg)	s	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Residual Range Organics	167	154	92	167	143	86	(60-120)	7.20	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	3.33	98.5	99	3.33	97.9	98	(60-120)	0.60	

Batch Information

Analytical Batch: XFC12799 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: NRO

Prep Batch: XXX36208 Prep Method: SW3550C

Prep Date/Time: 09/02/2016 14:12

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Blank ID: MB for HBN 1742623 [XXX/36210]

Blank Lab ID: 1349821

QC for Samples:

1168490005, 1168490006, 1168490007

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
2-Methylnaphthalene	2.50U	5.00	1.50	ug/Kg
Acenaphthene	2.50U	5.00	1.50	ug/Kg
Acenaphthylene	2.50U	5.00	1.50	ug/Kg
Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo(a)Anthracene	2.50U	5.00	1.50	ug/Kg
Benzo[a]pyrene	2.50U	5.00	1.50	ug/Kg
Benzo[b]Fluoranthene	2.50U	5.00	1.50	ug/Kg
Benzo[g,h,i]perylene	2.50U	5.00	1.50	ug/Kg
Benzo[k]fluoranthene	2.50U	5.00	1.50	ug/Kg
Chrysene	2.50U	5.00	1.50	ug/Kg
Dibenzo[a,h]anthracene	2.50U	5.00	1.50	ug/Kg
Fluoranthene	2.50U	5.00	1.50	ug/Kg
Fluorene	2.50U	5.00	1.50	ug/Kg
Indeno[1,2,3-c,d] pyrene	2.50U	5.00	1.50	ug/Kg
Naphthalene	2.50U	5.00	1.50	ug/Kg
Phenanthrene	2.50U	5.00	1.50	ug/Kg
Pyrene	2.50U	5.00	1.50	ug/Kg
Surrogates				
2-Fluorobiphenyl (surr)	92.9	46-115		%
Terphenyl-d14 (surr)	92.4	58-133		%

Batch Information

Analytical Batch: XMS9593

Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: S.G

Analytical Date/Time: 9/7/2016 12:57:00PM

Prep Batch: XXX36210 Prep Method: SW3550C

Prep Date/Time: 9/2/2016 5:13:50PM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 1 mL

Blank Spike ID: LCS for HBN 1168490 [XXX36210]

Blank Spike Lab ID: 1349822 Date Analyzed: 09/07/2016 13:42

Matrix: Soil/Solid (dry weight)

QC for Samples: 1168490005, 1168490006, 1168490007

Results by 8270D SIM (PAH)

		_	
E	Blank Spike	(ug/Kg)	
<u>Spike</u>	Result	Rec (%)	<u>CL</u>
22.2	20.0	90	(43-111)
22.2	19.2	87	(39-114)
22.2	23.7	106	(44-111)
22.2	20.7	93	(39-116)
22.2	22.6	101	(50-114)
22.2	18.2	82	(54-122)
22.2	21.2	95	(50-125)
22.2	19.2	86	(53-128)
22.2	20.9	94	(49-127)
22.2	21.5	97	(56-123)
22.2	23.3	105	(57-118)
22.2	20.6	93	(50-129)
22.2	20.1	90	(55-119)
22.2	22.0	99	(47-114)
22.2	20.7	93	(49-130)
22.2	18.1	82	(38-111)
22.2	21.1	95	(49-113)
22.2	22.2	100	(55-117)
22.2	93.6	94	(46-115)
22.2	90.5	91	(58-133)
	Spike 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22	Spike Result 22.2 20.0 22.2 19.2 22.2 23.7 22.2 20.7 22.2 22.6 22.2 18.2 22.2 21.2 22.2 21.2 22.2 20.9 22.2 21.5 22.2 23.3 22.2 20.1 22.2 20.1 22.2 20.7 22.2 18.1 22.2 21.1 22.2 22.2 22.2 39.6	22.2 20.0 90 22.2 19.2 87 22.2 23.7 106 22.2 20.7 93 22.2 22.6 101 22.2 18.2 82 22.2 21.2 95 22.2 19.2 86 22.2 20.9 94 22.2 23.3 105 22.2 20.6 93 22.2 20.1 90 22.2 20.7 93 22.2 20.7 93 22.2 21.1 95 22.2 21.1 95 22.2 22.2 100

Batch Information

Analytical Batch: XMS9593

Analytical Method: 8270D SIM (PAH)
Instrument: Agilent GC 7890B/5977A SWA

Analyst: S.G

Prep Batch: XXX36210
Prep Method: SW3550C

Prep Date/Time: 09/02/2016 17:13

Spike Init Wt./Vol.: 22.2 ug/Kg Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1165040005 MS Sample ID: 1349823 MS MSD Sample ID: 1349824 MSD

1168490005, 1168490006, 1168490007 QC for Samples:

Analysis Date: 09/29/2016 9:56 Analysis Date: 09/29/2016 10:17 Analysis Date: 09/29/2016 10:38 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Mat	rix Spike (ι	ıg/Kg)	Spike	e Duplicate	(ug/Kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%	CL	RPD (%)	RPD CL
1-Methylnaphthalene	24.5J	34.1	58.0J	170 *	34.1	57.3J	168	* 43-1	11 1.20	(< 20)
2-Methylnaphthalene	27.0J	34.1	59.6J	175 *	34.1	59.7J	175	* 39-1	14 0.06	(< 20)
Acenaphthene	38.3U	34.1	35.6J	105	34.1	35.8J	105	44-1	11 0.29	(< 20)
Acenaphthylene	38.3U			34.1	38.0J	111	111 39-116		(< 20)	
Anthracene	38.3U	34.1 54.3J 159 * 34.1 34.1 28.7J 84 34.1		34.1	52.6J	155	* 50-1	14 3.30	(< 20)	
Benzo(a)Anthracene	38.3U			34.1	32.4J	95	54-1	22 12.00	(< 20)	
Benzo[a]pyrene	38.3U	34.1	38.3U	0 *	34.1	38.3U	0	* 50-1	25 0.00	(< 20)
Benzo[b]Fluoranthene	38.3U	34.1	41.8J	122	34.1	41.5J	122	53-1	28 0.72	(< 20)
Benzo[g,h,i]perylene	38.3U	34.1	38.3U	0 *	34.1	24.1J	71	49-1	27 0.00	(< 20)
Benzo[k]fluoranthene	38.3U	34.1	27.3J	80	34.1	25.9J	76	56-1	23 4.80	(< 20)
Chrysene	38.3U	34.1	37.7J	111	34.1	38.1J	112	57-1	18 1.10	(< 20)
Dibenzo[a,h]anthracene	38.3U	34.1	38.3U	0 *	34.1	38.3U	0	* 50-1	29 0.00	(< 20)
Fluoranthene	38.3U	34.1	48.3J	141 *	34.1	48.6J	143	* 55-1	19 0.69	(< 20)
Fluorene	38.3U	34.1	33.3J	98	34.1	33.2J	98	47-1	14 0.58	(< 20)
Indeno[1,2,3-c,d] pyrene	38.3U	34.1	38.3U	0 *	34.1	38.3U	0	* 49-1	30 0.00	(< 20)
Naphthalene	38.3U	34.1	46.9J	138 *	34.1	45.1J	132	* 38-1	11 4.10	(< 20)
Phenanthrene	38.3U	34.1	51.2J	150 *	34.1	51.2J	150	* 49-1	13 0.07	(< 20)
Pyrene	38.3U	34.1	48.5J	142 *	34.1	51.5J	151	* 55-1	17 6.10	(< 20)
Surrogates										
2-Fluorobiphenyl (surr)	Fluorobiphenyl (surr) 34.1 32.1 94		94	34.1	30.2	89	46-1	15 5.60		
Terphenyl-d14 (surr)		34.1	48.9	144 *	34.1	47.4	139	* 58-1	33 3.30	

Batch Information

Analytical Batch: XMS9647

Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: S.G

Analytical Date/Time: 9/29/2016 10:17:00AM

Prep Batch: XXX36210

Prep Method: Sonication Extraction Soil 8270 PAH SIM

Prep Date/Time: 9/2/2016 5:13:50PM

Prep Initial Wt./Vol.: 22.63g Prep Extract Vol: 5.00mL

Print Date: 10/03/2016 11:29:53AM

Blank ID: MB for HBN 1742627 [XXX/36211]

Blank Lab ID: 1349827

QC for Samples:

1168490001, 1168490004, 1168490006, 1168490007, 1168490013, 1168490019

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/Kg

Matrix: Soil/Solid (dry weight)

Surrogates

5a Androstane (surr) 78.4 60-120 %

Batch Information

Analytical Batch: XFC12801 Prep Batch: XXX36211
Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 9/2/2016 8:32:35PM

Analyst: NRO Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 9/8/2016 10:26:00AM Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:54AM

Blank Spike ID: LCS for HBN 1168490 [XXX36211]

Blank Spike Lab ID: 1349828

Date Analyzed: 09/08/2016 10:36

Spike Duplicate ID: LCSD for HBN 1168490

[XXX36211]

Spike Duplicate Lab ID: 1349829

Matrix: Soil/Solid (dry weight)

QC for Samples:

1168490001, 1168490004, 1168490006, 1168490007, 1168490013, 1168490019

Results by AK102

	Е	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	167	143	86	167	137	82	(75-125)	4.30	(< 20)
Surrogates									
5a Androstane (surr)	3.33	83.9	84	3.33	78.8	79	(60-120)	6.30	

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK102

Instrument: Agilent 7890B F

Analyst: NRO

Prep Batch: XXX36211 Prep Method: SW3550C

Prep Date/Time: 09/02/2016 20:32

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:56AM

Blank ID: MB for HBN 1742627 [XXX/36211]

Blank Lab ID: 1349827

QC for Samples:

1168490001, 1168490004, 1168490006, 1168490007, 1168490013, 1168490019

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics10.0U20.06.20mg/Kg

Matrix: Soil/Solid (dry weight)

Surrogates

n-Triacontane-d62 (surr) 81.1 60-120 %

Batch Information

Analytical Batch: XFC12801 Prep Batch: XXX36211
Analytical Method: AK103 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 9/2/2016 8:32:35PM

Analyst: NRO Prep Initial Wt./Vol.: 30 g Analytical Date/Time: 9/8/2016 10:26:00AM Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:29:58AM

Blank Spike ID: LCS for HBN 1168490 [XXX36211]

Blank Spike Lab ID: 1349828

Date Analyzed: 09/08/2016 10:36

Spike Duplicate ID: LCSD for HBN 1168490

[XXX36211]

Spike Duplicate Lab ID: 1349829

Matrix: Soil/Solid (dry weight)

QC for Samples:

1168490001, 1168490004, 1168490006, 1168490007, 1168490013, 1168490019

Results by AK103

	Е	Blank Spike	(mg/Kg)	s	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	167	138	83	167	128	77	(60-120)	7.70	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	3.33	83.7	84	3.33	77.7	78	(60-120)	7.40	

Batch Information

Analytical Batch: XFC12801 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: NRO

Prep Batch: XXX36211 Prep Method: SW3550C

Prep Date/Time: 09/02/2016 20:32

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:00AM

Blank ID: MB for HBN 1742659 [XXX/36216]

Blank Lab ID: 1349945

QC for Samples:

1168490005, 1168490006, 1168490007

Matrix: Soil/Solid (dry weight)

Results by SW8082A

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Aroclor-1016	25.0U	50.0	15.0	ug/Kg
Aroclor-1221	100U	200	62.0	ug/Kg
Aroclor-1232	25.0U	50.0	15.0	ug/Kg
Aroclor-1242	25.0U	50.0	15.0	ug/Kg
Aroclor-1248	25.0U	50.0	15.0	ug/Kg
Aroclor-1254	25.0U	50.0	15.0	ug/Kg
Aroclor-1260	25.0U	50.0	15.0	ug/Kg
Surrogates				
Decachlorobiphenyl (surr)	81	60-125		%

Batch Information

Analytical Batch: XGC9507 Analytical Method: SW8082A

Instrument: Agilent 7890B GC ECD SW F

Analyst: AEE

Analytical Date/Time: 9/8/2016 7:55:00PM

Prep Batch: XXX36216 Prep Method: SW3550C

Prep Date/Time: 9/6/2016 8:28:51AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 10/03/2016 11:30:01AM

Blank Spike ID: LCS for HBN 1168490 [XXX36216]

Blank Spike Lab ID: 1349946 Date Analyzed: 09/08/2016 20:05

Matrix: Soil/Solid (dry weight)

QC for Samples:

1168490005, 1168490006, 1168490007

Results by SW8082A

	E	Blank Spike	(ug/Kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
Aroclor-1016	222	138	62	(47-134)
Aroclor-1260	222	180	81	(53-140)
Surrogates				
Decachlorobiphenyl (surr)	222	81	81	(60-125)

Batch Information

Analytical Batch: **XGC9507**Analytical Method: **SW8082A**

Instrument: Agilent 7890B GC ECD SW F

Analyst: AEE

Prep Batch: XXX36216
Prep Method: SW3550C

Prep Date/Time: 09/06/2016 08:28

Spike Init Wt./Vol.: 222 ug/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/03/2016 11:30:02AM

Matrix Spike Summary

Original Sample ID: 1165000013 MS Sample ID: 1349976 MS MSD Sample ID: 1349977 MSD Analysis Date: 09/08/2016 23:11 Analysis Date: 09/08/2016 23:21 Analysis Date: 09/08/2016 23:41 Matrix: Soil/Solid (dry weight)

QC for Samples: 1168490005, 1168490006, 1168490007

Results by SW8082A

		Mat	rix Spike (ι	ug/Kg)	Spike	Duplicate	(ug/Kg)			
<u>Parameter</u>	Sample	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Aroclor-1016	64.0U	568	478	84	568	398	70	47-134	18.10	(< 30)
Aroclor-1260	64.0U	568	391	69	568	365	64	53-140	7.43	(< 30)
Surrogates Decachlorobiphenyl (surr)		568	427	75	568	404	71	60-125	5.40	

Batch Information

Analytical Batch: XGC9507 Analytical Method: SW8082A

Instrument: Agilent 7890B GC ECD SW F

Analyst: AEE

Analytical Date/Time: 9/8/2016 11:21:00PM

Prep Batch: XXX36216

Prep Method: Sonication Extraction Soil SW8080 PCB

Prep Date/Time: 9/6/2016 8:28:51AM

Prep Initial Wt./Vol.: 22.63g Prep Extract Vol: 5.00mL

Print Date: 10/03/2016 11:30:03AM

Blank ID: MB for HBN 1742721 [XXX/36226]

Blank Lab ID: 1350228

QC for Samples:

1168490023, 1168490024

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.312J
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 90.3 60-120 %

Batch Information

Analytical Batch: XFC12795 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: NRO

Analytical Date/Time: 9/8/2016 3:38:00PM

Prep Batch: XXX36226 Prep Method: SW3520C

Prep Date/Time: 9/7/2016 8:55:31AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:04AM

Blank Spike ID: LCS for HBN 1168490 [XXX36226]

Blank Spike Lab ID: 1350229 Date Analyzed: 09/08/2016 03:13 Spike Duplicate ID: LCSD for HBN 1168490

[XXX36226]

Spike Duplicate Lab ID: 1350230 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1168490023, 1168490024

Results by AK102

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	21.6	108	20	21.2	106	(75-125)	1.70	(< 20)
Surrogates									
5a Androstane (surr)	0.4	94.4	94	0.4	95.7	96	(60-120)	1.40	

Batch Information

Analytical Batch: XFC12796 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: CRA

Prep Batch: XXX36226
Prep Method: SW3520C

Prep Date/Time: 09/07/2016 08:55

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:05AM

Blank ID: MB for HBN 1742721 [XXX/36226]

Blank Lab ID: 1350228

QC for Samples:

1168490023, 1168490024

Matrix: Water (Surface, Eff., Ground)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.223J0.5000.150mg/L

Surrogates

n-Triacontane-d62 (surr) 98.3 60-120 %

Batch Information

Analytical Batch: XFC12795 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: NRO

Analytical Date/Time: 9/8/2016 3:38:00PM

Prep Batch: XXX36226 Prep Method: SW3520C

Prep Date/Time: 9/7/2016 8:55:31AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:06AM

Blank Spike ID: LCS for HBN 1168490 [XXX36226]

Blank Spike Lab ID: 1350229 Date Analyzed: 09/08/2016 03:13 Spike Duplicate ID: LCSD for HBN 1168490

[XXX36226]

Spike Duplicate Lab ID: 1350230 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1168490023, 1168490024

Results by AK103

	E	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20 20.9 104		20	20.3	102	(60-120)	2.50	(< 20)	
Surrogates									
n-Triacontane-d62 (surr)	0.4	105	105	0.4	108	108	(60-120)	2.90	

Batch Information

Analytical Batch: XFC12796 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: CRA

Prep Batch: XXX36226
Prep Method: SW3520C

Prep Date/Time: 09/07/2016 08:55

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:07AM

Blank ID: MB for HBN 1742734 [XXX/36228]

Blank Lab ID: 1350278

QC for Samples:

1168490025, 1168490026

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 97.6 60-120 %

Batch Information

Analytical Batch: XFC12815 Prep Batch: XXX36228
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B R Prep Date/Time: 9/7/2016 10:43:51AM

Analyst: NRO Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 9/10/2016 4:00:00AM Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:09AM

Blank Spike ID: LCS for HBN 1168490 [XXX36228]

Blank Spike Lab ID: 1350279 Date Analyzed: 09/08/2016 00:05 Spike Duplicate ID: LCSD for HBN 1168490

[XXX36228]

Spike Duplicate Lab ID: 1350280 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1168490025, 1168490026

Results by AK102

		Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	16.5	83	20	18.8	94	(75-125)	13.00	(< 20)
Surrogates									
5a Androstane (surr)	0.4	92	92	0.4	95.2	95	(60-120)	3.30	

Batch Information

Analytical Batch: XFC12798 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: CRA

Prep Batch: XXX36228
Prep Method: SW3520C

Prep Date/Time: 09/07/2016 10:43

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:11AM

Blank ID: MB for HBN 1742734 [XXX/36228]

Blank Lab ID: 1350278

QC for Samples:

1168490025, 1168490026

Matrix: Water (Surface, Eff., Ground)

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 103 60-120 %

Batch Information

Analytical Batch: XFC12815 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: NRO

Analytical Date/Time: 9/10/2016 4:00:00AM

Prep Batch: XXX36228 Prep Method: SW3520C

Prep Date/Time: 9/7/2016 10:43:51AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:12AM

Blank Spike ID: LCS for HBN 1168490 [XXX36228]

Blank Spike Lab ID: 1350279 Date Analyzed: 09/08/2016 00:05 Spike Duplicate ID: LCSD for HBN 1168490

[XXX36228]

Spike Duplicate Lab ID: 1350280 Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1168490025, 1168490026

Results by AK103

		Blank Spike	e (mg/L)	S	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	17.5	88	20	18.3	92	(60-120)	4.30	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	94.7	95	0.4	98.2	98	(60-120)	3.60	

Batch Information

Analytical Batch: XFC12798 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: CRA

Prep Batch: XXX36228
Prep Method: SW3520C

Prep Date/Time: 09/07/2016 10:43

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/03/2016 11:30:13AM

SGS NORTH AMERICA

www.sgs.com/alaska

F101_eCOC_Revised_2014-12-10

http://www.sgs.com/terms-and-conditions

SGS NORTH AMER

ODY RECORD

SGS Environmental Services 200 West Potter Road Anchorage, AK 99518 (907) 562-2343 www.sgs.com/alaska

		Page 4 of 5	PRESERVATIVE				REMARKS/											Project? NO DATA DELIVERABLE REQUIREMENTS:	Level II	REQUESTED TURNAROUND TIME AND/OR SPECIAL INSTRUCTIONS			TEMP BLANK °C: CHAIN OF CUSTODY SEAL: (CIRCLE)	OR AMBIENT [] INTACT BROKEN (ABSENT)	
	INSTRUCTIONS: SECTIONS 1-5 MUST BE FILLED OUT. OMISSIONS MAY DELAY THE ONSET OF ANALYSIS.	82	PRES	SAMPLE TYPE:	Comp Grab	OSS		'3	ـــ	×	メーシ	メック	X 5	メ	メ	8 2	X 9	8/26/16 SECTION 4 DOD Project? NO	COC ID:	REQUESTED TURNA	Standard TAT		TEMP		(See attached Semmle Beneint Form)
		SECTIO			02+		MATRIX E me me CODE S	25	2 1 0S	1 05	1) 1 05	50 1 6	50 1 6	7 3 05) 1 08	RECEIVED BY:		RECEIVED BY:		RECEIVED BY:		RECEIVED FOR LABORATORY BY:	Jan Salar
		PHONE #: 907-374-4750	140.	=c(ι/ 3/ 20266.019 π#:	L: aweller@ahtna.net Idavis@ahtna.net	QUOTE #: 339629 P.O. #: 20266.019	DATE TIME MINIDD/YY HH:MM	8.23.16 1350		8.23.16 1400	8.73.16 1400	8.2316 1410	23.16	# 8.04W 1640	8.24.16	8-24-16 1800	27.74.10	DATE TIME	8-26-16 1300 J	DATE TIME	972/11 50	DATE TIME		DATE (O TIME	4年 10.20
CLIENT:	б	contact: Andrew Weller		NAME: Tanana Community Hall PWSID/	REPORTS TO: Andrew Weller E-MAIL: Leslie Davis	INVOICE TO: Andrew Weller P.O.#	RESERVED FOR LAB SAMPLE IDENTIFICATION	(B) 16-TALTP-CC-1.3-1.5	(C) & 16-TAL-TP-07-1.4-1.5	~ (1) 16-TAL-TP-08-1.2-1.3	5 (4) A 16-TAL-TP-09-21-23	5 B 16-TAL-TP-10-1.6-1.2	0 (6) 1 16-TRL-TP-11-15-1.7	1 TRI-5B-01-18.3-187	(K) A 16-TAL-5B-02-19	(9) \$ 16-TPL-5B-03-1.6-1.8	\$ (CO) \$ 16-TAL-SP-03-5.5-6.0	RELINGUISHED BY: (1)	John mis	LO RELINQUISHED BY:(2)	NOI	C RELINQUISHED BY:(3)		RELINQUISHED BY:(4) DA	A

http://vywysgs.com/terms-and-conditions

F101_eCOC_Revised_2014-12-10

SGS Environmental Services 200 West Potter Road

Anchorage, AK 99518 (907) 562-2343

www.sgs.com/alaska

Y RECORD

SGS NORTH AMERICA

7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				REMARKS/ LOC ID		TRIP BLANK					TRPBLANK		DATA DELIVERABLE REQUIREMENTS:		SNO		CHAIN OF CUSTODY SEAL: (CIRCLE)	BROKEN ABSENT	(See attached Sample Receipt Form)
D OUT.														DATA DELIVER	Level II	SPECIAL INSTRUCT		CHAIN OF CU	INTACT	(See attache
INSTRUCTIONS: SECTIONS 1-5 MUST BE FILLED OUT. OMISSIONS MAY DELAY THE ONSET OF ANALYSIS.	005665VATIVE		n	UIS O	1-18 1-14/ 1			X 0	8	X	X X			D Project? NO		REQUESTED TURNAROUND TIME AND/OR SPECIAL INSTRUCTIONS STANDARD TO STANDARD SPECIAL INSTRUCTIONS		TEMP BLANK °C:	OR AMBIENT []	(See attached Sample Receipt Form)
SECTIONS 14	0		٤	000	11000			<u> </u>	X	› >	× ×	8		SECTION 4 DOD Project? NO	COC ID: Cooler ID:	REQUESTED TURNARO Standard TAT			OR/	(See attached
TRUCTIONS:		щ		.,,	01.44 10.00 10.44 10.00 10.44 10.00	×	8							4/17/16	1330				ORY BY:	
SNI	SECTION 3	# SAMPLE C TYPE:	O Comp	. A – A	E mental)	1 4	1 00	5	5 +	5 2	5	v DB			lu	3%:	34:		RECEIVED FOR LABORATORY BY:	MI
	.20				MATRIX/ MATRIX CODE		8	3	3	Ņ	3	3		RECEIVED.BY	V.	RECEIVED BY:	RECEIVED BY:			Maria
	907-374-47	20266.019	aweller@ahtna.net Idavis@ahtna.net	629 019	TIME Y HH:MM	0281 WA	110 0800	2101 AV	1100		1745 Just	16 0800		TIME	1300	TIME 1500	TIME	\	P TIME	(/, 5)
	PHONE #:	PROJECT/ PWSID/ 20 PERMIT#:	E-MAIL: awelle	QUOTE #: 339629 P.O. #: 20266.019	ON DATE	5-6.0 8.241	1 8.23.1	1.52 8.25.16	15:0 8.25-16	75.0 8. 25-16	35.5 8.755.16	2 8.25.16		DATE	8.26.16	DATE CIDE/IL	DATE		DATE	75217
Ahtna Engineering	Andrew Weller	Tanana Community Hall	REPORTS TO: Andrew Weller Leslie Davis	INVOICE TO: Andrew Weller	SAMPLE IDENTIFICATION	16-TAL-5B-20-515-6	TRIPBIANK-0	16-TAL-NP-01-21.5-250	16-TAL-WP.02-21.5-25.0	16-TAL-WP 20-215-25.0	516 TAL-WP 03-215-25.	TON BUANK-02		IED BY: (1)	e Mars.	IED BY:(2)	IED BY:(3)		IED BY:(4)	
CLIENT:	CONTACT:	CTION PROJECT T		INVOICE TO	RESERVED FOR LAB USE	Z 4	\$ 72 BUBIN			25 A-6	2 2	22	Zigel a s. c.	RELINQUISHED BY: (1)		RELINGUISHED BY:(2)		S	RELINQUISHED BY:(4)	

http://www.sqs.com/terms-and-conditions

F101_eCOC_Revised_2014-12-10

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	Co	nditi		, Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes	No	MA	Exemption permitted if sampler hand
COC accompanied samples?	Yes	No	N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	Yes	No		□Exemption permitted if chilled &
If >6°C, were samples collected <8 hours ago?	Yes	No	97/A	collected <8hrs ago
If <0 °C, were all sample containers ice free?	Yes	No	(N/A)	
Cooler ID: @ \$ w/Therm. ID:] 1 Cooler ID: @ w/Therm. ID:				
Cooler ID:w/Therm. ID:				
Cooler ID:w/Therm. ID:				
Cooler ID:w/Therm. ID:				
Cooler ID:				
If samples are received without a temperature blank, the "cooler temperature" will be				
documented in lieu of the temperature blank and "COOLER TEMP" will be noted to the right. In cases where neither a temp blank nor cooler temp can be obtained, note				Note: Identify containers received at
ambient () or chilled (). Please check one.				non-compliant temperature. Use form
				FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:			AB# :	
		e atta		
		Or N/A	-	
				cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	Yes	No.	N/A	Note: some samples are sent to
Packing material used (specify all that apply): Bubble Wrap				Anchorage without inspection by SGS Fairbanks personnel.
Separate plastic bags Vermiculite Other:				1 unvanus personnes.
W T T DI I (' YOA T T Y)' 1 'd 1 O				
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes	No	N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes	No		
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No	N/X	
Additional notes (if applicable):	L	•••	·	
And the test (in approache).				
				
Profile #: 334472				
Note to Client: any "no" circled above indicates non-compliance	with standard	l nroce	dures and we	w impact data quality
1401e го Спеть. ину но систей игоге indicates non-computance	тип мапиага	proce	иигез ипи та	у трасі аша дишиу.

	1	168490)	1 1	6 8 4 9 0	
Review Criteria	Y/N (yes/	no)	Except	tions Noted b	elow	
			exemption permitte			
Were Custody Seals intact? Note # 8	k location Y			1F-1B		
COC accompanied	samples? Y					
**exemption perm	itted if chilled &	collected <8hrs a	ago or chlling not re	quired (i.e., wast	te, oil)	
<u> </u>	Υ	Cooler ID: 1		@ 3.9	°C Therm ID:	241
	Υ	Cooler ID:		@	°C Therm ID:	
Temperature blank compliant* (i.e., 0-6 °C a	after CF)? Y	Cooler ID:		@	°C Therm ID:	
	Υ	Cooler ID:		@	°C Therm ID:	
	Υ	Cooler ID:		@	°C Therm ID:	
*If >6°C, were samples collected <8 hor	urs ago? Y					
If <0°C, were sample containers	ice free? Y					
If samples received <u>without</u> a temperature blank, the "cooler temperature blank as "COOLER TEMP" with the temperature blank as "COOLER TEMP" with the right. In cases where neither a temp blank nor cooler temperature.	ill be					
Note: Identify containers received at non-compliant temperature. Us FS-0029 if more space is needed.	e form	N	F 002 6	0 : (
Were samples received within h	old time? Y	Note. Refer to re	orm F-083 "Sample (duide Tol Hold ti	illes.	
Do samples match COC ** (i.e.,sample IDs,dates/times co	ollected)?					
**Note: If times differ <1hr, record details & login	per COC.					
Were analyses requested unam	biguous? Y					
			***Exemption pern	nitted for metals	(e.g,200.8/6020A).	
Were proper containers (type/mass/volume/preservative*	**)used? Y					
IF APPLICABLE						
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with	samples? Y					
Were all VOA vials free of headspace (i.e., bubbles	≤ 6mm)? Y					
Were all soil VOAs field extracted with Me	OH+BFB? Y					
Note to Client: Any "no" answer above indicate	s non-complianc	e with standard p	procedures and may	y impact data qua	ality.	
Addit	tional notes (f applicable):				

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1168490001-A	No Preservative Required	OK	1168490025-D	HCL to pH < 2	ОК
1168490002-A	No Preservative Required	OK	1168490025-E	HCL to pH < 2	ОК
1168490003-A	No Preservative Required	OK	1168490025-F	No Preservative Required	ОК
1168490004-A	No Preservative Required	OK	1168490025-G	No Preservative Required	ОК
1168490005-A	No Preservative Required	OK	1168490026-A	HCL to pH < 2	ОК
1168490005-B	Methanol field pres. 4 C	OK	1168490026-B	HCL to pH < 2	ОК
1168490006-A	No Preservative Required	OK	1168490026-C	HCL to pH < 2	ОК
1168490006-B	Methanol field pres. 4 C	OK	1168490026-D	HCL to pH < 2	ОК
1168490007-A	No Preservative Required	OK	1168490026-E	HCL to pH < 2	ОК
1168490007-B	Methanol field pres. 4 C	OK	1168490026-F	No Preservative Required	OK
1168490008-A	No Preservative Required	OK	1168490026-G	No Preservative Required	OK
1168490009-A	No Preservative Required	OK	1168490027-A	HCL to pH < 2	ОК
1168490010-A	No Preservative Required	OK	1168490027-B	HCL to pH < 2	ОК
1168490011-A	No Preservative Required	OK	1168490027-C	HCL to pH < 2	ОК
1168490012-A	No Preservative Required	ОК			
1168490013-A	No Preservative Required	OK			
1168490014-A	No Preservative Required	ОК			
1168490015-A	No Preservative Required	OK			
1168490016-A	No Preservative Required	OK			
1168490017-A	No Preservative Required	OK			
1168490018-A	No Preservative Required	ОК			
1168490019-A	No Preservative Required	ОК			
1168490020-A	No Preservative Required	ОК			
1168490021-A	No Preservative Required	ОК			
1168490022-A	Methanol field pres. 4 C	OK			
1168490023-A	HCL to pH < 2	OK			
1168490023-B	HCL to pH < 2	OK			
1168490023-C	HCL to pH < 2	OK			
1168490023-D	HCL to pH < 2	OK			
1168490023-E	HCL to pH < 2	OK			
1168490023-F	No Preservative Required	OK			
1168490023-G	No Preservative Required	OK			
1168490024-A	HCL to pH < 2	OK			
1168490024-B	HCL to pH < 2	OK			
1168490024-C	HCL to pH < 2	OK			
1168490024-D	HCL to pH < 2	OK			
1168490024-E	HCL to pH < 2	OK			
1168490024-F	No Preservative Required	OK			
1168490024-G	No Preservative Required	OK			
1168490025-A	HCL to pH < 2	OK			
1168490025-B	HCL to pH < 2	OK			
1168490025-C	HCL to pH < 2	ОК			

8/27/2016 112 of 113

<u>Container Id Preservative Container Id Preservative Container Id Preservative Condition</u>

<u>Condition</u>

<u>Container Id Preservative Container Id Preservative Container Id Cont</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.
- FR- The container was received frozen and not usable for Bacteria or BOD analyses.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

8/27/2016 113 of 113


APPENDIX E

CONCEPTUAL SITE MODEL

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Hazard	a Community Hall Site, Tanana Alaska d ID 26250, ADEC File No. 780.57.004 by: Leslie Davis of Ahtna Engineering			Instructions: Follow the numbered consider contaminant concentrations use controls when describing path	ons or	enginee				
	eted: November 2016							(5)		
(1)	(2)	(3)		(4)	expo "F" fo	tify the receptorsure pathwa for future receptors,	tors po y: Ente ptors,	otentially er "C" fo "C/F" fo	or current r	receptors, rrent and
Check the media to	(//	Check all exposure	1	Check all pathways that could be complete.		urrent 8				
could be directly a by the release.	ffected top arrow <u>and</u> check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	media identified in (2)).	The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.		/ /	Ś			•
Media	Transport Mechanisms	Exposure Me	edia	Exposure Pathway/Route		Commercial or industrial workers	al user	Farmers or Subsist	Subsistence consumers	/ /
	Direct release to surface soil check soil				$\langle s \rangle$	cial we tors	atio,	0.5	St. John	
Surface Soil	✓ Migration to subsurface check soil ✓ Migration to groundwater check groundwater				iden	mer Istri; Visii	stru.	ners 'este	Siste	Ď
(0-2 ft bgs)	✓ Volatilization <u>check air</u>				Res	Site	05	Farr	Subsis	§ /
(e = 11 2ge)	Runoff or erosion check surface water		✓ Incide	ntal Soil Ingestion		C/F	C/F	F		
	✓ Uptake by plants or animals <u>check biota</u>	soil S		al Absorption of Contaminants from Soil		C/F	C/F	F		
	Other (list):	-		tion of Fugitive Dust			C/F		_	-
	Direct release to subsurface soil check soil	L	V IIIIalai	tion of Fugitive Dust		C/F	C/F			
Subsurface	✓ Migration to groundwater check groundwater	_								
Soil	✓ Volatilization check air		✓ Ingesti	ion of Groundwater		F		F		
(2-15 ft bgs)	✓ Uptake by plants or animals check biota	groundwater	Derma	Al Absorption of Contaminants in Groundwater						
	Other (list):		Inhalat	tion of Volatile Compounds in Tap Water						
	N	L		tion of volutile compounds in rap vvalor						
	Direct release to groundwater check groundwater					- <i> </i> -	I			_
Ground-	Volatilization check air Flow to surface water body check surface water		Inhalat	tion of Outdoor Air			C/F	F		
water	Flow to sediment check sediment check sediment	☑ air	✓ Inhalat	tion of Indoor Air		C/F	C/F			
	Uptake by plants or animals check biota	/ 	Inhala	tion of Fugitive Dust						
	Other (list):	_		`						
		ll r	Ingesti	on of Surface Water						
	Direct release to surface water check surface water Volatilization check air					0/5	0/5	_		\dashv
Surface	Volatilization check air Sedimentation check sediment	surface water		Absorption of Contaminants in Surface Water		C/F	C/F	F		_
Water	Uptake by plants or animals check biota		☐ Inhalat	tion of Volatile Compounds in Tap Water						
	Other (list):									
		sediment	Direct	Contact with Sediment						
	Direct release to sediment check sediment									
Sediment	Resuspension, runoff, or erosion check surface water									
	Uptake by plants or animals check biota Other (list):	✓ biota	✓ Ingest	ion of Wild or Farmed Foods		F		F		
						-				_

Print Form

Human Health Conceptual Site Model Scoping Form

Site Name:	Tanana Community Hall			
File Number:	780.57.004			
Completed by:	Leslie Davis of Ahtna Engineering			
about which expo summary text abo	osure pathways should be further inv	vestigated du g exposure p	partment of Environmental Conservation (DEouring site characterization. From this information should be submitted with the site s.	
General Instruct	ions: Follow the italicized instruct	ions in each	section below.	
1. General In Sources (check)	nformation: potential sources at the site)			
☐ USTs		⊠ Vehicle	es	
⊠ ASTs		☐ Landfil	lls	
⊠ Dispensers/fu	el loading racks	☐ Transfo	ormers	
Drums		Other:		
Release Mechan	isms (check potential release mecha	unisms at the	e site)	
⊠ Spills		⊠ Direct o	discharge	
⊠ Leaks		☐ Burning	g	
		☐ Other:		
Imnacted Media	ı (check potentially-impacted media	at the site)		
Surface soil (€)		⊠ Ground	lwater	
Subsurface so Sub	G ,	Surface		
⊠ Air	· · · · · · · · · · · · · · · · · · ·	⊠ Biota		
☐ Sediment		☐ Other:	groundwater has possible minimal impact from contamination with DRO nearly 1/10th of GWCL.	
Receptors (check	k receptors that could be affected by	contaminat	tion at the site)	
Residents (add	ult or child)	⊠ Site vis	sitor	
☐ Commercial o	or industrial worker	⊠ Trespas	sser	
	worker	⊠ Recreat	tional user	
☐ Subsistence h	arvester (i.e. gathers wild foods)	⊠ Farmer		
☐ Subsistence co	onsumer (i.e. eats wild foods)	Other:		

2.	Exposure Pathways: (The answers to the following questions exposure pathways at the site. Check each box where the	• •	-
a)	Direct Contact - 1. Incidental Soil Ingestion		
	Are contaminants present or potentially present in surface soil beto (Contamination at deeper depths may require evaluation on a site-		the ground surface?
	If the box is checked, label this pathway complete:	Complete	
	Comments:		
	Soil samples collected show DRO, RRO, and PAH concentrations above ADEC	C SCLs from 0 - 2 ft bgs	
	2. Dermal Absorption of Contaminants from Soil		
	Are contaminants present or potentially present in surface soil bety (Contamination at deeper depths may require evaluation on a site		the ground surface?
	Can the soil contaminants permeate the skin (see Appendix B in the	he guidance document)?	\boxtimes
	If both boxes are checked, label this pathway complete:	Complete	
	Comments:		
	PAHs listed in Appendix B are present from 0 to 2 ft bgs.		
b)	Ingestion - 1. Ingestion of Groundwater		
	Have contaminants been detected or are they expected to be detected or are contaminants expected to migrate to groundwater in the future.		$\overline{\times}$
	Could the potentially affected groundwater be used as a current or source? Please note, only leave the box unchecked if DEC has det water is not a currently or reasonably expected future source of dr. to 18 AAC 75.350.	termined the ground-	X
	If both boxes are checked, label this pathway complete:	Complete	
	Comments:		
	Groundwater exposure pathways are considered potentially complete base mg/L) at more than 1/10th the GWCL.	d on a DRO detection (0.190	

Ingestion of Surface Water Have contaminants been detector are contaminants expected to

c)

Have contaminants been detected or are they expected to be detected or are contaminants expected to migrate to surface water in the future		$\overline{\times}$
Could potentially affected surface water bodies be used, currently or drinking water source? Consider both public water systems and privaresidential, recreational or subsistence activities).		
If both boxes are checked, label this pathway complete:	Incomplete	
Comments:		
Surface sheen during rain event was observed.		
3. Ingestion of Wild and Farmed Foods		
Is the site in an area that is used or reasonably could be used for hunt harvesting of wild or farmed foods?	ing, fishing, or	
Do the site contaminants have the potential to bioaccumulate (see Apdocument)?	ppendix C in the guidance	X
Are site contaminants located where they would have the potential to biota? (i.e. soil within the root zone for plants or burrowing depth fo groundwater that could be connected to surface water, etc.)	÷	X
If all of the boxes are checked, label this pathway complete:	Incomplete	
Comments:		
Inhalation- 1. Inhalation of Outdoor Air		
Are contaminants present or potentially present in surface soil betwee ground surface? (Contamination at deeper depths may require evaluation)		$\overline{\times}$
Are the contaminants in soil volatile (see Appendix D in the guidar	nce document)?	$\overline{\times}$
If both boxes are checked, label this pathway complete:	Complete	
Comments:		

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminated soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

 $\overline{\times}$

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

 $\overline{\times}$

If both boxes are checked, label this pathway complete:

Complete

Comments:

Tanana Community Hall is located approximately 30 ft to the east of the Block 11, Lot 7 boundary. Contamination was visually noted in the 2015 PACP (S&W, 2015) at Test Pit 4, approx. 15 ft from the building.

3.	Additional Exposure Pathways: (Although there are no definitive questions prove these exposure pathways should also be considered at each site. Use the guidelines prove determine if further evaluation of each pathway is warranted.)	
De	ermal Exposure to Contaminants in Groundwater and Surface Water	
	Dermal exposure to contaminants in groundwater and surface water may be a complete particle of Climate permits recreational use of waters for swimming. Climate permits exposure to groundwater during activities, such as construction. Groundwater or surface water is used for household purposes, such as bathing or	·
	Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be p pathway.	rotective of this
	Check the box if further evaluation of this pathway is needed:	$\overline{\times}$
C	omments:	_
Su	rface sheen observed during rain event.	
In	halation of Volatile Compounds in Tap Water	
	 Inhalation of volatile compounds in tap water may be a complete pathway if: The contaminated water is used for indoor household purposes such as showering washing. The contaminants of concern are volatile (common volatile contaminants are liste guidance document.) 	
	Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are assumed to be p pathway.	rotective of this
	Check the box if further evaluation of this pathway is needed:	
C	omments:	_

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- O Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.
- o Chromium is present in soil that can be dispersed as dust particles of any size.

Generally, DEC direct contact soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because it is assumed most dust particles are incidentally ingested instead of inhaled to the lower lungs. The inhalation pathway only needs to be evaluated when very small dust particles are present (e.g., along a dirt roadway or where dusts are a nuisance). This is not true in the case of chromium. Site specific cleanup levels will need to be calculated in the event that inhalation of dust containing chromium is a complete pathway at a site.

Check the box if further evaluation of this pathway is needed:	
Comments:	
Direct Contact with Sediment	
This pathway involves people's hands being exposed to sediment, such as during some recommon industrial activity. People then incidentally ingest sediment from normal hand-to-mouth addition, dermal absorption of contaminants may be of concern if the the contaminants are skin (see Appendix B in the guidance document). This type of exposure should be investig Climate permits recreational activities around sediment. The community has identified subsistence or recreational activities that would resure sediment, such as clam digging.	h activities. In able to permeate the ated if:
Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to contact with sediment.	be protective of direct
Check the box if further evaluation of this pathway is needed:	
Comments:	

