Sources of Environmental Contaminants

- **Local**
 - Natural Geologic sources, forest fires
 - Cities and Industrial production
 - Military Sites
 - Resource Extraction - mines, oil exploration

- **Long Range Transport**
 - Atmospheric
 - Ocean Currents
 - Animal migration
 - Commercial transport
Fish Monitoring Program:

- General Survey of Alaskan Fishes:
 - Commercial, Subsistence, Recreational species
 - Collaborative Effort for sample collection
 - Federal and State agencies, commercial, recreational and subsistence fish harvest

- Selected coastal sites:
 - Remote communities and villages
 - Adjacent to anthropogenic activities
 - cities, discharges/runoff
 - Historic mining sites
Evaluate Alaskan fish and invertebrates:

- Measure contaminant levels in skinless fillet and whole fish from freshwater, estuaries and marine environments

- **Data is used to:**
 - Determine if there are any areas, species, or contaminants that warrant more in-depth sampling and evaluation.
 - Provide Alaskan residents with information to make an informed dietary decision based on Risks and Benefits of eating Alaskan Fish

- **2014 Updated Fish Consumption Advice for Alaskans**
2014 FDA Testing of Alaskan Fish for Fukushima Radiation
2011 Initial Response

- Japan and International Agencies Monitor local discharges from the site:
 - Air, Water, Agricultural and Marine Products

- Primary concern:
 - Long Range transport by Atmospheric Transport

- Monitor Atmospheric Deposition
 - Collections Sites:
 - Across West Coast of the US,
 - Canada,
 - Alaska
Emergency Steps – Fukushima

- In 2011 state and federal agencies in Alaska issued joint press release indicating safety of wild foods
- Concerns remained of fish contaminated with Fukushima-related radiation
- State websites discussed radiation monitoring, exposure, and health risk
 - communicated safety of fish, air, water, etc.
 - media
Other Long Range Transport Concerns

- Migrating wildlife:
 - Birds
 - Fish
 - Marine mammal

- Ocean Currents:
 - Fish
 - Water
 - Marine Debris
Fukushima

- Initiated an interagency call with all Pacific states, Canada, federal agencies, tribal agencies, and academics
 - Compile public concerns
 - Compare biota and other media for radionuclides
- Worked with the FDA to test Alaska fish for radionuclides
- Communicated information via press releases, tribal calls, and citizen calls
- Continue to communicate information at conferences and conference calls
Fish Species

- FDA evaluation of species:
 - Important commercial species – consumption rate
 - Volume of harvest - economical
 - Two species of Tuna (Pacific Albacore, Pacific Bluefin)
 - North Pacific Salmon – from the Pacific Northwest

- Alaskan Species (> half of US catch from the North Pacific)
 - Commercial importance: consumption and harvest
 - Pollock 2 million metric tons
 - Pacific cod 65,000 metric ton
 - Sablefish 30,000-40,000 metric tons
 - Halibut 24.5 million pounds of
 - Salmon > 146 million fish
Fish: collection & analysis

- 20 Samples from Alaska
- Fish collected using FDA statistical protocols by ADEC Staff from commercial processors
- Composites samples (4 – 10 fish per sample) of 4 pounds
- FDA Winchester Laboratory – specialized lab
 - Testing of commercial foods- domestic, imports
 - FDA Standard analytical techniques
 - High resolution gamma spectrometry
Alaskan Radionuclide Monitoring

• **Selection of 8 Species of fish:**
 - Pollock, Cod, Halibut, Sablefish
 - Salmon: Chinook, Chum, Sockeye, Pink

• **4 regions covering Alaska Coastal Waters**
 - Aleutian Islands/Bering Sea
 - Bristol Bay
 - Gulf of Alaska
 - Southeast

• **Collection at start and at the end of 2014 fishing season**
Where were samples collected?

- Southeast Alaska
- Gulf of Alaska
- Bristol Bay
- Cook Inlet
- Prince William Sound
- Bering Sea
- Aleutian Islands

- North Pacific
- Halibut, Pollock, Cod
- Chinook, Sockeye
- Sablefish, Halibut, Pollock, Chum
- Halibut, Chinook, Chum, Pink
What was measured?

- **Cs-134 (Cesium)** (2-year half life – usually indicates fresh release)
- **Cs-137 (Cesium)** (30-year half life – can indicate old or fresh release)
- **I-131 (Iodine)**
- **K-40 (Potassium)**
Results

- No detections of Fukushima-related radionuclides (I-131, Cs-134, Cs-137)
- Detections of only naturally occurring radionuclide Potassium-40 (K-40)

<table>
<thead>
<tr>
<th>Area</th>
<th>Species</th>
<th>I-131</th>
<th>MDC*</th>
<th>Cs-134</th>
<th>MDC*</th>
<th>Cs-137</th>
<th>MDC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleutian / Bering Sea</td>
<td>Pollock</td>
<td>ND</td>
<td>3.55</td>
<td>ND</td>
<td>2.12</td>
<td>ND</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>Halibut</td>
<td>ND</td>
<td>3.00</td>
<td>ND</td>
<td>1.93</td>
<td>ND</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>Pollock</td>
<td>ND</td>
<td>3.86</td>
<td>ND</td>
<td>2.56</td>
<td>ND</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td>Pollock</td>
<td>ND</td>
<td>6.13</td>
<td>ND</td>
<td>2.00</td>
<td>ND</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>Cod</td>
<td>ND</td>
<td>3.71</td>
<td>ND</td>
<td>2.42</td>
<td>ND</td>
<td>1.98</td>
</tr>
<tr>
<td>Bristol Bay</td>
<td>Chinook</td>
<td>ND</td>
<td>3.71</td>
<td>ND</td>
<td>2.08</td>
<td>ND</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>Sockeye</td>
<td>ND</td>
<td>3.39</td>
<td>ND</td>
<td>1.92</td>
<td>ND</td>
<td>1.64</td>
</tr>
</tbody>
</table>

*Minimum Detectable Concentrations = analytical detection limits
Results

<table>
<thead>
<tr>
<th>Area</th>
<th>Species</th>
<th>I-131</th>
<th>MDC*</th>
<th>Cs-134</th>
<th>MDC*</th>
<th>Cs-137</th>
<th>MDC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulf of Alaska</td>
<td>Sablefish</td>
<td>ND</td>
<td>2.11</td>
<td>ND</td>
<td>1.96</td>
<td>ND</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>Sablefish</td>
<td>ND</td>
<td>2.72</td>
<td>ND</td>
<td>2.31</td>
<td>ND</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>Halibut</td>
<td>ND</td>
<td>2.67</td>
<td>ND</td>
<td>2.13</td>
<td>ND</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>Halibut</td>
<td>ND</td>
<td>2.34</td>
<td>ND</td>
<td>1.75</td>
<td>ND</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>Pollock</td>
<td>ND</td>
<td>3.41</td>
<td>ND</td>
<td>1.88</td>
<td>ND</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>Pollock</td>
<td>ND</td>
<td>5.92</td>
<td>ND</td>
<td>2.07</td>
<td>ND</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>Chum</td>
<td>ND</td>
<td>5.97</td>
<td>ND</td>
<td>2.23</td>
<td>ND</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>Chum</td>
<td>ND</td>
<td>5.29</td>
<td>ND</td>
<td>1.88</td>
<td>ND</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southeast</td>
<td>Halibut</td>
<td>ND</td>
<td>3.31</td>
<td>ND</td>
<td>1.81</td>
<td>ND</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>Halibut</td>
<td>ND</td>
<td>6.07</td>
<td>ND</td>
<td>1.94</td>
<td>ND</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>Chinook</td>
<td>ND</td>
<td>5.05</td>
<td>ND</td>
<td>1.8</td>
<td>ND</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>Chum</td>
<td>ND</td>
<td>9.99</td>
<td>ND</td>
<td>1.8</td>
<td>ND</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Pink</td>
<td>ND</td>
<td>10.61</td>
<td>ND</td>
<td>2.08</td>
<td>ND</td>
<td>2.05</td>
</tr>
</tbody>
</table>
Cs-137 and Cs-134 Not Detected

Derived Intervention Level (FDA Level of Concern) 1,200

Not Detected. Average Minimum Detection Concentration 1.9 Bq/kg
What are the risks?

Is the FDA DIL protective of subsistence or upper end fish consumers?

- We assumed
 - 273 pounds (124 Kg) consumption of a variety of fish over a 70-year period
 - Radionuclide level was at the limit of detection of FDA analytical method

- We found
 - Excess cancer risk = 1 - 10 cancers in every 10,000,000 persons exposed (i.e., very low)

There is no appreciable risk to Alaskans’ health from Fukushima-related radionuclides in Alaska Fish
Marine Mammal Testing

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Analysis Result</th>
<th>Bq/Kg dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringed Seal</td>
<td>North Slope, AK</td>
<td><MDA</td>
<td>1.07</td>
</tr>
<tr>
<td>Bearded Seal</td>
<td>Little Diomede, AK</td>
<td><MDA</td>
<td>0.99</td>
</tr>
<tr>
<td>Ringed Seal</td>
<td>Point Lay, AK</td>
<td><MDA</td>
<td>0.85</td>
</tr>
<tr>
<td>Ringed Seal</td>
<td>Hooper Bay, AK</td>
<td><MDA</td>
<td>0.55</td>
</tr>
<tr>
<td>Ringed Seal</td>
<td>Shishmaref, AK</td>
<td><MDA</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Historical data (1996-97) (Cooper et al., 2000)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Analysis Result</th>
<th>Bq/Kg dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearded Seal</td>
<td>North Slope+Canada</td>
<td>Not analyzed</td>
<td>0.8</td>
</tr>
<tr>
<td>Ringed Seal</td>
<td>North Slope+Canada</td>
<td>Not analyzed</td>
<td>0.6</td>
</tr>
<tr>
<td>Spotted Seal</td>
<td>North Slope, AK</td>
<td>Not analyzed</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Dasher et al., 2011
What about Water?

Wood’s Hole Crowd Sourcing efforts
• Collect a container of water, ship to California, get radiation test result for water
 • 5 Alaskan locations
 (St Lawrence Is., Kodiak Is., Cook Inlet, Seward, Prince William Sound)
 • Dozens of other locations, mostly from Pacific Coast
• Detection Limits
 • 0.1 Bq/m³ for 137Cs
 • 0.2 Bq/m³ for 134Cs
• EPA maximum acceptable level in drinking water = 7,400 Bq/m³
Water Results

- Nondetect for Cs-134
- Background levels for Cs-137
KelpWatch

- California researchers test kelp samples for radiation
 - Mostly samples from the Pacific Coast states, including Alaska
- Marine brown seaweeds are known to concentrate Cesium (Cs) and Iodine (I) into their tissues among many other elements.
 - *Macrocystis* tissue Cs levels are 20x that of its concentration in seawater
- If you send them a kelp sample, they will analyze it for free
KelpWatch
Results

- 80 samples with no detection for Cs-134 (sign of fresh release like Fukushima).
- Very Low detection of Cs-137 (old and new releases) – background
- Some samples had detectable I-131 – possibly from medical waste in California
Going Forward...

- No additional testing is planned at this time
- DHSS and ADEC continue to do public outreach & education
- Continued assessment of the situation
 - Federal agencies - NRC, NOAA, EPA, & FDA
 - Alaska state agencies - ASMI, DHSS, DF&G, NSB, DEC
 - Pacific States
 - Academic and Private Institutions
Contacts

Ali Hamade, Ph.D.
Alaska Department of Health & Social Services (DHSS)
ali.hamade@alaska.gov

Bob Gerlach, VMD
Alaska Department of Environmental Conservation (ADEC)
Office of the State Veterinarian
Bob.Gerlach@alaska.gov

Clyde E. Pearce, RHS
Alaska Department of Health & Social Services (DHSS)
Radiological Health
clyde.pearce@alaska.gov

Marlena (Marty) Brewer
Alaska Department of Environmental Conservation (ADEC)
marlena.brewer@alaska.gov
Fish Consumption

Risks
- Contaminants
 - Mercury
 - Persistent Organic Pollutants
 - Other metals

Benefits
- Omegas-3 fatty acids
- Protein
- Selenium
- Numerous other nutrients
- Sport
- Culture
- Subsistence