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Mercury (Hg) bioaccumulates in the tissues of organisms and biomagnifieswithin food-webs. Graywolves (Canis
lupus) in Alaska primarily acquire Hg through diet; therefore, comparing the extent of Hg exposure in wolves, in
conjunction with stable isotopes, from interior and coastal regions of Alaska offers important insight into their
feeding ecology. Liver, kidney, and skeletal muscle samples from162 graywolves were analyzed for total mercu-
ry (THg) concentrations and stable isotopic signatures (δ13C, δ15N, and δ34S). Median hepatic THg concentrations
were significantly higher in wolves with coastal access compared to wolves from interior Alaska. Stable isotope
ratios, in conjunction with THg concentrations, provide strong evidence that coastal wolves are utilizing marine
prey representing several trophic levels. The utilization of cross-ecosystem food resources by coastal wolves is
clearly contributing to increased THg exposure, and may ultimately have negative health implications for these
animals.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

A variety of stressors exist in the environment that may ultimately
affect the health and functioning of organisms (Lafferty and Holt,
2003). Monomethylmercury (MeHg+) bioaccumulates in the tissues
of organisms, and elevated exposure to this form of mercury (Hg) can
be particularly harmful to the fetus or neonate, especially in consumers
that occupy high trophic positions (Chumchal et al., 2011). In some
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areas of the Arctic, Hg concentrations in marine food-webs have
dramatically increased (Braune et al., 2005) to concentrations at
which adverse biological effects might be expected (Dietz et al., 2013).
While gray wolves (Canis lupus) have commonly been recognized as
obligate carnivores that prey primarily on ungulates, recent studies
have shown that the diets of some wolf populations are subsidized
with marine organisms (Adams et al., 2010; Watts et al., 2010).
Therefore, graywolves in Alaska serve as anoptimal species for studying
Hg exposure in apex-predator wildlife populations. While the utiliza-
tion of cross-ecosystem food sources (which has been demonstrated
in a variety of higher-level consumers and predators) can be beneficial
to species comprising recipient food-webs, the potential negative impli-
cations (low nutrients, infectious and toxic agents) of dietary compo-
nents are not commonly explored (Christensen et al., 2005; Walters
et al., 2008).
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Table 1
Median and range of THg concentrations for all graywolf (Canis lupus) tissues expressed in
μg/kg wet weight (ww).

Organ/Tissue n Median Range

Liver 145 34.7 5.5–7260.7
Kidney 143 95.2 8.3–11,173.3
Skeletal muscle 60 12.5 4.4–546.0
Cardiac muscle 16 206.7 3.9–640.0
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Stable isotope analysis is an integrated approach used to improve
the overall understanding of food-webs (Hansen et al., 2009). Stable
carbon (C)-, nitrogen (N)-, and sulfur (S)-isotopic compositions, in
particular, have been widely recognized as established proxies of the
trophic architecture. Enrichment of the heavier isotope of N (15N)
compared to the lighter form (14N), occurs with each trophic level
(Minagawa andWada, 1984; Newsome et al., 2010), andmarine organ-
isms tend to have higher N isotope signatures relative to terrestrial biota
(Benson and Parker, 1961; Miyake andWada, 1967). Thus, N stable iso-
topes have been used extensively to quantify marine-based dietary
sources for a variety of mammalian consumers, including wolves
(Adams et al., 2010), grizzly bears (Ursus arctos horribilis) (Christensen
et al., 2005), polar bears (Ursus maritimus) (Dehn et al., 2006), and
mink (Mustela vison) (Lake et al., 2007). Because isotopic enrichment
in marine versus terrestrial biomes also exists for C and S, feeding ecol-
ogy studies have additionally incorporated these isotopes, to determine
the contribution of marine versus terrestrial prey sources in consumer
diets (Inger et al., 2006). The purpose of this study was, therefore, to
evaluate the feeding ecology of gray wolves in Alaska, as determined
by stable isotope signature, and total Hg (THg) tissue concentrations.

2. Materials and methods

2.1. Sample collection

Tissue subsamples from a total of 162 gray wolves were collected by
the Alaska Department of Fish and Game (ADF&G) from 2006 through
2009 as part of ongoing projects. Samples of liver (n = 145), kidney
(n = 143), skeletal muscle (n = 60), and cardiac muscle (n = 16)
were placed into individual Whirl-Pak™ bags and frozen immediately
at −20 °C. Samples were transferred to the University of Alaska Fair-
banks (UAF) and stored at −80 °C until laboratory analyses. Tissues
were not systematically collected from all organs of each animal due
to logistical constraints. The collection site for each wolf was assigned
based on Game Management Unit (GMU) as defined by ADF&G
(http://www.adfg.alaska.gov/index.cfm?adfg=huntingmaps.gmuinfo).
Sex and age class (van Belle et al., 2004) were determined for each
animal. Animals were classified as b12 months or ≥12 months.

2.2. Stable isotope analyses

In preparation for stable isotope analysis (C, N, and S), liver and
skeletal muscle samples were freeze-dried and ground to a fine powder
using a mortar and pestle, followed by further homogenization using a
ball mill (mini-bead beater, BioSpec). Approximately 1.5–2.0 mg of tis-
suewas loaded into 5 × 9 mmtin capsules for C andN isotope analyses;
5.5 mg of sample amended with 2.0 mg of vanadium oxide (V2O5) was
loaded into tin capsules for S isotope analysis.

Stable isotope ratios were analyzed by continuous-flow isotope-
ratio mass spectrometry using an elemental analyzer (Carlo Erba
NC1500 or Thermo Flash 2000) interfaced to a mass spectrometer
(Micromass Optima or Thermo-Finnigan Delta Plus XP), as described
elsewhere (Butala et al., 2006). Isotope values are reported in delta (δ)
notation:

δX ¼ Rsample=Rstandard

� �
–1

where X represents 13C, 15N, or 34S in parts per thousand (‰) deviation
relative to a standard (monitoring) gas and Rsample and Rstandard repre-
sent the ratio of 13C/12C, 15N/14N, or 34S/32S for sample and standard,
respectively. Isotopic data were normalized to V-PDB, Air, and V-CDT
using the primary standards USGS 40 (−26.24‰ and −4.52‰ for
δ13C and δ15N, respectively), USGS 41 (37.76‰ and 47.57‰ for δ13C
and δ15N, respectively), NBS127 (21.1‰ for δ34S), and IAEA-SO6
(−34.05‰ for δ34S). Analytical error was assessed by replicate
measures of primary standards (b0.2‰ for all three isotopes across all
analytical sequences) and quality control was assessed using secondary
standards analyzedwithin individual analytical sequences (b0.3‰). Ac-
curacy was assessed using primary standards as unknowns, and was
within 0.2‰ for all three isotopes. Sample reproducibility, determined
via duplicatemeasurements, was better than 0.2‰ for all three isotopes.
2.3. Total mercury (THg) analysis

All samples were thawed to room temperature and sub-sampled
(70–150 mg) in duplicate, using stainless steel forceps and scissors. In-
struments were washed with ultrapure water and dried between each
sample. THg concentrations are reported on a wet weight (ww) basis.
Samples were analyzed using a Milestone DMA-80 instrument (Butala
et al., 2006; EPA 600-R-04-012, 2004). The method detection limit for
THg determination was 0.005 ng/g, ww. Quality assurance and quality
control were based on method blanks, standard reference materials
(SRMs), check standards, and sample duplicates. All samples were run
in duplicate and re-analyzed if the percent difference between samples
was N10%. The SRM utilized was DORM-3 (National Resource Council
Canada; 0.382 ± 0.060 ngTHg/g). Percent recovery for check standards
(5, 20, and 100 ng aqueous Hg) was N90%. Analysis of the standard
reference material was within 10% of the certified value for THg.
2.4. Statistical analyses

Collection sites were grouped into two location categories based on
whether or not a coastline was present in the assigned GMU. Thus,
wolves in GMUs that contained coastline were defined as “coastal”
and those in GMUs that had no coastline were defined as “interior”
animals. Specific pack assignment was not possible based on sample
collection design.

Data distributions were assessed for normality using graphical tech-
niques including histograms and box-and-whisker plots, supplemented
by quantile–quantile plots (Henderson, 2006). Log-transformation did
not satisfy the assumptions of normality; therefore, non-parametric
statistical analyses were employed and median values and ranges are re-
ported. Chi-square analyses were first used to evaluate the dichotomous
variables of age class, sex, and location. The Mann–Whitney U test was
used to evaluate differences in liver, kidney, and muscle THg concentra-
tions based on location, sex, and age class. Isotope values were also com-
pared based on location, sex, and age class. Alpha was set ≤0.05.
Statistical analyses were performed using StatCrunch5.0 statistical
software (Integrated Analytics LLC, Pearson Education, 2007–2009).
3. Results

Of the 162 wolves, 30 occupied regions with coastal access and 132
wolves were from interior locales. Sex information was available for
161/162 wolves and age for 159/162 wolves. Among interior wolves,
20 males and 25 females were b12 months, whereas 40 males and 44
females were ≥12 months. Among coastal wolves, 4 males and 2
females were b12 months, whereas 11 males and 12 females
were ≥12 months. Chi-square analyses demonstrated there was no
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Table 3
Median and range of THg concentrations in gray wolves (Canis lupus), expressed in μg/kg
wet weight (ww) based on age class (b12 months or ≥12 months).

Tissue n Median Range p-Value

Liver b0.001
b12 months 45 15.3 5.5–6086.0
≥12 months 97 48.4 13.3–7260.7

Kidney b0.001
b12 months 46 33.9 8.3–3373.0
≥12 months 96 154.3 37.6–11,173.0

Skeletal muscle 0.07
b12 months 9 8.1 4.4–545.9
≥12 months 49 13.0 5.0–465.6

Cardiac muscle 0.125
b12 months 1 3.9 3.9
≥12 months 15 226.8 116.2–335.8
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significant association between age class and location, location and sex,
or age class and sex.

Among all wolves, THg concentrations variedwidely among the four
tissues examined, particularly for liver and kidney (Table 1). No signifi-
cant differences in THg concentrations were observed based on sex
(Table 2); however, wolves that were ≥12 months had significantly
higher hepatic and renal THg concentrations, and coastal wolves had
significantly higher THg concentrations in all tissues (Tables 3–4).

C and N isotope analysis was conducted on 132 liver samples and 59
skeletal muscle samples (Figs. 1A & B, 2A & B). S isotope analysis was
carried out on 131 liver samples and 56 skeletal muscle samples.
Median liver δ13C, δ15N, and δ34S signatures (and ranges) were
−24.4‰ (−20.0 to −26.8), 7.2‰ (5.7 to 15.9), and 5.2‰ (−1.64 to
17.1), respectively. Median values for all stable isotopic compositions
were found to be significantly higher in coastal animals for all tissues
(p b 0.01). Interior wolves had significantly lower S values and liver
THg concentrations (Fig. 3A). A similar trend was observed for skeletal
muscle (Fig. 3B).

4. Discussion

Stable isotope analysis has been shown to be an excellent technique
for assessing questions relating to food webs and trophic structure, and
in understanding the basic foraging habits of mammals (Crawford et al.,
2008). Few studies have usedmammalian stable isotope signatures and
Hg tissue concentrations together to evaluate foraging ecology ques-
tions in apex-predator systems (Cardona-Marek et al., 2009; Horton
et al., 2009; Young et al., 2010); and typically, only C andN isotope ratios
are assessed. This work is unique in that THg concentrations and stable
isotope signatures (δ13C, δ15N, and δ34S) were used in conjunction to
better understand the feeding ecology of Alaskan gray wolves and
how it relates to dietary-based toxicant exposure. Wolves have been
described as opportunistic, generalist carnivores (Watts et al., 2010),
with considerable dietary plasticity among and within populations.
This feeding strategy has been proposed to play a role in the success
of wolves in parts of Alaska (Szepanski et al., 1999). However, the im-
portance of marine resources in coastal wolves, and the effect of prey
choices on individuals and populations, remain unknown. A recent
study by Bocharova et al. (2013) showed that THg concentrations in
Arctic foxes were reflective of foraging strategies, rather than variation
in overall THg concentrations in the environment, and that high THg
concentrations acquired predominantly through diet may represent a
prominent risk for top predators. The present study, which is the first
to evaluate Hg in Alaskan gray wolves, also suggests that cross-
ecosystem utilization of food resources may contribute to increased
Hg exposure, particularly in coastal populations.

The stable isotope values (C, N, and S) in liver and skeletal muscle
tissue from coastal wolves were significantly higher than values in
interior wolves, suggesting a marine-based diet in coastal wolves.
Carbon and nitrogen isotopes are two measures that have been used
Table 2
Median and range of THg concentrations in male and female gray wolves (Canis lupus),
expressed in μg/kg wet weight (ww).

Tissue n Median Range p-Value

Liver 0.39
Male 68 36.9 5.7–7260.7
Female 76 30.9 5.5–7206.0

Kidney 0.40
Male 68 106.4 13.5–11,173.3
Female 74 92.9 8.3–4638.2

Skeletal muscle 0.39
Male 27 13.0 4.4–388.6
Female 33 12.2 4.8–545.9

Cardiac muscle 0.84
Male 7 226.8 4.2–306.5
Female 9 186.6 3.9–639.5
to demonstrate marine resource utilization in populations (Adams
et al., 2010), as δ13C and δ15N increase with the marine content of diet
(Hilderbrand et al., 1996). The additional measurement of δ34S was
implemented in this study, since it can further aid in differentiating be-
tween the dietary contributions of marine and terrestrial resources
(Crawford et al., 2008; Hansen et al., 2009). Our isotope analyses
strengthen the contention that marine resources are contributing to
the diets of coastal wolves in Alaska.

Among all wolves, THg concentrations varied based on tissue type.
The deposition of Hg in tissues may be dependent on a number of bio-
logical factors including diet, age, sex, body condition, and health. It
has been suggested that the affinity for Hg in kidney and liver tissue
may be due to the preferential bonds of the organic Hg compounds to
SH-groups of the plasma proteins in these organs (Kacmár et al.,
1992). The highest THg concentrations in this study were observed in
liver and kidney, which has also been reported elsewhere (Agusa
et al., 2011; Misztal-Szkudlińska et al., 2010; Sures, 2004). Isotopic dif-
ferences among tissues within an individual are largely due to differen-
tial routing of macronutrients to the various organs and differences in
tissue turnover rates (Martínez del Rio et al., 2009). Liver turns over
faster than skeletal muscle, and therefore has a shorter dietary integra-
tion window. For this reason, it tends to be more reflective of recent
feeding, and could explain some of the variance noted in both stable
isotopes and THg.

Coastal wolves in this study had significantly higher THg concentra-
tions in all tissues examined, relative to interior wolves. In wildlife
populations, Hg has been reported to cause reproductive impairment,
alterations in growth and behavior, and even death (Facemire et al.,
1995; Osowski et al., 1995; Wren, 1986). As obligate predators and op-
portunists, gray wolves have been previously described to eat a variety
of small mammals, fish, and birds, when available (Darimont et al.,
2004). Alaskan wolves with coastal access have been reported to utilize
a wide variety of marine sources of prey, including harbor seals
(Phoca vitulina) (Klein, 1995; Szepanski et al., 1999), various marine
Table 4
Median and range of THg concentrations in coastal and interior gray wolves (Canis lupus),
expressed in μg/kg wet weight (ww).

Tissue n Median Range p-Value

Liver b0.001
Interior 117 28.4 5.5–2226.9
Coastal 28 1159.0 33.8–7260.7

Kidney b0.001
Interior 116 80.5 8.3–4567.3
Coastal 27 1939.0 78.3–11,173.0

Skeletal muscle b0.001
Interior 47 10.9 4.4–258.4
Coastal 13 317.2 90.3–545.9

Cardiac muscle b0.001
Interior 3 4.2 3.9–179.0
Coastal 13 232.8 70.5–639.5



Fig. 1. Stable isotopic compositions (δ13C and δ15N) in A) liver, and B) skeletal muscle,
based on the designation of coastal versus interior gray wolves; △ = coastal wolves,
○ = interior wolves.

Fig. 3. THg and δ34S in wolf liver, based on the designation of coastal versus interior gray
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mammal carrion (Darimont and Reimchen, 2002;Mech, 1970), anadro-
mous eulachon smelt (Thaleichthys pacificus), seabirds, marine inverte-
brates (Mech et al., 1998), and salmon (Adams et al., 2010; Darimont
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Fig. 2. Stable isotopic compositions (δ15N and δ34S) in A) liver, and B) skeletal muscle,
based on the designation of coastal versus interior gray wolves; △ = coastal wolves,
○ = interior wolves.

wolves; △ = coastal wolves, ○ = interior wolves.
and Reimchen, 2002; Szepanski et al., 1999). Our results are in agree-
ment with the work by Szepanski et al. (1999), in which the diets of
coastal wolves in Alaska were more varied, relative to interior animals,
and trophic diversity was broader; likewise, these results are in
agreement with findings for Arctic foxes, where coastal animals had
higher variance in C isotopes, compared to those from inland regions
(Angerbjörn et al., 1994).

In the present study, interior wolves tended to subsist on terrestrial
resources, consequently resulting in low THg tissue concentrations. In
contrast, coastal wolves tended to utilize marine resources resulting in
higher THg concentrations. However, individual variation did exist. A
few interior wolves with high THg had stable isotope signatures more
similar to the coastal animals; conversely, there were 6 coastal wolves
with relatively low S values (b5‰), more reflective of the interior
wolves. While wolves belong to packs that tend to hunt cooperatively,
not all pack members have access to the same resources. Unstable
packs and lone individuals often have larger home ranges, aremoremo-
bile than established, stable packs (Mech and Boitani, 2003), and may
have a more varied or specialized diet (Urton and Hobson, 2005).
These particular coastal animals may have occupied more inland re-
gions of the coastal GMU without access, or limited access, to marine
resources. Furthermore, landscapemodifications and anthropogenic in-
fluences may alter prey distribution and abundance, and behavioral in-
teractions within and across species may affect accessibility to prey.

Our integrated approach provides insight into how toxicant exposure
relates to foraging ecology in Alaskan gray wolves. However, evaluation
of the physiological, environmental, and social factors affecting diet var-
iation of wolves is needed in order to more clearly elucidate possible ex-
posure pathways in individuals.



613A.K. McGrew et al. / Science of the Total Environment 468–469 (2014) 609–613
5. Conclusion

THg concentrations and C, N, and S isotope values in various tissues
provide four separate measures supporting the contention that, when
accessible, Alaskan graywolves exploit marine resources. If apex preda-
tors such as Alaskan gray wolves increase their utilization of marine
subsidies, individuals and/or populations may be at risk for harmful ef-
fects associated with Hg exposure (e.g., in utero exposure of fetus) and
other marine-based food-web toxicants. This work, and other reports,
clearly demonstrate the need to better understand foraging behaviors
of gray wolves in Alaska, and how THg exposure varies temporally
and spatially based on foraging ecology. Stable isotope mixing model
studies (Debridge et al., 2012; Fortin et al., 2007; Semmens et al.,
2009; Szepanski et al., 1999; Urton and Hobson, 2005) have been used
to quantify diet composition in wildlife populations, and may be one
useful approach in addressing this need in the future.
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