Oil Biodegradation Potential of Sea Ice Microbial Communities

Ice temperature (measured, deg C)

In situ brine salinity (calculated, ‰)

Brine volume fraction/porosity

Microbial habitats

Microbial habitats

Oil in Ice Scenarios

- Effects of oil on microbial communities?
- Effects of microbial communities on oil (biodegradation)?

Sea ice microbial community evolution

incorporated from seawater
prefer low nutrients
grow slowly
no algal production

selective growth of 'weeds'
prefer high nutrients
grow quickly
intense algal production

GREENLAND

PACIFIC

OCEAN

CANADA

Svalbard studies

Gap 1: Lack of studies on critical ice biota habitat (bottom of spring ice + summer ice)

CMI: Crude oil infiltration and movement in first-year sea ice -- Impacts on ice-associated biota and physical constraints

Gap 2: Minimal spatial coverage

Gap 3: Absence of modern molecular methods (genomics and metagenomics)

Bacterial Genomes

Culturing: Atlas et al. 1978

Fingerprinting: Gerdes et al. 2005 Gerdes et al. 2006 Brakstad et al. 2008

Sequencing: none to date

Deepwater Horizon Succession

Most cold-adapted species are in oil-degrading groups

Cold ocean is 90% by volume but cold-adapted genomes are only 200/20,000 = 1%

Psychrophile Genome Biodegradation Potential

Genes for contaminant biodegradation

Recommendations:

- Application of modern sequencing & bioinformatics techniques to determine biodegradation potential of sea ice communities
- Integration of biodegradation rate measurements with biological community analysis
- Increase the relevance of lab experiments to natural communities
- Rigorous analysis of natural variability and uncertainty in environmental conditions
- Forecast of future changes in microbial community structure as a result of global warming-induced sea ice loss

