Circulation Processes on Alaska's Shelf Seas

Tom Weingartner University of Alaska

Gulf of Alaska
Bering Sea & Strait
Chukchi Sea
Beaufort Sea

Aleutian Low: the principal regional atmospheric driver

The Aleutian Low Interannual variations in strength and position affect circulation, ice, water temperature/salinity

= 2 m/yr precipitation

Neal et al., 2010 Morrison et al. 2012

Gulf of Alaska: Seasonal Winds & Coastal Discharge

Affects:

- Water Density distributions:
 Vertically (stratification) and
 Horizontally (fronts): Winds trap runoff to the coast!
- 2. Current Strength and Structure

- Alaska Coastal Current
 0.2 kts (summer)
 1 2 kts (fall winter)
 20 40 km width
- 2. Mid-shelf flow
 Average westward,
 more variable & weaker
 than ACC.
 0.2 0.6 kts
- 3. Alaskan Stream
 Westward 1 3 kts
 Large (200 km) eddies
 Cause reversals

Bering SeaKey features:

Smooth, gently sloping shelf
Winds & tides dominate
circulation
Seasonality:
sea ice, river runoff
nearshore, shelfbreak

exchange

Mean flows are weak!!

Tidal magnitudes increase with decreasing bottom depth (diurnal and semi-diurnal tides are important!)

Temperature and stratification (55m isobath) varies: spatially, seasonally, and interannually

Ice does not form until water column reaches freezing point!

A numerical circulation model

But large wind-driven variability winter >> summer small mean; large variance

Interannual variations in ice extent are due to northerly winds

March 22, 2005

March 24, 2006

Ice extent affects: Spring, summer, and fall bottom water temperatures and stratification

Annual number of ice-free days (1970 -2010)

Characteristics Least squares best fit linear trend

Model

Observations +

Model

Models do <u>reasonably</u> well in predicting ice cover in the Bering Sea

Bering Strait

- 1.) Alaskan Coastal Current (ACC): a major Freshwater and Heat source
- 2) Bering Shelf Water (BSW): a mid-shelf source (moderate properties)
- 3) Anadyr Water (AW): Bering Sea Basin source (cold, salty)
 - *Properties established in Bering Sea and further south
 - *All transported northward

Interannual Variability is LARGE TRANSPORT

Mean annual transports and heat fluxes show **increase from**:

2008 (0.9 Sv; 2 x 10²⁰ J)

to:

2011 (1.1 Sv; 5 x 10²⁰ J)

2007 (1.1 Sv; 5 x 10²⁰ J)

HEAT FLUX

Critical to Chukchi Ice processes

SALT FLUX _

Woodgate, Weingartner, and Lindsay (2013)

The Chukchi Shelf

Mean Flow: Bering Strait only (no winds)

Sub-Surface Currents

- Historical mooring data support the model
- Oppose mean winds
- Swiftest in canyons/channels and weakest in shallow regions
- Strongest in summer and weakest in winter

Wind-current correlation increases when Bering Shelf winds are included

Northeastward flow through Barrow Canyon

Southwestward flow through Barrow Canyon (Winds from northeast > 11 knots)

Bering Strait Heat Flux and the Chukchi Ice Cover: Accelerates Spring Retreat and Retards Fall Advance

But . . . temperature and transport are not enough we must also know the salinity distribution!!

August 2012: South of Hanna Shoal

Subducting BSW plumes are a heat source for the surface (ice)
This process is salinity dependent!!!

Chukchi Sea Ice Cover:

A complex result of ocean and atmospheric heat fluxes,
and winds

NE Hanna Shoal - a very different "shelf"!!

NOT LIKE THE BERING SEA SHELF!!

The Alaskan Beaufort Shelf (ABS)

eastward

westward

eastward

westward

Wind season (Sep – Oct): Strong winds, well-mixed(?) conditions

Runoff can modify the wind-driven (Jul-Sep) circulation – but to what extent?

Winds (preceding 7 days): Variable 5 - 10 m/s

Summary

- 1. Aleutian Low: position and strength impacts circulation time scales: daily interannually
- 2. Gulf of Alaska: winds & runoff
- 3. Bering Sea: winds and tides
- 4. Bering Strait: Global processes and winds
- 5. Chukchi Sea: Bering connection and winds
- 6. Beaufort: Winds, runoff; spatially modulated by landfast/pack ice

The broad scale circulation connects Alaska's shelves to each other

Thoughts on sea-ice predictability

- 1. Bering: relatively simple (air-sea heat exchange and winds)
- 2. Chukchi: complicated, ocean circulation is likely a major player
- 3. Beaufort: maybe simple/maybe difficult
 - lack oceanographic understanding
 - predicting the landfast/pack ice distribution is a challenge!
- 4. It may be simpler to obtain in-situ & real-time data to forecast ice formation for operational purposes!!

The 2 week spring freshet carries: 80 - 90% of annual discharge Most of the TSS, metals, POC, DOC (pers. comm. J. Trefry)

Processing depends upon landfast ice!

Tidal kinetic energy near St. Lawrence Island Mixing varies seasonally, monthly, diurnally

Bering Sea Shelf Summer/Fall Frontal Structure

