Sea Ice microstructure Oil migration through brine channels

Alaska Oil Spill Technology Symposium March 6-7, 2014

Marc Oggier Geophysical Institute University of Alaska Fairbanks Fairbanks, AK 99775-7320, USA e-mail: marc.oggier@gi.alaska.edu

Outline

- Oil/sea ice interaction
- Sea-ice microstructure
 - Growth
 - Porosity & permeability
 - Brine movement
- Oil entrainment in ice
- Conclusions

Sea Ice Group (GI|UAF)

- Hajo Eicken
- Chris Petrich
- Jonas Karlsson
- Daniel Pringle
- and other collaborators

Oil & sea ice interactions

Oil encapsulation

- Under-ice spreading
- Encapsulation in growing ice
- Mobilization and migration in spring
- Surfacing and weathering
- Release with ice break-up

Potential mitigation

- Limited access
 - Both under- and in-ice
- Remediation
 - After oil have migrated toward the surface

properties and structure profiles

Assur's model

- Brine entrapped at the bottom of sea ice
- Constriction & segregation of pore space
 - During thickening & cooling
 - Brine layer > brine tube > brine pockets
 - Depends of salinity & temperature (porosity)

- Winter (March)
 - Number density
 0.5±0.1 dm⁻²
 - Aerial fraction
 0.10±0.04 cm⁻²
 - Mean spacing 11±4 cm

horizontal section (D=9cm)

Brine channel system (BCS)

vertical section

BCS as an ecosystem

- Host of multitude of organisms
- Release of extracellular polymeric substance (EPS)
 - Influence ice growth & microstructure
- Biota would be influence by oil spill

No EPS

Blue colored EPS

X-ray computed tomography

- X-ray imaging
 - Multiple projections of a same object
 - Every projection at a slightly different angle
 - Contrast based on density
- Computed tomography
 - 2D slices
 - 3D model reconstruction

Evolution

- Winter growth
 - Columnar sea ice
 - Brine channel
 - V_f: 2-3% in January
 - Segregated
- Spring
 - Warming event
 - Increasing porosity
 - Increasing channel diameter
 - Interconnection
 - Salinity change
- Volume occupied by brine
 - Dependant of temperature and salinity

Brine channel evolution [Pringle, 2009]

Connectivity

Connectivity is function of temperature

The fractional connectivity is the proportion of inclusions intersecting the upper surface which are also connected to the lower surface.

- Intrinsic permeability
 - Mathematical model (Golden et al., 2007)
 - Difference between cold & warm ice
- Percolation threshold ϕ_c =0.05
 - − T = -5°C
 - S = 5 PSU

State variables and physical properties

Measurement

- Ice core data
- In situ

Calculated

- Simple relationship
- Mathematical model

Brine movement

Salinity profile

- Ice core data from Barrow, Ak
- Higher salinity at bottom
 - Winter C-Shape curve
- Surface melting
 - Late May / early June
 - S-Shape curve
- Downward flushing of meltwater
 - Higher permeability
 - Brine drainage

Brine movement

- Force balance
 - Driving force
 - Density difference $\frac{\partial \rho}{\partial z}$
 - Limited by
 - Medium permeability K_{z}
 - Fluid viscosity μ
 - Retarding motion
 - Thermal diffusivity $lpha_{_{si}}$
 - Phase transition
- Porous medium
 - Rayleigh number

$$Ra_{p} = g \frac{\frac{\partial \rho}{\partial z} K_{z} \Delta z}{\mu \alpha_{si}}$$

– If Ra > Ra_{p,c} : convection

1st experimental study

Winter oil spill

- Landfast ice
- Oil spilled 15 February
- Migration to surface in April / early May

Spring oil spill

- Landfast ice
- Oil spilled 15 May
- Migration to surface within 1 hour

Ice surface prior to under-ice spill

Ice surface 2 h after under-ice spill

- Ice tank
 - Mimic natural sea ice growth
 - Insulated ice tank
 - Prevent ice formation along the wall
 - Pressure release
 - Avoid tank deformation
 - Pump
 - Break saline convection cell
 - Provide similar ocean heat flux
- Oil entrainment & migration
 - Temperature & salinity data
 - Oil flow
 - Oil content & distribution

Lab experiment

[Karlsson, 2011]

[Karlsson, 2011]

Oil entrainment

Growth season experiment

- No warming event
- Oil confined at the bottom

Melt experiment

- Simulated warm spelt
- Oil migration within the ice

[Karlsson, 2011]

Depth (cm)

Oil migration threshold

- Brine movement
 - Critical threshold : ϕ_c =0.05
- Oil movement
 - Critical threshold $\phi_{c,oil}$ =0.10-0.15

Conclusion

- Oil migration
 - Encapsulated into pore space
 - Entrained during spring
- Microstructure & brine inclusion morphology
 - Controlling factors of depth penetration
 - Determine entrainment and mobilization in Spring
- Fluid exchange with underlying ocean
 - Controlled growth rate
 - Interface morphology
 - Feedback biota-oil

Further work

- Linkage with biota
 - Ongoing work
 - Indoor experiment
- X-Ray observation of oil/ice
 - Similar density
 - $\rho_{ice} = 0.92 \text{ [gcm}^{-3}\text{]}$
 - $\rho_{oil} \approx 0.87 \ [gcm^{-3}]$
 - Possible to distinguish oil layer
 - Possibility to follow
 - Oil distribution ?
 - Oil content ?
- Modeling
 - Simple 1D model
 - Fluid flow in porous media

Question ?

Thank you

References

- AMAP, 2007. Arctic Oil and Gas 2007. Arctic Monitoring and Assessment Program (AMAP) Oslo, Norway
- Assur, A. (1960), Composition of sea ice and its tensile strength, Rep. 44, U.S. Army Cold Region Res. And Eng. Lab., Hanover, N.H.
- Eicken, H. (2003), From the microscopic, to the macroscopic, to the regional scale: Growth, microstructure and properties of sea ice, in *Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology*, edited by D. N. Thomas and G. S. Dieckmann, pp. 22–81, Blackwell, Oxford, U. K.
- Golden, K. M., Eicken, H., Heaton, a. L., Miner, J., Pringle, D. J., & Zhu, J. (2007). Thermal evolution of permeability and microstructure in sea ice. Geophysical Research Letters, 34
- Karlsson, J., Petrich, C., & Eicken, H. (2011). Oil entrainment and migration in laboratory–grown saltwater ice. Proc. of the 21st International Conference on Port and Ocean Engineering under Arctic Conditions, (Amsa 2009).
- Karlsson, J. (2009). A laboratory study of fixation, release rates and small scale movement of oil in. Univesrity of Copenhagen.
- Krembs, C., R. Gradinger, and M. Spindler (2000), Implications of brine channel geometry and surface area for the interaction of sympagic organ- isms in Arctic sea ice, J. Exp. Mar. Biol. Ecol., 243, 55–80
- Martin, S., 1979, A field study of brine drainage and oil entrainment in first-year sea ice, Journal of Glaciology, 22(88), 473–502
- Pringle, D. J., Miner, J. E., Eicken, H., & Golden, K. M. (2009). Pore space percolation in sea ice single crystals. *Journal of Geophysical Research*, 114(C12), C12017.

Petrich., C., J. Karlsson, and H. Eicken (2013), Porosity of growing sea ice and potential for oil entrainment, Cold Reg. Sci. Technol., 87, 27-32