			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
140.	i age	Occilon	1 009	Thomas	General Comments	пеэропае	DEO Remarks
Gen-1		2	Technical	High	General Comments The risk assessment report should include a discussion of the nature and extent of contamination at the site. Figures such as those presented in Ford and Hasselbach (2001) and Hasselbach et al. (2004) should be used to illustrate the extent of contamination along the haul road for important site-related chemicals such as cadmium, lead, and zinc. In addition, the report should compare and contrast data collected for the risk assessment by Exponent and Teck Cominco with comparable data from other recent studies of the site, including Ford and Hasselbach (2001), Hasselbach et al. (2004), and Brabets (2004). Brabets, T.P. 2004. Occurrence and Distribution of Trace Elements in Snow, Streams, and Streambed Sediments, Cape Krusenstern National Monument, Alaska, 2002-2003. United States Geological Survey (USGS) Scientific Investigation Report 2004-5229. Ford, J. and L. Hasselbach. 2001. Heavy Metals in Mosses and Soil on Six Transects Along the Red Dog Mine Haul Road, Alaska. Western Arctic National Parklands, National Parks Service, NPS/AR/NRTR-2001/38. Hasselbach, L. J.M. Ver Hoef, J. Ford, P. Neitlich, E. Crecelius, S. Berryman, B. Wolk, and T. Bohle. 2004. Spatial Patterns of Cadmium and Lead Deposition on and Adjacent to National Park Service Lands in the Vicinity of the Red Dog Mine, Alaska. NPS/AR/NRTR-2004-45.	Additional figures and discussion of the NPS/Hasselbach data have been added in Section 1, as part of a discussion of nature and extent of fugitive dust deposition: New figures are attached to this document. The portion of Section 1.1 (Site Overview) that has been revised is provided below: Moss studies performed in 2000 and 2001 by the National Park Service (NPS) (Ford and Hasselbach 2001, Hasselbach 2003b, pers. comm., Hasselbach et al. 2005) found elevated concentrations of metals in tundra along the DMTS road and near the port, apparently resulting from fugitive dust from these facilities. A fugitive dust study completed by Teck Cominco in 2001 (Exponent 2002a) provided an initial characterization of the nature and extent of fugitive dust releases from the DMTS corridor and provided baseline data from which to monitor the performance of new transport and handling equipment and dust management practices. A fugitive dust background document was published in spring 2002, providing an overview of local observations and concerns, local and regional background information. Red Dog operations, regulatory history, environmental data, nature and extent of fugitive dust, a preliminary conceptual site model for the risk assessment, and review of regulatory and decision-making frameworks for addressing the fugitive dust issue (DEC et al. 2002). Teck Cominco completed additional characterization at the port site in 2002 (Exponent 2003b; Teck Cominco 2003). Sampling programs designed to support the risk assessment were conducted in 2003 and 2004 to obtain data for additional analytes in multiple environments and media. These programs are described in the field sampling plans (Exponent 2003e, 2004a), and in Appendices A and E of this document. The nature and extent of dust deposition has been evaluated in these prior studies by Exponent and NPS, as listed above. Some key observations are summarized here: Moss data collected during various sampling efforts by NPS and Teck Cominco, when presented together (Figure 1-9),	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
					Ecological Risk Assessment Commer		
Eco-1	3-33	3.6.3	Technical	Medium	Please clarify how the information from Ott and Morris (2004) is used in this assessment and provide additional information from the Ott and Morris study. What streams are still targeted for study and how do concentrations compare between Aufeis Creek, Omikviorok River and those streams still targeted for further study?	Screening-level food-web models for piscivorous wildlife (represented by the red-throated loon and river otter) incorporated fish tissue data collected from 1993 to 2001 by Alaska Department of Fish and Game. Maximum chemical concentrations in whole-body juvenile Dolly Varden were used to model exposures for piscivorous wildlife in Aufeis Creek, Omikviorok River, and Anxiety Ridge Creek (streams that cross the DMTS road). These data are summarized in Ott and Morris (2004) and in earlier reports. For clarification, notes identifying data sources were added to Tables 3-31 and 3-32 (screening-level food-web model results for otter and loon).	Response is acceptable.
						Additional juvenile Dolly Varden samples were collected from upstream and downstream locations (relative to the road) in 2002 (Ott and Morris 2004). These data were not available when the screening assessment was conducted. If maximum fish tissue concentrations from 2002 (downstream samples) are included in the screening food-web models, NOAEL-based hazard quotients for cadmium, lead, and zinc are still below 1.0 for both piscivorous receptors. Selenium hazard quotients for loon and otter increase slightly from 1.2 and 1.0 to 1.3 and 1.1, respectively, in Aufeis Creek, and from 1.0 and 0.86 to 1.5 and 1.2, respectively, in Anxiety Ridge Creek. However, in both streams, maximum selenium concentrations in fish collected upstream and downstream of the road were comparable. Thus, because the loon and otter receive most of their selenium exposure from their food (see Tables 3-31 and 3-32), piscivores foraging in reaches downstream of the road would not be at higher risk from selenium toxicity than individuals foraging upstream of the road, and therefore, further evaluation of risks to piscivorous wildlife from selenium in Aufeis and Anxiety	
						Ridge Creeks is not warranted. Ott and Morris (2004) recommended continued juvenile Dolly Varden monitoring in streams near the mine, including Anxiety Ridge Creek, Buddy Creek, Mainstem and North Fork Red Dog Creek, and Grayling Junior Creek. The authors recommended discontinuing juvenile Dolly Varden sampling in Aufeis Creek and Omikviorok River, because no clear evidence was found to indicate that the DMTS was the primary source of metals to fish in these streams, chemical concentrations in fish from these streams were relatively low compared to concentrations at sites located near the mine, and they suggested that the fish populations in these creeks were healthy. This information was already included in the third paragraph of Section 3.6.3. The following text was added to the second paragraph of Section 6.3.4.2 (Aquatic Biomonitoring Results): When the authors compared fish tissue concentrations among streams, they rated cadmium and lead as "low" in Aufeis Creek and Omikviorok River and "medium" or "high" in streams near the mine (Table 2 in Ott and Morris 2004). Selenium concentrations were rated "medium" in all streams except Mainstem Red Dog Creek, where levels were considered "high." Zinc concentrations were rated "low" in Aufeis Creek, "medium" in Omikviorok River, Anxiety Ridge Creek, Buddy Creek, and North Fork Red Dog Creek, and "high" in Mainstem Red Dog Creek and Grayling Junior Creek. Table 2 of Ott and Morris (2004) refers to low, medium, and high data ranges for	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						cadmium of 0.03 to 0.21, 0.44 to 0.47, and 0.80 to 3.13 mg/kg, respectively. For lead, low, medium, and high referred to data ranges of 0.02 to 0.18, 0.25 to 0.73, and 8.4 mg/kg, respectively. For selenium, low, medium, and high referred to data ranges of 1, 2.2 to 7.2, and 12.7 mg/kg, respectively. For zinc, low, medium, and high referred to data ranges of 78.6 to 90.4, 111 to 124, and 170 to 286 mg/kg, respectively. It should be noted that in Red Dog Creek, metal concentrations have actually declined from historical levels as a result of the Red Dog Creek diversions. In addition, the following text was added to the end of Section 6.3.4.2: Maximum whole body fish tissues in Anxiety Ridge Creek were similar to or lower than those found in Grayling Junior Creek, a tributary to the naturally mineralized Ikalukrok Creek, located north of the Red Dog Mine (Scannell and Ott 2006). Specifically, the maximum cadmium and zinc concentrations in fish collected from Anxiety Ridge Creek stations (upstream, downstream, and at the DMTS road) were 1.32 and 140 mg/kg (dry weight), respectively, as compared to cadmium and zinc concentrations in Ikalukrok fish (3.78 and 573 mg/kg, dry weight, respectively). Maximum lead (2.86 mg/kg, dry weight) and selenium (8.5 mg/kg, dry weight) concentrations in Anxiety Ridge Creek fish were similar to lead (1.44 mg/kg dry weight) and selenium (7.5	
						mg/kg dry weight) concentrations measured in Grayling Junior Creek fish.	
Eco-2	-	Figure 4-2	Editorial	Low	The individual panels in Figure 4-2 should be numbered 42a, 4-2b, etc., not 3-1, 3-2, etc. It appears this may only be a problem with the printed copy of the report. The figure in the final copy should be checked and revised accordingly.	The hardcopy had an error in the numbering of the panels within Figure 4-2. The electronic copy contained the corrected figure. The corrected figure will be used in the final document.	Response is acceptable.
Eco-3	-	Fig. 4-13b	Technical	Medium	This figure gives the impression that the change in metals concentrations with distance from the haul road is greater than the change in pH. However, in this figure, pH is expressed on a logarithmic scale while the metals concentrations are expressed on an arithmetic scale. A change in pH of 3 log units equates to a change in hydrogen ion concentration of 1000 times, which is greater than or equal to the concentration change observed for metals. This fact should be acknowledged in Section 4.2.1 where this figure is discussed. Any implications this fact may have on interpreting the plant survey data should be described.	Plotting hydrogen ions instead of pH yielded plots with less discernable information than the existing plots on Figure 4-13, because of the logarithmic nature of the hydrogen ion data (see Figures CS1 and CS2). Thus, the existing plots in Figure 4-13 will be retained. The following text has been added to Section 4.2.1: "Noting that the pH scale is logarithmic, there is approximately a three order of magnitude difference in hydrogen ion concentrations ([H ₊]=1/10 _{pH}) over the length of the 1,000-m transect, as compared with a two order of magnitude difference in metals concentrations." No change in interpretation of plant survey data is needed.	Response is acceptable.
Eco-4	6-5	6.1.4 and Table 6-1	Technical	Medium	As agreed in the Risk Assessment Work Plan, no mammals are listed as assessment endpoints for the coastal lagoons. However, Section 6.1.6.2 indicates that muskrats have been observed in lagoons near the port. Are other mammals (e.g., moose) also likely to forage in the coastal lagoons and/or have they been sighted in this habitat type? What can be said about potential risks to mammals in the coastal lagoons based on the relative degree of contamination in the lagoons compared with other habitats where mammals were evaluated?	As noted in the text, one muskrat was observed in the coastal lagoon environment during the baseline studies (Dames & Moore 1983a). Moose were observed in the port area during the Phase 2 investigation, indicating that herbivorous mammals may, at times, use coastal lagoon habitat. Based on these field observations, we decided to add muskrat and moose as receptors representing small- and large-bodied herbivorous mammals in the coastal lagoon environment to evaluate risk. Additional food web models were developed to model dietary exposure for muskrat and moose foraging in the coastal lagoons, and results are presented in Sections 6.5.3.3 and 6.5.4.3 of the main text and in Appendix K (Tables K-101, K-102, K-103, K-104, K-117, K-118, K-119, and K-120). Copies of these tables are attached. The following additional sections were included in Section 6.5.3.3:	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						Section 6.5.3.3.2. Muskrat	
						The way of wat way was a state a small be adjust a second line be white way a that way, for all	
						The muskrat represents small-bodied mammalian herbivores that may feed on coastal lagoon vegetation. Hazard quotients for all chemicals except	
						aluminum were less than 1.0 for the muskrat. NOAEL-based hazard	
						quotients for aluminum were 4.8 in Port Lagoon North, 7.6 in the North	
						Lagoon, 9.3 in the Reference Lagoon, and 9.7 in the Control Lagoon.	
						Exposures did not exceed the LOAEL TRV for aluminum.	
						Section 6.5.3.3.3 Moose	
						The moose represents large-bodied mammalian herbivores that may forage	
						in and around the coastal lagoons. Aluminum exposures exceeded the	
						NOAEL TRV, but not the LOAEL TRV, in all site and reference lagoons, but	
						hazard quotients for all other CoPCs were less than 1.0. Aluminum hazard	
						quotients were higher in the Reference and Control Lagoons (2.3 and 2.4,	
						respectively) than in Port Lagoon North or the North Lagoon (1.2 and 1.9,	
						respectively).	
,						The following additional sections were included in Section 6.5.4.3:	
						Section 6.5.4.3.2. Muskrat	
						Only one CoPC (aluminum) had NOAEL-based hazard quotients greater than	
						1.0 for muskrat, and hazard quotients were greater in the reference lagoons	
						than in the site lagoons. Therefore, exposure to CoPCs in the site lagoons	
						does not result in incremental risk to herbivorous mammals such as	
						muskrats.	
						Section 6.5.4.3.3. Moose	
						Hazard quotient results for moose were similar to the results for muskrat:	
						aluminum exposures exceeded the NOAEL TRV in all lagoons, and hazard	
						quotients were higher in reference lagoons than in site lagoons. Exposures	
						to other CoPCs did not exceed TRVs. Thus, the risk results for moose	
						support the conclusion that exposure to CoPCs is unlikely to cause adverse	
						effects to herbivorous mammals in the coastal lagoon environment.	
						Table 6-1 has also been updated to include the assessment of herbivorous	
						mammals in the coastal lagoon environment. Hazard quotients for all	
						chemicals except aluminum were less than 1.0 for both the muskrat and the	
						moose. NOAEL-based hazard quotients for aluminum exceeded 1.0 for	
						muskrat and moose in all site and reference lagoons. However, exposures	
						did not exceed the LOAEL TRV for aluminum. Also, hazard quotients were	
						higher in the Reference Lagoon and Control Lagoon than in the Port Lagoon	
						North or the North Lagoon. Thus, there is no incremental exposure to	
						aluminum for herbivorous mammals foraging in the site lagoons. These	
						results indicate that exposure to CoPCs is unlikely to cause adverse effects	
						to herbivorous mammals in the coastal lagoon environment.	

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
Eco-5	-	Table 6-4	Editorial	Medium	Please verify that the headings and/or units used for all values in this table are correct. Typically, R-square values are not expressed in units of percent.	R-square is the coefficient of determination. This value is the percentage of variation in vegetation measure or metal concentration that is explained by the simple linear regression model based on log10 distance. R-square is commonly reported either as a proportion or as a percentage.	Response is acceptable.
Eco-6	6-34	6.2.3.2	Technical	Medium	The last paragraph on this page suggests that cryoturbation may be responsible in part for stressed and dead vegetation near Concentrate Storage Building 1 (CSB1) and refers to similarities in the appearance of cryoturbation features observed elsewhere (Photograph 58) and the situation near CSB1 (Photograph 57). The frost-heave formation shown in Photograph 58 is not surrounded by dead vegetation like that found near CSB1. As such, it does not appear that cryoturbation is a valid explanation for adverse effects on tundra vegetation observed near CSB1. Please revise this section accordingly.	The discussion of cryoturbation was not intended to imply that frost heaves were responsible for the tundra effects observed near the CSB, but rather to suggest that the loss of moss cover and other vegetation in this area may have resulted in increased cryoturbation. As shown below in the language from Section 6.2.3.2, one sentence has been deleted from the paragraph to clarify this point: The elevated metals concentrations in tundra soil and moss tissue and the proximity of the 10-m and 100-m stations to the CSB suggest that fugitive concentrate is responsible for the stressed and dead vegetation observed directly downwind of CSB1. Historically, port workers would open the CSB door for ventilation, but this is no longer the practice, as dust control inside the building has been improved. Some of the rocks observed in this area may have originated from blasting of bedrock that occurred during construction of CSB1. Other equipment-related disturbance to vegetation in the vicinity of CSB1 may have occurred at the time of construction of CSB1. The barren ground and exposed rocks observed in the tundra at the northwest corner of CSB1 resemble cryoturbation features found across much of the Arctic, such as the sorted patterns shown in Photograph 58, which were observed on a slope near the mine's ambient air/solid waste permit boundary (distant from fugitive dust sources) in 2003. Studies of frost boil formation (the creation of unvegetated or sparsely vegetated patches by differential frost heave in permafrost regions) have shown that plant growth tends to insulate the soil and to reduce the thaw depth (Walker et al. 2004). Thick tundra vegetation mats seem to suppress or mask frost boil formation in the Low Arctic (Walker et al. 2004). The loss of living moss and other vegetation features.	Response is acceptable.
Eco-7	6-28	6.2.2	Technical	High	Include a figure or table in this section that illustrates the comparison of metal levels in moss to critical threshold concentrations in moss.	Tables CK1 and CK2 provide a comparison of moss and lichen concentrations against available effects threshold values from the literature. Although the threshold values are not site-specific, they may be predictive of potential effects, either at present or in the future. (Note: The threshold values are based on a study of elevated copper and zinc concentrations near a brass foundry. The study involved comparable zinc concentrations but much higher copper concentrations than are present at the DMTS, and thus the zinc thresholds may be conservative.) Tables CK1 and CK2 (attached for review) are referred to in Sections 6.6.1.1, 6.2.2, and 6.2.3.1. The tables have been revised to list the source (Folkeson and Andersson-Bringmark 1988) of the moss and lichen data in the footnotes. The full citation for the source is provided below: New Reference: Folkeson, L., and E. Andersson-Bringmark. 1988. Impoverishment of vegetation in a coniferous forest polluted by copper and zinc. Can. J. Bot. 66:417–428.	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
Eco-8	6-47	6.3.3.3	Technical	Medium	The conclusion drawn at the end of this section (i.e. "there appears to be a low likelihood of adverse effects to pond vegetation from exposure to COPCs in the DMTS road corridor") may not be entirely accurate. Overall, the assessment for pond vegetation suggests that adverse effects are possible in ponds near the road and port, based on exceedances of critical plant tissue thresholds for certain elements. Please revise the conclusion of this section accordingly. If it is Exponent's belief that analysis of unwashed plant tissue samples overestimates "true" plant tissue concentrations, then follow-up analysis of washed samples should be considered.	Conclusions in Section 6.3.3.3 have been modified to indicate that adverse effects to pond vegetation from lead and zinc exposure are possible near port facilities and in low-lying areas to the southwest of the mine's ambient air/solid waste permit boundary, beyond the mountainous terrain that surrounds the mine. (Note that ponds were not observed in the mountainous terrain surrounding the mine.) If future work is conducted, we will consider collecting unwashed and washed plant tissue samples to assess the contributions of external and internal metals to total metals concentrations in plants. The need for future work will be evaluated during development of the risk management plan. The actual revised text is appended below from Section 6.3.3.3: In the tundra pond environment, sedges around site and reference tundra ponds seemed to be healthy, and dust was not detectable on their foliage. In site ponds, only cobalt, lead, and zinc concentrations in whole sedge plants exceeded phytotoxicity thresholds for plant foliage and representative reference concentrations (Table 6-23). Only one site sample had a cobalt concentration in excess of the lowest threshold value, and this CoPC also exceeded the lowest threshold at reference station TP-REF-5. Thus, elevated cobalt concentrations in sedges appear to be localized occurrences in both site and reference pond communities (Table 6-23). Lead and zinc concentrations in sedges were scarcely elevated above phytotoxicity thresholds at pond station TP4, although tissue concentrations were greater than the range of reference concentrations (Table 6-23). Lead and zinc concentrations were somewhat higher in sedges at TP1-0100, where plants are subject to dust deposition from port facilities. Based on qualitative observations made during field sampling, tundra pond plant communities located more than 100 m from the DMTS road do not appear to be adversely affected by fugitive dust. The results of the tissue comparisons with phytotoxicity thresholds and reference data also sugges	Response is acceptable.
						occur. Note that ponds were not observed in the mountainous terrain surrounding the mine. Exceedances of phytotoxicity thresholds and	
						reference tissue concentrations at pond TP-0100 indicate that adverse effects from lead and zinc are possible at ponds located near port facilities.	
Eco-9	6-49	6.3.4	Technical	High	The information presented in this section indicates the following for Anxiety Ridge Creek: (1) sediment concentrations of cadmium, lead, and zinc downstream from the haul road are elevated above reference levels; (2) levels of cadmium and lead in benthic invertebrates downstream from the haul road are elevated above reference concentrations; and (3) levels of cadmium and lead in fish downstream from the haul road are elevated compared with upstream fish. These observations suggest a road-related effect. Possible adverse impacts on fish in Anxiety Ridge Creek due to the haul road require additional evaluation. Levels of cadmium and lead in fish should be compared with critical tissue concentrations for fish. The results of the comparisons should be included in this section and, if necessary, the risk characterization (Section 6.3.4.3) should be modified accordingly.	Chemical concentrations in juvenile Dolly Varden from Anxiety Ridge Creek are compared with critical tissue concentrations for freshwater fish in Table CS1 (attached). Available tissue residue data were compared against no-effect and effect levels for ecologically relevant endpoints, including survival, growth, and reproduction. Maximum concentrations of cadmium (0.308 mg/kg), lead (0.612 mg/kg), and selenium (2.01 mg/kg) in fish collected near or downstream of the DMTS road were greater than the lowest reported effects thresholds, but were also within the ranges of reported noeffects levels. Maximum cadmium and selenium concentrations in fish collected upstream of the road also exceeded the lowest effect threshold. The maximum zinc concentration in fish tissue (36.1 mg/kg) was below the lowest threshold for effects.	Response is acceptable.

	Technical/			
No. Page Section		Comment/Recommendation	Response	DEC Remarks
No. Page Section	n Technical/ Policy Priority	Comment/Recommendation Comment/Recommendation	Response Thus, based on a direct comparison to critical tissue residue levels developed in some freshwater fish studies, cadmium, lead, and selenium concentrations in some juvenile Dolly Varden were high enough to suggest a potential for adverse effects. However, because all measured tissue concentrations of these metals are also below the maximum no-effect concentrations, adverse effects to fish cannot be conclusively predicted. An additional section describing fish tissue comparisons with effects thresholds was added to Section 6.3.4, and the risk characterization (Section 6.3.4.4) was modified accordingly. To address this comment, the results of the requested comparisons were included in a new section (Section 6.3.4.3) of the document titled "Fish Tissue Comparisons with Effects Thresholds," which is provided below: Because significant differences were found between cadmium and lead concentrations in fish collected by Ott and Morris (2004) upstream and those collected downstream of the DMTS road in Anxiety Ridge Creek, chemical concentrations in fish collected by Ott and Morris (2004) upstream and those collected downstream of the DMTS road in Anxiety Ridge Creek, chemical concentrations in fish collected by Ott and Morris (2004) upstream and those collected downstream of the Dolfy Varden from Anxiety Ridge Creek were compared with critical tissue concentrations for freshwater fish as compiled by Jarvinen and Ankley (1999, Table CS1) as a method of screening to see if these tissue levels indicate the possibility of adverse effects. Dolly Varden tissue residue data were compared against no-effect and lowest-adverse effect levels for ecologically relevant endpoints, including survival, growth, and reproduction. Maximum concentrations of cadmium (0.308 mg/kg), lead (0.612 mg/kg), and selenium (2.01 mg/kg) in fish collected near or downstream of the DMTS road were greater than the lowest reported effects thresholds, but were also within the ranges of reported no-effects levels. Maximum concentrations in fis	DEC Remarks

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
	rage	Geodelin		, noney		Based on comparisons with critical tissue concentrations in freshwater fish, adverse effects to individuals from cadmium and selenium exposures are possible both upstream and downstream of the road in Anxiety Ridge Creek, and adverse effects from lead exposure are possible downstream of the road (Table CS1). However, these comparisons do not necessarily suggest a likelihood of unacceptable risk to fish, because ranges of no-effects and effects concentrations overlap considerably, as shown in Table CS1. Incremental exposure to CoPCs in sediment does not appear to translate into population-level effects in site creeks. Ott and Morris (2004) suggested that the juvenile Dolly Varden populations in creeks near the DMTS appear to be healthy, and that annual population fluctuations are due to environmental conditions. Overall, these findings indicate that risk from exposure to CoPCs is unlikely to have an adverse effect on the abundance of fish in streams that cross the road.	DEG REMAINS
Eco-10	6-68	6.5.3.1.1 and Appendix K	Technical	High	Willow Ptarmigan Risks. Table K-82 shows that the lowest observed adverse effect level (LOAEL)-based hazard quotient (HQ) for this receptor is 0.99 (i.e., almost exactly 1.0) at terrestrial transect number 7 (TT7) located downwind from the mine. Because the average was used as the exposure point concentration for all media, this HQ represents the risk to the average individual. It follows then that approximately one-half of the ptarmigan population in this area would receive a greater exposure to lead and thus be at risk from lead. This is a significant finding and should be discussed in Section 6.5.3.1.1 or elsewhere in the report, as appropriate. This comment also applies to the LOAEL-based HQ of 0.93 for lead for the ptarmigan at TT5 located near the Port (see Table K-77). Because the LOAEL-based HQ is close to 1.0 for the average case, some portion of the local ptarmigan population at this location would be expected to receive a lead exposure leading to a HQ greater than 1. Again, this is a significant finding and should be discussed in Section 6.5.3.1.1 and/or elsewhere in the report, as appropriate, such as Section 6.7.1. Presentation of ptarmigan risks based only on the average exposure scenario is not acceptable. An estimate of the reasonable maximum exposure and risk must also be presented. For this receptor, either a 95 percent UCL case based on three broad assessment units (mine, road, and port) should be presented as was done for large home-rage receptors (e.g., caribou), or point-by-point risk estimates should be presented as was done for small home-range receptors (e.g., shrew).	The basis of the comment is that a substantial number of individuals (50% in the commenter's estimation) are not protected by use of the mean. The commenter's conclusion is based on an incorrect assumption about where the mean falls within the distribution, since the mean of a lognormal (or skewed) dataset will be higher than the median (the value above or below which 50% of the values lie). However, to address the concerns expressed in this comment, new food-web models for ptarmigan were developed for the reference area, port, road, and mine assessment units, using mean and 95 percent UCL on the mean CoPC concentrations. Methods, results, and risk conclusions for ptarmigan have been updated in the text (see Sections 6.5.1.2, 6.5.3.1.1, 6.5.4.1.1, 6.7.1, and 8.2.1). In response to this comment, the following discussion has been appended to the end of Section 6.6.5.1.6 (CoPC Bioavailability): In summary, the new risk results for ptarmigan suggest that adverse effects from barium and lead exposures may occur in herbivorous birds foraging near the mine, and that adverse effects from lead exposures are also possible near the port, particularly for the most exposed individuals in the population of birds at the port. In the case of lead, however, over 90 percent of the exposure is attributable to lead in soil. The food-web models assumed 100 percent bioavailability of metals. However, site-specific bioavailability studies using rat have shown the bioavailability of lead in Red Dog ore to be only about 20 percent that of the soluble lead used in the studies on which the TRV is based (ADPH 2001; Arnold and Middaugh 2001; Arnold et al. 2003). If the relative bioavailability of lead in tundra soil to ptarmigan is also about 20 percent, then all LOAEL-based hazard quotients for ptarmigan would be less than 1.0, even using the 95 percent UCL on the mean CoPC concentrations. Similar results might be expected for barium, if site-specific bioavailability over-estimate lead bioavailability to the ptarmigan. This assumption i	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						residence time of food in the stomach. Birds must be as efficient as possible at ingesting and digesting food, and therefore the digestive system of birds has adaptations designed to facilitate flight, such as a shorter intestinal tract in birds relative to mammals (Denbow 2000). Birds also typically have lower retention times (in hours) for fluid and particulate digesta markers in the gastrointestinal tracts than mammals (Stevens and Hume 1988). For example, Stevens and Hume (1988) report mean fluid and particle retention time for a rock ptarmigan at 9.9 and 1.9 hours, respectively. In contrast, the rat has a much longer fluid and particle retention time of 20 and 22 hours, respectively (Stevens and Hume 1988). Therefore, the longer retention time associated with the rat stomach would suggest higher relative bioavailability of lead in soil to the rat. In addition, acid secretion of birds is nearly equivalent to the rat, and more specifically, the pH of gastric juice in the ptarmigan (pH = 2.6, McLelland 1979) is nearly equivalent to that of the rat (pH = 2.7, Chu et al. 1999). Given essentially equivalent pH but a much lower residence time of food or soil in the gastrointestinal system of the bird stomach compared to a mammal suggests that the relative bioavailability of lead would be lower for a bird. Therefore, the suggestion above that bioavailability of lead in tundra soil to ptarmigan is about 20 percent, similar to for the rat (as mentioned above), is a reasonable and conservative approach to extrapolating results from the rat to the ptarmigan. In the central portion of the road, the likelihood of adverse effects to herbivorous birds foraging in that area is low, as 95 percent UCL on the mean exposures did not exceed LOAEL TRVs, and only exposure to barium exceeded the NOAEL TRV (hazard quotient of 1.7). Again, the same comments made above regarding bioavailability apply here.	
Eco-11	6-69	6.5.3.1.4 and Appendix K	Technical	Medium	Moose Risks. In Tables K-83 to K-88 for the moose, are the exposure point concentrations based on mean or 95 percent UCL on the mean concentration? This point should be clearly indicated in the tables. In Table K-87 for the moose, should the footnotes refer to ST-REF-6 instead of ST-REF-5? If so, please revise the table accordingly.	Exposure point concentrations in stream water, sediment, and plant tissues are means or individual data points. The footnote in Table K-87 (attached) refers to ST-REF-6 instead of ST-REF-5 because, as stated in the footnotes: "No PHASE1RA sediment or water data collected at ST-REF-6, so ST-REF-5 data used – nearest creek sediment and water station from PHASE1RA."	Response is acceptable.
Eco-12	6-75	6.5.4.1.1	Technical	High	See comment Eco-9. How is population defined in Section 6.5.4.1.1?	In consideration of the fact that risk to ptarmigan has been re-evaluated on an assessment unit basis (see response to comment Eco-10), populations are considered as the animals within that assessment unit. For example, the port assessment unit would include all the ptarmigan that potentially forage within the area inside the port ambient air boundary and up to 2 km on either side of the DMTS road in the vicinity of the port. The text in Section 6.5.4.1.1 has been revised as follows: All hazard quotients for aluminum, arsenic, cadmium, chromium, molybdenum, selenium, thallium, and vanadium were below 1.0 for ptarmigan. Exposures to these chemicals would therefore be very unlikely to result in adverse effects to herbivorous birds. Exposures to 95 percent UCL on the mean concentrations of mercury (at the port) and zinc (at the port and mine) exceeded the NOAEL TRVs. However, hazard quotients were fairly low (1.2–1.4), and mean exposures did not exceed NOAEL TRVs (Table CK3, attached). Based on the food web model results, dietary exposure to mercury or zinc is unlikely to result in adverse effects to	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						herbivorous birds. However, risk cannot definitively be concluded to be negligible for the most exposed individuals in the population, where	
Eco-13	6-76	6.5.4.1.3	Technical	Medium	In the second paragraph of this section, how is "overall tundra vole population" defined? Does it refer to all voles in Cape Krusenstern National Monument, all voles north of the haul road, or some smaller local group?	herbivorous birds. However, risk cannot definitively be concluded to be negligible for the most exposed individuals in the population, where population is considered the animals within each assessment unit. The last sentence in the second paragraph of Section 6.5.4.1.2 has been revised to indicate that in the context of the risk results being presented in this paragraph, the "overall" tundra vole population refers to individuals existing at areas beyond about 100 to 1,000 m from the mine or port facilities. The actual sentence now reads as follows: The results indicate that if adverse effects occur to voles from exposure to these CoPCs, they are most likely to exist in localized areas near facilities, but may not affect the tundra vole population existing at areas beyond about 100 to 1,000 m from the mine or port facilities. In addition, the discussion provided below has been added to the end of the uncertainty discussion (Section 6.6.5.6 – Population Level Uncertainty) regarding some of the issues to be considered when defining what constitutes a population for the various wildlife receptors being evaluated in this risk assessment: An additional uncertainty related to estimating the potential for population-level effects relates to the appropriate definition of what constitutes a population for the receptors being evaluated. For example, as noted above, caribou present at the site, either as migrants or winter residents, are part of a herd (the Western Arctic Caribou Herd) that moves over vast areas of western Alaska. As discussed above, it is inappropriate to extrapolate results of individual-based food web models to conclude population-level effects without putting those results into context with regard to the proportion of the entire WACH population that is potentially exposed to CoPCs at the site. Similarly, although moose do not migrate like caribou, their home ranges can be up to 5 to 10 square kilometers (Wilson and Ruff 1999), and they can make seasonal movements up to almost 100 km during calving,	Response is acceptable.
						lagoons and streams from which samples were collected, and even more conservative with respect to the larger moose population that frequents habitats within and beyond the DMTS assessment area.	
						Food-web model results for small-home-range receptors, such as shrews and voles, indicate the potential for adverse effects primarily within localized areas (e.g., within 100 m of the road, or around the mine boundary). These adverse effects to individuals, if occurring, could produce detectable higher-level responses, such as decreased population abundance or increased mortality, within these localized areas. However, the individuals in these localized areas are components of larger meta-populations. For example, it is very likely that voles move and disperse near as well as away from the road. Therefore, effects to individuals near the road would probably only	
						translate into population-level effects over larger areas (e.g., square kilometers of tundra) if habitats near the road represent a population "sink" where local environmental factors, including CoPCs, do not permit	

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
Eco-14	6-81	6.6	Technical	High	The zone of cadmium and lead contamination along the haul road reported by Hasselbach et al. (2004) is greater than that generally suggested in the draft risk assessment report (i.e. about 2 km from the haul road). The data	reproduction to occur at the replacement rate. This would also be true if immigration of migrants from other sub-populations results in an overall decrease in abundance at the meta-population level. No population data are available to confirm or deny the existence of such a sink near the road or mine. Therefore, there is considerable uncertainty that putative effects to individual small mammals living in habitats near these features would produce detectable population-level changes over broader spatial scales (e.g., within a kilometer from the road, within Cape Krustenstern National Monument, etc.). Broad-scale population surveys would be required to determine whether impacts to populations are occurring over these larger spatial scales. Additional figures and discussion of the NPS/Hasselbach data have also been added in Section 1 describing nature and extent of fugitive dust deposition. Clearly, the area of depositional influence is of interest and	Response is acceptable.
					draft risk assessment report (i.e., about 2 km from the haul road). The data and analyses presented in Hasselbach et al. (2004) should be discussed in this section as they relate to the adequacy of the sampling design used for the ERA, the validity of the chosen background location, and how a larger zone of contamination affects the perceived risks posed by the haul road. Hasselbach, L. J.M. Ver Hoef, J. Ford, P. Neitlich, E. Crecelius, S. Berryman, B. Wolk, and T. Bohle. 2004. Spatial Patterns of Cadmium and Lead Deposition on and Adjacent to National Park Service Lands in the Vicinity of the Red Dog Mine, Alaska. NPS/AR/NRTR-2004-45.	deposition. Clearly, the area of depositional influence is of interest and concern to the public, leading to a perception of risk. However, it must be made clear that deposition does not automatically mean effects or unacceptable risks are present. Since the risk assessment focuses not simply on the extent of deposition, but the evaluation of possible risks associated with that deposition, the areas of focus for data collection and assessment were the areas typically within 1-2 km of the DMTS road, port, and mine, where the depositional influence is greatest, the media concentrations highest, and the potential for risk greatest. When risks are low for these areas nearer to the facilities, then risks would be much lower for outlying areas. The results of the risk assessment have illustrated what receptors are potentially at risk, and where the uncertainties are in the analysis. During development of the Risk Management Plan, the risk assessment results can be used to prioritize future actions such as additional data collection or monitoring. Please refer to response to Comment Gen-1 for the revised text for Section 1. The uncertainty assessment in Section 6.6 has been updated with additional discussion (Section 6.6.1 – Uncertainties Related to Reference Area Selection) regarding the selection of the reference areas, uncertainties associated with the reference area data, and its use in the assessment. Section 6.6.1 is provided below: Uncertainties Related to Reference Area Selection This section describes the selection and use of the reference areas in the risk assessment, reviews uncertainties about the reference area data, and discusses implications of these uncertainties for the use of the reference area data and the findings of the risk assessment. Terrestrial Reference Area Terrestrial Reference Area Terrestrial Reference Area Terrestrial reference areas were selected after review of existing studies and data, with a focus on factors such as prevailing wind directions, bedrock geology, topography and	

			Tachnical/				
No	Dogo	Continu	Technical/ Policy	Deignitus	Commont/Docommon detion	Decrease	DEC Demonto
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
i						the east, between the northeast and southeast quadrants; thus, the most	
						significant dust deposition has occurred to the north and west of the DMTS	
						road and mine. As a result, areas to the north and west were not preferred	
						areas for establishing the terrestrial reference area. Areas to the east were	
						eliminated because the topography is more mountainous than most of the	
						DMTS area. Thus, the focus was on selecting an area to the south of the	
						mine and DMTS road. However, selecting an area too far south would have	
						put the reference area into the Noatak valley, where the plant community	
						includes trees and would not be as good for comparison with plant	
						communities at the site. Therefore, the terrestrial reference area was	
						targeted for placement somewhere within several miles south of the DMTS.	
						Within that band south of the DMTS, the selected area was to be in a	
						geologic area known to be relatively free of lead/zinc base metal	
						mineralization. The selected area also needed to contain a variety of	
						topographic conditions (elevations, slopes, and aspects), streams and ponds,	
						and plant communities, providing the opportunity to sample environments	
						similar to those along the length of the DMTS road. Based on these criteria.	
						the Evaingiknuk Creek drainage was selected as the best choice. This basin	
						met the most criteria, and had low base metal mineralization compared with	
						other possible reference locations that were considered to the south of the	
						DMTS.	
						5	
						Subsequent to the selection of the Evaingiknuk Creek drainage as the	
						terrestrial reference area, sampling was conducted in two phases. The first	
						phase included sampling of moss, which, when included with the overall	
						moss database (including the NPS data, Ford and Hasselbach 2001.	
						Hasselbach 2003b, pers. com., Hasselbach et al. 2005) and plotted together,	
						provided a clearer perspective on overall patterns of deposition in the areas	
						surrounding the DMTS and mine (Figure 1-9). Prior to the first phase of	
						sampling, no moss data were available in that area.	
						The mean lead concentration for the three moss samples in the reference	
						area is 8.0 mg/kg. Tundra soil was also sampled in the reference area, and	
						the lead concentration ranged from 2.9 to 23.3 mg/kg, with a mean of 8.9	
						mg/kg, very similar to the mean moss lead concentration. In the area beyond	
						approximately 16 miles north of the DMTS, where there is no apparent trend	
						in the NPS moss concentration data, the mean lead concentration in moss is	
						8.5 mg/kg, or 6.4 if one outlier duplicate sample is excluded (Dixon's outlier	
						test was used to confirm that the 38.6 ppm lead result is a statistical outlier at	
						the 0.05 level [0.02 $< P < 0.05$]). The concentrations in the reference area	
						and the area beyond 16 miles north of the DMTS appear to be similar. In the	
						southern extent of Cape Krusenstern National Monument (CAKR), beyond 12	
						to 13 miles south of the DMTS, the NPS moss lead concentrations average	
						2.0 mg/kg. It should also be noted that the area surrounding the Red Dog	
						district is more mineralized than the southern part of CAKR. If there were	
						dust depositional influence in the reference area, or the northern extent of the	
						data collection area, it would appear to be very limited.	
						The communities in the reference area appear to be healthy, unimpaired communities suitable for use in reference/site comparisons. Even if there	
						were some evidence suggesting low-level deposition in the reference area,	
	4400 0106 SS					the potential for this dust deposition to cause adverse effects to receptors is	

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
NO.	Page	Section	Policy	Priority	Comment/Recommendation	marine reference area, site sediment data from recent sampling events have been below all available screening thresholds, as described in Section 4.3. Effect of Uncertainties There are clearly uncertainties with regard to the potential influence from dust deposition on reference areas. However, the possible effect of these uncertainties on the analyses, such as comparison of site and reference area conditions, appears to be limited. Based on the discussion in Section 6.6.1.1, there is very little if any measurable depositional influence from the mine within the terrestrial reference area. Thus, the possible influence of mine dust deposition in the reference area is so small as to be highly unlikely to result in any incremental effects to receptors in that area. Therefore, comparisons of communities (e.g., benthic and plant communities) at the site with those in the reference area are acceptable for the analyses. Further discussion of uncertainty related to the use of reference area comparisons in CoPC selection is included below in Section 6.6.3. Summary	DEC Remarks
						While all of the reference areas are suitable for the risk assessment, there are clearly some uncertainties with regard to the potential influence from dust deposition. The possible need for additional study to further address these uncertainties will be considered during development of a risk management plan.	
Eco-15	6-83	6.6.2.1.1	Technical	Low	Have reference areas been established for the permanent vegetation monitoring plots established in the mine area (ridge-top dwarf shrub tundra, dwarf birch and blueberry shrub, tall willow)?	Yes, four monitoring quadrats were established in a reference area located 3.6 miles southeast of the mine's Personnel Accommodation Complex (RWJ 1998). One reference quadrat was established in ridgetop and birch/blueberry communities, and two reference quadrats were established in the tall willow community. However, please note that the area inside the mine boundary is beyond the scope of the DMTS risk assessment.	Response is acceptable.
Eco-16	6-87	6.6.2.3	Technical	Medium	This section seems to understate the usefulness of the current dataset for understanding reasons for the observed changes in plant communities along the haul road. Physical factors are likely to exert their greatest influence near the road where dust deposition is greatest and drainage may be locally altered. Chemical factors (elevated metals and pH) are likely to become relatively more important at greater distances but cannot be ruled out as being significant near the road. Consider modifying the discussion accordingly. When other possible explanations are offered for effects on foliage, please	Section 6.6.4.3 was modified to acknowledge that physical factors are probably most dominant near the road and port facilities and less influential at greater distances from dust sources, whereas chemical factors could influence plant communities both near and at greater distances from dust sources. Section 6.6.4.3 (Uncertainty in Risk Characterization) was updated with the following text: Multiple lines of evidence were considered in the risk characterization for	Response is acceptable.
					evaluate them as possibilities rather than just propose them. Consider, for example: Is only road material alkaline, or may concentrate be contributing to high pH? Did reports on impacts from other roads show effects as far as 1000m and 2000m away from the road? Is the fine concentrate material likely to travel further than material used to construct the road?	terrestrial plants, including site and reference comparisons, relationships with distance from the DMTS road, correlations of vegetation and tundra soil parameters, PCA trends, qualitative assessments of plant vitality, and comparisons between plant tissue concentrations and phytotoxicity thresholds. The use of multiple indicators to evaluate potential effects to terrestrial plants enhances confidence that site-related changes in vegetation communities have been identified and that the alterations are related to the influence of the DMTS road.	

			Technical/				
No	Page	Section		Priority	Comment/Recommendation	Resnonse	DFC Remarks
No.	Page	Section	Technical/ Policy	Priority	Comment/Recommendation If seasonal dryness was a contributing factor, what information do you have to support it being a dry year? Why is it supposed that wildlife use was unusually high near TT6 as compared with reference areas?	Response The causes of vegetation effects are not known, because tundra soil parameters such as CoPC concentrations and pH are significantly correlated with distance from the road (Table 6-4), and these or other physical factors may potentially contribute to the changes in vegetation communities near the road. It is difficult to determine the relative significance of physical and chemical factors in the vegetation effects observed, because both are correlated with distance from the road. Tundra soil parameters, such as CoPC concentrations and pH, are significantly correlated with distance from the road. Tundra soil parameters, such as CoPC concentrations and pH, are significantly correlated with distance from the road (Table 6-4), thus, these as well as other physical factors, may potentially contribute to the changes in vegetation communities near the road and port facilities where dust deposition is greatest and drainage may be locally altered. Chemical factors (elevated metals and pH) are likely to become more important than physical factors at greater distances from dust sources, but are also likely to be a significant factor in changes observed near the road and port. Studies of dust deposition along the Dalton Highway have shown that the majority of dust is deposited within 500 m of the road or less. Lamprecht and Grader (1996) modeled fugitive dust deposition along the Dalton Highway and predicted that 20–45 percent of the dust would settle out within 40 m of the road; 65–95 percent would settle out within 200 m of the road; and 75–98 percent would settle out to 11 within an area of less than 500 m of either side of the road. Walker and Everett (1987) measured dust loads along the Dalton Highway using dust collection pans and found that 97 percent of the dust was deposited within 125 m of the road, although silt and clay-sized particles were deposited up to 1 km or farther from the road. If dispersion were strictly a function of particle size, concentrate dust would be expected to travel farther than c	DEC Remarks
						If dispersion were strictly a function of particle size, concentrate dust would be expected to travel farther than coarse roadbed material (i.e., sand and gravel) but would be expected to behave similarly to the fine particles in road dust. The most common size fraction of dust particles collected over 24 hours at locations 30 m, 70 m, 150 m, and 300 m from the Dalton Highway was the 10–20 µm diameter range (Lamprecht and Grader 1996). Walker and Everett (1987) observed a decrease in median particle size with distance from the road, from predominantly 0.5–2 mm particles at the road source to	
						and 312 m from the road. The particle size of zinc and lead concentrates is <40 µm, with 80 percent <20 µm (Teck Cominco 2003b,c). Vegetation effects along the Dalton Highway tended to coincide with dust deposition and were most pronounced in areas of heavy dust close to the road. Auerbach et al. (1997) assessed vegetation characteristics up to 800 m from the Dalton Highway and observed the greatest effects within 100 m of the road. The 400-m and 800-m samples "were predicted as being beyond the extent of major dust effects." However, the authors did not survey vegetation beyond 800 m. Walker and Everett (1987) noted the most extreme vegetation effects (e.g., elimination of mosses) within 10 or 20 m of the highway, while effects to lichen communities extended beyond 70 m. The authors focused their report on vegetation effects in heavy dust areas	

			Tochnical/			
Response	Comment/Recommendation	Priority		Section	Page	No
and did not investigate potential plant community changes at distances beyond 100 m. Similar to the Dalton Highway studies, vegetation effects along the DMTS road corridor were also most pronounced near dust sources; however, results for lichens suggest that effects may extend beyond distances at which communities were altered along the Dalton Highway. Further study would be required to elucidate the role and spatial gradient effects from site-related CoPCs relative to other road effects commonly observed elsewhere in Alaska. The last sentence of the fourth paragraph of Section 6.2.3.1 (Coastal Plain and Foothills Mesic Tussock Tundra) was also revised to address this comment: Road dust deposition is a regional phenomenon akin to windblown loess from river channels (Walker 1996). Calcareous road dust may raise the surface soil pH and enrich the tundra with nutrients such as calcium and magnesium (Walker 1996). Along the DMTS road corridor, dust was visible or detectable by touch on foliage at all 10 m and 100m stations and at stations up to 150 m from the road along tundra transect TT8 (Photograph 24). Alkaline dust from the road bed material (pH 8.4 at material site MS9) is likely contributing to the elevated fundra soil pH measured at 10-m and 100-m stations (Table 6-15). Figure 4-13 indicates that the tundra soil pH is elevated above reference values (3.6-4.5) well beyond 100 m in the tussock tundra, and that tundra soil pH may not stabilize until nearly 1,000 m from the road. In addition, zinc and lead concentrates have pH values ranging from 7.5 to 8.5 (Teck Cominco 2003b.c), and calcium chloride, applied to the road as a dust suppressant, has a pH ranging from 7 to 10 (Tetra 1998). Therefore fugitive dust may contain concentrates, road bed materials, and calcium chloride, all of which may be contributing to elevated soil pH in tundra surrounding the DMTS road and port facilities. This text in Section 6.2.3.1 was revised with the above information to acknowledge these sources. The available information	Comment/Recommendation	Priority	Technical/ Policy	Section	Page	No.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						Mosses at site and reference stations in the coastal plain community appeared to be dry or bleached in some microplots; perhaps this effect is an exhibition of drought-stress. Coastal plain stations were surveyed following periods of sunny and relatively warm weather, which may have contributed to the dryness in moss (and vascular plant foliage) noted in both site and reference plant communities at that time. Analysis of quantitative vegetation community parameters such as percent cover of litter (i.e., dry blades or broad leaf litter) is discussed below in Section 6.2.1.3.6. In Section 6.2.3.3 (Hillslope Mesic Open Shrubland), the third paragraph has been revised with the following: Environmental sampling results show that hillslope vegetation up to 1,000 m from the road is exposed to road dust. Tundra soil concentrations of many CoPCs were elevated over reference levels at all stations along transect TT6 (Table 6-15). Qualitative evaluations of vegetation were corroborative. Dust was detected by touch on plant foliage at 10-m and 100-m stations; blackening, bleaching, or drying was observed on foliose lichens and on crowberry, blueberry, and lingonberry shrubs at station TT6-0010, and some willows were partially defoliated at station TT6-0100. However, field notes indicate that the area experiences heavy wildlife use, and herbivory may be a contributing factor to the observed defoliation of shrubs. A variety of species, including bear, caribou, and moose, has been observed in the vicinity of transect TT6, and signs of wildlife use were noted in the field log. The relative contribution of herbivory to defoliation versus that from other causes could not be determined in the field. In addition, browning and bleaching of shrubs was recorded at the hillslope reference station, TS-REF-11, suggesting other possible causes, such as seasonal dryness. New References: Teck Cominco. 2003c. Zinc concentrate material safety data sheet. Teck Cominco Metals Ltd., Vancouver, BC. Tetra. 1998. Premium anhydrous calcium chl	
Eco-17	6-97	6.7	Technical	High	For chemicals where the HQ is greater than 1.0 in comparison with a no observed adverse effect level (NOAEL) toxicity reference value (TRV) but less than 1.0 in comparison with a LOAEL TRV, risk cannot definitively be concluded to be negligible, as suggested by the discussion in this section. The true value of the LOAEL for a chemical is not exactly known because it is based on the dose levels selected in the laboratory toxicity study used to derive it. For this reason, Alaska DEC risk assessment guidance places equal or greater emphasis on wildlife risks based on the NOAEL compared with the LOAEL. This fact should be kept in mind when discussing and	TX. In consideration of this comment, in Section 6.5.4 on Risk Characterization for Wildlife, the second and third paragraphs have been re-written to read: Exposure estimates greater than the NOAEL TRV, but less than the LOAEL TRV indicate that individuals are ingesting chemicals in excess of a toxicity threshold and may exhibit adverse effects similar to those observed in the test organisms. In these cases, risk cannot definitively be concluded to be negligible, because the true effect threshold is not exactly known, only that it lies somewhere between the NOAEL and LOAEL. Furthermore, because the endpoints measure organism-level responses, there is considerable	Response is acceptable.

No. Pa	Page Section	Technical/ Policy	Priority	Comment/Recommendation interpreting the significance of the wildlife HQs in this section and other areas of the risk assessment report.	uncertainty regarding how these effects, if occurring, would translate to population-level demographics. For CoPCs where hazard quotients are greater than 1.0 in comparison to both the NOAEL and LOAEL TRVs, adverse effects could occur in wildlife receptors, and could affect population-level parameters (e.g., survivorship, productivity, population abundance, etc). However, if hazard quotients are less than or comparable to hazard quotients for the same receptor-CoPC exposure scenario in the reference area, then it can be concluded that the site poses no incremental risk over background exposures, regardless of the magnitude of the hazard quotient. Conclusions regarding significance of risk to wildlife presented in Section 6.7 have been revised to reflect the interpretation of hazard quotient results as stated above. The changes to Section 6.7 are shown below: 6.7.1. Terrestrial Habitats	DEC Remarks
				1 0 0	population-level demographics. For CoPCs where hazard quotients are greater than 1.0 in comparison to both the NOAEL and LOAEL TRVs, adverse effects could occur in wildlife receptors, and could affect population-level parameters (e.g., survivorship, productivity, population abundance, etc). However, if hazard quotients are less than or comparable to hazard quotients for the same receptor-CoPC exposure scenario in the reference area, then it can be concluded that the site poses no incremental risk over background exposures, regardless of the magnitude of the hazard quotient. Conclusions regarding significance of risk to wildlife presented in Section 6.7 have been revised to reflect the interpretation of hazard quotient results as stated above. The changes to Section 6.7 are shown below:	
					receptors, and could affect population-level parameters (e.g., survivorship, productivity, population abundance, etc). However, if hazard quotients are less than or comparable to hazard quotients for the same receptor-CoPC exposure scenario in the reference area, then it can be concluded that the site poses no incremental risk over background exposures, regardless of the magnitude of the hazard quotient. Conclusions regarding significance of risk to wildlife presented in Section 6.7 have been revised to reflect the interpretation of hazard quotient results as stated above. The changes to Section 6.7 are shown below:	
					have been revised to reflect the interpretation of hazard quotient results as stated above. The changes to Section 6.7 are shown below:	
					6.7.1. Terrestrial Habitats	
					Effects are observable on coastal plain and tundra plant community structure within 100 m of the DMTS road, primarily due to reduced evergreen shrub, moss, and lichen cover (Tables JS1, JS2, JS3, and JS4). However, at 1,000 m from the road, communities were generally similar to reference communities except for a 2 to 4.5–fold difference in lichen cover. Lichen covers at stations TT5-1000 and TT5-2000 near the port were 2.75 and 8.25 percent, respectively, as compared to 15.75 percent at the coastal plain reference station, and lichen covers at stations TT3-1000 and TT8-1000 along the road were 4.75 and 5 percent, respectively, as compared to 9.75 and 21.8 percent at comparable reference stations. Community shifts within the first 100 m appear to be due, in part, to physical influences of the road and their effect on hydrology, soil chemistry, and plant vitality. Deposition of CoPCs in fugitive dust probably also contributes to observed changes in community parameters, which are interrelated with, and similar to, the effects due to physical and chemical stressors common to other gravel roads in tundra environments. Differences observed between reference and site communities beyond 100 m, specifically the decrease in lichen cover, may be a result of fugitive dust deposition, as non-vascular plants appear to be more sensitive to metals than vascular species. However, road effects or natural variability in plant communities may also be factors contributing to this change in community structure. In port facility areas, particularly in the area	
					immediately downwind of CSB1, the presence of stressed and dead vegetation appears to be primarily related to fugitive concentrate dust deposition. Adverse effects to wildlife receptors from fugitive dust releases are expected to be minimal for most receptors (Tables JS5a and JS6). Locations and receptors where NOAEL and LOAEL hazard quotients, or only LOAEL	
					hazard quotients exceeded 1.0 are summarized in Tables JS5a and JS5b, respectively. Table JS6 summarizes the number of LOAEL hazard quotient exceedances per number of sites evaluated for each receptor. Herbivorous small mammals (i.e., tundra vole and tundra shrew) inhabiting tundra within 10-100 m of the DMTS road near the port facilities or near the	

No. Page	age Section	Technical/ Policy	Priority	Comment/Recommendation	Response	DEC Remarks
					mine's ambient air/solid waste boundary (i.e., along transects TT6 and TT7) showed incremental risk from exposure to barium, and alurninum. By 1,000 m, hazard quotients were generally below 1.0 and/or comparable to reference area hazard quotients. No other CoPCs had LOAEL-based hazard quotients greater than 1.0 for these receptors. Therefore, if adverse effects occur to small mammals, they are most likely to exist in localized areas near facilities or within a narrow band of tundra about 100-m wide near the road, as a result of exposure to aluminum or barium. Regardless, possible effects on individuals in these areas, such as reduced growth (the endpoint for the aluminum TRVs) or increased mortality (the endpoint for the barium LOAEL TRV), are unlikely to translate into regional population-level effects given the limited area where adverse effects could occur, uncertainties related to the derivation of aluminum and barium TRVs, and extrapolation of individual-level responses to population endpoints, as discussed above in Section 6.6. In addition, aluminum and barium TRVs were derived from studies using much more soluble and bioavailable forms of barium and aluminum than those found at the site. Also, the barium endpoints for mammals based on rat studies using these more bioavailable forms (i.e., hypertension for the NOAEL, increased kidney masses and reduced ovarian masses for the LOAEL) are not conclusive as to their potential for effects on the populations. For aluminum, no effects have been found in avian studies, and in mammalian studies, the only effects endpoint was a reduction in weight gain of offspring in the second and third litters of second- and third-generation mice. Aluminum and barium are therefore not expected to be the risk drivers, as a result of the low solubility and low bioavailability of the forms present on the site. This was also illustrated in recent bioaccessibility testing work (Shock et al. 2007). The results of that research suggest that bioavailability of aluminum and barium in t	
					would result in a population-level effect in this area.	

			Taskuisall				
N	D	0 1	Technical/ Policy	Dull a wife a	0	B	DEO Demente
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						For caribou, there is a low likelihood that over-wintering individuals may	
						experience adverse effects from aluminum exposure, as LOAEL-based hazard quotients ranged from 2.2 to 2.5 across the site, and were about 3-	
						fold higher than comparable reference area hazard quotients. However, based on the low proportion of the total herd that could possibly over-winter	
						near the mine site and the uncertainty associated with the aluminum TRV, it	
						is very unlikely that any individual-level effects (e.g., reduced growth) would	
						lead to population-level effects for the entire WACH. No adverse effects are	
						predicted for the vast majority of caribou that only visit the site briefly during	
						migrations. Food-web models also indicate that exposure to CoPCs are	
						unlikely to result in population-level effects to other large-bodied mammalian	
						herbivores (e.g., moose), avian invertivores (e.g., Lapland longspur), and	
						avian and mammalian carnivores (e.g., snowy owl and Arctic fox).	
						aviali and manimalian carrivoles (e.g., showy owi and Arctic lox).	
						In summary, the potential for adverse effects to wildlife is most pronounced in	
						the first 100 m adjacent to the road or facilities (Table JS5b) and effects in	
						general are not expected to occur at any substantial distance from the road,	
						port facilities or mine ambient air/solid waste boundary. However, lichen	
						cover values at 1,000-m and 2,000-m stations were significantly lower than	
						reference cover values, suggesting that lichen effects may still occur at these	
						distances from the DMTS road corridor. Furthermore, the contribution of	
						metals in producing some of these effects, particularly on plant communities	
						near the DMTS road, is unclear. Overall, results of the ERA suggest that	
						adverse effects to wildlife receptors are largely restricted to localized areas	
						adjacent to the DMTS road, the port facility, and the mine ambient air/solid	
						waste boundary; however, effects on tundra vegetation extend further, with	
						effects on lichens observed at 1,000 to 2,000 m away from these dust	
						sources, and perhaps beyond, as summarized in Table JS7. Further study	
						would be required to define the full nature and extent of lichen effects beyond	
						1,000 to 2,000 m and to distinguish the relative contributions of causative	
						agents, such as metals and road dust or other factors on lichen toxicity.	
						6.7.2. Freshwater Habitats	
						In general, adverse ecological effects are not predicted in streams that cross	
						the DMTS road, based on multiple lines of evidence. First, the evaluation of	
						benthic macroinvertebrate drift assemblages indicated that the overall characteristics of the communities found in the three site stream stations	
						were similar to reference streams. Second, fish monitoring studies have	
						found relatively low metals concentrations in fish from Aufeis Creek and	
						Omikviorok River compared to streams near the mine, and no consistent	
						evidence of a road effect on fish metals concentrations in these streams (Ott	
						and Morris 2004). Similarly, selenium concentrations in Anxiety Ridge Creek	
						fish were comparable at both upstream and downstream locations, while	
						selenium concentrations were lower at the DMTS road station. In Anxiety	
						Ridge Creek, where cadmium and lead concentrations in juvenile Dolly	
						Varden were significantly higher in downstream fish than upstream fish,	
						maximum concentrations of cadmium and lead also exceeded the lowest	
						literature thresholds for effects to survival, growth, or reproduction, but	
						concentrations were also within the range of no-effects thresholds (Table	
						CS1). Therefore adverse effects to fish cannot be conclusively predicted, as	
						the sensitivity of Dolly Varden relative to the test species is not known.	
8601997 001	4400 0400 00	-00	l			and definitionly of Bony variation rollared to the tool openion to not known.	

			Tachnical/				
No	Done	Continu	Technical/	Deiguiter	Commont/Docommon detion	Pagementa	DEC Demortes
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response Furthermore, maximum whole body fish tissue concentrations reported from a nearby naturally mineralized creek located north of the Red Dog Mine were higher or similar to concentrations reported for Anxiety Ridge Creek fish. Third, metals concentrations in plants were within the range of reference concentrations (with the exception of aluminum and zinc in some willow leaf samples, and aluminum and chromium in sedges from the Omikviorok River) and in general, were not elevated in comparison to literature phytotoxicity thresholds. Fourth, food web models indicated that exposure to CoPCs is unlikely to result in adverse effects to avian and mammalian herbivores (e.g., green-winged teal, muskrat, and moose) or avian invertivores (e.g., common snipe) foraging in the streams, as LOAEL-based hazard quotients were less than or equal to 1.0, or in the case of aluminum ranged from 1.8 to 8.3 for	DEC Remarks
						muskrat, but were comparable to reference area hazard quotients. Collectively, these findings indicate that no ecologically significant effects are likely in streams, with the possible exception of potential effects to fish in Anxiety Ridge Creek. In general, adverse effects are not predicted in tundra ponds located greater than 100 m from the DMTS road and port facilities, with the exception of potential vegetation effects identified based on comparison to literature corporing values at pends situated in low bring agrees to the southwest of the	
						screening values at ponds situated in low-lying areas to the southwest of the mine's ambient air/solid waste permit boundary. For ponds TP1-1000, TP3, and TP4, CoPC concentrations in sediment were less than the maximum noeffects concentrations for sediments from coastal lagoons that were evaluated in toxicity tests using freshwater test organisms. Vegetation around the ponds appeared to be healthy, and metals concentrations were within the range of reference concentrations (with a few exceptions for cobalt, lead, and zinc), and/or below phytotoxicity thresholds.	
						Incremental exposure to lead and zinc at pond TP4 (located along the road near the mine) resulted in minor exceedances of phytotoxicity thresholds in sedge tissue (Table 6-23). However, plant samples were not washed or rinsed prior to analysis. If they had been washed, concentrations may have been below effects thresholds. Also, the vegetation appeared healthy in observations made during field sampling. Given these considerations, adverse effects to vegetation are not expected in tundra pond TP4.	
						Tundra ponds observed at the site and reference area were hydrologically disconnected from surface water inputs from streams and are unlikely to support permanent fish populations. Therefore, pathways to fish and piscivorous wildlife are believed to be incomplete, and no adverse effects are expected for these receptors. Food-web models indicate a very low likelihood of adverse effects to survival, growth, or reproduction of herbivorous wildlife potentially foraging at these ponds. The possibility of adverse effects to invertebrates and plants could not be	
	4400 0106 SS					conclusively discounted at Station TP1-0100, located near the concentrate conveyor and other port facilities (Photograph 4). As described above in Section 6.3.2, the likelihood of adverse effects to macroinvertebrates in TP1-0100 could not be evaluated, and phytotoxicity threshold comparisons for sedges showed a potential for vegetation effects from lead and zinc exposures. Aerial transport and surface flow are probably the main	

			Technical/				
No	Page	Section		Driority	Commont/Pocommondation	Poenoneo	DEC Pomarks
No.	Page	Section	Policy	Priority	Comment/Recommendation	mechanisms by which metals in fugitive dust become deposited in this habitat, as is likely for the surrounding tundra. Ponds near the port facilities, such as TP1-0100, are not true ponds, but rather flooded depressions in the tundra, and may not be permanent as they are dependent on precipitation and surface runoff to maintain volume. The ephemeral nature of the port area ponds suggests that they would be less likely to support the diversity of ecological receptors that the larger, more permanent ponds that occur in the tundra along the DMTS road would. Therefore, any adverse effects in these ponds have less ecological significance than if similar effects were to occur in ponds scattered across the tundra. 6.7.3. Coastal Lagoons No adverse effects are predicted for ecological communities inhabiting coastal lagoons. Sediment toxicity tests indicated no effects to benthic invertebrates in lagoons, even when exposed to elevated CoPC concentrations in sediments from locations nearest to port facilities. Plant community structure was similar at site and reference lagoons and the few differences that were observed may reflect natural variability among and within lagoon plant communities, which fluctuate seasonally in size and composition as water levels rise and recede. However, plant community surveys were limited to the wetland vegetation at the perimeter of lagoons, and these results may not be directly applicable to other coastal plant communities with different compositions. Food web models indicate that there is a very low likelihood of adverse effects on the survival, growth, and reproduction of herbivorous and invertivorous birds (e.g., brant and blackbellied plover) and herbivorous mammals (e.g., muskrat, moose) that potentially forage in the coastal lagoons. The lagoons evaluated in this risk assessment are not believed to support permanent fish populations due to their physical separation from potential marine and freshwater colonizing sources. Therefore, pathways to fish and piscivorous wildlife are be	DEC Remarks
Eco-18	6-98	6.7.1	Technical	High	A discussion of possible impacts to ptarmigan from lead at terrestrial	likely in coastal lagoons. Please see the response to Eco-10. Also, Section 6.7.1 (Terrestrial Habitats)	Response is acceptable.
					transects 5 and 7 (TT5 and TT7) should be discussed in this section (see Comment Eco-9).	has been revised in response to this comment, as follows: The ERA food web model results for terrestrial herbivorous birds (i.e., ptarmigan) suggest that adverse effects (mortality or reproductive effects) from barium and lead exposures may occur in individuals foraging near the mine, and that adverse effects from lead are also possible in individuals foraging near the port, particularly the most highly exposed individuals. These effects, if occurring, could result in population-level effects in these areas. The likelihood of adverse effects to herbivorous birds foraging in the central portion of the road is low, as 95 percent UCL on the mean exposures did not exceed NOAEL or LOAEL TRVs, except for exposure to barium, which exceeded the NOAEL TRV (hazard quotient of 1.7). Therefore, although risks cannot be considered negligible to ptarmigan inhabiting the central portion of the road, it is unlikely that effects near the road, if any, would have a population-level effect in this area.	

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
Eco-19	6-99	6.7.2	Technical	High	In the first paragraph, the statement that fish monitoring studies have found "no consistent evidence of a road effect on fish metals concentrations" overlooks the fact that a road-related effect on cadmium and lead levels in fish was observed in Anxiety Ridge Creek (see comment Eco-8). This impact should be discussed in this section. In the second paragraph, the statement "Adverse effects are not predicted in tundra ponds along the DMTS road" may not be entirely accurate. Table 6-23 shows that lead and zinc in sedges from tundra pond TP4 (along the road near the mine) exceed reference sedge concentrations and phytotoxicity thresholds for plant tissues. The exceedances of the phytotoxicity thresholds are not excessive but should not be overlooked in this section. In the third paragraph, the metals responsible for possible adverse effects on plants in the vicinity of TP-0100 should be mentioned (i.e., lead and zinc; see Table 6-23). Does Photograph 4 (small tundra pond near the port facility) show TP-0100? If so, refer to the photograph in this section.	Regarding fish monitoring studies, the text in Section 6.7.2 was changed to read as follows: Second, fish monitoring studies have found relatively low metals concentrations in fish from Aufeis Creek and Omikviorok River compared to streams near the mine, and no consistent evidence of a road effect on fish metals concentrations in these streams (Ott and Morris 2004). However, in Anxiety Ridge Creek, where cadmium and lead concentrations were significantly higher in downstream fish than upstream fish, the potential for adverse effects to fish cannot be ruled out, because maximum concentrations exceeded the lowest thresholds for effects to survival, growth, or reproduction. Regarding tundra ponds, the text in Section 6.7.2 has been revised to state: In general, adverse effects are not predicted in tundra ponds located greater than 100 m from the DMTS road and port facilities, with the exception of potential vegetation effects based on comparison to literature screening values at ponds situated in low-lying areas to the southwest of the mine's	Response is acceptable.
					Brabets (2004) found sediment concentrations of cadmium and zinc in two streams crossing the haul road (i.e., Deadman and New Heart Creeks) that were up to five times greater than sediment concentrations reported in the draft ERA report (compare Table 8 from Brabets [2004] with Table 6-24 in the draft report). The high sediment concentrations found by Brabets (2004) may be the result of concentrate spills that occurred along the haul road near these two streams. The sediment data from Brabets (2004) should be discussed as it relates to the adequacy of the stream sediment-sampling program used for the ERA and the validity of the conclusions drawn for freshwater stream habitats. Brabets, T.P. 2004. Occurrence and Distribution of Trace Elements in Snow, Streams, and Streambed Sediments, Cape Krusenstern National Monument, Alaska, 2002-2003. USGS Scientific Investigation Report 2004-5229.	In the third paragraph of Section 6.7.2, the text has been modified to identify lead and zinc as chemicals of concern for pond vegetation at TP1-0100. A reference to Photograph 4 was added. Stream sediment samples collected by USGS are sieved prior to analysis, and are thus enriched relative to sediment samples collected as part of the ERA. As such, they are not directly comparable to the samples collected as part of the ERA. Regarding the supposition that concentrations in sediments from Deadman and New Heart creeks may have been affected by concentrate spills, that may be possible. However, since the time of the USGS sampling, Teck Cominco has completed survey, sampling, cleanup (where needed), and closure of the former concentrate spill sites (Teck Cominco 2003, 2005). Sediments were not sampled, nor were invertebrate communities assessed in Deadman or New Heart creeks as part of the ERA data collection. Therefore, the ERA cannot provide any direct assessment of what the Brabets (2004) results may mean with regard to ecological risk. The following text was added the end of Section 6.6.5.1.5 (Measured CoPC Concentrations in Environmental Media and Prey): Exponent (2005) and Brabets (2004) both sampled sediments from the Omikviorok River and Aufeis Creek at the haul road. On average, the sediment concentrations for cadmium, lead, and zinc reported by Brabets (2004) are about twice those reported by Exponent (2005). Stream sediment samples collected by Brabets (2004) were sieved prior to analysis using a 0.063 mm screen, and are thus enriched relative to sediment samples collected as part of the ERA by Exponent (2005). As such, the two sets of samples are not directly comparable, and the Brabets sampling methodology is not appropriate for use in the risk assessment. Since the time of the Brabets (2004) sampling events, Teck Cominco has completed survey,	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						sites (Teck Cominco 2003, 2005), including those near Deadman and New Heart Creeks. Although sediments and invertebrate communities were sampled and evaluated in five representative creeks along the DMTS road as part of the ERA data collection, Deadman and New Heart creeks were not among those sampled. Future monitoring needs (including the possible need for monitoring in these creeks) will be evaluated during development of the risk management plan.	
Eco-20	-	Table 6-26	Technical	Medium	The assumed diet for the green-winged teal listed in Table 6-26 (100% herbaceous plants) does not match the assumed diet listed in Table 5-2 of the approved work plan (85% herbaceous plants, 15% invertebrates). The diet listed in the work plan is more appropriate for this receptor because the teal is known to feed more on animal matter in the summer (Kaufman 1996). Please explain the reason for this change and the effect it has on the exposure and risk estimates for the teal. Kaufman, K. 1996. Lives of North American Birds. Houghton Mifflin.	Although the teal is predominantly herbivorous, and was selected to represent herbivorous birds, as discussed in the text (Section 6.5.1.2, third paragraph), it may also consume some invertebrates. The food web model exposure parameters in Table 6-26 have been modified to reflect the diversity of the teal's diet (see attached). The table now reports a dietary composition of 85 percent herbaceous plants and 15 percent invertebrates (estimated from Johnson 1995). Also, the text in the third paragraph of Section 6.5.1.2 (CoPC Concentrations) was revised as follows: In aquatic systems, whole sedge data were used to model exposures for muskrat, brant, moose (at coastal lagoons), and sedge seed data were used to model exposures for green-winged teal. No sedge plants were found in Aufeis Creek during the supplemental sampling event, and thus exposure scenarios were not developed for teal and muskrat in this stream. Willow leaf data collected along stream banks were used in exposure models for the moose as an aquatic receptor. Aquatic invertebrate data from streams and coastal lagoons were used in food-web models for common snipe and blackbellied plover, respectively. Invertebrates also constituted 15 percent of the teal's diet, and where available (i.e., streams), aquatic invertebrate data were used in food-web models for teal. Soil invertebrate data were used to model teal exposure in tundra ponds and to fill gaps in the stream data as needed. The food web models for teal were updated to include invertebrate chemistry data in the exposure calculations, and the new results are provided in Appendix K (Tables K-58 through K-69). Hazard quotients at the site were all less than 1.0 for all CoPCs, even after the addition of invertebrates to the teal's diet.	Response is acceptable.
Eco-21	6-100	6	Technical	High	A results summary should be added at the end of Section 6 listing all areas where potential risks were identified, the receptor groups affected, and the stressors (chemical and/or physical) potentially responsible for the predicted risks. For example, for tundra vegetation, the results summary should emphasize areas where vegetation parameters (e.g. moss cover, lichen cover, diversity, etc.) differ from background and/or where a road-related effect was observed, regardless of whether the effect is believed to be due to chemical stressors, physical stressors, or a combination of the two. Locations where phytotoxicity benchmarks were exceeded should be summarized. Potential site-related effects in aquatic habitats should be summarized separately for the three creeks/rivers evaluated in the ERA and for tundra ponds and coastal lagoons. For wildlife, a table should be included listing the locations and receptors where NOAEL and/or LOAEL hazard quotients exceeded 1.0 for any chemical. Information in the results summary should be incorporated into the Executive Summary of the risk assessment report and Section 8.2 (Ecological Risk Assessment Conclusions). Because many readers of the risk assessment report may only examine the Executive	After the comment response and resolution process was completed for all comment documents, tables summarizing results were added to Section 6 and to the conclusions in Section 8. The summary tables are attached to this document. In addition, some text from Section 6.7 has been modified due to the inclusion of the summary tables, and is presented in the response to comment ECO-17.	Response is acceptable.

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
					Summary and/or Conclusions, it is important that the ecological risks posed		
		_			by the site be plainly summarized in these sections.		
Eco-22	-	6	Technical	Medium	Teck Cominco (2005) presents results for lead and zinc for soil samples for seven sampling locations to the west of the ambient air boundary of the Red Dog Mine in the general vicinity of TT7. Are the soil data for TT7 used in the ERA representative for this area compared with data from Teck Cominco (2005)? Teck Cominco (2005) indicates that fugitive dust emissions at the mine have been reduced but not eliminated. As such, levels of metals in soil and vegetation near the mine are likely to increase in the future. Hence, the results presented in the draft ERA for terrestrial transect number 7 (TT7) near the ambient air boundary of the mine site should be considered a snapshot of current conditions only. This point should be made in the ERA report where the results for this location are discussed. Teck Cominco. 2005. Summary of Mine Related Fugitive Dust Studies, Red Dog Mine Site. Prepared by Teck Cominco Alaska Incorporated, Anchorage, Alaska.	Lead and zinc concentrations at TT7 are comparable to the Teck Cominco (2005) lead and zinc concentrations in the area beyond the mine boundary (although it should be noted that the sample collection methods were somewhat different). The 10-m station TT7-0010 had a tundra soil concentration of 2,630 ppm lead and 6,770 ppm zinc, which are similar to the mean concentrations of 2,475 ppm lead and 6,037 ppm zinc from the seven Teck Cominco tundra soil samples that were collected outside the mine boundary. The transect TT7 10-m station is essentially at the ridgetop ambient air boundary, in a comparable location to the Teck Cominco samples. It appears that results from these stations near the mine boundary may reflect a localized dust deposition occurring on the lee side of the ridge. The TT7 transect stations at 10, 1,000, and 2,000 m were on successive ridgetops and peaks, as planned in the RA work plan. The risk assessment results are a snapshot in time. The text in the <i>Introduction</i> section has been revised as follows: • First paragraph, the words "current and future" are deleted.	Response is acceptable.
						Second paragraph, second to last sentence is modified to read: "The results of the risk assessment provide a snapshot of risk under current conditions that will help risk managers to determine what additional actions may be necessary to reduce those risks now and in the future."	
					<u> </u>	Similar edits were made to Conclusions and Executive Summary sections.	
Eco-23	Table C21	Appendix C	Technical	Low	The specific reports that the moss data were taken from should be clearly identified in Table C-21. For example, if NPS00 refers to data from Ford and Hasselbach (2001), this should be clearly indicated in a footnote to the table. This comment also pertains to other tables in Appendix C that list data from other reports. Ford, J. and L. Hasselbach. 2001. Heavy Metals in Mosses and Soil on Six Transects Along the Red Dog Mine Haul Road, Alaska. Western Arctic National Parklands, National Parks Service, NPS/AR/NRTR-2001/38.	Appendix C tables were updated with footnotes regarding survey names and references for data sources. Appendix C, Table C-1, has been included as an example of the updated tables in Appendix C.	Response is acceptable.
Eco-24	-	Appendix E	Editorial	Low	For clarity, the page numbers for Tables E-1 and E-2 should be corrected.	Correction made.	Response is acceptable.
Eco-25	E-13	Appendix E	Editorial	Low	Under the heading "Vegetation Tissue Collection" the first sentence in the second paragraph should refer to "stream vegetation sampling," not "aquatic invertebrate community analysis." Please revise accordingly.	Revision made.	Response is acceptable.
Eco-26	E-15	Appendix E	Editorial	Low	Under the heading "Tundra Soil Collection" in the first paragraph, the reference to stream willow/sedge samples appears to be an error. Revise the first paragraph accordingly.	Revision made.	Response is acceptable.
Eco-27	-	Appendix F and 6.4.1	Technical	High	Provide a copy of the sediment toxicity testing report from MEC Analytical Systems for review. A copy of MEC's report should be included in the risk assessment report, either as part of Appendix F or as a separate appendix.	A copy of the laboratory report for the lagoon sediment toxicity testing (attached for review) has been added as an attachment to Appendix E, and the text in Section 6.4.1 has been revised to reference the lab report and the tabulated results in Appendix G, Table G-38.	Response is acceptable.

			Technical/									
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks					
Eco-28		Appendix K	Technical	High	Several EPC calculations were checked, but could not be reproduced. For example, Table K-82 lists an average EPC for lead in soil of 995 mg/kg based on PHASE2RA soil data for TT7. Table G-1 lists four lead soil concentrations for TT7: 2630, 201, 197, 111 mg/kg. The average of the values is 785 mg/kg, not 995 mg/kg as reported in Table K-82. Similar problems in reproducing EPCs were found for other receptors and analytes. Example calculations should be provided in Appendix K (or in a separate appendix) clearly illustrating the data used to derive the EPCs for wildlife provided in the tables in this appendix. An example should be included for each wildlife receptor for at least one chemical for each area where the receptor was evaluated. For example, for the caribou, three example calculations should be provided—one each for the port, haul road, and mine exposure areas. It is suggested that the example calculation focus on elements predicted to pose potential wildlife risks such as aluminum, barium, and lead.	Example calculations of exposure point concentrations have been added to Appendix K as requested. The examples show calculations of lead concentrations in water, soil or sediment, and food. The revised Appendix K tables are attached for review.	Response is acceptable.					
Eco-29		7.2 and 8.2	Technical	High	Adjust recommendations and conclusions as needed in light of above comments.	Adjustments were made to conclusions as needed in light of the above comments. The revised language from Section 8.2.1 (Terrestrial Habitats) is provided below: **Terrestrial Habitats** **Changes in vegetation community structure are observable within 100 m of the DMTS road and port facilities. These community shifts appear to be due, in part, to physical and chemical influences of the road and their effect on hydrology, soil chemistry, and plant vitality. Physical and chemical stresses are commonly found associated with gravel roads in tundra environments. The importance of CoPCs in fugitive dust relative to physical stresses caused by the DMTS road in producing these changes cannot be determined based on the data available at this time. **Differences between reference plant communities and plant communities beyond 1000 to 2000 m from the DMTS road, specifically the 2- to 4.5-fold decrease in lichen cover (Figure 6-4 and Tables 6-10 and 6-11), may be a result of fugitive dust deposition. Further study would be required to define the full nature and extent of lichen effects related to fugitive dust deposition from the DMTS port, road and Red Dog Mine and identify the causative agent(s) of lichen decline. **In port facility areas, particularly in the area immediately downwind of CSB1, the presence of stressed and dead vegetation appears to be primarily related to fugitive concentrate dust deposition. **Herbivorous and insectivorous small mammals (e.g., voles and shrews) inhabiting tundra within 10-100 m of the DMTS road, near the port facilities, or near the mine's ambient air/solid waste boundary showed incremental risk from exposure to aluminum and barium. However, exposures decreased to no-effects levels or were comparable to reference exposures beyond 100 m from the road and 1,000 m from the mine's ambient air/solid waste boundary. These localized effects on individuals' survival and reproductive performance are unlikely to translate into population-level effects (e.g., changes in abundance or distribution	Response is acceptable.					

			Technical/				
No.	Page	Section	Policy	Priority	Comment/Recommendation	Response	DEC Remarks
						 Adverse effects to herbivorous birds (e.g., ptarmigan) are possible in populations near the port and mine. The LOAEL-based hazard quotient for barium exposure near the mine was 2.0 at the 95 percent UCL exposure level (0.94 for mean exposure), but at all other locations estimated barium exposure was below the level at which adverse effects are first expected. At the port, LOAEL-based hazard quotients for lead were 0.84 at the mean and 2.2 at the 95 percent UCL on the mean exposure estimates. For caribou, no adverse effects are predicted for the vast majority of caribou that only pass through the site during migration. There is a low likelihood that individual caribou over-wintering in the mine area may experience adverse effects (reduced growth) from exposure to aluminum, as LOAEL-based hazard quotients ranged from 2.2 to 2.5 across the site, and were about 3-fold higher than comparable reference area hazard quotients. However, the aluminum TRV probably overestimates toxicity of the relatively low solubility, low bioavailability forms of aluminum found in the assessment area. In addition, it is very unlikely that any individual-level growth effects, if occurring, would lead to population-level effects because of the very small proportion of the total herd that could possibly over-winter near the mine site. The likelihood of adverse population-level effects to other terrestrial wildlife, including large-bodied mammalian herbivores (e.g., moose), avian invertivores (e.g., Lapland longspur and snipe), and avian and mammalian carnivores (e.g., snowy owl and Arctic fox), is considered to be negligible. 	
						Also, changes have been made to Section 8.2.4 (Coastal Lagoons):	
						Coastal Lagoons	
						 Sediment toxicity tests indicated no effects to benthic invertebrates in lagoons, even when exposed to elevated CoPC concentrations in sediments from locations nearest to port facilities. Plant community structure was similar at site and reference lagoons. Natural variability among and within lagoon plant communities likely accounts for the few differences that were observed. However, only fringing wetland vegetation was assessed. Extrapolation of these results to other coastal plant communities is uncertain. The likelihood of adverse population-level effects to wildlife foraging in coastal lagoons, including herbivorous and invertivorous birds (e.g., brant and black-bellied plover), is considered negligible. 	

Notes: Please note that RA text quoted herein may differ from that in other comment response documents, and in comparison with the final RA document, as a result of successive revisions made during the comment resolution process.

COPC - chemical of potential concern CSB1 - Concentrate Storage Building 1

DMTS - DeLong Mountain Regional Transportation System

EPC - exposure point concentration ERA - ecological risk assessment

HQ - hazard quotient

LOAEL - lowest observed adverse effect level NOAEL - no observed adverse effect level

RA - risk assessment
TP - tundra pond
TT - terrestrial transect

UCL - upper confidence limit (on mean concentration).

Table C-1. Analytical results for soil samples (site)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID		Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1006938	9/16/2003	1006938	0	0	, 0 0 ,,	, <u> </u>	, , , , , , , , , , , , , , , , , , , ,	, , ,	2.4	, , , , , , , , , , , , , , , , , , , ,	, , ,	, <u> </u>	, 0 0 7,
TECK03	1006939	9/16/2003	1006939	0	0					3.8				
TECK03	1006940	9/11/2003	1006940	0	0					1.9				
TECK03	1006941	9/11/2003	1006941	0	0					1.7				
TECK03	1006944	9/11/2003	1006944	0	0					2.8				
TECK03	1006945	9/11/2003	1006945	0	0					22.7				
TECK03	1006949	9/16/2003	1006949	0	0					2.4				
TECK03	1006952	9/11/2003	1006952	0	0					20.2				
TECK03	1006956	9/11/2003	1006956	0	0					29.6				
TECK03	1006959	9/11/2003	1006959	0	0					15.0				
TECK03	1006960	9/11/2003	1006960	0	0					20.4				
TECK03	1006968	9/12/2003	1006968	0	0					17.1				
TECK03	1006969	9/12/2003	1006969	0	0					6.3				
TECK03	1006973	9/10/2003	1006973	0	0					8.7				
TECK03	1006977	9/9/2003	1006977	0	0					19.2				
TECK03	1006990	9/10/2003	1006990	0	0					9.7				
TECK03	1006991	9/10/2003	1006991	0	0					25.7				
TECK03	1006992	9/10/2003	1006992	0	0					13.3				
TECK03	1006993	9/10/2003	1006993	0	0					14.0				
TECK03	1006994	9/10/2003	1006994	0	0					17.5				
TECK03	1007000	9/10/2003	1007000	0	0					11.9				
TECK03	1007036	6/21/2003	1007036	0	0					10.2				
TECK03	1007038	6/21/2003	1007038	0	0					31.0				
TECK03	1007040	6/21/2003	1007040	0	0					5.9				
TECK03	1007045	6/21/2003	1007045	0	0					23.1				
TECK03	1007055	6/19/2003	1007055	0	0					9.2				
TECK03	1007069	6/21/2003	1007069	0	0					8.5				
TECK03	1007088	7/13/2003	1007088	0	0					72.0				
TECK03	1007089	7/13/2003	1007089	0	0					65.9				
TECK03	1007090	7/13/2003	1007090	0	0					18.5				
TECK03	1007091	7/13/2003	1007091	0	0					16.7				
TECK03 TECK03	1007092 1007093	7/13/2003 7/13/2003	1007092 1007093	0 0	0 0					32.7 28.6				
TECK03	1007093	7/13/2003	1007093	0	0					38.8				
TECK03	1007094	7/13/2003	1007094	0	0					36.6 27.9				
TECK03	1007095	7/13/2003	1007095	0	0					27.9 17.2				
TECK03	1007097	7/13/2003	1007097	0	0					43.5				
TECK03	1007098	7/13/2003	1007098	0	0					38.8				
TECK03	1007128	7/13/2003	1007128	0	0					57.9				
TECK03	1007135	7/13/2003	1007135	0	0					225.0				
TECK03	1007135	7/13/2003	1007135	0	0					132.0				
TECK03	1007150	7/13/2003	1007150	0	0					49.0				
TECK03	1007150	7/13/2003	1007150	0	0					67.2				
TECK03	1007164	7/13/2003	1007166	0	0					21.1				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 1 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID		Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)				
TECK03	1007170	7/13/2003	1007170	0	0	\ 0 0 7/	(0 0)/	(0 0)/	(0 0)/	32.9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0 0 77	(0 0),	(0 0 77
TECK03	1007176	7/13/2003	1007176	0	0					248.0				
TECK03	1007195	7/14/2003	1007195	0	0					47.9				
TECK03	1007212	7/17/2003	1007212	0	0					28.5				
TECK03	1007215	7/17/2003	1007215	0	0					40.7				
TECK03	1007232	7/17/2003	1007232	0	0					32.2				
TECK03	1007239	7/17/2003	1007239	0	0					5.9				
TECK03	1007242	7/18/2003	1007242	0	0					4.9				
TECK03	1007243	7/18/2003	1007243	0	0					4.2				
TECK03	1007244	7/18/2003	1007244	0	0					12.3				
TECK03	1007245	7/18/2003	1007245	0	0					7.6				
TECK03	1007246	7/18/2003	1007246	0	0					25.3				
TECK03	1007247	7/18/2003	1007247	0	0					9.7				
TECK03	1007248	7/18/2003	1007248	0	0					8.6				
TECK03	1007249	7/18/2003	1007249	0	0					12.6				
TECK03	1007274	7/16/2003	1007274	0	0					26.1				
TECK03	1007278	7/15/2003	1007278	0	0					19.8				
TECK03	1007281	7/15/2003	1007281	0	0					38.5				
TECK03	1007290	7/15/2003	1007290	0	0					7.4				
TECK03	1007299	7/16/2003	1007299	0	0					36.3				
TECK03	1007314	7/17/2003	1007314	0	0					42.4				
TECK03	1007326	7/16/2003	1007326	0	0					26.5				
TECK03	1007333	7/17/2003	1007333	0	0					37.4				
TECK03	1007340	7/18/2003	1007340	0	0					8.8				
TECK03	1007341	7/18/2003	1007341	0	0					2.9				
TECK03	1007342	7/18/2003	1007342	0	0					7.3				
TECK03	1007344	7/18/2003	1007344	0	0					9.8				
TECK03	1007345	7/18/2003	1007345	0	0					10.5				
TECK03	1007346	7/18/2003	1007346	0	0					4.3				
TECK03	1007347	7/18/2003	1007347	0	0					1.5				
TECK03	1007348	7/18/2003	1007348	0 0	0					9.3 7.0				
TECK03 TECK03	1007350	7/18/2003	1007350	0	0									
TECK03	1007351 1007352	7/18/2003 7/18/2003	1007351 1007352	0	0 0					62.7 10.8				
TECK03	1007352	7/18/2003	1007352	0	0					12.2				
TECK03	1007353	7/18/2003	1007353	0	0					20.2				
TECK03	1007354	7/18/2003	1007354	0	0					53.9				
TECK03	1007360	7/18/2003	1007362	0	0					114.0				
TECK03	1007362	7/18/2003	1007367	0	0					21.7				
TECK03	1007307	7/19/2003	1007307	0	0					13.8				
TECK03	1007370	7/19/2003	1007370	0	0					43.7				
TECK03	1007377	7/20/2003	1007377	0	0					18.3				
TECK03	1007307	7/20/2003	1007307	0	0					15.2				
TECK03	1007391	7/20/2003	1007391	0	0					22.8				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 2 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007393	7/20/2003	1007393	0	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0 0)/	(0 0)/	(0 0),	19.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0 0),	\ 0 0 j/	(0 0)/
TECK03	1007394	7/20/2003	1007394	0	0					51.0				
TECK03	1007397	7/20/2003	1007397	0	0					16.5				
TECK03	1007398	7/20/2003	1007398	0	0					15.5				
TECK03	1007400	7/18/2003	1007400	0	0					10.9				
TECK03	1007406	7/18/2003	1007406	0	0					80.3				
TECK03	1007413	7/18/2003	1007413	0	0					59.2				
TECK03	1007419	7/19/2003	1007419	0	0					9.5				
TECK03	1007422	7/19/2003	1007422	0	0					72.2				
TECK03	1007430	7/19/2003	1007430	0	0					40.6				
TECK03	1007439	7/20/2003	1007439	0	0					15.1				
TECK03	1007441	7/20/2003	1007441	0	0					44.4				
TECK03	1007442	7/20/2003	1007442	0	0					19.8				
TECK03	1007445	7/20/2003	1007445	0	0					17.6				
TECK03	1007448	7/20/2003	1007448	0	0					20.7				
TECK03	1007449	7/20/2003	1007449	0	0					47.8				
TECK03	1007450	7/20/2003	1007450	0	0					51.5				
TECK03	1007451	7/20/2003	1007451	0	0					57.0				
TECK03	1007452	7/20/2003	1007452	0	0					24.6				
TECK03	1007458	7/20/2003	1007458	0	0					146.0				
TECK03	1007462	7/21/2003	1007462	0	0					30.3				
TECK03	1007463	7/21/2003	1007463	0	0					23.1				
TECK03	1007465	7/21/2003	1007465	0	0					29.7				
TECK03	1007467	7/21/2003	1007467	0	0					46.4				
TECK03	1007468	7/21/2003	1007468	0	0					98.7				
TECK03	1007469	7/21/2003	1007469	0	0					10.1				
TECK03	1007473	7/22/2003	1007473	0	0					8.40				
TECK03	1007474	7/22/2003	1007474	0	0					20.2				
TECK03	1007475	7/22/2003	1007475	0	0					45.6				
TECK03	1007476	7/22/2003	1007476	0	0					35.6				
TECK03	1007490	7/23/2003	1007490	0	0					44.7				
TECK03	1007491	7/23/2003	1007491	0	0					22.0				
TECK03	1007492	7/23/2003	1007492	0	0					44.1				
TECK03	1007499	7/20/2003	1007499	0	0					85.9				
TECK03	1007500	7/20/2003	1007500	0	0					217.0				
TECK03	1007502	7/21/2003	1007502	0	0					36.2				
TECK03	1007510	7/21/2003	1007510	0	0									
TECK03	1007514	7/22/2003	1007514	0	0					2.9				
TECK03	1007543	7/23/2003	1007543	0	0					2.6				
TECK03	1007544	7/23/2003	1007544	0	0					3.7				
TECK03	1007545	7/24/2003	1007545	0	0					7.6				
TECK03	1007553	7/24/2003	1007553	0	0					2.2				
TECK03	1007554	7/24/2003	1007554	0	0					12.2				
TECK03	1007564	7/23/2003	1007564	0	0					13.3				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 3 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)				
TECK03	1007566	7/23/2003	1007566	0	0					16.5	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,		
TECK03	1007569	7/23/2003	1007569	0	0					7.4				
TECK03	1007579	7/24/2003	1007579	0	0					20.1				
TECK03	1007582	7/24/2003	1007582	0	0					10.6				
TECK03	1007583	7/24/2003	1007583	0	0					17.9				
TECK03	1007584	7/24/2003	1007584	0	0					13.3				
TECK03	1007585	7/24/2003	1007585	0	0					0.55 <i>U</i>				
TECK03	1007591	7/24/2003	1007591	0	0					6.0				
TECK03	1007617	7/26/2003	1007617	0	0					0.60 <i>U</i>				
TECK03	1007618	7/26/2003	1007618	0	0					0.50 <i>U</i>				
TECK03	1007619	7/26/2003	1007619	0	0					0.55 <i>U</i>				
TECK03	1007626	7/27/2003	1007626	0	0					1.3				
TECK03	1007627	7/27/2003	1007627	0	0					7.0				
TECK03	1007648	7/28/2003	1007648	0	0					2.5				
TECK03	1007650	7/28/2003	1007650	0	0					8.0				
TECK03	1007652	7/26/2003	1007652	0	0					0.55 <i>U</i>				
TECK03	1007659	7/27/2003	1007659	0	0					2.0				
TECK03	1007661	7/27/2003	1007661	0	0					4.0				
TECK03	1007664	7/27/2003	1007664	0	0					0.55 <i>U</i>				
TECK03	1007673	7/28/2003	1007673	0	0					2.1				
TECK03	1007678	7/28/2003	1007678	0	0					2.5 <i>U</i>				
TECK03	1007682	7/28/2003	1007682	0	0					2.5 <i>U</i>				
TECK03	1007683	7/28/2003	1007683	0	0					2.5 <i>U</i>				
TECK03	1007684	7/28/2003	1007684	0	0					4.3				
TECK03	1007685	7/28/2003	1007685	0	0					2.5 <i>U</i>				
TECK03	1007687	7/28/2003	1007687	0	0					3.5				
TECK03	1007688	7/28/2003	1007688	0	0					25.4				
TECK03	1007701	7/28/2003	1007701	0	0					2.5 <i>U</i>				
TECK03	1007702	7/28/2003	1007702	0	0					2.5 U				
TECK03	1007703	7/28/2003	1007703	0	0					2.5 <i>U</i>				
TECK03	1007704	7/28/2003	1007704	0	0					2.5 <i>U</i>				
TECK03	1007705	7/28/2003	1007705	0	0					2.7				
TECK03	1007901	7/19/2003	1007901	0	0					50.9				
TECK03	1007904	7/21/2003	1007904	0	0					31.9				
TECK03	1007911	7/28/2003	1007911	0	0					2.5 <i>U</i>				
TECK03	1007912	7/28/2003	1007912	0	0					6.0				
TECK03	1007916	7/28/2003	1007916	0	0					2.5 <i>U</i>				
TECK03 TECK03	1007966 1007980	9/3/2003 9/7/2003	1007966	0 0	0 0					23.3 12.7				
			1007980	0	0									
TECK03 TECK03	1007983	9/16/2003	1007983	0	0					0.60 <i>U</i> 2.0				
TECK03	1007990	9/11/2003	1007990	0	0									
TECK03	1007991 1007992	9/11/2003 9/11/2003	1007991 1007992	0	0					0.60 <i>U</i>				
				0						17.0				
TECK03	1007993	9/11/2003	1007993	U	0					7.2				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 4 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arconio	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID		Subsample	(mg/kg dry)	(mg/kg dry)	Arsenic (mg/kg dry)	(mg/kg dry)	Cadmium (mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007995	9/11/2003	1007995	0	0	(g,g a.)	(g,g)	(g,g ay)	(9,9)	1.7	(9,9)	(g,g a,)	(g,g a)	(9/.19 4.7/
TECK03	1007996	9/11/2003	1007996	0	0					28.5				
TECK03	1007997	9/11/2003	1007997	0	0					4.1				
TECK03	1007998	9/11/2003	1007998	0	0					0.60 <i>U</i>				
TECK03	1008242	9/3/2003	1008242	0	0					70.1				
TECK03	1008244	9/3/2003	1008244	0	0					25.7				
TECK03	1008246	9/3/2003	1008246	0	0					36.5				
TECK03	1008247	9/3/2003	1008247	0	0					44.4				
TECK03	1008249	9/3/2003	1008249	0	0					31.8				
TECK03	1008250	9/3/2003	1008250	0	0					37.2				
TECK03	1008253	9/3/2003	1008253	0	0					22.1				
TECK03	1008255	9/3/2003	1008255	0	0					28.0				
TECK03	1008257	9/3/2003	1008257	0	0					22.1				
TECK03	1008258	9/3/2003	1008258	0	0					19.6				
TECK03	1008260	9/3/2003	1008260	0	0					27.5				
TECK03	1008262	9/3/2003	1008262	0	0					16.9				
TECK03	1008263	9/3/2003	1008263	0	0					19.2				
TECK03	1008265	9/4/2003	1008265	0	0					46.3				
TECK03	1008279	9/4/2003	1008279	0	0					5.7				
TECK03	1008287	9/4/2003	1008287	0	0					17.3				
TECK03	1008317	9/7/2003	1008317	0	0					28.7				
TECK03	1008318	9/7/2003	1008318	0 0	0					21.4				
TECK03 TECK03	1008341 1008346	9/9/2003 9/10/2003	1008341 1008346	0	0 0					20.6				
TECK03	1008346	9/10/2003	1008346	0	0					15.8 15.9				
TECK03	1008357	9/7/2009	1008347	0	0					7.7				
TECK03	1008362	9/7/2009	1008362	0	0					13.3				
TECK03	1008363	9/7/2009	1008363	0	0					23.6				
TECK03	1008364	9/7/2009	1008364	0	0					20.1				
TECK03	1008370	9/7/2009	1008370	0	0					20.8				
TECK03	1008374	9/7/2009	1008374	0	0					20.9				
TECK03	1008375	9/7/2009	1008375	0	0					20.7				
TECK03	1008376	9/7/2009	1008376	0	0					33.2				
TECK03	1008396	9/8/2009	1008396	0	0					1.6				
SUPPRSS	101_A	7/17/2002	RS-101A-VS	0	0					0.5 <i>U</i>				
SUPPRSS	101_B	7/17/2002	RS-101B-VS	0	0					0.55 <i>U</i>				
SUPPRSS	101_C	7/17/2002	RS-101C-VS	0	0					0.55 <i>U</i>				
PSCHAR	106_A1	6/17/2002	RF-106A	0	0					68.2				
PSCHAR	107_A1	6/17/2002	RF-107A	0	0					76.2				
PSCHAR	108_A1	6/17/2002	RF-108A	0	0					53.6				
PSCHAR	109_A1	6/17/2002	RF-109A	0	0					46.7				
PSCHAR	110_A1	6/17/2002	RF-110A	0	0					83.5				
PSCHAR	111_A1	6/17/2002	RF-111A	0	0					115				
PSCHAR	112_A1	6/17/2002	RF-112A	0	0					79.8				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 5 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	113_A1	6/17/2002	RF-113A	0	0	7,070	5.0 <i>U</i>	10 <i>U</i>	1,030	58.6	14.8	11.9	41.2	
PSCHAR	115_A1	6/17/2002	RF-115-A	0	0					26.1				
PSCHAR	116_A1	6/17/2002	RF-116-A	0	0					24.1				
PSCHAR	122_A1	6/17/2002	RF-122-A	0	0	5,880	5.0 <i>U</i>	10 <i>U</i>	1,380	35	13	10.5	30.6	
PSCHAR	123_A1	6/17/2002	RF-123-A	1	0					32.6				
PSCHAR	123_A1	6/17/2002	RF-123-A	2	0					30.2				
SUPPRSS	145_A	5/31/2002	RC-145-A	0	0					10.1				
SUPPRSS	145_A	6/1/2002	RS-145-A	0	0	8,150	26 <i>U</i>	51.0 <i>U</i>	1,380	26.3 J	17.9	8.5	29.3	
PSCHAR	145_A1	6/1/2002	RF-145-A	0	0					31.9 <i>J</i>				
PSCHAR	148_A1	6/1/2002	RF-148-A	0	0					49.8 <i>J</i>				
PSCHAR	149_C1	6/1/2002	RF-149-C	0	0					34.7 <i>J</i>				
PSCHAR	150_A1	6/1/2002	RF-150-A	0	0					32.9 <i>J</i>				
PSCHAR	150_C1	6/3/2002	RF-150-C	0	0	8,150	25 <i>U</i>	50 <i>U</i>	1,530	36.2 <i>J</i>	22.8	13.6	42.3	
PSCHAR	153_A1	6/3/2002	RF-153-A	0	0					37 J				
PSCHAR	153_C1	6/3/2002	RF-153-C	0	0					35.8 <i>J</i>				
PSCHAR	154_C1	6/3/2002	RF-154-C	0	0					27.4 J				
PSCHAR	155_C1	6/3/2002	RF-155-C	0	0					38.1 <i>J</i>				
PSCHAR	156_C1	6/3/2002	RF-156-C	1	0					41.8 <i>J</i>				
PSCHAR	156_C1	6/3/2002	RF-156-C	2	0	5,460	25 U	50.0 <i>U</i>	1,590	34.5	13.3	5.00 <i>U</i>	28.5	
PSCHAR	157_A1	6/3/2002	RF-157-A	0	0	8,300	25 <i>U</i>	50.5 <i>U</i>	1,300	38.5 <i>J</i>	17.1	11.6	31.8	
PSCHAR	159_C1	6/3/2002	RF-159-C	0	0					33.3 J				
PSCHAR	160_C1	6/3/2002	RF-160-C	0	0					41 <i>J</i>				
PSCHAR	165_C1	6/4/2002	RF-165-C	0	0	4,980	25 <i>U</i>	50 <i>U</i>	1,370	51.8	16.8	10.5	34.3	
PSCHAR	169_A1	6/4/2002	RF-169-A	0	0	6,710	5.00 <i>U</i>	10.0 <i>U</i>	1,090	72.2	14.5	12.8	46.1	
PSCHAR	170_C1	6/4/2002	RF-170-C	0	0	6,040	5.50 <i>U</i>	10.5 <i>U</i>	932	26.9	12.7	19.8	25.8	
PSCHAR	171_A1	6/4/2002	RF-171-A	1	0					60.6				
PSCHAR	171_A1	6/4/2002	RF-171-A	2	0					59.8				
PSCHAR	171_C1	6/4/2002	RF-171-C	0	0					35.9				
PSCHAR	175_A1	6/5/2002	RF-175-A	0	0					122				
PSCHAR	176_C1	6/5/2002	RF-176-C	0	0					69.2				
PSCHAR	178_A1	6/5/2002	RF-178-A	0	0	6,890	5.00 <i>U</i>	10.5 <i>U</i>	1,030	139	16.3	17.4	66.7	
PSCHAR	178_C1	6/5/2002	RF-178-C	0	0					81.8				
PSCHAR	179_C1	6/5/2002	RF-179-C	0	0					86.5				
PSCHAR	180_C1	6/5/2002	RF-180-C	0	0	6,550	5.00 <i>U</i>	10.0 <i>U</i>	1,560	110	15.0	13.7	62.1	
PSCHAR	189_A1	6/7/2002	RF-189-A	0	0					26.3				
PSCHAR	189_C1	6/7/2002	RF-189-C	0	0	7,330	5.00 <i>U</i>	10.0 <i>U</i>	1,570	69.1	21.7	14.5	51.9	
PSCHAR	190_C1	6/7/2002	RF-190-C	0	0					48.5				
PSCHAR	191_C1	6/7/2002	RF-191-C	0	0	7,080	5.00 <i>U</i>	10.0 <i>U</i>	1,550	41.5	15.2	13.3	34.9	
PSCHAR	192_C1	6/7/2002	RF-192-C	0	0					33.6				
PSCHAR	216_A1	6/9/2002	RF-216A	0	0	9,790	5.0 <i>U</i>	10 <i>U</i>	1,890	9.6	18.2	10.2	26.5	
PSCHAR	220_C1	6/9/2002	RF-220C	0	0					7.1				
PSCHAR	222_C1	6/9/2002	RF-222C	0	0	11,800	5.0 <i>U</i>	10 <i>U</i>	1,340	16.5	22.7	12.7	26.3	
TECK03	471204	6/6/2003	471204	0	0					7.4				
TECK03	471210	6/6/2003	471210	0	0					1.8				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 6 of 36

Table C-1. (cont.)

-	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID		Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)				
TECK03	471212	6/6/2003	471212	0	0	\ 0 0 7/	(0 0)/	(0 0)/	(0 0)/	26.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0 0)/	(0 0),	(0 0 77
TECK03	471221	6/7/2003	471221	0	0					126.0				
TECK03	471264	6/6/2003	471264	0	0					9.8				
TECK03	471272	6/6/2003	471272	0	0					11.7				
TECK03	471274	6/6/2003	471274	0	0					3.3				
TECK03	471276	6/6/2003	471276	0	0					0.50 <i>U</i>				
TECK03	471283	6/7/2003	471283	0	0					0.50 <i>U</i>				
TECK03	471287	6/7/2003	471287	0	0					0.55 <i>U</i>				
TECK03	471293	6/7/2003	471293	0	0					28.8				
TECK03	471295	6/7/2003	471295	0	0					69.8				
TECK03	471297	6/7/2003	471297	0	0					21.6				
TECK03	471299	6/7/2003	471299	0	0					17.7				
TECK03	471300	6/6/2003	471300	0	0					5.2				
TECK03	471320	6/10/2003	471320	0	0					103.0				
TECK03	471325	6/10/2003	471325	0	0					33.9				
TECK03	471332	6/10/2003	471332	0	0					44.2				
TECK03	471333	6/10/2003	471333	0	0					37.0				
TECK03	471334	6/10/2003	471334	0	0					14.3				
TECK03	471341	6/11/2003	471341	0	0					66.1				
TECK03	471350	6/13/2003	471350	0	0					19.5				
TECK03	471352	6/7/2003	471352	0	0					8.4				
TECK03	471353	6/7/2003	471353	0	0					13.7				
TECK03	471355	6/7/2003	471355	0	0					50.1				
TECK03	471356	6/7/2003	471356	0	0					22.5				
TECK03	471358	6/7/2003	471358	0	0					1.6				
TECK03	471365	6/16/2003	471365	0	0					10.0				
TECK03	471374	6/17/2003	471374	0	0					25.2				
TECK03	471418	6/10/2003	471418	0	0					34.9				
TECK03	471419	6/10/2003	471419	0	0					32.5				
TECK03	471420	6/10/2003	471420	0	0					18.5				
TECK03	471421	6/10/2003	471421	0	0					17.2				
TECK03	471425	6/11/2003	471425	0	0					59.3				
TECK03	471453	6/14/2003	471453 471457	0	0					25.5				
TECK03	471457	6/14/2003	471457 471459	0	0					6.2				
TECK03	471458	6/14/2003	471458	0	0					15.4				
TECK03	471463 471464	6/14/2003	471463 471464	0 0	0					26.3				
TECK03	471464 471465	6/14/2003	471464 471465	0	0 0					103.0				
TECK03 TECK03	471465 471466	6/14/2003 6/14/2003	471465 471466	0	0					33.5 4.9				
	471466 471474		471466 471474	0										
TECK03 TECK03	471474 471487	6/14/2003 6/15/2003	471474 471487	0	0 0					88.1 74.8				
TECK03	47 1467 471501	6/7/2003	47 1467 471501	0	0					163.0				
TECK03	471501	6/10/2003	471501	0	0					47.4				
TECK03	471503	6/10/2003	471503	0	0					17.9				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 7 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)				
TECK03	471520	6/21/2003	471520	0	0					18.1				
TECK03	471539	7/13/2003	471539	0	0					40.7				
TECK03	471540	7/13/2003	471540	0	0					30.4				
TECK03	471549	7/17/2003	471549	0	0					5.4				
TECK03	471550	7/18/2003	471550	0	0					27.0				
PSCHAR	CAG-AA28		CAG-AA28-VS	0	0					1.4 <i>J</i>				
PSCHAR	CAG-AA29		CAG-AA29-VS	0	0					1.6				
PSCHAR	CAG-AA30		CAG-AA30-VS	0	0					0.55 <i>U</i>				
PSCHAR	CAG-AA31		CAG-AA31-VS	0	0					4.1				
PSCHAR	CAG-F2	7/28/2002		0	0					29.4				
PSCHAR	CAG-H30	7/3/2002	CAG-H-30	0	0	7,620		93.6		388 <i>J</i>				
PSCHAR	CAG-I1	7/28/2002	CAG-1-I	0	0					60.7				
PSCHAR	CAG-L33	7/3/2002	CAG-L-33	0	0					9.8 <i>J</i>				
PSCHAR	CAG-R2	7/1/2002	CAG-R-2-S	0	0					11.4				
PSCHAR	CAG-R32	7/21/2002	CAG-R-32	0	0					10.4				
PSCHAR	CAG-R34	9/19/2002		0	0					23.9 J				
PSCHAR PSCHAR	CAG-S34 CAG-U130	9/19/2002		0 0	0 0					22.7 <i>J</i> 45.4				
PSCHAR	CAG-U130	7/19/2002	CAG-U-130 CAG-U-29	0	0	10,100		11 <i>U</i>		45.4 28.5 <i>J</i>				
PSCHAR	CAG-U29	7/3/2002	CAG-U-29 CAG-U-34	0	0	10,100		11 0		12.3				
PSCHAR	CAG-034 CAG-W29	7/1/2002	CAG-W-29	0	0	10,000	14.8	19	1,170	92	20.2	19	37.6	
PSCHAR	CAG-W23		CAG-W31-VS	0	0	10,000	14.0	13	1,170	6.8 <i>J</i>	20.2	13	37.0	
PSCHAR			CAG-X100-VS	0	0					0.55 <i>U</i>				
PSCHAR	CAG-X101		CAG-X101-VS	0	0					4.9				
PSCHAR	CAG-X12	7/2/2002	CAG-X-12	0	0					7.4 <i>J</i>				
PSCHAR	CAG-X22	7/1/2002	CAG-X-22	0	0					11.4				
PSCHAR	CAG-X26	7/1/2002	CAG-X-26-A	0	0					11.2				
PSCHAR	CAG-X29	8/28/2002		0	0					7.2 J				
PSCHAR	CAG-X30	8/28/2002		0	0					1.9 <i>J</i>				
PSCHAR	CAG-X31	8/28/2002	CAG-X31-VS	0	0					16.4 <i>J</i>				
PSCHAR	CAG-X8	7/2/2002	CAG-X-8	0	0					4.4 <i>J</i>				
PSCHAR	CAG-Y27	7/1/2002	CAG-Y-27	0	0					32.3				
PSCHAR	CAG-Y28	8/28/2002	CAG-Y28-VS	0	0					4.0 <i>J</i>				
PSCHAR	CAG-Y29	9/16/2002	CAG-Y29-VS	0	0					0.50 <i>U</i>				
PSCHAR	CAG-Y30	9/16/2002		0	0					0.50 <i>U</i>				
PSCHAR	CAG-Y31	8/28/2002		0	0					55.4 <i>J</i>				
PSCHAR	CAG-Y32	8/28/2002		0	0					3.8 <i>J</i>				
PSCHAR	CAG-Y33	8/28/2002		0	0					0.55 <i>UR</i>				
PSCHAR	CAG-Z27	8/28/2002		0	0					12.3 <i>J</i>				
PSCHAR	CAG-Z28	8/28/2002		0	0					14.7 <i>J</i>				
PSCHAR	CAG-Z29	8/28/2002		0	0					0.55 <i>UR</i>				
PSCHAR	CAG-Z30	8/28/2002		0	0					0.55 <i>UR</i>				
PSCHAR	CAG-Z31	8/28/2002		0	0					0.50 <i>UR</i>				
PSCHAR	CAG-Z32	8/28/2002	CAG-Z32-VS	0	0					13.0 <i>J</i>				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 8 of 36

Table C-1. (cont.)

Survey Station Date Sample ID Replicate Subsample (mg/kg dry) (mg	Chromium (mg/kg dry)	Cobalt (mg/kg dry)	Copper (mg/kg dry)	Fluoride (mg/kg dry)
PSCHAR CAG-Z33 8/28/2002 CAG-Z33-VS 0 0 14 J PSCHAR CAG-Z7S 7/1/2002 CAG-Z-7-S 0 0 2.50 PSCHAR CIT1250N 6/29/2002 C1T1-250-N 2 0 2.70 PSCHAR CVT1-0N 6/29/2002 CVT1-0-N 0 0 5.60 PSCHAR CVT1-10S 6/29/2002 CVT1-0-S 0 0 12.5 PSCHAR CVT1-10N 6/29/2002 CVT1-10-N 0 0 30.7 PSCHAR CVT1-10S 6/29/2002 CVT1-10-S 0 0 23.4 PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 1 0 2.70	(3 3 7 7 7	(3 3 - 7)	(3 3 : 7/	(3 3 - 7)
PSCHAR CIT1250N 6/29/2002 C1T1-250-N 2 0 2.70 PSCHAR CVT1-0N 6/29/2002 CVT1-0-N 0 0 5.60 PSCHAR CVT1-0S 6/29/2002 CVT1-0-S 0 0 12.5 PSCHAR CVT1-10N 6/29/2002 CVT1-10-N 0 0 30.7 PSCHAR CVT1-10S 6/29/2002 CVT1-10-S 0 0 23.4 PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 1 0 2.70				
PSCHAR CVT1-0N 6/29/2002 CVT1-0-N 0 0 5.60 PSCHAR CVT1-0S 6/29/2002 CVT1-0-S 0 0 12.5 PSCHAR CVT1-10N 6/29/2002 CVT1-10-N 0 0 30.7 PSCHAR CVT1-10S 6/29/2002 CVT1-10-S 0 0 23.4 PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 1 0 2.70				
PSCHAR CVT1-0S 6/29/2002 CVT1-0-S 0 0 12.5 PSCHAR CVT1-10N 6/29/2002 CVT1-10-N 0 0 30.7 PSCHAR CVT1-10S 6/29/2002 CVT1-10-S 0 0 23.4 PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 1 0 2.70				
PSCHAR CVT1-0S 6/29/2002 CVT1-0-S 0 0 12.5 PSCHAR CVT1-10N 6/29/2002 CVT1-10-N 0 0 30.7 PSCHAR CVT1-10S 6/29/2002 CVT1-10-S 0 0 23.4 PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 1 0 2.70				
PSCHAR CVT1-10S 6/29/2002 CVT1-10-S 0 0 23.4 PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 1 0 2.70				
PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 1 0 2.70				
PSCHAR CVT2-0N 6/30/2002 CVT2-0-N 2 0 2.60				
PSCHAR CVT2-0S 6/30/2002 CVT2-0-S 0 0 5.30				
PSCHAR CVT3-0N 6/30/2002 CVT3-0-N 0 0 10,600 5.00 <i>U</i> 10.0 <i>U</i> 357 3.85	20.6	16.7	19.7	
PSCHAR CVT3-0S 6/30/2002 CVT3-0-S 0 0 4.00				
PSCHAR CVT4-0N 6/30/2002 CVT4-0-N 0 0 2.20 <i>J</i>				
PSCHAR CVT4-0S 6/30/2002 CVT4-0-S 0 0 1.60 <i>J</i>				
PSCHAR CVT5-0N 6/30/2002 CVT5-0-N 1 0 2.70 <i>J</i>				
PSCHAR CVT5-0N 6/30/2002 CVT5-0-N 2 0 3.00				
PSCHAR CVT5-0S 6/30/2002 CVT5-0-S 0 0 0.500 <i>UJ</i>				
PSCHAR CVT6-0N 6/30/2002 CVT6-0-N 0 0 6.40				
PSCHAR CVT6-0S 6/30/2002 CVT6-0-S 0 0 7.60 <i>J</i>				
PSCHAR CVT6-10S 6/30/2002 CVT6-10-S 0 0 5.30 <i>J</i>				
PSCHAR CVT7-0N 7/3/2002 CVT7-0-N 0 0 6 <i>J</i>				
PSCHAR CVT7-0S 7/3/2002 CVT7-0-S 0 0 9 <i>J</i>				
PSCHAR CVT7-10S 7/3/2002 CVT7-10-S 1 0 9.7 <i>J</i>				
PSCHAR CVT7-10S 7/3/2002 CVT7-10-S 2 0 5.30				
PSCHAR CVT8-0N 7/3/2002 CVT8-0-N 0 0 19.6 <i>J</i>				
PSCHAR CVT8250N 7/3/2002 CVT8-250-N 0 0 1.50				
PSCHAR CVT9-0N 7/3/2002 CVT9-0-N 0 0 76.7				
PSCHAR CVT9-50N 7/3/2002 CVT9-50N 0 0 0.500 <i>U</i>				
PSCHAR CVT9150S 7/3/2002 CVT9-150-S 0 0 5.70				
PSCHAR CVT9300S 7/3/2002 CVT9-300-S 0 0 1.70				
PSCHAR CVT9500N 7/3/2002 CVT9-500-N 0 0 0.500 <i>U</i>				
PSCHAR DSP-A6 6/23/2002 DSP-A-6 0 0 3.3				
PSCHAR DSP-AA2 6/23/2002 DSP-AA-2 0 0 2.1				
PSCHAR DSP-B1 6/23/2002 DSP-B-1 0 0 23.8				
PSCHAR DSP-B1 7/25/2002 V2-DSP-B-1 0 0 4.6				
PSCHAR DSP-B4 6/25/2002 DSP-B-4 0 0 5.9				
PSCHAR DSP-B9 9/19/2002 DSP-B9-VS 0 0 3.7				
PSCHAR DSP-C3 6/23/2002 DSP-C-3 0 0 11.4 PSCHAR DSP-D4 6/23/2002 DSP-D-4 0 0 281				
PSCHAR DSP-G6 6/23/2002 DSP-G-6 0 0 18.8 PSCHAR DSP-G6 9/19/2002 DSP-G6-VS 0 0 6.9				
PSCHAR DSP-IG6 9/19/2002 DSP-IG-5-B 0 0 0 3				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 9 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	DSP-IH5A	7/26/2002	DSP-IH-5-A	1	0					9.1				
PSCHAR	DSP-IH5A	7/26/2002	DSP-IH-5-A	2	0					8.2				
PSCHAR	PG-P5S	7/28/2002	PG-P5S	0	0					0.5 <i>U</i>				
PSCHAR	RAT1-0EA		RAT1-OE-A	0	0					11.6				
PSCHAR	RAT2-50W		RAT2-50-W	1	0	9,600		11 <i>U</i>		17 <i>J</i>				
PSCHAR	RAT2-50W		RAT2-50-W	2	0					17 <i>J</i>				
PSCHAR	RAT2250E		RAT2-250E	2	0					0.4 <i>U</i>				
PSCHAR	RAT3-0EA		RAT3-OEA	0	0					12.4				
PSCHAR	RAT4-0W	7/2/2002	RAT4-0-W	0	0					10.1 <i>J</i>				
PSCHAR	RAT5-0NA		RAT5-0NA	0	0	6,580	6.5 <i>U</i>	13 <i>U</i>	1,700	218	22.3	17.3	109	
PSCHAR	RAT5-0W	7/2/2002	RAT5-0-W	0	0					35.5 J				
PSCHAR		7/2/2002	RAT5-10-W	0	0					5.1 <i>J</i>				
FUGDST01		8/22/2001	RC-01-A	0	0			7.20		1.90				
FUGDST01		8/23/2001	RC-03-A	0	0			3.90		0.500 <i>U</i>				
FUGDST01		8/23/2001	RC-04-A	0	0			1.30		1.30				
FUGDST01		8/23/2001	RC-05-A	0	0	40.000	5044	4.40	5.000	2.10	00.0	40.0	04.0	
FUGDST01		8/23/2001	RC-06-A	0	0	13,000	5.0 <i>U</i>	7	5,900	1.00	22.0	19.2	64.6	
FUGDST01		8/23/2001	RC-07-A	0	0			4.10		1.40				
FUGDST01		8/24/2001	RC-08-A	0	0			24.2		0.500 <i>U</i>				
FUGDST01		8/24/2001	RC-09-A	0	0	0.050	<i></i>	28.2	F70	1.20	447	0.4	47.7	
FUGDST01		8/26/2001	RF-01	0	0	6,850	5.5 <i>U</i>	9	570	6.70	14.7	9.1	17.7	
FUGDST01		8/25/2001	RF-02	0 0	0 0	7,380	5.5 U	8 7	1,170	6.20 3.75	16.8	11.3	22.3	
FUGDST01 FUGDST01	RF-03 RF-04	8/25/2001 8/26/2001	RF-03 RF-04	1	0	3,930	5.5 <i>U</i> 5.5 <i>U</i>	9	650 1,010	3.75 4.40	8.1 7.2	6 3.8	12.5 9.9	
FUGDST01	RF-04 RF-04	8/26/2001	RF-04 RF-04	2	0	2,490 3,300	5.5 <i>U</i>	9	1,200	5.10	8.5	3.0 4.7	12.3	
FUGDST01	RF-04 RF-05	8/26/2001	RF-04 RF-05	0	0	16,600	5.0 <i>U</i>	8	6,290	3.90	24	4.7 27	59.1	
FUGDST01	RF-05	8/26/2001	RF-05	0	0	12,100	5.0 <i>U</i>	8	2,760	29.3	18	13.1	58.8	
FUGDST01	RF-07	8/26/2001	RF-07	0	0	9,890	5.5 <i>U</i>	20	7,090	17.3	17.4	10.2	72.8	
FUGDST01	RF-08	8/26/2001	RF-08	0	0	3,780	5.5 <i>U</i>	10.2	3,770	9.45	7.5	5	36.4	
PHASE1RA		7/14/2003	SL0009	0	0	7,940	0.930 <i>J</i>	4.40	2,110	9.54 <i>J</i>	12.2	8.92	22.2	0.7 <i>J</i>
PHASE1RA		7/17/2003	SL0009	0	0	5,640	3.73 J	9.8	1,660 J	50.5 J	13.2	10.1	36.5 J	0.4 <i>U</i>
PHASE1RA		7/14/2003	SL0008	0	0	14,200	0.390 J	6.30	1,720	3.10 J	20.2	13.0	24.0	1.3 <i>J</i>
PHASE1RA		7/14/2003	SL0007	0	0	3,560	0.590 J	3.00	998	2.41 <i>J</i>	11.2	7.04	13.9	1 <i>J</i>
PHASE1RA		7/14/2003	SL0006	0	0	2,270	0.540 J	1.40	1,260	2.28 J	5.74	4.51	10.6	0.6 <i>J</i>
PHASE1RA		7/14/2003	SL0005	0	0	1,180	0.380 J	1.30	732	2.61 J	4.86	4.21	9.76	0.6 <i>J</i>
PHASE1RA		7/14/2003	SL0004	0	0	2,770	0.560 J	3.30	2,150	2.92 J	6.37	5.09	14.1	1.1 <i>J</i>
PHASE1RA		7/22/2003	SL0029	1	0	9,800	0.87 J	4.2	5,600 J	2.67 J	12.9	9.48	42.4 <i>J</i>	0.4 <i>U</i>
PHASE1RA		7/22/2003	SL0029	2	0	10,800	0.79 J	4.5	5,800 J	3.8 <i>J</i>	11.2	8.44	58.1 <i>J</i>	0.4 <i>U</i>
PHASE1RA		7/14/2003	SL0003	0	0	5,610	1.39 <i>J</i>	14.0	5,490	9.61 <i>J</i>	11.0	8.12	36.2	0.9 <i>J</i>
PHASE1RA		7/21/2003	SL0026	0	0	6,800	1.33 <i>J</i>	11.5	6,640 <i>J</i>	6 J	9.47	6.78	35.7 J	0.4 <i>U</i>
PHASE1RA		7/14/2003	SL0010	0	0	4,870	4.22 J	6.40	1,110	49.8 <i>J</i>	9.32	8.16	29.5	0.5 <i>J</i>
PHASE1RA		7/14/2003	SL0011	1	0	10,200	1.27 J	6.30	1,720	21.1 <i>J</i>	17.7	11.7	26.7	0.8 <i>J</i>
PHASE1RA		7/14/2003	SL0011	2	0	10,500	1.20 J	5.80	1,520	19.9 <i>J</i>	17.0	11.5	26.9	0.9 <i>J</i>
	RF-PORT	8/26/2001	RF-PORT	0	0	8,930	6.0 <i>U</i>	10	1,210	27.9	17.4	11	29.6	

8601997.001 4400\dmts_ra_app_c_ta.xls Page 10 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID		Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	ROT1-0N	7/3/2002	ROT1-0N	0	0	(99 5)	(119,119 511)	(99 5)	(g,g)	16.0	(119,119 511)	(99)	(g,g)/	(99))
PSCHAR	ROT5-10S	7/5/2002	ROT5-10-S	1	0					3.40				
PSCHAR	ROT5-10S	7/5/2002	ROT5-10-S	2	0					4.5 <i>J</i>				
PSCHAR	ROT5-50S	7/5/2002	ROT5-50-S	0	0					17.0				
PSCHAR	ROT5250S		ROT5-250-S	0	0					0.550 <i>U</i>				
PSCHAR	ROT5500S	7/5/2002	ROT5-500-S	0	0					1.20				
PSCHAR	ROT6-10S	7/5/2002	ROT610S	0	0	6,980		12 <i>U</i>		11.6				
PSCHAR	ROT6-50S	7/5/2002	ROT650S	0	0					25.6				
PSCHAR	ROT6250S	7/5/2002	ROT6250S	0	0					2.50				
PSCHAR	ROT6500S	7/5/2002	ROT6-500-S	1	0					1.70				
PSCHAR	ROT6500S	7/5/2002	ROT6-500-S	2	0					1.5 <i>J</i>				
PSCHAR	ROT7-0S	7/5/2002	ROT7-0-S	0	0					105				
PSCHAR	ROT7-10S	7/5/2002	ROT710S	0	0					4.30				
PSCHAR	ROT8-0S	7/5/2002	ROT8-OS	0	0	6,630		11 <i>U</i>		27.6				
PSCHAR	ROT8-10S	7/5/2002	ROT8-10-S	0	0					25.1				
PSCHAR	ROT8-50S	7/5/2002	ROT8-50-S	0	0					10.5				
PSCHAR	ROT8250S	7/5/2002	ROT8-250-S	0	0					0.500 <i>U</i>				
PSCHAR	ROT9-0N	7/3/2002	ROT9-0N	0	0					31.8				
PSCHAR	ROT9-0S	7/5/2002	ROT9-OS	1	0					35.1				
PSCHAR	ROT9-0S	7/5/2002	ROT9-OS	2	0					27.1 <i>J</i>				
PSCHAR	ROT9-10N	7/5/2002	ROT9-10N	0	0					32.6 <i>J</i>				
PSCHAR	ROT9-10S	7/5/2002	ROT9-10-S	0	0					71.8				
FUGDST01	RS-01	8/24/2001	RS-01	0	0			7.70		13.3				
FUGDST01	RS-13	8/25/2001	RS-13	1	0			5.70		2.80				
FUGDST01	RS-13	8/25/2001	RS-13	2	0			5.00		2.60				
FUGDST01	RS-14	8/25/2001	RS-14	0	0			7.80		1.20				
FUGDST01	RS-15	8/25/2001	RS-15	0	0			3.90		1.20				
FUGDST01	RS-16	8/25/2001	RS-16	0	0			5.30		0.500 <i>U</i>				
FUGDST01	RS-17	8/25/2001	RS-17	0	0			5.00		3.10				
FUGDST01	RS-18	8/25/2001	RS-18	0	0	2.700		3.40		2.10				
FUGDST01 FUGDST01	RS-19 RS-20	8/25/2001 8/25/2001	RS-19 RS-20	0 0	0 0	3,780		2.80 2.30		1.80 2.40				
FUGDST01	RS-20	8/25/2001	RS-21	0	0									
FUGDST01	RS-21	8/26/2001	RS-21	0	0	1,240		1.70		1.60				
FUGDST01	RS-22	8/26/2001	RS-22 RS-23	0	0	1,240		4.60 5.10		2.00 2.50				
FUGDST01	RS-24	8/26/2001	RS-24	0	0			4.40		3.30				
FUGDST01	RS-25	8/26/2001	RS-25	0	0	12,100		3.80		1.80				
FUGDST01	RS-26	8/26/2001	RS-26	0	0	12,100		3.40		3.10				
FUGDST01	RS-27	8/26/2001	RS-27	0	0			2.90		1.30				
FUGDST01	RS-28	8/26/2001	RS-28	0	0			4.00		2.50				
FUGDST01	RS-29	8/26/2001	RS-29	1	0	10,600		5.50		2.90				
FUGDST01	RS-29	8/26/2001	RS-29	2	0	10,600		5.00		2.50				
FUGDST01	RS-30	8/26/2001	RS-30	0	0	. 5,550		15.1		6.50				
FUGDST01	RS-31	8/26/2001	RS-31	0	0			5.70		5.50				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 11 of 36

Table C-1. (cont.)

	Survey			Field		Aluminum	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Fluoride
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)				
FUGDST01	RS-32	8/26/2001	RS-32	0	0	4,740		11.7		6.80				
FUGDST01	RS-33	8/26/2001	RS-33	1	0			18.4		4.50				
FUGDST01	RS-33	8/26/2001	RS-33	2	0			13.1		4.00				
FUGDST01	RS-34	8/26/2001	RS-34	0	0	5,330		14.8		3.90				
PSCHAR	TUB-1	7/5/2002	TU-1-VS	0	0					0.5 <i>UJ</i>				
PSCHAR	TUB-2	7/5/2002	TU-2-VS	0	0					0.5 <i>UJ</i>				
PSCHAR	TUB-3	8/11/2002	TU-3-VS	0	0					22 J				
PSCHAR	TUB-4	8/11/2002	TU-4-VS	0	0					1.4 <i>J</i>				
PSCHAR	TUB-5	7/5/2002	TU-5-VS	0	0					0.55 <i>UJ</i>				
PSCHAR	TUF-1	7/9/2002	TUF1	0	0					0.550 <i>U</i>				
PSCHAR	TUF-2	7/9/2002	TUF2	0	0					1.30				
PSCHAR	TUF-3	7/9/2002	TUF3	0	0					0.550 <i>U</i>				

8601997.001 4400\dmts_ra_app_c_ta.xls Page 12 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1006938	9/16/2003	1006938	0	0	(3, 3 - 11	78	(3. 3 - 1/	(3 3 77	(3 3 7 7 7	(3, 3, 1)	(3 3 7)	(3 3 77	(3 3 7 7)
TECK03	1006939	9/16/2003	1006939	0	0		168							
TECK03	1006940	9/11/2003	1006940	0	0		94							
TECK03	1006941	9/11/2003	1006941	0	0		81							
TECK03	1006944	9/11/2003	1006944	0	0		62							
TECK03	1006945	9/11/2003	1006945	0	0		839							
TECK03	1006949	9/16/2003	1006949	0	0		95							
TECK03	1006952	9/11/2003	1006952	0	0		731							
TECK03	1006956	9/11/2003	1006956	0	0		1,190							
TECK03	1006959	9/11/2003	1006959	0	0		477							
TECK03	1006960	9/11/2003	1006960	0	0		1,040							
TECK03	1006968	9/12/2003	1006968	0	0		2,710							
TECK03	1006969	9/12/2003	1006969	0	0		263							
TECK03	1006973	9/10/2003	1006973	0	0		343							
TECK03	1006977	9/9/2003	1006977	0	0		681							
TECK03	1006990	9/10/2003	1006990	0	0		343							
TECK03	1006991	9/10/2003	1006991	0	0		995							
TECK03	1006992	9/10/2003	1006992	0	0		515							
TECK03	1006993	9/10/2003	1006993	0	0		562							
TECK03	1006994	9/10/2003	1006994	0	0		657							
TECK03	1007000	9/10/2003	1007000	0	0		499							
TECK03	1007036	6/21/2003	1007036	0	0		382							
TECK03	1007038	6/21/2003	1007038	0	0		1,540							
TECK03	1007040	6/21/2003	1007040	0	0 0		268							
TECK03	1007045	6/21/2003	1007045	0 0	0		1,020 393							
TECK03 TECK03	1007055 1007069	6/19/2003 6/21/2003	1007055 1007069	0	0		393 351							
TECK03	1007088	7/13/2003	1007089	0	0		2,710							
TECK03	1007089	7/13/2003	1007089	0	0		2,710							
TECK03	1007009	7/13/2003	1007009	0	0		729							
TECK03	1007090	7/13/2003	1007090	0	0		1,030							
TECK03	1007091	7/13/2003	1007091	0	0		1,620							
TECK03	1007092	7/13/2003	1007093	0	0		1,280							
TECK03	1007094	7/13/2003	1007094	0	0		2,620							
TECK03	1007095	7/13/2003	1007095	0	0		1,720							
TECK03	1007097	7/13/2003	1007097	0	0		1,070							
TECK03	1007098	7/13/2003	1007098	0	0		1,750							
TECK03	1007128	7/13/2003	1007128	0	0		1,370							
TECK03	1007133	7/13/2003	1007133	0	0		2,300							
TECK03	1007135	7/13/2003	1007135	0	0		9,180							
TECK03	1007136	7/13/2003	1007136	0	0		5,700							
TECK03	1007150	7/14/2003	1007150	0	0		1,570							
TECK03	1007160	7/13/2003	1007160	0	0		3,080							
TECK03	1007164	7/13/2003	1007164	0	0		763							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 13 of 36

Table C-1. (cont.)

-	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)								
TECK03	1007170	7/13/2003	1007170	0	0	(99)	2,550	(g,g)	(99 2)	(99)	(g,g)	(g,g 4))	(gg 2))	(gg)/
TECK03	1007176	7/13/2003	1007176	0	0		11,000							
TECK03	1007195	7/14/2003	1007195	0	0		2,040							
TECK03	1007212	7/17/2003	1007212	0	0		907							
TECK03	1007215	7/17/2003	1007215	0	0		1,450							
TECK03	1007232	7/17/2003	1007232	0	0		1,370							
TECK03	1007239	7/17/2003	1007239	0	0		214							
TECK03	1007242	7/18/2003	1007242	0	0		223							
TECK03	1007243	7/18/2003	1007243	0	0		195							
TECK03	1007244	7/18/2003	1007244	0	0		545							
TECK03	1007245	7/18/2003	1007245	0	0		247							
TECK03	1007246	7/18/2003	1007246	0	0		873							
TECK03	1007247	7/18/2003	1007247	0	0		303							
TECK03	1007248	7/18/2003	1007248	0	0		345							
TECK03	1007249	7/18/2003	1007249	0	0		514							
TECK03	1007274	7/16/2003	1007274	0	0		1,290							
TECK03	1007278	7/15/2003	1007278	0	0		887							
TECK03	1007281	7/15/2003	1007281	0	0		1,320							
TECK03	1007290	7/15/2003	1007290	0	0		274							
TECK03	1007299	7/16/2003	1007299	0	0		1,190							
TECK03	1007314	7/17/2003	1007314	0	0		1,730							
TECK03	1007326	7/16/2003	1007326	0	0		2,010							
TECK03	1007333	7/17/2003	1007333	0	0		1,570							
TECK03	1007340	7/18/2003	1007340	0	0		274							
TECK03	1007341	7/18/2003	1007341	0	0		98							
TECK03 TECK03	1007342	7/18/2003	1007342	0	0 0		289							
TECK03	1007344	7/18/2003	1007344	0 0	0		356 397							
TECK03	1007345 1007346	7/18/2003 7/18/2003	1007345 1007346		0		170							
TECK03	1007346	7/18/2003	1007346	0 0	0		79							
TECK03	1007347	7/18/2003	1007347	0	0		391							
TECK03	1007348	7/18/2003	1007346	0	0		299							
TECK03	1007350	7/18/2003	1007350	0	0		2,440							
TECK03	1007351	7/18/2003	1007351	0	0		452							
TECK03	1007353	7/18/2003	1007353	0	0		512							
TECK03	1007354	7/18/2003	1007354	0	0		886							
TECK03	1007360	7/18/2003	1007360	0	0		1,960							
TECK03	1007362	7/18/2003	1007362	0	0		4,140							
TECK03	1007367	7/18/2003	1007367	0	0		879							
TECK03	1007370	7/19/2003	1007370	0	0		407							
TECK03	1007377	7/19/2003	1007377	0	0		1,480							
TECK03	1007387	7/20/2003	1007387	0	0		677							
TECK03	1007390	7/20/2003	1007390	0	0		523							
TECK03	1007391	7/20/2003	1007391	0	0		939							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 14 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007393	7/20/2003	1007393	0	0	(3. 3 - 11	749	(3 3 7 7 7	(3 3 7)	(3. 3 - 17	(3 3 7)	(3 3 7)	(3 3 7)	(3 3 7 7 7
TECK03	1007394	7/20/2003	1007394	0	0		1,150							
TECK03	1007397	7/20/2003	1007397	0	0		666							
TECK03	1007398	7/20/2003	1007398	0	0		563							
TECK03	1007400	7/18/2003	1007400	0	0		393							
TECK03	1007406	7/18/2003	1007406	0	0		2,970							
TECK03	1007413	7/18/2003	1007413	0	0		1,680							
TECK03	1007419	7/19/2003	1007419	0	0		250							
TECK03	1007422	7/19/2003	1007422	0	0		1,010							
TECK03	1007430	7/19/2003	1007430	0	0		1,370							
TECK03	1007439	7/20/2003	1007439	0	0		506							
TECK03	1007441	7/20/2003	1007441	0	0		1,610							
TECK03	1007442	7/20/2003	1007442	0	0		752							
TECK03	1007445	7/20/2003	1007445	0	0		745							
TECK03	1007448	7/20/2003	1007448	0	0		770							
TECK03	1007449	7/20/2003	1007449	0	0		1,710							
TECK03	1007450	7/20/2003	1007450	0	0		2,540							
TECK03	1007451	7/20/2003	1007451	0	0		1,940							
TECK03	1007452	7/20/2003	1007452	0	0		1,020							
TECK03	1007458	7/20/2003	1007458	0	0		4,790							
TECK03	1007462	7/21/2003	1007462	0	0		1,210							
TECK03	1007463	7/21/2003	1007463	0	0		970							
TECK03	1007465	7/21/2003	1007465	0	0		1,420							
TECK03	1007467	7/21/2003	1007467	0	0		3,290							
TECK03	1007468	7/21/2003	1007468	0	0		48,300							
TECK03	1007469	7/21/2003	1007469	0	0		617							
TECK03	1007473	7/22/2003	1007473	0	0		1,050							
TECK03	1007474	7/22/2003	1007474	0	0		744							
TECK03	1007475	7/22/2003	1007475	0	0		1,840							
TECK03	1007476	7/22/2003	1007476	0	0		1,550							
TECK03	1007490	7/23/2003	1007490	0	0 0		1,570							
TECK03 TECK03	1007491	7/23/2003	1007491	0			1,430							
TECK03	1007492 1007499	7/23/2003 7/20/2003	1007492	0 0	0 0		1,190 4,460							
			1007499											
TECK03 TECK03	1007500 1007502	7/20/2003	1007500	0 0	0 0		8,160 1,400							
TECK03	1007502	7/21/2003 7/21/2003	1007502 1007510	0	0		1,400 452							
TECK03	1007510	7/21/2003	1007510	0	0		452 143							
TECK03	1007514	7/22/2003	1007514	0	0		65							
TECK03	1007543	7/23/2003	1007543	0	0		154							
TECK03	1007544	7/23/2003	1007544	0	0		842							
TECK03	1007543	7/24/2003	1007543	0	0		126							
TECK03	1007553	7/24/2003	1007553	0	0		412							
TECK03	1007554	7/23/2003	1007554	0	0		577							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 15 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007566	7/23/2003	1007566	0	0	(3. 3 - 17	764	(3 3 77	(3 3 7)	(3. 3 - 17	(3 3 7)	(3 3 7)	(3 3 77	(3 3 77
TECK03	1007569	7/23/2003	1007569	0	0		353							
TECK03	1007579	7/24/2003	1007579	0	0		949							
TECK03	1007582	7/24/2003	1007582	0	0		502							
TECK03	1007583	7/24/2003	1007583	0	0		745							
TECK03	1007584	7/24/2003	1007584	0	0		563							
TECK03	1007585	7/24/2003	1007585	0	0		43							
TECK03	1007591	7/24/2003	1007591	0	0		212							
TECK03	1007617	7/26/2003	1007617	0	0		12 <i>U</i>							
TECK03	1007618	7/26/2003	1007618	0	0		11 <i>U</i>							
TECK03	1007619	7/26/2003	1007619	0	0		27							
TECK03	1007626	7/27/2003	1007626	0	0		54							
TECK03	1007627	7/27/2003	1007627	0	0		325							
TECK03	1007648	7/28/2003	1007648	0	0		88							
TECK03	1007650	7/28/2003	1007650	0	0		252							
TECK03	1007652	7/26/2003	1007652	0	0		39							
TECK03	1007659	7/27/2003	1007659	0	0		163							
TECK03	1007661	7/27/2003	1007661	0	0		185							
TECK03	1007664	7/27/2003	1007664	0	0		39							
TECK03	1007673	7/28/2003	1007673	0	0		106							
TECK03	1007678	7/28/2003	1007678	0	0		11 <i>U</i>							
TECK03	1007682	7/28/2003	1007682	0	0		45							
TECK03	1007683	7/28/2003	1007683	0	0		41							
TECK03	1007684	7/28/2003	1007684	0	0		167							
TECK03	1007685	7/28/2003	1007685	0	0		110							
TECK03	1007687	7/28/2003	1007687	0	0		105							
TECK03	1007688	7/28/2003	1007688	0	0		857							
TECK03	1007701	7/28/2003	1007701	0	0		46							
TECK03	1007702	7/28/2003	1007702	0	0		11 <i>U</i>							
TECK03	1007703	7/28/2003	1007703	0	0		19							
TECK03	1007704	7/28/2003	1007704	0	0		33							
TECK03 TECK03	1007705	7/28/2003	1007705	0	0 0		102							
TECK03	1007901 1007904	7/19/2003 7/21/2003	1007901	0 0	0		1,670 1,120							
TECK03	1007904	7/21/2003	1007904 1007911	0	0		40							
TECK03	1007911	7/28/2003	1007911	0	0		192							
TECK03	1007912	7/28/2003	1007912	0	0		29							
TECK03	1007916	9/3/2003	1007916	0	0		923							
TECK03	1007980	9/7/2003	1007980	0	0		923 448							
TECK03	1007983	9/16/2003	1007983	0	0		48							
TECK03	1007983	9/10/2003	1007983	0	0		108							
TECK03	1007990	9/11/2003	1007990	0	0		71							
TECK03	1007991	9/11/2003	1007991	0	0		512							
TECK03	1007993	9/11/2003	1007993	0	0		236							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 16 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)								
TECK03	1007995	9/11/2003	1007995	0	0		105							
TECK03	1007996	9/11/2003	1007996	0	0		1,570							
TECK03	1007997	9/11/2003	1007997	0	0		146							
TECK03	1007998	9/11/2003	1007998	0	0		33							
TECK03	1008242	9/3/2003	1008242	0	0		2,660							
TECK03	1008244	9/3/2003	1008244	0	0		924							
TECK03	1008246	9/3/2003	1008246	0	0		1,160							
TECK03	1008247	9/3/2003	1008247	0	0		1,600							
TECK03	1008249	9/3/2003	1008249	0	0		1,010							
TECK03	1008250	9/3/2003	1008250	0	0		1,520							
TECK03	1008253	9/3/2003	1008253	0	0		862							
TECK03	1008255	9/3/2003	1008255	0	0		1,070							
TECK03	1008257	9/3/2003	1008257	0	0		711							
TECK03	1008258	9/3/2003	1008258	0	0		655							
TECK03	1008260	9/3/2003	1008260	0	0		968							
TECK03	1008262	9/3/2003	1008262	0	0		1,850							
TECK03	1008263	9/3/2003	1008263	0	0		747							
TECK03	1008265	9/4/2003	1008265	0	0		1,690							
TECK03	1008279	9/4/2003	1008279	0	0		180							
TECK03	1008287	9/4/2003	1008287	0	0		550							
TECK03	1008317	9/7/2003	1008317	0	0		1,090							
TECK03	1008318	9/7/2003	1008318	0	0		695							
TECK03	1008341	9/9/2003	1008341	0	0		766							
TECK03	1008346	9/10/2003	1008346	0	0		486							
TECK03	1008347	9/10/2003	1008347	0	0		718							
TECK03	1008357	9/7/2009	1008357	0	0		285							
TECK03	1008362	9/7/2009	1008362	0	0		689							
TECK03	1008363	9/7/2009	1008363	0	0		1,280							
TECK03	1008364	9/7/2009	1008364	0	0		1,100							
TECK03	1008370	9/7/2009	1008370	0	0		769							
TECK03	1008374	9/7/2009	1008374	0	0		748							
TECK03	1008375	9/7/2009	1008375	0	0		723							
TECK03	1008376	9/7/2009	1008376	0	0		1,980							
TECK03	1008396	9/8/2009	1008396	0	0		86							
SUPPRSS	101_A	7/17/2002	RS-101A-VS	0	0		11 <i>U</i>							
SUPPRSS	101_B	7/17/2002	RS-101B-VS	0	0		11 <i>U</i>							
SUPPRSS	101_C	7/17/2002	RS-101C-VS	0	0		11 <i>U</i>							
PSCHAR	106_A1	6/17/2002	RF-106A	0	0		2,430							
PSCHAR	107_A1	6/17/2002	RF-107A	0	0		2,690							
PSCHAR	108_A1	6/17/2002	RF-108A	0	0		2,070							
PSCHAR	109_A1	6/17/2002	RF-109A	0	0		1,510							
PSCHAR	110_A1	6/17/2002	RF-110A	0	0		2,520							
PSCHAR	111_A1	6/17/2002	RF-111A	0	0		2,370							
PSCHAR	112_A1	6/17/2002	RF-112A	0	0		1,490							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 17 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)				
PSCHAR	113_A1	6/17/2002	RF-113A	0	0	19,300	1,680	427		1 <i>U</i>	28.1	10 <i>U</i>	1 <i>U</i>	
PSCHAR	115_A1	6/17/2002	RF-115-A	0	0		913							
PSCHAR	116_A1	6/17/2002	RF-116-A	0	0		996							
PSCHAR	122_A1	6/17/2002	RF-122-A	0	0	17,200	978	411		1 <i>U</i>	25.4	10 <i>U</i>	1 <i>U</i>	
PSCHAR	123_A1	6/17/2002	RF-123-A	1	0		943							
PSCHAR	123_A1	6/17/2002	RF-123-A	2	0		1,000							
SUPPRSS	145_A	5/31/2002	RC-145-A	0	0		509							
SUPPRSS	145_A	6/1/2002	RS-145-A	0	0	24,000	910	400		5.10 <i>U</i>	25.8	51.0 <i>U</i>	5.10 <i>U</i>	78.7
PSCHAR	145_A1	6/1/2002	RF-145-A	0	0		1,120							
PSCHAR	148_A1	6/1/2002	RF-148-A	0	0		1,970							
PSCHAR	149_C1	6/1/2002	RF-149-C	0	0		1,220							
PSCHAR	150_A1	6/1/2002	RF-150-A	0	0		1,210							
PSCHAR	150_C1	6/3/2002	RF-150-C	0	0	27,000	1,380	677		5.0 <i>U</i>	30.9	50 <i>U</i>	5.0 <i>U</i>	60.4
PSCHAR	153_A1	6/3/2002	RF-153-A	0	0		1,370							
PSCHAR	153_C1	6/3/2002	RF-153-C	0	0		1,310							
PSCHAR	154_C1	6/3/2002	RF-154-C	0	0		1,090							
PSCHAR	155_C1	6/3/2002	RF-155-C	0	0		1,380							
PSCHAR	156_C1	6/3/2002	RF-156-C	1	0		1,470							
PSCHAR	156_C1	6/3/2002	RF-156-C	2	0	19,200	1,300	460		5.00 <i>U</i>	21	50.0 <i>U</i>	5.00 <i>U</i>	57
PSCHAR	157_A1	6/3/2002	RF-157-A	0	0	23,100	1,460	377		5.05 <i>U</i>	28.4	50.5 <i>U</i>	5.05 <i>U</i>	76.2
PSCHAR	159_C1	6/3/2002	RF-159-C	0	0		1,330							
PSCHAR	160_C1	6/3/2002	RF-160-C	0	0		1,680							
PSCHAR	165_C1	6/4/2002	RF-165-C	0	0	19,700	1,800	633		5.0 <i>U</i>	22.1	50 <i>U</i>	5.0 <i>U</i>	65.4
PSCHAR	169_A1	6/4/2002	RF-169-A	0	0	19,500	2,820	380		1.00 <i>U</i>	26.3	10.0 <i>U</i>	3.05	
PSCHAR	170_C1	6/4/2002	RF-170-C	0	0	22,800	1,140	1,000		1.05 <i>U</i>	32.4	10.5 <i>U</i>	1.05 <i>U</i>	
PSCHAR	171_A1	6/4/2002	RF-171-A	1	0		2,320							
PSCHAR	171_A1	6/4/2002	RF-171-A	2	0		2,370							
PSCHAR	171_C1	6/4/2002	RF-171-C	0	0		1,870							
PSCHAR	175_A1	6/5/2002	RF-175-A	0	0		4,320							
PSCHAR	176_C1	6/5/2002	RF-176-C	0	0		2,630							
PSCHAR	178_A1	6/5/2002	RF-178-A	0	0	23,000	4,520	478		1.05 <i>U</i>	27.8	10.5 <i>U</i>	5.10	
PSCHAR	178_C1	6/5/2002	RF-178-C	0	0		3,210							
PSCHAR	179_C1	6/5/2002	RF-179-C	0	0		3,640							
PSCHAR	180_C1	6/5/2002	RF-180-C	0	0	17,600	4,110	368		1.00 <i>U</i>	24.2	10.0 <i>U</i>	5.00	
PSCHAR	189_A1	6/7/2002	RF-189-A	0	0		1,050							
PSCHAR	189_C1	6/7/2002	RF-189-C	0	0	22,200	2,860	527		1.00 <i>U</i>	30.5	10.0 <i>U</i>	2.40	
PSCHAR	190_C1	6/7/2002	RF-190-C	0	0		1,850							
PSCHAR	191_C1	6/7/2002	RF-191-C	0	0	22,600	1,510	485		1.00 <i>U</i>	29.0	10.0 <i>U</i>	1.00 <i>U</i>	
PSCHAR	192_C1	6/7/2002	RF-192-C	0	0		1,250							
PSCHAR	216_A1	6/9/2002	RF-216A	0	0	24,900	339	489		1 <i>U</i>	29.8	10 <i>U</i>	1 <i>U</i>	65.3
PSCHAR	220_C1	6/9/2002	RF-220C	0	0		279							
PSCHAR	222_C1	6/9/2002	RF-222C	0	0	31,800	579	467		1 <i>U</i>	33.7	10 <i>U</i>	1 <i>U</i>	50.4
TECK03	471204	6/6/2003	471204	0	0		360							
TECK03	471210	6/6/2003	471210	0	0		138							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 18 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	471212	6/6/2003	471212	0	0	(119,119 211)	798	(g,g)	(99 2)	(99))	(g,g)	(g,g 4))	(99 2)/	(99)
TECK03	471221	6/7/2003	471221	0	0		8,790							
TECK03	471264	6/6/2003	471264	0	0		408							
TECK03	471272	6/6/2003	471272	0	0		356							
TECK03	471274	6/6/2003	471274	0	0		310							
TECK03	471276	6/6/2003	471276	0	0		72							
TECK03	471283	6/7/2003	471283	0	0		174							
TECK03	471287	6/7/2003	471287	0	0		53							
TECK03	471293	6/7/2003	471293	0	0		1,130							
TECK03	471295	6/7/2003	471295	0	0		2,640							
TECK03	471297	6/7/2003	471297	0	0		1,170							
TECK03	471299	6/7/2003	471299	0	0		686							
TECK03	471300	6/6/2003	471300	0	0		257							
TECK03	471320	6/10/2003	471320	0	0		4,950							
TECK03	471325	6/10/2003	471325	0	0		4,140							
TECK03	471332	6/10/2003	471332	0	0		1,230							
TECK03	471333	6/10/2003	471333	0	0		1,130							
TECK03	471334	6/10/2003	471334	0	0		585							
TECK03	471341	6/11/2003	471341	0	0		2,240							
TECK03	471350	6/13/2003	471350	0	0		666							
TECK03	471352	6/7/2003	471352	0	0		365							
TECK03	471353	6/7/2003	471353	0	0		521							
TECK03	471355	6/7/2003	471355	0	0		1,200							
TECK03	471356	6/7/2003	471356	0	0		1,400							
TECK03	471358	6/7/2003	471358	0	0		125							
TECK03 TECK03	471365	6/16/2003	471365	0	0		382 1,260							
TECK03	471374	6/17/2003	471374	0	0 0									
TECK03	471418 471419	6/10/2003 6/10/2003	471418 471419	0 0	0		2,280 1,790							
TECK03	471419	6/10/2003	471419 471420	0	0		714							
TECK03	471421	6/10/2003	471420	0	0		830							
TECK03	471425	6/11/2003	471421	0	0		2,330							
TECK03	471453	6/14/2003	471453	0	0		1,480							
TECK03	471457	6/14/2003	471457	0	0		280							
TECK03	471458	6/14/2003	471458	0	0		774							
TECK03	471463	6/14/2003	471463	0	0		854							
TECK03	471464	6/14/2003	471464	0	0		2,710							
TECK03	471465	6/14/2003	471465	0	0		1,460							
TECK03	471466	6/14/2003	471466	0	0		351							
TECK03	471474	6/14/2003	471474	0	0		3,240							
TECK03	471487	6/15/2003	471487	0	0		3,140							
TECK03	471501	6/7/2003	471501	0	0		13,400							
TECK03	471505	6/10/2003	471505	0	0		2,500							
TECK03	471508	6/10/2003	471508	0	0		890							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 19 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	471520	6/21/2003	471520	0	0	. 0 0 ,,	704	· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •	, <u> </u>		· · · · · · · · · · · · · · · · · · ·	· 0 0 7/	<u>, , , , , , , , , , , , , , , , , , , </u>
TECK03	471539	7/13/2003	471539	0	0		943							
TECK03	471540	7/13/2003	471540	0	0		2,730							
TECK03	471549	7/17/2003	471549	0	0		247							
TECK03	471550	7/18/2003	471550	0	0		1,040							
PSCHAR			CAG-AA28-VS	0	0		87.8 <i>J</i>							
PSCHAR			CAG-AA29-VS	0	0		75.2							
PSCHAR			CAG-AA30-VS	0	0		56.7							
			CAG-AA31-VS	0	0		228							
PSCHAR	CAG-F2	7/28/2002	CAG-2-F	0	0		1,250							
PSCHAR	CAG-H30	7/3/2002	CAG-H-30	0	0	27,800	13,200 <i>J</i>							
PSCHAR	CAG-I1	7/28/2002	CAG-1-I	0	0		1,340							
PSCHAR	CAG-L33	7/3/2002	CAG-L-33	0	0		305 J							
PSCHAR	CAG-R2	7/1/2002	CAG-R-2-S	0	0		3,410							
PSCHAR	CAG-R32	7/21/2002	CAG-R-32	0	0		331 <i>J</i>							
PSCHAR	CAG-R34	9/19/2002		0	0		1,570 <i>J</i>							
PSCHAR PSCHAR	CAG-S34 CAG-U130	9/19/2002		0 0	0 0		376 <i>J</i>							
	CAG-U130		CAG-U-130	0	0	21 000	1,980							
PSCHAR PSCHAR	CAG-U29	7/3/2002 7/21/2002	CAG-U-29 CAG-U-34	0	0	31,000	2,110 <i>J</i> 888 <i>J</i>							
PSCHAR	CAG-034 CAG-W29	7/1/2002	CAG-W-29	0	0	35,000	4,220	442		1.1 <i>U</i>	35.2	11 <i>U</i>	5.9	42.4
PSCHAR	CAG-W23	8/28/2002		0	0	33,000	333 J	772		1.1 0	33.2	11 0	5.5	72.7
PSCHAR			CAG-X100-VS	0	0		70.9							
PSCHAR			CAG-X101-VS	0	0		227							
PSCHAR	CAG-X12	7/2/2002	CAG-X-12	0	0		266							
PSCHAR	CAG-X22	7/1/2002	CAG-X-22	0	0		479							
PSCHAR	CAG-X26	7/1/2002	CAG-X-26-A	0	0		861							
PSCHAR	CAG-X29	8/28/2002		0	0		437 J							
PSCHAR	CAG-X30	8/28/2002		0	0		79 J							
PSCHAR	CAG-X31	8/28/2002		0	0		1,080 <i>J</i>							
PSCHAR	CAG-X8	7/2/2002	CAG-X-8	0	0		224							
PSCHAR	CAG-Y27	7/1/2002	CAG-Y-27	0	0		1,030							
PSCHAR	CAG-Y28	8/28/2002	CAG-Y28-VS	0	0		199 <i>J</i>							
PSCHAR	CAG-Y29	9/16/2002	CAG-Y29-VS	0	0		21.3 <i>J</i>							
PSCHAR	CAG-Y30	9/16/2002	CAG-Y30-VS	0	0		23.0 J							
PSCHAR	CAG-Y31		CAG-Y31-VS	0	0		1,130 <i>J</i>							
PSCHAR	CAG-Y32		CAG-Y32-VS	0	0		220 J							
PSCHAR	CAG-Y33		CAG-Y33-VS	0	0		51.4 <i>J</i>							
PSCHAR	CAG-Z27	8/28/2002		0	0		532 J							
PSCHAR	CAG-Z28		CAG-Z28-VS	0	0		327 J							
PSCHAR	CAG-Z29	8/28/2002		0	0		25.6 J							
PSCHAR	CAG-Z30	8/28/2002		0	0		59.5 J							
PSCHAR	CAG-Z31	8/28/2002		0	0		40.9 <i>J</i>							
PSCHAR	CAG-Z32	8/28/2002	CAG-Z32-VS	0	0		587 J							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 20 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	CAG-Z33	8/28/2002	CAG-Z33-VS	0	0	(3 3 7)	765 J	(3 3 7 7 7	(3 3 7)	(3 3 7 7 7	(3 3 77	(3 3 7 7 7	(3 3 77	(3 3 7)
PSCHAR	CAG-Z7S	7/1/2002	CAG-Z-7-S	0	0		125							
PSCHAR	CIT1250N	6/29/2002	C1T1-250-N	2	0		92.6							
PSCHAR	CVT1-0N	6/29/2002	CVT1-0-N	0	0		294							
PSCHAR	CVT1-0S	6/29/2002	CVT1-0-S	0	0		822							
PSCHAR	CVT1-10N	6/29/2002	CVT1-10-N	0	0		3,530							
PSCHAR	CVT1-10S	6/29/2002	CVT1-10-S	0	0		1,640							
PSCHAR	CVT2-0N	6/30/2002	CVT2-0-N	1	0		86.5							
PSCHAR	CVT2-0N	6/30/2002	CVT2-0-N	2	0		95.6 J							
PSCHAR	CVT2-0S	6/30/2002	CVT2-0-S	0	0		190							
PSCHAR	CVT3-0N	6/30/2002	CVT3-0-N	0	0	31,000	132	318		1.60	55.8	10.0 <i>U</i>	1.00 <i>U</i>	
PSCHAR	CVT3-0S	6/30/2002	CVT3-0-S	0	0		146							
PSCHAR	CVT4-0N	6/30/2002	CVT4-0-N	0	0		87.7							
PSCHAR	CVT4-0S	6/30/2002	CVT4-0-S	0	0		74.4							
PSCHAR	CVT5-0N	6/30/2002	CVT5-0-N	1	0		108							
PSCHAR	CVT5-0N	6/30/2002	CVT5-0-N	2	0		145 <i>J</i>							
PSCHAR	CVT5-0S	6/30/2002	CVT5-0-S	0	0		46.0							
PSCHAR	CVT6-0N	6/30/2002	CVT6-0-N	0	0		251							
PSCHAR	CVT6-0S	6/30/2002	CVT6-0-S	0	0		503							
PSCHAR	CVT6-10S	6/30/2002	CVT6-10-S	0	0		226							
PSCHAR	CVT7-0N	7/3/2002	CVT7-0-N	0	0		226							
PSCHAR	CVT7-0S	7/3/2002	CVT7-0-S	0	0		414							
PSCHAR	CVT7-10S	7/3/2002	CVT7-10-S	1	0		431							
PSCHAR	CVT7-10S	7/3/2002	CVT7-10-S	2	0		193							
PSCHAR	CVT8-0N	7/3/2002	CVT8-0-N	0	0		1,030							
	CVT8250N	7/3/2002	CVT8-250-N	0	0		106							
PSCHAR	CVT9-0N	7/3/2002	CVT9-0-N	0	0		2,200							
PSCHAR	CVT9-50N	7/3/2002	CVT9-50N	0	0		36.4							
		7/3/2002	CVT9-150-S	0	0		462							
	CVT9300S		CVT9-300-S	0	0		74.5							
	CVT9500N	7/3/2002	CVT9-500-N	0	0		51.2							
PSCHAR	DSP-A6	6/23/2002	DSP-A-6	0	0		117							
PSCHAR	DSP-AA2	6/23/2002	DSP-AA-2	0	0		58.6							
PSCHAR	DSP-B1	6/23/2002	DSP-B-1	0	0		1,060							
PSCHAR	DSP-B1	7/25/2002	V2-DSP-B-1	0	0		259							
PSCHAR	DSP-B4	6/25/2002	DSP-B-4	0	0		482							
PSCHAR	DSP-B9	9/19/2002	DSP-B9-VS	0	0		250 J							
PSCHAR	DSP-C3	6/23/2002	DSP-C-3	0	0		465							
PSCHAR	DSP-D4	6/23/2002	DSP-D-4	0	0		22,600							
PSCHAR	DSP-D4	9/19/2002	DSP-D4-VS	0	0		1,240 <i>J</i>							
PSCHAR	DSP-F6	6/23/2002	DSP-F-6	0	0		543							
PSCHAR	DSP-G6	6/23/2002	DSP-G-6	0	0		1,540							
PSCHAR	DSP-G6	9/19/2002	DSP-G6-VS	0	0		590 <i>J</i>							
PSCHAR	DSP-HG5B	7/26/2002	DSP-HG-5-B	0	0		95.8 <i>J</i>							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 21 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	DSP-IH5A	7/26/2002	DSP-IH-5-A	1	0		320 J							
PSCHAR	DSP-IH5A	7/26/2002	DSP-IH-5-A	2	0		307 J							
PSCHAR	PG-P5S	7/28/2002	PG-P5S	0	0		8.5 <i>U</i>							
PSCHAR	RAT1-0EA	6/27/2002	RAT1-OE-A	0	0		455							
PSCHAR	RAT2-50W	7/2/2002	RAT2-50-W	1	0	25,400	473							
PSCHAR	RAT2-50W		RAT2-50-W	2	0		533							
PSCHAR	RAT2250E	6/27/2002	RAT2-250E	2	0		21.3							
PSCHAR	RAT3-0EA		RAT3-OEA	0	0		414							
PSCHAR	RAT4-0W	7/2/2002	RAT4-0-W	0	0		345							
PSCHAR	RAT5-0NA		RAT5-0NA	0	0	16,300	5,090	377		2.7	22.6	13 <i>U</i>	8.3	
PSCHAR	RAT5-0W	7/2/2002	RAT5-0-W	0	0		1,300							
PSCHAR	RAT5-10W	7/2/2002	RAT5-10-W	0	0		161							
FUGDST01		8/22/2001	RC-01-A	0	0		53.3							
FUGDST01		8/23/2001	RC-03-A	0	0		13.5							
FUGDST01		8/23/2001	RC-04-A	0	0		15.3							
FUGDST01		8/23/2001	RC-05-A	0	0		122	070		•				
FUGDST01		8/23/2001	RC-06-A	0	0	26,600	80.4	970		2	56.8		1.0 <i>U</i>	
FUGDST01		8/23/2001	RC-07-A	0	0		88.0							
FUGDST01		8/24/2001	RC-08-A	0	0		23.7							
FUGDST01		8/24/2001	RC-09-A	0	0	05.400	96.4	070		4.4.11	04.7		4.4.11	
FUGDST01	RF-01	8/26/2001	RF-01	0	0	25,100	301	373		1.1 <i>U</i>	24.7		1.1 <i>U</i>	
FUGDST01	RF-02	8/25/2001	RF-02	0	0	25,000	299	500		1.1 <i>U</i>	26.3		1.1 <i>U</i>	
FUGDST01	RF-03	8/25/2001	RF-03	0	0	10,500	116	376		1.1 <i>U</i>	17.3		1.1 <i>U</i>	
FUGDST01	RF-04	8/26/2001	RF-04	1	0	5,010	146	300		1.2 <i>U</i>	16.3		1.2 <i>U</i>	
FUGDST01	RF-04	8/26/2001	RF-04	2	0	5,910	182	345		1.2 <i>U</i>	20.3		1.2 <i>U</i>	
FUGDST01	RF-05	8/26/2001	RF-05	0	0	27,600	180	947		1 <i>U</i>	56		1 <i>U</i>	
FUGDST01	RF-06	8/26/2001	RF-06	0	0	25,000	2,440	879		1 <i>U</i>	46.8		3.5	
FUGDST01	RF-07	8/26/2001	RF-07	0	0	27,600	978	677		3.3	39.4		2.4	
FUGDST01	RF-08	8/26/2001	RF-08	0	0	16,000	421	459		0.90 <i>U</i>	21.1	0.500 /	0.90 <i>U</i>	
PHASE1RA		7/14/2003	SL0009	0	0	22,700	389 <i>J</i>	548	0.300	0.490	24.0	0.500 J	0.660	55.2
PHASE1RA		7/17/2003	SL0019	0	0	16,300	2,030 J	435	1.69	1.2 <i>J</i>	22.6	3 J	2.33	63.1
PHASE1RA		7/14/2003	SL0008	0	0	32,000	144 <i>J</i>	483	0.160	0.640	37.0	0.700 J	0.250	90.1
PHASE1RA		7/14/2003	SL0007	0	0	11,300	93.7 <i>J</i>	406	0.130	0.440	21.8	0.300 J	0.180	41.6
PHASE1RA		7/14/2003	SL0006	0	0	6,260	84.1 <i>J</i>	403	0.130	0.350	20.1	0.400 J	0.170	55.7
PHASE1RA		7/14/2003	SL0005	0	0	2,840	89.1 <i>J</i>	280	0.140	0.400	19.7	0.400 J	0.140	36.2
PHASE1RA		7/14/2003	SL0004	0	0	5,670	125 <i>J</i>	389	0.160	0.490	21.6	0.400 <i>J</i>	0.230	63.5
PHASE1RA		7/22/2003	SL0029	1	0	22,800	186	892	0.09	0.93 <i>J</i>	36.9	0.7 J	0.3	85
PHASE1RA		7/22/2003	SL0029	2	0	22,700	185	783	0.1	0.92 J	31.4	0.7 <i>J</i>	0.34	83.6
PHASE1RA		7/14/2003	SL0003	0	0	18,400	506 J	673	0.430	2.04	27.1	1.30	0.890	79.7
PHASE1RA		7/21/2003	SL0026	0	0	20,600	387	583	0.24	1.09 J	20.8	0.9 <i>J</i>	0.61	86.3
PHASE1RA		7/14/2003	SL0010	0	0	15,300	2,040 <i>J</i>	363	1.25	0.710	18.7	2.00	2.42	48.1
PHASE1RA		7/14/2003	SL0011	1	0	26,400	888 <i>J</i>	566	0.600	0.700	30.9	1.30	1.26	69.1
PHASE1RA		7/14/2003	SL0011	2	0	25,500	80.8 <i>J</i>	470	0.620	0.670	30.7	1.00 <i>J</i>	1.09	59.8
FUGDST01	RF-PORT	8/26/2001	RF-PORT	0	0	24,100	1,060	367		1.2 <i>U</i>	29.9		2.0	

8601997.001 4400\dmts_ra_app_c_ta.xls Page 22 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	ROT1-0N	7/3/2002	ROT1-0N	0	0	(g,g)	671	(g,g a.)	(9,9)	(9,9 3)	(g,g a)	(g,g)	(9,9 3.)	(g,g a.y)
PSCHAR	ROT5-10S	7/5/2002	ROT5-10-S	1	0		110							
PSCHAR	ROT5-10S	7/5/2002	ROT5-10-S	2	0		200 J							
PSCHAR	ROT5-50S	7/5/2002	ROT5-50-S	0	0		584							
	ROT5250S		ROT5-250-S	0	0		37.7							
PSCHAR	ROT5500S	7/5/2002	ROT5-500-S	0	0		32.8							
PSCHAR	ROT6-10S	7/5/2002	ROT610S	0	0	25,000	617							
PSCHAR	ROT6-50S	7/5/2002	ROT650S	0	0		1,060							
PSCHAR	ROT6250S	7/5/2002	ROT6250S	0	0		105							
PSCHAR	ROT6500S	7/5/2002	ROT6-500-S	1	0		81.0							
PSCHAR	ROT6500S	7/5/2002	ROT6-500-S	2	0		32.7 J							
PSCHAR	ROT7-0S	7/5/2002	ROT7-0-S	0	0		4,400							
PSCHAR	ROT7-10S	7/5/2002	ROT710S	0	0		168							
PSCHAR	ROT8-0S	7/5/2002	ROT8-OS	0	0	17,400	1,190							
PSCHAR	ROT8-10S	7/5/2002	ROT8-10-S	0	0		1,280							
PSCHAR	ROT8-50S	7/5/2002	ROT8-50-S	0	0		543							
PSCHAR	ROT8250S	7/5/2002	ROT8-250-S	0	0		33.8							
PSCHAR	ROT9-0N	7/3/2002	ROT9-0N	0	0		1,140							
PSCHAR	ROT9-0S	7/5/2002	ROT9-OS	1	0		1,340							
PSCHAR	ROT9-0S	7/5/2002	ROT9-OS	2	0		1,020 <i>J</i>							
PSCHAR	ROT9-10N	7/5/2002	ROT9-10N	0	0		2,070							
PSCHAR	ROT9-10S	7/5/2002	ROT9-10-S	0	0		3,510							
FUGDST01		8/24/2001	RS-01	0	0		875							
FUGDST01		8/25/2001	RS-13	1	0		127							
FUGDST01		8/25/2001	RS-13	2	0		112							
FUGDST01		8/25/2001	RS-14	0	0		66.3							
FUGDST01		8/25/2001	RS-15	0	0		69.9							
FUGDST01		8/25/2001	RS-16	0	0		59.6							
FUGDST01		8/25/2001	RS-17	0	0		159							
FUGDST01		8/25/2001	RS-18	0	0		86.6							
FUGDST01		8/25/2001	RS-19	0	0	11,000	74.1							
FUGDST01		8/25/2001	RS-20	0	0		75.4							
FUGDST01		8/25/2001	RS-21	0	0		30.3							
FUGDST01		8/26/2001	RS-22	0	0	2,650	49.3							
FUGDST01		8/26/2001	RS-23	0	0		73.9							
FUGDST01		8/26/2001	RS-24	0	0		144							
FUGDST01		8/26/2001	RS-25	0	0	25,500	64.2							
FUGDST01		8/26/2001	RS-26	0	0		111							
FUGDST01		8/26/2001	RS-27	0	0		62.9							
FUGDST01		8/26/2001	RS-28	0	0	05.000	111							
FUGDST01		8/26/2001	RS-29	1	0	25,800	144							
FUGDST01		8/26/2001	RS-29	2	0	22,400	134							
FUGDST01		8/26/2001	RS-30	0	0		572							
FUGDST01	RS-31	8/26/2001	RS-31	0	0		240							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 23 of 36

Table C-1. (cont.)

	Survey			Field		Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
FUGDST01	RS-32	8/26/2001	RS-32	0	0	17,700	352							
FUGDST01	RS-33	8/26/2001	RS-33	1	0		274							
FUGDST01	RS-33	8/26/2001	RS-33	2	0		253							
FUGDST01	RS-34	8/26/2001	RS-34	0	0	17,900	296							
PSCHAR	TUB-1	7/5/2002	TU-1-VS	0	0		11 <i>UJ</i>							
PSCHAR	TUB-2	7/5/2002	TU-2-VS	0	0		30.8 <i>J</i>							
PSCHAR	TUB-3	8/11/2002	TU-3-VS	0	0		797							
PSCHAR	TUB-4	8/11/2002	TU-4-VS	0	0		39.6							
PSCHAR	TUB-5	7/5/2002	TU-5-VS	0	0		49.4 <i>J</i>							
PSCHAR	TUF-1	7/9/2002	TUF1	0	0		11.0 <i>UJ</i>							
PSCHAR	TUF-2	7/9/2002	TUF2	0	0		11.0 <i>UJ</i>							
PSCHAR	TUF-3	7/9/2002	TUF3	0	0		10.5 <i>UJ</i>							

8601997.001 4400\dmts_ra_app_c_ta.xls Page 24 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1006938	9/16/2003	1006938	0	0				277
TECK03	1006939	9/16/2003	1006939	0	0				743
TECK03	1006940	9/11/2003	1006940	0	0				396
TECK03	1006941	9/11/2003	1006941	0	0				317
TECK03	1006944	9/11/2003	1006944	0	0				447
TECK03	1006945	9/11/2003	1006945	0	0				3,740
TECK03	1006949	9/16/2003	1006949	0	0				401
TECK03	1006952	9/11/2003	1006952	0	0				3,300
TECK03	1006956	9/11/2003	1006956	0	0				4,820
TECK03	1006959	9/11/2003	1006959	0	0				2,200
TECK03	1006960	9/11/2003	1006960	0	0				3,150
TECK03	1006968	9/12/2003	1006968	0	0				2,850
TECK03	1006969	9/12/2003	1006969	0	0				1,080
TECK03	1006973	9/10/2003	1006973	0	0				1,560
TECK03	1006977	9/9/2003	1006977	0	0				3,240
TECK03	1006990	9/10/2003	1006990	0	0				1,940
TECK03	1006991	9/10/2003	1006991	0	0				5,120
TECK03	1006992	9/10/2003	1006992	0	0				2,410
TECK03	1006993	9/10/2003	1006993	0	0				2,490
TECK03	1006994	9/10/2003	1006994	0	0				3,260
TECK03	1007000	9/10/2003	1007000	0	0				2,170
TECK03	1007036	6/21/2003	1007036	0	0				1,790
TECK03	1007038	6/21/2003	1007038	0	0				5,110
TECK03	1007040	6/21/2003	1007040	0	0				1,210
TECK03	1007045	6/21/2003	1007045	0 0	0 0				3,970
TECK03 TECK03	1007055 1007069	6/19/2003 6/21/2003	1007055 1007069	0	0				1,480 1,670
TECK03	1007089	7/13/2003	1007089	0	0				6,880
TECK03	1007088	7/13/2003	1007088	0	0				10,500
TECK03	1007089	7/13/2003	1007089	0	0				2,870
TECK03	1007090	7/13/2003	1007090	0	0				2,500
TECK03	1007091	7/13/2003	1007091	0	0				5,130
TECK03	1007032	7/13/2003	1007092	0	0				4,720
TECK03	1007093	7/13/2003	1007093	0	0				6,470
TECK03	1007095	7/13/2003	1007095	0	0				4,120
TECK03	1007097	7/13/2003	1007093	0	0				1,720
TECK03	1007037	7/13/2003	1007097	0	0				6,590
TECK03	1007030	7/13/2003	1007030	0	0				8,400
TECK03	1007123	7/13/2003	1007123	0	0				8,390
TECK03	1007135	7/13/2003	1007135	0	0				35,600
TECK03	1007136	7/13/2003	1007136	0	Ö				21,600
TECK03	1007150	7/14/2003	1007150	0	0				10,200
TECK03	1007160	7/13/2003	1007160	0	Ö				11,100
TECK03	1007164	7/13/2003	1007164	0	0				3,450

8601997.001 4400\dmts_ra_app_c_ta.xls Page 25 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007170	7/13/2003	1007170	0	0				6,630
TECK03	1007176	7/13/2003	1007176	0	0				43,200
TECK03	1007195	7/14/2003	1007195	0	0				7,880
TECK03	1007212	7/17/2003	1007212	0	0				4,500
TECK03	1007215	7/17/2003	1007215	0	0				6,280
TECK03	1007232	7/17/2003	1007232	0	0				5,170
TECK03	1007239	7/17/2003	1007239	0	0				919
TECK03	1007242	7/18/2003	1007242	0	0				854
TECK03	1007243	7/18/2003	1007243	0	0				816
TECK03	1007244	7/18/2003	1007244	0	0				1,680
TECK03	1007245	7/18/2003	1007245	0	0				1,120
TECK03	1007246	7/18/2003	1007246	0	0				3,950
TECK03	1007247	7/18/2003	1007247	0	0				1,420
TECK03	1007248	7/18/2003	1007248	0	0				1,370
TECK03	1007249	7/18/2003	1007249	0	0				1,980
TECK03	1007274	7/16/2003	1007274	0	0				4,030
TECK03	1007278	7/15/2003	1007278	0	0				3,090
TECK03	1007281	7/15/2003	1007281	0	0				5,760
TECK03	1007290	7/15/2003	1007290	0	0				1,210
TECK03	1007299	7/16/2003	1007299	0	0				5,770
TECK03	1007314	7/17/2003	1007314	0	0				4,460
TECK03	1007326	7/16/2003	1007326	0	0				4,670
TECK03	1007333	7/17/2003	1007333	0	0				5,910
TECK03	1007340 1007341	7/18/2003	1007340	0	0				1,190
TECK03 TECK03		7/18/2003	1007341	0 0	0 0				462
TECK03	1007342 1007344	7/18/2003 7/18/2003	1007342 1007344	0	0				1,180
TECK03	1007344	7/18/2003	1007344	0	0				1,560 1,720
TECK03	1007345	7/18/2003	1007345	0	0				609
TECK03	1007346	7/18/2003	1007346	0	0				322
TECK03	1007347	7/18/2003	1007347	0	0				1,570
TECK03	1007340	7/18/2003	1007340	0	0				1,110
TECK03	1007350	7/18/2003	1007350	0	0				9,710
TECK03	1007351	7/18/2003	1007351	0	0				1,780
TECK03	1007352	7/18/2003	1007352	0	0				2,020
TECK03	1007353	7/18/2003	1007353	0	0				3,320
TECK03	1007354	7/18/2003	1007360	0	0				8,220
TECK03	1007362	7/18/2003	1007362	0	0				18,400
TECK03	1007367	7/18/2003	1007367	0	0				3,480
TECK03	1007370	7/19/2003	1007370	0	0				2,310
TECK03	1007377	7/19/2003	1007377	0	0				7,310
TECK03	1007387	7/20/2003	1007387	0	0				2,810
TECK03	1007390	7/20/2003	1007390	0	Ö				2,110
TECK03	1007391	7/20/2003	1007391	0	0				3,750

8601997.001 4400\dmts_ra_app_c_ta.xls Page 26 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007393	7/20/2003	1007393	0	0				3,090
TECK03	1007394	7/20/2003	1007394	0	0				8,040
TECK03	1007397	7/20/2003	1007397	0	0				2,720
TECK03	1007398	7/20/2003	1007398	0	0				2,650
TECK03	1007400	7/18/2003	1007400	0	0				1,700
TECK03	1007406	7/18/2003	1007406	0	0				12,900
TECK03	1007413	7/18/2003	1007413	0	0				9,480
TECK03	1007419	7/19/2003	1007419	0	0				1,410
TECK03	1007422	7/19/2003	1007422	0	0				9,900
TECK03	1007430	7/19/2003	1007430	0	0				6,370
TECK03	1007439	7/20/2003	1007439	0	0				2,540
TECK03	1007441	7/20/2003	1007441	0	0				6,890
TECK03	1007442	7/20/2003	1007442	0	0				3,290
TECK03	1007445	7/20/2003	1007445	0	0				2,820
TECK03	1007448	7/20/2003	1007448	0	0				3,370
TECK03	1007449	7/20/2003	1007449	0	0				8,060
TECK03	1007450	7/20/2003	1007450	0	0				8,560
TECK03	1007451	7/20/2003	1007451	0	0				9,100
TECK03	1007452	7/20/2003	1007452	0	0				4,120
TECK03	1007458	7/20/2003	1007458	0	0				21,500
TECK03	1007462	7/21/2003	1007462	0	0				4,610
TECK03 TECK03	1007463	7/21/2003	1007463	0 0	0 0				3,810
TECK03	1007465 1007467	7/21/2003 7/21/2003	1007465	0	0				4,090
TECK03	1007467		1007467	0	0				8,120 17,700
TECK03	1007466	7/21/2003 7/21/2003	1007468 1007469	0	0				1,420
TECK03	1007469	7/21/2003	1007469	0	0				1,420
TECK03	1007473	7/22/2003	1007473	0	0				3,490
TECK03	1007474	7/22/2003	1007474	0	0				7,690
TECK03	1007475	7/22/2003	1007475	0	0				6,250
TECK03	1007470	7/23/2003	1007470	0	0				6,870
TECK03	1007491	7/23/2003	1007491	0	0				4,350
TECK03	1007491	7/23/2003	1007492	0	0				7,450
TECK03	1007499	7/20/2003	1007499	0	0				11,500
TECK03	1007500	7/20/2003	1007500	0	0				34,700
TECK03	1007502	7/21/2003	1007502	0	0				5,290
TECK03	1007502	7/21/2003	1007510	0	0				1,440
TECK03	1007514	7/22/2003	1007514	0	0				647
TECK03	1007543	7/23/2003	1007543	0	Ö				548
TECK03	1007544	7/23/2003	1007544	0	0				700
TECK03	1007545	7/24/2003	1007545	0	0				1,530
TECK03	1007553	7/24/2003	1007553	0	0				457
TECK03	1007554	7/24/2003	1007554	0	0				2,320
TECK03	1007564	7/23/2003	1007564	0	0				2,260

8601997.001 4400\dmts_ra_app_c_ta.xls Page 27 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007566	7/23/2003	1007566	0	0				2,500
TECK03	1007569	7/23/2003	1007569	0	0				1,260
TECK03	1007579	7/24/2003	1007579	0	0				3,270
TECK03	1007582	7/24/2003	1007582	0	0				1,940
TECK03	1007583	7/24/2003	1007583	0	0				3,290
TECK03	1007584	7/24/2003	1007584	0	0				2,640
TECK03	1007585	7/24/2003	1007585	0	0				232
TECK03	1007591	7/24/2003	1007591	0	0				1,100
TECK03	1007617	7/26/2003	1007617	0	0				84
TECK03	1007618	7/26/2003	1007618	0	0				95
TECK03	1007619	7/26/2003	1007619	0	0				105
TECK03	1007626	7/27/2003	1007626	0	0				274
TECK03	1007627	7/27/2003	1007627	0	0				1,350
TECK03	1007648	7/28/2003	1007648	0	0				441
TECK03	1007650	7/28/2003	1007650	0	0				1,550
TECK03	1007652	7/26/2003	1007652	0	0				156
TECK03	1007659	7/27/2003	1007659	0	0				600
TECK03	1007661	7/27/2003	1007661	0	0				883
TECK03	1007664	7/27/2003	1007664	0	0				118
TECK03	1007673	7/28/2003	1007673	0	0				415
TECK03	1007678	7/28/2003	1007678	0	0				88
TECK03 TECK03	1007682 1007683	7/28/2003 7/28/2003	1007682 1007683	0 0	0 0				151 154
TECK03	1007683	7/28/2003	1007684	0	0				774
TECK03	1007684	7/28/2003	1007684	0	0				512
TECK03	1007683	7/28/2003	1007687	0	0				614
TECK03	1007688	7/28/2003	1007688	0	0				4,390
TECK03	1007000	7/28/2003	1007000	0	0				195
TECK03	1007701	7/28/2003	1007701	0	0				102
TECK03	1007702	7/28/2003	1007702	0	0				132
TECK03	1007704	7/28/2003	1007704	0	0				220
TECK03	1007705	7/28/2003	1007705	0	0				524
TECK03	1007901	7/19/2003	1007901	0	0				7,870
TECK03	1007904	7/21/2003	1007904	0	0				4,950
TECK03	1007911	7/28/2003	1007911	0	0				163
TECK03	1007912	7/28/2003	1007912	0	0				861
TECK03	1007916	7/28/2003	1007916	0	0				148
TECK03	1007966	9/3/2003	1007966	0	0				3,770
TECK03	1007980	9/7/2003	1007980	0	0				2,370
TECK03	1007983	9/16/2003	1007983	0	0				242
TECK03	1007990	9/11/2003	1007990	0	0				599
TECK03	1007991	9/11/2003	1007991	0	0				312
TECK03	1007992	9/11/2003	1007992	0	0				2,970
TECK03	1007993	9/11/2003	1007993	0	0				1,490

8601997.001 4400\dmts_ra_app_c_ta.xls Page 28 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	1007995	9/11/2003	1007995	0	0				480
TECK03	1007996	9/11/2003	1007996	0	0				5,370
TECK03	1007997	9/11/2003	1007997	0	0				744
TECK03	1007998	9/11/2003	1007998	0	0				186
TECK03	1008242	9/3/2003	1008242	0	0				11,400
TECK03	1008244	9/3/2003	1008244	0	0				4,290
TECK03	1008246	9/3/2003	1008246	0	0				5,710
TECK03	1008247	9/3/2003	1008247	0	0				6,870
TECK03	1008249	9/3/2003	1008249	0	0				5,140
TECK03	1008250	9/3/2003	1008250	0	0				5,580
TECK03	1008253	9/3/2003	1008253	0	0				4,060
TECK03	1008255	9/3/2003	1008255	0	0				4,690
TECK03	1008257	9/3/2003	1008257	0	0				3,550
TECK03	1008258	9/3/2003	1008258	0	0				3,120
TECK03	1008260	9/3/2003	1008260	0	0				4,620
TECK03	1008262	9/3/2003	1008262	0	0				2,770
TECK03	1008263	9/3/2003	1008263	0	0				3,160
TECK03	1008265	9/4/2003	1008265	0	0				7,480
TECK03	1008279	9/4/2003	1008279	0	0				965
TECK03	1008287	9/4/2003	1008287	0	0				2,810
TECK03	1008317	9/7/2003	1008317	0	0				4,680
TECK03	1008318	9/7/2003	1008318	0	0				3,460
TECK03	1008341	9/9/2003	1008341	0	0				3,820
TECK03	1008346	9/10/2003	1008346	0	0				2,570
TECK03	1008347	9/10/2003	1008347	0 0	0 0				3,210
TECK03 TECK03	1008357 1008362	9/7/2009 9/7/2009	1008357 1008362	0	0				1,280
TECK03	1008362	9/7/2009	1008362	0	0				2,910 4,770
TECK03	1008364	9/7/2009	1008364	0	0				4,770 4,540
TECK03	1008364	9/7/2009	1008370	0	0				4,540 3,460
TECK03	1008370	9/7/2009	1008374	0	0				3,590
TECK03	1008374	9/7/2009	1008374	0	0				3,430
TECK03	1008376	9/7/2009	1008376	0	0				5,610
TECK03	1008396	9/8/2009	1008396	0	0				330
SUPPRSS	101 A	7/17/2002	RS-101A-VS	0	0				65.9
SUPPRSS	101_X 101_B	7/17/2002	RS-101B-VS	0	0				39.3
SUPPRSS	101_B 101_C	7/17/2002	RS-101C-VS	0	0				37.4
PSCHAR	101_0 106_A1	6/17/2002	RF-106A	0	0				11,500
PSCHAR	107_A1	6/17/2002	RF-107A	0	0				12,800
PSCHAR	108_A1	6/17/2002	RF-108A	0	0				8,850
PSCHAR	109_A1	6/17/2002	RF-109A	0	Ö				7,520
PSCHAR	110 A1	6/17/2002	RF-110A	0	0				13,500
PSCHAR	111_A1	6/17/2002	RF-111A	0	Ö				17,800
PSCHAR	_ 112_A1	6/17/2002	RF-112A	0	0				12,600

8601997.001 4400\dmts_ra_app_c_ta.xls Page 29 of 36

Table C-1. (cont.)

	Cumiaii			Field		Thellium	Tin	\/anadium	Zina
Survey	Survey Station	Date	Sample ID	Field Replicate	Subsample	Thallium (mg/kg dry)	Tin (mg/kg dry)	Vanadium (mg/kg dry)	Zinc (mg/kg dry)
PSCHAR	113_A1	6/17/2002	RF-113A	0	0	(mg/ng ary)	(mg/ng ary)	14.5	9,170
PSCHAR	115_A1	6/17/2002	RF-115-A	0	0			14.0	4,170
PSCHAR	116_A1	6/17/2002	RF-116-A	0	0				3,740
PSCHAR	122_A1	6/17/2002	RF-122-A	0	0			12	5,660
PSCHAR	123_A1	6/17/2002	RF-123-A	1	0				5,340
PSCHAR	123_A1	6/17/2002	RF-123-A	2	0				4,870
SUPPRSS	145 A	5/31/2002	RC-145-A	0	0				1,660
SUPPRSS	145_A	6/1/2002	RS-145-A	0	0		26 <i>U</i>	12.0	4,380 <i>J</i>
PSCHAR	145_A1	6/1/2002	RF-145-A	0	0				5,600 J
PSCHAR	148 A1	6/1/2002	RF-148-A	0	0				8,840 <i>J</i>
PSCHAR	149_C1	6/1/2002	RF-149-C	0	0				6,200 J
PSCHAR	150_A1	6/1/2002	RF-150-A	0	0				5,950 J
PSCHAR	150_C1	6/3/2002	RF-150-C	0	0		25 U	13.4	6,790 J
PSCHAR	153_A1	6/3/2002	RF-153-A	0	0				6,570 J
PSCHAR	153_C1	6/3/2002	RF-153-C	0	0				6,460 J
PSCHAR	154_C1	6/3/2002	RF-154-C	0	0				5,130 J
PSCHAR	155_C1	6/3/2002	RF-155-C	0	0				6,870 <i>J</i>
PSCHAR	156_C1	6/3/2002	RF-156-C	1	0				7,730 J
PSCHAR	156_C1	6/3/2002	RF-156-C	2	0		25 <i>U</i>	12.1	6,160
PSCHAR	157_A1	6/3/2002	RF-157-A	0	0		25 U	12.3	6,960 J
PSCHAR	159_C1	6/3/2002	RF-159-C	0	0				6,200 J
PSCHAR	160_C1	6/3/2002	RF-160-C	0	0				7,410 <i>J</i>
PSCHAR	165_C1	6/4/2002	RF-165-C	0	0		25 <i>U</i>	13	8,990
PSCHAR	169_A1	6/4/2002	RF-169-A	0	0			12.9	11,800
PSCHAR	170_C1	6/4/2002	RF-170-C	0	0			14.4	4,410
PSCHAR	171_A1	6/4/2002	RF-171-A	1	0				10,000
PSCHAR	171_A1	6/4/2002	RF-171-A	2	0				9,710
PSCHAR	171_C1	6/4/2002	RF-171-C	0	0				6,270
PSCHAR	175_A1	6/5/2002	RF-175-A	0	0				19,400
PSCHAR	176_C1	6/5/2002	RF-176-C	0	0				11,400
PSCHAR	178_A1	6/5/2002	RF-178-A	0	0			13.5	22,600
PSCHAR	178_C1	6/5/2002	RF-178-C	0	0				13,800
PSCHAR	179_C1	6/5/2002	RF-179-C	0	0				14,500
PSCHAR	180_C1	6/5/2002	RF-180-C	0	0			13.7	17,200
PSCHAR	189_A1	6/7/2002	RF-189-A	0	0				4,430
PSCHAR	189_C1	6/7/2002	RF-189-C	0	0			15.0	11,100
PSCHAR	190_C1	6/7/2002	RF-190-C	0	0				8,120
PSCHAR	191_C1	6/7/2002	RF-191-C	0	0			13.5	7,020
PSCHAR	192_C1	6/7/2002	RF-192-C	0	0				5,750
PSCHAR	216_A1	6/9/2002	RF-216A	0	0		5.0 <i>U</i>	19.4	1,780 <i>J</i>
PSCHAR	220_C1	6/9/2002	RF-220C	0	0				1,360 <i>J</i>
PSCHAR	222_C1	6/9/2002	RF-222C	0	0		5.0 <i>U</i>	20.6	3,060 <i>J</i>
TECK03	471204	6/6/2003	471204	0	0				1,210
TECK03	471210	6/6/2003	471210	0	0				460

8601997.001 4400\dmts_ra_app_c_ta.xls Page 30 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	471212	6/6/2003	471212	0	0				4,180
TECK03	471221	6/7/2003	471221	0	0				23,200
TECK03	471264	6/6/2003	471264	0	0				1,570
TECK03	471272	6/6/2003	471272	0	0				1,910
TECK03	471274	6/6/2003	471274	0	0				630
TECK03	471276	6/6/2003	471276	0	0				215
TECK03	471283	6/7/2003	471283	0	0				243
TECK03	471287	6/7/2003	471287	0	0				201
TECK03	471293	6/7/2003	471293	0	0				5,080
TECK03	471295	6/7/2003	471295	0	0				7,300
TECK03	471297	6/7/2003	471297	0	0				3,420
TECK03	471299	6/7/2003	471299	0	0				2,880
TECK03	471300	6/6/2003	471300	0	0				938
TECK03	471320	6/10/2003	471320	0	0				16,800
TECK03	471325	6/10/2003	471325	0	0				4,150
TECK03	471332	6/10/2003	471332	0	0				8,810
TECK03	471333	6/10/2003	471333	0	0				7,370
TECK03	471334	6/10/2003	471334	0	0				2,720
TECK03	471341	6/11/2003	471341	0	0				10,900
TECK03	471350	6/13/2003	471350	0 0	0 0				3,580
TECK03 TECK03	471352 471353	6/7/2003 6/7/2003	471352	0	0				1,610
TECK03	471355	6/7/2003	471353 471355	0	0				2,640 5,440
TECK03	471356	6/7/2003	471356	0	0				4,030
TECK03	471358	6/7/2003	471358	0	0				307
TECK03	471365	6/16/2003	471365	0	0				1,540
TECK03	471374	6/17/2003	471374	0	0				3,860
TECK03	471418	6/10/2003	471418	0	0				5,290
TECK03	471419	6/10/2003	471419	0	0				4,180
TECK03	471420	6/10/2003	471420	0	0				3,840
TECK03	471421	6/10/2003	471421	0	0				3,690
TECK03	471425	6/11/2003	471425	0	Ö				8,740
TECK03	471453	6/14/2003	471453	0	0				4,440
TECK03	471457	6/14/2003	471457	0	0				999
TECK03	471458	6/14/2003	471458	0	0				3,320
TECK03	471463	6/14/2003	471463	0	0				4,430
TECK03	471464	6/14/2003	471464	0	0				16,800
TECK03	471465	6/14/2003	471465	0	0				5,530
TECK03	471466	6/14/2003	471466	0	0				1,010
TECK03	471474	6/14/2003	471474	0	0				13,900
TECK03	471487	6/15/2003	471487	0	0				11,700
TECK03	471501	6/7/2003	471501	0	0				29,600
TECK03	471505	6/10/2003	471505	0	0				7,950
TECK03	471508	6/10/2003	471508	0	0				3,840

8601997.001 4400\dmts_ra_app_c_ta.xls Page 31 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
TECK03	471520	6/21/2003	471520	0	0				3,230
TECK03	471539	7/13/2003	471539	0	0				8,830
TECK03	471540	7/13/2003	471540	0	0				3,590
TECK03	471549	7/17/2003	471549	0	0				987
TECK03	471550	7/18/2003	471550	0	0				4,260
PSCHAR	CAG-AA28		CAG-AA28-VS	0	0				191 <i>J</i>
PSCHAR	CAG-AA29		CAG-AA29-VS	0	0				275 J
PSCHAR	CAG-AA30		CAG-AA30-VS	0	0				200 J
PSCHAR	CAG-AA31		CAG-AA31-VS	0	0				813 <i>J</i>
PSCHAR	CAG-F2	7/28/2002	CAG-2-F	0	0				5,310
PSCHAR	CAG-H30	7/3/2002	CAG-H-30	0	0				64,300
PSCHAR	CAG-I1	7/28/2002	CAG-1-I	0	0				9,850
PSCHAR	CAG-L33	7/3/2002	CAG-L-33	0	0				1,150
PSCHAR	CAG-R2	7/1/2002	CAG-R-2-S	0	0				1,570
PSCHAR	CAG-R32	7/21/2002	CAG-R-32	0	0 0				1,620
PSCHAR PSCHAR	CAG-R34 CAG-S34	9/19/2002 9/19/2002	CAG-R34-VS CAG-S34-VS	0 0	0				3,570 J
PSCHAR	CAG-534 CAG-U130	7/19/2002		0	0				3,810 <i>J</i>
PSCHAR	CAG-U130	7/3/2002	CAG-U-130 CAG-U-29	0	0				7,320 4,400
PSCHAR	CAG-U29	7/3/2002	CAG-U-29 CAG-U-34	0	0				4,400 1,930
PSCHAR	CAG-034 CAG-W29	7/1/2002	CAG-W-29	0	0		5.0 <i>U</i>	17.6	15,400
PSCHAR	CAG-W23	8/28/2002		0	0		3.0 0	17.0	865 <i>J</i>
PSCHAR	CAG-W31		CAG-X100-VS	0	0				204 <i>J</i>
PSCHAR	CAG-X101		CAG-X100 VS	0	0				855 J
PSCHAR	CAG-X12	7/2/2002	CAG-X-12	0	0				1,140 <i>J</i>
PSCHAR	CAG-X22	7/1/2002	CAG-X-22	0	0				2,110
PSCHAR	CAG-X26	7/1/2002	CAG-X-26-A	0	0				2,090
PSCHAR	CAG-X29	8/28/2002	CAG-X29-VS	0	0				1,250 <i>J</i>
PSCHAR	CAG-X30	8/28/2002	CAG-X30-VS	0	0				306 J
PSCHAR	CAG-X31	8/28/2002	CAG-X31-VS	0	0				3,120 <i>J</i>
PSCHAR	CAG-X8	7/2/2002	CAG-X-8	0	0				685 J
PSCHAR	CAG-Y27	7/1/2002	CAG-Y-27	0	0				5,290
PSCHAR	CAG-Y28	8/28/2002	CAG-Y28-VS	0	0				679 J
PSCHAR	CAG-Y29	9/16/2002	CAG-Y29-VS	0	0				78.5
PSCHAR	CAG-Y30	9/16/2002	CAG-Y30-VS	0	0				87.4
PSCHAR	CAG-Y31	8/28/2002	CAG-Y31-VS	0	0				9,420 J
PSCHAR	CAG-Y32	8/28/2002	CAG-Y32-VS	0	0				651 <i>J</i>
PSCHAR	CAG-Y33	8/28/2002	CAG-Y33-VS	0	0				144 <i>J</i>
PSCHAR	CAG-Z27	8/28/2002	CAG-Z27-VS	0	0				2,190 <i>J</i>
PSCHAR	CAG-Z28	8/28/2002	CAG-Z28-VS	0	0				2,160 J
PSCHAR	CAG-Z29	8/28/2002	CAG-Z29-VS	0	0				99.9 <i>J</i>
PSCHAR	CAG-Z30	8/28/2002	CAG-Z30-VS	0	0				166 <i>J</i>
PSCHAR	CAG-Z31	8/28/2002	CAG-Z31-VS	0	0				133 <i>J</i>
PSCHAR	CAG-Z32	8/28/2002	CAG-Z32-VS	0	0				2,280 J

8601997.001 4400\dmts_ra_app_c_ta.xls Page 32 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	CAG-Z33	8/28/2002	CAG-Z33-VS	0	0				2,350 J
PSCHAR	CAG-Z7S	7/1/2002	CAG-Z-7-S	0	0				420
PSCHAR	CIT1250N	6/29/2002	C1T1-250-N	2	0				590
PSCHAR	CVT1-0N	6/29/2002	CVT1-0-N	0	0				960
PSCHAR	CVT1-0S	6/29/2002	CVT1-0-S	0	0				2,170
PSCHAR	CVT1-10N	6/29/2002	CVT1-10-N	0	0				5,040
PSCHAR	CVT1-10S	6/29/2002	CVT1-10-S	0	0				4,160
PSCHAR	CVT2-0N	6/30/2002	CVT2-0-N	1	0				383
PSCHAR	CVT2-0N	6/30/2002	CVT2-0-N	2	0				598
PSCHAR	CVT2-0S	6/30/2002	CVT2-0-S	0	0				825
PSCHAR	CVT3-0N	6/30/2002	CVT3-0-N	0	0			14.4	615
PSCHAR	CVT3-0S	6/30/2002	CVT3-0-S	0	0				713
PSCHAR	CVT4-0N	6/30/2002	CVT4-0-N	0	0				457
PSCHAR	CVT4-0S	6/30/2002	CVT4-0-S	0	0				363
PSCHAR	CVT5-0N	6/30/2002	CVT5-0-N	1	0				507
PSCHAR	CVT5-0N	6/30/2002	CVT5-0-N	2	0				576
PSCHAR	CVT5-0S	6/30/2002	CVT5-0-S	0	0				214
PSCHAR	CVT6-0N	6/30/2002	CVT6-0-N	0	0				1,170
PSCHAR	CVT6-0S	6/30/2002	CVT6-0-S	0	0				1,610
PSCHAR PSCHAR	CVT6-10S CVT7-0N	6/30/2002 7/3/2002	CVT6-10-S	0 0	0 0				1,060 959 <i>J</i>
PSCHAR	CVT7-0N CVT7-0S	7/3/2002	CVT7-0-N CVT7-0-S	0	0				1,480 <i>J</i>
PSCHAR	CV17-03 CVT7-10S	7/3/2002	CVT7-10-S	1	0				1,460 J 1,630 J
PSCHAR	CVT7-10S	7/3/2002	CVT7-10-S	2	0				1,030 3
PSCHAR	CVT7-103	7/3/2002	CVT7-10-3	0	0				3,470 <i>J</i>
PSCHAR	CVT8250N	7/3/2002	CVT8-250-N	0	0				338
PSCHAR	CVT9-0N	7/3/2002	CVT9-0-N	0	0				15,000
PSCHAR	CVT9-50N	7/3/2002	CVT9-50N	0	0				202
PSCHAR	CVT9150S	7/3/2002	CVT9-150-S	0	0				916
PSCHAR	CVT9300S	7/3/2002	CVT9-300-S	0	0				262
PSCHAR	CVT9500N	7/3/2002	CVT9-500-N	0	0				236
PSCHAR	DSP-A6	6/23/2002	DSP-A-6	0	Ö				518
PSCHAR	DSP-AA2	6/23/2002	DSP-AA-2	0	0				264
PSCHAR	DSP-B1	6/23/2002	DSP-B-1	0	0				3,750
PSCHAR	DSP-B1	7/25/2002	V2-DSP-B-1	0	0				673
PSCHAR	DSP-B4	6/25/2002	DSP-B-4	0	0				1,070
PSCHAR	DSP-B9	9/19/2002	DSP-B9-VS	0	0				596
PSCHAR	DSP-C3	6/23/2002	DSP-C-3	0	0				1,830
PSCHAR	DSP-D4	6/23/2002	DSP-D-4	0	0				50,200
PSCHAR	DSP-D4	9/19/2002	DSP-D4-VS	0	0				3,780
PSCHAR	DSP-F6	6/23/2002	DSP-F-6	0	0				1,890
PSCHAR	DSP-G6	6/23/2002	DSP-G-6	0	0				2,910
PSCHAR	DSP-G6	9/19/2002	DSP-G6-VS	0	0				1,090
PSCHAR	DSP-HG5B	7/26/2002	DSP-HG-5-B	0	0				298

8601997.001 4400\dmts_ra_app_c_ta.xls Page 33 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	DSP-IH5A	7/26/2002	DSP-IH-5-A	1	0				1,550
PSCHAR	DSP-IH5A	7/26/2002	DSP-IH-5-A	2	0				1,400
PSCHAR	PG-P5S	7/28/2002	PG-P5S	0	0				81.7
PSCHAR	RAT1-0EA	6/27/2002	RAT1-OE-A	0	0				1,770
PSCHAR	RAT2-50W	7/2/2002	RAT2-50-W	1	0				2,750 J
PSCHAR	RAT2-50W	7/2/2002	RAT2-50-W	2	0				2,640 <i>J</i>
PSCHAR	RAT2250E	6/27/2002	RAT2-250E	2	0				76.8
PSCHAR	RAT3-0EA	6/27/2002	RAT3-OEA	0	0				1,880
PSCHAR	RAT4-0W	7/2/2002	RAT4-0-W	0	0				1,590 <i>J</i>
PSCHAR	RAT5-0NA	6/27/2002	RAT5-0NA	0	0			16.8	30,100
PSCHAR	RAT5-0W	7/2/2002	RAT5-0-W	0	0				5,220 <i>J</i>
PSCHAR	RAT5-10W	7/2/2002	RAT5-10-W	0	0				756 <i>J</i>
FUGDST01	RC-01-A	8/22/2001	RC-01-A	0	0				324
FUGDST01	RC-03-A	8/23/2001	RC-03-A	0	0				106
FUGDST01	RC-04-A	8/23/2001	RC-04-A	0	0				102
FUGDST01	RC-05-A	8/23/2001	RC-05-A	0	0				520
FUGDST01	RC-06-A	8/23/2001	RC-06-A	0	0			21.0	379
FUGDST01	RC-07-A	8/23/2001	RC-07-A	0	0				387
FUGDST01	RC-08-A	8/24/2001	RC-08-A	0	0				90.0
FUGDST01	RC-09-A	8/24/2001	RC-09-A	0	0			40.0	251
FUGDST01	RF-01	8/26/2001	RF-01	0	0		5.5 <i>U</i>	13.6	1,220
FUGDST01	RF-02	8/25/2001	RF-02	0	0			16.3	1,150
FUGDST01	RF-03	8/25/2001	RF-03	0	0			10.8	565
FUGDST01	RF-04	8/26/2001	RF-04	1	0		5.5 U	12.4	754
FUGDST01	RF-04	8/26/2001	RF-04	2	0		5.5 U	15.1	859
FUGDST01	RF-05 RF-06	8/26/2001	RF-05	0 0	0 0		5.0 <i>U</i> 5.0 <i>U</i>	31.8 24	1,490
FUGDST01	RF-06 RF-07	8/26/2001	RF-06	0	0				4,840
FUGDST01		8/26/2001	RF-07	0	0		5.5 <i>U</i> 5 <i>U</i>	25.1	3,140
FUGDST01 PHASE1RA	RF-08 RF-10	8/26/2001 7/14/2003	RF-08 SL0009	0	0	0.292	3.35 <i>U</i>	9.0 11.8	1,620 1,930
PHASE1RA		7/14/2003	SL0009 SL0019	0	0	0.292	3.9 J	13.5	7,880
PHASE1RA		7/17/2003	SL0019 SL0008	0	0	0.761	2.25 <i>U</i>	19.0	7,000 566
PHASE1RA		7/14/2003	SL0007	0	0	0.278	2.25 <i>U</i>	10.9	406
PHASE1RA		7/14/2003	SL0007 SL0006	0	0	0.147	2.95 U	8.61	430
PHASE1RA		7/14/2003	SL0005	0	0	0.120	2.30 <i>U</i>	8.44	319
PHASE1RA		7/14/2003	SL0003	0	0	0.112	4.45 <i>U</i>	9.94	515
PHASE1RA		7/14/2003	SL0004 SL0029	1	0	0.137	5.7 J	14.7	653
PHASE1RA		7/22/2003	SL0029	2	0	0.482	7 J	11	815
PHASE1RA		7/14/2003	SL0023	0	0	1.32	3.65 <i>U</i>	14.7	1,750
PHASE1RA		7/21/2003	SL0026	0	0	0.824	2.4 <i>U</i>	11.7	1,240
PHASE1RA		7/14/2003	SL0010	0	0	0.613	3.20 <i>U</i>	7.94	9,380
PHASE1RA		7/14/2003	SL0011	1	0	0.462	5.20 <i>U</i>	15.7	4,070
PHASE1RA		7/14/2003	SL0011	2	0	0.423	3.65 <i>U</i>	15.2	3,520
FUGDST01		8/26/2001	RF-PORT	0	0		6.0 <i>U</i>	15.7	4,910

8601997.001 4400\dmts_ra_app_c_ta.xls Page 34 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
PSCHAR	ROT1-0N	7/3/2002	ROT1-0N	0	0				2,580
PSCHAR	ROT5-10S	7/5/2002	ROT5-10-S	1	0				494
PSCHAR	ROT5-10S	7/5/2002	ROT5-10-S	2	0				670 <i>J</i>
PSCHAR	ROT5-50S	7/5/2002	ROT5-50-S	0	0				3,240
PSCHAR	ROT5250S	7/5/2002	ROT5-250-S	0	0				92.6
PSCHAR	ROT5500S	7/5/2002	ROT5-500-S	0	0				161
PSCHAR	ROT6-10S	7/5/2002	ROT610S	0	0				1,980
PSCHAR	ROT6-50S	7/5/2002	ROT650S	0	0				3,990
PSCHAR	ROT6250S	7/5/2002	ROT6250S	0	0				483
PSCHAR	ROT6500S	7/5/2002	ROT6-500-S	1	0				277
PSCHAR	ROT6500S	7/5/2002	ROT6-500-S	2	0				126 <i>J</i>
PSCHAR	ROT7-0S	7/5/2002	ROT7-0-S	0	0				16,200
PSCHAR	ROT7-10S	7/5/2002	ROT710S	0	0				742
PSCHAR	ROT8-0S	7/5/2002	ROT8-OS	0	0				4,290
PSCHAR	ROT8-10S	7/5/2002	ROT8-10-S	0	0				3,990
PSCHAR	ROT8-50S	7/5/2002	ROT8-50-S	0	0				1,700
PSCHAR	ROT8250S	7/5/2002	ROT8-250-S	0	0				146
PSCHAR	ROT9-0N	7/3/2002	ROT9-0N	0	0				5,030
PSCHAR	ROT9-0S	7/5/2002	ROT9-OS	1	0				5,910
PSCHAR	ROT9-0S	7/5/2002	ROT9-OS	2	0				4,110 <i>J</i>
PSCHAR	ROT9-10N	7/5/2002	ROT9-10N	0	0				4,360 J
PSCHAR	ROT9-10S	7/5/2002	ROT9-10-S	0	0				11,800
FUGDST01	RS-01	8/24/2001	RS-01	0	0				2,470
FUGDST01	RS-13 RS-13	8/25/2001	RS-13	1	0 0				471
FUGDST01		8/25/2001	RS-13	2 0	0				428
FUGDST01 FUGDST01	RS-14 RS-15	8/25/2001 8/25/2001	RS-14 RS-15	0	0				317 210
FUGDST01	RS-15	8/25/2001	RS-16	0	0				185
FUGDST01	RS-10	8/25/2001	RS-16 RS-17	0	0				537
FUGDST01	RS-17	8/25/2001	RS-17 RS-18	0	0				302
FUGDST01	RS-10	8/25/2001	RS-19	0	0				269
FUGDST01	RS-19	8/25/2001	RS-20	0	0				340
FUGDST01	RS-21	8/25/2001	RS-21	0	0				191
FUGDST01	RS-22	8/26/2001	RS-22	0	0				278
FUGDST01	RS-23	8/26/2001	RS-23	0	0				394
FUGDST01	RS-24	8/26/2001	RS-24	0	0				557
FUGDST01	RS-25	8/26/2001	RS-25	0	0				349
FUGDST01	RS-26	8/26/2001	RS-26	0	0				593
FUGDST01	RS-27	8/26/2001	RS-27	0	0				308
FUGDST01	RS-28	8/26/2001	RS-28	0	0				523
FUGDST01	RS-29	8/26/2001	RS-29	1	0				605
FUGDST01	RS-29	8/26/2001	RS-29	2	0				494
FUGDST01	RS-30	8/26/2001	RS-30	0	0				738
FUGDST01	RS-31	8/26/2001	RS-31	0	0				966

8601997.001 4400\dmts_ra_app_c_ta.xls Page 35 of 36

Table C-1. (cont.)

	Survey			Field		Thallium	Tin	Vanadium	Zinc
Survey	Station	Date	Sample ID	Replicate	Subsample	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)	(mg/kg dry)
FUGDST01	RS-32	8/26/2001	RS-32	0	0				1,230
FUGDST01	RS-33	8/26/2001	RS-33	1	0				801
FUGDST01	RS-33	8/26/2001	RS-33	2	0				755
FUGDST01	RS-34	8/26/2001	RS-34	0	0				804
PSCHAR	TUB-1	7/5/2002	TU-1-VS	0	0				81
PSCHAR	TUB-2	7/5/2002	TU-2-VS	0	0				125
PSCHAR	TUB-3	8/11/2002	TU-3-VS	0	0				3,910
PSCHAR	TUB-4	8/11/2002	TU-4-VS	0	0				178
PSCHAR	TUB-5	7/5/2002	TU-5-VS	0	0				104
PSCHAR	TUF-1	7/9/2002	TUF1	0	0				109 <i>J</i>
PSCHAR	TUF-2	7/9/2002	TUF2	0	0				127 <i>J</i>
PSCHAR	TUF-3	7/9/2002	TUF3	0	0				76.2 J

Note: J - estimated

TCLP - toxicity characteristic leaching procedure *U* - undetected at detection limit shown

8601997.001 4400\dmts_ra_app_c_ta.xls Page 36 of 36

Table K-58. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at TP-REF-2 site

		Cond	entration		[Daily Exposure			BW	TF	RV	Year-Rour Quo	
	10/-4	0-:1/01:	Hards Dland	la.comt	\\/_t=	0-11/0	FI	Total Daily	Normalized	NOAFI	LOAFI	NOAEL	LOAEL
A b -t -	Water	Soil/Sediment	Herb. Plant	Invert.	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	(μg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	14.5	4,310	2.5	5.6	0.000399		0.158	4.53		120		0.12	
Antimony	0.02	0.03	0.03	0.003	0.000000550	0.0000304	0.00138	0.00142	0.00442				
Arsenic (arsenate)	0.5	7	0.18	0.05	0.0000137	0.00710	0.00856	0.0157	0.0490	10	40	0.0049	0.0012
Arsenic (arsenite)	0.5	7	0.18	0.05	0.0000137	0.00710	0.00856	0.0157	0.0490	20	50	0.0024	0.0010
Barium	133	232	42.3	5.63	0.00366	0.235	1.96	2.20	6.88	21	42	0.33	0.16
Cadmium	0.005	0.35	0.119	0.96	0.000000137	0.000355	0.0131	0.0134	0.0420	1.5	20	0.028	0.0021
Chromium	0.18	10.9	0.2	0.3	0.00000495	0.0111	0.0115	0.0225	0.0704	0.86	4.3	0.082	0.016
Cobalt	0.21	8.13	1.34	0.029	0.00000577	0.00824	0.0610	0.0693	0.216				
Lead	0.06	7.48	0.5	0.15	0.00000165	0.00758	0.0239	0.0315	0.0983	3.9	11	0.025	0.0089
Mercury	0.05	0.03	0.03	0.09	0.00000137	0.0000304	0.00208	0.00211	0.0066	0.032	0.064	0.21	0.10
Molybdenum	0.02	0.46	1.08	0.324	0.00000055	0.000466	0.0516	0.0520	0.163	3.5	35	0.046	0.0046
Selenium	0.5	0.5	0.2	0.65	0.0000137	0.000507	0.0143	0.0148	0.0462	0.40	0.80	0.12	0.058
Thallium	0.003	0.056	0.022	0.002	0.0000000825	0.0000568	0.00101	0.00107	0.00335	0.24	24	0.014	0.00014
Vanadium	0.17	14.9	0.3	0.2	0.00000467	0.0151	0.0152	0.0303	0.0947	11		0.0086	
Zinc (TRV1)	0.59	65.4	28.3	214	0.0000162	0.0663	3.00	3.06	9.57	130		0.074	
Zinc (TRV2)	0.59	65.4	28.3	214	0.0000162	0.0663	3.00	3.06	9.57	70	120	0.14	0.080

Note: The following data were used to develop this scenario: PHASE1RA water data (TP-REF-2); PHASE1RA sediment (TP-REF-2); PHASE2RA sedge seeds; and PHASE2RA terrestrial invertebrates (TS-REF-5).

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

Table K-59. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at TP-REF-3 site

		Conc	entration			Daily Exposure			BW	TF	۲۷	Year-Rour Quo	
								Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Invert.	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	(μg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	91.2	17,100	11.1	5.6	0.00251	17.3	0.548	17.9	55.9	120		0.47	
Antimony	0.1	0.05	0.07	0.003	0.00000275	0.0000507	0.00320	0.00325	0.0102				
Arsenic (arsenate	0.9	2.6	0.07	0.05	0.0000247	0.00264	0.00357	0.00624	0.0195	10	40	0.0019	0.00049
Arsenic (arsenite)	0.9	2.6	0.07	0.05	0.0000247	0.00264	0.00357	0.00624	0.0195	20	50	0.0010	0.00039
Barium	48.4	516	51.2	5.63	0.00133	0.523	2.37	2.89	9.04	21	42	0.43	0.22
Cadmium	0.06	0.27	0.199	0.96	0.00000165	0.000274	0.0167	0.0170	0.0531	1.5	20	0.035	0.0027
Chromium	0.72	28	0.4	0.3	0.0000198	0.0284	0.0205	0.0489	0.153	0.86	4.3	0.18	0.036
Cobalt	0.19	8.01	0.25	0.029	0.00000522	0.00812	0.0116	0.0197	0.0616				
Lead	0.5	10.5	0.37	0.15	0.0000137	0.0106	0.0180	0.0286	0.0895	3.9	11	0.023	0.0081
Mercury	0.05	0.04	0.033	0.09	0.00000137	0.0000406	0.00222	0.00226	0.00706	0.032	0.064	0.22	0.11
Molybdenum	0.22	0.48	0.829	0.324	0.00000605	0.000487	0.0402	0.0407	0.127	3.5	35	0.036	0.0036
Selenium	0.2	0.7	0.05	0.65	0.00000550	0.000710	0.00747	0.00819	0.0256	0.40	0.80	0.064	0.032
Thallium	0.04	0.174	0.004	0.002	0.00000110	0.000176	0.000197	0.000375	0.00117	0.24	24	0.0049	0.000049
Vanadium	2.41	36.5	0.2	0.2	0.0000663	0.0370	0.0107	0.0477	0.149	11		0.014	
Zinc (TRV1)	2.87	88.7	30	214	0.0000789	0.0899	3.07	3.16	9.89	130		0.076	
Zinc (TRV2)	2.87	88.7	30	214	0.0000789	0.0899	3.07	3.16	9.89	70	120	0.14	0.082

Note: The following data were used to develop this scenario: PHASE1RA water data (TP-REF-3); PHASE1RA sediment (TP-REF-3); PHASE2RA sedge seeds; and

PHASE2RA terrestrial invertebrates (TS-REF-5).

Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

Table K-60. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at TP-REF-5 site

		Cond	entration		Da	aily Exposure			BW	TF	٧V	Year-Rour Quot	
								Total Daily	Normalized		_	NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Invert.	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	(µg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	170	11,700	714	5.6	0.00467	11.9	32.4	44.3	138	120		1.2	
Antimony	0.05	0.03	0.075	0.003	0.00000137	0.0000304	0.00343	0.00346	0.0108				
Arsenic (arsenate)	0.5	3.1	9.36	0.05	0.0000137	0.00314	0.425	0.428	1.34	10	40	0.13	0.033
Arsenic (arsenite)	0.5	3.1	9.36	0.05	0.0000137	0.00314	0.425	0.428	1.34	20	50	0.067	0.027
Barium	93.5	508	117	5.63	0.00257	0.515	5.35	5.87	18.3	21	42	0.87	0.44
Cadmium	0.05	0.36	0.179	0.96	0.00000137	0.000365	0.0158	0.0162	0.0505	1.5	20	0.034	0.0025
Chromium	1.98	26.1	6.2	0.3	0.0000544	0.0265	0.284	0.310	0.969	0.86	4.3	1.1	0.23
Cobalt	0.7	11.7	4.56	0.029	0.0000192	0.0119	0.207	0.219	0.684				
Lead	0.56	10.7	1.1	0.15	0.0000154	0.0108	0.0511	0.0620	0.194	3.9	11	0.050	0.018
Mercury	0.05	0.06	0.033	0.09	0.00000137	0.0000608	0.00222	0.00228	0.00712	0.032	0.064	0.22	0.11
Molybdenum	0.05	0.38	0.38	0.324	0.00000137	0.000385	0.0198	0.0202	0.0632	3.5	35	0.018	0.0018
Selenium	0.3	0.6	0.2	0.65	0.00000825	0.000608	0.0143	0.0149	0.0465	0.40	0.80	0.12	0.058
Thallium	0.003	0.139	0.049	0.002	0.0000000825	0.000141	0.00224	0.00238	0.00744	0.24	24	0.031	0.00031
Vanadium	0.89	32.5	3.9	0.2	0.0000245	0.0329	0.178	0.211	0.661	11		0.060	
Zinc (TRV1)	5.01	68.2	32	214	0.000138	0.0691	3.16	3.23	10.1	130		0.078	
Zinc (TRV2)	5.01	68.2	32	214	0.000138	0.0691	3.16	3.23	10.1	70	120	0.14	0.084

Note: The following data were used to develop this scenario: PHASE1RA water data (TP-REF-5); PHASE1RA sediment (TP-REF-5); PHASE2RA whole sedge (no seed data available); and

PHASE2RA terrestrial invertebrates (TS-REF-5).

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

Table K-61. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at TP1-0100 site

		Conce	entration		Dai	ly Exposure			BW	Time Use	Ref. Time		TF	₹V	Year-Roun Quot	
Analyte	Water (µg/L)	Soil/ Sediment (mg/kg dw)	Herb. Plant (mg/kg dw)	Invert. (mg/kg dw)	Water (mg/day)	Soil/ Sediment (mg/day)	Food (mg/day)	Total Daily Intake (mg/day)	Normalized Exposure (mg/kg-day)	Adjusted Exposure (mg/kg-day)	Use Adjusted Exp. (mg/kg- day) ^a	Total Exposure (mg/kg-day)	NOAEL (mg/kg-day)	LOAEL (mg/kg-day)	NOAEL Hazard Quotient	LOAEL Hazard Quotient
Aluminum	11.4	4.290		136	0.000313	4.35	1.66	(Hig/day) 6.01	(mg/kg-day) 18.8	(mg/kg-day) 6.33	•	(Hig/kg-day) 43.2	(mg/kg day)		0.36	
Antimony	0.2	9		0.081	0.00000550	0.00912	0.00233	0.0115				0.0188				
Arsenic (arsenate)	0.6	7.5		0.17	0.0000165	0.00760	0.00272	0.0103	0.0323			0.0238		40	0.0024	0.00060
Arsenic (arsenite)	0.6	7.5	0.03	0.17	0.0000165	0.00760	0.00272	0.0103	0.0323	0.0109	0.0129	0.0238	20	50	0.0012	0.00048
Barium	70.3	498	26.2	46.5	0.00193	0.505	1.56	2.07	6.46	2.18	5.96	8.14	21	42	0.39	0.19
Cadmium	0.27	101	0.062	3.14	0.00000742	0.102	0.0279	0.130	0.407	0.137	0.0350	0.172	1.5	20	0.115	0.0086
Chromium	0.44	13	0.4	0.45	0.0000121	0.0132	0.0217	0.0349	0.109	0.0368	0.101	0.138	0.86	4.3	0.16	0.032
Cobalt	0.88	24.1	0.14	0.166	0.0000242	0.0244	0.00767	0.0321	0.100	0.0338	0.0406	0.0745				
Lead	1.63	1,810	1.6	16.2	0.0000448	1.83	0.202	2.04	6.37	2.15	0.0591	2.20	3.9	11	0.57	0.20
Mercury	0.05	1.1	0.044	0.115	0.00000137	0.00112	0.00292	0.00403	0.0126	0.00425	0.00466	0.00891	0.032	0.064	0.28	0.14
Molybdenum	0.09	2.43	0.159	0.415	0.00000247	0.00246	0.0105	0.0130	0.0406	0.0137	0.0839	0.0976	3.5	35	0.028	0.0028
Selenium	0.2	3	0.05	0.40	0.00000550	0.00304	0.00547	0.00852	0.0266	0.00897	0.0169	0.0259	0.40	0.80	0.065	0.032
Thallium	0.01	1.64	0.001	0.0235	0.000000275	0.00166	0.000233	0.00190	0.00593	0.00200	0.000773	0.00277	0.24	24	0.012	0.00012
Vanadium	0.24	12.2	0.2	0.4	0.00000660	0.0124	0.0123	0.0246	0.0770	0.0260	0.0985	0.124	11		0.011	
Zinc (TRV1)	99	21,900	65	291	0.00272	22.2	5.28	27.5	85.9	28.9	6.52	35.5	130		0.27	
Zinc (TRV2)	99	21,900	65	291	0.00272	22.2	5.28	27.5	85.9	28.9	6.52	35.5	70	120	0.51	0.30

Note: The following data were used to develop this scenario: PHASE1RA water data (TP1-0100); PHASE1RA sediment; PHASE2RA sedge seeds; and PHASE2RA terrestrial invertebrates (TT5-0100). Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

^a Based on mean daily exposure for teal in pond reference station 3 (Table K-59) multipled by 0.66.

Table K-62. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at TP1-1000 site

		Conc	entration		Dai	ly Exposure			BW	Time Use	Ref. Time Use		TF	₹V		nd Hazard otient
		Soil/				Soil/		Total Daily	Normalized	Adjusted	Adjusted	Total			NOAEL	LOAEL
	Water	Sediment	Herb. Plant	Invert.	Water	Sediment	Food	Intake	Exposure	Exposure	Exp. (mg/kg-	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	day) ^a	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	143	4,330	2	19.3	0.00393	4.39	0.245	4.64	14.5	4.89	36.9	41.8	120		0.35	
Antimony	0.09	0.2	0.046	0.019	0.00000247	0.000203	0.00224	0.00244	0.00764	0.00257	0.00671	0.00928				
Arsenic (arsenate)	0.4	5.1	0.03	0.105	0.0000110	0.00517	0.00220	0.00738	0.0231	0.00777	0.0129	0.0206	10	40	0.0021	0.00052
Arsenic (arsenite)	0.4	5.1	0.03	0.105	0.0000110	0.00517	0.00220	0.00738	0.0231	0.00777	0.0129	0.0206	20	50	0.0010	0.00041
Barium	39.4	281	47.5	5.78	0.00108	0.285	2.20	2.49	7.77	2.62	5.96	8.58	21	42	0.41	0.20
Cadmium	0.06	0.94	0.079	2.53	0.00000165	0.000953	0.0239	0.0248	0.0776	0.0261	0.0350	0.0612	1.5	20	0.041	0.0031
Chromium	1.56	9.71	0.4	0.2	0.0000429	0.00984	0.0197	0.0296	0.0926	0.0312	0.101	0.132	0.86	4.3	0.15	0.031
Cobalt	1.56	22.6	0.7	0.054	0.0000429	0.0229	0.0322	0.0551	0.172	0.0581	0.0406	0.0987				
Lead	1.06	8.96	0.79	2.79	0.0000291	0.00908	0.0582	0.0673	0.210	0.0708	0.0591	0.130	3.9	11	0.033	0.012
Mercury	0.05	0.06	0.037	0.15	0.00000137	0.0000608	0.00288	0.00294	0.00919	0.00310	0.00466	0.00776	0.032	0.064	0.24	0.12
Molybdenum	0.02	1.17	0.069	0.289	0.000000550	0.00119	0.00544	0.00663	0.0207	0.00698	0.0839	0.0909	3.5	35	0.026	0.0026
Selenium	0.2	1.6	0.05	0.75	0.00000550	0.00162	0.00827	0.00990	0.0309	0.0104	0.0169	0.0273	0.40	0.80	0.068	0.034
Thallium	0.003	0.021	0.001	0.0085	0.0000000825	0.0000213	0.000113	0.000135	0.000421	0.000142	0.000773	0.000915	0.24	24	0.0038	0.000038
Vanadium	0.28	15.1	0.2	0.4	0.00000770	0.0153	0.0123	0.0276	0.0862	0.0291	0.0985	0.128	11		0.012	
Zinc (TRV1)	30.6	162	58.5	302	0.000841	0.164	5.07	5.23	16.3	5.51	6.52	12.0	130		0.093	
Zinc (TRV2)	30.6	162	58.5	302	0.000841	0.164	5.07	5.23	16.3	5.51	6.52	12.0	70	120	0.17	0.10

Note: The following data were used to develop this scenario: PHASE1RA water data (TP1-1000); PHASE1RA sediment; PHASE2RA sedge seeds; and PHASE2RA terrestrial invertebrates (TT5-1000). Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

^a Based on mean daily exposure for teal in pond reference station 3 (Table K-59) multipled by 0.66.

Table K-63. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at TP3 site

		Con	centration		Dai	ly Exposure			BW	Time Use	Ref. Time Use		TF	۲V		nd Hazard tient
		Soil/				Soil/		Total Daily	Normalized	Adjusted	Adjusted	Total			NOAEL	LOAEL
	Water	Sediment	Herb. Plant	Invert.	Water	Sediment	Food	Intake	Exposure	Exposure	Exp. (mg/kg-	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	day) ^a	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	75	1,920	10.6	79.8	0.00206	1.95	1.12	3.07	9.59	3.23	36.9	40.1	120		0.34	
Antimony	0.03	0.26	0.5	0.018	0.000000825	0.000264	0.0228	0.0231	0.0721	0.0243	0.00671	0.0310				
Arsenic (arsenate)	0.5	3.5	0.04	0.14	0.0000137	0.00355	0.00293	0.00650	0.0203	0.00684	0.0129	0.0197	10	40	0.0020	0.00049
Arsenic (arsenite)	0.5	3.5	0.04	0.14	0.0000137	0.00355	0.00293	0.00650	0.0203	0.00684	0.0129	0.0197	20	50	0.00099	0.00040
Barium	46.8	388	44.3	29.9	0.00129	0.393	2.25	2.64	8.26	2.78	5.96	8.75	21	42	0.42	0.21
Cadmium	0.02	1.91	0.143	4.51	0.000000550	0.00194	0.0426	0.0445	0.139	0.0469	0.0350	0.0819	1.5	20	0.055	0.0041
Chromium	1.6	9.42	0.2	0.3	0.0000440	0.00955	0.0115	0.0211	0.0658	0.0222	0.101	0.123	0.86	4.3	0.14	0.029
Cobalt	0.13	7.56	0.426	0.161	0.00000357	0.00766	0.0206	0.0283	0.0884	0.0298	0.0406	0.0704				
Lead	0.44	93.2	0.49	3.08	0.0000121	0.0945	0.0469	0.141	0.442	0.149	0.0591	0.208	3.9	11	0.053	0.019
Mercury	0.05	0.11	0.04	0.24	0.00000137	0.000112	0.00374	0.00385	0.0120	0.00405	0.00466	0.00871	0.032	0.064	0.27	0.136
Molybdenum	0.05	2	1.49	0.225	0.00000137	0.00203	0.0694	0.0714	0.223	0.0752	0.0839	0.159	3.5	35	0.046	0.0046
Selenium	0.2	0.75	0.1	0.2	0.00000550	0.000760	0.00614	0.00690	0.0216	0.00727	0.0169	0.0242	0.40	0.80	0.061	0.030
Thallium	0.003	0.023	0.001	0.019	0.0000000825	0.0000233	0.000197	0.000221	0.000690	0.000233	0.000773	0.00101	0.24	24	0.0042	0.000042
Vanadium	0.31	28.3	0.3	0.2	0.00000852	0.0287	0.0152	0.0439	0.137	0.0462	0.0985	0.145	11		0.013	
Zinc (TRV1)	6.08	288	57.2	235	0.000167	0.292	4.48	4.77	14.9	5.02	6.52	11.5	130		0.089	
Zinc (TRV2)	6.08	288	57.2	235	0.000167	0.292	4.48	4.77	14.9	5.02	6.52	11.5	70	120	0.17	0.096

Note: The following data were used to develop this scenario: PHASE1RA water data (TP2-0100); PHASE1RA sediment; PHASE2RA sedge seeds; and PHASE2RA terrestrial invertebrates (TT3-0100). Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

^a Based on mean daily exposure for teal in pond reference station 3 (Table K-59) multipled by 0.66.

Table K-64. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at TP4 site

		Con	centration		Dail	y Exposure			BW	Time Use	Ref. Time Use		TF	RV		nd Hazard tient
		Soil/				Soil/		Total Daily	Normalized	Adjusted	Adjusted	Total			NOAEL	LOAEL
	Water	Sediment	Herb. Plant	Invert.	Water	Sediment	Food	Intake	Exposure	Exposure	Exp. (mg/kg-	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	(μg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	day) ^a	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	75	1,920	17.1	78.3	0.00206	1.95	1.40	3.35	10.5	3.53	36.9	40.4	120		0.34	
Antimony	0.03	0.26	1.44	0.027	0.000000825	0.000264	0.0655	0.0658	0.206	0.0693	0.00671	0.0760				
Arsenic (arsenate)	0.5	3.5	0.09	0.13	0.0000137	0.00355	0.00512	0.00868	0.0271	0.00915	0.0129	0.0220	10	40	0.0022	0.00055
Arsenic (arsenite)	0.5	3.5	0.09	0.13	0.0000137	0.00355	0.00512	0.00868	0.0271	0.00915	0.0129	0.0220	20	50	0.0011	0.00044
Barium	46.8	388	49.9	108	0.00129	0.393	3.13	3.52	11.0	3.71	5.96	9.67	21	42	0.46	0.23
Cadmium	0.02	1.91	0.043	13	0.00000550	0.00194	0.106	0.108	0.337	0.114	0.0350	0.149	1.5	20	0.099	0.0074
Chromium	1.6	9.42	0.65	0.3	0.0000440	0.00955	0.0319	0.0415	0.130	0.0437	0.101	0.145	0.86	4.3	0.17	0.034
Cobalt	0.13	7.56	0.497	0.087	0.00000357	0.00766	0.0232	0.0309	0.0966	0.0325	0.0406	0.0732				
Lead	0.44	93.2	0.89	10.1	0.0000121	0.0945	0.121	0.216	0.674	0.227	0.0591	0.286	3.9	11	0.073	0.026
Mercury	0.05	0.11	0.05	0.12	0.00000137	0.000112	0.00323	0.00334	0.0104	0.00352	0.00466	0.00818	0.032	0.064	0.26	0.13
Molybdenum	0.05	2	0.182	0.335	0.00000137	0.00203	0.0109	0.0130	0.0405	0.0137	0.0839	0.0976	3.5	35	0.028	0.0028
Selenium	0.2	0.75	0.3	0.2	0.00000550	0.000760	0.0152	0.0160	0.0499	0.0168	0.0169	0.0337	0.40	0.80	0.084	0.042
Thallium	0.003	0.023	0.003	0.02	0.0000000825	0.0000233	0.000296	0.000320	0.00100	0.000336	0.000773	0.00111	0.24	24	0.0046	0.000046
Vanadium	0.31	28.3	0.7	0.2	0.00000852	0.0287	0.0333	0.0620	0.194	0.0653	0.0985	0.164	11		0.015	
Zinc (TRV1)	6.08	288	59.6	310	0.000167	0.292	5.18	5.48	17.1	5.77	6.52	12.3	130		0.095	
Zinc (TRV2)	6.08	288	59.6	310	0.000167	0.292	5.18	5.48	17.1	5.77	6.52	12.3	70	120	0.18	0.10

Note: The following data were used to develop this scenario: PHASE1RA water data (TP2-0100); PHASE1RA sediment; PHASE2RA sedge seeds; and PHASE2RA terrestrial invertebrates (TT6-0100). Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

^a Based on mean daily exposure for teal in pond reference station 3 (Table K-59) multipled by 0.66.

Table K-65. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at ST-REF-3 site

		Conc	entration			Daily Exposure			BW	TF	۲V		nd Hazard tient
								Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Invert.	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	(µg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	17.3	3,620	5.6	5.6	0.000476	3.67	0.299	3.97	12.4	120		0.10	
Antimony	0.01	0.03	0.055	0.003	0.000000275	0.0000304	0.00252	0.00255	0.00797				
Arsenic (arsenate)	0.1	8.1	0.26	0.05	0.00000275	0.00821	0.0122	0.0204	0.0638	10	40	0.0064	0.0016
Arsenic (arsenite)	0.1	8.1	0.26	0.05	0.00000275	0.00821	0.0122	0.0204	0.0638	20	50	0.0032	0.0013
Barium	169	177	30.2	5.63	0.00465	0.179	1.41	1.60	5.00	21	42	0.24	0.12
Cadmium	0.005	0.245	0.04	0.696	0.000000137	0.000248	0.00738	0.00763	0.0239	1.5	20	0.016	0.0012
Chromium	0.25	7.22	0.3	0.3	0.00000687	0.00732	0.0160	0.0233	0.0729	0.86	4.3	0.085	0.017
Cobalt	0.22	11	0.71	0.029	0.00000605	0.0112	0.0324	0.0436	0.136				
Lead	0.02	9.50	0.17	8.14	0.000000550	0.00963	0.0729	0.0825	0.258	3.9	11	0.066	0.023
Mercury	0.05	0.022	0.039	0.07	0.00000137	0.0000218	0.00233	0.00235	0.00735	0.032	0.064	0.23	0.11
Molybdenum	0.05	0.52	0.3	0.324	0.00000137	0.000527	0.0162	0.0167	0.0523	3.5	35	0.015	0.0015
Selenium	0.2	0.5	0.2	0.65	0.00000550	0.000507	0.0143	0.0148	0.0462	0.40	0.80	0.12	0.058
Thallium	0.003	0.041	0.002	0.002	0.0000000825	0.0000416	0.000107	0.000148	0.000464	0.24	24	0.0019	0.000019
Vanadium	0.2	10.7	0.3	0.2	0.00000550	0.0108	0.0152	0.0261	0.0814	11		0.0074	
Zinc (TRV1)	0.31	66.9	40.3	137	0.00000852	0.0678	2.92	2.99	9.35	130		0.072	
Zinc (TRV2)	0.31	66.9	40.3	137	0.00000852	0.0678	2.92	2.99	9.35	70	120	0.13	0.078

Note: The following data were used to develop this scenario: PHASE1RA water data (sedge ST-REF-1); PHASE1RA sediment (ST-REF-3); PHASE2RA sediment for Cd, Pb, Hg, Zn; PHASE2RA sedge seeds; PHASE2RA stream invertebrates for Cd, Pb, Hg, Zn (ST-REF-3); and PHASE2RA terrestrial invertebrates for Al, As, Ba, Cr, Co, Mo, Se, Tl, V (TS-REF-5). Mean of PHASE1RA and PHASE2RA sediment data used. No water data available for ST-REF-3, so data from closest stream, ST-REF-1, used. Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-66. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at ST-REF-5 site

		Conc	entration		D	aily Exposure			BW	TF	٩V	Year-Roui Quo	nd Hazard tient
-								Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Invert.	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	2,770	12,100	5.4	5.6	0.0762	12.3	0.290	12.6	39.5	120		0.33	
Antimony	0.08	0.05	0.04	0.003	0.00000220	0.0000507	0.00184	0.00189	0.00591				
Arsenic (arsenate)	2.2	3.5	0.09	0.05	0.0000605	0.00355	0.00448	0.00809	0.0253	10	40	0.0025	0.00063
Arsenic (arsenite)	2.2	3.5	0.09	0.05	0.0000605	0.00355	0.00448	0.00809	0.0253	20	50	0.0013	0.00051
Barium	222	483	46.9	5.63	0.00610	0.490	2.17	2.67	8.34	21	42	0.40	0.20
Cadmium	0.07	0.3	0.071	0.96	0.00000192	0.000304	0.0109	0.0112	0.0350	1.5	20	0.023	0.0018
Chromium	3.71	19.9	0.2	0.3	0.000102	0.0202	0.0115	0.0317	0.0992	0.86	4.3	0.12	0.023
Cobalt	2.72	8.74	0.42	0.029	0.0000748	0.00886	0.0193	0.0282	0.0882				
Lead	1.91	8.87	0.21	0.15	0.0000525	0.00899	0.0107	0.0198	0.0618	3.9	11	0.016	0.0056
Mercury	0.05	0.04	0.031	0.09	0.00000137	0.0000406	0.00213	0.00217	0.00678	0.032	0.064	0.21	0.11
Molybdenum	0.17	0.3	0.506	0.324	0.00000467	0.000304	0.0255	0.0259	0.0808	3.5	35	0.023	0.0023
Selenium	0.2	0.7	0.05	0.65	0.00000550	0.000710	0.00747	0.00819	0.0256	0.40	0.80	0.064	0.032
Thallium	0.014	0.07	0.003	0.002	0.00000385	0.0000710	0.000152	0.000223	0.000698	0.24	24	0.0029	0.000029
Vanadium	5.57	24.8	0.3	0.2	0.000153	0.0251	0.0152	0.0405	0.127	11		0.012	
Zinc (TRV1)	9.84	68.1	31.7	214	0.000271	0.0690	3.15	3.22	10.1	130		0.077	
Zinc (TRV2)	9.84	68.1	31.7	214	0.000271	0.0690	3.15	3.22	10.1	70	120	0.14	0.084

Note: The following data were used to develop this scenario: PHASE1RA water data (ST-REF-5); PHASE1RA sediment (ST-REF-5); PHASE2RA sedge seeds; and PHASE2RA terrestrial invertebrates (TS-REF-5).

No PHASE2RA sediment data collected.

Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-67. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at ST-REF-6 site

		Conce	entration		D	aily Exposure			BW	TF	RV		nd Hazard tient
-	\\/_t==	0-11/0-11	Usak Blass		\A/-1	0-11/0-111	EI	Total Daily	Normalized	NOAFI	LOAFI	NOAEL	LOAEL
Analyte	Water (µg/L)	Soil/Sediment (mg/kg dw)	Herb. Plant (mg/kg dw)	Invert. (mg/kg dw)	Water (mg/day)	Soil/Sediment (mg/day)	Food (mg/day)	Intake (mg/day)	Exposure (mg/kg-day)	NOAEL (mg/kg-day)	LOAEL (mg/kg-day)	Hazard Quotient	Hazard Quotient
Aluminum	2,770	12,100	, , ,	5.6	0.0762	12.3	18.0	30.3	94.8	120		0.79	
Antimony	0.08	0.05		0.003	0.00000220	0.0000507	0.00229	0.00234	0.00733				
Arsenic (arsenate)	2.2	3.5	1.08	0.05	0.0000605	0.00355	0.0494	0.0530	0.166	10	40	0.017	0.0041
Arsenic (arsenite)	2.2	3.5	1.08	0.05	0.0000605	0.00355	0.0494	0.0530	0.166	20	50	0.0083	0.0033
Barium	222	483	64	5.63	0.00610	0.490	2.95	3.44	10.8	21	42	0.51	0.26
Cadmium	0.07	0.19	0.057	0.347	0.00000192	0.000193	0.00536	0.00556	0.0174	1.5	20	0.012	0.00087
Chromium	3.71	19.9	4.1	0.3	0.000102	0.0202	0.188	0.209	0.652	0.86	4.3	0.76	0.15
Cobalt	2.72	8.74	1.62	0.029	0.0000748	0.00886	0.0737	0.0826	0.258		==		
Lead	1.91	5.71	0.74	2.73	0.0000525	0.00579	0.0554	0.0613	0.191	3.9	11	0.049	0.017
Mercury	0.05	0.003	0.025	0.14	0.00000137	0.00000304	0.00225	0.00226	0.00706	0.032	0.064	0.22	0.11
Molybdenum	0.17	0.3	0.147	0.324	0.00000467	0.000304	0.00926	0.00957	0.0299	3.5	35	0.0085	0.00085
Selenium	0.2	0.7	0.2	0.65	0.00000550	0.000710	0.0143	0.0150	0.0468	0.40	0.80	0.12	0.059
Thallium	0.014	0.07	0.009	0.002	0.000000385	0.0000710	0.000424	0.000496	0.00155	0.24	24	0.0065	0.000065
Vanadium	5.57	24.8	0.85	0.2	0.000153	0.0251	0.0402	0.0654	0.205	11		0.019	
Zinc (TRV1)	9.84	33.1	30	91.3	0.000271	0.0336	2.09	2.13	6.64	130		0.051	
Zinc (TRV2)	9.84	33.1	30	91.3	0.000271	0.0336	2.09	2.13	6.64	70	120	0.095	0.055

Note: The following data were used to develop this scenario: PHASE1RA water data (ST-REF-5); PHASE1RA sediment for Al, As, Ba, Cr, Co, Mo, Se, Tl, V (ST-REF-5); PHASE2RA sediment for Cd, Pb, Hg, Zn (ST-REF-6); PHASE2RA whole sedge (no seed data available); PHASE2RA stream invertebrates for Cd, Pb, Hg, Zn (ST-REF-6); and PHASE2RA terrestrial invertebrates for Al, As, Ba, Cr, Co, Mo, Se, Tl, V (TS-REF-5).

No sediment or water data collected at ST-REF-6 during PHASE1RA, so data from closest stream (ST-REF-5) was used. Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

Table K-68. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at Omikviorok River road site

		Cond	centration		Dai	ly Exposure		,	BW	Time Use			TF	۲V		nd Hazard otient
		Soil/				Soil/		Total Daily	Normalized	Adjusted	Ref. Time Use	Total			NOAEL	LOAEL
	Water	Sediment	Herb. Plant	Invert.	Water	Sediment	Food	Intake	Exposure	Exposure	Adjusted Exp.	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	(μg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ^a	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	96.3	9,520	163	151	0.00265	9.65	8.60	18.3	57.0	19.2	26.1	45.3	120		0.38	
Antimony	0.063	0.14	0.047	0.037	0.00000173	0.000142	0.00243	0.00257	0.00804	0.00271	0.00390	0.00661				
Arsenic (arsenate)	0.482	7.6	0.23	0.25	0.0000133	0.00770	0.0124	0.0202	0.0630	0.0212	0.0167	0.0379	10	40	0.0038	0.00095
Arsenic (arsenite)	0.482	7.6	0.23	0.25	0.0000133	0.00770	0.0124	0.0202	0.0630	0.0212	0.0167	0.0379	20	50	0.0019	0.00076
Barium	133	407	74	71.8	0.00366	0.413	3.93	4.35	13.6	4.58	5.50	10.1	21	42	0.48	0.24
Cadmium	0.0849	0.44	0.137	0.365	0.00000234	0.000441	0.00913	0.00958	0.0299	0.0101	0.0231	0.0332	1.5	20	0.022	0.0017
Chromium	0.396	20.6	0.6	0.3	0.0000109	0.0209	0.0296	0.0505	0.158	0.0532	0.0655	0.119	0.86	4.3	0.14	0.028
Cobalt	0.1	13.5	0.39	0.134	0.00000275	0.0137	0.0188	0.0324	0.101	0.0342	0.0582	0.0924				
Lead	0.506	22.5	2.6	5.16	0.0000139	0.0228	0.159	0.182	0.569	0.192	0.0408	0.232	3.9	11	0.060	0.021
Mercury	0.0179	0.0315	0.041	0.08	0.000000492	0.0000319	0.00250	0.00253	0.00791	0.00267	0.00447	0.00714	0.032	0.064	0.22	0.11
Molybdenum	0.69	0.49	0.202	0.274	0.0000190	0.000497	0.0114	0.0119	0.0371	0.0125	0.0533	0.0658	3.5	35	0.019	0.0019
Selenium	0.0201	0.6	0.1	0.2	0.000000553	0.000608	0.00614	0.00674	0.0211	0.00710	0.0169	0.0240	0.40	0.80	0.060	0.030
Thallium	0.0428	0.106	0.005	0.014	0.00000118	0.000107	0.000339	0.000447	0.00140	0.000471	0.000461	0.000932	0.24	24	0.0039	0.000039
Vanadium	0.335	24.9	0.5	0.49	0.00000921	0.0252	0.0266	0.0519	0.162	0.0546	0.0835	0.138	11		0.013	
Zinc (TRV1)	6.46	108	57.1	79	0.000178	0.109	3.22	3.33	10.4	3.51	6.64	10.1	130		0.078	
Zinc (TRV2)	6.46	108	57.1	79	0.000178	0.109	3.22	3.33	10.4	3.51	6.64	10.1	70	120	0.15	0.085

Note: The following data were used to develop this scenario: TECK03 water (mean of OmiRoad); PHASE1RA sediment; PHASE2RA sediment for Cd, Pb, Hg, Zn; PHASE2RA sedge seeds;

PHASE2RA stream invertebrates for Cd, Pb, Hg, Zn; and PHASE2RA terrestrial invertebrates for Al, As, Ba, Cr, Co, Mo, Se, Tl, V (TT3-0010).

Mean of PHASE1RA and PHASE2RA sediment data used.

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

^a Based on mean daily exposure for teal in stream reference station 5 (Table K-66) multipled by 0.66.

Table K-69. Food-web model exposure results for green-winged teal exposed to CoPC concentrations at Anxiety Ridge Creek road site

		Con	centration		Dail	y Exposure			BW	Time Use	Ref. Time		TF	RV		nd Hazard tient
		Soil/				Soil/		Total Daily	Normalized	Adjusted	Use Adjusted	Total			NOAEL	LOAEL
	Water	Sediment	Herb. Plant	Invert.	Water	Sediment	Food	Intake	Exposure	Exposure	Exp. (mg/kg-	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	(μg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	day) ^a	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	208	7,200	307	58	0.00572	7.30	14.4	21.7	67.8	22.8	26.1	48.9	120		0.41	-
Antimony	0.063	0.42	0.04	0.017	0.00000173	0.000426	0.00195	0.00238	0.00743	0.00250	0.00390	0.00640				-
Arsenic (arsenate)	0.482	8.4	1.13	0.12	0.0000133	0.00852	0.0522	0.0607	0.190	0.0640	0.0167	0.0807	10	40	0.0081	0.0020
Arsenic (arsenite)	0.482	8.4	1.13	0.12	0.0000133	0.00852	0.0522	0.0607	0.190	0.0640	0.0167	0.0807	20	50	0.0040	0.0016
Barium	140	922	250	52.5	0.00385	0.935	11.8	12.7	39.7	13.4	5.50	18.9	21	42	0.90	0.45
Cadmium	0.0365	1.02	0.638	0.803	0.0000100	0.00103	0.0354	0.0364	0.114	0.0383	0.0231	0.0614	1.5	20	0.041	0.0031
Chromium	0.396	14.6	3.1	0.3	0.0000109	0.0148	0.143	0.158	0.493	0.166	0.0655	0.232	0.86	4.3	0.27	0.054
Cobalt	0.015	11.1	0.92	0.07	0.000000412	0.0113	0.0423	0.0535	0.167	0.0564	0.0582	0.115				-
Lead	0.65	124	14.3	10.9	0.0000179	0.125	0.736	0.861	2.69	0.907	0.0408	0.948	3.9	11	0.24	0.086
Mercury	0.0179	0.06	0.06	0.04	0.000000492	0.0000634	0.00304	0.00311	0.00970	0.00327	0.00447	0.00774	0.032	0.064	0.24	0.12
Molybdenum	0.22	1.62	0.309	0.229	0.00000605	0.00164	0.0158	0.0175	0.0547	0.0184	0.0533	0.0717	3.5	35	0.021	0.0021
Selenium	0.355	1.5	0.3	0.2	0.00000976	0.00152	0.0152	0.0167	0.0523	0.0176	0.0169	0.0345	0.40	0.80	0.086	0.043
Thallium	0.09	0.19	0.027	0.015	0.00000247	0.000193	0.00134	0.00154	0.00481	0.00162	0.000461	0.00208	0.24	24	0.0087	0.000087
Vanadium	0.335	20.5	0.7	0.2	0.00000921	0.0208	0.0333	0.0541	0.169	0.0570	0.0835	0.141	11		0.013	
Zinc (TRV1)	1.79	204	87.4	96.2	0.0000492	0.206	4.73	4.94	15.4	5.20	6.64	11.8	130		0.091	
Zinc (TRV2)	1.79	204	87.4	96.2	0.0000492	0.206	4.73	4.94	15.4	5.20	6.64	11.8	70	120	0.17	0.099

Note: The following data were used to develop this scenario: TECK03 water (ARC-D); PHASE1RA sediment (ARC-D1); PHASE2RA sediment (Cd, Pb, Hg, Zn at ARC-R); PHASE2RA whole sedge (no seed data available);

PHASE2RA stream invertebrates for Cd, Pb, Hg, Zn; and PHASE2RA terrestrial invertebrates for Al, As, Ba, Cr, Co, Mo, Se, Tl, V (TT6-0010).

Mean for Anxiety Ridge Creek road station, except PHASE1RA sediment and water from downstream location. Mean of PHASE1RA (ARC_D1) and PHASE2RA (ARC-R) sediment data used. Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

^a Based on mean daily exposure for teal in stream reference station 5 (Table K-66) multipled by 0.66.

Table K-87. Food-web model exposure results for moose exposed to CoPC concentrations at ST-REF-6 site

		Concen	tration			Daily Exposure		Total	BW	TF	٦٧	Year-Roun Quot	
-					'			Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Shrub	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	2,770	12,100	396	2.5	51.9	1560	270	1880	5.55	1.9	19	2.9	0.29
Antimony	0.08	0.05	0.05	0.04	0.00150	0.00644	0.264	0.272	0.000802	0.66		0.0012	
Arsenic (arsenate)	2.2	3.5	1.08	0.03	0.0412	0.451	0.870	1.36	0.00402	0.40	1.6	0.010	0.0025
Arsenic (arsenite)	2.2	3.5	1.08	0.03	0.0412	0.451	0.870	1.36	0.00402	0.13	1.3	0.031	0.0031
Barium	222	483	64	24.1	4.16	62.2	181	247	0.730	5.1	20	0.14	0.036
Cadmium	0.07	0.19	0.057	0.558	0.00131	0.0245	3.27	3.30	0.00973	1.0	10	0.0097	0.00097
Chromium	3.71	19.9	4.1	0.2	0.0695	2.56	3.80	6.43	0.0190	3.3	69	0.0058	0.00028
Cobalt	2.72	8.74	1.62	2.06	0.0510	1.13	13.0	14.2	0.0418	0.50	2.0	0.084	0.021
Lead	1.91	5.71	0.74	0.09	0.0358	0.736	0.998	1.77	0.00522	11	90	0.00047	0.000058
Mercury	0.05	0.003	0.025	0.065	0.000937	0.000386	0.393	0.394	0.00116	0.032	0.16	0.036	0.0073
Molybdenum	0.17	0.3	0.147	0.09	0.00319	0.0386	0.616	0.658	0.00194	0.26	2.6	0.0075	0.00075
Selenium	0.2	0.7	0.2	0.05	0.00375	0.0902	0.419	0.513	0.00151	0.20	0.33	0.0076	0.0046
Thallium	0.014	0.07	0.009	0.002	0.000262	0.00902	0.0174	0.0267	0.0000787	0.074	0.74	0.0011	0.00011
Vanadium	5.57	24.8	0.85	0.2	0.104	3.19	1.71	5.01	0.0148	0.21	2.1	0.070	0.0070
Zinc	9.84	33.1	30	92.2	0.184	4.26	554	558	1.65	160	320	0.010	0.0051

Note: The following data were used to develop this scenario: PHASE1RA water (ST-REF-5), Phase1RA sediment for AI, As, Ba, Co, Mo, Se, TI, V (ST-REF-5); Phase2RA sediment for Cd, Pb, Hg, Zn; PHASE2RA willow; and PHASE2RA whole sedge.

No PHASE1RA sediment or water data collected at ST-REF-6, so ST-REF-5 data used -- nearest creek sediment and water station from PHASE1RA. Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-101. Food-web model exposure results for moose exposed to mean CoPC concentrations at the Reference Lagoon

		Concentration	n		Daily Exposure			BW	TF	₹∨	Year-Roun Quot	
							Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	182	11100	10.6	3.41	1440	68.3	1510	4.45	1.9	19	2.3	0.23
Antimony	0.12	0.0767	0.0225	0.00225	0.00988	0.145	0.157	0.000463	0.66		0.00070	
Arsenic (arsenate)	76.3	4.43	0.03	1.43	0.570	0.193	2.19	0.00647	0.40	1.6	0.016	0.0040
Arsenic (arsenite)	76.3	4.43	0.03	1.43	0.570	0.193	2.19	0.00647	0.13	1.3	0.050	0.0050
Barium	156	226	17.6	2.92	29.1	113	145	0.428	5.1	20	0.084	0.021
Cadmium	0.223	0.345	0.053	0.00419	0.0444	0.341	0.390	0.00115	1	10	0.0012	0.00012
Chromium	7.16	19.6	0.35	0.134	2.52	2.25	4.91	0.0145	3.3	69	0.0044	0.00021
Cobalt	4.39	6.83	0.205	0.0823	0.880	1.32	2.28	0.00673	0.5	2	0.013	0.0034
Lead	0.363	10.1	0.755	0.00681	1.30	4.86	6.17	0.0182	11	90	0.0017	0.00020
Mercury	0.05	0.05	0.0535	0.000937	0.00644	0.345	0.352	0.00104	0.032	0.16	0.032	0.0065
Molybdenum	0.08	0.773	0.088	0.00150	0.0996	0.567	0.668	0.00197	0.26	2.6	0.0076	0.00076
Selenium	0.2	1.1	0.05	0.00375	0.142	0.322	0.468	0.00138	0.2	0.33	0.0069	0.0042
Thallium	0.008	0.081	0.0025	0.000150	0.0104	0.0161	0.0267	0.0000787	0.074	0.74	0.0011	0.00011
Vanadium	0.4	25.2	0.2	0.00750	3.25	1.29	4.55	0.0134	0.21	2.1	0.064	0.0064
Zinc	22.9	92.2	35.4	0.429	11.9	228	240	0.709	160	320	0.0044	0.0022

Note: Phase2RA whole sedge/grass (CL-REF-1) and sediment, Phase1RA water and sediment.

Sediment concentrations are means of Phase2RA and Phase1RA data from reference lagoon. Assumes a diet of 100% herbaceous plants. Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-102. Food-web model exposure results for moose exposed to mean CoPC concentrations at the Control Lagoon

		Concentration	on		Daily Exposure	1		BW	TF	۲V	Year-Roun Quot	
							Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	181.7	11100	21.4	3.41	1440	138	1580	4.65	1.9	19	2.4	0.24
Antimony	0.12	0.0767	0.0207	0.00225	0.00988	0.133	0.145	0.000428	0.66		0.00065	
Arsenic (arsenate)	76.3	8.2	0.11	1.43	1.06	0.709	3.19	0.00942	0.40	1.6	0.024	0.0059
Arsenic (arsenite)	76.3	8.2	0.11	1.43	1.06	0.709	3.19	0.00942	0.13	1.3	0.072	0.0072
Barium	156	226	31.6	2.92	29.1	204	236	0.695	5.1	20	0.14	0.035
Cadmium	0.05	0.46	0.0913	0.000937	0.0593	0.588	0.648	0.00191	1	10	0.0019	0.00019
Chromium	7.16	19.6	0.4	0.134	2.52	2.58	5.24	0.0154	3.3	69	0.0047	0.00022
Cobalt	4.39	6.83	0.627	0.0823	0.880	4.04	5.00	0.0147	0.5	2	0.029	0.0074
Lead	0.17	9.65	1.45	0.00319	1.24	9.34	10.6	0.0312	11	90	0.0028	0.00035
Mercury	0.05	0.05	0.041	0.000937	0.00644	0.264	0.271	0.000801	0.032	0.16	0.025	0.0050
Molybdenum	0.08	0.773	0.35	0.00150	0.0996	2.25	2.36	0.00695	0.26	2.6	0.027	0.0027
Selenium	0.2	1.1	0.117	0.00375	0.142	0.751	0.897	0.00265	0.2	0.33	0.013	0.0080
Thallium	0.008	0.081	0.004	0.000150	0.0104	0.0258	0.0363	0.000107	0.074	0.74	0.0014	0.00014
Vanadium	0.4	25.2	0.2	0.00750	3.25	1.29	4.55	0.0134	0.21	2.1	0.064	0.0064
Zinc	19	79.3	43.8	0.356	10.2	282	293	0.863	160	320	0.0054	0.0027

Note: Phase2RA whole sedge/grass and sediment, PSCHAR sediment.

Whole sedge and grass plant data averaged for whole lagoon. Mean of sediment from Phase2 and PSCHAR used; some analytes missing for sediment in control lagoon (Al, Sb, Ba, Cr, Co, Hg, Mo, Se, Tl, V) for these, used mean of reference lagoon stations from Phase1 and Phase2. Assumes a diet of 100% herbaceous plants.

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-103. Food-web model exposure results for moose exposed to mean CoPC concentrations at the Port Lagoon North

		Concentratio	n		Daily Exposure			BW	TF	٩V	Year-Roun Quot	
							Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	44.1	5590	9.7	0.826	719	62.5	783	2.31	1.9	19	1.2	0.12
Antimony	0.545	0.225	0.0385	0.0102	0.0290	0.248	0.287	0.000847	0.66		0.0013	
Arsenic (arsenate)	26.7	7.05	0.08	0.499	0.908	0.515	1.92	0.00567	0.40	1.6	0.014	0.0035
Arsenic (arsenite)	26.7	7.05	0.08	0.499	0.908	0.515	1.92	0.00567	0.13	1.3	0.044	0.0044
Barium	412	252	17	7.71	32.5	109	150	0.442	5.1	20	0.087	0.022
Cadmium	0.0933	2.86	0.056	0.00175	0.369	0.361	0.731	0.00216	1	10	0.0022	0.00022
Chromium	1.84	10.3	0.25	0.0344	1.32	1.61	2.97	0.00875	3.3	69	0.0027	0.00013
Cobalt	1.32	5.49	0.09	0.0246	0.707	0.580	1.31	0.00387	0.5	2	0.0077	0.0019
Lead	1.90	92	1.29	0.0357	11.9	8.28	20.2	0.0595	11	90	0.0054	0.00066
Mercury	0.05	0.148	0.0355	0.000937	0.0191	0.229	0.249	0.000734	0.032	0.16	0.023	0.0046
Molybdenum	0.545	0.77	0.154	0.0102	0.0992	0.992	1.10	0.00325	0.26	2.6	0.012	0.0012
Selenium	0.45	0.8	0.125	0.00843	0.103	0.805	0.917	0.00270	0.2	0.33	0.014	0.0082
Thallium	0.029	0.0705	0.004	0.000544	0.00908	0.0258	0.0354	0.000104	0.074	0.74	0.0014	0.00014
Vanadium	0.325	21.1	0.2	0.00609	2.72	1.29	4.01	0.0118	0.21	2.1	0.056	0.0056
Zinc	21.0	556	45.1	0.393	71.7	290	363	1.07	160	320	0.0067	0.0033

Note: Phase2RA whole sedge and sediment (PLNL), Phase1RA sediment and water (PLNL and PLNN), PSCHAR sediment and water (all Port Lagoon North stations).

Whole sedge data averaged for all stations at the lagoon and all sedge/grass types. Sediment and water data averaged at a station, then data from all stations at the lagoon averaged to calculate lagoon-wide means. Assumes a diet of 100% herbaceous plant

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-104. Food-web model exposure results for moose exposed to mean CoPC concentrations at the North Lagoon

		Concentratio	n		Daily Exposure			BW	TF	₹∨	Year-Roun Quoti	
							Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	24.9	8420	24.1	0.467	1080	155	1240	3.66	1.9	19	1.9	0.19
Antimony	0.2	0.085	0.027	0.00375	0.0109	0.174	0.189	0.000556	0.66		0.0008	
Arsenic (arsenate)	4.8	5.95	0.245	0.0900	0.766	1.58	2.43	0.00718	0.40	1.6	0.018	0.0045
Arsenic (arsenite)	4.8	5.95	0.245	0.0900	0.766	1.58	2.43	0.00718	0.13	1.3	0.055	0.0055
Barium	114	270	19.2	2.13	34.8	124	161	0.474	5.1	20	0.093	0.024
Cadmium	0.15	0.996	0.129	0.00281	0.128	0.828	0.959	0.00283	1	10	0.0028	0.00028
Chromium	1.86	11.0	0.4	0.0349	1.42	2.58	4.03	0.0119	3.3	69	0.0036	0.00017
Cobalt	0.45	5.75	0.37	0.00843	0.740	2.38	3.13	0.00924	0.5	2	0.018	0.0046
Lead	0.885	60.7	2.62	0.0166	7.82	16.9	24.7	0.0729	11	90	0.0066	0.00081
Mercury	0.05	0.04	0.033	0.000937	0.00515	0.213	0.219	0.000645	0.032	0.16	0.020	0.0040
Molybdenum	0.34	0.855	0.171	0.00637	0.110	1.10	1.22	0.00359	0.26	2.6	0.014	0.0014
Selenium	0.3	0.75	0.2	0.00562	0.0966	1.29	1.39	0.00410	0.2	0.33	0.021	0.012
Thallium	0.007	0.051	0.007	0.000131	0.00657	0.0451	0.0518	0.000153	0.074	0.74	0.0021	0.00021
Vanadium	0.26	18.4	0.2	0.00487	2.36	1.29	3.66	0.0108	0.21	2.1	0.051	0.0051
Zinc	45.6	189	48.3	0.854	24.3	311	336	0.992	160	320	0.0062	0.0031

Note: Phase2RA whole sedge and sediment (NLF, NLK), Phase1RA sediment (NLF and NLK) and water (NLF, NLK), PSCHAR sediment and water (all North Lagoon stations).

Whole sedge data averaged for all stations at the lagoon and all sedge/grass types. Sediment and water data averaged for a station, then data from all stations at the lagoon averaged to calculate lagoon-wide means. Assumes a diet of 100% herbaceous plan

Hazard quotients greater than 1.0 are boxed.

-- - appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-117. Food-web model exposure results for muskrat exposed to mean CoPC concentrations at the Reference Lagoon

		Concentration	า	D	aily Exposure			BW	TF	٩V		nd Hazard otient
							Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	182	11100	10.6	0.0169	15.6	0.743	16.4	17.6	1.9	19	9.3	0.93
Antimony	0.12	0.0767	0.0225	0.0000112	0.000107	0.00158	0.00170	0.00182	0.66		0.0028	
Arsenic (arsenate)	76.3	4.43	0.03	0.00709	0.00620	0.00210	0.0154	0.0165	0.40	1.6	0.041	0.010
Arsenic (arsenite)	76.3	4.43	0.03	0.00709	0.00620	0.00210	0.0154	0.0165	0.13	1.3	0.13	0.013
Barium	156	226	17.6	0.0145	0.317	1.23	1.56	1.67	5.1	20	0.33	0.084
Cadmium	0.223	0.345	0.053	0.0000208	0.000483	0.00371	0.00422	0.00453	1	10	0.0045	0.00045
Chromium	7.16	19.6	0.35	0.000665	0.0275	0.0245	0.0527	0.0565	3.3	69	0.017	0.00082
Cobalt	4.39	6.83	0.205	0.000408	0.00958	0.0144	0.0243	0.0261	0.5	2	0.052	0.013
Lead	0.363	10.1	0.755	0.0000338	0.0141	0.0529	0.0671	0.0719	11	90	0.0065	0.00080
Mercury	0.05	0.05	0.0535	0.00000465	0.0000701	0.00375	0.00382	0.00410	0.032	0.16	0.13	0.026
Molybdenum	0.08	0.773	0.088	0.00000743	0.00108	0.00617	0.00726	0.00779	0.26	2.6	0.030	0.0030
Selenium	0.2	1.1	0.05	0.0000186	0.00154	0.00350	0.00506	0.00543	0.2	0.33	0.027	0.016
Thallium	0.008	0.081	0.0025	0.000000743	0.000114	0.000175	0.000289	0.000311	0.074	0.74	0.0042	0.00042
Vanadium	0.4	25.2	0.2	0.0000372	0.0354	0.0140	0.0494	0.0530	0.21	2.1	0.25	0.025
Zinc	22.9	92.2	35.4	0.00212	0.129	2.48	2.61	2.80	160	320	0.018	0.0088

Note: Phase2RA whole sedge/grass and sediment (CL-REF-1), Phase1RA water and sediment.

Sediment concentrations are means of Phase2RA and Phase1RA data from reference lagoons (no control lagoon data).

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-118. Food-web model exposure results for muskrat exposed to mean CoPC concentrations at the Control Lagoon

	Concentration Daily Exposure					BW	TF	₹∨	Year-Round Hazard Quotient			
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Total Daily Intake	Normalized Exposure	NOAEL	LOAEL	NOAEL Hazard	LOAEL Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	182	11100	21.4	0.0169	15.6	1.50	17.1	18.4	1.9	19	9.7	0.97
Antimony	0.12	0.0767	0.0207	0.0000112	0.000107	0.00145	0.00157	0.00168	0.66		0.0025	
Arsenic (arsenate)	76.3	8.2	0.11	0.00709	0.0115	0.00771	0.0263	0.0282	0.40	1.6	0.071	0.018
Arsenic (arsenite)	76.3	8.2	0.11	0.00709	0.0115	0.00771	0.0263	0.0282	0.13	1.3	0.22	0.022
Barium	156	226	31.6	0.0145	0.317	2.21	2.55	2.73	5.1	20	0.54	0.14
Cadmium	0.05	0.46	0.0913	0.00000465	0.000645	0.00640	0.00705	0.00756	1	10	0.0076	0.00076
Chromium	7.16	19.6	0.4	0.000665	0.0275	0.0280	0.0562	0.0603	3.3	69	0.018	0.00087
Cobalt	4.39	6.83	0.627	0.000408	0.00958	0.0439	0.0539	0.0578	0.5	2	0.12	0.029
Lead	0.17	9.65	1.45	0.0000158	0.0135	0.102	0.115	0.124	11	90	0.011	0.0014
Mercury	0.05	0.05	0.041	0.00000465	0.0000701	0.00287	0.00295	0.00316	0.032	0.16	0.10	0.020
Molybdenum	0.08	0.773	0.35	0.00000743	0.00108	0.0245	0.0256	0.0275	0.26	2.6	0.11	0.011
Selenium	0.2	1.1	0.117	0.0000186	0.00154	0.00817	0.00973	0.0104	0.2	0.33	0.052	0.032
Thallium	0.008	0.081	0.004	0.000000743	0.000114	0.000280	0.000395	0.000423	0.074	0.74	0.0057	0.00057
Vanadium	0.4	25.2	0.2	0.0000372	0.0354	0.0140	0.0494	0.0530	0.21	2.1	0.25	0.025
Zinc	19	79.3	43.8	0.00177	0.111	3.07	3.18	3.41	160	320	0.021	0.011

Note: Phase2RA whole sedge/grass and sediment, PSCHAR sediment.

Whole sedge and grass plant data averaged for whole lagoon. Mean of sediment from Phase2 and PSCHAR used; some analytes missing for sediment in control lagoon (Al, Sb, Ba, Cr, Co, Hg, Mo, Se, Tl, V) for these, used mean of reference lagoon stations from Phase1 and Phase2.

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

Table K-119. Food-web model exposure results for muskrat exposed to mean CoPC concentrations at the Port Lagoon North

		Concentratio	n		Daily Exposure			BW	TF	RV	Year-Roun Quot	
							Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	44.1	5590	9.7	0.00409	7.83	0.680	8.51	9.13	1.9	19	4.8	0.48
Antimony	0.545	0.225	0.0385	0.0000506	0.000315	0.00270	0.00306	0.00329	0.66		0.0050	
Arsenic (arsenate)	26.7	7.05	0.08	0.00248	0.00988	0.00561	0.0180	0.0193	0.40	1.6	0.048	0.012
Arsenic (arsenite)	26.7	7.05	0.08	0.00248	0.00988	0.00561	0.0180	0.0193	0.13	1.3	0.15	0.015
Barium	412	252	17	0.0382	0.353	1.19	1.58	1.70	5.1	20	0.33	0.085
Cadmium	0.0933	2.86	0.056	0.00000867	0.00401	0.00392	0.00794	0.00852	1	10	0.0085	0.00085
Chromium	1.84	10.3	0.25	0.000171	0.0144	0.0175	0.0321	0.0344	3.3	69	0.010	0.00050
Cobalt	1.32	5.49	0.09	0.000122	0.00769	0.00631	0.0141	0.0152	0.5	2	0.030	0.0076
Lead	1.90	92	1.29	0.000177	0.129	0.0900	0.219	0.235	11	90	0.021	0.0026
Mercury	0.05	0.148	0.0355	0.00000465	0.000207	0.00249	0.00270	0.00290	0.032	0.16	0.091	0.018
Molybdenum	0.545	0.77	0.154	0.0000506	0.00108	0.0108	0.0119	0.0128	0.26	2.6	0.049	0.0049
Selenium	0.45	0.8	0.125	0.0000418	0.00112	0.00876	0.00992	0.0106	0.2	0.33	0.053	0.032
Thallium	0.029	0.0705	0.004	0.00000269	0.0000988	0.000280	0.000382	0.000410	0.074	0.74	0.0055	0.00055
Vanadium	0.325	21.1	0.2	0.0000302	0.0296	0.0140	0.0436	0.0468	0.21	2.1	0.22	0.022
Zinc	21.0	556	45.1	0.00195	0.780	3.16	3.94	4.23	160	320	0.026	0.013

Note: Phase2RA whole sedge and sediment (PLNL), Phase1RA sediment and water (PLNL and PLNN), PSCHAR sediment and water (all Port Lagoon North stations).

Whole sedge data averaged for all stations at the lagoon and all sedge/grass types. Sediment and water data averaged at a station, then data from all stations at the lagoon averaged to calculate lagoon-wide means.

Hazard quotients greater than 1.0 are boxed.

appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table K-120. Food-web model exposure results for muskrat exposed to mean CoPC concentrations at the North Lagoon

		Concentration	n		Daily Exposure			BW	TF	₹V	Year-Roun Quoti	
							Total Daily	Normalized			NOAEL	LOAEL
	Water	Soil/Sediment	Herb. Plant	Water	Soil/Sediment	Food	Intake	Exposure	NOAEL	LOAEL	Hazard	Hazard
Analyte	$(\mu g/L)$	(mg/kg dw)	(mg/kg dw)	(mg/day)	(mg/day)	(mg/day)	(mg/day)	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	Quotient	Quotient
Aluminum	24.9	8420	24.1	0.00231	11.8	1.69	13.5	14.5	1.9	19	7.6	0.76
Antimony	0.2	0.085	0.027	0.0000186	0.000119	0.00189	0.00203	0.00218	0.66		0.0033	
Arsenic (arsenate)	4.8	5.95	0.245	0.000446	0.00834	0.0172	0.0260	0.0278	0.40	1.6	0.070	0.017
Arsenic (arsenite)	4.8	5.95	0.245	0.000446	0.00834	0.0172	0.0260	0.0278	0.13	1.3	0.21	0.021
Barium	114	270	19.2	0.0105	0.378	1.35	1.73	1.86	5.1	20	0.36	0.093
Cadmium	0.15	0.996	0.129	0.0000139	0.00140	0.00900	0.0104	0.0112	1	10	0.011	0.0011
Chromium	1.86	11.0	0.4	0.000173	0.0154	0.0280	0.0436	0.0468	3.3	69	0.014	0.00068
Cobalt	0.45	5.75	0.37	0.0000418	0.00805	0.0259	0.0340	0.0365	0.5	2	0.073	0.018
Lead	0.885	60.7	2.62	0.0000822	0.0850	0.184	0.269	0.288	11	90	0.026	0.0032
Mercury	0.05	0.04	0.033	0.00000465	0.0000561	0.00231	0.00237	0.00255	0.032	0.16	0.080	0.016
Molybdenum	0.34	0.855	0.171	0.0000316	0.00120	0.0120	0.0132	0.0142	0.26	2.6	0.055	0.0055
Selenium	0.3	0.75	0.2	0.0000279	0.00105	0.0140	0.0151	0.0162	0.2	0.33	0.081	0.049
Thallium	0.007	0.051	0.007	0.000000650	0.0000715	0.000490	0.000563	0.000604	0.074	0.74	0.0082	0.00082
Vanadium	0.26	18.4	0.2	0.0000242	0.0257	0.0140	0.0398	0.0427	0.21	2.1	0.20	0.020
Zinc	45.6	189	48.3	0.00423	0.265	3.38	3.65	3.92	160	320	0.024	0.012

Note: Phase2RA whole sedge and sediment (NLF, NLK), Phase1RA sediment (NLF and NLK) and water (NLF, NLK), PSCHAR sediment and water (all North Lagoon stations).

Whole sedge data averaged for all stations at the lagoon and all sedge/grass types. Sediment and water data averaged for a station, then data from all stations at the lagoon averaged to calculate lagoon-wide means.

Hazard quotients greater than 1.0 are boxed.

-- appropriate TRV not found for analyte

CoPC - chemical of potential concern

LOAEL - lowest-observed-adverse-effect level

NOAEL - no-observed-adverse-effect level

Table 6-1. Refined assessment endpoints, representative receptors, and measurement endpoints

Environment	Assessment Endpoint	Representative Receptor ^a	Measurement Endpoint
Tundra	Structure and function of terrestrial plant communities	Terrestrial plant communities	Plant abundance, diversity, biomass, percent cover
Tundra	Structure and function of tundra soil fauna communities	Tundra soil fauna communities	Not directly assessed, evaluated through terrestrial plant community analysis
Tundra	Survival, growth, and reproduction of terrestrial avian herbivore populations	Willow ptarmigan	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, soil, and surface water) relative to avian TRVs
Tundra	Survival, growth, and reproduction of terrestrial mammalian herbivore populations	Tundra vole; caribou; moose	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, soil, and surface water) relative to mammalian TRVs
Tundra	Survival, growth, and reproduction of terrestrial avian invertivore populations	Lapland longspur	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, soil, and surface water) relative to avian TRVs
Tundra	Survival, growth, and reproduction of terrestrial mammalian invertivore populations	Tundra shrew	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, soil, and surface water) relative to mammalian TRVs
Tundra	Survival, growth, and reproduction of terrestrial avian carnivore populations	Snowy owl	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, soil, and surface water) relative to avian TRVs
Tundra	Survival, growth, and reproduction of terrestrial mammalian carnivore populations	Arctic fox	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, soil, and surface water) relative to mammalian TRVs
Streams	Structure and function of stream aquatic and wetland plant communities	Stream aquatic and wetland plant communities	Plant abundance, diversity, biomass, percent cover
Streams	Structure and function of stream aquatic invertebrate communities	Stream aquatic invertebrate communities	Abundance and diversity of stream aquatic invertebrates
Streams	Survival, growth, and reproduction of stream avian herbivore populations	Green-winged teal	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, sediment, and surface water) relative to avian TRVs
Streams	Survival, growth, and reproduction of stream mammalian herbivore populations	Muskrat; moose	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, sediment, and surface water) relative to mammalian TRVs

Table 6-1. (cont.)

Environment	Assessment Endpoint	Representative Receptor ^a	Measurement Endpoint
Streams	Survival, growth, and reproduction of stream avian invertivore populations	Common snipe	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, sediment, and surface water) relative to avian TRVs
Tundra ponds	Structure and function of tundra pond aquatic and wetland plant communities	Tundra pond aquatic and wetland plant communities	Plant abundance, diversity, biomass, percent cover
Tundra ponds	Structure and function of tundra pond aquatic invertebrate communities	Tundra pond aquatic invertebrate communities	Abundance and diversity of tundra pond aquatic invertebrates
Tundra ponds	Survival, growth, and reproduction of tundra pond avian herbivore populations	Green-winged teal	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, sediment, and surface water) relative to avian TRVs
Tundra ponds	Survival, growth, and reproduction of tundra pond mammalian herbivore populations	Muskrat	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, sediment, and surface water) relative to mammalian TRVs
Tundra ponds	Survival, growth, and reproduction of tundra pond avian invertivore populations	Common snipe ^b	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, sediment, and surface water) relative to avian TRVs
Coastal lagoons	Structure and function of coastal lagoon aquatic and wetland plant communities	Coastal lagoon aquatic and wetland plant communities	Plant abundance, diversity, biomass, percent cover
Coastal lagoons	Structure and function of coastal lagoon aquatic invertebrate communities	Coastal lagoon aquatic invertebrate communities	Abundance and diversity of coastal lagoon aquatic invertebrates
Coastal lagoons	Survival, growth, and reproduction of coastal lagoon avian invertivore populations	Black-bellied plover	Range of modeled total dietary exposures (based on measured CoPC concentrations in food and sediment) relative to avian TRVs
Coastal lagoons	Survival, growth, and reproduction of coastal lagoon mammalian herbivore populations	Muskrat; moose	Range of modeled total dietary exposures (based on measured CoPC concentrations in food, sediment, and surface water) relative to mammalian TRVs

Note: CoPC - chemical of potential concern TRV - toxicity reference value

^a Receptors to be evaluated in the risk assessment.

^b Evaluated as a terrestrial receptor.

Table CS1. Comparison of juvenile Dolly Varden tissue concentrations with effects thresholds

	Total Date Cadmium			Total Lead		Total Selenium		Total Zinc			
	Source ^a	Collected	Ν	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Anxiety Ridge Creek (all)	ADFG	1993–2002	61	0.017	0.308	0.001	0.612	0.010	2.01	11.48	36.12
ARC at Haul Road	ADFG	1993–2000	31	0.022	0.090	0.041	0.612	0.529	1.37		
ARC Upstream	ADFG	2002	15	0.017	0.224	0.001	0.101	0.010	2.01	11.48	36.12
ARC Downstream	ADFG	2002	15	0.039	0.308	0.031	0.138	0.895	2.01	21.97	32.56
Literature values ^b for tissue re	esidue and e	effect (ppm)									
	No e	ffects (range) ^c		0.03	6–5.0	0.34	⊢ 5.1	0.12	2–19	4.5-	-480
	No e	ffects (range)d		0.0	4–2	0.34	⊢ 5.1	0.2-	-0.8	4.5	-60
	E	ffects (range) ^c		0.12	2–8.0	0.4	-4.0	0.66	-4.6	40-	-60
	E	ffects (range) ^d		0.12	2-4.0	0.4	-4.0	0.66-	-2.08		

Note: Concentrations are reported in ppm wet wt (converted from dry wt).

Based on studies with ecologically relevant endpoints (survival, growth, or reproduction).

If multiple effects thresholds were provided in a single study, the highest no effects threshold value was used.

If multiple effects thresholds were provided in a single study, the lowest effects threshold value was used.

ADFG - Alaska Department of Fish and Game

ARC - Anxiety Ridge Creek

-- - Not available

^a Ott, A.G., and W.A. Morris. 2004. Juvenile Dolly Varden whole body metals analyses, Red Dog Mine (2002). Technical Report No. 04-01. Alaska Department of Natural Resources, Office of Habitat Management and Permitting.

^b Jarvinen, A.W., and G.T. Ankley. 1999. Linkage of effects to tissue residues: Development of a comprehensive database for aquatic organisms exposed to inorganic and organic chemicals. SETAC Technical Publication Series. Society of Environmental Toxicology and Chemistry, Pensacola, FL.

^c Ranges of whole body tissue concentrations for all freshwater fish species (Atlantic salmon, bluegill, brook trout, Chinook salmon, dace, fathead minnow, flagfish, guppy, largemouth bass, perch, rainbow trout, stickleback) exposed to chemicals in water or their diet for at least 30 days.

^d Ranges of whole body tissue concentrations for only freshwater salmonids (Altantic salmon, brook trout, Chinook salmon, rainbow trout) exposed to chemicals in water or their diet for at least 30 days.

Table CK1. Comparison of tissue threshold concentrations in moss samples (Hylocomium splendens)

_						Tissue Threshold		Tissue Threshold
	Station	Zone	Sample ID	Event	Copper	Concentrations ^a	Zinc	Concentrations ^a
			-		mg/kg	A = 25 - 60	μg/g	A = 150 - 290
					dry	B = 35 - 90	dry	B = 190 - 350
						C = 70 - 110		C = 300 - 400
ite								
	001P-M01	ECO-R	001P-M-01	2001			1530	С
	002P-M01	ECO-R	002P-M-01	2001			1970	С
	003P-M01	ECO-R	003P-M-01	2001			2060	С
	004P-M01	ECO-R	004P-M-01	2001			1420	С
	005P-M01	ECO-R	005P-M-01	2001			2090	С
	006P-M01	ECO-R	006P-M-01	2001			1970	С
	007P-M01	ECO-R	007P-M-01	2001			1280	С
	008P-M01	ECO-R	008P-M-01	2001			1330	С
	009D-M01	ECO-R	009D-M-01	2001			3440	С
	009P-M01	ECO-R	009P-M-01	2001			3210	С
	010P-M01	ECO-R	010P-M-01	2001			2490	С
	011P-M01	ECO-R	011P-M-01	2001			1110	С
	013P-M01	ECO-R	013P-M-01	2001			1450	С
	015P-M01	ECO-R	015P-M-01	2001			424	С
	016P-M01	ECO-R	016P-M-01	2001			1160	С
	017P-M01	ECO-R	017P-M-01	2001			191	В
	018D-M01	ECO-R	018D-M-01	2001			261	В
	018P-M01	ECO-R	018P-M-01	2001			264	В
	019P-M01	ECO-R	019P-M-01	2001			518	C
	020P-M01	ECO-R	020P-M-01	2001			901	C
	021P-M01	ECO-R	021P-M-01	2001			1250	C
	022P-M01	ECO-R	022P-M-01	2001			602	C
	023P-M01	ECO-R	023P-M-01	2001			981	C
	024P-M01	ECO-R	024P-M-01	2001			1140	C
	024F-W01	ECO-R	025P-M-01	2001			862	C
	025F-W01	ECO-R	026D-M-01	2001			420	C
	026P-M01	ECO-R	026P-M-01	2001			290	В
	028P-M01	ECO-R	028P-M-01	2001			922	С
	029P-M01	ECO-R	029P-M-01	2001			119	Б
	030P-M01	ECO-R	030P-M-01	2001			209	В
	030R-M01	ECO-R	030R-M-01	2001			124	•
	031P-M01	ECO-R	031P-M-01	2001			301	С
	031R-M01	ECO-R	031R-M-01	2001			348	C
	032P-M01	ECO-R	032P-M-01	2001			207	В
	032R-M01	ECO-R	032R-M-01	2001			169	Α
	033P-M01	ECO-R	033P-M-01	2001			117	
	034D-M01	ECO-R	034D-M-01	2001			93.6	
	034P-M01	ECO-R	034P-M-01	2001			109	
	034R-M01	ECO-R	034R-M-01	2001			97.3	
	035P-M01	ECO-R	035P-M-01	2001			92.5	
	036P-M01	ECO-R	036P-M-01	2001			559	С
	036R-M01	ECO-R	036R-M-01	2001			436	С
	037P-M01	ECO-R	037P-M-01	2001			179	Α
	038P-M01	ECO-R	038P-M-01	2001			116	
	038R-M01	ECO-R	038R-M-01	2001			153	Α
	039P-M01	ECO-R	039P-M-01	2001			187	Α
	040P-M01	ECO-R	040P-M-01	2001			72.3	
	040R-M01	ECO-R	040R-M-01	2001			71.9	

Table CK1. (cont.)

					Tissue Threshold		Tissue Threshold
Station	Zone	Sample ID	Event	Copper	Concentrations ^a	Zinc	Concentrations ^a
				mg/kg	A = 25 - 60	μg/g	A = 150 - 290
				dry	B = 35 - 90	dry	B = 190 - 350
					C = 70 - 110		C = 300 - 400
041P-M0	1 ECO-R	041P-M-01	2001			309	С
042D-M0	1 ECO-R	042D-M-01	2001			84.2	
042P-M0	1 ECO-R	042P-M-01	2001			83	
042R-M0	1 ECO-R	042R-M-01	2001			82.9	
044P-M0	1 ECO-R	044P-M-01	2001			230	В
044R-M0	1 ECO-R	044R-M-01	2001			184	Α
045P-M0	1 ECO-R	045P-M-01	2001			74.4	
046P-M0	1 ECO-R	046P-M-01	2001			223	В
048P-M0	1 ECO-R	048P-M-01	2001			129	
048R-M0	1 ECO-R	048R-M-01	2001			148	
050P-M0	1 ECO-P	050P-M-01	2001			377	С
051A-M0	1 ECO-P	051A-M-01	2001			358	С
052P-M0	1 ECO-P	052P-M-01	2001			637	С
053D-M0	1 ECO-P	053D-M-01	2001			197	В
053P-M0		053P-M-01	2001			193	В
059D-M0		059D-M-01	2001			300	В
059P-M0		059P-M-01	2001			384	С
060P-M0		060P-M-01	2001			340	С
102P-M0		102P-M-01	2001			141	
103P-M0		103P-M-01	2001			85.6	
116P-M0		116P-M-01	2001			87.8	
117P-M0		117P-M-01	2001			101	
117R-M0		117R-M-01	2001			119	
161P-M0		161P-M-01	2001			128	
161R-M0		161R-M-01	2001			156	Α
201P-M0		201P-M-01	2001			132	
HR01-01		HR-01-01-M	2001			4180	С
HR01-02I		HR-01-02-M	2001			2040	C
HR01-03I		HR-01-03-M	2001			273	В
HR02-01I		HR-02-01-M	2001			3140	C
HR02-02I		HR-02-02-M	2001			949	C
HR02-03I		HR-02-03-M	2001			59.2	· ·
HR03-01I		HR-03-01-M	2001			1160	С
HR03-02I		HR-03-02-M	2001			435	C
HR03-021		HR-03-03-M	2001			164	A
HR04-01		HR-04-01-M	2001			1240	C
HR04-02I		HR-04-02-M	2001			889	C
HR04-03I		HR-04-03-M	2001			167	A
HR05-01I		HR-05-01-M	2001			1360	C
HR05-02I		HR-05-02-M				460	C
			2001				C
HR05-03I HR06-01I		HR-05-03-M HR-06-01-M	2001			118 1440	С
HR06-011			2001			1200	C
		HR-06-02-M	2001				
HR06-03I		HR-06-03-M	2001			1450	С
HR06-04I		HR-06-04-M	2001			433	С
HS1N000		HS-1N-0003-M	2000			1570	С
HS1N005		HS-1N-0050-M	2000			1020	С
HS1N010	0 ECO-R 0 ECO-R	HS-1N-0100-M HS-1N-0250-M	2000 2000			554 281	C B

Table CK1. (cont.)

					Tissue Threshold			Tissue Threshold
Station	n Zone	Sample ID	Event	Copper	Concentrations ^a	Zinc		Concentrations ^a
		-		mg/kg	A = 25 - 60	μg/g		A = 150 - 290
				dry	B = 35 - 90	dry		B = 190 - 350
					C = 70 - 110			C = 300 - 400
HS1N10	00 ECO-R	HS-1N-1000-M	2000			153		
HS1S00	03 ECO-R	HS-1S-0003-M	2000			1500		С
HS1S00	50 ECO-R	HS-1S-0050-M	2000			352		С
HS1S01	00 ECO-R	HS-1S-0100-M	2000			207		В
HS1S02	50 ECO-R	HS-1S-0250-M	2000			148		
HS1S10	00 ECO-R	HS-1S-1000-M	2000			111		
HS1S16	00 ECO-R	HS-1S-1600-M	2000			96.1		
HS2N00	03 ECO-R	HS-2N-0003-M	2000			2750		С
HS2N00	50 ECO-R	HS-2N-0050-M	2000			1880		С
HS2N01	00 ECO-R	HS-2N-0100-M	2000			1040		С
HS2N02	50 ECO-R	HS-2N-0250-M	2000			516		С
HS2N10		HS-2N-1000-M	2000			237		В
HS2S00		HS-2S-0003-M	2000			1200		С
HS2S00	50 ECO-R	HS-2S-0050-M	2000			321		С
HS2S01	00 ECO-R	HS-2S-0100-M	2000			255		В
HS2S02	50 ECO-R	HS-2S-0250-M	2000			138		
HS2S10	00 ECO-R	HS-2S-1000-M	2000			118		
HS3N00		HS-3N-0003-M	2000			1180		С
HS3N00		HS-3N-0050-M	2000			856		С
HS3N01		HS-3N-0100-M	2000			695		С
HS3N02		HS-3N-0250-M	2000			259		В
HS3N10		HS-3N-1000-M	2000			158		Α
HS3N16		HS-3N-1600-M	2000			169		A
HS3S00		HS-3S-0003-M	2000			2860		С
HS3S00		HS-3S-0050-M	2000			751		C
HS3S01		HS-3S-0100-M	2000			453		C
HS3S02		HS-3S-0250-M	2000			222		В
HS3S10		HS-3S-1000-M	2000			112		_
MI-02N		MI-02-M	2001			589		С
MI-104		MS0024	2003			74.5		· ·
MI-107		MS0020	2003			137		
MI-108		MS0023	2003			386		С
MI-25-N		MI-25-M	2002			440		C
MI-26-N		MI-26-M	2002			166		A
MI-42-N		MI-42-M	2002			611		C
MI-45-N		MI-45-M	2002			748		C
PO-01N		PO-01-M	2001			1370	J	C
PO-02N		PO-02-M	2001			2540	J	C
PO-04N		PO-04-M	2001			2090	J	C
PO-05N		PO-05-M	2001			6480	J	C
PO-06N		PO-06-M	2001			3950	J	C
PO-07N		PO-07-M	2001			1580	J	C
PO-09N		PO-09-M	2001			1560	J	C
PO-10N		PO-10-M	2001			1930	J	C
PO-10N		PO-11-M	2001			1260	J	C
PO-11N		PO-11-M	2001			1580	J	C
PO-15N		PO-15-M	2001			1500	J	С
PO-15N		PO-15-M	2001			1520	J	С
PO-16N PO-17N		PO-16-W PO-17-M	2001			1550	J	C

Table CK1. (cont.)

Station	Zone	Sample ID	Event	Copper	Tissue Threshold Concentrations ^a	Zinc	Tissue Threshold Concentrations
		•		mg/kg	A = 25 - 60	μg/g	A = 150 - 290
				dry	B = 35 - 90	dry	B = 190 - 350
					C = 70 - 110		C = 300 - 400
PO-18M	ECO-P	PO-18-M	2001			1480 <i>J</i>	С
TT1-0100	ECO-P	MS0005	2003	24.2		8120	С
TT1-1000	ECO-P	MS0008	2003	4.56		869	С
TT2-0010	ECO-P	MS0004	2003	21.6		2910	С
TT2-0100	ECO-P	MS0003	2003	13.1		1340	С
TT2-1000	ECO-P	MS0006	2003	3.85		251	В
TT3-0010	ECO-R	MS0002	2003	16.8		1110	С
TT3-0100	ECO-R	MS0001	2003	9.73		595	С
TT3-1000	ECO-R	MS0015	2003	3.49		135	
Reference							
TS-REF-7	ECOREF	MS0011	2003	3.73		47.9	
TS-REF-8	ECOREF	MS0010	2003	4.35		64	
TS-REF10	ECOREF	MS0009	2003	3.29		55	

Note: Tissue threshold concentration ranges defined as follows based on effects thresholds reported for multiple species in Folkeson and Andersson-Bringmark (1988).

- A exceeds minimum threshold for first signs of reduction in cover
- B exceeds minimum threshold for obvious reductions in cover
- C exceeds minimum apparent survival thresholds (some dead individuals observed)

Both site and literature reference samples were unwashed.

J - estimated value

Table CK2. Comparison of tissue threshold concentrations in lichen samples

						Tissue Threshold
	Station	Sample ID	Event	Taxon	Zinc	Concentrations
					μg/g	A = 480 - 1,300
					dry	B = 550 - 1,800
					•	C = 600 - 2,200
Site						
	HR01-02L	HR-01-02-L	2001	Peltigera	1610	С
	HR02-02L	HR-02-02-L	2001	Peltigera	545 J	Α
	HR02-03L	HR-02-03-L	2001	Peltigera	82.2 J	
	HR03-03L	HR-03-03-L	2001	Peltigera	115 <i>J</i>	
	HR05-03L	HR-05-03-L	2001	Peltigera	85.2 <i>J</i>	
	HR07-01B	HR-07-01-L	2001	Peltigera	1720 <i>J</i>	С
	HR07-02L	HR-07-02-L	2001	Peltigera	1040 <i>J</i>	С
	HR07-03L	HR-07-03-L	2001	Peltigera	185 <i>J</i>	
	HR07-04L	HR-07-04-L	2001	Peltigera	121 <i>J</i>	
	PO-04L	PO-04-L	2001	Peltigera	1010 <i>J</i>	С
	PO-11L	PO-11-L	2001	Peltigera	1020 <i>J</i>	С
	PO-17L	PO-17-L	2001	Peltigera	1050 <i>J</i>	С
	TT2-0010	LI0018	2004	Peltigera	780	С
	TT2-0100	LI0008	2004	Peltigera	292	
	TT2-1000	LI0007	2004	Peltigera	137	
	TT3-0010	LI0010	2004	Peltigera	209	
	TT3-0100	LI0037	2004	Peltigera	119 <i>J</i>	
	TT3-1000	LI0016	2004	Cladina	81.9	
	TT3-1000	LI0017	2004	Peltigera	94.4	
	TT5-0010	LI0038	2004	Peltigera	594	В
	TT5-0100	LI0006	2004	Peltigera	572	В
	TT5-1000	LI0002	2004	Peltigera	531	Α
	TT5-2000	LI0019	2004	Cladina	278	
	TT6-0010	LI0034-D	2004	Peltigera	351 <i>J</i>	
	TT6-0010	LI0036	2004	Cladina	317 <i>J</i>	
	TT6-0100	LI0022	2004	Cladina	420 J	
	TT6-0100	LI0023	2004	Peltigera	392 J	
	TT6-1000	LI0020	2004	Peltigera	335 J	
	TT6-1000	LI0021	2004	Cladina	386 <i>J</i>	
	TT6-2000	LI0026	2004	Peltigera	163 <i>J</i>	
	TT6-2000	LI0027	2004	Cladina	141 <i>J</i>	
	TT7-0010	LI0025	2004	Cladina	2740 J	
	TT7-1000	LI0024	2004	Cladina	996 J	С
	TT7-2000	LI0039	2004	Cladina	1260	С
	TT8-0010	LI0015	2004	Peltigera	627	С
	TT8-0100	LI0014	2004	Peltigera	397	
	TT8-1000	LI0011	2004	Cladina	70	
	TT8-1000	LI0012-D	2004	Peltigera	149	
Refere	ence			-		
	TS-REF-5	LI0028	2004	Cladina	45.2	
	TS-REF-5	LI0029	2004	Peltigera	48.5	
	TS-REF-7	LI0030	2004	Cladina	26.9	
	TS-REF-7	LI0031	2004	Peltigera	39.2	
	TS-REF11	LI0032	2004	Cladina	19.4 <i>J</i>	
	TS-REF11	LI0033	2004	Peltigera	29.7 J	

Note: Tissue threshold concentration ranges defined as follows based on effects thresholds reported for multiple species in Folkeson and Andersson-Bringmark (1988).

- A exceeds minimum threshold for first signs of reduction in cover
- B exceeds minimum threshold for obvious reductions in cover
- C exceeds minimum apparent survival thresholds (some dead individuals observed)

Both site and literature reference samples were unwashed.

J - estimated value

Table CK3. Food-web exposure modeling results for willow ptarmigan

		NOAEL H	azard Quotient	LOAEL Ha	zard Quotient
Assessment Unit	Chemical	Mean	95% UCL	Mean	95% UCL
Port	Lead	2.4	6.2	0.84	2.2
Port	Mercury	0.40	1.2	0.20	0.62
Port	Zinc (TRV2)	0.82	1.3	0.48	0.74
Road	Barium	1.2	1.7	0.59	0.87
Mine	Barium	1.9	4.0	0.94	2.0
Mine	Lead	1.6	3.5	0.55	1.2
Mine	Zinc (TRV2)	0.51	1.4	0.29	0.81

Note: Results shown only for chemicals with NOAEL-based hazard quotients >1.0.

For 10 CoPCs (aluminum, antimony, arsenic, cadmium, chromium, cobalt, molybdenum, selenium, thallium, and vanadium) all hazard quotients were less than 1.0.

No hazard quotients were exceeded for the reference area; all values were < 1.0.

95% UCL - 95 percent upper confidence limit on the mean

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

Table 6-10. Average percent cover and frequency results at coastal plain a stations

						Site	е				Refe	rence
		_	TT50	010	TT50	0100	TT5	1000	TT52	2000	TS-R	EF-12
Species	Species Code	Common Name	С	F	С	F	С	F	С	F	С	F
Forbs												
Anemone narcissiflora	ANNA	Anemone	0.25	10								
Androsace sp.	ANsp	Primrose		10								
Pedicularis capitata	PECA	Lousewort		10								
Petasites frigidus or hyperboreus	PEFR/PEHY	Sweet coltsfoot	4.75	100	7.25	100						
Polemonium acutiflorum	POAC	Jacob's ladder	0.25	50	1.25	90						
Polygonum viviparum	POVI	Alpine meadow bistort		20								
Saussurea angustifolia	SAAN	Saussurea		10								
Stellaria laeta	STLA	Chickweed		30	0.75	60						
Valeriana capitata	VACA	Valerian		20	1.75	20						
Forbs Tota	ıl		5.25		11.0							
Graminoids												
Arctagrostis latifolia var. arundinaceae	ARLA	Polar grass	0.25	20	0.50	60						
Carex aquatilis	CAAQ	Carex	0.25	10	1.75	30			1.25	70	1.00	50
Caryx bigelowii	CABI	Bigelow's sedge	0.25	10	0.25	20	1.00	40		20	0.75	30
Calamagrostis holmii	CAHO	Bluejoint grass									0.25	10
Calamagrostis sp.	CAsp	Bluejoint grass			0.25	10		10				
Eriophorum angustifolium subarcticum	ERAN	Cottongrass	3.25	40	5.25	60	3.50	40	0.25	10	2.50	60
Eriophorum vaginatum	ERVA	Cottongrass	8.25	80	8.00	90	13.5	100	20.5	100	18.3	100
Hierchloe alpina	HIAL	Holy grass		10		10						
Luzula multiflora multiflora	LUMU	Wood rush	0.25	10								
Luzula wahlenbergii	LUWA	Wood rush									1.00	40
Poa lanata	POLA	Bluegrass	5.25	70	3.75	100						10
Graminoids Tota	ıl		17.8		19.8		18.0		22.0		23.8	
Deciduous Shrubs												
Betula nana exilis	BENA	Dwarf birch	9.25	40	23.0	60	14.3	90	12.3	60	3.00	20
Rubus chamaemorus	RUCH	Salmonberry	0.75	60	7.5	100	1.50	80	6.00	100	13.5	100
Salix arctica	SAAR	Arctic willow		10								
Salix planifolia pulchra	SAPL	Diamondleaf willow	21.5	70	0.25	10		10				
Salix polaris	SAPO	Polar willow	0.25	10								
Vaccinium uliginosum alpinum	VAUL	Alpine blueberry					8.25	90	14.75	100	3.75	50
Deciduous Shrubs Tota	ıl	-	31.8		30.8		24.0		33.0		20.3	

Table 6-10. (cont.)

						Site	Э				Refe	rence
			TT50	010	TT50	0100	TT51	1000	TT52	2000	TS-R	EF-12
Species		Common Name	С	F	С	F	С	F	С	F	С	F
Evergreen Shrubs												
Empitrum nigrum hermaphroditum	EMNI	Crowberry		10			2.50	60	4.75	50	1.50	10
Ledum palustre decumbens	LEPA	Labrador tea	1.00	40			12.3	100	14.8	100	21.8	100
Vaccinium vitis-idaea minus	VAVI	Lingonberry	0.25	20			13.3	100	12.3	100	13.8	100
Evergreen Shrubs To	tal		1.25				28.0		31.8		37.0	
Vegetative Litter												
Broadleaf litter	Broadleaf litte	r Broadleaf litter	18.3	90	13.5	100	2.25	100	10.0	100	17.0	100
Dry blades	Dry blades	Dry blades	37.3	100	46.5	100	45.3	100	38.3	100	38.0	100
Vegetative Litter To	tal		55.5		60.0		47.5		48.3		55.0	
Other												
Lichen	Lichen	Lichen			0.25	40	2.75	100	8.25	90	15.8	100
Moss	Moss	Moss	4.25	90	62.0	100	34.5	100	39.8	100	45.0	100
Other To	tal		4.25		62.3		37.3		48.0		60.8	
Unvegetated												
Bare ground	Bare ground	Bare ground	2.25	90				10			0.50	20
Road gravel	Road gravel	Road gravel	4.00	70								
Water	Water	Water	0.50	20								
Unvegetated To	Unvegetated Total										0.50	

Note: -- - not identified in any 1-m² microplot

C - average 1-m² microplot cover percentage

F - percent frequency in ten 1-m² microplots

^a Coastal plain mesic tussock tundra community.

Table 6-11. Average percent cover and frequency results at tundra^a stations

		_						S	Site							Refe	rence	
		•	TT30	0010	TT80	0010	TT3	0100	TT80	0100	TT31	000	TT81	000	TS-R	EF-5	TS-R	EF-7
Species	Species Code	e Common Name	С	F	С	F	С	F	С	F	С	F	С	F	С	F	С	F
Forbs																		
Arnica lessingii lessingii	ARLE	Arnica	0.25	10														
Equisetum arvense	EQAR	Horsetail		10														
Petasites frigidus or hyperboreus	PEFR/PEHY	Sweet coltsfoot			6.50	100				10							1.50	20
Pedicularis labradorica	PELA2	Lousewort			0.25	10			0.25	10	0.25	10			0.25	10	0.50	30
Stellaria laeta	STLA	Chickweed				10												
Forbs Tota	I		0.25		6.75				0.25		0.25				0.25		2.00	
Graminoids																		
Arctagrostis latifolia var. latifolia	ARLA2	Polar grass															0.25	20
Carex aquatilis	CAAQ	Carex	2.50	50			2.50	60	0.25	10			2.25	40				
Caryx bigelowii	CABI	Bigelow's sedge			15.5	90			14.3	90		50	3.75	50		10	1.75	70
Carex rotundata	CARO	Sedge					0.25	10										
Eriophorum angustifolium subarcticum	ERAN	Cottongrass	0.25	10			2.00	30			0.25	10	0.25	10	0.25	10	0.25	10
Eriophorum vaginatum	ERVA	Cottongrass	15.8	100	5.25	70	20.5	100	12.8	80	14.8	100	24.3	100	12.3	100	24.5	100
Luzula multiflora multiflora	LUMU	Wood rush			0.25	10												
Graminoids Tota	I		18.5		21.0		25.3		27.3		15.0		30.5		12.5		26.8	
Deciduous Shrubs																		
Betula nana exilis	BENA	Dwarf birch	14.5	100	35.5	100	16.8	100	31.0	100	11.0	100	8.75	100	5.25	70	16.8	100
Rubus chamaemorus	RUCH	Salmonberry	22.8	100	1.00	50	11.8	80	3.75	50	4.75	100	2.75	80	28.5	100	15.3	100
Salix ovalifolia	SAOV	Ovaleaf willow					3.75	10										
Salix planifolia pulchra	SAPL	Diamondleaf willow			8.00	30			0.25	10					0.25	10	1.75	20
Vaccinium uliginosum alpinum	VAUL	Alpine blueberry	28.8	100	1.00	40	26.3	100	3.00	20	28.8	100	20.0	90	37.8	100	26.5	70
Deciduous Shrubs Tota	I		66.0		45.5		58.5		38.0		44.5		31.5		71.8		60.3	
Evergreen Shrubs																		
Andromeda polifolia	ANPO	Bog rosemary	0.75	70			2.00	70							0.50	50	0.25	30
Empitrum nigrum hermaphroditum	EMNI	Crowberry	4.25	90	0.75	50	2.50	80	5.25	20	3.75	70	5.00	50	8.50	100	8.50	90
Ledum palustre decumbens	LEPA	Labrador tea	1.75	100	8.75	100	13.5	100	24.0	100	11.3	100	15.8	100	15.5	100	16.0	100
Vaccinium vitis-idaea minus	VAVI	Lingonberry	0.75	90	1.75	100	2.00	40	10.0	100	15.8	100	18.0	100	4.25	100	7.00	100
Evergreen Shurbs Tota	I		7.50		11.3		20.0		39.3		30.8		38.8		28.8		31.8	
Vegetative Litter																		
Broadleaf litter	Broadleaf litte	er Broadleaf litter	13.3	100	8.50	100	21.0	80	10.0	100	14.5	90	3.50	100	45.3	100	12.3	100
Dry blades	Dry blades	Dry blades	21.8	100	55.0	100	32.3	100	40.0	100	35.8	100	40.3	100	17.0	100	31.3	100
Vegetative Litter Tota	I		35.0		63.5		53.3		50.0		50.3		43.8		62.3		43.5	
Other																		
Lichen	Lichen	Lichen					2.25	60	0.50	50	4.75	100	5.00	100	21.8	100	9.75	100
Moss	Moss	Moss	26.3	100	14.3	100	34.3	90	40.5	100	37.5	100	48.8	100	45.5	100	52.3	100
Other Tota	I		26.3		14.3		36.5		41.0		42.3		53.8		67.3		62.0	

Table 6-11. (cont.)

									S	ite							Refe	rence	
				TT30	010	TT80	010	TT30	100	TT80	100	TT310	000	TT81	000	TS-R	EF-5	TS-R	EF-7
	Species	Species Code	e Common Name	С	F	С	F	С	F	С	F	С	F	С	F	С	F	С	F
Unvegetated																			
Bare ground		Bare ground	Bare ground	4.00	20	2.00	30			0.50	20								
Road gravel		Road gravel	Road gravel	2.25	70	3.75	70												
Rock		Rock	Rock	0.50	20														
Water		Water	Water	1.50	10	0.25	10	18.0	50	3.50	40			4.75	40	0.50	30	0.75	40
	Unvegetated Tota	I		8.25		6.00				4.00									

Note: -- not identified in any 1-m² microplot

C - average 1-m² microplot cover percentage

F - percent frequency in ten 1-m² microplots

^a Foothills mesic tussock tundra community.

Table 6-26. Metals concentrations in site and reference stream sediments and invertebrates

			Stream Sed	iment			Str	eam Inverte	ebrates	
		Site		Refe	rence		Site ^a		Refer	rence ^b
Analyte	AC-R	ARC-R	OR-R	ST-REF-3	ST-REF-6	AC-R	ARC-R	OR-R	ST-REF-3	ST-REF-6
Cadmium	0.49	1.06	0.44 <i>J</i>	0.25	0.19	0.228	0.803	0.365	0.696	0.347
Lead	29.2	117	22	9.5	5.71	4.43 <i>J</i>	10.9 <i>J</i>	5.16 <i>J</i>	8.14 <i>J</i>	2.73 J
Zinc	125	148	107	66.9	33.1	87.8 J	96.2 J	79 J	137 J	91.3 <i>J</i>

Note: Concentrations in mg/kg dry weight

Field replicates averaged

J - estimated value

^a Predominantly crane fly larvae, with small proportions of stone fly larvae, caddis fly larvae, and/or amphipods.

^b Composite of crane fly larvae, caddis fly larvae, and stone fly larvae.

Table JS1. Summary of comparison of vegetation survey parameters at site and reference areas

	Coastal		Т	undra and Coasta	al Plain Combined	d ^a		
Parameter	Plain	Tundra	All	10 m ^b	100 m ^b	1,000 m ^b	Hillslope	Lagoon
Forb cover								
Graminoid cover								
Deciduous shrub cover		Sig. Different						
Evergreen shrub cover				Sig. Different				
Moss cover		Sig. Different	Sig. Different		Sig. Different			
Moss frequency		_						
Lichen cover		Sig. Different	Sig. Different	Sig. Different	Sig. Different	Sig. Different		
Lichen frequency			Sig. Different	Sig. Different	Sig. Different			
Vegetative litter								
Unvegetated cover					Sig. Different			
Diversity								
Evenness				Sig. Different	Sig. Different	Sig. Different		
Richness						Sig. Different		

Source: Table 6-3

Note: Significance level for the statistical comparison is p < 0.10.

-- indicates site vegetation parameters not significantly different from reference site

Sig. Different - indicates site vegetation parameters significantly different from reference site

^a Coastal plain and tundra communities were similar and thus were combined and tested against their corresponding combined reference samples to increase the sample size and thus increase the power of the test to detect differences between site stations and reference stations.

^b The coastal plain and tundra communities showed similar changes with distance from the road, so samples were combined according to their respective distance.

Table JS2. Summary of vegetation parameter correlations with distance from DMTS road

	Hillslope, Coast Plain, Tundra Transects	Coastal Plain and Tundra Transects Only
Forb cover	Negative correlation	Negative correlation
Graminoid cover		
Deciduous shrub cover		
Evergreen shrub cover	Positive correlation	Positive correlation
Moss cover		Positive correlation
Moss frequency		
Lichen cover	Positive correlation	Positive correlation
Lichen frequency	Positive correlation	Positive correlation
Vegetative litter		
Unvegetated cover	Negative correlation	Negative correlation
Diversity		
Evenness	Positive correlation	Positive correlation
Richness	Negative correlation	Negative correlation

Source: Table 6-4

Note: Spearman rank non-parametric correlation was used.

Positive and negative correlations were significant with distance (p <0.10).

-- - no correlation

Negative correlation - indicates that as one variable increases, the other decreases

Positive correlation - indicates that as one variable increases, so does the other

Table JS3. Locations where phytotoxicity benchmarks were exceeded for vascular plants

		Number of	
	Number of	Reference	
	Site Stations Exceeding	Stations Exceeding	
CoPC	Benchmarks	Benchmarks	Station Locations with Exceedances
Aluminum	11/29	5/11	TT2-0010, TT3-0100, TT5-0010, TT8-0010, TP-0100, TP-1000, TP-3, TP-4, AC-R, ARC-R, OR-R, ST-REF-3, ST-REF-5, ST-REF-6, TP-REF-3, TP-REF-5
Antimony	0/29	0/11	
Arsenic	0/29	1/11	TP-REF-5
Barium	0/29	0/11	
Cadmium	3/29	0/11	TT2-0010, TT5-0010, TT8-0010
Chromium	3/29	2/11	OR-R, TP1-0100, TP-4, TP-REF-3, TP-REF-5
Cobalt	4/29	2/11	TT3-0100, TT8-0100, TT8-1000, TP1-1000, TP-REF-5, TS-REF-5
Lead	2/29	0/11	TP1-0100, TP-4
Mercury	0/29	0/11	
Molybdenum	0/29	0/11	
Selenium	0/29	0/11	
Thallium	0/29	0/11	
Vanadium	0/29	1/11	TP-REF-3
Zinc	23/29	2/11	TT2-0010, TT2-0100, TT2-1000, TT3-0010, TT3-0100, T3-1000, TT5-0010, TT5-0100, TT5-1000, TT5-2000, TT6-0010, TT6-0100, TT6-2000, TT7-0010, TT7-1000, TT7-2000, TT8-0010, TT8-0100, TT8-1000, TP-4, AC-R, ARC-R, TS-REF-7, TS-REF-11

Source: Tables 6-16, 6-17, 6-18, 6-22, 6-23

Note:
-0010, -0100, -1000 - approximate distance of station from DMTS Road or facilities in meters
AC-R - Aufeis Creek station, just downstream of the DMTS road crossing
ARC-R - Anxiety Ridge Creek station, just downstream of the DMTS road crossing
OR-R - Omikviorok River station, just downstream of the DMTS road crossing
REF - reference stations

ST - stream station
TP - tundra pond station
TS - tundra soil station
TT - terrestrial transect station

Table JS4. Locations where phytotoxicity benchmarks were exceeded for mosses and lichens

CoPC	Number of Site Stations Where Moss Samples Exceeded Benchmarks	Number of Site Stations Where Lichen Samples Exceeded Benchmarks	Number of Reference Stations Where Moss or Lichen Samples Exceeded Benchmarks	Moss Station Locations With Exceedances	Lichen Station Locations With Exceedances
Copper	0/155		0/9	None	None
Zinc	120/155	15/32	0/9	001P-M01, 002P-M01, 003P-M01, 004P-M01, 005P-M01, 006-M01, 007P-M01, 008P-M01, 009D-M01, 009-M01, 010P-M01, 011P-M01, 013P-M01, 015-M01, 016P-M01, 017P-M01, 018D-M01, 018P-M01, 019P-M01, 020P-M01, 021P-M01, 022P-M01, 023P-M01, 024P-M01, 025P-M01, 026D-M01, 026D-M01, 028P-M01, 030P-M01, 031P-M01, 031R-M01, 032P-M01, 032R-M01, 036-M01, 036R-M01, 037P-M01, 032P-M01, 039P-M01, 041P-M01, 044P-M01, 044R-M01, 046P-M01, 050P-M01, 051A-M01, 052P-M01, 053D-M01, 053P-M01, 059D-M01, 059P-M01, 060P-M01, 161R-M01, HR01-01A, HR01-02M, HR01-03M, HR02-01M, HR02-02M, HR03-01M, HR03-02M, HR03-03M, HR04-01B, HR04-02M, HR04-03M, HR05-01M, HR06-04M, HS1N0003, HS1N0050, HS1N0100, HS2N0003, HS2N0050, HS1S0003, HS1S0050, HS10100, HS2N0003, HS2S0050, HS2S0100, HS3N0100, HS3N0250, HSN3N1000, HS3N0250, HSN3N1000, HS3N0100, HS3S0003, HS3S0050, HS3S0100, HS3S0250, MI-02M, MI-108, MI-25-M, MI26-M, MI-42M, MI-45M, PO-01M, PO-02M, PO-04M, PO-05M, PO-06M, PO-07M, PO-09M, PO-10M, PO-11M, PO-13M, PO-15M, PO-16M, PO-17M, PO-18M, TT1-0100, TT1-1000, TT2-0010, TT2-0100, TT2-0100, TT3-0100	HR01-02L, HR02-02L, HR01-01B, HR07-02L, PO-04L, PO-11L, PO-17L, TT2-0010, TT5-0010, TT5-0100, TT5-1000, TT7-0010, TT7-1000, TT7-2000, TT8-0010

Source: Tables CK1 and CK2

Note: Copper data not available for lichens along DMTS road.

CoPC - chemical of potential concern

DMTS - DeLong Mountain Regional Transportation System

HR - DMTS road transect samples

HS - National Park Service samples collected along transects at Cape Krusenstern National Monument
 MO - National Park Service samples collected in outlying areas at Cape Krusenstern National Monument

PO - Port site samples

TT - terrestrial transect station samples

Table JS5a. Locations and receptors for which NOAEL or LOAEL hazard quotients exceed 1.0

Assessment Unit Location	Aluminum	Antimony	Arsenic (arsenate)	Arsenic (arsenite)	Barium	Cadmium	Chromium	Cobalt	ead	Mercury	Molybdenum	Selenium	Thallium	Vanadium	Zinc
DMTS Road and Port Operations	•	⋖	∢ હ	∢ ઙ	<u> </u>	0	0	0		2	2	o	-	>	N
Site Stations															
Whole Site	Moose, caribou				Caribou										
Port Site	Moose, caribou				Caribou				Ptarmigan	Ptarmigan					Ptarmigan
Near Mine	Moose, caribou				Ptarmigan, caribou				Ptarmigan, caribou	Flamilyan					Ptarmigan
Road Site	Moose, fox, caribou				Ptarmigan, caribou				Flamilyan, cambou	Owl, fox					Flamilyan
Reference Stations	MOOSE, TOX, Caribou				Ftairiigari, caribou					OWI, IOX					
Reference Site	Massa fay saribay														
	Moose, fox, caribou														
Lagoon Environment															
Site Stations	Manan manalmat														
Control Lagoon	Moose, muskrat														
North Lagoon	Moose, muskrat								D I						
Port Lagoon North	Moose, muskrat								Plover						
Reference Stations															
Reference Lagoon	Moose, muskrat														
Tundra Pond Environment															
Site Stations															
TP1-0100	Muskrat														
TP1-1000	Muskrat							Muskrat							
TP3	Muskrat				Muskrat										
TP4	Muskrat				Muskrat										
Reference Stations															
TP-REF-2	Muskrat														
TP-REF-3	Teal, muskrat			Muskrat	Muskrat		Teal, muskrat							Muskrat	
TP-REF-5	Teal, muskrat		Muskrat	Muskrat	Muskrat		Teal							Muskrat	
Stream Environment															
Site Stations															
ARC-R	Moose, muskrat				Moose, muskrat										
OR-R	Moose, muskrat			Muskrat	Muskrat									Muskrat	
AC-R	Moose														
Reference Stations															
ST-REF-3	Moose, muskrat			Muskrat											
ST-REF-5	Moose, muskrat				Muskrat										
ST-REF-6	Moose, muskrat				Muskrat										
Terrestrial Environment															
Site Stations															
TT2-0010	Vole, shrew, snipe			Shrew	Vole, shrew	Shrew			Shrew	Shrew			V	ole, shrew	Shrew
TT2-0100	Vole, shrew				Vole, shrew	Shrew				Shrew		Shrew		Shrew	
TT2-1000	Vole, shrew				,					Shrew		Shrew			
TT3-0010	Vole, shrew, snipe			Shrew	Vole, shrew	Shrew				Shrew			٧	ole, shrew	
TT3-0100	Vole, shrew			-	Vole, shrew	Shrew				Shrew					
TT3-1000	Vole, shrew				Vole										
TT5-0010	Snipe, vole, shrew			Shrew	Vole, shrew	Shrew			Snipe, vole, shrew	Shrew		Shrew		Shrew	Shrew

Table JS5. (cont.)

Assessment Unit Location	Aluminum	Antimony	Arsenic (arsenate)	Arsenic (arsenite)	Barium	Sadmium	Chromium	Cobalt	ead	Mercury	Molybdenum	Selenium	Thallium	/anadium	Zinc
Terrestrial Environment (cont.)	,			` `	-	_			-				<u> </u>		.,
Site Stations (cont.)															
TT5-0100	Vole, shrew			Shrew	Vole, shrew	Shrew			Snipe, vole, shrew	Shrew				Shrew	Shrew
TT5-1000	Vole, shrew				Vole					Shrew		Shrew			
TT5-2000	Vole, shrew					Shrew				Shrew		Shrew			Shrew
TT6-0010	Vole, shrew, snipe			Vole, shrew	Vole, shrew, snipe	Shrew								Vole, shrew	
TT6-0100	Vole, shrew				Vole, shrew, snipe	Shrew				Shrew					
TT6-1000	Vole, shrew				Vole, shrew	Shrew					Shrew			Shrew	
TT6-2000	Vole				Vole										
TT7-0010	Vole			Vole	Vole				Vole					Vole	
TT7-1000	Vole				Vole				Vole		Vole				
TT7-2000	Vole				Vole										
TT8-0010	Vole				Vole									Vole	
TT8-0100	Vole				Vole										
TT8-1000	Vole														
Reference Stations															
TS-REF-5	Vole, shrew, snipe				Vole, shrew							Shrew		Shrew	
TS-REF-7	Vole				Vole										
TS-REF-11	Vole														

Source: Appendix K tables of this report.

Note: -0010, -0100, -1000 - approximate distance of station from DMTS Road or facilities in meters

AC-R - Aufeis Creek station, just downstream of the DMTS road crossing

ARC-R - Anxiety Ridge Creek station, just downstream of the DMTS road crossing

DMTS - DeLong Mountain Regional Transportation System

LOAEL - lowest-observed-adverse-effect level NOAEL - no-observed-adverse-effect level

OR-R - Omikviorok River station, just downstream of the DMTS road crossing

REF - reference stations
ST - stream station
TP - tundra pond station
TS - tundra soil station
TT - terrestrial transect station

Table JS5b. Locations and receptors for which only LOAEL hazard quotients exceed 1.0

Assessment Unit Location	Aluminum	Antimony	Arsenic (arsenate)	Arsenic (arsenite)	Barium	Cadmium	Chromium	Cobalt	Lead	Mercury	Molybdenum	Selenium	Thallium	Vanadium	Zinc
DMTS Road and Port Operation			۷)	۷)	ш							0,			17
Site Stations	0.10														
Whole Site	Caribou				Caribou										
Port Site	Caribou, fox								Ptarmigan						
Near Mine	Caribou				Ptarmigan, caribou				Ptarmigan						
Road Site	Caribou				· ····································					Fox, owl					
Reference Stations										- , -					
Reference Site	Caribou														
Lagoon Environment															
Site Stations															
Control Lagoon															
North Lagoon															
Port Lagoon North															
Reference Stations															
Reference Lagoon															
Tundra Pond Environment															
Site Stations															
TP1-0100															
TP1-1000															
TP3															
TP4					Muskrat										
Reference Stations															
TP-REF-2															
TP-REF-3	Muskrat														
TP-REF-5	Muskrat														
Stream Environment															
Site Stations															
ARC-R	Muskrat														
OR-R	Muskrat														
AC-R															
Reference Stations															
ST-REF-3	Muskrat														
ST-REF-5	Muskrat														
ST-REF-6	Muskrat														

Table JS5. (cont.)

Assessment Unit Location	Aluminum	Antimony	Arsenic (arsenate)	Arsenic (arsenite)	Barium	Cadmium	Chromium	Cobalt	Lead	Mercury	Molybdenum	Selenium	Thallium	Vanadium	Zinc
Terrestrial Environment	∢	<	<u> </u>	<u> </u>	<u> </u>	0	0	0				<u> </u>		>	N
Site Stations															
TT2-0010	Vole, shrew				Vole, shrew										
TT2-0100	Vole, shrew				7 0.0, 0 0										
TT2-1000															
TT3-0010	Vole, shrew				Vole, shrew										
TT3-0100	Vole, shrew				Vole, shrew										
TT3-1000	,				•										
TT5-0010	Vole, shrew				Vole, shrew										
TT5-0100	Vole, shrew				Vole, shrew										
TT5-1000															
TT5-2000															
TT6-0010	Vole, shrew				Vole, shrew										
TT6-0100	Vole, shrew				Vole, shrew										
TT6-1000	Vole				Shrew										
TT6-2000															
TT7-0010	Vole				Vole										
TT7-1000	Vole				Vole										
TT7-2000					Vole										
TT8-0010	Vole				Vole										
TT8-0100	Vole				Vole										
TT8-1000															
Reference Stations															
TS-REF-5 Site	Vole, shrew														
TS-REF-7 Site															
TS-REF-11 Site															
Source: Appendix K tables of	this report.														
Note: -0010, -0100, -1000 AC-R					m DMTS Road or am of the DMTS r			ters		REF ST	- refe	rence s am stat			
ARC-R	- Anxiety Ridge	e Cree	ek statio	n, just d	ownstream of the	DMTS i	oad cr	ossing		TP	- tund	lra pon	d statio	n	
DMTS	- DeLong Mount	tain Re	egional T	ransport	ation System			_		TS	- tund	lra soil	station		
LOAEL	- lowest-observe	ed-adv	erse-eff	ect level	-					TT	- terre	estrial t	ransect	station	1
OR-R	- Omikviorok R	iver s	tation, j	ust dowi	nstream of the DM	TS road	d crossi	ing							

Table JS6. Summary of LOAEL hazard quotient exceedances

	Aluminum	Antimony	Arsenic (arsenate)	Arsenic (arsenite)	Barium	Cadmium	Chromium	Cobalt	Lead	Mercury	Molybdenum	Selenium	Thallium	Vanadium	Zinc
Tundra vole															
Site stations	13/20		0/20	0/20	12/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20
Reference stations	1/3		0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
Common snipe															
Site stations			0/13	0/13	0/13	0/16	0/13		0/16	0/16	0/13	0/13	0/13		0/16
Reference stations			0/2	0/2	0/2	0/3	0/2		0/3	0/3	0/2	0/2	0/2		0/3
Lapland longspur															
Site stations			0/13	0/13	0/13	0/13	0/13		0/13	0/13	0/13	0/13	0/13		0/13
Reference stations			0/1	0/1	0/1	0/1	0/1		0/1	0/1	0/1	0/1	0/1		0/1
Black-bellied plover															
Site stations			0/3	0/3	0/3				0/3	0/3	0/3	0/3	0/3		0/3
Reference stations			0/1	0/1	0/1				0/1	0/1	0/1	0/1	0/1		0/1
Green-winged teal															
Site stations			0/6	0/6	0/6	0/6	0/6		0/6	0/6	0/6	0/6	0/6		0/6
Reference stations			0/6	0/6	0/6	0/6	0/6		0/6	0/6	0/6	0/6	0/6		0/6
Snowy owl															
Site stations			0/2	0/2	0/2	0/2	0/2		0/2	1/2	0/2	0/2	0/2		0/2
Reference stations			0/1	0/1	0/1	0/1	0/1		0/1	0/1	0/1	0/1	0/1		0/1
Willow ptarmigan															
Site stations			0/3	0/3	1/3	0/3	0/3		2/3	0/3	0/3	0/3	0/3		0/3
Reference stations			0/1	0/1	0/1	0/1	0/1		0/1	0/1	0/1	0/1	0/1		0/1
Brant															
Site stations			0/3	0/3	0/3	0/3	0/3		0/3	0/3	0/3	0/3	0/3		0/3
Reference stations			0/1	0/1	0/1	0/1	0/1		0/1	0/1	0/1	0/1	0/1		0/1
Arctic fox											l				
Site stations	1/2		0/2	0/2	0/2	0/2	0/2	0/2	0/2	1/2	0/2	0/2	0/2	0/2	0/2
Reference stations	0/1		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Caribou				~ / .						- / -	~ / .		- / /		
Site stations	4/4		0/4	0/4	2/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4
Reference stations	1/1		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Moose	0/40		0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40
Site stations	0/10		0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10
Reference stations	0/5		0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5
Tundra shrew	0/40		0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40
Site stations	8/13		0/13	0/13	8/13	0/13	0/13	0/13	0/13	0/13	0/13	0/13	0/13	0/13	0/13
Reference stations	1/1		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Muskrat	2/0		0/0	0/0	1/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Site stations	2/9 5/7		0/9 0/7	0/9	1/9	0/9	0/9	0/9 0/7	0/9 0/7	0/9	0/9	0/9	0/9 0/7	0/9	0/9
Reference stations	5/7		0/7	0/7	0/7	0/7	0/7	0/7	0/7	0/7	0/7	0/7	0/7	0/7	0/7

Source: Appendix K tables of this report.

Note: Ratios represent number of LOAEL exceedances/number of sites evaluated. Shaded cells are those with one or more exceedances.

This summary is based on the most conservative scenarios presented in Appendix K.

-- - analyte not analyzed

LOAEL - lowest-observed-adverse-effect level

Table JS7. Summary of observed and predicted ecological effects^a

Terrestrial Habitats	Ob	served or Predicted E	ffects
Receptor	Near Port	Near Mine ^b	DMTS Road
Caribou			
Moose			
Lapland longspur			
Snowy owl			
Arctic fox			
Ptarmigan	yes ^c	yes ^c	
Tundra vole			
Tundra shrew			
Vegetation	yes ^d	yes ^{b,e}	yes ^d

Freshwater Habitats	Observed or Predicted Effects									
			Anxiety Ridge							
Receptor	Aufeis Creek	Omikiviorok Creek	Creek	Tundra Ponds						
Benthic macroinvertebrates				f						
Fish			g	^h						
Green-winged teal										
Muskrat										
Moose										
Common snipe										
Vegetation	f	f	f	i						

Coastal Lagoon Habitats	Observed or Predicted Effects
Receptor	Lagoons ^j
Benthic macroinvertebrates	
Fish	k
Brant	
Muskrat	
Moose	
Black-bellied plover	
Vegetation	

Source: Summary based on Tables 6-42 and 6-43, and the interpretation of ecological significance (Section 6.7).

Note: -- - indicates very low or no likelihood of adverse effects

^a Observed or predicted effects indicated as "yes" are to be addressed in a risk management plan, as discussed in Section 8.

^b The areas evaluated near the mine were outside the mine boundary. The area within the mine boundary was beyond the scope of this assessment.

^c Potential for adverse effects from lead.

^d Vegetation survey parameters were statistically compared to reference area data (Tables 6-3 and 6-37), and several differences were observed, as summarized in Table 6-37. No individual metals were isolated as primary causative factors. Multiple causative factors are likely.

^e The hillslope community vegetation did not show significant difference from the reference site (Tables 6-3 and 6-37). However, at one transect station just west of the mine's ambient air/solid waste permit boundary, some shrubs appeared to be in poor condition.

f Not evaluated.

⁹ Cadmium and lead levels in some juvenile Dolly Varden exceeded conservative screening levels for fish tissue, but were also within the range of no-effects levels (Table 6-27).

ⁱ Exception: Effects possible from lead and zinc in ephemeral tundra ponds located within 100 m of port facility structures, based on exceedances of literature-derived effects thresholds. However, tundra pond vegetation appeared healthy during field sampling.

^j Lagoons located within the port site boundary.

k No fish were present in port site lagoons, as they have no open water connections to the Chukchi Sea.

Attachment E-1

Sediment Toxicity Testing Report MEC Analytical Systems

152 Sunset View Lane, Sequim, WA 98382 / (360) 582-1758 / (360) 582-1679 FAX

August 12, 2004

Scott Shock Exponent 15375 SE 30th Place, Ste. 250 Bellevue, Washington 98007

Dear Scott:

We are pleased to provide you with the survival and growth results and ancillary data in support of the Red Dog Mine Phase II sediment evaluation. This report includes a brief description of the test methods, test acceptability assessment, and a summary of test results.

Sediment toxicity was evaluated using the 10-day, benthic acute test with *Hyalella azteca*. Sediment treatments SD0001, SD0002, SD0003, SD0004, SD0005, and SD0007 were received on July 7, 2004 in good condition and were stored in the dark at 4°C. *Hyalella azteca* were supplied by Aquatic Biosystems of Boulder Colorado and delivered directly to the Carlsbad Laboratory. Test organisms were reared in the laboratory in native sediments. Native sediment was also provided for control sediment treatments.

The 10-d acute toxicity tests with *Hyalella azteca* were initiated on July 17, 2004. To prepare the test exposures, all jars of sediment were homogenized and approximately 200 mL of sediment were placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 950 mL with deionized water. Eight replicate chambers were prepared for each test treatment and the native sediment control treatment. Test chambers were then placed in randomly assigned positions in a temperature-controlled room at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided only if dissolved oxygen concentrations dropped below acceptable levels. The test was initiated by randomly allocating ten 7-day-old *Hyalella* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately 2 hours were replaced with healthy amphipods. Dissolved oxygen, temperature, pH, and salinity were monitored in each replicate at initiation and termination, and in one replicate per treatment on test days 1 through 9.

Target test parameters were as follows:

Dissolved Oxygen: $\geq 3.4 \text{ mg/L}$ pH: $7.00 \pm 1.0 \text{ units}$ Temperature: $23^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Conductivity:<50% variation

The 10-day test was conducted as a static-renewal test, with exchanges of 400 mL of water occurring daily. *Hyalella* were fed daily with 1.0 mL of YCT stock solution (1800 mg YCT/L). At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope, with 10% of the counts being confirmed by a second observer. All surviving amphipods were then transferred to pre-weighed, aluminum foil weigh boats, and then dried in a drying oven at 60°C for approximately 24 hours. Each weigh boat was removed, cooled in a dessication jar, then weighed on a microbalance to 0.01 mg. A water-only, 4-day reference-toxicant test with cadmium chloride was conducted concurrently with the sediment tests.

Results:

A summary of *Hyalella* survival and biomass is presented in Table 1 and a summary of water quality observations is presented in Table 2. Raw data sheets are presented in Appendix A. The *Hyalella* test was validated by greater than 80% survival in the controls and measurable growth in all control replicates. The LC50 for the copper reference-toxicant test was 0.31 mg Cu/L, which is within the control chart limits (0.0 to 0.41 mg Cu/L), indicating that the test organisms used in this study were of similar sensitivity of those previously tested at Carlsbad.

Temperature remained within acceptable limits throughout the test. Dissolved oxygen in treatments SD0001 and SD0004 dropped to 2.2 mg/L and 3.3 mg/L, respectively on Day 1. Trickle-flow aeration was initiated on all test chambers on Day 1 and continued throughout the remainder of the test. In all test treatments, pH was slightly above acceptable limits; however pH for all treatments were within 0.3 pH units of the acceptable limits. Conductivity in the test treatments decreased throughout the test. This was due to acclimation of test sediments to the conductivity of the lab water (0.19 mS/cm). The deviations in water quality did not appear to have an affect on test results as all test treatments exceeded the controls for both survival and growth.

Mean percent survival in the controls was 90.0% for *H. azteca* and mean individual growth, based on the number at initiation, was 0.1 mg/individual. Mean percent survival in the test treatments ranged from 91.3% in SD0003 to 98.8% in SD0001, SD0002, and SD0005. Growth in the test treatments ranged from 0.19 mg/individual in SD0005 and SD0007 to 0.28 mg/individual in SD0002. Survival and growth in each of the test treatments was greater than that of the controls, indicating that there was no biologically significant toxicity in any of the test treatments.

Please call me if there are any questions.

Sincerely,

William Gardiner

Senior Scientist MEC-Weston Solutions, Inc

Table 1. 10-Day Solid-Phase Test with Hyalella azteca, Red Dog Mine Phase II, Exponent

Table 1. 10-Day Solid-Phase Test with Hyalella azteca, Hed Dog Mine Phase II, Exponent											
		Number	Number		Mean %	Total		Mean			
Sample	Rep	Initiated	Surviving	% Survival	Survival	Biomass	Growth	Growth	SD		
Control	1	10	7	70.0		0.83	0.08				
Control	2	10	9	90.0		1.00	0.10				
Control	3	10	8	80.0		0.96	0.10				
Control	4	10	8	80.0		0.80	0.08				
Control	5	10	10	100.0		1.12	0.11				
Control	6	10	10	100.0		1.23	0.12				
Control	7	10	10	100.0		1.11	0.11				
Control	8	10	10	100.0	90.0	1.23	0.12	0.10	0.01		
1	1	10	9	90.0	·····	2.23	0.22				
1	2	10	10	100.0		2.71	0.27				
1	3	10	10	100.0		2.66	0.27				
1	4	10	10	100.0		2.45	0.25				
1	5	10	10	100.0		2.92	0.29				
1	6	10	10	100.0		2.40	0.24		-		
1	7	10	10	100.0		2.82	0.28				
1	8	10	10	100.0	98.8	3.06	0.31	0.27	0.03		
2	1	10	10	100.0		2.66	0.27				
2	2	10	10	100.0		2.74	0.27				
2	3	10	10	100.0		3.10	0.31				
2	4	10	9	90.0		2.25	0.23				
2	5	10	10	100.0		3.16	0.32				
2	6	10	10	100.0		3.10	0.31				
2	7	10	10	100.0		2.62	0.26				
2	8	10	10	100.0	98.8	2.82	0.28	0.28	0.03		
3	1	10	7	70.0		0.98	0.10				
3	2	10	10	100.0		2.50	0.25				
3	3	10	10	100.0		2.26	0.23				
3	4	10	9	90.0		2.34	0.23				
3	5	10	10	100.0		2.71	0.27				
3	6	10	10	100.0		2.31	0.23				
3	7	10	7	70.0		1.15	0.12				
3	8	10	10	100.0	91.3	2.50	0.25	0.21	0.07		

Table 1. Continued.

	,011till								
		Number	Number		Mean %	Total		Mean	
Sample	Rep	Initiated	Surviving	% Survival	Survival	Biomass	Growth ^a	Growth	SD
4	1	10	10	100.0		2.88	0.29		
4	2	10	10	100.0		2.83	0.28		
4	3	10	10	100.0		2.98	0.30		
4	4	10	9	90.0		2.50	0.25		
4	5	10	9	90.0		2.78	0.28		
4	6	10	10	100.0		2.36	0.24		
4	7	10	10	100.0		2.77	0.28	***************************************	
4	8	10	10	100.0	97.5	2.83	0.28	0.27	0.02
5	*	10	10	100.0		2.04	0.20		
5	2	10	10	100.0		2.23	0.22	44444444444444444444444444444444444444	
5	3	10	9	90.0		1.45	0.15		
5	4	10	10	100.0		1.98	0.20		
5	5	10	10	100.0		1.66	0.17		
5	6	10	10	100.0		1.60	0.16		
5	7	10	10	100.0		2.16	0.22		
5	8	10	10	100.0	98.8	1.73	0.17	0.19	0.03
7	1	10	8	80.0		1.31	0.13		
7	2	10	9	90.0		1.76	0.18		
7	3	10	9	90.0		1.85	0.19		
7	4	10	10	100.0		2.35	0.24		
7	5	10	10	100.0		1.97	0.20		
7	6	10	10	100.0		1.88	0.19		
7	7	10	10	100.0		1.93	0.19		
7	8	10	10	100.0	95.0	2.29	0.23	0.19	0.03

^a Growth calculated as total biomass divided by number initiated.

Table 2. Summary of Water Quality Observations for 10-Day Benthic Test with Hyalella azteca, Red Dog mine Phase II, Exponent

Maximum

Dissolved Oxygen Temperature Conductivity Sample Statistic рΗ (mg/L)(°C) (mS/cm) 21.4 Minimum 6.7 0.18 7.7 Control Maximum 8.3 22.2 0.21 8.3 Minimum 2.2 21.1 0.19 6.9 SD0001 Maximum 7.8 22.2 0.45 8.2 Minimum 4.8 21.4 0.20 7.2 SD0002 Maximum 8.2 22.3 0.67 8.3 Minimum 4.2 21.3 0.18 7.4 SD0003 Maximum 8.3 22.3 0.24 8.2 Minimum 3.3 21.0 0.18 7.0 SD0004 Maximum 8.3 22.4 0.42 8.3 Minimum 4.6 21.4 0.18 6.9 SD0005 Maximum 8.4 22.4 0.23 8.2 Minimum 4.7 21.2 0.18 7.1 SD0007

22.2

0.21

8.3

8.3

Table 3. Total Sulfides Measurements for 10-Day Benthic Test with Hyalella azteca, Red Dog mine Phase II, Exponent

Sample	0	erlying wa	ter		Pore water	
Sample	Day 0	Day 5	Day 10	Day 0	Day 5	Day 10
Control	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
SD0001	0.05	0.12	0.22	0.19	0.60	<0.05
SD0002	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
SD0003	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
SD0004	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
SD0005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
SD0007	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

ANALYTICAL SYSTEMS INC. CLIENT PROJECT MEC JOB NO. PROJECT MAN. MEC LABORATORY Exponent PROTOCOL Red Day Mine Phase it Sampleins Frogra SPECIES B. Gardiner Carlsbad Room 3 ACCLM.MORT. Hyalella azteca < 5% **ENDPOINT DATA & OBSERVATIONS** DAY 1 DAY 2 DAY 5 DAY 6 13.27.04 7.18.04 7/21104 DAY 9 DAY 10 7-17-04 719:04 DATE 105104 TECHNICIAN OMM 7/20/04 TECHNICIAN 7/22/04 7/23/04 TECHNICIAN TECHNICAY TECHNICIAN REP JAR INITIAL #DEAD :#SURF, #DEAD :#SURF, #DEAD :#SURF, CLIENT/ MEC In 41 boart N 2 34 # | 9 5 52 3 | 31 4 51 Control / , 8 48.59 5 8 6 11 0 10 23 8 28 ΙÖ 1 56 9 49.95 10 48.73 10 49.78 2 48 3 37 4 14 1/. 5 4362 46.07 35 13 6 49 8 39 IA 1 4 104676 48.92 104082 43.06 104556 48.66 90 104574 47.49 1047.2050.36 N 2 6 3 21 4 55 2 / . 5 15 6 29 | | | | | | | | | | | 2 19 8 10 ЦЦ 7.4

OTE 7126104 am TE 7-26:04 DS

n Expo	onent	PROJECT	here il senglaing Progra	MEC JOB NO.	PROJECT M	IAN. MECL	ABORATORY	PROTOCOL	SPECIES	· · · · · · · · · · · · · · · · · · ·		TACAL	M.MORT	***************************************
					POINT DA		sbad Room 3		Hj	valella a	zteca		.m.mori < 5%	
		DAY1 DATE	DAY 2		DAY 4	DAYS	DAVE						***************************************	
		7./7.07	7.18-04 TECHNICIAN	7.19.04 TECHNICIAN	DATE 7/10/4 TECHNICIAN	TIZICH TECHNICIAN OM	DATE 7/22/04 TECHNICIAN POO	7/23/0	DAY 8 HUY (OF TECHNICIAN	DAY S DATE JUSTON TECHNICIAN OWN	DAY 19 DATE 72664 TECHNICIAN	g	341	7.27.04
ENT/ MEC ID	REP ###	l .	#DEAD !#SURE	JS . #DEAD :#SURF.	h	am	RW	TECHANCIAN	TECHNICIAN	TECHNICIAN "	TECHNICIAN	NUMBER REMAINING	E WE	weigh poat
	1 50	N	N	N SSSS		#DEAD :#SURF.	#DEAD :#SURF.	#DEAD #SURF	#UEAD #SURF.	#DEAD #SURF.	#DEAD #SURF.	NE N	TAR (mg)	₩ H
	2 40			14.	M	<u> </u>	-	<u> </u>	N L	Ŋ	Ŋ	7	4419	85 4583 25 25
	3 3	7	-	1		***************	-					10.	#13 31	5 46.85 26
3 / .	4 42			 								10	39. I	4 41.40 27
3 / .	5 24	***************************************		-								9	419	6 4430 28 15 4456 29 4 50.15 2031 6 10 43.84 50. 15 53.20 3130 7 52.05 53.
	6 36		***				,				150	10	418	15 4450 29
ļ	7 9											10	117/8	H 5015 20316 10 47.84 50.
	8 1									1	(3) - (5)	то	59.	53.203+30 7 52.05 53.
	1 22	1		-						_		1(11	CH (C	1571932
Ì	2 38									8,000		0	459	2 48.80 8 49.71 18 48.86
<u> </u>	3 53									N		0	468	र पंक्र
ŀ	4 27											0	4 5 8	8 48 86
7.	5 26											91	16.19	4869
ŀ	6 16						ļ				****************		46.6	
ŀ	7 10											0	775	2 511 90
ŀ	8 30	 										0	37	2 54.88 2 58.29 - 5 7.00
	1 47	+										0.	4 A	729.49
1.	2 20	ļļ.										0 4	OP	
ļ.,	3 46											0 4	175	42.63 1 49.82
ļ.,	4 25	.				V					1	9 1	8.2	3149.73
/ 1	5 52					n					******************************	0	H A	149.03
j.	6 7					N			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*************	04	aan	7 41.03 Follo
ļ	7 12		ļ							1		04		5048 5107
ļ.,										†********** .	1 1 1	2 1	0	131.01
]					05		51.82 158.57
ļ	1 5		ļ <u>.</u> .	<u> </u>					 		8	' I E	221 M	11
	2 17		<u> </u>		// 1		***************************************	1		-	1 2	- <u>-</u>		59.33
ļ	3 43		[1			1	- 12		29.6
/	4 32	I						1			1	<u>, </u>	97	50,27
1	5 33							1		-	/	715) (de	156.01
ļ	6 54) [5	4109	59.16 50.01 56.01 56.81 51.29 51.52
1	7 45											Q ;;	4141	151.29
	8 44	Ų l	4	1	V	WI.	5		 - - - - - - - - 	·	<u> </u>	410	4159	12125 N
7/15/2004 10	day hyalella Endp	nint	Λc	lanimo	L					V	Y	148	5(8)	<u> 121.11</u> 26

Osmall animals on sediment surface (25) 7/25/04 ann OWC 7.76.04 TS (3) IW 7.2704 TS

CLIENT PROJECT

Exponent Red Dog Mine Phase II Sampleing Frogram

MEC JOB NUMBER PROJECT MANAGER

B. Gardiner

SPECIES Hyalella a		MECLABORATORY Carlsbad Room 3	PROTOCOL
TEST START DATE 1 6 Jul 04	1457 Va	TEST END DATE 26 Jul 04	ISISTS

										WATE	RC	(UALITY	DA	TA		1				<u> </u>	
	T⊑ST DO (mg.	/L) > 3 .4	1	TEMP (C)	3±1			/cm) < 50%	PH 7	.0 <u>+</u> 1.0	NH3	(mg/L) ry < 50%	HARE) /ALK	OILU	TION WAT	ER BATCH		TEMP.	RECOR./H	
	CLIENT/MEC ID	DAY	REP	JAR#	Г	D.O.	T	TEMP		NOUCTIVITY		Hq Hq		Y S DU 6 (ERLY, NH3		RDNESS		<u> </u>	. Ex. 36		- 119278
		-		JAKE	mets	+	mete		mete		meter		Tache.	mg/L	-	mg CaCOyl	ALKALINITY Team, rng CaCOJL	TECHNICIAN		RENEWA	L FEED-
			1	***************************************	Cq.		ي) ا	21.8	15	0.19	. 8			-,<->				Sul		dw	
Cher			3	·······	ļ.,	8.2	14	21.9	44	0.19		8.0						1		1	1
			4	************	 	7.9	1.4	21.8		0.19	Щ.,	7.9						1	17		† <i>†</i>
	Control / .	0	- 5	***********	ļļ	8.0	ļ. ļ.	22.1		0.19	Ш.	7.9						******************	T T		17
			6	***********	1.4	7.7	1.1.	22.0	Щ.	0.19		79					***************************************	***************************************	1-1-	†	1
				***********	ļ.ļ	7.6	11	22.1	11.	0.18	Ш	7.9			l	************	*******	**/>	1	 	#
			7	***********		7.7	1.4.	22.2	<u></u>	0.18	Ш.	7.9				************		***************************************	1	† 	1
ക	0-1-3/		8			7.6	1	22.0	Ш	0.18		7.7		Wx.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*************	7	*******************************		1	
4	Control / .	1	1		ے	67	6	72.1	5	0.20	8	フ・フ						G _r	JW	BH	MAI
	Control / .	2	2		6	7.7	8	21.8	5	0.20	ક	8.C					5.1	- Fw		Rn	RM
	Control / .	3	3		6	7.9	6	217	5	0.20		81						13	***************************************		KI
	Control / .	4	4		6	7.2	6	21.9	5	0.20	8							ev	75-		12-1
	Control / .	5	1.		6	8.1													ᄣ	Ju	RA
	Control / .	5	2		S	8.2												am_	-	RM	RM
Ĺ	Control / .	5	3		Ø	81													ļ		
L	Control / .	5	4		ζ	82															
Ĺ	Control / .	5	5		G	32	G	22.0	4	0.18	8	8.3									1-1-1
	Control / .	5	6		6	8.1						0.0						- Y			H
	Control / .	5	7		6	82						r (4 - 15 - 1									
ſ	Control / .	5	8		0	8.3															
	Control / .	6	6		7_	7.5	L	214	5	0.18	•	8.1			+				5.4	4	<u> </u>
Ī	Control / .	7	7		1	8.2		21.9	5	0.18	0	8.2	2					1911	<u>RM-</u>		~
	Control / .	8	8		G	82	6	21.7		0.18		8.2 8.3							RM -		>
ľ	Control / .	9	1		6	7.8	6			810	X	82							0m		
ľ			1			8.2	7		-	0.18		8.3							DMV.		\square
	***************************************	ľ	2			Ø.	A	11.4	***	0.18		8.3					******	RγΛ	R∕^	******	
		ŀ	3	•••••••••••••••••••••••••••••••••••••••		8.3	******	21.5		0.18					<u> </u>						
			4	······································			╁┈┼	412				8.3									
	Control / .	10	5		┪	8.1 8.1		21.9 21.6		0.18	++	8.3									
	TO THE PARTY OF TH	ļ.	6		++	8.					 -	8.3		.,			******				
	İ	ŀ	7		**	8	· ··· 	21.4		0.18		8.3				,		,			
		ļ.	8	······································		8.2		21.9		0.19	╂∤-	8.3									
L,			Ľ.		-1	0.0	\perp	217	1 1	0.2		8.3						V			

© FED 520 ML 7/16/04 chr © 7/16/2004 10 day hyalella WQ | Che to low DO's in other chambers 747.04

PROJECT Exponent Red Dog Mine Phase II Sampleing Program MEC JOB NUMBER PROJECT MANAGER B. Gardiner

SPECIES Hyalella		MECLABORATORY Carlsbad Room 3	PROTOCOL
TEST START DATE 16 Jul 04	1452 du	TEST END DATE 2 6 Jul 04	TIME (5(5 TS

TEST DO (mg	# Yesteroon	96119 E.A.	TEMP (C)	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5751			WATE		UALITY									3	
	> 3.	4%		3±1	coni va	л.(µs/ .ТУ	cm) < 50%	рН 7	.0±1.0	va va	(mg/L) Ty < 50%	HARI	DJALK. TV < 50%	DILU.	TION WAT	ER BA	TCH		TEMP.	ECDR./HO	BO#
CLIENT/MEC ID	DAY	REP	JAR#		D,O,		TEMP	cc	ONDUCTIVITY		рН		/ERLY, NH3	НА	RDNESS	1 7	LKALINITY		WATER	RENEWAL	9278 FEED-
	+	1		meter	 	meter	-	mete	-	meter	unit	Teotyn	mg/L	Teotes.	mg CaCO _y /L	Techn.	mg CaCO ₃ /L	TECHNICIAN		PM	ING
		2	ļ	6	4.2	<u>. (e</u>	21,9	. ≲	0.45	8	7.0		****************					U.J	100	ملينا	w
Ode		3		.	56	.	21.9	.	0.43	.	7.1		****************				*********************		T***	1	1
i .				ļ.,ļ.,	53	.	22.0	[]	0.43	.	7.1		*************				***************************************	***************************************	11		741111
1/-	0	-4 5	***********	ļ.,ļ	5.4		21.6].	6.43	.	7.1		44144444444444444444					************		1	
		6		.	5.8	 	นศ	.	9.41	.	7.1		*****************				***************************************		1-1		
		7	***********		5.4		21.8] . .	0.42		7.1		******				***************************************	******************************			
			**********		5.1		22.2	.	045	<u> </u>	7.0						*****************	***************	1		****
1 / .		8		Щ	5.6		22.1	Ш	0.42		7.1						***************************************				
1 / .	1	1		6	72	6	22.2	5	0,40	\mathcal{L}	69							C _r	JW.	BH	MA/
1 / .	2	2		4	65	Ç	21.8	5	· · · · · · · · · · · · · · · · · · ·	8	7.7							Ju	RM		RM
1 / .	3	3		ب		G	21.6	5		8	7.3							15	75-		
1 / .	4	4		6	3.6	9	22.	5	0.26	8	7.9							ev	dr		PΛ
1 / .	5	1		Ğ.	73	20.2	500											(im)	**********	RM	RM
1 / .	5	2		90														······································		1	1
1 / .	5	3		Ø	73 78													***********	*********	1	
1 / .	5	4		90	4.0															11	-
1 / .	5	5		و	7.1 6.0	6	21.8	5	0.22	8	8.1							4			
1 / .	5	6		6	6.0													***************************************		*****	
	5	7		G.	7.2 5.7															7-1	+
1 / .	5	8		Çφ.	<u> 24</u>													\forall	- 7 - 7 - 7 - 1 - 1	1.	
1 / .	6	6		6	5.8	6	21.5	5	0.21	8	8.0							RM	RY\		
1 / .	7	7						5	0.19	8	8.2					7		ŘΜ	RM_		
1 / .	8	8		6	4.3	G	21.8	5	0.21	8	13 18								am		
1 / .	9	1		6	59			5	0.21	8	7.8							am	Q/M	\leftarrow	
		1			6.0	ړي			0.21	8	8.0								% /\		7
		2		[.],	5.2		21.9		0.20		8.0	I			**********						
		3			6.1	<u>. L.t</u>	21.5	\perp	0.19		7.9									***********	
1 / .	10	4			6.4		21.]	\prod	0.19	\prod	7.9		******************	***	·····		***************************************	*********************			
•		5			6.9		21.5	\prod	0.19		7.9	****	***************************************		<u>-</u>			****************			
	L	6	I		5.5		214		0.19		7.6	****	**************	·			······	*******		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17-17-15-17-1
		7	I		6.7		21.8		0.20		7.8			٠-٠٠٠	*******	*****		******			***********
	[8			6.9		21.7		0.20		77				***************************************						*********
(A) ===>	- m .	•				-						····			L		f		٠,	- 1	1

O FED 520 ML Thisloy Ker 7/16/2004 10 day hyalella WQ O Adjusted air line 719.04 IS

ANALYTICAL SYSTEMS INC.

CLIENT PROJECT

Exponent Red Dog Mine Phase II Sampleing Program

MEC JOB NUMBER PROJECT MANAGER

B. Gardiner

SPECIES		MEC LABORATORY	PROTOCOL
Hyalella a:	zteca	Carlsbad Room 3	-
TEST START DATE	TIME	TEST END DATE	TIME
1 6 Jul04	1452 de~	2 6 Jul04	15152

										R C	UALITY	D٨	(TA		11170						1 17	
113631 DO (mg	> 3.,	4	TEMP (C)	3±1	Vē	D.(µS	/cm) < 50%	PH 7	.0±1.0	NH3 Va	(mg/L) ry < 50%	HAR Va	D/ALK ry < 50%	DILL	JTION WAT	ER B	лтсн			TEMP.F	RECOR./HC	Bo#
CLIENT/MEC ID	DAY	REP	JAR#	_	D,O.	L	TEMP	co	NDUCTIVITY		рH	0	VERLY, NH3	H/	ARDNESS		ALKALINITY		HNICIAN	WATER	RENEWAL	49278 FEED-
		1		f meter	mg/L	mete	 	mete	,	meter		Techn.	mg/L	Techs.	mg CaCOyA	Techn.	mg CaCO ₃ /L	160	MINICIAN	AM	РМ	ING
0.1		2	ļ	lk	5.9	١,	21.7	12.	0.67	8	7.2	.41427).	72774444444		************			.	h./	6	Sw	fu
Odn		3	†	17	5.7	H	21.7	┢┿╌	0.62	! -}	7.3 7.3			ļ	*************************		***************************************		4	<u> </u>		
2 / .		4		ᠠ	6.5	†† **	21.6	╂╌┼┈	0.41	 	7.3	******					***********************		ļ	.		
2 / .	0	5	***********	11	6.3	† †	21.5	 -	0.58	 	7.4		*****************	ļ.,,,	***************************************	.,,,,,,,	******************	*********		ļ.,		
		6		1	6.4	 	21.5		0.56	1	7.4				***************************************		**************		************			
		7			6.3		21.5		4-58	1 10000	7.4 7.3		***************************************	,		******	***************************************					
	 	8		П	4.3	Ш	21.5		0.59	ľ	7.4			*****	***********	*****	****************	*********	1			
2 / .	1	1		6	4.8	6	22.1	5	2ک.۵	S	7.2							/	21	1W	BH	MAI
2 / .	2	2		4	7.1	G		5		8	8.6								ju	RM	RM	RN
2/:	3	3		6	75	٤		5	ሲዛዣ	8	8.1								5	15-		_
2 / .	4 5	1		6	6.1	6	21.5	5	0.36	૪	7.9								21			RN
2 / .	5	2		0	59 70													0	m		.3€	RM
2 / .	5	3		6	7.0		and the second															
2 / .	5	4		96	75																	
2 / *.	5	5		ويو	64	C.	223	Ę	0.29	O'	80							********				,,
2 / .	5	6		G	7.7				V,E		0.0							·····			-	
2 / .	5	7		G	70						9 9 9 9											
2 / .	5	8		G	72																	
2 / .	6	6		6	7.5	6	21.4	5	0.28	8	8.2									R11		3
2 / .	7	7		6	7.5	900	21.7	5	0.28 0.24 0.26	В	8.2									PM		
2 / .	8	8		Q	7.5	G	219	5	0.26	8	79									am-		=
2 / .	9	1		0	65	0	208	5	().26	M	7.8							Ň		am		=\$
		1 2		9	***********	b	***********	5		8	7.7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					R		ŔΜ		
	-	3			7.6	-	21-6		0.22	1.4	80							********				
		4			8.2		21.6		0.21	 .	63											
2 / .	10	5		 	8.1 7.9		21.8		0.23	4-4	83		**********									***********
		6			7.5	╂╌┼	21.9 21.8		0.22	╂╌┼	8.2 8.2											
	ľ	7		1-	7.8		21.6	/ -†	0.2	╁┼	8.2				······			,,,,,,,,,	*************			
	<u> </u>	8		T	80		21.7	1-+	0.22	1+	8.2				·····			**********				
	·		£						<u> </u>		V. F.	Ì		1	- 1	-	i			1	1	1

(1) FED 520 ML 7/16/04 Ver 7/16/2004 10 day hyalella WQ

PROJECT Exponent Red Dog Mine Phase II Sampleing Program MEC JOB NUMBER PROJECT MANAGER B. Gardiner

SPECIES		MEC LABORATORY	PROTOCOL
Hyalella azte	ca	Carlsbad Room 3	Arrangement of the Control of the Co
TEST START DATE	TIME	TEST END DATE	TIME
1 6 Jul04	1452 AN	2 6 Jul04	15150

TEST DO (mg/L			Francis						WATE	RQ	UALITY										1/1/	
	3.4	1	TEMP (C) 22	3±1	va Va) (μS, TY	cm) < 50%	PH ₇	0±1.0°	NH3 Va	(mg/L) Fy < 50%	HAR Va:	D/ALK ry < 50%	DILL	ITION WATI	ER BA	тсн	0.000	Į	EMP.RE	CDR./HO	во# (52 7 8
CLIENT/MEC ID	DAY	REP	JAR#	meter	D,O. mg/L	meie	TEMP °C	CC mete	NDUCTIVITY µS/cm		pH unit		VERLY, NH3		ARDNESS		ALKALINITY mg CaCO,/L	TECHNICL	an !		ENEWAL PM	J. J. J. J. J. J. J. J. J.
		1	***********	6.	6.2	(22.0	5	0.24	8	7.4							Lu	1	6		Sho
Oshr		2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		6.0	4	22.0	4	0.74	4.	7. G						*****************			1		
" (4	************	ļļ	5.7 6.5	╁┼	21.9	! -	0.24	-	7.6 7.9		***********	ļ			************			 -		
3 / .	0	5	~		4.2		27.0	 	0.14	11	2.7		*****************			******	***************	·····		ļ		
		6	***********		6.0		21.9		0.84		7.7		*************		************	*****	*****************			ļ		
		7 8	*************		<i>G1</i>	1	21.8	.	0.23	.	7.7	PARTY				*****	-4					
3 / .	1	1		6	5.7 4.2	7	77.3	눈	0.24	8	7.4								-	*1.4	Direct	1
3 / .	2	2		G	1.0	6	21.9	5	0.21	8	8.0							- CT Jen		2M	BH RM	RN
3 / .	3	3		٠	69	ی	21,9	5	0.21	8	7.9		****					Ts		15-	V/ 1	- }
3 / .	5	4		6	6.8 80	6	21.8	9	0.20	8	8.0							ei	2	W-		Ri
3 / .	5	2		- w I	4.9													app			RW	RN
3 / .	5	3		9	8.1														-		-	\dashv
3 / .	5	4		6	7.3															-	1-1	
3 / .	5 5	5		Č	83 81	0	22.	5	0,20	8	8.7-											\perp
3 / .	5	7		9	83														\dashv		4-1	
3 / .	5	8		Ğ	75													1	\dashv	-	\downarrow	1.
3 / .	6	6			7.6			5	0.19	8	8.2 8.3							₽₩	R	m		$\stackrel{\sim}{\rightarrow}$
3 / .	7 8	7 8			8.2		21.6	5	0.18 0.19	3 0	8.3				46			RM		Μ÷	*	\rightarrow
3 / .	9	1		6	7.6	6	22.2	J.	X:19	8	79							<u>am</u>		M.		3
		1	**>>>>	Y	8.0		22.0	5	048	g	8.2	14664500						RM		M		
		2			7.8		21.6		0.18		8.2		***************		************		*****************					
	ŀ	3 4			8.1		21.7 21.5		0.18		8.2		************				***************************************			1		
3 / .	10	5			7.1 8.2	41.	21.7	+	0.19	+	8.1 8.2									.		
	ľ	6			8.1		21.6	1	0.19		8.2	*****					***************************************			1		*********
		7		1	7.7		21.6		0.18		8.2 8.2		***********		***********		***************************************			Lİ		**********
O FED	5 2	ر ° ر			7.3	1	21.6	\perp	0.18	Ш	8.1											

ANALYTICAL SYSTEMS, INC.

CLIENT PROJECT

Exponent Red Dog Mine Ehase II Sampleing Program

MEC JOB NUMBER PROJECT MANAGER

B. Gardiner

SPECIES Hyalella azte		MECLABORATORY Carlsbad Room 3	PROTOCOL
TEST START DATE 16Jul04	1452 JW	TEST END DATE 2 6 Jul 04	TIME 1515 15

T⊞ST DO (mg	a vere		lyeus as			1			1	WATE	RC	UALITY	DA	TA			***********				ולו!	
	> 3	4	TEMP (C)	3±1	Va Cov	ary ary	/cm) < 50	% pl)±1.0	va va	(mg/L) IY < 50%	HARI Val	DIALK V < 50%	DILUTIO)N WAT	ER BA	тсн		TEMP.	RECDR./HC)BO#
CLIENTIMEC ID	DAY	REP	JAR#	meter	D.O. mg/L	L	TEMP		·····	UCTIVITY		рН		ÆRLY. NH3	HARE	NESS	1950r.u.S	ALKALINITY		WATE	0- R renewal	(19278
		1		/		mete 7		٠,	eter	µS/cm	meta	[Techn.	mg/L	Jesha. M	¢+ca√r	Tache.	mg CaCO _J /L	TECHNICIAN	AM	PM	ING
		2	ļ	14	5.4	(0	T			37	8	1.7		***************	ļļ	*********		×*************************************	Sal	15	Yw	L
aven		3		! -	5.5	17	21.4			0.42		7.	,	**************	.,	*********		**************************************		1,		1
4 / .		4		! /	5.4	† †	21.9	┈ ╂┄		6.40	! /	7.1		******************		*********		>++++>= x +4 <u>=</u> 2+++>**4*2*4				
** / -	0	5	************	! †***	5.0	11	219		''' † '''	0.40	 	7.1 7.1		*************		**********		***********	**********	/	ļ	<u> </u>
		6	************	 	<i>5.1</i>	11	Z46	··· ! ···	†	0.33 0.51	 	7.1	••••••	*******		**********		***************************************	***************************************		ļļ	
		7	***********	1	5.0	tt	21.6	11		e.42	h	7.0		***********		********		**************	******************		ļ	[]
		8	***************************************		3.n	11	21.5	17	`` † ''	0.11		7. i						***********			ļ	ļļ
4 / .	1	1		6	3.3	6	1	15		0.32	8	7.1							Cr	1	BH	mn
4 / .	2	2		G	6,2	6	22.)	5	7	0.29	ક	7.7							In	RM		
4 / .	3	3		C	65	G	21.9			0.27		7.8							Ts	75-		RM
4 / .	4	4		6	6.2	6	21.8	5			8	7.3							ei.	سلا		RM
4 / .	5	1		6	7.5														am		RM	ŔM
4 / .	5	2 3			70	2,414													T		100	1000
4 / .	5	4		6	7.2							i da										
4 / .	5	5		6	83 81 82	1	010	4	Ķ													
4 / .	5	6		6	87	0	21.9	15	U	:40	8	8.1										
4 / .	5	7		6	39				+													
4 / .	5	8		ढी	78																	
4 / .	6	6		_		10	21.8	1	7).19	2	8.2									<u> </u>	\mathbf{V}
4 / .	7	7		6	7.9	6	21.5	╠	-	18	S0000	8,3		-			4		RM	RM		
4 / .	8	8			fi d		218	15	+7	. 9	ਮ	8.0							RM	RM		
4 / .	9	1		6		Ğ	21.8	15		<u>.</u> q	Ø	80					+		am	am		
4 / -		1		6		-	21.7	15				g.0							DAA	RM		
4 / .		2	***************************************	71	7.6		21.6	11		19	*	8.0			· 			*************************	RM	ΙΝ.		
4 / .	· · · · · · · · · · · · · · · · · · ·	3		\prod	7.4		21.9	11		181	11	8.0			···-							
4 / .	10	4			8.0	Ш	21.8	$\prod_{i=1}^{n}$	*******	20		8.0	·			······································				 		
4 / .		5			7.7		21.7	\prod	т.,	20		8.1			****	·····†	****	······································			·····	
4 / .		6			7.9		21.8	Щ.		.19]		8.2		*************	***************************************	·······t				 		
4 / .	ļ.,	7			8.1		21.2	Щ.	0.	19		8.2				<u>-</u>						.,,,,,,,,,
4 /	L	8	, 1		7.8		21.7	Щ	0.	19	Щ	8.2			1			*****************	1			
		M	L		104	12							-				***************************************	······································		·		

ANALYTICAL SYSTEMS, INC.

CLIENT PROJECT

Exponent Red Dog Mine Phase II Samplaing Program

MEC JOB NUMBER PROJECT MANAGER

B. Gardiner

SPECIES		MEC LABORATORY	PROTOCOL 1
Hyalella azte	ca	Carlsbad Room 3	
TEST START DATE	TIME	TEST END DATE	TIME
1 6 Jul04	1452 km	2 6 Jul04	151578

TEST DO (mg/l	diam'r.	grander en en	TEMP (C)	7.000.000.000	1680	6 /···	- Constitution	. 1 . 72		R	QUALITY										***************************************
	3.4			3±1			(cm) < 50%	рн 7	.0±1.0	NH V	3(mg/L) 1Ty < 50%	HAR Ve	D/ALK Ty < 50%	DILUT	ON WAT	R BA	TCH	3 6 6 8	TEMP.R	ECDR./H	ово# [[9°2
CLIENT/MEC ID	DAY	REP	JAR#	meter	D.O. mg/L	mete	TEMP °C	CC	DNDUCTIVITY	I	pΗ		VERLY, NH3	·	DNESS	SSELLA	ALKALINITY	TECHNICIAN		RENEWA	1,000
		1		7	6.2	7	 	ζ		metr		Techa,	mg/L	Techn, 7	ng CaCO _J /L	Tactor.	mg CaCO ₄ /L	, , , , , , , , , , , , , , , , , , , ,	MA	PM	IN
<i>(</i> 1) <i>(</i>		2	************	16	5.5	١.٩.	21,7	12	0.23	.8				.	*********	1-9742,	******************	Ju.	6	Jw.	
O Lu		3		! :†"	5.₹	11	21.9	H	0.23	++	6.9			 -	*******	*****	******************				
5 / .	_	4	***********	† †***	5.5	i † † † †	71.9	† †	0.23	╁╁	6.9		*****************	!	**********	1044471	<pre><pre></pre></pre>	***********			
w , .	0	5	********************************	11	5.6	!	22.1	!	0.22	 -	6.9		***************************************		********	******	**************	***********			
		6	*************		5.8		22.1	† †	0.23	#	6.9		***************		•.,,,,,,,,	******	**************				
		7	*************		5.8		219		0.23	!	6.9	17-11-1	************		************	.,	> ? ********************				
		8			5.5		22.4		0.23		7.0		****************	*****		******	4	**********			ļ
5 / . 5 / .	1	1		6	4.6	6	22.0	5	0.22		7.1							Gr	אכ	BH	144
5 / .	2	2		6	7.3	4	Z2.2	5	0.20	8	7.9							She	RM		RV
5 / .	4	4		9	7.8	७	39	5	030									75	15-		1
5 / .	5			6	7.4	6	21.7	9	0.20	8	7.2							<u>g</u>	Ju.	ーラ	PAR
5 / .	5	2		و م	7.7	a tiedh												am		RM	R
5 / .	5	3	••••		8.2												100				
5 / .	5	4		0000	8.1	772%															1-1
5 / .	5	5		6	8.1 8.4	G	22.1	7	0.18	2	82							***********			ļ <i>ļ</i>
5 / .	5	6		6	8.2														+-		-
5 / .	5	7		6	80															+	H
5 / .	5	8			8.\										77			 /		1.	
5 / .	6	6			7.7	6	214	5	0.18	8	8.2							RM	RM-		
5 / .	7	7 8	 		7.8	0	21.8	5	0.18 0.18	Ö	8.2							RM	21		
5 / .	8	1			16	9	21.8	긜	<u>0. [8]</u>	Ŋ	80							am	Om		
- ' '	3	1					219	5		8	87							OM	ami		
the state of the s	1.	2			*****	ATTENDED	22. ₁	5		\mathcal{B}	8.2							PM	RM	********	
	ŀ.	3	**********		1.5 8.2		22.1		0.18		8.2			∤						*******	
- /	ا ـ ا	4		++	6.3		22.0		0.18				***************************************						 		
5 / .	10	5		+	8.0		21.8	†+	010	+	82		·				·····		.		
	***************************************	6			6.2		21.9	11	0.18	+	8.2	••••	****************		········		······································		.		
	ľ	7			8.0		21.6	11	0.18	1	8.2					-		***************************************	1		*******
1	ľ	8		-	7.6 16/04		21.9	1	0.18	1	8.1		*************	···-		,			••••••		******

MEC ANALYTICAL BYSTEMS, INC.

CLIENT PROJECT

Exponent Red Dog Mine Phase II Sampleing Program

MEC JOB NUMBER PROJECT MANAGER

B. Gardiner

Ī	SPECIES	·	MEC LABORATORY	PROTOCOL.
L	Hyalella azte	ca	Carlsbad Room 3	
ſ	TEST START DATE	TIME	TEST END DATE	TIME .
Ĺ	1 6 Jul04	1452 de	2 6 Jul04	1515 15

TEST DO (mg	di V		TEMP (C)		(AA)				WATE	RC	QUALITY	DΑ	TA							
	> 3.4			3±1		D.(μS try	cm) < 50%	рН 7	.0±1.0	va va	l(mg/L) Ty < 50%	HAR!	DJALK. CV 50%	DILL	TAW MOIT	ER BA	тсн		TEMP.RECDR./HOBO)#
CLIENT/MEC ID	DAY	REP	JAR#		D,O.		TEMP	-	NDUCTIVITY		рH	- manadalalai	VERLY, NH3	H	ARDNESS	w(603860)	ALKALINITY			FEED-
	+	1		meter /		rreste	 	mete		mete	, j	Yesten,	mg/L	Yechn	mg CaCO _y I,	Techn.	mg CaCO ₃ /L	TECHNICIAN	AM PM	ING
(2)		2	***************************************	Q.	6.3	17	ور، ک	12	0.21	Š	7.2		***********	 .	**********		*****************	1	www.	اسل
Ode		3	**********	<i>[</i>	5.8	- -}-	72./	ļļ	0.24	! /	7.2		**********	.	***********		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		4	h-411781-1y	<i>ļ</i> .	4.0	₽-/-	21.9	.	4.21	 	7.2]		14342).	****************			
7 / .	0	5	*********		6.0	┢╌┾╌	22.0	 	0.21	 	7.2		****************	ļ		******	***************			
		6	**********		5.9	┢╌	22.2		9-21	 	7./		***************	ļ.,,.	***********		***************			
		7	************		************	┢┅┼	21.9 21.5		15.9	} -	7.2		********	 		,,,,,,,,	*********			
		8	*************		6.2	ŀ··ŀ	*********		0.14	 -	7.2			ļ	***********		*********			
7 / .	1	1	·	7	4.7	7	77.0	5	6.20	7	7.2							<u> </u>		
7/.	2	2		وكا	7.5		22.2	3	15.0		7.2							<u>Ģ</u>		V4]
7 / .	3	3		9	7.8		21.9	3	0.20									√h		M
7 / .	4	4		6	18	۳	218		0.20	B	8.2 7.4							Ts	7.5	7
7 / ,	5	1		6	7.6		2010		عري ن		7.1							<u>s</u> c	A	200
7 / .	5	2		6	8.													am	PM R	M
7 / .	5	3		6	83															4-1
7 / .	5	4		6.	8.7	2200														4
7 / .	5	5		6	8.2	6	219	5	0.19	Q.	อา							******************		
7 / .	5	6		6	83				V		<i></i>									
7 / .	5	7		G	8.2															+
7/.	5	8		Ğ	8.0															\forall
7 / .	6	6		6		6	21.3	5	0.18	9	8.2							RM	Rn	4
7 / .	7	7			8.2				0.18	Ž	8.2							RM	RM	1
7 / .	8	8		6	7.7	6	21.8	5	0.19	8									am -	\exists
7 / .	9	1		^	7.1	G	219	51	0.191	8	8.0								am	3
		1		6	8.1		21.5	5		8	8.0				7.7.4				2M	-4
		2			6.0		22.		0.19	T	8.1					2000.0			N./	
		3			8.1		22·0		0.19	77	8.2		****************		······································	*****				
7 / .	10	4			8.2		21.7		0.18		8.2		**************	******	······································			**************		
	10	5			8-1		21.5		0.18		8.2	····†	***************************************	····	·····	******				
		6			8.3		22.1	\prod	0.19		8.3	·····†''	****************	*****						
		7			8.3	\prod	22.0	II	0.19		8.3			433334	······································	``	***************************************			
		8		1	7.9		22.0	Π	0.19		8.3			†	***************************************	******	*****************			
OFED	520	, ,,,	L 7	10	In	•	1 /								····		I.		<u> </u>	

Hyalella azteca Reference Toxicant Control Chart: 96-Hour Survival

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
11/13/02	100.4460	198.7245	94.1799	0.0000	303.2692	407.8139
12/17/02	326.0900	198.7245	94.1799	0.0000	303.2692	407.8139
02/06/03	217.1340	198.7245	94.1799	0.0000	303.2692	407.8139
03/17/03	110.9400	198.7245	94.1799	0.0000	303,2692	407.8139
04/02/03	95.2116	198.7245	94.1799	0.0000	303.2692	407.8139
05/28/03	301.7120	198.7245	94.1799	0.0000	303.2692	407.8139
07/16/03	102.6800	198.7245	94.1799	0,0000	303.2692	407.8139
07/16/03	75.8930	198.7245	94.1799	0.0000	303.2692	407.8139
08/27/03	161.3200	198.7245	94,1799	0.0000	303.2692	407.8139
08/27/03	54.6880	198.7245	94.1799	0.0000	303.2692	407.8139
11/02/03	234.9690	198.7245	94.1799	0.0000	303,2692	407.8139
01/20/04	130.2640	198.7245	94.1799	0.0000	303.2692	407.8139
02/04/04	105.2500	198.7245	94.1799	0.0000	303.2692	407.8139
02/20/04	306.9640	198.7245	94.1799	0.0000	303.2692	407.8139
03/03/04	199.2700	198.7245	94.1799	0.0000	303.2692	407,8139
03/16/04	244.7800	198.7245	94.1799	0.0000	303.2692	407.8139
04/20/04	235.1490	198.7245	94.1799	0.0000	303.2692	407,8139
06/04/04	450.3920	198.7245	94.1799	0.0000	303,2692	407.8139
07/16/04	210.4460	198.7245	94.1799	0.0000	303.2692	407.8139
07/16/04	310.8920	198.7245	94.1799	0.0000	303,2692	407.8139

Value within 95% CI range at time of testing

Updated 8/12/04 BH

				Acute Sedimen	t Test-4-day Survival	
Start Date:	7/16/2004	16:05	Test ID:	C030314.211	Sample ID:	REF-Ref Toxicant
End Date:	7/20/2004	14:35	Lab ID:	CAMECW-MEC WES	STON Ci Sample Type:	CUSO-Copper sulfate
Sample Date:			Protocot:	EPA 00-EPA Freshwa	ater Sed Test Species:	HA-Hyalella azteca
Comments:						-
Conc-ppb	1	2	3			
Control	0.9000	1.0000	0.9000			
62.5	1.0000	1.0000	1.0000			
125	1.0000	1.0000	1.0000			
250	0.7000	0.8000	0.6000			
500	0.2000	0.0000	0.0000			
1000	0.1000	0.0000	0.0000			

				Transforn	n: Untran	sformed			1-Tailed			
Conc-ppb	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Control	0.9333	1.0000	0.9333	0.9000	1.0000	6.186	3			** 	0.9333	0.0000
62.5	1.0000	1.0714	1.0000	1.0000	1.0000	0.000	3	-1.155	2.500	0.1443	1.0000	-0.0714
125	1.0000	1.0714	1.0000	1.0000	1.0000	0.000	3	-1.155	2.500	0.1443	1.0000	-0.0714
*250	0.7000	0.7500	0.7000	0.6000	0.8000	14.286	3	4.041	2.500	0.1443	0.7000	0.2500
*500	0.0667	0.0714	0.0667	0.0000	0.2000	173.205	3	15.011	2.500	0.1443	0.0667	0.9286
*1000	0.0333	0.0357	0.0333	0.0000	0.1000	173.205	3	15,588	2.500	0.1443	0.0333	0.9643

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor Equality of variance cannot be co		ution (p >	0.01)		0.91731	······································	0.858	· · · · · · · · · · · · · · · · · · ·	0.70135	0.425
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	125	250	176.777		0.14434	0.15465	0.62622	0.005	6.3E-10	5, 12

				Maxii	mum Likeliho	od-Probit	<u> </u>		······································		
Parameter	Value	SE	95% Fidu	icial Limits	Control	Chi-Sa	Critical	P-value	Mu	Sigma	Ite
Slope	7.22675	2.20523	2.9045	11.549	0	1.81656	7.81472	0.61	2.49261	0.13837	5
Intercept	-13.013	5.39065	-23.579	-2.4478				,		0,,040.	
TSCR						1.0 -					
Point	Probits	ppb	95% Fidu	cial Limits		4			1/4/		
EC01	2.674	148.15	56,8153	192.566		0.9				- 1	
EC05	3.355	184.079	96.1863	223.653		6.0			-	1	
EC10	3.718	206.669	126.492	243.874		۱				l	
EC15	3.964	223.457	151.256	260.094		0.7					
EC20	4.158	237.767	173.259	275.479		95 0.6 0.5 0.4				1	
EC25	4.326	250.771	193.286	291.473		ניים ב					
EC40	4.747	286.783	242.71	352.513		£ ~]			$\parallel \parallel \parallel$		
EC50	5.000	310.892	268.001	410.475		₽ 0.4 1					
EC60	5.253	337.029	290.124	487.531		0.3 1			\prod		
EC75	5.674	385.427	323.72	663.557		4			/	1	
EC80	5.842	406,508	336.766	752.895		0.2		/			
EC85	6.036	432.54	352.073	873.717		0.1			1		
EC90	6.282	467.675	371.698	1055.43		- 4		- 21	•		
EC95	6.645	525.069	401.923	1399.64		0.0 +	2 4 7 4 4 40 12		<u> </u>	77777A	
EC99	7.326	652,406	463.557	2386.16		1	10	100	1000	10000	
			***************************************					Dose p	pb		

Test: SED-Acute Sediment Test Species: HA-Hyalella azteca Sample ID: REF-Ref Toxicant Test ID: 030314.211

Protocol: EPA 00-EPA Freshwater Sediment

Sample Type: CUSO-Copper sulfate

Start Date: 7/16/2004 16:05 End Date: 7/20/2004 14:35 Lab ID: CAMECW-MEC WESTON Carlsbad

Otari		,,,,,,,	.004 10.00	3115	Date.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V4 14.0C	Lab ID.	CAMEO	A LIMIT ON AN CO	TON Cansua	<u></u>
	,,	_	_							Total	Tare	
Pos	ID	Rep				Day 7	Day 14	Day 21	Day 28	Wgt(mg)	Wgt(mg)	Wgt Count
	1	1	Control	10	9						<u> </u>	
	2	2	Control	10	10							
	3	3	Control	10	9							
	4	1	62.500	10	10							
	5	2	62.500	10	10							
	6	3	62,500	10	10							, , , , , , , , , , , , , , , , , , ,
	7	1	125.000	10	10							
	8	2	125.000	10	10					- A		
	9	3	125.000	10	10					······································		
	10	1	250.000	10	7							
	11	2	250,000	10	8						······································	***************************************
	12	3	250.000	10	6						······································	
	13	1	500.000	10	2							
	14	2	500.000	10	0							
	15	3	500.000	10	0							
	16	1	1000.000	10	1							
	17	2	1000.000	10	0			***********				
	18	3	1000.000	10	0		***************************************					

Comments:

40 DAY SOLID PHASE TEST DATA SHEET 3 - REF TOX - FW

	DAT COLID.			1030314.211	
ANALYTICAL SYSTEMS INC			species Hyalella azto		ACCLM.MORT, < 5%
CLIENT	PROJECT	MEC JOB NO.	PROJECT MANAGER	MEC LABORATORY	PROTOCOL
Exponent	not may estile throw the temple temperature of the first		B. Gardiner	Carlsbad Room 3	

Exponenc		L	t pay atus sour is		/IS/A I	2 DE	LIAN		ATA	***	- CAL	.soad .	coom 3		
OBSERVATIONS KEY				SUK/	/IVAL	& RE	HAVK	DAY 2	AIA		DAYS	ستنور		DAY 4	
W = pormal LOS= loss of equil: Q = quiescent SUR= surfacing		on bo jumpe	r	DATE TECHNIC		i.e.	DATE TECHNIC			DATE TECHNIC			DATE 7. TECHNICI	20.0	7
CLIENT/ NEC ID	CONC. value units	REP	INITIAL NUMBER	#ALIVE	#DEAD	088	MALIVE	#DEAD	OBS	FALIVE	#DEAD	ОВЅ	#ALIVE	#DEAD	OBS
Ref.Tox copper	() m g/tz p <i>o</i> le	1 2 3											9 10 9	100	\(\lambda\)
Ref.Tox copper	62.5 mg/ti 9 p b	1 2 3	{ } }, , , , , , , , , , , , , , , , , ,										10 10 10	000	727
Ref.Tox copper	125 mg/15	1 2 3					-Oat					72	(O (O (O	000	X
Ref.Tox copper	250 mg/1. 19b	1 2 3											7 8 6	2 1 1	N N N N N N N N N N N N N N N N N N N
Ref.Tox copper	500 mg/s opb	1 2 3											2 0 0	7 10 10	7.Q
Ref.Tox copper	1000 mg/t. 17 b	3						77.117	u e				-00	8 10	1Q

(1) court not performed due to sand substitute. Final counts performed on day 4 B.1204 BH

10 DAY SOLID PHASE TEST DATA SHEET 2 - REF TOX WQ - FRESHWATER

ANALYTICAL HYBITEMS INC.	
CLIENT	PROJECT
Exponent	Red Dog Mine These II Samplaing Program
MEC JOB NUMBER	PROJECT MANAGER
	B. Gardiner

MIC

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
MEC LABORATORY	PROTOCOL
Carlsbad Room 3	
ST END DATE 20Jul04	TIME 142C G
	Carlsbad Room 3

									ITUAI						2.1	T. 25 1/2	144	
	(us/cm) DD (mg/L) y < 50% > 3.)./ALK. y < 50%		.WAT.BAT	CH	TEMP RECA	R	EFERENCE		terial hlorid	۹,۸	REFERÊNC	e roxi eqqc		LOT NO.	96-HR LCS	¢
23±1 var	CONCENTRATION	* Y#1	, , ,,,,,	├ ──	D.O.	1	TEMP.	CON	OUCTIVITY		pH pH		RNESS		KALINITY	 	CER.	DING
CLIENT/ MEC ID	value units	DAY	REP	meter		mater		meter		meter			mg CaCO3/I			TECHNICIAN	3771	pm
	Value Vinto					7			<u> </u>			1				1		
		0	All	6	98	ما	21.7	5	0.19	8	7.8	<u> </u>		<u> </u>		21		
		1	1															
		2	2															
Ref.Toxcopper	250 كـــ	3	3						<u> </u>									
	مام م		1	6	8.1	6	228	5	5.22	8	00.	-		 				
	·		2	0	0.1	0_	22.0	-	0.26	_ک_	8,2	<u> </u>		 		e		
		4	in white his physical miles and the same of	a mayoring year.	*********						- Company of the Comp							~~~~
			3	ļ								<u> </u>						
		0	All	6	98	6	217	5	019	8	7.7					el		
		1	1										,					
		2	2															
Ref.Toxcopper	500 pg/L	3	3	 				 -				1		┢┈				
***************************************	iph		1	10	01	1	~ ~ 2	7	A 22	0	8.2	╁		├		H. 7		
				ĮΨ	8.(10	22.7	2	0.22	₽-	0.0	-			ļ	w		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		4	2	ļ		<u> </u>	der menerole met brokensen ve				and the same of th	ļ	e-celes wegatepu messekus:	 _	*******			ļ
			3	<u> </u>														
		0	All	6	98	6	21.7	9	0.19	Ч	7.6					انھ		
		1	1	Π														·
		2	2					†				1						
Ref.Toxcopper	1000 mar/L		3	1-		I^-		 -				 	_	 				
Ref.Toxcopper	pp	<u> </u>	<u> </u>	6	i a	 , 	-20	 		8	N 1	┢		 		e		
		١.		-	6.9	10	229	12	0.22	0_	8.1	 	appear it in indicate the residence of				same formet also no ne seminar.	
		4	2								-	-	Martine of the State of the Sta					*************
			3													<u></u>		

ANALYTICAL SYSTEMS INC.

10 DAY SOLID PHASE TEST DATA SHEET 2 - REF TOX WQ - FRESHWATER

ANALYTICAL SYSTEMS INC.		C0303/4.	211 3.43	12ml Cu304/20000	DWM	٦s
CLIENT	PROJECT	SPECIES		MEC LABORATORY	PROTOCOL	,
Exponent	Red Dog Mine Phase II Sampleing Progress	Hyalella az	teca	Carlsbad Room 3		
MEC JOB NUMBER	PROJECT MANAGER	TEST START DATE	THING OS GOTE	ST END DATE	TIME	Ç
	B. Gardiner	1 5 Jul04	1605 4	20 Jul04	143	5

							TAW	ER QU		TY DA									
	y < 50≹	1	HARI 4 var	0./ALK. y < 50≹		.WAT.BAT		TEMP RÉC O				ATERIAL hlorid		C	opper opper	Ť	LOT NO.	96-HR LC	50
CLIENT/ MEC ID		TRATION	DAY	REP		0.0.	<u> </u>	TEMP.	<u> </u>	DUCTIVITY		pН	4	RNESS	ALKALI		TECHNICIAN		DING
	value	units			meter		meter		meter	1	meter		Techn.	mg CaCO3/L	Techn. mg (*coar		ŧm.	pm
			0	All	6	98	6	21.7	5	0.19	8	7.8					ev .		
			1	1															
			2	2															
Ref.Toxcopper	0		3	3															
		10/2		1	6	8.0	b	23.0	5	0.22	8	8.2					œ		
			4	2										The state of the s			Prije Transport (i promote), in consider K. Britanje 4.4-y, a gradne grap		*** **********************************
				3										78 304 B 144 F 74 414 5 A A			(M) - Miller In Hiller Pro-served Pro	A STATE OF THE STATE OF THE STATE OF	
			0	All	(م	97	6	217	5	0.19	8	7.7			· · · · · · · · · · · · · · · · · · ·		av		
			1	1															
			2	2								·				_			
Ref.Toxcopper	62.5	mg/L	3	3												1	**************************************		
		Abp		1	6	8.1	b	228	5	0.22	K	82				i	ev-		************
			4	2		CL-realistic (ryddytslyfel), yw ymwnol		de Ageurate de de militar de Stillensche de	- Victoria	ordered William Agreement - service agreement		****		**************************************			an reference for the property of the second	i meklik selmi kurup-a aba	
				3		**************************************		makeeliseda lankeerip alkeublijkkoop		Campaign Campaign of the Action of the State		energy of the second of the	*********	White the second second			er sammende inn fannenne fan de sammen fan de sammen fan de sammen fan de sammen fan de sammen fan de sammen f		
			0	All	6	98	6	21.T	9	0.19	8	7.7					au .		
			1	1												f	**************************************		
			2	2												寸		<u> </u>	
Ref.Toxcopper	125	mg/Ir	3	3												1	<u> </u>		
		della		1	6	B.O	6	229	9	0.21	ጽ	8.2					œ		
			4	2				The state of the s	Pionithad dans	***************************************	anna dell'assa	e e Maria vango, pe	73, 117 dis 117 dis.	******************			Marie angles an materia ana pangangangan pangangan pangangan angkarandan site o managar. Marie angkaran materia ana pangangan pangangan pangangan pangangan pangangan pangangan pangangan pangangan pan	Judy sprint in an addition on a subjective	PPP (In 1914 design) de quadrat desse
P. (1988)				3		· (************************************	*********	***************************************		*************		- Control Manager Color		t salve 1980 Westfreidings der de sprommer			t to the property of the force of the standard	anthurlich horensten is early	- April - Marie - April - Apri

Aquatic Indicators, Inc.

P.O. Box 632 • St. Augustine, FL 32085-0632 • (904) 829-2780

Date 07-14-04

Species:

- 1. Hazteca
- 2.
- 3.

Total Supplied:

- 1. 1000
- 2.
- 3.

Brood Description:

- 1. E.P.A.
- 2.
- 3.

Age:

- 1. 7 days
- 2.
- 3.

Environmental Regime

Feeding:

Zooplankton Artemia NH

V phytoPLANKTON

Photo:

P.H.: 8:0

Temp:

25°C

Salinity:

Comments:

WESTER

ORGANISM RECEIPT LOG

Date:	Time:		MEC Batch N	0.				
7/15/04	1015		AT 441	4				
Organism:		Source:	L.,					
H. ARTECA		1 Aoux	tric I	YICATURS				
Address:		<u> </u>	Invoice	Attached				
SAME			Yes	No				
Phone:		Contact:						
54mE		Sam	E	:				
No. Ordered:	No. Received:		Source Batch	*				
1000	1000	•	7/7/0	4				
Condition of Organisms:		Approximate Si	_					
600 D		7 DAYS						
Chi	y	B of L (Tracking No.)						
FED EX		Co199 2457 4414						
Condition of Container:		Received By:						
600D		Ju)						
Confirmation of ID of Organism:		Technician (Initials):						
	Yes No)						
Notes:								

	······································							
pH Temp.	n		ductivity or	Technician				
(Units) (°C)		Catt	Salinity Iude Units)	(Initials)				
			F	95				
83 820	28	6 (0,52ms/cm	13				
Notes:		······································						
		THE RESERVE OF THE PARTY OF THE						

CHAIN OF (M			Page of
Project: (Name and Number	Reg Dog 1	wire Pl	hase II	: San	ugling (Program	(86019	97.001)				$\mathbf{E}^{\mathbf{x}}$ ponent
Exponent Contact:	Scott Shock		Offic	e BE	Samplers:	SEXTON	IPPOLITO	HARBK	E, MANGR			Bellevue, WA
Ship to: MEC Analytical Systems, Inc.				Analyses F				1	(425) 643-9803 Boston, 460			
2433 J	mpala Drive	•			W 1	I	T	T	T T	<u> </u>		
	a'ca 920		**************************************		13, +3					itair		(303) 444-7270
Lab Contact/Phone:	Brian Hestl	er 760 -	931-8	081	Toxicity tests per sout	***************************************				Extra Container	Archive	Boulder, CO 9 (303) 444-7270 Portland, OR 9 (503) 636-4338 Washington, D.C.
Sample No.	Tag No.	Date	Time	Matrix	BE					Ext	Ā	(301) 577-7830 Remarks
500001	65327	6/28/04	1420	SD								1064
1	65328			1	17							284
	65329				'/							394
V	65375											40,4
500002	65339	6/30/04	1125		/							10(4
	65340		1		/							2064
	65341				V,							36,4
V	65376		V		/,	1	 					4064
S00003	65348	7/2/04	1045		1							1064
1	65349	111			/							2014
	65350			The state of the s	V.							3064
Y	65368	V	V		/							454
SD0004	65378	7/2/04	1530		/							10/4
	65379		1		/						·	2014
	65380				1							344
V	65381	V	V		/							4064
SD0005	65392	7/3/04	1445		V							10/4
Wagin radio	65393		1		/							2064
VIII.	65394				/			***************************************			***************************************	30/4
V	65395	V	$\overline{\mathbf{V}}$	V	V							444
Matrix Code: GW - Ground	lwater SL - Soil	SD - Sec	diment S	SW - Surf	ace water	Priority:	1					' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
	ase identify codes						Normal	Rush	Rush time pe	riod	***************************************	
Phina ad	x/UPS Couri		Norther	'n Aiv (avyo	Condition of Upon Rece				Custody Se	al Intact	Yes No None
elinquished by:	Marin	natura)		Da	te/Time:	*X-04//0"	100 Received	by: <u></u>	Do Ship to De	A THEKEN	ラ ク	Date/Time: 7-1/-04/10700
elinquished by:	~	nature) nature)		Da	te/Time:	***************************************	_ Received	by:	(Signatur			Date/Time:

EnviroMatrix

Analytical, Inc.

27 July 2004

MEC Analytical Systems

EMA Log #: 0407183

Attn: Brian Hester 2433 Impala Drive

Carlsbad, CA 92008-1514

Project Name: Exponent Red Dog Mine

Enclosed are the results of analyses for samples received by the laboratory on 07/19/04 09:22. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that this data is in compliance both technically and for completeness.

Dan Verdon

Laboratory Director

CA ELAP Certification #: 1931

Client Name: MEC Analytical Systems
Project Name: Exponent Red Dog Mine

EMA Log #: 0407183

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
OV 001	0407183-01	Liquid	07/16/04 11:05	07/19/04 09:22
OV 002	0407183-02	Liquid	07/16/04 11:00	07/19/04 09:22
DV 003	0407183-03	Liquid	07/16/04 11:15	07/19/04 09:22
OV 004	0407183-04	Liquid	07/16/04 11:30	07/19/04 09:22
OV 005	0407183-05	Liquid	07/16/04 12:30	07/19/04 09:22
DV 007	0407183-06	Liquid	07/16/04 12:45	07/19/04 09:22
DV Control	0407183-07	Liquid	07/16/04 10:50	07/19/04 09:22
W 001	0407183-08	Liquid	07/16/04 12:05	07/19/04 09:22
W 002	0407183-09	Liquid	07/16/04 14:30	07/19/04 09:22
W 003	0407183-10	Liquid	07/16/04 14:30	07/19/04 09:22
W 004	0407183-11	Liquid	07/16/04 14:30	07/19/04 09:22
W Control	0407183-12	Liquid	07/16/04 12:05	07/19/04 09:22

Client Name: MEC Analytical Systems Project Name: Exponent Red Dog Mine

EMA Log #: 0407183

Conventional Chemistry Parameters by Standard/EPA Methods

				· · · · · · · · · · · · · · · · · · ·					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
OV 001 (0407183-01) Liquid	Sampled: 07/16/04 11:0	05 Receive	d: 07/19/04	09:22					
Total Sulfide	0.05	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	
OV 002 (0407183-02) Liquid	Sampled: 07/16/04 11:0	0 Receive	d: 07/19/04	09:22					
Total Sulfide	ND	0.05	mg/l	J	4072616	07/23/04	07/23/04	SM4500 S D	
OV 003 (0407183-03) Liquid	Sampled: 07/16/04 11:1	5 Receive	d: 07/19/04	09:22					
Total Sulfide	ND	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	
OV 004 (0407183-04) Liquid	Sampled: 07/16/04 11:3	0 Receive	d: 07/19/04	09:22					
Total Sulfide	ND	0.05	mg/l	l	4072616	07/23/04	07/23/04	SM4500 S D	
OV 005 (0407183-05) Liquid	Sampled: 07/16/04 12:3	0 Received	1: 07/19/04	09:22					
Total Sulfide	ND	0.05	mg/l	l	4072616	07/23/04	07/23/04	SM4500 S D	
OV 007 (0407183-06) Liquid	Sampled: 07/16/04 12:4	5 Received	1: 07/19/04	09:22					
Total Sulfide	ND	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	
OV Control (0407183-07) Liq	uid Sampled: 07/16/04	10:50 Rec	eived: 07/19	/04 09:22					
Total Sulfide	ND	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	
PW 001 (0407183-08) Liquid	Sampled: 07/16/04 12:0	5 Received	1: 07/19/04 (09:22					
Total Sulfide	0.19	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	***************************************
PW 002 (0407183-09) Liquid	Sampled: 07/16/04 14:3	0 Received	1: 07/19/04 (09:22					
Total Sulfide	ND	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	·····

Client Name: MEC Analytical Systems
Project Name: Exponent Red Dog Mine

EMA Log #: 0407183

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PW 003 (0407183-10) Liquid Sample	:d: 07/16/04 14:	30 Rece	ived: 07/19/04	09:22					
Total Sulfide	ND	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	
PW 004 (0407183-11) Liquid Sample	d: 07/16/04 14:	30 Recei	ived: 07/19/04	09:22					
Total Sulfide	ND	0.05	mg/l	1	4072616	07/23/04	07/23/04	SM4500 S D	
PW Control (0407183-12) Liquid Sai	npled: 07/16/04	112:05 F	Received: 07/19	/04 09:22					
Total Sulfide	ND	0.05	mg/l	l	4072616	07/23/04	07/23/04	SM4500 S D	

ANALYTICAL SYSTEMS, INC.

EMA#0407183

2433 Impala Drive • Carlsbad, CA 92008 • (760) 931-8081, FAX 931-1580 98 Main Street, Suite #428 • Tiburon, CA 94920 • (415) 435-1847, FAX 435-0479 675 Hegenberger Rd., Ste. 200 • Oakland, CA 94621 • (510) 632-8990, FAX 632-0714 152 Sunset View Lane • Sequim, WA 98382 • (360) 582-1758, FAX 582-1679

CHAIN OF CUSTODY

17111 V 		≣ □ 152	2 Sunset View	/ Lane • Sequ	im, WA	98382 • (36	0) 582-175	3, FAX 302-	10/9		DATE		PAGEOF
PROJECT NAME/SURVEY/PRO	DJECT NUMI	BEFRON .	DAG M	L a		۵۸۱۵	ı vsis/TES	T REQUES	STED				FOR MEC USE ONLY
PROJECT NAME/SURVEY/PRO	a He	ster	209	<u> </u>	40								
COMBANY	EC				NUMBER & TYPE OF CONTAINERS	1974	***************************************						
ADDRESS					ER & AINER	1						SAMPLE	
PHONE/FAX					UMBI ONT/	10/-		***************************************		PRESE	RVED HOW/	TEMP. UPON RECEIPT	MEC LAB ID
SAMPLE I.D.	DATE	TIME	MATRIX /	INITIALS	20	$\frac{1}{2}$			- I			INCOLN 1	NEO CAO ID
OV 001	7/16/04			- W		1~			_	177	in acetals		
0v 002		1115				++						<u> </u>	
OV 003				_									
0v 004		1130									-		
0V 005		1230			ļ						1		
6V 007		1245			<u> </u>	1-1-1						<u> </u>	
OV control		1050				1						_	
PW 001		1205											
PW OUZ		1430											
PW 003		1430											
PW 004		1430											
PW Control	V	1205	V	J.		J				`	<i>,</i>		
			<u> </u>										
			<u> </u>		1								
SPECIAL INSTRUCTIONS/CO	MMENTS:	<u> </u>	1			_!							
Ph	ľ	6°C											
SHIPPING:				SAMPLE CO	OITION	N UPON R	ECEIPT (F	OR MEC US	E ONLY)	:			
Shipping VIA:	Airb	ill No:											
		RECEIVED	ВУ	RELI	4QUISHE	ED BY		RECEIVED) BY		RELINQUIS	SHED BY	RECEIVED BY
RELINQUISHED BY			Let	Pine Sim			Signature			Signal	HIG		Signature
Signature MEC-Waston	Signature	EM	A	Signature			Firm			Firm			Firm
Firm 19.04 0922 Date/Time		19-04	0922	Firm			Date/Time		····	Date/	îma		Date/Time
Date/Time	Date/Time			Date/Time			Date/ Hitte			Date	e: 10		

EnviroMatrix

Analytical, Inc.

EMA Log #: 0407219

28 July 2004

MEC Analytical Systems

Attn: Brian Hester

2433 Impala Drive

Carlsbad, CA 92008-1514

Project Name:

Exponent- Red Dog Mine

Enclosed are the results of analyses for samples received by the laboratory on 07/22/04 10:05. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that this data is in compliance both technically and for completeness.

Dan Verdon

Laboratory Director

CA ELAP Certification #: 1931

Client Name: MEC Analytical Systems
Project Name: Exponent- Red Dog Mine

EMA Log #: 0407219

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
002 PW	0407219-01	Liquid	07/21/04 12:35	07/22/04 10:05
Control PW	0407219-02	Liquid	07/21/04 11:55	07/22/04 10:05
007 OV	0407219-03	Liquid	07/21/04 13:30	07/22/04 10:05
001 PW	0407219-04	Liquid	07/21/04 11:57	07/22/04 10:05
003 OV	0407219-05	Liquid	07/21/04 11:35	07/22/04 10:05
Control OV	0407219-06	Liquid	07/21/04 11:05	07/22/04 10:05
001 OV	0407219-07	Liquid	07/21/04 11:00	07/22/04 10:05
004 OV	0407219-08	Liquid	07/21/04 11:50	07/22/04 10:05
003 PW	0407219-09	Liquid	07/21/04 12:37	07/22/04 10:05
002 OV	0407219-10	Liquid	07/21/04 11:30	07/22/04 10:05
004 PW	0407219-11	Liquid	07/21/04 13:10	07/22/04 10:05
005 PW	0407219-12	Liquid	07/21/04 13:12	07/22/04 10:05
007 PW	0407219-13	Liquid	07/21/04 14:35	07/22/04 10:05
905 OV	0407219-14	Liquid	07/21/04 13:15	07/22/04 10:05
		-		5112410T 10,03

Client Name: MEC Analytical Systems EMA Log #: 0407219

Project Name: Exponent- Red Dog Mine

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporting Limit	g Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
02 PW (0407219-01) Liquid Sampled: 07/21/04 12:35 Received: 07/22/04 10:05													
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D					
Control PW (0407219-02) Liquid Sampled: 07/21/04 11:55 Received: 07/22/04 10:05													
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D					
007 OV (0407219-03) Liquid Sampled: 07/21/04 13:30 Received: 07/22/04 10:05													
Total Sulfide	ND	0.05	mg/l	l	4072706	07/27/04	07/27/04	SM4500 S D					
001 PW (0407219-04) Liquid Sampled: 07/21/04 11:57 Received: 07/22/04 10:05													
Total Sulfide	0.60	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D					
003 OV (0407219-05) Liquid	Sampled: 07/21/04 11:3	5 Recei	ived: 07/22/04 1	0:05									
Total Sulfide	ND	0.05	mg/l	l	4072706	07/27/04	07/27/04	SM4500 S D	***************************************				
Control OV (0407219-06) Liqu	aid Sampled: 07/21/04	11:05 F	Received: 07/22/	04 10:05									
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D					
001 OV (0407219-07) Liquid	Sampled: 07/21/04 11:0	0 Recei	ived: 07/22/04 1	0:05									
Total Sulfide	0.12	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D					
004 OV (0407219-08) Liquid	Sampled: 07/21/04 11:5	0 Recei	ived: 07/22/04 1	0:05									
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D	····				
003 PW (0407219-09) Liquid	Sampled: 07/21/04 12:3	7 Rece	ived: 07/22/04 1	0:05									
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D					

Client Name: MEC Analytical Systems
Project Name: Exponent- Red Dog Mine

EMA Log #: 0407219

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
002 OV (0407219-10) Liquid	Sampled: 07/21/04 1	:30 Receive	ed: 07/22/04	10:05					
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D	
004 PW (0407219-11) Liquid	Sampled: 07/21/04 13	3:10 Receive	ed: 07/22/04	10:05					
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D	
005 PW (0407219-12) Liquid	Sampled: 07/21/04 13	3:12 Receive	ed: 07/22/04	10:05					
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D	
007 PW (0407219-13) Liquid	Sampled: 07/21/04 14	:35 Receive	ed: 07/22/04	10:05					
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D	
005 OV (0407219-14) Liquid	Sampled: 07/21/04 13	:15 Receive	d: 07/22/04	10:05					
Total Sulfide	ND	0.05	mg/l	1	4072706	07/27/04	07/27/04	SM4500 S D	

Client Name: MEC Analytical Systems EMA Log #: 0407219

Project Name: Exponent- Red Dog Mine

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4072706										
Blank (4072706-BLK1)				Prepared of	& Analyze	:d: 07/27/	04			
Total Sulfide	ND	0.05	mg/l	7,00,00			1 , 11			
LCS (4072706-BS1)				Prepared a	& Analyze	d: 07/27/	04			
Total Sulfide	0.19	0.05	mg/l	0.200		95	80-120			
LCS Dup (4072706-BSD1)				Prepared a	& Analyze	:d: 07/27/0	04			
Total Sulfide	0.21	0.05	mg/l	0.200		105	80-120	10	20	
Duplicate (4072706-DUP1)		Source: 04072	19-03	Prepared &	& Analyze	d: 07/27/0)4			
Total Sulfide	ND	0.05	mg/l	· · · · · · · · · · · · · · · · · · ·	ND				20	
Matrix Spike (4072706-MS1)		Source: 04072	19-04	Prepared &	& Analyze	d: 07/27/()4			
Total Sulfide	1.44	0.25	mg/l	1.00	0.60	84	80-120	ermen esta sa mara a nun a suu a suu	tan danama kanamanan dan tahun taman dan dan dan an tan ba	
Matrix Spike Dup (4072706-MSD1)		Source: 04072	19-04	Prepared &	& Analyze	d: 07/27/0)4			
Total Sulfide	1.74	0.25	mg/l	1.00	0.60	114	80-120	19	20	

MC 040721 G. ANALYTICAL SYSTEMS, INC.

2433 Impala Drive • Carlsbad, CA 92008 • (760) 931-8081, FAX 931-1580

98 Main Street, Suite #428 • Tiburon, CA 94920 • (415) 435-1847, FAX 435-0479 675 Hegenberger Rd., Ste. 200 • Oakland, CA 94621 • (510) 632-8990, FAX 632-0714 152 Sunset View Lane • Sequim, WA 98382 • (360) 582-1758, FAX 582-1679

CHAIN OF CUSTODY

1º 6819

DATE 7 22.04 PAGE 1 OF 1

PROJECT NAME/SURVEY/PR															
EXPINENT	<u> </u>	<u> 12 E</u>	D DO	Gmi	NE		A	VALYSIS	TEST R	EQUEST	ED				FOR MEC USE ONLY
PROJECT MANAGER	4ر ۽	N	HES	STER_		- 5	es Es								
COMPANY			SFON				SELFIDES								
ADDRESS SAME	· ·	AS	ABO			NUMBER & TYPE	5.4.								
PHONE/FAX		11	1			A B E	五万							SAMPLE TEMP.	
SAMPLE I.D.	þ,	ATE	TIME	MATRIX	INITIALS	- 28	70.7	44444444444444444444444444444444444444				PRESERV COMMEN		UPON RECEIPT	MEC LAB ID
002 PW	7/2	104	1235	LIGUID	τs	1					·	NaOH	Acetak		
Constru PW	*	1	1155			1									
007 OV			1330			1									
001 PW			1157												
003 OV			1135			1									
Control OV			1105			1									
001 OV			1100			1									
004 0			1150			ì									
003 PW			1237			1									
002 DV	A CONTRACTOR OF THE CONTRACTOR		1130			ı									
004 PW			1310			1									
005 PW			1312			1									
007 PW			14-35			1									
005 01	*	V	1315	V	<u> </u>							1	_		
		l													
SPECIAL INSTRUCTIONS/CO															
Pyu	171	4C	»							· · · · · · · · · · · · · · · · · · ·	····				
SHIPPING:	***************************************				SAMPLE CO	NOITION	UPON F	RECEIPT	(FOR M	EC USE (ONLY):				L. C.
Shipping VIA:		Airbil	*******						<u> </u>	-1	791				
RELINQUISHED BY			RECEIVED I	_ 1	RELI	1QUISHEI	BY 4	, /	REC	EIVEO B	711	R	ELINQUISH	IED BY	RECEIVED BY
SIMEC-Weston	_ Si	alure .		wes.	Signature y			Signat	ure	Mul	LE	Signature			Signature
Firm	Fig		wly 04		Firm 7 7	1604	A	Firm	2/22/	4- 61	······································	Firm			Firm
7.Z2.04 1005 Date/Time	- Da	' ZZJ ate/Time	<u> </u>		Date/Time	- 14 04	130	Date/1	1/2 C/9	<u> </u>		Date/Time		· · · · · · · · · · · · · · · · · · ·	Date/Time
	1														

EMA Log #: 0407290

03 August 2004

MEC Analytical Systems

Attn: Brian Hester 2433 Impala Drive

Carlsbad, CA 92008-1514

Project Name: Exponent-Red Dog Mine

Enclosed are the results of analyses for samples received by the laboratory on 07/29/04 17:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that this data is in compliance both technically and for completeness.

Dan Verdon

Laboratory Director

CA ELAP Certification #: 1931

Client Name: MEC Analytical Systems EMA Log #: 0407290

Project Name: Exponent-Red Dog Mine

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SD0001-OV	0407290-01	Liquid	07/27/04 17:40	07/29/04 17:00
SD0002-OV	0407290-02	Liquid	07/27/04 17:40	07/29/04 17:00
SD0003-OV	0407290-03	Liquid	07/27/04 17:40	07/29/04 17:00
SD0004-OV	0407290-04	Liquid	07/27/04 17:40	07/29/04 17:00
SD0005-OV	0407290-05	Liquid	07/27/04 17:40	07/29/04 17:00
SD0007-OV	0407290-06	Liquid	07/27/04 17:40	07/29/04 17:00
SD0001-PW	0407290-07	Liquid	07/27/04 17:40	07/29/04 17:00
SD0002-PW	0407290-08	Liquid	07/27/04 17:40	07/29/04 17:00
SD0003-PW	0407290-09	Liquid	07/27/04 17:40	07/29/04 17:00
SD0004-PW	0407290-10	Liquid	07/27/04 17:40	07/29/04 17:00
SD0005-PW	0407290-11	Liquid	07/27/04 17:40	07/29/04 17:00
SD0007-PW	0407290-12	Liquid	07/27/04 17:40	07/29/04 17:00
0-OV	0407290-13	Liquid	07/27/04 17:40	07/29/04 17:00
0-PW	0407290-14	Liquid	07/27/04 17:40	07/29/04 17:00

Client Name: MEC Analytical Systems EMA Log #: 0407290

Project Name: Exponent-Red Dog Mine

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporti Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
SD0001-OV (0407290-01) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	0/04 17:00					
Total Sulfide	0.22	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
SD0002-OV (0407290-02) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	0/04 17:00					
Total Sulfide	ND	0.05	mg/l	l	4080228	08/02/04	08/02/04	SM4500 S D	
SD0003-OV (0407290-03) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	0/04 17:00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
SD0004-OV (0407290-04) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
SD0005-OV (0407290-05) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
SD0007-OV (0407290-06) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	······································
SD0001-PW (0407290-07) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
SD0002-PW (0407290-08) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00					
Total Sulfide	ND	0.05	rng/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
SD0003-PW (0407290-09) Liquid	Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	

Client Name: MEC Analytical Systems
Project Name: Exponent-Red Dog Mine

EMA Log #: 0407290

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporti Limit	ng Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD0004-PW (0407290-10) Liqu	id Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00)				
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
SD0005-PW (0407290-11) Liqu	id Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00	ı				
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	······································
SD0007-PW (0407290-12) Liqu	id Sampled: 07/27/04	17:40	Received: 07/29	/04 17:00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
	mpled: 07/27/04 17:40	Receiv	ed: 07/29/04 17:	00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	
0-PW (0407290-14) Liquid Sa	mpled: 07/27/04 17:40	Receiv	ed: 07/29/04 17:	00					
Total Sulfide	ND	0.05	mg/l	1	4080228	08/02/04	08/02/04	SM4500 S D	

CHAIN-OF-CUSTODY RECORD

4340 Viewridge Ave., Ste. A • San Diego, CA 92123 • Phone (858) 560-7717 • Fax (858) 560-7763

EMA LOG #: 0407290		EMA DATE/TIME STAMP											6) JOU-								
Client MEC - Waster								RJ	EQ	UE	ST	ED	Αľ	(AP	LY	SIS					
Address: 2437 Impals D. Carlsbad (A) 93008			\$ \$		\ \&8		T	T		Γ											
Attn: P. Hester Phone: 760-751-8081	Phone: 760-731-8081				ASLM D288/					anics			Organics	Zn							
Sampled by PSH Fax. 760-97-1580			일 :) - 	MTBE				mics)	O.	22	62	C	Ag Z		الإ					
Billing Address: Same	5 2 2 2 7 1		7 (1 L	.'		(Si		ő		Title	IIII	tals	1000		¥.	F 199				
				se	[] 	egh	sticid	(8,B,	latile	Ē	CAC	S	Me	Z A	TES	3					
Project Exponent - Fed Day Mine POH		Œ		e :	ğ <u>E</u>	i Ē	(Pe	(PC	Š	S)	słs (ls ((A2	n B	LSS	7					
EMA Sample Sample Sample Sample Matrix	Container(s) # Type*	18.1 (TR)II & Grey	sen (gelng) Hal	0027.8021 BTYF	601 / 8021 (Purgeable Halocarhons)	608 / 8081 (Pesticides)	608 / 8082 (PCB's)	624 / 8260 (Volatile Organics)	625 / 8270 (Semi Volatile Organics)	TTLC Metals (CAC Title 22)	STLC Metals (CAC Title 22)	CLP (RCI	Ü	D∃ Hd	1-4					
1 500001-0V 7/27/04 1740 L	TIP	7	V F	7	15	9	9	9	9	G	T	S		0	ā	\forall		-	H		-
2 500002-0V					\top											$\frac{\alpha}{1}$			H		+
3 50003 - OV																					
4 SURROY - OV															2 (2)						+
s 500005-0V								9 88 8				65.76	28			11		0.250			
6 SDIPPETOV	V V											53.5				\overline{w}					
7																Ť					
8								- 15 t										1	Ħ		$\exists \exists$
9									(9) (8)												
10			L																		
*Container Types B=Brass Tube: V=VOA: G=Glass P=Plaste; O=Other (list)		ELD			IED	BY			Ι)AT	E/T	IME				R	ECE	IVEL	BY		
Tamper-Proof Seals Intact: Yes No (N/A) Correct Containers (Yes) No	Signature 3	R_{ij})	Ž.					2	ч)	υl	,O'	, [Signa	turé	1		2%	7		
Sample(s) Cold Ambient Warm VOAs w/ZHS: Yes No (N/A)	Print T.			GWGS-W	200 A C. L. V.									Print		1.4	1	<u>S.</u>	Α,	e .	3 3 7
All Samples Properly Preserved (Yes) No N/A	Company (%)	1	<u>C</u>			1	V			7	9 <i>0</i>			Comp		ΕΛ					
Disposal (N/C (aqueous)) *EMA (@\$5.00/sample) Return Hold	Signature												Ŀ	Signat	ture						
Furnaround Time: 24 hr. 48 hr. 3 day 4 day 5 day Normal Comments:	Print													Print							
edilinears.	Company:												C	Comp	any:						
	Signature												ķ	Signat	ture						
7/4 \=9°(Print							-4					ļ	Print							
	Company. ute « EMA	Canary - Accounting Pink					Dint.	Chart-(av/Downer)					Company:								

CHAIN-OF-CUSTODY RECORD

EnviroMatrix Analytical, Inc.

4340 Viewridge Ave., Ste. A • San Diego, CA 92123 • Phone (858) 560-7717 • Fax (858) 560-7763 EMA LOG #: 0407290 EMA DATE/TIME STAMP REQUESTED ANALYSIS Client Address 1664 (Semi Volatile Organics) (Purgeable Halocarbons) Phone (Volatile Organics) 4132 (CAC Title 22) Sampled by Fax: Billing Address: FPH-Extended 8015B (PCB's) Oil & Grease 413.1 Project TCLP (RCRA) PO #: FTLC Metals 1708 / 109 524 / 8260 525 / 8270 1808/808 2808/809 EMA Sample Sample Sample Container(s) ID# Client Sample ID Date Time Matrix Type* 1770 8 *Container Types: B=Brass Tube; V=VOA; G=Glass: (P=Plastic) O=Other (list) RELINQUISHED BY DATE/TIME RECEIVED BY Tamper-Proof Seals Intact: Yes No N/A Correct Container Yel No 29 July04 Signature Signature Warin Sample(s): Ambient VOAs wZHS: Yes No NA Print T stake r Yes No NA All Samples Properly Preserved & 1700 Company DRATEK Disposal-N/C (aqueous) *EMA (@\$5.00/sample) Return Hold Signature Signature Turnaround Time 24 hr 48 hr 3 day 4 day Normal Print Comments: Company Company, Signature Signature Print Print Company EMA reserves the right to return samples that do not match our waste profile. White - EMA

Canary - Accounting

Pink - Client (w/Report)

Goldenrod - Client (Relinquish Samples)

Supplemental Information Provided by MEC Analytical Systems

Table 3. Total Sulfides Measurements for 10-Day Benthic Test with Hyalella azteca, Red Dog mine Phase II, Exponent

Edition of the Control of the Contro			. ,							
Sample	Ove	erlying wa	ater		Pore water					
Sample	Day 0	Day 5	Day 10	Day 0	Day 5	Day 10				
Control	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
SD0001	0.05	0.12	0.22	0.19	0.60	<0.05				
SD0002	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
SD0003	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
SD0004	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
SD0005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
SD0007	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				

8601997.001

Jane Sexton

From:

Scott S. Shock

Sent:

Tuesday, November 23, 2004 12:19 PM

To:

Jane Sexton

Cc:

Scott Becker

Subject: FW: Additional information for Red Dog QA review

Jane, is this something you would like to add to the Red Dog toxicity testing review.

Scott

----Original Message----

From: Gardiner, William [mailto:Bill.Gardiner@WestonSolutions.com]

Sent: Tuesday, November 23, 2004 11:57 AM

To: ssshock@exponent.com

Subject: Additional information for Red Dog QA review

Scott,

Quite some time ago, Jane had asked me for some additional information for a QA review of the Red Dog Mine testing we had performed in September. I have that information, and I guess I thought I had sent it already, but apparently I did not. So, here is information on sand source, porewater salinity, and hardness/alkalinity.

The control sediment was #16 silica sand from Oglebay Norton Industrial Sands.

Day 10 porewater salinity was measured and the values are in the attached Excel files. I believe Jane only needed Day 10 salinities. I'll send the raw data sheets that have this data, although, I think you should already have them.

Water hardness and alkalinity were measured on Day 0 only and were:

Hardness: 88 Alkalinity: 92

My apologies for the delay.

Bill

Porewater Salinity on Day 10, Hyalella Acute Test, Red Dog Mine

	Salinity	(ppt)
Sample	Refractometer	Conductivity
Control	0	0.18
SD0001	0	0.3
SD0002	1	0.41
SD0003	0	0.34
SD0004	0	0.24
SD0005	0	0.19
SD0007	0	0.38