

# Water Quality Standards Human Health Criteria Update Alaska Forum on the Environment 2015

Alaska Department of Environmental Conservation Division of Water- Water Quality Standards Brock Tabor

## **Division of Water**



Mission Statement:

Improve and Protect Alaska's Water Quality

How?

- Establishes standards for water cleanliness
- Regulates discharges to waters and wetlands
- Provides financial assistance for water and wastewater facility construction and waterbody assessment and remediation
- Trains, certifies, and assists water and wastewater facility system operators
- Monitors and reports on water quality

#### State Agency Programs That Address Water Quality Issues



# Foundation of a Water Quality Standard



-Defined-

- Designated Uses how water is used (*e.g.* recreational, industrial, aquatic life)
- Criteria are numeric or narrative values.
   Consider how much and how long you may be exposed to a substance or condition
- **3.** Antidegradation –process for protecting high quality waters

#### Water Quality Standards

- The foundation of state/tribal water quality-based pollution control programs under the Clean Water Act (CWA)
- Are designed to protect public health or welfare (*designated use*)
- Provide maximum (generally) concentration of a particular pollutant in the water (*criteria*)
- Help <u>identify</u> polluted waters; <u>clean-up</u> polluted water, and make sure our waters don't get <u>more</u> polluted

### Human Health Criteria (HHC)





- designed to **minimize the risk** of adverse effects
- **chronic (lifetime) exposure** to contaminants
- the ingestion of drinking water from surface water sources
- **the consumption of fish** obtained from surface waters.

### What are HHC (cont.)

- Human Health Criteria consider two different exposure scenarios
  - Consumption of fish
  - Consumption of fish & ingestion of surface water
- Several factors to consider...
  - Population of concern
  - Mode of effect of the contaminant (acute, chronic, carcinogenic, etc.)
  - Includes all fish and shellfish- not just what you catch in local waters
  - Body weight/water consumed/other sources of contaminants (e.g. air)

#### HHC in the Inorganic Toxics Criteria Worksheet

| Enter the appropriate <b>Hardness</b> value for the water you are interested in: <b>30</b> mg/L as CaCO3 **** |                                                              |            |                  |                          |    |                                   |                  |            |                  |    | Calculation of Hardness         adapted from Standard Methods, Method 2340B       units in mg/L         input calcium and magnesium concentrations:       Calcium:         3.28       3.28 |                                          |    |                              |                           |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------|------------------|--------------------------|----|-----------------------------------|------------------|------------|------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----|------------------------------|---------------------------|--|
|                                                                                                               | color key: orange highlighting: the most stringent criterion |            |                  |                          |    |                                   |                  | Magnesium: | 10.4             |    | Resulting Hardness=                                                                                                                                                                        | 51.0                                     |    |                              |                           |  |
|                                                                                                               |                                                              |            |                  |                          |    |                                   |                  |            |                  |    |                                                                                                                                                                                            |                                          |    | rams per liter (ug/L)        |                           |  |
| Parameter                                                                                                     | Drinking Water                                               | Stockwater | Irrigation Water | Aquatic Life-Fresh Water |    |                                   |                  |            |                  |    |                                                                                                                                                                                            | Human Health Criteria for NonCarcinogens |    |                              |                           |  |
|                                                                                                               |                                                              |            |                  | Acute                    |    |                                   |                  |            | Chronic          |    |                                                                                                                                                                                            |                                          | -  |                              |                           |  |
|                                                                                                               |                                                              |            |                  | the criterion is         | as | using the<br>conversion<br>factor | the criterion is | as         | the criterion is | as | using the<br>conversion<br>factor                                                                                                                                                          | the criterion is                         | as | Water + Aquatic<br>Organisms | Aquatic Organisms<br>Only |  |
| alkalinity                                                                                                    |                                                              |            |                  |                          |    |                                   |                  |            | 20,000 minimum   |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| aluminum                                                                                                      |                                                              |            | 5,000            | 750                      | TR |                                   |                  |            | 87               | TR |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| antimony                                                                                                      | 6                                                            |            |                  |                          |    |                                   |                  |            |                  |    |                                                                                                                                                                                            |                                          |    | 14                           | 4,300                     |  |
| arsenic                                                                                                       | 10                                                           | 50         | 100              | 340                      | TR | 1                                 | 340              | D          | 150              | TR | 1                                                                                                                                                                                          | 150                                      | D  |                              |                           |  |
| barium                                                                                                        | 2,000                                                        |            |                  |                          |    |                                   |                  |            |                  |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| beryllium                                                                                                     | 4                                                            |            | 100              |                          |    |                                   |                  |            |                  |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| boron                                                                                                         |                                                              |            | 750              |                          |    |                                   |                  |            |                  |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| cadmium                                                                                                       | 5                                                            | 10         | 10               | 0.63                     | TR | 0.994                             | 0.62             | D          | 0.11             | TR | 0.959                                                                                                                                                                                      | 0.11                                     | D  |                              |                           |  |
| chloride                                                                                                      |                                                              |            |                  | 860,000                  |    |                                   |                  |            | 230,000          |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| chlorine (total residual)                                                                                     |                                                              |            |                  | 19                       |    |                                   |                  |            | 11               |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| chromium (total)                                                                                              | 100                                                          |            | 100              |                          |    |                                   |                  |            |                  |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| chromium III                                                                                                  |                                                              |            |                  | 672.62                   | TR | 0.316                             | 212.55           | D          | 32.15            | TR | 0.86                                                                                                                                                                                       | 27.65                                    | D  |                              |                           |  |
| chromium VI                                                                                                   |                                                              | 50         |                  | 16                       | D  |                                   |                  |            | 11               | D  |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| cobalt                                                                                                        |                                                              |            | 50               |                          |    |                                   |                  |            |                  |    |                                                                                                                                                                                            |                                          |    |                              |                           |  |
| copper                                                                                                        |                                                              |            | 200              | 4.50                     | TR | 0.960                             | 4.32             | D          | 3.33             | TR | 0.960                                                                                                                                                                                      | 3.20                                     | D  | 1,300                        |                           |  |
| cyanide (as free CN)                                                                                          | 200 *                                                        |            |                  | 22 **                    |    |                                   |                  |            | 5.2 **           |    |                                                                                                                                                                                            |                                          |    | 700                          | 220,000                   |  |

Improving and Protecting Alaska's Water Quality

#### Why is Alaska interested?

- An accurate Fish Consumption Rate is important for the protection of human health and water resources
- DEC-Environmental Health actively monitors fish tissue
   Most Alaskan fish have low to no detectable levels of contamination from pollutants
- Criteria must be scientifically defensible
- Alaska has tools available to increase/decrease water quality criteria and fish consumption rates using site- specific approach







# Contraction of the second seco

#### How do Fish Advisories and HHC criteria compare?

- Fish consumption in a Fish Advisory context
- (# of meals per time period that is safe for a person to consume)
  - E.g,: two 8oz meals of halibut (of a certain size) per week over a lifetime
  - Data are used to provide consumer protection and consider
     beneficial uses in its risk analysis

• Fish consumption in HHC equates to g/day of fish a person consumes on average over a lifetime



#### How do we derive criteria? Use the EPA HHC Formula!

- The formula determines the degree of risk
  Disk
  - Risk = Toxicity\* Uncertainty \* Exposure
- Let Exposure = (BW/DI+(FI\*BAF))
  - BI= Body weight (70 kg)
  - DI= Drinking water intake (2 liters)
  - FI = Fish Consumption (varies per state)
  - BAF= Bioaccumulation Factor (varies per species)

#### **Input Variables**

BW = Human Body Weight (adult = 70 kg = 154 lbs)
DI = Drinking water Intake (2.0 L/day)
FI = Fish Intake, aka consumption rate Value g/ day
BAF = Bioaccumulation Factor (L/Kg), chemical specific
RfD = Reference Dose, non-carcinogens (mg/Kg-day)
RsD = Risk specific Dose, for carcinogens (mg/Kg-day)
RSC = Relative Source Contribution

#### Human Health Criteria Formulas

Noncancer Effects<sup>2</sup>

AWQC =

$$\mathbf{RfD} \cdot \mathbf{RSC} \cdot \left( \frac{\mathbf{BW}}{\mathbf{DI} + \sum_{i=2}^{4} (\mathbf{FI}_i \cdot \mathbf{BAF}_i)} \right)$$

Cancer Effects: Linear Low-Dose Extrapolation  $AWQC = RSD \cdot \left(\frac{BW}{DL + \sum_{i=1}^{4} (FL + PAF)}\right)$ 

#### What is FCR and How is FCR Calculated?

- Frequency of consumption \* meal size
- Frequency can be culturally/regionally influenced
- Meal size is age and weight dependent
- Units? g/day or mg/Kg-day? (grams of fish per kg of a person's body weight)
  - Note that kids might eat less but their lower bodyweights influence their overall consumption rates



#### How do you determine what a FCR may be?

- Use of a Dietary Survey or similar means
  - Provides the distribution of long-term estimates of consumption rates
  - Should account for seasonal variations
  - Characterize consumption of general population as well as special populations
  - Identifies different sources of fish and shellfish, by species

#### Population of concern

 The fish consumption rate (FCR) in the HHC should reflect the rate of consumption by the population of concern (90<sup>th</sup>, 95<sup>th</sup>, 99<sup>th</sup>)



#### Improving and Protecting Alaska's Water Quality



#### Alaska has regional differences

There may be obvious differences in the amount, species, and frequency of fish consumed depending on where you live (think Georgia v. North Dakota)

NOTE: This image doesn't capture the differences that may exist when comparing rural and urban locations.

ATTU

LOS

# A Sample of General Questions to consider in the coming months...

- How will DEC determine the best **process** to address this issue?
- How will DEC ensure that it is being inclusive and transparent in its efforts?
- How will DEC consider **implementation** of new criteria; and

Why this effort may take several years to complete?



### HHC in 2015

- Complete a peer review of Literature Review of Fish Consumption Research in Alaska (2015)
  - Available for public review following completion of peer review
- Monitor how Washington and Idaho complete their revision process- lessons learned?
- 2015 EPA Recommendations?
  - Adjust consumption of water from two to three liters per day
  - Adjust body weight from 70 to 80 kilos
  - Relative source contribution- contaminant sources besides water and fish?



HHC Workshop-work in progress

- When: Fall 2015
- Where: Anchorage
- Why: Inform stakeholders on the issues, challenges and process

#### Who: Informed stakeholders

Additional details will be made available on DEC-Water website and DEC-Water-Standards listserv

#### Decisions on HHC and various factors will account for multiple factors





#### **DEC Standards listserv(s)**

- Issues and Communications on Water Quality Standards: http://list.state.ak.us/soalists/DEC\_WaterQualityStandard/jl.htm
- Stay connected and informed on the DEC fish consumption rate and human health criteria for water quality standards:

http://list.state.ak.us/soalists/DEC.Water.Quality.FishConsumption/jl.htm



#### DEC is now accepting comments on this issue through the **Triennial Review** process

- DEC issues a public notice requesting comments on water quality standards issues.
- Helps ensure that pollution limits are integrating the latest science, technology, and policy requirements.
- Engages all interested stakeholders when collecting and evaluating information to help increase the effectiveness of this process

#### How to comment

Public comment is always very important but especially when you don't like what's being proposed.

#### Your input can make the regulations better.

- Be brief
- Be specific
- Know your subject
- Be honest and realistic
- Be polite

• Comments are being accepted through February 27<sup>th</sup> at 4:30 pm.

## Thank you for your time!

# Thoughts? Suggestions? Questions?

# We want to hear from you!

Improving and Protecting Alaska's Water Quality



# Alaska Department of Environmental Conservation

Brock Tabor Section Manager (907) 465-5185

Denise Elston Environmental Program Specialist (907) 465-5018

brock.tabor@alaska.gov

denise.elston@alaska.gov

Division of Water http://dec.alaska.gov/water/index.htm

Improving and Protecting Alaska's Water Quality



6.5 Grams works out to ~ one 8 oz serving per month 54 grams is ~one to two meals per week 157 grams is four or five meals per week 1 lb = 454 g. 250 grams is  $\sim \frac{1}{2}$  lb per day- essentially you eat fish at least once daily