Kenai BEACH Water Quality Monitoring and Pathogen Detection

August 2012
Updated April 2019

Quality Assurance Project Plan, Rev. 3

Alaska Department of Environmental Conservation
Division of Water
A. PROJECT MANAGEMENT ELEMENTS

A.1 Title and Approvals

Title: Kenai River Beach Tier 2 Quality Assurance Project Plan for Water Quality Monitoring Sampling and Analysis Activities

Bob Frates, Project Manager
Affiliation: City of Kenai Parks & Recreation
Signature:
Phone: (907) 283-8261
e-mail: bfrates@kenai.city
Date: 4/29/19

Margaret Harings, Project QA Officer
Affiliation: Kenai Watershed Forum
Signature:
Phone: (907) 260-5449
e-mail: maggie@kenaiwatershed.org
Date: 4/26/19

Margaret Harings, Project Manager
Affiliation: Kenai Watershed Forum
Signature:
Phone: (907) 260-5449
e-mail: maggie@kenaiwatershed.org
Date: 4/26/19

Sarah Apsens, DEC DOW Project Manager
DEC DOW WQASAR Program
Signature:
Phone: (907) 262-3411
e-mail: sarah.apsens@alaska.gov
Date: 4-25-19

John Clark, DEC DOW QA Officer
DEC DOW WQASAR Program
Signature:
Phone: (907) 269-3066
e-mail: John.clark@alaska.gov
Date: 4/29/2019
TABLE OF CONTENTS

A. PROJECT MANAGEMENT ELEMENTS .. 2

A.1 Title and Approvals ... 2

A.2 DISTRIBUTION LIST ... 6

A.3 PROJECT TASK/ORGANIZATION ... 6

A.3.1 Project Grantee ... 6

A.3.2 DEC Staff: .. 7

A.4 PROBLEM DEFINITION/BACKGROUND AND PROJECT OBJECTIVES ... 8

A.4.1 Problem Definition .. 8

A.4.2 Project Background ... 9

A.4.3 Project Objective(s) ... 9

A.5 PROJECT/TASK DESCRIPTION and SCHEDULE .. 9

A.5.1 Project Description .. 9

A.5.2 Project Implementation Schedule ... 10

A.6 DATA QUALITY OBJECTIVES AND CRITERIA FOR MEASUREMENT DATA 10

A.6.1 Data Quality Objectives (DQOs) .. 10

A.6.2 Measurement Quality Objectives (MQOs) .. 10

A.7 SPECIAL TRAINING REQUIREMENTS/CERTIFICATION .. 16

A.8 DOCUMENTS AND RECORDS .. 17

B. DATA GENERATION AND ACQUISITION ... 19

B.1 SAMPLING PROCESS DESIGN (Experimental Design) .. 19

B.1.1 Define Monitoring Objectives(s) and Appropriate Data Quality Objectives 20

B.1.2 Characterize the General Monitoring Location/s .. 24

B.1.3 Identify the Site-Specific Sample Collection Location/s, Parameters to be Measured and Frequencies of Collection .. 25

B.2 SAMPLING METHOD REQUIREMENTS ... 25

B.2.1 Sample Types .. 25

B.2.2 Sample Containers and Equipment ... 25

B.2.3 Sampling Methods .. 27

B.3 SAMPLE HANDLING AND CUSTODY REQUIREMENTS .. 27

B.3.1 Sampling Procedures .. 27

B.3.2 Sample Custody Procedures ... 27
TABLE OF TABLES

Table 1: Distribution List ... 6
Table 2: Project Implementation Schedule ... 10
Table 3: Project Measurement Quality Objectives (MQOs) ... 14
Table 4: Training .. 17
Table 5: Project Documents and Records ... 19
Table 6: Site Location and Rationale ... 24
Table 7: Site-Specific Sample Parameters to be Measured and Collection Frequency 25
Table 8: Preservation and Holding Times for the Analysis of Samples .. 27
Table 9: Sample Transport Chain Information ... 28
Table 10: Field Quality Control Samples ... 31
Table 11: QA Reports to Management .. 38

TABLE OF FIGURES

Figure 1: BEACH Project Organizational Structure ... 8
Figure 2: Data Management Flow Chart ... 36
A.2 DISTRIBUTION LIST

This list includes the names and addresses of those who receive copies of the approved QAPP and subsequent revisions.

<table>
<thead>
<tr>
<th>NAME</th>
<th>POSITION</th>
<th>AGENCY/ Company</th>
<th>DIVISION/BRANCH/SECTION</th>
<th>CONTACT INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarah Apsens</td>
<td>Project Manager</td>
<td>DEC</td>
<td>Division of Water/ WQSAR</td>
<td>907-262-3411 sarah.apsens@alaska.gov</td>
</tr>
<tr>
<td>John Clark</td>
<td>QA Officer</td>
<td>DEC</td>
<td>Division of Water/ WQSAR/WQAO</td>
<td>907-269-3066 john.clark@alaska.gov</td>
</tr>
<tr>
<td>Margaret Harings</td>
<td>Grantee Project Manager/Beach Water Sampler</td>
<td>KWF</td>
<td>KWF</td>
<td>907-260-5449 maggie@kenaiwatershed.org</td>
</tr>
<tr>
<td>Margaret Harings</td>
<td>Grantee Project QA Officer</td>
<td>KWF</td>
<td>KWF</td>
<td>907-260-5449 maggie@kenaiwatershed.org</td>
</tr>
<tr>
<td>Justin Nelson</td>
<td>Lab Manager</td>
<td>SGS North America, Inc.</td>
<td>SGS North America Inc.</td>
<td>907-562-2343 justin.nelson@sgs.com</td>
</tr>
<tr>
<td>Daron Stein</td>
<td>Lab Manager</td>
<td>Source Molecular, Inc.</td>
<td>Microbial source tracking (MST)</td>
<td>(786) 404-1675 dstein@sourcemolecular.com</td>
</tr>
<tr>
<td>Bevin Horn</td>
<td>EPA Beach Grant Oversight</td>
<td>EPA</td>
<td>EPA Region 10</td>
<td>206-553-1566 horn.bevin@epa.gov</td>
</tr>
<tr>
<td>Denise Elston</td>
<td>Alaska Beach Grant Manager</td>
<td>DEC</td>
<td>Division of Water/ WQSAR/Beach Grant</td>
<td>907-465-5018 denise.elston1@alaska.gov</td>
</tr>
</tbody>
</table>

A.3 PROJECT TASK/ORGANIZATION

Duties and responsibilities of key individuals are listed below:

A.3.1 Project Grantee

- **Lead Field Sampler/Project Manager** – Responsible for sampling preparation, sample collection, sample preservation, transportation of samples to commercial air carrier for shipping, receipt of data and transmittal of data to Project Manager. The individual will: procure personal equipment of field personnel, coordinate with laboratories in planning sampling equipment needs, obtain supplies for and prepare daily sampling kits prior to
departure for field location, travel to the field location, prepare necessary preservatives while
in the field, perform site reconnaissance, collect site specific parameters, collect water
samples, prepare samples for shipping, transport samples to an air carrier, arrange for sample
shipping, alert couriers and laboratories of successful sampling event, receive data from
laboratory, validate data, input data into a specified excel spreadsheet, verify sample result
data is reliable and submit the data and all applicable QA/QC results to the DEC Project
Manager.

- **Project QA Officer** – Responsible to ensure all monitoring complies with the QAPP specified
criteria. This is accomplished through routine technical assessments of the sample collection,
analysis and data reporting process. Assessments may include, but are not limited to: on-site
field audits, data audits, QA review of blind lab performance evaluation samples, lab audits, etc.
These assessments are performed independent of overall project management. Because the
Kenai Watershed Forum is a small organization, Margaret Harings serves as both the Project
Manager and QA Officer for this project. She worked closely with the DEC Project Manager in
the design and implementation of this project. All data submitted to DEC undergoes quality
assurance by both Branden and the DEC Project Manager.

- **Field Support Personnel** – Responsible for accompanying Lead Field Sampler into the field and
supporting Lead Field Sampler during sampling. The individual will travel with the Lead Field
Sampler to the field location, accompany the Lead Field Sampler to sampling sites, and support
Lead Field Sampler in sampling tasks.

- **Laboratory Manager** – Responsible for the overall review and approval of contracted
laboratory analytical work, responding to sample result inquiries and method specific details.
Responsible for QA/QC of laboratory analysis as specified in the QAPP and reviews and verifies
the validity of sample data results as specified in the QAPP and appropriate EPA approved
analytical methods.

A.3.2 DEC Staff:

- **DEC Project Managers** – Responsible for overall technical and contractual management of the
project. If DEC staff have direct responsibility for sample collection and analysis of data results,
the DEC Project Manager/s assume the responsibilities of the Lead Field Sampler/Project
Manager.

- **DEC Water Quality Assurance Officer (WQAO)** – Responsible for QA review and approval of
plan and oversight of QA activities ensuring collected data meets project’s stated data quality
goals. If DEC staff have direct responsibility for sample collection and analysis of data results,
the DEC WQAO assumes the responsibilities of the Project QA Officer.
A.4 PROBLEM DEFINITION/BACKGROUND AND PROJECT OBJECTIVES

A.4.1 Problem Definition

DEC identified the following beaches through a public nomination process; the Recreational Beach Survey was released in 2003. The qualifying Beaches are:

<table>
<thead>
<tr>
<th>Beach Name</th>
<th>PRAWN ID*</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Kenai Beach 3 (SKB3)</td>
<td>AK802097-003</td>
<td>60.54332</td>
<td>-151.26532</td>
</tr>
<tr>
<td>North Kenai Beach 4 (NKB4)</td>
<td>AK551272-004</td>
<td>60.54978</td>
<td>-151.26804</td>
</tr>
<tr>
<td>Kenai River Gull Rookery (KRGR1)</td>
<td>N/A</td>
<td>60.53660</td>
<td>-151.25400</td>
</tr>
<tr>
<td>Kenai River Gull Rookery (KRGR2)</td>
<td>N/A</td>
<td>60.55180</td>
<td>-151.24400</td>
</tr>
<tr>
<td>Warren Ames Bridge (BRG1)</td>
<td>AK574820-001</td>
<td>60.5259</td>
<td>-151.20647</td>
</tr>
</tbody>
</table>

*PRAWN is an EPA database specifically for the EPA BEACH program. Each beach in PRAWN is identified by a unique PRAWN ID number.

Based on the information provided by respondents, DEC ranked these beaches as Tier 1. Tier 1 includes high priority beaches that pose the greatest threat of human contact with contaminated
waters during recreational use. Contact with waters containing fecal contamination increases the risk of becoming ill due to pathogens contained in feces.

A.4.2 Project Background

DEC has and continues to implement a Beach Grant monitoring model which partners with local interested organizations and the general public to monitor levels of fecal contamination and evaluate the potential risks associated with recreational beach use. While this model is effective in providing support to communities monitoring marine water quality adjacent to high use beaches, it has not been successful in monitoring all high priority, Tier 1, beaches in Alaska on a desirable basis. Data associated with monitoring efforts at these beaches are on file and can be obtained by contacting the Project Manager.

A.4.3 Project Objective(s)

The primary objective of this DEC BEACH Monitoring Program project is to sample identified beaches for fecal indicator organisms (fecal coliforms and enterococci bacteria) that signify the presence of fecal contamination. This information will be used to notify the public in the event an exceedance of allowable levels of indicator organisms in accordance to Alaska Water Quality Standards (WQS). In addition to determining bacteria exceedances, sources of fecal bacteria will be identified using Molecular Source Tracking (MST). Samples for MST will be collected before, and during the salmon dipnet fishery. Host markers will include human, gull, and dog.

The secondary objective is to obtain a set of at least five samples per beach within a 30-day period. The geometric mean of these samples will then be used when reevaluating the ranking of these beaches as Tier 1. If the geometric mean of a beach meets WQS standards, it is possible the beach will be downgraded to a lower Tier. This would reduce the number of beaches categorized as high priority and, assuming no new beaches are nominated and ranked as high priority, increase the percentage of high priority beaches that can be monitored at a desirable frequency using grantees.

A.5 PROJECT/TASK DESCRIPTION and SCHEDULE

A.5.1 Project Description

The Kenai Watershed Forum (KWF) as a contractor for the City of Kenai will collect water samples from two (2) Tier 1 beaches and one (1) reference site. Samples will be analyzed at a DEC-approved laboratory for presence of fecal coliforms by SM 9222 D, and Enterococci by ASTM D6503. MST will be used to help assess fecal bacteria sources. The goal of this project is to gather enough data to determine whether these beaches are meeting the water quality standards for fecal coliforms and enterococci based on single sample and/or geometric mean calculations. A list of DEC-approved microbiological laboratories is available at:

A.5.2 Project Implementation Schedule

<table>
<thead>
<tr>
<th>Product</th>
<th>Measurement/ Parameter(s)</th>
<th>Sampling Site</th>
<th>Sampling Frequency</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAPP Preparation</td>
<td></td>
<td></td>
<td></td>
<td>March 2019</td>
</tr>
<tr>
<td>Field Sampling</td>
<td>Ambient air temperature, water temperature</td>
<td>All sites</td>
<td>On sample collection dates</td>
<td>May-September 2019</td>
</tr>
<tr>
<td>Lab Analysis</td>
<td>Fecal coliforms and Enterococci; Molecular Source Tracking (MST)</td>
<td>All sites</td>
<td>Analyses within sample holding time requirements</td>
<td>May-September 2019</td>
</tr>
<tr>
<td>Field Audit</td>
<td>Audit of field monitoring operations</td>
<td>All sites</td>
<td>< 30 days of project start-up</td>
<td>1/project</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>All parameters</td>
<td>All sites</td>
<td></td>
<td>November 2019</td>
</tr>
<tr>
<td>Data Review</td>
<td>All parameters</td>
<td>All sites</td>
<td></td>
<td>December 2019</td>
</tr>
<tr>
<td>Data Report</td>
<td>All parameters</td>
<td>All sites</td>
<td></td>
<td>December 2019</td>
</tr>
</tbody>
</table>

A.6 DATA QUALITY OBJECTIVES AND CRITERIA FOR MEASUREMENT DATA

A.6.1 Data Quality Objectives (DQOs)

Data Quality Objectives (DQOs, EPAQA/G4). DQOs are qualitative and quantitative statements derived from the DQO Process that:

- Determine ambient beach water concentrations of indicator organisms (fecal coliforms and enterococci) and compare these values to water quality standards regulatory limits for fecal coliform bacteria in marine waters.

- The data needed for this project is indicator organism concentrations. The ultimate goal of the project is to intensively monitor beaches that are currently considered Tier I to determine if there truly is a problem with fecal contamination. If so, beaches may be listed as impaired waters. If not, beaches will be down-tiered to a lower priority level. In order to accomplish the monitoring objectives, the appropriate type of data needed is defined by the WQS for bacteria (fecal coliform and enterococci). For WQS pollutants, compliance with the WQS is determined by specific measurement requirements. The measurement system is designed to produce water pollutant concentration data that are of the appropriate quantity and quality to assess compliance.

A.6.2 Measurement Quality Objectives (MQOs)

Measurement Quality Objectives (MQOs) are a subset of DQOs. MQOs are derived from the monitoring project’s DQOs. MQOs are designed to evaluate and control various phases (sampling, preparation, and analysis) of the measurement process to ensure that total measurement uncertainty
is within the range prescribed by the project’s DQOs. MQOs define the acceptable quality (data validity) of field and laboratory data for the project. MQOs are defined in terms of the following data quality indicators:

- Detectability
- Precision
- Bias/Accuracy
- Completeness
- Representativeness
- Comparability

Detectability is the ability of the method to reliably measure a pollutant concentration above background. DEC DOW uses two components to define detectability: method detection limit (MDL) and practical quantification limit (PQL) or reporting limit (RL).

- The MDL is the minimum value which the instrument can discern above background but no certainty to the accuracy of the measured value. For field measurements the manufacturer’s listed instrument detection limit (IDL) can be used.
- The PQL or RL is the minimum value that can be reported with confidence (usually some multiple of the MDL).

Note: The measurement method of choice should at a minimum have a practical quantification limit or reporting limit 3 times more sensitive than the respective DEC WQS and/or permitted pollutant level (for permitted facilities).

Sample data measured below the MDL is reported as ND or non-detect. Sample data measured ≥ MDL but ≤ PQL or RL is reported as estimated data. Sample data measured above the PQL or RL is reported as reliable data unless otherwise qualified per the specific sample analysis.

Precision is the degree of agreement among repeated measurements of the same parameter and provides information about the consistency of methods. Precision is expressed in terms of the relative percent difference (RPD) between two measurements (A and B).

For field measurements, precision is assessed by measuring replicate (paired) samples at the same locations and as soon as possible to limit temporal variance in sample results. Field and laboratory precision is measured by collecting blind (to the laboratory) field replicate or duplicate lab samples. For paired and small data sets project precision is calculated using the following formula:

\[
Precision = \frac{(A - B)}{(A + B)/2} \times 100
\]
For larger sets of paired precision data sets (e.g., overall project precision) or multiple replicate precision data, the following formula may be used:

\[
RSD = 100 \times \frac{\text{standard deviation}}{\text{mean}}
\]

Note: Precision assessed only when both paired values ≥:

- 5 times PQL (fecal coliforms SM 9222D)
- 2 times PQL (enterococci D-6503-99)

Bias (Accuracy) is a measure of confidence that describes how close a measurement is to its “true” value. Methods to determine and assess accuracy of field and laboratory measurements include, instrument calibrations, various types of QC checks (e.g., sample split measurements, sample spike recoveries, matrix spike duplicates, continuing calibration verification checks, internal standards, sample blank measurements (field and lab blanks), external standards), performance audit samples (DMRQA, blind Water Supply or Water Pollution PE samples from A2LA certified, etc.), Bias/Accuracy is usually assessed using the following formula:

\[
\text{Accuracy} = \frac{\text{Measured Value}}{\text{True Value}} \times 100
\]

Completeness is a measure of the percentage of valid samples collected and analyzed to yield sufficient information to make informed decisions with statistical confidence. As with representativeness, data completeness is determined during project development and specified in the QAPP. Project completeness is determined for each pollutant parameter using the following formula:

\[
\frac{T - (I + NC)}{T} \times 100\% = \text{Completeness}
\]

Where:
\(T \) = Total number of expected sample measurements.
\(I \) = Number of invalid sample measured results.
\(NC \) = Number of sample measurements not produced (e.g., spilled sample).

This project has a goal of 80% data completeness. Completeness will be assessed on an individual basis for every beach. For comparison with the geometric mean standard, ten individual sampling events are planned and a minimum of five unique and valid samples (per sample location) are required to assess compliance with the beach monitoring water quality indicator standards.

Representativeness is determined during project development and specified in the QAPP. Representativeness assigns what parameters to sample for, where to sample, type of sample (grab, continuous, composite, etc.) and frequency of sample collection.

Comparability is a measure that shows how data can be compared to other data collected by using standardized methods of sampling and analysis.
Each sampling station is fixed and located by reference to a permanent landmark at each beach. The stations do not change throughout the sampling season, but may vary with tidal stage. Sampling is conducted in accordance with Alaska Beach Grant Program’s Standard Operating Procedures. The SOP’s are contained within the Sample Handbook available at:

http://dec.alaska.gov/water/water-quality/beach-program/

Standardized EPA-approved analytical procedures methods are used by state certified microbiological laboratories. Escherichia coli colony forming units are enumerated using EPA Method 9222D. Enterococci colony forming units are enumerated using Standard Test Method D6503-99.
Table 3: Project Measurement Quality Objectives (MQOs)

<table>
<thead>
<tr>
<th>Group</th>
<th>Analyte</th>
<th>Method</th>
<th>MDL</th>
<th>PQL</th>
<th>Alaska Water Quality Standards</th>
<th>Precision (RPD)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><20°C Migration routes < 15°C Spawning areas < 13°C Rearing areas < 15°C Egg /fry incubation < 13°C</td>
<td>±0.2°C</td>
<td>±0.2°C</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature</td>
<td>In situ (electronic probe) EPA 170.1</td>
<td>NA</td>
<td>0.1°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Indicator Organisms</td>
<td>Fecal coliforms</td>
<td>SM 9222D, membrane filtration (MF)</td>
<td>1cfu/100mL</td>
<td>1cfu/100mL NA</td>
<td>The geometric mean of samples may not exceed 14 fecal coliform/100 ml; and not more than 10% of the samples may exceed: 31 CFU per 100 ml for a membrane filtration test.</td>
<td>±/- 60%</td>
<td>NA</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
<td>Limit 1</td>
<td>Limit 2</td>
<td>Limit 3</td>
<td>Limit 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococci</td>
<td>D6503-99 (Enterococci by Enterolert)</td>
<td>10cfu/100mL</td>
<td>10cfu/100mL</td>
<td>NA</td>
<td>In a 30-day period, the geometric mean of samples may not exceed 35 enterococci CFU/100 ml, and not more than 10% of the samples may exceed a STV of 130 enterococci CFU/100 ml. +/- 60% NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbial Source Tracking</td>
<td>Polymerase Chain Reaction (PCR)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No human or human related sources NA NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.7 SPECIAL TRAINING REQUIREMENTS/CERTIFICATION

The DEC Project Managers currently serve as DEC DOW’s BEACH Grant coordinator and have experience in administrating BEACH Grant Monitoring Program grants. The experience associated with their duties allows them to be effective in carrying out duties as Project Manager.

For BEACH monitoring projects awarded to grantees, the grantee is responsible to provide a knowledgeable and competent grant manager and project QA Officer.

Margaret Harings has been given beach sampling training by Branden Bornemann, who has managed the Kenai River Beach monitoring project in past years.

For BEACH monitoring projects conducted by DEC staff, the Project QA Officer is the DEC DOW’s Quality Assurance Officer. His training and experience allow him to successfully fulfill his duties as Project QA Officer.

Project Manager/Grantee:

Sub-contracted laboratories performing analytical work must have the requisite knowledge and skills in execution of the analytical methods being requested. Information on laboratory staff competence is usually provided in each lab’s Quality Management (QMP) and/or Quality Assurance Plan (QAP). The laboratory to be used during this field season, SGS North America Inc. meets ADEC and EPA Safe Drinking Water compliance standards. . It is the responsibility of the contracted lab to maintain a current copy of the laboratory’s QA Plan and attendant method specific SOPs on file with the Project Manager/ QA Project Manager and DEC DOW QA Officer during the duration of laboratory use.

Lead Field Sampler/Grantee: Margaret Harings.

KWF Field Staff: TBA
Table 4: Training

<table>
<thead>
<tr>
<th>Specialized Training/Certification</th>
<th>Field Staff</th>
<th>Project Manager</th>
<th>Lab Staff</th>
<th>Lab Supervisor</th>
<th>Project QA Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety training</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Water sampling techniques</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Instrument calibration and QC activities for field measurements</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument calibration and QC activities for laboratory measurements</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>QA principles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Chain of Custody procedures for samples and data</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Specific EPA Approved Field Measurement Method Training</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC Microbiological Drinking Water Certification</td>
<td>Certification for microbiological analysis is limited to the individually certified analyst.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific EPA Approved Lab Analytical Method Training</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

A.8 DOCUMENTS AND RECORDS

The field logbook will be a 3-ring binder containing individual field and sanitary survey forms. Please see the Appendix for an example of these documents. The lead field sampler is responsible for ensuring that the field logbook and all field data forms are correct.

All field activities and observations will be noted in a field logbook during fieldwork. The descriptions will be clearly written with enough detail so that participants can reconstruct events later if necessary. Field logbooks will describe any changes that occur at the site, in particular, personnel and responsibilities or deviations from the QAPP/SAP as well as the reasons for the changes. Requirements for logbook entries will include the following:

- Pages will be numbered at the outset of the sampling season.
- Removal of any pages, even if illegible, will be prohibited.
- Entries will be made legibly with black (or dark) waterproof ink.
- Unbiased, accurate language will be used.
- Entries will be made while activities are in progress or as soon afterward as possible (the date and time that the notation is made should be noted, as well as the time of the observation itself). Each consecutive day's first entry will be made on a new, blank page.
- The date and time, will appear on each page.
• When field activity is complete, the logbook will be entered into the project file.
In addition to the preceding requirements, the person recording the information must initial and date each page of the field logbook. If more than one individual makes entries on the same page, each recorder must initial and date each entry. The bottom of the page must be signed and dated by the individual who makes the last entry. The field team and task leader, after reading the day’s entries, also must sign and date the last page of each daily entry in the field logbook. Logbook corrections will be made by drawing a single line through the original entry allowing the original entry to be read. The corrected entry will be written alongside the original. Corrections will be initialed and dated and may require a footnote for explanation. The type of information that may be included in the field logbook and/or field data forms includes the following:

• Names of all field staff
• A record of site health and safety meetings, updates, and related monitoring
• Station name and location
• Date and collection time of each sample
• Observations made during sample collection, including weather conditions, environmental conditions, complications, and other details associated with the sampling effort
• Sample description
• Any deviation from the sampling plan.

Field log books and sample chain-of-custody forms will be completed for all samples and kept in the project file. Laboratory data results from the laboratories are recorded on laboratory data sheets, bench sheets and/or in laboratory logbooks for each sampling event. These records as well as control charts, logbook records of equipment maintenance records, calibration and quality control checks, such as preparation and use of standard solutions, inventory of supplies and consumables, check in of equipment, equipment parts and chemicals are kept on file at the laboratory.

Any procedural or equipment problems are recorded in the field notebooks. Any deviation from this Quality Assurance Project Plan will also be noted in the field notebooks. Data results will include information on field and/or laboratory QA/QC problems and corrective actions.

In addition to any written report, data collected for the project will be provided electronically in an Ambient Water Quality Monitoring System/Water Quality Portal (AWQMS/WQP) compatible format, as detailed in the following web address:

All records will be retained according to state records retention schedule.
Table 5: Project Documents and Records

<table>
<thead>
<tr>
<th>Categories</th>
<th>Record/Document Types</th>
<th>Location</th>
<th>Retention Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Information</td>
<td>Site maps</td>
<td>With Grantee</td>
<td>Five Years</td>
</tr>
<tr>
<td>Environmental Data</td>
<td>QA Project Plan</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td>Operations</td>
<td>Field Method SOPs</td>
<td>With Grantee</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Field Notebooks</td>
<td>With Grantee</td>
<td>Five Years</td>
</tr>
<tr>
<td>Raw Data</td>
<td>Sample collection/measurement records</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Sample Handling & Custody Records</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Inspection/Maintenance Records</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td>Data Reporting</td>
<td>Lab data (sample, QC and calibration) including data entry forms</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Sanitary Survey Forms</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Progress reports</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Project data/summary reports</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Lab analysis reports</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td>Data Management</td>
<td>Data quality assessments</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Site audits</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Lab audits</td>
<td>DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>QA reports/corrective action reports</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
<tr>
<td></td>
<td>Corrective Action Response</td>
<td>Grantee and DEC</td>
<td>Five Years</td>
</tr>
</tbody>
</table>

In addition to any written report, data collected for a project will be submitted electronically to DEC via a CD ROM or email ZIP file. All dates are to be formatted as “MM-DD-YYYY”.

B. DATA GENERATION AND ACQUISITION

B.1 SAMPLING PROCESS DESIGN (Experimental Design)

Beach water quality monitoring will be conducted at Tier I beaches designated by DEC, and sample locations should be chosen to represent the most likely pathogen exposure scenario for recreational beach users. Water samples will be analyzed to determine the population densities of microbes that indicate the presence of fecal contamination; microbes to be enumerated will be enterococci and fecal coliforms, with the results reported per 100 mL marine water.

Samples will be collected in accordance with the sampling SOP (Appendix A) at locations where primary contact recreation is likely to affect beach users. Sample collection information specific to this project is included in the Appendix B.
The sample will be collected in nearshore water 3 feet deep, approximately one foot below the water surface. Replicate samples will be collected on a minimum of 20 percent of the total number of samples evenly collected over the course of the sampling season. One field blank will be analyzed for every cooler shipment produced during a sampling event for routine monitoring. The field blank will consist of sterile water provided by the analytical laboratory, which will be aseptically transferred from its sterile container into a sterile sample bottle by the sampling technician in the field. The purpose of the field blank is to check that the sampling technician is able to collect a sample without introducing indicator bacteria into the sample, and to demonstrate that the laboratory is providing sterile sample containers for the field samples.

Enterococcus and fecal coliform population densities will be determined using the EPA or DEC approved protocols yielding the most rapid results. Those protocols were selected so decisions regarding issuance of beach advisories may be made without undue delay, minimizing the potential for public health risks associated with ongoing pathogen exposure. MST will be used to help assess the source of bacteriodetes. Sample collection for MST will occur before, and during the fishery, and will be collected at 3 of the 6 sites.

B.1.1 Define Monitoring Objectives(s) and Appropriate Data Quality Objectives

Data from this monitoring effort will be used to determine if bacteria levels are within water quality standards in the lower Kenai River during summer (May-September). The fecal coliform most probable number (MPN) method for marine waters will be used to determine if the harvesting of raw seafood standard is being met. Samples will be collected from four (4) locations; on the North Beach, on the South Beach, at the gull rookery area, and at the Warren Ames Bridge (RM 5). The two (2) beach sites are near the mouth of the Kenai River and at the lower end of the dipnet fishery. The site at the Warren Ames Bridge is at the upper end of the dipnet fishery. The gull rookery site is in between these two locations.

OBJECTIVE 1: Performance monitoring of bacteria levels at Kenai River beaches post-BMP implementation

TASK 1: Conduct weekly water quality samples for fecal coliform bacteria and enterococci during the 2019 recreational use season from May through September 2019.

Start and end date: Week of May 20, 2019 – week of September 3, 2019

Description: The grantee, the City of Kenai (COK) will contract with the Kenai Watershed Forum (KWF) to conduct sampling. The sampling will include 14 sampling events; from the week of May 20 through the week of September 3 at the same 2018 monitoring locations using the final 2019 Kenai Beach Sampling Plan and QAPP and Beach Monitoring Handbook. DEC will provide copies of the updated BEACH Monitoring Handbook, and QAPP/SAP. KWF will review these documents to assure they will comply with the guidance the documents provide. KWF will then submit signed
QAPP/SAP to DEC for agency approval. (These documents will be reviewed and completed by DEC staff and made available to KWF).

Six samples will be collected weekly during the weeks of May 20 through June 24 on a Monday, Tuesday or Wednesday. Six samples will be collected weekly during the weeks of July 1 through August 5 on a Monday, Tuesday or Wednesday, and two samples will be collected every other week during the weeks of August 19 and September 3 on a Monday, Tuesday or Wednesday. The dipnet fishery typically runs from July 10 through July 31. Dipnetting is allowed from 6 am to 11 pm unless changed by a Fish & Game emergency order.

The marine water samples will be analyzed for fecal coliform bacteria (SM 9222D) and enterococci (ASTM D6503-99). One replicate sample for each analytical test per sampling event will be collected for quality assurance. Sample events will occur weekly, Monday through Wednesday, so that results can be reported by the following weekend.

Microbial source tracking (MST) tests to help determine fecal bacteria sources will be performed, once before the fishery, and once during the most active recreational use periods. MST hosts will include human, gull and dog markers to further assess the bacteria sources at the Kenai beaches. The MST samples will be collected and shipped immediately to SGS where they will be filtered, frozen and stored. To capture a period of elevated fecal bacteria so that the host markers will be the most defined, the fecal coliform bacteria and enterococci results reported by the DEC-approved project laboratory will be assessed and if elevated, DEC will request MST tests to be conducted on those samples. If the bacteria results are not elevated, then the process of collecting, shipping, and filter/freezing MST samples will be repeated. If the bacteria levels are elevated, SGS will overnight the samples to Source Molecular Lab in Miami, FL for analysis. The MST sample selection goal is to select elevated bacteria samples to obtain the most robust host marker.

KWF field technicians will record observations listed in EPA’s Marine Beach Sanitary Survey, such as wildlife presence, water clarity, and water and air temperature.

<table>
<thead>
<tr>
<th>Table 6: Sampling Dates and Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month/ Week of Proposed Sampling Event</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>May 20th – 22nd</td>
</tr>
<tr>
<td>May 27th – 29th</td>
</tr>
</tbody>
</table>
June 3rd – 5th & NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample \\
June 10th – 12th & NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample \\
June 17th – 19th & NKB4, SKB3 (MST), KRGR1, KRGR2 (MST), BRG1 (MST) and a QC sample \\
June 24th – 26th & NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample \\
July 1st – 3rd & NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample \\
July 8th – 10th & NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample \\
July 15th – 17th & NKB4, SKB3 (MST), KRGR1, KRGR2 (MST), BRG1 and a QC sample \\
July 22nd - 24th & NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QA sample \\
July 29th – 31st & NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample \\
August 5th – 7th & NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample \\
August 19th – 21st & NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample \\
September 2nd – 4th & NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample \\

Field parameters will include visual observations listed in EPA’s *Marine Beach Sanitary Survey*, such as water clarity, and water and air temperature.

KWF will conduct the sampling events and ensure that proper sampling techniques are followed, chain-of-custody is correct, and samples are received and analyzed by the laboratory to meet the analytical holding time requirements. Samples will be shipped to the DEC-certified laboratory SGS North American Inc. in Anchorage Alaska to meet the eight hour holding time for analysis (maximum field handling time of six hours and two hours for lab analysis).

In the event of an exceedance, KWF will work with the City of Kenai and the DEC to determine how best to implement the Public Notification and Risk Communication Plan and inform the public of the exceedance.

The initial analytical data results, sanitary surveys, copies of the chain-of-custody forms, site photos and field data sheets will be provided to the DEC Project Manager within 36 hours of sampling. Final analytical data will be provided to the DEC Project Manager within ten (10) days of the sampling event. The data will be reviewed, compiled, and entered by the KWF staff using the DEC-provided template.
TASK 2: Bacterial laboratory will analyze marine water samples for fecal coliform bacterial and enterococci.

Start and end date: May 1, 2019 – September 28, 2019

Description: The DEC-approved project laboratory will analyze marine water samples collected by KWF from the 5 monitoring sites for fecal coliform bacteria (SM 9222D) and enterococci (ASTM D6503-99). One (1) replicate sample for each analytical test per sampling event will be analyzed for quality assurance. A total of 216 samples will be analyzed for fecal coliform bacteria and enterococci from mid-May through mid-September 2019. Sample collection will occur early in the week (Monday and Tuesday; Wednesday if necessary) to allow time for the results to be communicated to the community before weekend activities.

TASK 3: Microbial source tracking (MST) laboratory will analyze marine water samples for human, gull and dog bacteriodetes.

Start and end date: July 1st – July 30th, 2019.

Description: Source Molecular Corp laboratory will analyze one monitoring event for MST testing from the 5 marine water samples collected by KWF before, and during the most active recreational use periods. MST hosts will include absence/presence and quantification of human, dog and gull bacteriodetes. The MST samples will be collected and shipped immediately to SGS Anchorage where they will be filtered, frozen and stored. To capture a period of elevated fecal bacteria so that the host markers will be the most defined, the fecal coliform bacteria and enterococci results reported by the DEC-approved project laboratory will be assessed and if elevated, DEC will request MST tests to be conducted on those samples. If the bacteria results are not elevated, then the process of collecting, shipping, and filter/freezing MST samples will be repeated. If the bacteria levels are elevated, SGS Anchorage will overnight the samples to Source Molecular Lab in Miami, FL for analysis. A total of 5 samples will be analyzed for absence/presence and quantification of human, dog and gull bacteriodetes.

TASK 4: Compile and enter project data into DEC-data template, and update GIS geodatabase and map.

Start and end date: May 1, 2019 – November 1st, 2019

Description: KWF will compile and enter the project data into DEC-supplied data template which the DEC project manager will transfer to the DEC water quality database (AWQMS). KWF will update the GIS geodatabase and map showing the spatial relationship between residential/public waste treatment and septic, topographic contours, surface water hydrology, potential pollution sources, and beach survey data; and provide the data in NAD83/Alaska Albers.

TASK 5: Prepare and submit a project report; and evaluate whether beach modeling is appropriate using all available project data.

Start and end date: May 1, 2019 – November 1st, 2019
Description: KWF will evaluate all sample results, and submit a draft and final report of findings and conclusions. Report design should follow 2017 and 2018 Kenai Beach Monitoring reports (http://dec.alaska.gov/water/water-quality/beach-program/). KWF will assess the project data to evaluate whether beach modeling is appropriate using EPA’s Virtual Beach model.

The report will include background information, and the project need, objectives, and approach taken to meet the project objectives. The report will evaluate and describe project accomplishments, the environmental benefit, and suggest future actions. Water quality analysis will use the DEC’s updated Listing Methodology for Determining Water Quality Impairments from Pathogens guidance, to compare results to the Marine Water Quality Indicator Criteria for bacteria. The report will include narrative description and tabular/graphical formats to evaluate the monitoring results. The report will include a quality assurance review describing the integrity of the reported analytical results as presented in the QAPP and data quality objectives. Appendices will incorporate all project data, and appropriate references.

B.1.2 Characterize the General Monitoring Location/s

In 2002 and 2003, an Alaska Beach Survey was conducted to collect information about recreational-use beaches in the state. The survey was designed to obtain information regarding the locations of recreational-use beaches, the types of recreational activities that occur there, and the levels and seasons of beach use. In addition, information regarding the types of pollution sources near these recreation areas was collected. The collected information was entered into a database and was used to rank beaches according to their relative potential pathogen-exposure risk to beach users. The results of this survey were used to create the Alaska Beach Database, which is updated as additional surveys are received.

The beaches in this study were nominated through the Alaska Beach Survey and ranked as Tier 1 High Priority beaches.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Site Description and Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKB3</td>
<td>60.54332</td>
<td>-151.26532</td>
<td>South Kenai Beach</td>
</tr>
<tr>
<td>NKB4</td>
<td>60.54978</td>
<td>-151.26804</td>
<td>North Kenai Beach</td>
</tr>
<tr>
<td>KRGR1</td>
<td>60.53660</td>
<td>-151.25400</td>
<td>Above gull rookery</td>
</tr>
<tr>
<td>KRGR2</td>
<td>60.55180</td>
<td>-151.24400</td>
<td>Below gull rookery</td>
</tr>
<tr>
<td>BRG1</td>
<td>60.5259</td>
<td>-151.20647</td>
<td>Warren Ames Bridge</td>
</tr>
</tbody>
</table>

Note: GIS Maps of sampling locations (large scale as well as site specific) are located in Appendix C.
B.1.3 Identify the Site-Specific Sample Collection Location/s, Parameters to be Measured and Frequencies of Collection

Specific sampling sites occur at the point of greatest ease of public access. It is assumed that the greatest use will occur at the point of greatest ease of public access.

The following table details parameters to be taken at each site, the sampling frequency, and the sampling dates.

<table>
<thead>
<tr>
<th>Table 8: Site-Specific Sample Parameters to be Measured and Collection Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement/ Parameter(s)</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Grab: Fecal Coliforms, Enterococci In situ ambient air temperature, water temperature</td>
</tr>
<tr>
<td>Grab: Fecal Coliforms, Enterococci In situ ambient air temperature, water temperature</td>
</tr>
<tr>
<td>Grab: Fecal Coliforms, Enterococci In situ ambient air temperature, water temperature</td>
</tr>
<tr>
<td>Grab: Fecal Coliforms, Enterococci In situ ambient air temperature, water temperature</td>
</tr>
</tbody>
</table>

B.2 SAMPLING METHOD REQUIREMENTS

Specific sampling methods are detailed in the Sampling SOP, included in the Appendix of this QAPP.

B.2.1 Sample Types

Samples will be listed as “grab” on the Chain-of- Custody and in field data sheets.

B.2.2 Sample Containers and Equipment

The following general guidelines are listed to provide consistency among the samples collected from Alaskan beaches:

- Collect one sample for each recreational-use area. A sample will consist of two sample containers filled with water from one location. One of the containers will be analyzed to determine fecal coliform population densities, and the other will be analyzed for enterococcus populations.
• Wear chest-waders and elbow-length gloves during sampling.
• Collect samples in areas of greatest use by recreational users, where water is about 3 feet deep, at about knee-depth or one foot below the surface.
• Collect a field replicate sample at least 20 percent throughout the season with a minimum of one replicate per sampling day. A field replicate consists of two additional sample containers filled with water at the same location where the primary water sample set was collected.
• Use a temperature blank for each cooler.
• All sample bottles will be provided by the analytical laboratory (pre-cleaned and sterilized), and will not require rinsing with sample.
• Remove the sample container cap carefully, avoid touching the inside of the cap or the lip of the sampling container, and face into the waves or the current to avoid sample container contamination.
• Minimize sediment or debris in the sample; this may require waiting for sediment to settle after wading out to the sample collection location. If sediment or debris are present throughout the sample area, note this fact on the Beach Sampling Data Sheet.
• Grasping the open sampling container at the bottom with one hand, plunge the bottle mouth downward into the water to avoid introducing any surface scum. Position the mouth of the bottle into the current while standing downstream of the sample bottle. Tip the bottle upward to allow air to exit and the bottle to fill, and remove the bottle from the water. Pour out a small portion of the sample from the bottle to allow an airspace of about 1 inch for proper mixing before analysis. Replace the cap on the bottle and assure it is tightly closed. Label the sample bottle with sample identifier, date, and time.
• List samples as “grab” on the laboratory’s chain of custody (COC) form. Note on the COC form that the laboratory needs to send the bacterial data to three recipients: to the local beach monitor, to the BPM, and to the QAO.
• Place samples into a cooler containing frozen blue ice to maintain a chilled temperature below 10° C. The cooler should be pre-chilled before sampling begins to ensure that samples are kept cold from the time of sampling until they are analyzed. A temperature blank must be included in each cooler.
• Measure and record water temperature to 0.1°C at the time of sample collection. A note of the temperature of the cooler contents will be made upon arrival at the laboratory. The laboratory arrival temperature shall be noted on the Chain of Custody and provided to DEC in the AWQMS data template.

The sample container, preservation, and holding time requirements are tabulated below:
Table 9: Preservation and Holding Times for the Analysis of Samples

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Container</th>
<th>Necessary Volume</th>
<th>Preservation and Filtration</th>
<th>Maximum Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Surface Water</td>
<td>N/A, direct measurement</td>
<td>N/A, Direct Measurement</td>
<td>N/A, direct measurement</td>
<td>N/A, direct measurement</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>Surface Water</td>
<td>G, PA</td>
<td>150 mL</td>
<td>Cool <10°C; do not freeze, 0.0008% Na₂S₂O₃</td>
<td>8 hours total (6 hours in field; 2 hours lab processing)</td>
</tr>
<tr>
<td>Enterococci</td>
<td>Surface Water</td>
<td>Enterolert Bottle (IDEXX)</td>
<td>150 mL</td>
<td>Cool <10°C; do not freeze, 0.0008% Na₂S₂O₃</td>
<td>8 hours total (6 hours in field; 2 hours lab processing)</td>
</tr>
<tr>
<td>Microbial Source Tracking</td>
<td>Surface Water</td>
<td>PA</td>
<td>250 mL</td>
<td>Freeze sample filter</td>
<td>24-48 hrs pre-filter; 28 days max hold time for filtered and frozen sample*</td>
</tr>
</tbody>
</table>

*Approximate max holding time. SGS will provide updated number when available.

Notes:
- G = glass,
- PA = autoclavable plastic

B.2.3 Sampling Methods

Sampling Standard Operating Procedures (SSOP) are located within the Beach Monitoring Handbook available at: https://dec.alaska.gov/water/water-quality/beach-program/. A copy of the SSOP is located in the appendix.

Beach Grab Samples – Sample bottles will be filled sequentially, normally being filled to the shoulder of the bottle, leaving a small space for expansion and mixing. The laboratory will provide sampling instructions with the sample bottles.

B.3 SAMPLE HANDLING AND CUSTODY REQUIREMENTS

B.3.1 Sampling Procedures

See Section B.2 of this QAPP – Sampling Method Requirements SOP.

B.3.2 Sample Custody Procedures

Samples and sample containers will be maintained in a secure environment from the time the bottles leave the laboratory until the samples are received at the laboratory. The laboratories will maintain custody of bottles and samples using their normal custody procedures.
Samples must be in the sampler’s possession or in a cooler sealed with signed and dated friable evidence tape on opposing sides of the cooler. When the cooler is sealed, the method of securing the samples must be such that tampering with samples or bottles is not possible. The cooler must be secured so that the lid cannot be removed without breaking the evidence tape or cutting the lock.

Transfer of samples will be accomplished using the laboratory’s Chain-of-Custody (COC) form. When samples are transferred between personnel, such transfer will be indicated on the COC form with signature, date, and time of transfer. The COC will remain with the samples, sealed inside the cooler, until received by the laboratory. A copy of the laboratory COC form is attached as Appendix D.

If custody is broken at any time during sample transfer, a note must be made on the COC form accompanying the sample. Upon receipt at the laboratory, the laboratory sample custodian will make note if a breach of custody has occurred (for example, if a custody seal has broken during transport).

B.3.3 Shipping Requirements

Packaging, marking, labeling, and shipping of samples will comply with all regulations promulgated by the U. S. Department of Transportation in 49 CFR 171-177. Staff should receive the necessary training for shipping samples or consult with the contracted laboratory for shipping instructions.

Samples will be individually packaged in sealed plastic bags. The sealed plastic bags will be placed into a bag-lined cooler with ice sealed in plastic bags or “blue-ice” to maintain a temperature of less than four degrees C. A temperature blank, 250 or 500 mL in size, will be placed in the cooler. Temperature will be measured prior to shipment and upon receipt at the lab. The chain of custody (COC) form will be placed in a plastic bag within the cooler. The cooler will be taped closed securely using packing tape at the last sampling site.

The eight (8) hour holding time limitation for the samples must be met. To accomplish this, this project will use a combination of transportation to get the samples from beach to laboratory and samples prepared and incubation initiated within the specified hold time. For those projects without laboratories in their communities, samples will be packaged at the sampling site, driven by car to the nearest airport, picked up by a courier, and then delivered to the laboratory. Other projects will deliver samples directly to the contracted laboratory.

<table>
<thead>
<tr>
<th>Business Type</th>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
<th>Contact Information</th>
<th>Transport Leg</th>
<th>Estimated Transit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Carrier</td>
<td>Ravn Aviation</td>
<td>Kenai</td>
<td>08:30-20:30</td>
<td>907-243-2761</td>
<td>Kenai to Anchorage</td>
<td>40 min</td>
</tr>
<tr>
<td>Air Carrier</td>
<td>Grant Aviation</td>
<td>Kenai</td>
<td>06:30 – 22:50 (M-F) *No flights S-S</td>
<td>907-290-3383</td>
<td>Kenai to Anchorage</td>
<td>40 min</td>
</tr>
</tbody>
</table>
B.4 ANALYTICAL METHODS AND REQUIREMENTS

Water quality analytical methods that will be used throughout this project are outlined below. All analysis methods used for this program are EPA-Clean Water Act (CWA) approved. The contracted laboratory will be a currently DEC Drinking Water certified laboratory, though the lab will be using methods specified for water/wastewater analysis. The contracted laboratory’s current Quality Assurance Plan will be on file with DEC Division of Water Quality Assurance Office detailing their quality assurance procedures. Laboratory turnaround time is 20 business days. Any issues regarding analytical data quality will be resolved by the DEC project manager in consultation with any or all of the following: DEC QA Officer, grantee, sampling staff and the laboratory project manager.

B.4.1 Sampling Parameters

Temperature will be reported in °C, and will be measured using a YSI 650 MDS multiprobe meter or an equivalent meter (minimum resolution of 0.1 degree C or better). The thermometer will have current NIST traceable certification over the expected range of sample measurements.

Fecal Coliform Standard Method 9222D will be used to determine the fecal coliform concentration in surface water. Filter sample through a membrane filter. Place membrane on mFC agar containing aniline blue as indicator. Incubate at 44.5°C for 22-24 h. Colonies that are various shades of blue are positive for fecal coliforms. The blue color indicates the capability to ferment lactose to acid.

Enterococci ASTM Method D6503-99 will be used to determine the most probable number enterococci concentration in surface water. Add reagent to the sample, pour into Quanti-Tray® or Quanti-Tray®/2000, seal in Quanti-Tray® Sealer and incubated for 24 hours at 41°C. Count fluorescent wells and refer to most probable number table.

Monitoring shall be conducted in accordance with EPA-approved analytical procedures and in compliance with 40 CFR Part 136, Guidelines Establishing Test Procedures for Analysis of Pollutants. Reference the Project’s MQO Table 3(section A.6.2) of this QAPP for list of parameters of concern, approved analytical methods, method-specific detection and reporting limits, accuracy and precision values applicable to this project. 40 CFR, Part 136.6 lists other regulated pollutant parameters not listed in the MQO Table 3(section A.6.2).

<table>
<thead>
<tr>
<th>Courier</th>
<th>UPS Cargo</th>
<th>Anchorage</th>
<th>Schedule packed</th>
<th>1-866-742-5877</th>
<th>Anchorage to Miami (Shipping handled by SGS)</th>
<th>24 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>drop off by 12:00, deliver by 13:00 for next day delivery at 09:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An expedited reporting turnaround time after sampling will be required for laboratory microbiological analyses to obtain results quickly for decision-making purposes. As pathogen exposure remains a risk to beach users during the period between sample analysis and reporting sample results, a short reporting time is recommended; a period of 36 hours following sample submission should be used for reporting results to the QAO, the BPM, and local community point of contact.

Molecular Source Tracking MST sampling will be used to determine the source of fecal contamination. MST hosts will include absence/presence and quantification of human, dog and gull bacteriodetes. The MST sample selection goal is to select elevated bacteria samples to obtain the most robust host marker. A total of 5 samples will be analyzed for absence/presence and quantification of human, dog and gull bacteriodetes. These 5 samples will be collected before, and during, the personal use fishery. Source Molecular in Miami, FL, uses qPCR and Digital PCR technologies to detect selected markers (i.e., human, dog, and gull) and identify the presence of host-associated microorganisms.

B.5 QUALITY CONTROL REQUIREMENTS

Table 10 lists the percent of field and laboratory replicates to be used for quality control (See section A.6.2 for discussion on calculation of precision and accuracy). The precision of field and laboratory measures will be calculated using the equation in section A.6.2. Data measurements that do not meet the limits described in A.6.2 may or may not be used in the final report depending on degree to which limits are not met. However, the report will clearly flag any and all data of questionable value along with a brief description of the problem and specific justification why data should be considered for use.

Blind field sample replicates will be collected at a minimum of 20 percent/parameter of the total number of samples for each BEACH monitoring project. They will be analyzed for enterococci and fecal coliform population densities. The purpose of the blind field sample replicates is to assess sampling and laboratory error and overall method variability for each BEACH monitoring project.

For laboratory analyses, contract laboratories will submit quality control results along with sample analytical results. Laboratory Quality Control will include duplicates, holding times, sample temperatures upon receipt of sample at lab and blanks. Laboratory precision criteria should be within BEACH MQO criteria provided in Section A.6.

B.5.1 Field Quality Control (QC)

Measures Quality control activities in the field will include adherence to documented procedures and the comprehensive documentation of sample collection information included in the field notebooks. A rigidly enforced chain-of-custody program will ensure sample integrity and identification. The chain-of-custody procedure documents the handling of each sample from the time the sample was collected to the arrival of the sample at the laboratory.

Quality Control measures in the field include but are not limited to:
• Proper cleaning of sample containers and sampling equipment.
• Maintenance, cleaning and calibration of field equipment/ kits per the manufacturer’s and/or laboratory’s specifications, and field Standard Operating Procedures (SOPs).
• Chemical reagents and standard reference materials are used prior to expiration dates.
• Proper field sample collection and analysis techniques.
• Correct sample labeling and data entry.
• Proper sample handling and shipping/transport techniques.
• Field replicate measurements (1 replicate measurement/5 field measurements). Minimum of one per BEACH monitoring project/sampling collection day.

Analytical methods used on the project have been approved by the EPA CWA. These methods are codified in 40CFR Part 136.3 Table 1H—List of Approved Microbiological Methods for Ambient Water. These methods will be used as project-specific protocols to document and guide analytical procedures. Adherence to these documented procedures will ensure that analytical results are properly obtained and reported.

<table>
<thead>
<tr>
<th>Field Quality Control Sample</th>
<th>Measurement Parameter/s</th>
<th>Frequency of Occurrence</th>
<th>Total # of QC Type Samples</th>
<th>QC Acceptance Criteria Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Blank</td>
<td>Temperature (Deg C)</td>
<td>1/ Cooler</td>
<td>Rec’d at lab ≤10°C</td>
<td></td>
</tr>
<tr>
<td>Project samples (QC samples, MST, samples)</td>
<td>fecal coliforms & enterococci</td>
<td>All</td>
<td>Samples inoculated and incubation started within holding times</td>
<td></td>
</tr>
<tr>
<td>Field Replicates</td>
<td></td>
<td>20% of project samples or 1/sampling day/BEACH project, whichever is greater</td>
<td>≤ ± 60 RPD</td>
<td></td>
</tr>
</tbody>
</table>

B.5.2 Laboratory Quality Control (QC) Measures

Laboratories detail QC procedures used in their laboratory Quality Assurance Plan and method specific SOPs Quality Control in laboratories includes the following:
• Laboratory instrumentation calibrated with the analytical procedure,
• Laboratory instrumentation maintained in accordance with the instrument manufacturer’s specifications, the laboratory’s QAP and Standard Operating Procedures (SOPs),

• Specific QC activities prescribed in the project’s QAPP.

• Laboratory data verification and validation prior to sending data results to DEC.

Contracted and sub-contracted laboratories will provide analytical results after verification and validation by the laboratory QA Officer. The laboratory must provide all relevant QC information with its summary of data results so that the project manager and project QA officer can perform field data verification and validation, and review the laboratory reports. The project manager reviews these data to ensure that the required QC measurement criteria have been met. If a QC concern is identified in the review process, the Project Manager and Project QA Officer will seek additional information from the sub-contracted laboratory to resolve the issue and take appropriate corrective action/s.

B.6 INSTRUMENT/EQUIPMENT TESTING, INSPECTION AND MAINTENANCE REQUIREMENTS

Contracted and sub-contracted laboratories will follow the testing, inspection and maintenance procedures required by EPA Clean Water Act approved methods and as stated in the respective laboratory’s QAP and SOPs.

B.7 INSTRUMENT CALIBRATION AND FREQUENCY

Field instruments shall be calibrated where appropriate prior to using the instruments. If equipment and/or kits require calibration immediately prior to the sampling event, the calibration date will be recorded in the operator’s field logbook or field data sheets. When field instruments require only periodic calibration, the record of this calibration should be kept with the instrument. The project manager will delegate a field project team member to ensure that instruments are calibrated correctly and appropriate documents recorded and retained.

Thermometers will be calibrated annually against a currently certified NIST traceable thermometer at a minimum of two (2) temperatures that bracket temperatures expected in the field (e.g., 0°C and 20°C). The NIST traceable thermometer must be certified over the expected field measurement range and should have greater accuracy and measurement resolution than the field thermometer.

Contracted and sub-contracted laboratories will follow the calibration procedures found in its QAP and the laboratory’s Standard Operating Procedures (SOPs). Specific calibration procedures for regulated pollutants will be in agreement with the respective “EPA Approved” Clean Water Act Pollutant methods of analysis. Field and/or Laboratory calibration records will be made available to DEC upon request.
B.8 INSPECTION/ACCEPTANCE OF SUPPLIES AND CONSUMABLES

All reagents, calibration standards, and kit chemicals are to be inspected to ensure that expiration dates have not been exceeded prior to use in the monitoring project.

Pre-cleaned sample containers will be obtained from the lab with the appropriate preservation method included. Coolers, gel ice temperature blanks, and chain-of-custody forms will be provided by the contract laboratory prior to field mobilization. Qualified staff will check all field equipment and supplies to ensure that their technical specifications have been met before use. Any deviations during inspection procedures will be remedied by the project manager and recorded in the field notebook. If re-sampling becomes necessary, replacements will be made.

No standards, solutions, buffers, or other chemical additives will be used if the expiration date has passed. It is the responsibility of the sampling manager or his/her designee to keep appropriate records, such as logbook entries or checklists, to verify the inspection/acceptance of supplies and consumables, and restock these supplies and consumables when necessary.

Contracted and sub-contracted laboratories will follow procedures in their laboratory’s QAP and SOPs for inspection/acceptance of supplies and consumables.

B.9 DATA ACQUISITION REQUIREMENTS (NON-DIRECT MEASUREMENTS)

Topographic non-direct measurements (maps, charts, etc.) will be conducted using USGS derived materials. All geographical materials will be listed according to their source, year, and scale. GPS information will be documented by including collection device make and model number, geographic coordinate system, degree of accuracy (minimum of three satellite signals), and calibration information. GIS information will include GIS software program and model, source information, and geographic coordinate system.

B.10 DATA MANAGEMENT

The success of a monitoring project relies on data and their interpretation. It is critical that data be available to users and that these data are:

- Of known quality,
- Reliable,
- Aggregated in a manner consistent with their prime use, and
- Accessible to a variety of users.

Quality Assurance/Quality Control (QA/QC) of data management begins with the raw data and ends with a defensible report, preferably through the computerized messaging of raw data.
Data management encompasses and traces the path of the data from their generation to their final use or storage (e.g., from field measurements and sample collection/recording through transfer of data to computers (laptops, data acquisition systems, etc.), laboratory analysis, data validation/verification, QA assessments and reporting of data of known quality to the respective DEC Division of Water Program Office. It also includes/discusses the control mechanism for detecting and correcting errors. Please include a flow chart (see example at end of section) as well as a detailed narrative of the monitoring project’s data management process.

Various people are responsible for separate or discrete parts of the data management process:

- The field samplers are responsible field measurements/sample collection and recording of data and subsequent shipment of samples to laboratories for analyses. They assemble data files, which includes raw data, calibration information and certificates, QC checks (routine checks), data flags, sampler comments and metadata where available. These files are assembled and forwarded for secondary data review by the sampling supervisor.

- Laboratories are responsible to comply with the data quality objectives specified in the QAPP and as specified in the laboratory QAP and method specific SOPs. Validated sample laboratory data results are reported to the sampling coordinator/supervisor/project supervisor.

- Secondary reviewers (sampling coordinator/supervisor/project supervisor) are responsible for the QC the review, verification and validation of field and laboratory data and data reformatting as appropriate for reporting to AWQMS/WQP, and reporting validated data to the project manager.

- The project QA officer is responsible for performing routine independent reviews of data to ensure the monitoring projects data quality objectives are being met. Findings and recommended corrective actions (as appropriate) are reported directly to project management.

- The project manager is responsible for final data certification.

- DEC DOW project manager and QA Officer AQS data entry staff conducts a final review (tertiary review) and submits the validated data to AWQMS/WQP.

An example Data Management Flow Chart (Figure 2) provides a visual summary description of the data flow/management process for environmental data collected in support of DEC’s Division of Water decision making processes. Please revise as appropriate for the monitoring project.

Daily field records (a combination of field and core logbooks data sheets) will make up the main documentation for field activities. As soon after collection as possible, field notes, data sheets, core logs, and chain-of-custody forms will be scanned to create an electronic record. Field data will be hand-entered into the database. One-hundred percent of the transferred data will be verified based on hard copy records. Electronic QA checks to identify anomalous values will also be conducted following entry.
Data obtained during sampling activities will be entered into field notebooks.

The following is a list of possible data information that will be kept:

- Field equipment and chemicals maintenance, cleaning and calibration records;
- Field notebooks;
- Sample Data Sheets;
- Photographs of sampling stations and events;
- Chain-of-Custody forms;
- Laboratory equipment maintenance, cleaning and calibration records;
- Laboratory bench sheets, control charts, and SOPs;
- Records of QA/QC problems and corrective actions (field and/or laboratory);
- Laboratory data QC records;
- Records of data review sheets;
- Replicate, performance evaluation records and other QA/QC control records (field and laboratory); and
- Data review, verification and validation records.

Data handling equipment will include computer software applications Microsoft Excel and Access. Data will be entered into a database in a form compatible with requirements of the statewide database entry into AWQMS. Requirements for data entry can be found at http://dec.alaska.gov/water/wqsar/awq_data_info.htm#2.

Sample Numbering

All samples will be assigned the unique identification code based on a previous sample designation scheme noted in the section 4.0 table.

Laboratory Data

The contract laboratory will submit data in both electronic and hard-copy format as described in Section B10 of the QAPP. The Laboratory Project Manager will contact the BEACH Project Manager and the DEC Project Manager prior to data delivery to discuss specific format requirements. Written documentation will also be used to clarify how field replicates and laboratory duplicates and QA/QC samples were recorded in the data metatables and to provide explanations of other issues that may arise. The data management task will include keeping accurate records of field and laboratory QA/QC samples so that project managers and technical staff who use the data will have appropriate
documentation. Data management files will be stored on a secure computer or on a removable hard drive that can be secured. All records will be retained by the contract laboratory for five years.

Data Storage and Retention

Data management files will be stored on a secure computer or on a removable hard drive that can be secured. Laboratory Records will be retained by the contract laboratory for a minimum of five years. Project records will be retained by the lead organization conducting the monitoring operations for a minimum of five years, preferably longer. Site location and retention period for the stored data will be specified in each QAPP.

C. ASSESSMENT AND OVERSIGHT

C.1 ASSESSMENTS AND RESPONSE ACTIONS

Assessments are independent evaluations of the monitoring project that are performed by the Project's QA Officer or his/her designee. Assessments may include (but are not limited to) any of the

Figure 2: Data Management Flow Chart

following: on-site field surveillance, on-site laboratory audits, performance evaluation samples, blind sample duplicates/replicates (precision samples), field split samples, data quality audits, data reviews. The number and types of assessments are dependent upon the monitoring project’s intended data uses.

C.1.1 Lab Assessments to be performed under the BEACH Monitoring Program:

Blind 3rd party lab performance evaluation (PE samples also called Performance Test, PT samples) for microbial analytes/methods of interest. PT water/wastewater sample participation is at a frequency of 1/year from a NELAC certified vendor (http://www.nelac-institute.org/content/abdb.php). Microbiological samples must be analyzed by a current DEC EH Drinking Water certified lab (http://dec.alaska.gov/applications/eh/EHLabStatus/MicroReport/Index) for the methods of interest. For those microbiological methods not covered under the DEC EH Lab DW certification program, the microbiological lab will enroll in an approved PT study for the microbiological method of interest (see above link for approved NELAC PT vendors). Laboratory 3rd party microbiological PT samples results will be submitted directly to the DEC Water QA Officer and the Monitoring Project’s QA Officer.

Note 1: It is the responsibility of the laboratory to enroll itself in these blind PT studies with the results mailed/emailed directly to the DEC DOW Water Quality Assurance Office and the Monitoring Project’s QA Officer. Routine laboratory performance in the blind PT sample studies will be used to assess overall laboratory data quality as well as monitoring project data quality.

Note 2: It is the responsibility of the Project Manager and project QA Officer to ensure the selected laboratory is self-enrolled in a NELAC certified PT water/wastewater study at a frequency of 1/year.

C.1.2 On-Site assessments to be performed under the BEACH Monitoring Program:

- One on-site field audit/BEACH monitoring operation (contractor) of sample collection procedures (each pollutant/method). Audit evaluates whether procedures used for sample collection, preservation, shipping and hold times and sample receipt at lab are in compliance with QAPP requirements.

C.1.3 Project Data Assessments:

- Audits of Monitoring Data for reproducibility of results from recalculation/reconstruction of field/lab data.
- Calculation of monitoring project’s overall achieved precision, accuracy and data completeness compared to QAPP defined precision, accuracy and data completeness goals. Method specific precision, accuracy and data completeness criteria is specified in the Project MQO Table 3of section A.6.2.
• End of monitoring project QA summary report. Describes whether project data quality objectives and measurement quality objectives were obtained. Identifies whether exceedances of Alaska’s Water Quality Standards were measured, water quality monitoring problems encountered and corrective actions that were taken.

C.2 REVISIONS TO QAPP

Annually the QAPP will be reviewed and revised as needed. Minor revisions may be made without formal comment. Such minor revisions may include changes to identified project staff, QAPP distribution list and/or minor editorial changes.

Revisions to the QAPP that affect stated monitoring Data Quality Objectives, Method Quality Objectives, method specific data validation “critical” criteria and/or inclusion of new monitoring methods must solicit input/ and pre-approval by DEC DOW QA Officer/DEC Project Management before being implemented.

C.3 QA REPORTS TO MANAGEMENT

Use the following table to describe assessment types, frequency, content, responsible individual/s, and distribution of assessment reports to management and other recipients and actions to be taken.

<table>
<thead>
<tr>
<th>QA Report Type</th>
<th>Contents</th>
<th>Presentation Method</th>
<th>Report Issued by</th>
<th>Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site Field Inspection Audit Report</td>
<td>Description of audit results, audit methods and standards/equipment used and any recommendations</td>
<td>Written text and tables, charts, graphs displaying results</td>
<td>Project QA Officer/auditor</td>
<td>✔</td>
</tr>
<tr>
<td>3rd Party PT (DMRQA, etc.) Audit Report</td>
<td>Description of audit results, methods of analysis and any recommendations</td>
<td>Written text and charts, graphs displaying results</td>
<td>Project QA Officer/auditor</td>
<td>✔</td>
</tr>
<tr>
<td>Corrective Action Recommendation</td>
<td>Description of problem(s); recommended action(s) required; time frame for feedback on resolution of problem(s)</td>
<td>Written text/table</td>
<td>QA Officer/auditor</td>
<td>✔</td>
</tr>
<tr>
<td>Response to Corrective Action Report</td>
<td>Description of problem(s), description/date corrective action(s) implemented and/or scheduled to be implemented</td>
<td>Written text/table</td>
<td>Project Manager overseeing sampling and analysis</td>
<td>✔</td>
</tr>
<tr>
<td>Data Quality Audit</td>
<td>Independent review and recalculation of sample collection/analysis (including calculations, etc) to determine sample result. Summary of data audit results; findings; and any recommendations</td>
<td>Written text and charts, graphs displaying results</td>
<td>Project QA Officer</td>
<td>✔</td>
</tr>
<tr>
<td>Quality Assurance Report to Management</td>
<td>Project executive summary: data completeness, precision, bias/accuracy</td>
<td>Written text and charts, graphs displaying results</td>
<td>Project QA Officer</td>
<td>✔</td>
</tr>
</tbody>
</table>
D. DATA VALIDATION AND USABILITY

D.1 DATA REVIEW, VERIFICATION AND VALIDATION REQUIREMENTS

The purpose of this section is to define the criteria that will be used to review and validate—that is, accept, reject or qualify data in an objective and consistent manner. It is a way to decide the degree to which each data item has met its quality specifications as described in Element B above.

D.1.1 Data Validation means determining if data satisfy QAPP-defined user requirements; that is, that the data refer back to the overall data quality objectives. Data validation is an analyte and sample-specific process that extends the evaluation of data beyond method, procedural, or contractual compliance (i.e., data verification) to determine the analytical quality of a specific data set to ensure that the reported data values meet the quality goals of the environmental data operations (method specific data validation criteria).

D.1.2 Data Verification is the process of evaluating the completeness, correctness, and conformance/compliance of a specific data set against the method, procedural, or contractual requirements.

D.1.3 Data Review is the process that evaluates the overall data package to ensure procedures were followed and that reported data is reasonable and consistent with associated QA/QC results.

D.2 VERIFICATION AND VALIDATION METHODS

D.2.1 Validation Methods

Data validation determines whether the data sets meet the requirements of the project-specific intended use as described in the QAPP. That is, were the data results of the right type, quality, and quantity to support their intended use? Data validation also attempts to give reasons for sampling and analysis anomalies, and the effect that these anomalies have on the overall value of the data.

All data generated shall be validated in accordance with the QA/QC requirements specified in the methods and the technical specification outlined in this QAPP. Raw field data will be maintained by the Program staff who collect it. Raw laboratory data shall be maintained by the laboratory. The laboratory may archive the analytical data into their laboratory data management system. All data will be kept a minimum of 3 years.

The summary of all laboratory analytical results will be reported to the Project supervisor/manager staff. Data validation will be performed by the laboratory for all analyses prior to the release of data. All laboratory data will be validated according to the laboratory’s QAP and SOPs and as specified in the Monitoring Project’s QAPP. The rationale for any anomalies in the QA/QC of the laboratory data will
be provided to the Project Manager with the data results. Completed Chain-of-Custody or Transmission forms (if required) will be sent back from the laboratory to the Project Manager.

Data will be qualified as necessary. Sampling may need to be repeated. Unacceptable data (i.e., data that do not meet the QA measurement criteria of precision, accuracy, representativeness, comparability and completeness) will not be used or if used, the problems with the data will be clearly defined, flagged appropriately and data use clearly delimited and justified. Any actions taken to correct QA/QC problems in sampling, sample handling, and analysis must be noted. Under the direction of the project manager, project staff will document any and all QA/QC problems and QA/QC corrective actions taken.

The Project Manager/monitoring supervisor or his/her designee is responsible for reviewing field log notebooks and field data sheets for accuracy and completeness within 48 hours of each sample collection activity, if possible. Sample results provided by the laboratory, will be verified and validated by the laboratory QA Officer prior to issuing the laboratory report, and will become part of the permanent file for the monitoring project. The Project Manager or his/her designee will compare the sample information in the field log notebooks and/or data field sheets with the laboratory analytical results to ensure that no transcription errors have occurred, and to verify project QC criteria have been met (e.g., samples preserved and sample hold times met as required by QAPP and method, relative percent difference (RPD) results for blind sample replicates, etc).

The Project QA Officer or his/her designee will calculate the Relative Percent Difference (RPD) between field replicate samples.

Laboratories calculate and report the RPD and percent analyte recovery of analytical duplicate samples.

RPD's greater than the project requirements will be noted. The Project Manager, along with supervisors and/or the Project QA Officer, if necessary, will decide if any QA/QC corrective action will be taken if the precision, accuracy (bias) and data completeness values exceed the project’s MQO goals.

Estimated Quantitation Limits

The estimated quantitation limits (EQLs) are the lowest concentration that can be reliably achieved within specified limits of precision and accuracy for field and lab measurement methods. Estimated quantitation limits should be equal to or below the reporting limit (RL) but above the method detection limit (MDL). These method and analyte specific limits are provided in the MQO Table 3 (section A.6.2).

D.2.2 Verification Methods

The primary goal of verification is to document that applicable method, procedural and contractual requirements were met in field sampling and laboratory analysis. Verification checks to see if the data
were complete, if sampling and analysis matched QAPP requirements, and if Standard Operating Procedures (SOPs) were followed.

Verification of data is the responsibility of the Project QA Officer. The Project QA Officer should verify at least 10% of generated project data.

D.3 RECONCILIATION WITH USER REQUIREMENTS

The Project Manager and the Project QA Officer will review and validate data against the Project’s defined MQOs prior to final reporting stages. If there are any problems with quality sampling and analysis, these issues will be addressed immediately and methods will be modified to ensure that data quality objectives are being met. Modifications to monitoring will require notification to DEC and subsequent edits to the approved QAPP.

Only data that have been validated and qualified, as necessary, shall be provided to DEC Division of Water and entered into the applicable database (AWQMS, ICI-NPDES, DROPS).

E. DECISION CRITERIA

Beach Advisories, Closures or other emergency actions may only be taken by municipalities in conjunction with The Department of Environmental Conservation.

The BEACH Program’s decision criteria are based on EPA’s ambient water quality criteria (EPA, 1986) for two reasons:

Enterococci have a better correlation between indicator levels and illness rates than fecal coliform.

Alaska’s marine Bacteria Indicator Water Quality Standards protect for the consumption of shellfish. Protection from human illness due to primary marine water contact. Closing a beach or advising against water contact based on a single sample of 31 fecal coliform colonies/100mL or having a geometric mean of 14 fecal coliform colonies/100mL could result in excessive advisories. A financial hardship on local communities could result from unnecessary and excessive postings. Public confidence in the Beach Program could also drop resulting in a human health hazard due to future postings being ignored.

Management decisions for public health and safety at recreational beaches should be based on specific data (e.g., activities, sanitary surveys) including identification of possible impacts from pollution sources. To make the necessary decision, data must be indicative of water quality conditions to adequately assess sanitary conditions of the beach. Due to inherent uncertainty involved with sampling and analytical determination of bacteria levels, decisions will be made when there is no reason to doubt the accuracy of the sample.
Appendix A: Water Sampling Collection Protocols

A.1 Water Sample Collection

Water sampling involves wading into the water adjacent to a beach commonly used for water recreation to collect water from below the surface into sample jars. The sample should be collected in the general recreational beach area, or near locations expected to be influenced by fecal contamination (e.g., adjacent to sewage lagoons, near small boat harbors, etc.). The BEACH Manager will complete sampling after the following steps have been accomplished:

- Each sample jar is filled with water,
- Each sample jar is labeled,
- Each sample jar is placed in a cooler kept chilled with artificial ice,
- The Beach Sampling Data Sheet is filled out,
- A chain-of-custody form is filled out,
- The cooler is transported to the laboratory responsible for determining fecal coliform and enterococcus populations,
- A copy of the Beach Sampling Data Sheet is sent to the DEC BEACH Project Manager, and
- A copy of the Beach sampling Data Sheet is sent to DEC BEACH Manager.

Detailed directions for collecting good water samples, shipping the samples to the laboratory, and providing beach assessment information to the DEC are given in the following subsections.

A.2 Sample Collection Method

A good water sample is collected by avoiding cross-contamination, which can happen when the sampler inadvertently contaminates the sample. To reduce the potential for cross-contamination the sampler must follow a standard sample-collection method. Step-by-step sample-collection instructions are provided below:

1. Request a sample kit from the laboratory. The kit should include:
 - A cooler
 - The appropriate sample containers for marine water-quality sampling (enterococcus and fecal coliform bacteria),
 - Artificial ice to keep the cooler chilled to the appropriate temperature,
 - The appropriate container for the field blank,
• Temperature blank,
• Chain-of custody form,
• Custody seals,
• Sample jar labels
• An extra set of Sample bottles,
• An extra set of sample bottles for a duplicate sample
• Shipping labels, and
• Packing material

2. **Call the laboratory prior to sampling** to make sure there will be someone at the laboratory to receive and process the samples within 6 hours of sampling.

3. **Consult flight schedules** to make sure there will be a flight that can get the samples to the laboratory within 6 hours of sampling.

4. Write the beach sampling location on the bottle label and Beach Sampling Data Sheet.

5. Put on clean waders and gloves. Wade into the water to a depth of approximately 3 feet. Try to avoid kicking up sediment or wait until any sediment that has been kicked up settles. Stand downstream of the water current and wait for sediment to clear.

6. Remove the bottle cap just before collecting the sample. Protect the cap from contamination. Do not to touch the inside of the bottle, or the inside of the cap.

7. Open the sampling bottle and hold onto the base with one hand. Plunge the top of the bottle downward into the water. Avoid introducing surface scum. Point the mouth of the bottle into the current. Hold the bottle about 1 foot below the water surface and tip it slightly upward to allow air to exit and the bottle to fill.

8. Remove the bottle from the water. Pour out a little water to leave airspace at the top of the jar. Fill two 250-mL bottles at each sampling location.

9. Tightly close each bottle.

Collect replicates for half of the samples collected during the sampling season. To collect a replicate sample, you must first have requested extra jars from the laboratory. Repeat Steps 2 through 8 at the same location.

10. Submit field blanks for a quarter of the samples collected during a sampling season. To submit a field blank you must first obtain the appropriate sample bottles from the laboratory. Remove one bottle cap at a time. Do not touch the inside of the bottles or the inside of the caps. Pour
sterile water into each sample bottle. Be careful not to pour the sterile water over your hands when filling the bottles. Replace each bottle cap, and label each bottle (e.g., “BB01”).

11. Complete bottle labels and attach them to each sample jar. Labels should be clean, waterproof, non-smearing, and large enough for all the information. Information on the label should include:

- Sample identifier (e.g., “city-date-sample” = “HOM-051507-01”)
- Sample location (e.g., beach name)
- Sampling date and time
- Name of sampler

12. Wash your hands and arms with soap and water or waterless antimicrobial cleanser, or disinfectant lotion to reduce exposure to potentially harmful bacteria or microorganisms.

A.3 Sample Handling

Sample handling involves packing the samples in a cooler and shipping them to the laboratory. After sample collection is complete the samples must be handled with care so that they arrive to the laboratory in good condition. Step-by-step sample handling instructions are provided below:

1. Place the sample(s) in a pre-chilled cooler containing artificial ice to maintain a temperature from 1° to 10°C. Ask the laboratory ahead of time how much ice will be needed. **Do not allow the samples to freeze.**

2. Place enough packing material inside the cooler to protect the sample jars from breaking during transport to the laboratory.

3. Complete the chain-of-custody form. Put the form in a plastic bag and tape it to the inside of the cooler lid.
 - Write a note in the “Special Instructions” box requesting that the laboratory results be sent without delay (within 36 hours of sampling) to three people: the DEC BEACH Project Manager, the DEC BEACH Quality Assurance Officer, and you.

4. Fill out two custody seals and attach one to the front and one to the back of the cooler to span the lid seam. You want them to tear when the cooler is opened.

5. Securely tape the cooler shut prior to shipment. Attach shipping labels that identify the shipping destination and say: “keep cool,” “do not freeze,” and “fragile.”

6. Ship the samples to (Laboratory Name and Phone Number)

Remember that samples have to be collected, shipped and received by the laboratory within 6 hours (2 hours max time for sample analysis - 8 hours total maximum handling time). The samples should
be analyzed as soon as possible after collection. The total maximum holding time for samples is 8 hours (EPA 40 CFR Part 136). We recommend a maximum field handling time of 6 hours to allow 2 hours for lab processing. Samples that exceed the 6-hour field holding time may not be analyzed. Consult flight schedules, and call the laboratory prior to sampling to make sure there will be a flight that can get the samples to the laboratory within 6 hours of sampling, and that there will be someone at the laboratory to receive the samples.
Appendix B: Sampling Plan

<table>
<thead>
<tr>
<th>Month/ Week of Proposed Sampling Event</th>
<th>Location(s) to be sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week of May 20th</td>
<td>North Kenai Beach-4 (NKB4), South Kenai Beach-3 (SKB3), above the Kenai River Gull Rookery (KRGR1), below the Kenai River Gull Rookery (KRGR2), the Ames Bridge (BRG1) and a Quality Control (QC) sample</td>
</tr>
<tr>
<td>Week of May 27th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample</td>
</tr>
<tr>
<td>Week of June 3rd</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample</td>
</tr>
<tr>
<td>Week of June 10th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample</td>
</tr>
<tr>
<td>Week of June 17th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1, MST and a QC sample</td>
</tr>
<tr>
<td>Week of June 24th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample</td>
</tr>
<tr>
<td>Week of July 1st</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample</td>
</tr>
<tr>
<td>Week of July 8th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample</td>
</tr>
<tr>
<td>Week of July 15th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1, MST and a QC sample</td>
</tr>
<tr>
<td>Week of July 29th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1, and a QC sample</td>
</tr>
<tr>
<td>Week of August 5th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample</td>
</tr>
<tr>
<td>Week of August 19th</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample</td>
</tr>
<tr>
<td>Week of September 2nd</td>
<td>NKB4, SKB3, KRGR1, KRGR2, BRG1 and a QC sample</td>
</tr>
</tbody>
</table>

Sampling site selection may change due to timing with tides and site accessibility
Sampling Site Codes: NKB4: North Kenai Beach, SKB3: South Kenai Beach, KGR1: Kenai Gull Rookery 1, KGR2: Kenai Gull Rookery 2, BRG1: Warren Ames Memorial Bridge
Appendix D: Laboratory Chain of Custody Form

Sample Kit Request

Client Name: Kenai Watershed Forum
Ordered By: Margaret Hargreaves
Phone #: 907-200-5449
Email: N/A
Project Name: Kenai Beach Study 2019
Quote #:
Profile #:
Delivery Address: 44179 Sterling Hwy, Soldotna, AK 99669

SGS North America Inc.
200 W. Federal Dr., 3916 Skyway Rd. 620
Anchorage, AK 99518
(907) 563-2343, 800-797-8787, 907-471-1654
5507

Appendix E

Does a Profile exist in LIMS? If so, please send a request for new profile build.

<table>
<thead>
<tr>
<th>No.</th>
<th>Samples</th>
<th>Matrix</th>
<th>Analysis</th>
<th>Container Size & Type</th>
<th>Pres.</th>
<th>Bottles</th>
<th>Bottles</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- □ Pack for Shipping via ground (DOT)
- □ Pack for Shipping via air carrier (IATA)
- □ Temperature Blank (circle one: 120-ml OR 500-ml)
- □ Soil VOIA Trip Blank - Lot#: 024
- □ Water VOIA Trip Blank - Lot#: 024
- □ Low Level Mercury Trip Blank - Lot#: 024
- □ Contain
- □ Ice
- □ Bubble Wrap
- □ Label
- □ Custody Seal
- □ SGS COC - Circle req’d forms □ Blank COC □ DW COC □ COC initiated by PM (attached)
- □ Send additional instructions/documents (Note to PM: Be sure to attach copy of requested form)

Sample Kit Request

Client pickup Date:
Time:

Be sure to ask if client will ship by ground (DOT) or air carrier (IATA)

- □ Deliver to client
- □ Ship by Air Carrier
- □ Handled by
- □ Date to ship by:

Kit request taken by:
Date:

Kit prepared by:
Date:

Kit packed & shipped by:
Date:

Preservative

<table>
<thead>
<tr>
<th>Bottle Lot #</th>
<th>Lot #</th>
<th>Time</th>
<th>SQC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attention Client/Sampler:

1. Do not move container; be aware of any acid preservative in container.
2. Fill container, but do not overfill (except volatile waters).
3. Label the container with your sample ID as well as the date/time of collection.
4. Fill out the Chain of Custody.
5. Add frozen gel packs or ice to your cooler & pack to prevent breakage.

Charges may be invoiced for bottles which are unreasonably or improperly inserted.

If you have any questions concerning this sample kit, please contact your Project Manager for assistance. Thank you.

This will email a copy of this form for confirmation to the client email and save the form to the network. This should not be used outside of SGS.
Kenai River Beach Monitoring Communication Plan

DRAFT 2018 Kenai River Beach Communication Plan

Who do we notify at what levels of contamination?

Single exceedance of routine sampling
- Lab notifies required contacts (below)
- Notifications List
 - DEC Project Manager, Sarah Apsens
 - City of Kenai, City Manager, Paul Ostrander
 - Kenai Watershed Forum Acting Executive Director, Branden Bornemann

Confirmed exceedance (two consecutive routine sample exceedances), result of > 130 enterococci counts/100 mL or >200 fecal coliform counts/100 mL but less than 1000 counts/100 mL
- Lab to notify
 - DEC Project Manager, Sarah Apsens – sarah.apsens@alaska.gov
 - City of Kenai, City Manager, Paul Ostrander - postrander@kenai.city
 - Kenai Watershed Forum Acting Executive Director, Branden Bornemann - branden@kwf.org
 - DEC BEACH Manager, Denise Elston – denise.elston@alaska.gov
- Consult with partners on reasons for higher bacteria levels, discuss additional actions (DEC Project Manager)
 - DEC Division of Water Director, WQSAR Program Manager, Nancy Sonafrank- nancy.sonafrank@alaska.gov
 - State agencies (partners)
 - ADF&G (Colton Lipka)- colton.lipka@alaska.gov
 - DNR (Jack Blackwell)- jack.blackwell@alaska.gov
 - HSS State Epidemiologist, Joe McLaughlin- joseph.mclaughlin@alaska.gov – ask for reports of illnesses due to beach water exposure. Epidemiologist to notify health care providers and HSS Public Nurses of the high bacteria levels found at the beaches and to be alert for illnesses due to beach water exposure
 - City of Kenai wastewater treatment facility (907)283-8222
 - DEC Project Manager Earl Crapps- earl.crapps@alaska.gov to check for compliance with APDES permit
- Actions to be taken after two consecutive sample exceedances
 - Issue press release (notification of exceedance, explain recommended precautions, explain monitoring program and sanitary survey). (DEC to issue after conferring with City of Kenai)
 - Ask City of Kenai to hand out bacteria flyer at the fee booth (City of Kenai)
o Ask City of Kenai to post press release and/or flyer on public bulletin board? – at beach, if available, at City and DEC offices if not? (City of Kenai)
o Provide press release, flyer and results to local public health office, Beach Monitor
o Provide press release and talking points to State Epidemiologist, DF&G, DNR and DEC Food Safety

Confirmed exceedance of 1000 – 10,000 counts/100 mL (in addition to actions listed above)

- Actions
 o Ask the City of Kenai to post warning signs at entrances of beach(es) with exceedances,
 o HSS State Epidemiologist – ask for reports of illnesses due to beach water exposure
 o Implement additional actions based on consultation with State Epidemiologist and City of Kenai
 o Advise DEC Commissioner of exceedance and level of exceedance

Confirmed exceedances of > 10,000 counts/100 mL or on reports of illness due to beach water exposure

- Additional Notifications
 o DF&G (sport fish) & DNR directors (Div Parks & Outdoor Recreation and Div of LWM)
 o DEC EH director
 o HSS State Epidemiologist – ask for reports of illnesses

- Actions (plan contingency in advance to speed decision in this case, set up a meeting for early July to develop beach closure plans (DEC, City of Kenai, State Epidemiologist, DF&G)
 o Discuss beach closure, procedures and responsibilities with City (advise Director & Commissioner)
 o Define responsibility roles for beach closures. City of Kenai to enact closures

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Position/Title</th>
<th>Phone #</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarah Apsens</td>
<td>DEC, Water</td>
<td>Project Manager</td>
<td>(907) 262-3411</td>
<td>sarah.apsens@alaska.gov</td>
</tr>
<tr>
<td>Laura Eldred</td>
<td>DEC, Water</td>
<td>Alt. Project Manager</td>
<td>(907) 376-1855</td>
<td>laura.eldred.alaska.gov</td>
</tr>
<tr>
<td>Paul Ostrander</td>
<td>City of Kenai</td>
<td>City Manager</td>
<td>(907) 283-8223</td>
<td>postrander@kenai.city</td>
</tr>
<tr>
<td>Margaret Harings</td>
<td>Kenai Watershed Forum</td>
<td>Beach Monitor</td>
<td>(907) 260-5449 ext. 1207</td>
<td>maggie@kenaiwatershed.org</td>
</tr>
<tr>
<td>Branden Bornemann</td>
<td>Kenai Watershed Forum</td>
<td>KWF</td>
<td>(907) 260-5449</td>
<td>branden@kenaiwatershed.org</td>
</tr>
<tr>
<td>Colton Lipka</td>
<td>ADF&G</td>
<td>Kenai Area Management Biologist</td>
<td>(907) 262-9368</td>
<td>colton.lipka@alaska.gov</td>
</tr>
<tr>
<td>Jenny Gates</td>
<td>ADF&G</td>
<td>Kenai Area Assistant Area</td>
<td>(907) 262-9368</td>
<td>jenny.gates@alaska.gov</td>
</tr>
</tbody>
</table>

1,000 < Enterococci < 10,000
1,000 < Fecal Coliform < 10,000
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Position</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack Blackwell</td>
<td>ADNR</td>
<td>Park Superintendent</td>
<td>(907) 262-5581</td>
<td>dnr.pkskenai@alaska.gov</td>
</tr>
<tr>
<td>Dr. Joe McLaughlin</td>
<td>Health & Social Services</td>
<td>Epidemiologist</td>
<td>(907) 269-8000</td>
<td>eph@alaska.gov</td>
</tr>
<tr>
<td>Jerry Trohynski</td>
<td>HSS Public Health Nurses</td>
<td>South Central Regional Nurse Manager</td>
<td>(907) 334-2251</td>
<td>jerry.troshynski@alaska.gov</td>
</tr>
<tr>
<td>Kimberly Stryker</td>
<td>DEC, Food Safety</td>
<td>Program Manager</td>
<td>(907) 269-7501</td>
<td>kimberly.stryker@alaska.gov</td>
</tr>
<tr>
<td>Dave Rutz</td>
<td>ADF&G, Sport Fish</td>
<td>Director</td>
<td>(907) 267-2150</td>
<td>david.rutz@alaska.gov</td>
</tr>
<tr>
<td>Ben Ellis</td>
<td>ADNR, State Parks</td>
<td>Director</td>
<td>(907) 269-8700</td>
<td>ricky.gease@alaska.gov</td>
</tr>
<tr>
<td>Martin Parsons</td>
<td>ADNR</td>
<td>Director</td>
<td>(907) 269-8625</td>
<td>marty.parsons@alaska.gov</td>
</tr>
<tr>
<td>Christina Carpenter</td>
<td>DEC, Environ Health</td>
<td>Director</td>
<td>(907) 269-7644</td>
<td>christina.carpenter@alaska.gov</td>
</tr>
<tr>
<td>Amber LeBlanc</td>
<td>DEC, Water</td>
<td>Acting Director</td>
<td>(907) 269-6594</td>
<td>amber.leblanc@alaska.gov</td>
</tr>
<tr>
<td>Jason Brune</td>
<td>DEC</td>
<td>Commissioner</td>
<td>(907) 465-5066</td>
<td>dec.commissioner@alaska.gov</td>
</tr>
</tbody>
</table>