ANALYTICAL REPORT

TestAmerica Laboratories, Inc.
TestAmerica Sacramento
880 Riverside Parkway
West Sacramento, CA 95605
Tel: (916)373-5600

TestAmerica Job ID: 320-44463-3
Client Project/Site: 2018-PFAS Phase 2
Revision: 1

For:
Shannon & Wilson, Inc
2355 Hill Rd.
Fairbanks, Alaska 99709-5244

Attn: Sheila Hinkley

Authorized for release by:
12/9/2018 10:54:15 AM
David Alltucker, Project Manager I
(916)374-4383
david.alltucker@testamericaicn.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.
Table of Contents

- Cover Page .. 1
- Table of Contents .. 2
- Definitions/Glossary ... 3
- Case Narrative .. 4
- Detection Summary ... 5
- Client Sample Results ... 6
- Isotope Dilution Summary 7
- QC Sample Results .. 8
- QC Association Summary 11
- Lab Chronicle ... 12
- Certification Summary .. 13
- Method Summary .. 14
- Sample Summary .. 15
- Chain of Custody .. 16
- Receipt Checklists .. 17
Qualifiers

LCMS

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Qualifier Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.</td>
</tr>
<tr>
<td>B</td>
<td>Compound was found in the blank and sample.</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>These commonly used abbreviations may or may not be present in this report.</th>
</tr>
</thead>
<tbody>
<tr>
<td>%R</td>
<td>Listed under the "D" column to designate that the result is reported on a dry weight basis</td>
</tr>
<tr>
<td>CFL</td>
<td>Contains Free Liquid</td>
</tr>
<tr>
<td>CNF</td>
<td>Contains No Free Liquid</td>
</tr>
<tr>
<td>DER</td>
<td>Duplicate Error Ratio (normalized absolute difference)</td>
</tr>
<tr>
<td>Dil Fac</td>
<td>Dilution Factor</td>
</tr>
<tr>
<td>DL</td>
<td>Detection Limit (DoD/DOE)</td>
</tr>
<tr>
<td>DL, RA, RE, IN</td>
<td>Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample</td>
</tr>
<tr>
<td>DLC</td>
<td>Decision Level Concentration (Radiochemistry)</td>
</tr>
<tr>
<td>EDL</td>
<td>Estimated Detection Limit (Dioxin)</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection (DoD/DOE)</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of Quantitation (DoD/DOE)</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Detectable Activity (Radiochemistry)</td>
</tr>
<tr>
<td>MDC</td>
<td>Minimum Detectable Concentration (Radiochemistry)</td>
</tr>
<tr>
<td>MDL</td>
<td>Method Detection Limit</td>
</tr>
<tr>
<td>ML</td>
<td>Minimum Level (Dioxin)</td>
</tr>
<tr>
<td>NC</td>
<td>Not Calculated</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected at the reporting limit (or MDL or EDL if shown)</td>
</tr>
<tr>
<td>PQL</td>
<td>Practical Quantitation Limit</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>RER</td>
<td>Relative Error Ratio (Radiochemistry)</td>
</tr>
<tr>
<td>RL</td>
<td>Reporting Limit or Requested Limit (Radiochemistry)</td>
</tr>
<tr>
<td>RPD</td>
<td>Relative Percent Difference, a measure of the relative difference between two points</td>
</tr>
<tr>
<td>TEF</td>
<td>Toxicity Equivalent Factor (Dioxin)</td>
</tr>
<tr>
<td>TEQ</td>
<td>Toxicity Equivalent Quotient (Dioxin)</td>
</tr>
</tbody>
</table>
Job ID: 320-44463-3

Laboratory: TestAmerica Sacramento

Narrative

Job Narrative
320-44463-3

Receipt
The samples were received on 10/24/2018 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.1º C.

LCMS
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep
Method(s) 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-256546.

Method(s) 3535: The following sample was observed to be a light yellow color and contained sediment prior to extraction: 018PFAS-P2 (320-44463-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualifier</th>
<th>RL</th>
<th>MDL</th>
<th>Unit</th>
<th>Dil Fac D</th>
<th>Method</th>
<th>Prep Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorohexanoic acid (PFHxA)</td>
<td>0.91</td>
<td>J</td>
<td>1.7</td>
<td>0.50</td>
<td>ng/L</td>
<td>1</td>
<td>537 (modified)</td>
<td>Total/NA</td>
</tr>
<tr>
<td>Perfluoroheptanoic acid (PFHpA)</td>
<td>0.58</td>
<td>J</td>
<td>1.7</td>
<td>0.22</td>
<td>ng/L</td>
<td>1</td>
<td>537 (modified)</td>
<td>Total/NA</td>
</tr>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
<td>1.2</td>
<td>J</td>
<td>1.7</td>
<td>0.74</td>
<td>ng/L</td>
<td>1</td>
<td>537 (modified)</td>
<td>Total/NA</td>
</tr>
<tr>
<td>Perfluorononanoic acid (PFNA)</td>
<td>1.9</td>
<td></td>
<td>1.7</td>
<td>0.23</td>
<td>ng/L</td>
<td>1</td>
<td>537 (modified)</td>
<td>Total/NA</td>
</tr>
<tr>
<td>Perfluorobutanesulfonic acid (PFBS)</td>
<td>0.46</td>
<td>J</td>
<td>1.7</td>
<td>0.17</td>
<td>ng/L</td>
<td>1</td>
<td>537 (modified)</td>
<td>Total/NA</td>
</tr>
<tr>
<td>Perfluorohexanesulfonic acid (PFHxS)</td>
<td>3.0</td>
<td>B</td>
<td>1.7</td>
<td>0.15</td>
<td>ng/L</td>
<td>1</td>
<td>537 (modified)</td>
<td>Total/NA</td>
</tr>
<tr>
<td>Perfluorooctanesulfonic acid (PFOS)</td>
<td>3.7</td>
<td></td>
<td>1.7</td>
<td>0.47</td>
<td>ng/L</td>
<td>1</td>
<td>537 (modified)</td>
<td>Total/NA</td>
</tr>
</tbody>
</table>

This Detection Summary does not include radiochemical test results.
Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: 2018-PFAS Phase 2

<table>
<thead>
<tr>
<th>Method: 537 (modified) - Fluorinated Alkyl Substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyte</td>
</tr>
<tr>
<td>Perfluorohexanoic acid (PFHxA)</td>
</tr>
<tr>
<td>Perfluoroheptanoic acid (PFHpA)</td>
</tr>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
</tr>
<tr>
<td>Perfluorononanoic acid (PFNA)</td>
</tr>
<tr>
<td>Perfluorodecanoic acid (PFDA)</td>
</tr>
<tr>
<td>Perfluoroundecanoic acid (PFUnA)</td>
</tr>
<tr>
<td>Perfluorododecanoic acid (PFDoA)</td>
</tr>
<tr>
<td>Perfluorotridecanoic acid (PFTriA)</td>
</tr>
<tr>
<td>Perfluorotetradecanoic acid (PFTeA)</td>
</tr>
<tr>
<td>Perfluorobutanesulfonic acid (PFBS)</td>
</tr>
<tr>
<td>Perfluorohexanesulfonic acid (PFHxS)</td>
</tr>
<tr>
<td>Perfluoroctanesulfonic acid (PFOS)</td>
</tr>
</tbody>
</table>

Isotope Dilution

<table>
<thead>
<tr>
<th>Isotope Dilution</th>
<th>%Recovery</th>
<th>Qualifier</th>
<th>Limits</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Dil Fac</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C5 PFPeA</td>
<td>88</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C2 PFHxA</td>
<td>96</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C4 PFHpA</td>
<td>101</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C4 PFOA</td>
<td>100</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C5 PFNA</td>
<td>100</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C2 PFDA</td>
<td>100</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C2 PFUnA</td>
<td>112</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C2 PFDoA</td>
<td>100</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C2 PFTeDA</td>
<td>105</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C3 PFBS</td>
<td>85</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18O2 PFHxS</td>
<td>99</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13C4 PFOS</td>
<td>96</td>
<td>25 - 150</td>
<td>11/02/18 08:33</td>
<td>11/03/18 15:38</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Isotope Dilution Summary

Method: 537 (modified) - Fluorinated Alkyl Substances
Matrix: Water

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>PFPeA (25-150)</th>
<th>PFHxA (25-150)</th>
<th>PFHpA (25-150)</th>
<th>PFOA (25-150)</th>
<th>PFNA (25-150)</th>
<th>PFDA (25-150)</th>
<th>PFUnA (25-150)</th>
<th>PFDoA (25-150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>320-44463-5</td>
<td></td>
<td>88</td>
<td>96</td>
<td>101</td>
<td>100</td>
<td>100</td>
<td>112</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>LCS 320-256546/2-A</td>
<td>Lab Control Sample</td>
<td>94</td>
<td>96</td>
<td>96</td>
<td>102</td>
<td>93</td>
<td>92</td>
<td>98</td>
<td>91</td>
</tr>
<tr>
<td>LCSD 320-256546/3-A</td>
<td>Lab Control Sample Dup</td>
<td>98</td>
<td>94</td>
<td>97</td>
<td>106</td>
<td>101</td>
<td>95</td>
<td>104</td>
<td>91</td>
</tr>
<tr>
<td>MB 320-256546/1-A</td>
<td>Method Blank</td>
<td>98</td>
<td>98</td>
<td>101</td>
<td>105</td>
<td>102</td>
<td>103</td>
<td>103</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>PFTDA (25-150)</th>
<th>3C3-PFBS (25-150)</th>
<th>PFHxS (25-150)</th>
<th>PFOS (25-150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>320-44463-5</td>
<td></td>
<td>105</td>
<td>85</td>
<td>99</td>
<td>96</td>
</tr>
<tr>
<td>LCS 320-256546/2-A</td>
<td>Lab Control Sample</td>
<td>107</td>
<td>90</td>
<td>93</td>
<td>106</td>
</tr>
<tr>
<td>LCSD 320-256546/3-A</td>
<td>Lab Control Sample Dup</td>
<td>96</td>
<td>96</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>MB 320-256546/1-A</td>
<td>Method Blank</td>
<td>112</td>
<td>90</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

Surrogate Legend
- PFPeA = 13C5 PFPeA
- PFHxA = 13C2 PFHxA
- PFHpA = 13C4 PFHpA
- PFOA = 13C4 PFOA
- PFNA = 13C5 PFNA
- PFDA = 13C2 PFDA
- PFUnA = 13C2 PFUnA
- PFDoA = 13C2 PFDoA
- PFTDA = 13C2 PFTeDA
- 13C3-PFBS = 13C3 PFBS
- PFHxS = 18O2 PFHxS
- PFOS = 13C4 PFOS
Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-256546/1-A
Matrix: Water
Analysis Batch: 256822

<table>
<thead>
<tr>
<th>Analyte</th>
<th>MB Result</th>
<th>MB Qualifier</th>
<th>RL</th>
<th>MDL Unit</th>
<th>D Prepared</th>
<th>Analyzed</th>
<th>Dil Fac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorohexanoic acid (PFHxA)</td>
<td>ND</td>
<td>2.0</td>
<td>0.58 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorohexanoic acid (PFHxA)</td>
<td>ND</td>
<td>2.0</td>
<td>0.25 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluoroctanoic acid (PFOA)</td>
<td>ND</td>
<td>2.0</td>
<td>0.85 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorooctanoic acid (PFNA)</td>
<td>ND</td>
<td>2.0</td>
<td>0.27 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorodecanoic acid (PFDA)</td>
<td>ND</td>
<td>2.0</td>
<td>0.31 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluoroundecanoic acid (PFUnA)</td>
<td>ND</td>
<td>2.0</td>
<td>1.1 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorododecanoic acid (PFDoA)</td>
<td>ND</td>
<td>2.0</td>
<td>0.55 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorotridecanoic acid (PFTA)</td>
<td>ND</td>
<td>2.0</td>
<td>1.3 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorotetradecanoic acid (PFteA)</td>
<td>0.329 J</td>
<td>2.0</td>
<td>0.29 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorobutanesulfonic acid (PFBS)</td>
<td>ND</td>
<td>2.0</td>
<td>0.17 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perfluorohexanesulfonic acid (PFHxS)</td>
<td>0.321 J</td>
<td>2.0</td>
<td>0.54 ng/L</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Isotope Dilution

<table>
<thead>
<tr>
<th>Isotope Dilution</th>
<th>%Recovery</th>
<th>Limits</th>
<th>MB Qualifier</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Dil Fac</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C5 PFPeA</td>
<td>98</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C2 PFHxA</td>
<td>98</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C4 PFHpA</td>
<td>101</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C4 PFOA</td>
<td>105</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C5 PFNA</td>
<td>102</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C2 PFDA</td>
<td>103</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C2 PFUnA</td>
<td>103</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C2 PFDoA</td>
<td>92</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C2 PFteDA</td>
<td>112</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C3 PFBS</td>
<td>90</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>1802 PFHxS</td>
<td>97</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
<tr>
<td>13C4 PFOS</td>
<td>97</td>
<td>25 - 150</td>
<td>MB</td>
<td>11/02/18 08:33</td>
<td>11/03/18 14:46</td>
<td>1</td>
</tr>
</tbody>
</table>

Lab Sample ID: LCS 320-256546/2-A
Matrix: Water
Analysis Batch: 256822

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Spike Added</th>
<th>LCS Result</th>
<th>LCS Qualifier</th>
<th>Unit</th>
<th>D</th>
<th>%Rec.</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorohexanoic acid (PFHxA)</td>
<td>40.0</td>
<td>39.4</td>
<td>ng/L</td>
<td>98</td>
<td>66 - 126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorohexanoic acid (PFHxA)</td>
<td>40.0</td>
<td>39.9</td>
<td>ng/L</td>
<td>100</td>
<td>66 - 126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluoroctanoic acid (PFOA)</td>
<td>40.0</td>
<td>37.5</td>
<td>ng/L</td>
<td>94</td>
<td>64 - 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorooctanoic acid (PFNA)</td>
<td>40.0</td>
<td>43.0</td>
<td>ng/L</td>
<td>107</td>
<td>68 - 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorodecanoic acid (PFDA)</td>
<td>40.0</td>
<td>43.4</td>
<td>ng/L</td>
<td>109</td>
<td>69 - 129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluoroundecanoic acid (PFUnA)</td>
<td>40.0</td>
<td>42.7</td>
<td>ng/L</td>
<td>107</td>
<td>60 - 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorododecanoic acid (PFDoA)</td>
<td>40.0</td>
<td>38.6</td>
<td>ng/L</td>
<td>97</td>
<td>71 - 131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorotridecanoic acid (PFTA)</td>
<td>40.0</td>
<td>47.7</td>
<td>ng/L</td>
<td>119</td>
<td>72 - 132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorotetradecanoic acid (PFteA)</td>
<td>40.0</td>
<td>31.3</td>
<td>ng/L</td>
<td>78</td>
<td>68 - 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorobutanesulfonic acid (PFBS)</td>
<td>35.4</td>
<td>37.2</td>
<td>ng/L</td>
<td>105</td>
<td>73 - 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorohexanesulfonic acid (PFHxS)</td>
<td>36.4</td>
<td>32.5</td>
<td>ng/L</td>
<td>89</td>
<td>63 - 123</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TestAmerica Sacramento

Page 8 of 17
12/9/2018 (Rev. 1)
QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: 2018-PFAS Phase 2

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-256546/2-A
Matrix: Water
Analysis Batch: 256822

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Spike Added</th>
<th>LCS Result</th>
<th>LCS Qualifier</th>
<th>Unit</th>
<th>D</th>
<th>%Rec</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooctanesulfonic acid (PFOS)</td>
<td>37.1</td>
<td>31.4</td>
<td>ng/L</td>
<td>85</td>
<td></td>
<td>67 - 127</td>
<td></td>
</tr>
</tbody>
</table>

Isotope Dilution

<table>
<thead>
<tr>
<th>Isotope Dilution</th>
<th>LCS %Recovery</th>
<th>LCS Qualifier</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C5 PFPeA</td>
<td>94</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFHxA</td>
<td>96</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C4 PFHpA</td>
<td>96</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C4 PFOA</td>
<td>102</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C5 PFNA</td>
<td>93</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFDA</td>
<td>92</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFUnA</td>
<td>98</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFDoA</td>
<td>91</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFTeDA</td>
<td>107</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C3 PFBS</td>
<td>90</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>18O2 PFHxS</td>
<td>93</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C4 PFOS</td>
<td>106</td>
<td>25 - 150</td>
<td></td>
</tr>
</tbody>
</table>

Lab Sample ID: LCSD 320-256546/3-A
Matrix: Water
Analysis Batch: 256822

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Spike Added</th>
<th>LCSD Result</th>
<th>LCSD Qualifier</th>
<th>Unit</th>
<th>D</th>
<th>%Rec</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorohexanoic acid (PFHxA)</td>
<td>40.0</td>
<td>40.3</td>
<td>ng/L</td>
<td>101</td>
<td></td>
<td>66 - 126</td>
<td>2 30</td>
</tr>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
<td>40.0</td>
<td>42.6</td>
<td>ng/L</td>
<td>107</td>
<td></td>
<td>66 - 126</td>
<td>7 30</td>
</tr>
<tr>
<td>Perfluorononanoic acid (PFNA)</td>
<td>40.0</td>
<td>38.4</td>
<td>ng/L</td>
<td>96</td>
<td></td>
<td>68 - 128</td>
<td>11 30</td>
</tr>
<tr>
<td>Perfluorodecanoic acid (PFDA)</td>
<td>40.0</td>
<td>40.7</td>
<td>ng/L</td>
<td>102</td>
<td></td>
<td>69 - 129</td>
<td>7 30</td>
</tr>
<tr>
<td>Perfluoroundecanoic acid (PFUnA)</td>
<td>40.0</td>
<td>40.3</td>
<td>ng/L</td>
<td>101</td>
<td></td>
<td>60 - 120</td>
<td>6 30</td>
</tr>
<tr>
<td>Perfluorododecanoic acid (PFDoA)</td>
<td>40.0</td>
<td>38.6</td>
<td>ng/L</td>
<td>96</td>
<td></td>
<td>71 - 131</td>
<td>0 30</td>
</tr>
<tr>
<td>Perfluorotridecanoic acid (PFTriA)</td>
<td>40.0</td>
<td>44.3</td>
<td>ng/L</td>
<td>111</td>
<td></td>
<td>72 - 132</td>
<td>7 30</td>
</tr>
<tr>
<td>Perfluorotetradecanoic acid (PFTeA)</td>
<td>40.0</td>
<td>34.4</td>
<td>ng/L</td>
<td>86</td>
<td></td>
<td>68 - 128</td>
<td>9 30</td>
</tr>
<tr>
<td>Perfluorobutanesulfonic acid (PFBS)</td>
<td>35.4</td>
<td>36.0</td>
<td>ng/L</td>
<td>102</td>
<td></td>
<td>73 - 133</td>
<td>3 30</td>
</tr>
<tr>
<td>Perfluorohexanesulfonic acid (PFHxS)</td>
<td>36.4</td>
<td>34.0</td>
<td>ng/L</td>
<td>93</td>
<td></td>
<td>63 - 123</td>
<td>5 30</td>
</tr>
<tr>
<td>Perfluorooctanesulfonic acid (PFOS)</td>
<td>37.1</td>
<td>35.7</td>
<td>ng/L</td>
<td>96</td>
<td></td>
<td>67 - 127</td>
<td>13 30</td>
</tr>
</tbody>
</table>

Isotope Dilution

<table>
<thead>
<tr>
<th>Isotope Dilution</th>
<th>LCS %Recovery</th>
<th>LCS Qualifier</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C5 PFPeA</td>
<td>98</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFHxA</td>
<td>94</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C4 PFHpA</td>
<td>97</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C4 PFOA</td>
<td>106</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C5 PFNA</td>
<td>101</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFDA</td>
<td>95</td>
<td>25 - 150</td>
<td></td>
</tr>
<tr>
<td>13C2 PFUnA</td>
<td>104</td>
<td>25 - 150</td>
<td></td>
</tr>
</tbody>
</table>
QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: 2018-PFAS Phase 2
TestAmerica Job ID: 320-44463-3

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

<table>
<thead>
<tr>
<th>Isotope Dilution</th>
<th>%Recovery</th>
<th>LCSD Qualifier</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C2 PFDoA</td>
<td>91</td>
<td>LCSD</td>
<td>25 - 150</td>
</tr>
<tr>
<td>13C2 PFTeDA</td>
<td>96</td>
<td>LCSD</td>
<td>25 - 150</td>
</tr>
<tr>
<td>13C3 PFBS</td>
<td>96</td>
<td>LCSD</td>
<td>25 - 150</td>
</tr>
<tr>
<td>18O2 PFHxS</td>
<td>93</td>
<td>LCSD</td>
<td>25 - 150</td>
</tr>
<tr>
<td>13C4 PFOS</td>
<td>100</td>
<td>LCSD</td>
<td>25 - 150</td>
</tr>
</tbody>
</table>
QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: 2018-PFAS Phase 2

LCMS

Prep Batch: 256546

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Prep Type</th>
<th>Matrix</th>
<th>Method</th>
<th>Prep Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>320-44463-5</td>
<td></td>
<td>Total/NA</td>
<td>Water</td>
<td>3535</td>
<td></td>
</tr>
<tr>
<td>MB 320-256546/1-A</td>
<td>Method Blank</td>
<td>Total/NA</td>
<td>Water</td>
<td>3535</td>
<td></td>
</tr>
<tr>
<td>LCS 320-256546/2-A</td>
<td>Lab Control Sample</td>
<td>Total/NA</td>
<td>Water</td>
<td>3535</td>
<td></td>
</tr>
<tr>
<td>LCSD 320-256546/3-A</td>
<td>Lab Control Sample Dup</td>
<td>Total/NA</td>
<td>Water</td>
<td>3535</td>
<td></td>
</tr>
</tbody>
</table>

Analysis Batch: 256822

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Prep Type</th>
<th>Matrix</th>
<th>Method</th>
<th>Prep Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>320-44463-5</td>
<td></td>
<td>Total/NA</td>
<td>Water</td>
<td>537 (modified)</td>
<td>256546</td>
</tr>
<tr>
<td>MB 320-256546/1-A</td>
<td>Method Blank</td>
<td>Total/NA</td>
<td>Water</td>
<td>537 (modified)</td>
<td>256546</td>
</tr>
<tr>
<td>LCS 320-256546/2-A</td>
<td>Lab Control Sample</td>
<td>Total/NA</td>
<td>Water</td>
<td>537 (modified)</td>
<td>256546</td>
</tr>
<tr>
<td>LCSD 320-256546/3-A</td>
<td>Lab Control Sample Dup</td>
<td>Total/NA</td>
<td>Water</td>
<td>537 (modified)</td>
<td>256546</td>
</tr>
</tbody>
</table>
Client Sample ID: -2018PFAS-P2

Date Collected: 10/23/18 10:43
Date Received: 10/24/18 10:10

<table>
<thead>
<tr>
<th>Prep Type</th>
<th>Batch Type</th>
<th>Batch Method</th>
<th>Run</th>
<th>Dil Factor</th>
<th>Initial Amount</th>
<th>Final Amount</th>
<th>Batch Number</th>
<th>Prepared or Analyzed</th>
<th>Analyst</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total/NA</td>
<td>Prep</td>
<td>3535</td>
<td></td>
<td></td>
<td>287.4 mL</td>
<td>10.00 mL</td>
<td>256546</td>
<td>11/02/18 08:33</td>
<td>MYV</td>
<td>TAL SAC</td>
</tr>
<tr>
<td>Total/NA</td>
<td>Analysis</td>
<td>537 (modified)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>256822</td>
<td>11/03/18 15:38</td>
<td>CBW</td>
<td>TAL SAC</td>
</tr>
</tbody>
</table>

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600
Accreditation/Certification Summary

Client: Shannon & Wilson, Inc
Project/Site: 2018-PFAS Phase 2

Laboratory: TestAmerica Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

<table>
<thead>
<tr>
<th>Authority</th>
<th>Program</th>
<th>EPA Region</th>
<th>Identification Number</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska (UST)</td>
<td>State Program</td>
<td>10</td>
<td>17-020</td>
<td>01-20-21</td>
</tr>
<tr>
<td>ANAB</td>
<td>DoD ELAP</td>
<td></td>
<td>L2468</td>
<td>01-20-21</td>
</tr>
<tr>
<td>Arizona</td>
<td>State Program</td>
<td>9</td>
<td>AZ0708</td>
<td>08-11-19</td>
</tr>
<tr>
<td>Arkansas DEQ</td>
<td>State Program</td>
<td>6</td>
<td>88-0691</td>
<td>06-17-19</td>
</tr>
<tr>
<td>California</td>
<td>State Program</td>
<td>9</td>
<td>2897</td>
<td>01-31-19</td>
</tr>
<tr>
<td>Colorado</td>
<td>State Program</td>
<td>8</td>
<td>CA00044</td>
<td>08-31-19</td>
</tr>
<tr>
<td>Connecticut</td>
<td>State Program</td>
<td>1</td>
<td>PH-0691</td>
<td>06-30-19</td>
</tr>
<tr>
<td>Florida</td>
<td>NELAP</td>
<td>4</td>
<td>E87570</td>
<td>06-30-19</td>
</tr>
<tr>
<td>Georgia</td>
<td>State Program</td>
<td>4</td>
<td>N/A</td>
<td>01-28-19</td>
</tr>
<tr>
<td>Hawaii</td>
<td>State Program</td>
<td>9</td>
<td>N/A</td>
<td>01-29-19</td>
</tr>
<tr>
<td>Illinois</td>
<td>NELAP</td>
<td>5</td>
<td>200060</td>
<td>03-17-19</td>
</tr>
<tr>
<td>Kansas</td>
<td>NELAP</td>
<td>7</td>
<td>E-10375</td>
<td>11-30-18</td>
</tr>
<tr>
<td>Louisiana</td>
<td>NELAP</td>
<td>6</td>
<td>30612</td>
<td>06-30-19</td>
</tr>
<tr>
<td>Maine</td>
<td>State Program</td>
<td>1</td>
<td>CA0004</td>
<td>04-14-20</td>
</tr>
<tr>
<td>Michigan</td>
<td>State Program</td>
<td>5</td>
<td>9947</td>
<td>01-31-20</td>
</tr>
<tr>
<td>Nevada</td>
<td>State Program</td>
<td>9</td>
<td>CA00044</td>
<td>07-31-19</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>NELAP</td>
<td>1</td>
<td>2997</td>
<td>04-18-19</td>
</tr>
<tr>
<td>New Jersey</td>
<td>NELAP</td>
<td>2</td>
<td>CA005</td>
<td>06-30-19</td>
</tr>
<tr>
<td>New York</td>
<td>NELAP</td>
<td>2</td>
<td>11666</td>
<td>03-31-19</td>
</tr>
<tr>
<td>Oregon</td>
<td>NELAP</td>
<td>10</td>
<td>4040</td>
<td>01-29-19</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>NELAP</td>
<td>3</td>
<td>68-01272</td>
<td>03-31-19</td>
</tr>
<tr>
<td>Texas</td>
<td>NELAP</td>
<td>6</td>
<td>T104704399</td>
<td>05-31-19</td>
</tr>
<tr>
<td>US Fish & Wildlife</td>
<td>Federal</td>
<td></td>
<td>LE148388-0</td>
<td>07-31-19</td>
</tr>
<tr>
<td>USDA</td>
<td>Federal</td>
<td></td>
<td>P330-18-00239</td>
<td>01-17-21</td>
</tr>
<tr>
<td>USEPA UCMR</td>
<td>Federal</td>
<td>1</td>
<td>CA00044</td>
<td>12-31-20</td>
</tr>
<tr>
<td>Utah</td>
<td>NELAP</td>
<td>8</td>
<td>CA00044</td>
<td>02-28-19</td>
</tr>
<tr>
<td>Vermont</td>
<td>State Program</td>
<td>1</td>
<td>VT-4040</td>
<td>04-30-19</td>
</tr>
<tr>
<td>Virginia</td>
<td>NELAP</td>
<td>3</td>
<td>460278</td>
<td>03-14-19</td>
</tr>
<tr>
<td>Washington</td>
<td>State Program</td>
<td>10</td>
<td>C581</td>
<td>05-05-19</td>
</tr>
<tr>
<td>West Virginia (DW)</td>
<td>State Program</td>
<td>3</td>
<td>9930C</td>
<td>12-31-18</td>
</tr>
<tr>
<td>Wyoming</td>
<td>State Program</td>
<td>8</td>
<td>8TMS-L</td>
<td>01-28-19</td>
</tr>
</tbody>
</table>
Method Summary

Client: Shannon & Wilson, Inc
Project/Site: 2018-PFAS Phase 2
TestAmerica Job ID: 320-44463-3

<table>
<thead>
<tr>
<th>Method</th>
<th>Method Description</th>
<th>Protocol</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>537 (modified)</td>
<td>Fluorinated Alkyl Substances</td>
<td>EPA</td>
<td>TAL SAC</td>
</tr>
<tr>
<td>3535</td>
<td>Solid-Phase Extraction (SPE)</td>
<td>SW846</td>
<td>TAL SAC</td>
</tr>
</tbody>
</table>

Protocol References:
EPA = US Environmental Protection Agency

Laboratory References:
TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600
<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Matrix</th>
<th>Collected</th>
<th>Received</th>
</tr>
</thead>
</table>
Chain-of-Custody Record

Laboratory: Tesa America
Attention:
2355 Hill Road
Fairbanks, AK 99709
(907) 479-0600
www.shannonwilson.com

Analytical Methods (Include preservative if used)

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>D Analysis</th>
</tr>
</thead>
</table>

Total Number of Containers: 2

Remarks/Matrix Composition/Grab? Sample Containers:

Sample Identity

<table>
<thead>
<tr>
<th>Lab No.</th>
<th>Time</th>
<th>Date Sampled</th>
<th>PFA & PA 3ST D Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1043</td>
<td>10/23/18</td>
<td></td>
</tr>
</tbody>
</table>

Project Information

- **Number:** 101965-002
- **Name:** 2018 PFA & PA 3ST
- **Contact:** SMI
- **Ongoing Project?** Yes
- **Sampler:** ARM

Sample Receipt

- **Total No. of Containers:** 2
- **COC Seals/Intact?** Y/N/NA
- **Received Good Cond./Cold Temp?:**
- **Delivery Method:** Ground

Relinquished By:

1. **Signature:**
 Time: 10/23/18
 Printed Name: A. Masters
 Company: Shannon & Wilson, Inc

2. **Signature:**
 Time: 10/23/18
 Printed Name:
 Company:

3. **Signature:**
 Time: 10/23/18
 Printed Name:
 Company:

Received By:

1. **Signature:**
 Time: 10/10
 Printed Name:
 Company:

2. **Signature:**
 Time: 10/10
 Printed Name:
 Company:

3. **Signature:**
 Time: 10/10
 Printed Name:
 Company:

Notes:

- **Distribution:** White - w/shipment - returned to Shannon & Wilson w/laboratory report
 Yellow - w/shipment - for consignee files
 Pink - Shannon & Wilson - job file

- **Bill to SWI**
Login Sample Receipt Checklist

Client: Shannon & Wilson, Inc
Job Number: 320-44463-3
Login Number: 44463
List Number: 1
Creator: Nelson, Kym D
List Source: TestAmerica Sacramento

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactivity wasn't checked or is (\leq) background as measured by a survey meter.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>The cooler's custody seal, if present, is intact.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample custody seals, if present, are intact.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>The cooler or samples do not appear to have been compromised or tampered with.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples were received on ice.</td>
<td>False</td>
<td>gel packs</td>
</tr>
<tr>
<td>Cooler Temperature is acceptable.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Cooler Temperature is recorded.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out in ink and legible.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>COC is filled out with all pertinent information.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Is the Field Sampler's name present on COC?</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>There are no discrepancies between the containers received and the COC.</td>
<td>False</td>
<td>Refer to Job Narrative for details.</td>
</tr>
<tr>
<td>Samples are received within Holding Time (excluding tests with immediate HTs)</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample containers have legible labels.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Containers are not broken or leaking.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample collection date/times are provided.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Appropriate sample containers are used.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample bottles are completely filled.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Sample Preservation Verified.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Containers requiring zero headspace have no headspace or bubble is (<6mm (1/4")).</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Multiphasic samples are not present.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Samples do not require splitting or compositing.</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>Residual Chlorine Checked.</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>