

Metals and Ammonia Removal from Wastewaters

Ira Donovan, M.S.F. Reinaldo Gonzalez, Ph.D.

June 2010

Outline

- Background
- Ammonia removal technologies
- Metals removal technologies
- Proposed treatment methodology

Interim Limits

TABLE 2.1: DESIGN CRITERIA FOR END-OF-PIPE POLLUTANT REDUCTION

Parameter	Typical Influent Range (Output from AWTS)	Target Effluent ¹ (Removal rate) Not to exceed design capacity	
Flow	Max 60 m³/hour and 1440 m³/day Highly variable²		
Total Suspended Solids (TSS)	1 – 11 mg/l	150 mg/l max	
Biochemical Oxygen Demand (BOD) 5-day	3.1 – 126 mg/l	60 mg/l max (50%)	
рН	6.2 – 9.5	6.5 min / 8.5 max	
Total Residual Chlorine	ND – 0.20 mg/l	0.0075 mg/l max (96%)	
Ammonia (NH ³)	4.6 – 150.0 mg/l	2.9 mg/l max (98%)	
Nickel (Ni)	7.0 – 44.0 µg/l*	8.2 μg/l max (82%)	
Zinc (Zn)	7.0 – 501.0 μg/l*	81.0 µg/l max (84%)	
Copper (Cu)	1.0 – 140.0 μg/l*	3.1 µg/l max (98%)	

* From 2008 cruise ship testing data. Results were highly variable and at times the target limits were met.

TABLE 2.2: AWTS TECHNOLOGIES CURRENTLY USED ON VESSELS DISCHARGING IN ALASKA FOR SHIPBOARD WASTEWATER TREATMENT PHASES

	Treatment Phase Methods				Vessels
AWTS	Primary Solids Separation	Secondary Organic Digestion	Tertiary Clarification	Disinfection	with AWTS
Biopure Marisan	Coarse Screen	Aerobic Biological Oxidation (MBR)	Flotation (DAF) / Microfiltration	UV	1
Hamworthy Bioreactor	Screen Press	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	9
Hydroxyl Cleansea	Coarse Drum Filter	Aerobic Biological Oxidation (MBR)	Flotation (DAF) / Polishing Filter	UV	2
Rochem Bio-filtration	Vibratory Screens	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	2
Scanship	Wedgewire Screen	Aerobic Biological Oxidation (MBR)	Flotation (DAF) / Polishing Filter	UV	4
Triton / Rochem	∨ibratory Screens	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	1
Zenon	Coarse Screen	Aerobic Biological Oxidation (MBR)	Ultrafiltration Membranes	UV	6

Feasibility Assessment

- Marine Certification of New Systems
- Available Space on Vessels
- Waste Management
- Cost
- Compliance with permit stipulations
- Technology Capability and Availability
- Burns & McDonnell retained as waste treatment experts for land based systems

Ammonia Sources

- Main Sources of Ammonia:
 - Domestic wastewater (typical 15 to 50 mg/L)
 - -Fertilizers

Burnser

SINCE 1898

-Industrial contributions

Ammonia Sources

- Main sources of Ammonia in Cruise Ships:
 - -Domestic wastewater (black water)
 - -Some cleaning agents

Ammonia Removal

• Why to remove ammonia?

Burnser

SINCE 1898

 Nutrient that impact environmental equilibrium when present in excess in receiving waters

Ammonia Removal

Cause acute toxicity to aquatic life in receiving waters

Ammonia Treatment Technologies

- Most commonly used:
 - -Biological nitrification-denitrification
 - -Breakpoint chlorination
 - -Selective ion exchange
 - -Air stripping
- Less commonly used:
 - -Electrodialysis
 - -Reverse osmosis (RO)
 - -Emerging technologies

Nitrification

- Reactions:
 - $-2NH_4^+ + 3O_2 = 2NO_2^- + 4H^+ + 2H_2O$
 - $-2NO_2^{-} + O_2^{-} = 2NO_3^{-}$
 - -Overall Reaction:
 - $NH_4^+ + 2O_2 = NO_3^- + 2N^+ + H_2O_3^-$

Nitrification

- 1 mg/L of ammonia requires 4.6 mg/L of O₂ for conversion to NO₃⁻
- 7.14 mg of alkalinity as CaCO₃ are destroyed per mg of ammonia oxidized

- As temperature decreases the rate of nitrification also decreases
- As sludge age (SRT) increases the rate of nitrification also increases. Min SRT = 5 d for domestic wastewater at 20 °C

Nitrification

- Typical treatment systems:
 - -Plug-Flow activated sludge
 - -Complete mixed activated sludge
 - -Extended aeration
 - -Oxidation ditch systems
 - -Sequencing batch reactor (SBR)
 - -Membrane bio-reactors (MBR)
 - Fixed-film systems (biotowers, rotating biological contactors – RBC, moving bed bioreactors – MBBR)

BMcD Experience Municipal Wastewater

- Type: Activated Sludge
- Flow: 3,800 to 720,000 m³/day
- Wastewater NH₃-N:
- Effluent NH₃-N:
- 2010 Permit:

- 10 to 50 mg/L
- < 3.0 mg/L

2.9 mg/L

BMcD Experience Commercial Wastewater

- Type:
- Flow:
- Wastewater NH₃-N:
- Effluent NH₃-N:
- 2010 Permit:

MBR 40 to 80 m³/day 90 to 110 mg/L < 3.0 mg/L 2.9 mg/L

BMcD Experience Grey Water Reuse

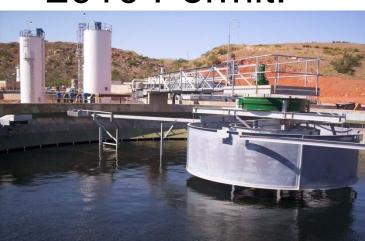
- Type:
- Flow:
- Wastewater TKN:
- Effluent TKN:

MBR and UF/RO 10 to 18 m³/day 20 mg/L <10 mg/L

- Effluent NH₃-N: <1.0 mg/L
- 2010 Permit: 2.9 mg/L

BMcD Experience Refinery Wastewater

• Type:


Burns &

SINCE 1898

- Flow: 3,000 m³/day
- Wastewater TKN: 50 mg/L
- Effluent TKN: <5.0
- Effluent NH₃-N:
- 2010 Permit:

<5.0 mg/L 1.0 mg/L 2.9 mg/L

Fixed Film



Burns & BMcD Experience McDonnell SINCE 1898 Beef Processing Wastewater

- Type:
- Wastewater NH₃-N:
- Effluent NH₃-N:
- 2010 Permit:

Activated Sludge 90 to 260 mg/L <1.0 mg/L 2.9 mg/L

BMcD Experience Pork Processing Wastewater

• Type:

Burns &

SINCE 1898

- Wastewater NH₃-N:
- Effluent NH₃-N:
- 2010 Permit:

Activated Sludge 90 to 180 mg/L <1.0 mg/L 2.9 mg/L

Breakpoint Chlorination

- Ammonia removal by addition of chlorine
- Can achieve 95% to 99% removal efficiency
- Ratio chlorine to ammonia of 7.6 to 1
- Chlorine handling may be an issue

Breakpoint Chlorination

• Reactions:

Burns &

SINCE 1898

 $-NH_4^+ + HOCI = NH_2CI$ (monochloramine) $-NH_2CI + HOCI = NHCI_2$ (dichloramine)

 $-NH_4^+ + 1.5 \text{ HOCI} = 0.5 N_2^+ + 1.5 H_2^- + 2.5 H^+ + 1.5 \text{ Cl}^-$

Air Stripping

- Conversion of ammonium to NH₃ gas by increasing pH to 10.5 11.5
 −NH4⁺ → NH₃ gas + H⁺
- Removal of NH₃ gas by stripping

Air Stripping

- Countercurrent flow of air and water containing ammonia
- Resemble conventional cooling tower
- Odor threshold of ammonia is 35 mg/m³
- Consider air pollution regulations

Metals Removal

- Technologies
 - -Chemical Precipitation
 - -Ion Exchange
 - -Reverse Osmosis
 - -Electrowinning
 - -Electrodialysis

Metals Removal

Treatment Methodology

- -Source Water
 - High background levels of metals
- -Wastewater
 - Evaporators
 - Leaching or impingement from pipes and fixtures
 - Chemical use

Metals Removal

SAMPLING RESULTS BY PORTS OF CONCERN FOR CONTAMINANTS OF CONCERN

		Average	Maximum	Exceedance Rate
Port	Contaminant	(µg/L)	(µg/L)	(% of Samples)
Vancouver	Copper	20	120	77
	Zinc	-	280	-
Juneau	Copper	54	280	83
Victoria	Copper	4	7	100
Seattle	Zinc	499	1500	63
Skagway	Nickel	28	470	29

Chemical Precipitation

- Addition of Alkaline Hydroxide to adjust pH
- Addition of Sulfur compounds
- Formation of insoluble metal hydroxide or sulfide compounds

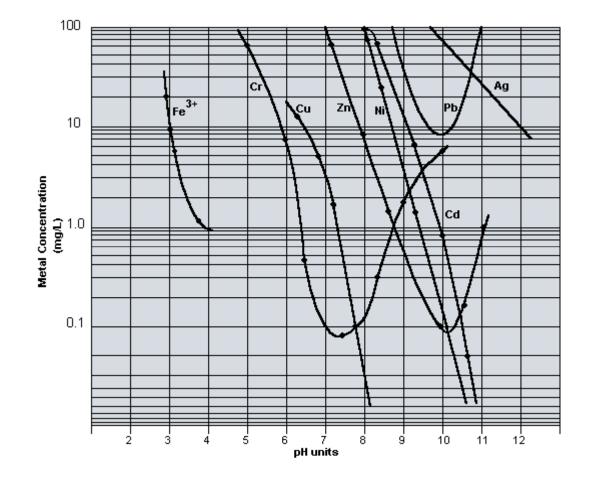
Burns &

SINCE 1898

Chemical Precipitation

• Precipitation and clarification or filtration

Burns


SINCE 1898

- Solids separation to form sludge or cake
- Effluent quality dependent upon Metal
- Potential inhibition of chelating compounds

Metal Hydroxide Solubility Curves

Burns & Chemical Precipitation

- Effluent could reduce metals to ppm levels
- Process alone may not meet proposed levels
- Identified for use on wastewater only

- Use of Cation or Ion Selective resins to adsorb soluble metals
- Release of sodium, hydrogen, or chlorides into solution

- Regeneration concentrates adsorbed metals for storage or treatment
- Can be used on source water or wastewater
- Effluent can produce metal levels to ppb or non-detectable levels

Ion Exchange

- Influent Quality
 - -No Suspended Solids
 - -No Oil or Grease
 - -Need to know all ions
- Use as Polishing Step

Equipment can be Port or Ship side

Reverse Osmosis

- Use of Membranes under pressure to physically separate compounds and ions
- Technology can be used on source or wastewater
- Application can require a single or multiple pass setup of equipment
- Depending on influent qualities, ppm or ppb levels can be achieved

Reverse Osmosis

- Process could be 85-99% efficient in removal/pass
- Variety of configurations
- Influent Quality

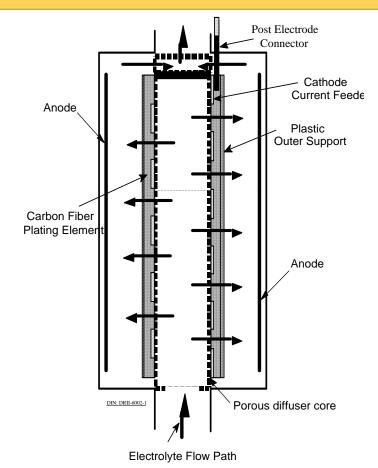
Burns &

SINCE 1898

- -No Suspended Solids
- -No Oil or Grease
- -No Particles
- -Sensitive to Scaling

Reverse Osmosis

- Equipment can be installed port or ship side
- Variety of configurations
- Equipment utilizes electrical loads



Electrowinning

- Application of direct electrical current to deposit metal on a cathode
- Used in mining and metal finishing industries extensively
- Technology requires retention time
- Effluent can effectively/efficiently remove metals to the ppm level
- Competing reaction with hydrolysis

- Use on source water
- Use on concentrates
 - -RO reject
 - -IX regenerant
 - -ED reject
- Equipment compact

Burns & McDonnell SINCE 1898

Electrodialysis

- Application of direct current across a semipermeable membrane to concentrate ions
- Potential use on source or wastewater
- Effluent quality can achieve ppm or ppb levels
- Requires time retention or multiple passes

Electrodialysis

- Could be used on concentrates
 - -RO Reject
 - -IX Regenerant
- Equipment size to be determined by influent water

Burns & Treatment Methodology

Source or Bunkered Water

- Treat water prior to acceptance or use
- It is easier to remove metals in uncontaminated water
- Use of Port or Ship side equipment
- Reverse Osmosis and Ion Exchange independently or in conjunction with each other are viable opportunities

Treatment Methodology

Wastewater

- Recommend treating water after MBR unit
- Any Ammonia may complex copper
- Chemical Precipitation is viable initial treatment, but needs further steps
- Reverse Osmosis and Ion Exchange are viable as initial or polishing treatments
- ED and Electrowinning may have opportunities for treatment
- Additional information needed and treatability studies should be conducted

Questions

Thank you!

