The Technical Committee acknowledges the unique hydrodynamic patterns, current-flow, and productivity correlated with Hinchinbrook Canyon. The designation of avoidance areas landward of Hinchinbrook Canyon would be considered when making case-by-case decisions.

3. Continental Shelf Break and Slope (PWP Balances): The continental shelf break and slope are critical to making the GOM one of the most productive marine ecosystems in the world. This is where nutrients are brought up along the abyssal plain and are subject to geophysical, biological, and aquatic communities. Especially in the PWP, nutrient concentrations are known to attract high concentrations of pelagic, planktonic, and a variety of vertebrates. The Technical Committee acknowledges the unique hydrodynamic patterns, current-flow, and productivity correlated with the continental shelf break and slope. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity would be considered when making case-by-case decisions.

The Technical Committee recommends that Habitat Areas of Particular Concern (HAPC) be considered when making case-by-case decisions. We believe in rapid and robust oil spill response, and thus urge you to conduct a more thorough analysis of dispersant use and impacts as well as consider the technical alternatives.

Dispersion of dispersed oil and impacts is an ongoing endeavor that requires part of the Dispersant Use Process to make progress from its inception. Public comments about the overall Dispersant Use Plan for Alaska (April 4, 2014) were sought from ARRT, NOAA, Cook Inletkeeper, and Prince William Soundkeeper. A public comment period was held from January 27, 2015, through January 31, 2015. The comment period ended on January 31, 2015, and every effort was made to identify and respond to comments.

HAPCs were recommended as avoidance areas because the water column and the bottom could be impacted. Most HAPCs in the PWS area are located in the 1,200-meter isobath and, therefore, any designated avoidance areas where the case-by-case dispersant use authorization process would be used. Performers of certain HAPCs are released at the 1,200-meter isobath, so these areas are designated as avoidance areas. The Technical Committee recommends that the Technical Committee recommends that Habitat Areas of Particular Concern (HAPC) be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamic patterns, current-flow, and productivity correlated with the continental shelf break and slope. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamic patterns, current-flow, and productivity correlated with Hinchinbrook Canyon. The designation of avoidance areas landward of Hinchinbrook Canyon would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamic patterns, current-flow, and productivity correlated with candlepinical areas. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamic patterns, current-flow, and productivity correlated with candlepinical areas. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity would be considered when making case-by-case decisions.
the following mechanisms for the mixing of this nutrient-rich water onto the topographic steering toward the surface. Different oceanographic teams favor slope and shelf break are critical habitat. They are central to making the CGOA narrower and closer to shore than North Albatross Bank so less of it is in the flat, very nutrient rich bank between Chiniak Trough and Barnabus Trough. It is the richest Banks near Kodiak City. These highly productive areas are important for many human uses of the abundant living resources, including commercial fishing, a plethora of recreational uses, and traditional and customary uses of the area. They also provide habitat and food sources for endangered and threatened species.

Chiniak Trough: Both the banks and troughs throughout the Kodiak Subarea support major commercial and subsistence fisheries (Mundy 2006). juvenile fish and juvenile fish species in turn are necessary for the health of numerous forage species and marine mammals (Mundy 2005). Mundy 2009, Mundy 2010). These highly productive areas are impacted for many human uses of the abundant living resources, including commercial fishing, a plethora of recreational uses, and traditional and customary uses of the area. They also provide habitat and food sources for endangered and threatened species. The area. They also provide habitat and food sources for endangered and threatened species.

Middle Albatross Bank: Middle Albatross Bank is relatively shallow. It is very nutrient rich bank between Chiniak Trough and Barabies Trough. It is broader and less to the North than North Albatross Bank as seen in it is the productive area. Both the banks and troughs throughout the Kodiak Subarea support major commercial and subsistence fisheries (Mundy 2006). juvenile fish and juvenile fish species in turn are necessary for the health of numerous forage species and marine mammals (Mundy 2005). Mundy 2009, Mundy 2010). These highly productive areas are impacted for many human uses of the abundant living resources, including commercial fishing, a plethora of recreational uses, and traditional and customary uses of the area. They also provide habitat and food sources for endangered and threatened species. The area. They also provide habitat and food sources for endangered and threatened species.

North Albatross Bank: North Albatross Bank is the southern terminus of the geologically active Albatross Trough and north of the Tugboat Islands. It is the geology that is the most important part of the bank in the productive area. Both the banks and troughs throughout the Kodiak Subarea support major commercial and subsistence fisheries (Mundy 2006). juvenile fish and juvenile fish species in turn are necessary for the health of numerous forage species and marine mammals (Mundy 2005). Mundy 2009, Mundy 2010). These highly productive areas are impacted for many human uses of the abundant living resources, including commercial fishing, a plethora of recreational uses, and traditional and customary uses of the area. They also provide habitat and food sources for endangered and threatened species. The area. They also provide habitat and food sources for endangered and threatened species.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Middle Albatross Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with North Albatross Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Chiniak Trough. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Barabies Trough. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Galley Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Chiniak Trough. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Galley Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Chiniak Trough. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Galley Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Chiniak Trough. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Galley Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Chiniak Trough. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Galley Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Chiniak Trough. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.

The Technical Committee acknowledges the unique hydrodynamics patterns, nutrient flow, and productivity correlated with Galley Bank. The designation of avoidance areas landward of the 1,000-meter isobath includes this feature, which would be subject to the case-by-case dispersant use authorization process. Ecological productivity and cultural significance would be considered when making case-by-case decisions.
How long have dispersants been used for spills and how often they are used?

Dispersants have been used in some countries since the 1960s. A recent report by the U.S. Coast Guard (USCG) conducted government-to-government tribal consultations in accordance with Executive Order 13175 during the dispersant plan for Alaska and is consistent with what dispersants are used to be minimized. The dispersant used in the Alaska study, Corexit 9500, was originally developed for use in spills in the Gulf of Mexico due to its ability to disperse oil. The study found that dispersants can reduce the amount of oil on the surface of the water, making it more difficult for birds and other wildlife to ingest. The study also found that dispersants can reduce the amount of oil that is transported to the seabed, where it can be more difficult to remove. However, the study did not find that dispersants were effective in reducing the overall amount of oil that was released into the environment. As a result, the use of dispersants in the Alaska study was limited to those cases where other options for oil recovery were not available. The study also found that dispersants can increase the amount of oil that is dispersed, which can be harmful to marine life. The study recommended that dispersants be used only as a last resort, after all other options for oil recovery have been considered. The study also recommended that dispersants be used only in cases where there is a high likelihood of success, and that the use of dispersants be monitored closely to ensure that they are not causing more harm than good.
The study did not consider the possible presence of a freshwater lens in the area.

was the Steller sea lion considered in the ESA consultation? There was an inadequate basis for permitting.

monitoring dispersant use both pre and post spill and will increase the level of the Appendix F of the Unified Plan. This report has additional suggestions on the environmental trade-offs of dispersant use and possible effects to cetaceans. For more information, visit the NMFS Biological Opinion here: http://www.evostc.state.ak.us/Universal/Documents/Publications/04-05-15_15.pdf.'
Will the comments be publicly available?

Certain conditions favor one response strategy over another. Mechanical recovery is more effective in calm water, whereas successful dispersant use requires a certain amount of stirring (wind/swell energy). Dispersant may be applied in a broader range of environmental conditions, such as high winds and rough seas, than mechanical recovery. Advantages condition the acceptability of each strategy and the necessity of having a robust strategy.

In Alaska, ARRTs are the only oil spill response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

In Alaska, ARRTs provide a response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

The USCG and the Alaska Department of Natural Resources (DNR) have developed a list of areas that are described in the Alaska Oil Spill Response Plan (ASORP). This list includes areas that are described in the Alaska Oil Spill Response Plan (ASORP). The list describes areas that are described in the Alaska Oil Spill Response Plan (ASORP).

In Alaska, ARRTs provide a response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

When this new policy was being drafted, an ARRT-based interagency policy development team created an Avoidance Areas Plan for Alaska. This plan established a list of proposed Avoidance Areas for dispersant use in Alaska. The plan established a list of proposed Avoidance Areas for dispersant use in Alaska. The plan established a list of proposed Avoidance Areas for dispersant use in Alaska.

In Alaska, ARRTs provide a response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

In Alaska, ARRTs provide a response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

In Alaska, ARRTs provide a response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

In Alaska, ARRTs provide a response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

In Alaska, ARRTs provide a response organization that is certified to conduct and provide risk-based response plans and first response operations for incident response. Alaska’s ARRT is required to review and maintain operating conditions that reflect current oil spill response capabilities. The oil spill response plan is reviewed annually and consists of a risk assessment that is based on the availability of response resources that are required to meet the incident response.

The USCG and the Alaska Department of Natural Resources (DNR) have developed a list of areas that are described in the Alaska Oil Spill Response Plan (ASORP). This list includes areas that are described in the Alaska Oil Spill Response Plan (ASORP). The list describes areas that are described in the Alaska Oil Spill Response Plan (ASORP).
The Prince William Sound oil spill response plan describes the use of dispersants in Alaska oil spills. The plan is intended to prevent or disperse oil from reaching sensitive areas, especially those inhabited by wildlife. The plan outlines the process for determining dispersant use, emphasizing the importance of scientific data and the role of federal agencies in making informed decisions.

Process for Determining Dispersant Use

Dispersant use in the vicinity of Alaska's coastline is determined by various factors, including the nature of the oil spill and the environmental conditions. The process involves several steps, starting with the identification of the spill location and extent. Following this, the dispersant use plan is developed, taking into account the potential for oil to spread and the impact on sensitive habitats and wildlife.

Scientific Data and Expertise

Scientific data, including environmental assessments and predictions, play a crucial role in deciding on dispersant use. The stakeholders involved include federal agencies (USCG, NOAA, NMFS, USFWS), state agencies, and local communities. The process involves a collaborative effort to ensure that decisions are made in the best interest of both the environment and public health.

Ethical Considerations

Ethical considerations are also taken into account, ensuring that dispersants are used responsibly and with due regard for the well-being of all involved parties. The use of dispersants is considered only after all other response options have been exhausted, and the potential benefits outweigh the potential risks.

Conclusion

The use of dispersants in Alaska is a complex and multifaceted issue, requiring careful consideration of both environmental and social impacts. The Prince William Sound oil spill response plan serves as a guide for future developments, emphasizing the importance of scientific data and the need for a collaborative approach to decision-making.
The Plan should guarantee not to increase the take by North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their ESA sets reasonable standards by requiring federal agencies to avoid impacting threatened and endangered species and their critical habitat, when possible, and to mitigate impacts when unavoidable.

The environmental justice impacts of dispersant use should be disclosed in the plan.

The Plan acknowledges that subsistence uses will be impacted by the dispersant use plan. The Plan for Alaska, which states, "Subsistence resources may be impacted by oil or dispersed oil".

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their

The Plan should guarantee not to increase the harm to North Pacific right whales, Steller sea lions, polar bears, and Cook Inlet belugas; their critical habitat; and their
We recommend further consultation with tribes about the impact of the Dispersant Use Plan on subsistence use.

The USCG conducted government-to-government tribal consultation in accordance with Executive Order 13175 during the development of the Dispersant Use Plan for Alaska. The establishment of Dispersant Avoidance Areas Sections within appropriate subarea contingency plans was directed by the Dispersant Use Plan for Alaska and is, therefore, covered under that same consultation. Also, avoidance areas will be maintained by subarea committees that are open to membership by federally-recognized tribes. In addition to government-to-government tribal consultation, the USCG conducted additional community outreach in Valdez, Kodiak, and Unalaska, along with a booth at the Bureau of Indian Affairs Providers Conference in Anchorage, to provide the opportunity for additional public comment by federally-recognized tribes prior to the identification of avoidance areas. Further, the Dispersant Use Plan for Alaska requires notification to representatives for each appropriate federally-recognized tribe if the FOSC decides to authorize the use of dispersants in the Preauthorization Area. The plan also requires notification to, and a request for input from, federally-recognized tribes facing the authorization process for dispersant use in an avoidance area or Undesignated Area.

Consultation with co-management groups, established under the Marine Mammal Protection Act, was insufficient, so preauthorization should not be implemented.

The Preauthorization Area was established by the Alaska Regional Response Team in the 2016 Dispersant Use Plan for Alaska. As directed by this plan, this current initiative focused on establishing avoidance areas within the Preauthorization Area, which are included in a Dispersant Avoidance Areas Section within each applicable subarea contingency plan. Public outreach efforts were conducted, including widely publicized opportunities to provide public comments. The USCG also conducted government-to-government tribal consultation in accordance with Executive Order 13175 during the development of the Dispersant Use Plan for Alaska. While consultation between the USCG and co-management groups is not required, the USCG believes that these outreach efforts and consultations provided notification to co-management group members. Avoidance area designations within applicable subarea contingency plans will be maintained by subarea committees that are open to membership by co-management agencies.

Individual subarea contingency plans are updated on a five-year basis unless critical updates require more timely, out-of-cycle changes. Feedback to improve these plans is always welcome and can be submitted to decsparplanning@alaska.gov. Please write "Subarea Contingency Plan Feedback" in your subject line to ensure your comments can be queued and prioritized by agency planning staff.
