

Alaska Gasline Development Corporation	Date: January 10, 2020
Alaska Department of Environmental Conservation	
BACT AQ1524CPT01 and AQ1539CPT01	
Information Request	
Public	Page 1 of 21

INFORMATION REQUEST REFERENCE INFORMATION

Agency	Date of Request	Letter Request No.	AGDC ID No.
ADEC	12-3-2019	N/A	N/A

REQUEST:

Provide additional information to support the use of facility specific cost factors and vendor data to the EPA Cost Control Manual equations (6th edition) used to evaluate cost effectiveness for Selective Catalytic Reduction. Alternatively, provide updated cost effectiveness calculations using EPA default cost factors and equations.

RESPONSE:

AGDC has reviewed the cost-effectiveness calculations and updated them based on ADEC input. The revised cost effectiveness calculations continue to demonstrate that installation of a selective catalytic reduction (SCR) system on the Gas Treatment Plant (GTP) and Liquefaction (LNG) facility turbines is not cost effective under both the procedures described in the 2002 (6th Edition) and 2019 versions (7th Edition) of the EPA Cost Control Manual. The updated results are summarized in the table below, and backup for the calculations are included in Appendix A (6th edition) and Appendix B (7th edition):

Facility	EPA 6th Edition Cost Manual Unit (\$/ton NOx Removed)		EPA 7th Edition Cost Manual (\$/ton NOx Removed)	
		Facility Specific Cost Factors Applied	EPA Default Calculation Tool Applied	
GTP	CO ₂ Compressor Turbines	\$16,333	\$10,941	
GTP	Power Generation Turbines	\$25,402	\$13,428	
GTP	Treated Gas Compressor Turbines	\$14,200	\$10,895	
LNG	Compressor Turbines	\$18,164	\$11,241	
LNG	Power Generation Turbines	\$24,588	\$10,904	

The 6th edition cost estimates were updated as follows:

- AGDC obtained vendor quotes for the potential turbine models being considered for the Project. Appendix C to this response provides the budgetary cost quotations.
- Appendix C to this response provides back-up documentation to support the site-specific
 assumptions used in the cost calculations. Some of the assumptions used in prior cost
 effectiveness calculations have been updated based on a review of the current engineering data.

Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request

Page 2 of 21

 AGDC has updated the baseline NOx assumptions used in the cost-effectiveness calculations for the compressor turbines at the LNG plant. AGDC has surveyed possible turbine vendors and determined that baseline NOx values are between 9 and 15ppmv @ 15% O₂. For the purposes of the analysis, AGDC has assumed the upper bound of the range (i.e., 15ppmv NOx), consistent with the analysis for the other GTP and LNG turbines proposed for the Project.

Public

- Where supplemental fire is anticipated for the turbine operations, the NOx from duct fire burning has also been considered in the cost-effectiveness calculations. Duct firing is expected at the GTP CO₂ and Treated Gas Compressors.
- The controlled NOx emissions target in the cost effectiveness calculations is assumed to be 2ppmv @ 15% O2. While this level of control has been achieved elsewhere in BACT/LAER determinations, we believe it is an aggressive level of NOx control, considering the environment where these turbines will operate. AGDC believes that 5ppmv NOx would be a more reasonable level. Nevertheless, to assure the cost effectiveness calculations are conservative, a 2ppmv NOx target was used in the analysis.

For completeness, AGDC modeled cost effectiveness using both the EPA 6th and 7th editions. However, it is important to note the 6th edition cost-effectiveness results are likely more accurate for the Alaska LNG Project than the 7th edition results, because the 7th edition has limited capability for the user to enter site specific information. Site-specific conditions for both the GTP and the Liquefaction Facility are significantly different from the 'standard' EPA model because of the increased transportation requirements to get equipment to Alaska and the operating conditions. The 7th edition cost effectiveness calculations are biased low in the following respects:

- SCR cost data for simple cycle gas turbines is based on limited vendor data collected in the 1990's for typical units expected to be installed within the contiguous United States.
- EPA vendor data does not reflect additional expenses of installing large scale equipment in Alaska including the costs of modularization of the turbines and the unique installation method on the North Slope (i.e., sea lifts to the facility locations);
- The study does not appear to leverage any other data or information that is specific to installations in the Alaska.

The cost effectiveness calculations and supporting data are attached to this response. The key assumptions used to prepare the calculations are summarized below.

Alaska Gasline Development Corporation	Date: January 10, 2020
Alaska Department of Environmental Conservation	
BACT AQ1524CPT01 and AQ1539CPT01	
Information Request	
Public	Page 3 of 21

GTP ASSUMPTIONS:

The key facility-specific cost factors which differ from the typical EPA factors described in the 6th edition cost effectiveness calculation method for GTP include:

Cost Category	GTP	Comments Regarding AGDC Approach		
Direct Capital Costs				
Purchased Equipment Costs		AeriNOx Quote (1/7/2020)		
Ammonia System	0%	Included in Purchased Equipment Costs		
Instrumentation & Controls	0%	Included in Purchased Equipment Costs		
Freight	10.7%	Updated based on ratios from the GTP estimated freight costs provided in Appendix C.		
Taxes (Enter sales tax rate in "% Applied")	0%	No sales tax in Alaska.		
Direct Installation Costs:				
Foundation & Supports	8.8%	50% of North Slope module pile foundations and supporting structural steel installation cost ratio Supporting information is provided in Appendix C.		
Erection and Handling	31%	Includes 30% of the Structural Steel portion of the installation cost ratio and 1% of the mechanical portion. . See Appendix C.		
Electrical	3.8%	50% of Electrical portion of the installation cost ratio, includes instrumentation		
Piping	5.2%	10% of Piping portion of the installation cost ratio		
Insulation	6.8%	30% Insulation portion of the installation cost ratio		
Indirect Costs:	•			
Engineering & Supervision	16%	Site engineering and construction management plus North Slope engineering and construction management.		
Construction and Field Expenses	0%	Did not include.		
Contractor Fees	0%	Did not include.		
Startup-up	0%	Did not include.		
Performance Testing	0%	Did not include.		

Other facility-specific costs included in the cost effectiveness evaluation for GTP:

Data Element	6 th Edition Values Applied	Sources for Value
Purchased Equipment Costs	\$4,100,000	January 2020 Quote - Power Generation Units
	\$3,500,000	January 2020 Quote - CO2 Compression Units
	\$4,100,000	January 2020 Quote – Treated Gas Compression Units
Site Preparation	\$45,000	January 2020 Quote

Alaska Gasline Development Corporation Date: January 10, 2020 Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 **Information Request** Public

Page 4 of 21

Data Element	6 th Edition Values Applied	Sources for Value
Construction and Field Expenses	\$120,000	January 2020 Quote – Construction Supervision
Reagent Cost (\$/gallon)	\$5.67/gallon	Ammonia cost per Brenntag quote (June 15, 2015). See Appendix C.
Electricity Cost (\$/kWh)	0.16	Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in 2017: https://www.eia.gov/electricity/data.php#sales
Higher Heating Value (HHV) (Btu/scf)	1077	HHV per GTP Fuel Gas specifications.

LNG ASSUMPTIONS:

The LNG facility-specific cost factors that were applied generally fall within the typical EPA factors described in the 6th edition cost effectiveness calculation method. Cost factors specifically applied for LNG cost estimates are summarized below:

Cost Category	LNG	Comments Regarding AGDC Approach
Purchased Equipment:		
Purchased Equipment Costs		AeriNOx Quote (1/7/2020)
Ammonia System	0%	Included in Purchased Equipment Costs
Instrumentation & Controls	0%	Included in Purchased Equipment Costs
Taxes (Enter sales tax rate in "% Applied")	0.0%	No sales tax in Alaska

Other facility-specific costs included in the cost effectiveness evaluation for LNG:

Data Element	6 th Edition Values Applied	Sources for Value
Purchased Equipment Costs	\$7,800,000	January 2020 Quote - Compression Units
	\$4,100,000	January 2020 Quote - Power Generation Units
Site Preparation	\$45,000	January 2020 Quote
Construction and Field Expenses	\$120,000	January 2020 Quote – Construction Supervision
Reagent Cost (\$/gallon)	\$2.24/gallon	Ammonia cost based on \$0.30/pound (Weekly Fertilizer Review, 4/2015)
Electricity Cost (\$/kWh)	0.16	Updated electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in 2017: https://www.eia.gov/electricity/data.php#sales
Higher Heating Value (HHV) (Btu/scf)	1087	HHV per LNG Fuel Gas specifications.

Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request Public Date: January 10, 2020 Page 5 of 21

APPENDICES:

Appendix A – 6th Edition Cost Effectiveness Calculations – Facility Specific Cost Factor Analysis:

- Appendix A.1 GTP Power Generation Turbines
- Appendix A.2 GTP CO2 Compressor Turbines
- Appendix A.3 GTP Treated Gas Compressor Turbines
- Appendix A.4 LNG Power Generation Turbines
- Appendix A.5 LNG Compressor Turbines

Appendix B – 7th Edition Cost Effectiveness Calculations – EPA Default Analysis:

- Appendix B.1 GTP Power Generation Turbines
- Appendix B.2 GTP CO2 Compressor Turbines
- Appendix B.3 GTP Treated Gas Compressor Turbines
- Appendix B.4 LNG Power Generation Turbines
- Appendix B.5 LNG Compressor Turbines

Appendix C – Supporting Information:

- Appendix C.1 AeriNOx SCR quote (January 2020)
- Appendix C.2 Brentag ammonia cost quote (2015)
- Appendix C.3 GTP Cost Estimate Basis for SCR Cost Evaluation (Confidential)

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A

APPENDIX A - 6TH EDITION COST EFFECTIVENESS CALCULATIONS — FACILITY SPECIFIC COST FACTOR ANALYSIS

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.1

APPENDIX A.1

GTP Power Generation Turbines

Alaska LNG Project Natural Gas Turbines Power Gen SCR Cost Effectiveness Analysis

Cost Quantification:

			Default %	EPA Equation /			
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference		
			Direct Cap	oital Costs			
Purchased Equipment:							
Purchased Equipment Costs	\$4,100,000		-	A	AeriNOx Quote (1/7/2020)		
Ammonia System	\$0		-	В	Included in Purchased Equipment Costs		
Instrumentation & Controls		\$0	0%	$C = 0.00 \times A$	Included in Purchased Equipment Costs		
Freight		\$459,610	11.2%	D = 0.11 x (A+B)	Cost factor based on ratios from the GTP estimate		
				. ,	equipment to freight costs		
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska		
Total Purchased Equipment Cost (PE)	\$4,559,610		-	PE			
Direct Installation Costs:							
Foundation & Supports		\$1,504,671	33%	0.33 x PE	33% based on cost to modularize equipment.		
Erection and Handling		\$1,550,267	34%	0.04 DE	34% based on NS sea lift logistics costs vs equipment		
				0.34 x PE	costs Did not include any NS installation costs		
Electrical		\$0	0%	0.00 x PE	Part of Foundation and Supports		
Piping		\$0	0%	0.00 x PE	Part of Foundation and Supports		
Insulation		\$0	0%	0.00 x PE	Part of Foundation and Supports		
Painting		\$0	0%	0.00 x PE	Part of Foundation and Supports		
Site Preparation	\$45,000	φe	-	Project-Specific	AeriNOx Quote (1/7/2020)		
Total Direct Installation Cost (DI)	\$3,099,939		_	DI	761110X Quote (17772020)		
Total Direct Capital Costs (DC)	\$7,659,549		_	DC = PE + DI			
rotal birect capital costs (be)	<i>\$7,033,343</i>		Į.	50-12.51			
Indirect Capital Costs							
Indirect Costs:				<u>r</u>			
Engineering & Supervision		\$1,504,671	33%	0.33 x PE	33% based on MFS const management and Const staff, no eng costs included		
Construction and Field Expenses		\$0	0%	0.00 x PE	Did not include.		
Contractor Fees		\$0	0%	0.00 x PE	Did not include.		
Startup-up		\$0	0%	0.00 x PE	Did not include.		
Performance Testing		\$0	0%	0.00 x PE	Did not include.		
Total Indirect Costs (TIC)	\$1,504,671		-	IC			
	· · ·				•		
Capital Investment:							
Project Contingency		\$1,374,633.00	15%	$E = 0.15 \times (DC + IC)$	OAQPS (15% of DC & TIC)		
Preproduction Cost		\$316,165.59	3%	F = 0.03 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)		
Inventory Capital (initial reagent fill)		\$10,031	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below		
Total Capital Investment	\$10,865,050		-	TCI = DC + IC + E + F + G			

Alaska LNG Project Natural Gas Turbines Power Gen SCR Cost Effectiveness Analysis

		Direct Annua	al Costs	
irect Annual Costs:				
Operating Labor		-		Vendor Supplied
Supervisory Labor	\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)
Maintenance Labor	\$162,976	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)
Maintenance Materials	\$162,976	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)
Annual Reagent Cost	\$261,522	-	q*Cost*[op hr/yr]	See parameters below
Annual Electricity Cost	\$152,882	-	See parameters below	See parameters below
Catalyst Replacement	\$76,236	-	See parameters below	See parameters below
Catalyst Disposal Cost	\$7,624	10%	0.100 x Cat Repl	Engineering Estimate
Fuel Penalty Costs (specify)		-		Vendor Supplied
Other Maintenance Cost (specify)		-		Vendor Supplied
otal Direct Annual Costs	\$824,215	-	DAC	

Indirect Annual Costs					
Indirect Annual Costs:					
Overhead		\$195,571	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)
Property Tax		\$108,650	1.0%	0.0100 x TCI	OAQPS (1%)
Insurance		\$108,650	1.0%	0.010 x TCI	OAQPS (1%)
General Administrative		\$217,301	2.0%	0.020 x TCI	OAQPS (2%)
Total Indirect Annual Costs	\$630,173		-	DAC	

Capital Recovery Cost					
Equipment Life (years)		10	-	n	Vendor Supplied
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06
Capital Recovery Factor	0.1424		-	CRF = i/(1-(1+i)^-n)	-
Capital Recovery Cost (CRC)	\$1,546,939		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)

Total Annual Costs	\$3,001,326	-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	100.61	
Controlled NOx Emissions (tpy)	13.41	
NOx Reduction (tpy)	87.20	

Cost Effectiveness (\$/ton/yr)	\$34,421
Total Annual Costs	\$3,001,326

Reference	

Calculated below	
Calculated below	
Calculated below	

Calculated above	
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)	

Alaska LNG Project Natural Gas Turbines Power Gen SCR Cost Effectiveness Analysis

Design Parameters:			
Enter values in boxes below. Where default value is ava Required data is highlighted yellow.	ilable, entered value	will override default.	
Combustion Unit Sizing			
			Reference
Turbine heat capacity:	418.00	MMBtu/hr	
Duct burner heat capacity, if applicable:		MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or	15	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)		ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or		ppmv @ 3% O2	
or (default)		ppmv @ 3% O2	
Controlled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	Market and the second s
or	2	ppmv @ 15% O2	Most stringent limit identified as BACT
Natural Gas Properties			
			Reference
HHV [Default: 1050 Btu/scf]	1077	Btu/scf	
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
Operational Farameters			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where def	ault value is availabl	e. entered number overrides default.	
·		•	Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis of	the parameters belo	DW:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	2		
Calculated Power demand:	111.8	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines Power Gen SCR Cost Effectiveness Analysis

			Electricity pricing per Department of Energy, annual retail
			sales of electricity to industrial customers in Alaska in
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	2017.
Aqueous Ammonia Costs: Enter values below or parame	eters to estimate.		
· ·			Reference
Aqueous ammonia cost:	\$5.67	\$/gallon	Ammonia cost per Brenntag quote (June 15, 2015).
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	
If aqueous ammonia consumption rate not known, estin	nate on the basis of t	ne parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m_{sol})	40.97	lb/hr	OAQPS (Section 4.2, Ch. 2)
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	5.3	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
			Reference
Initial catalyst cost:	\$245,091		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$76,236		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

 $^{^{*}}$ OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.2

APPENDIX A.2

GTP CO₂ Compressor Turbines

Alaska LNG Project Natural Gas Turbines CO₂ Compression SCR Cost Effectiveness Analysis

Cost Quantification:

Total Capital Investment

			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
	•	•	•		•
			Direct Cap	oital Costs	
Purchased Equipment:					
Purchased Equipment Costs	\$3,500,000		_	А	AeriNOx Quote (1/7/2020)
Ammonia System	\$0		_	В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	C = 0.00 x A	Included in Purchased Equipment Costs
Freight		\$392,350	11.2%	D = 0.11 x (A+B)	Cost factor based on ratios from the GTP estimate equipment to freight costs
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$3,892,350		0.076	PE	INO Sales tax III Alaska
Direct Installation Costs:	\$5,692,550		_	FE	
Foundation & Supports		\$1,284,476	33%	0.33 x PE	33% based on cost to modularize equipment.
Erection and Handling		\$1,323,399	34%	0.33 X I L	34% based on NS sea lift logistics costs vs equipment
Liection and Handling		71,323,333	3470	0.34 x PE	costs
				0.0	Did not include any NS installation costs
Electrical		\$0	0%	0.00 x PE	Part of Foundation and Supports
Piping		\$0	0%	0.00 x PE	Part of Foundation and Supports
Insulation		\$0	0%	0.00 x PE	Part of Foundation and Supports
Painting		\$0	0%	0.00 x PE	Part of Foundation and Supports
Site Preparation	\$45,000		-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$2,652,875		_	DI	
Total Direct Capital Costs (DC)	\$6,545,225		_	DC = PE + DI	
					•
			Indirect Ca	pital Costs	
Indirect Costs:					
Engineering & Supervision		\$1,284,476	33%	0.33 x PE	33% based on MFS const management and Const staff, no eng costs included
Construction and Field Expenses		\$0	0%	0.00 x PE	Did not include.
Contractor Fees		\$0	0%	0.00 x PE	Did not include.
Startup-up		\$0	0%	0.00 x PE	Did not include.
Performance Testing		\$0	0%	0.00 x PE	Did not include.
Total Indirect Costs (TIC)	\$1,284,476		-	IC	
	•				•
Capital Investment:					
Project Contingency		\$1,174,455.00	15%	E = 0.15 x (DC+IC)	OAQPS (15% of DC & TIC)
Preproduction Cost		\$270,124.65	3%	F = 0.03 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$12,327	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below

TCI = DC + IC + E + F + G

\$9,286,606

Alaska LNG Project Natural Gas Turbines CO₂ Compression SCR Cost Effectiveness Analysis

Direct Annual Costs					
virect Annual Costs:					
Operating Labor			-		Vendor Supplied
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)
Maintenance Labor		\$139,299	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)
Maintenance Materials		\$139,299	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)
Annual Reagent Cost		\$321,376	-	q*Cost*[op hr/yr]	See parameters below
Annual Electricity Cost		\$158,395	-	See parameters below	See parameters below
Catalyst Replacement		\$93,268	-	See parameters below	See parameters below
Catalyst Disposal Cost		\$9,327	10%	0.100 x Cat Repl	Engineering Estimate
Fuel Penalty Costs (specify)			-		Vendor Supplied
Other Maintenance Cost (specify)			-		Vendor Supplied
otal Direct Annual Costs	\$860,964		-	DAC	

			Indirect A	nnual Costs	
Indirect Annual Costs:					
Overhead		\$167,159	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)
Property Tax		\$92,866	1.0%	0.0100 x TCI	OAQPS (1%)
Insurance		\$92,866	1.0%	0.010 x TCI	OAQPS (1%)
General Administrative		\$185,732	2.0%	0.020 x TCI	OAQPS (2%)
Total Indirect Annual Costs	\$538,623		-	DAC	

-	n	Vendor Supplied
-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06
-	CRF = i/(1-(1+i)^-n)	-
-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)
	-	

Total Annual Costs \$2,721,791 - TAC = DA + IDAC + CRC OAQPS Eqn 2.56 (Section 4.2, Ch. 2)					
	Total Annual Costs	\$2,721,791	-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	141.86	
Controlled NOx Emissions (tpy)	16.12	
NOx Reduction (tpy)	125.74	

Total Annual Costs	\$2,721,791	
Cost Effectiveness (\$/ton/yr)	\$21,646	

	Keierence
	Calculated below
Calcu	Calculated below
	Calculated below

Calculated above
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines CO₂ Compression SCR Cost Effectiveness Analysis

Design Parameters:			
Enter values in boxes below. Where default value is ava Required data is highlighted yellow.	ilable, entered value v	will override default.	
Combustion Unit Sizing			
	244.00		Reference
Turbine heat capacity:	311.00	MMBtu/hr	
Duct burner heat capacity, if applicable:	191.22	MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or		ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)		ppmv @ 15% O2	
5	0.00		
Duct burner uncontrolled NOx concentration:	0.08	lb NOx/MMBtu	
or		lb NOx/MMscf	
Or		ppmv @ 3% O2	
or (default)		ppmv @ 3% O2	
Controlled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or		ppmv @ 15% O2	Most stringent limit identified as BACT
G.			macron garamma accimination
Natural Gas Properties			
		¬	Reference
HHV [Default: 1050 Btu/scf]	1,077	Btu/scf	
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
·			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where def	ault value is available	, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis of	the parameters belo	N:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	4		
Calculated Power demand:	115.8	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines CO₂ Compression SCR Cost Effectiveness Analysis

		_	
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in 2017.
Aqueous Ammonia Costs: Enter values below or parame	ters to estimate.		
			Reference
Aqueous ammonia cost:	\$5.67	\$/gallon	Ammonia cost per Brenntag quote (June 15, 2015).
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	Calculated below
If aqueous ammonia consumption rate not known, estin	nate on the basis of th	e parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m_{sol})	50.35	lb/hr	OAQPS (Section 4.2, Ch. 2)
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	6.5	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
			Reference
Initial catalyst cost:	\$299,848		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	Vendor Supplied
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$93,268		OAQPS Egn 2.51 (Section 4.2, Ch. 2)

^{*} OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.3

APPENDIX A.3

GTP Treated Gas Compressor Turbines

Alaska LNG Project Natural Gas Turbines TG Compression SCR Cost Effectiveness Analysis

Cost Quantification:

			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
			Direct Cap	oital Costs	
Purchased Equipment:					
Purchased Equipment Costs	\$4,100,000		-	A	AeriNOx Quote (1/7/2020)
Ammonia System	\$0		-	В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	$C = 0.00 \times A$	Included in Purchased Equipment Costs
Freight		\$459,610	11.2%	D = 0.11 x (A+B)	Cost factor based on ratios from the GTP estimate
				. ,	equipment to freight costs
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$4,559,610		-	PE	
Direct Installation Costs:	T		-		
Foundation & Supports		\$1,504,671	33%	0.33 x PE	33% based on cost to modularize equipment.
Erection and Handling		\$1,550,267	34%	0.04 DE	34% based on NS sea lift logistics costs vs equipment
				0.34 x PE	costs Did not include any NS installation costs
Electrical		\$0	0%	0.00 x PE	Part of Foundation and Supports
Piping		\$0	0%	0.00 x PE	Part of Foundation and Supports
Insulation		\$0	0%	0.00 x PE	Part of Foundation and Supports
Painting		\$0	0%	0.00 x PE	Part of Foundation and Supports
Site Preparation	\$45,000	φe	-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$3,099,939		_	DI	7.C. 11.O. Quote (17.7/2020)
Total Direct Capital Costs (DC)	\$7,659,549		_	DC = PE + DI	
Total Direct capital costs (De)	\$7,033,343			50-12.51	
			Indirect Ca	pital Costs	
Indirect Costs:				<u>r</u>	
Engineering & Supervision		\$1,504,671	33%	0.33 x PE	33% based on MFS const management and Const staff, no eng costs included
Construction and Field Expenses		\$0	0%	0.00 x PE	Did not include.
Contractor Fees		\$0	0%	0.00 x PE	Did not include.
Startup-up		\$0	0%	0.00 x PE	Did not include.
Performance Testing		\$0	0%	0.00 x PE	Did not include.
Total Indirect Costs (TIC)	\$1,504,671		-	IC	
-	•				•
Capital Investment:					
Project Contingency		\$1,374,633.00	15%	E = 0.15 x (DC+IC)	OAQPS (15% of DC & TIC)
Preproduction Cost		\$316,165.59	3%	F = 0.03 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$17,266	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below
Total Capital Investment	\$10,872,285		-	TCI = DC + IC + E + F + G	

Alaska LNG Project Natural Gas Turbines TG Compression SCR Cost Effectiveness Analysis

Direct Annual Costs								
		-		Vendor Supplied				
	\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)				
	\$163,084	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)				
	\$163,084	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)				
	\$450,161	-	q*Cost*[op hr/yr]	See parameters below				
	\$212,891	-	See parameters below	See parameters below				
	\$130,613	-	See parameters below	See parameters below				
	\$13,061	10%	0.100 x Cat Repl	Engineering Estimate				
		-		Vendor Supplied				
		-		Vendor Supplied				
\$1,132,895		-	DAC					
-								
		Indirect Annu	ial Costs					
	\$1,132,895	\$163,084 \$163,084 \$450,161 \$212,891 \$130,613 \$13,061	\$0 15% \$163,084 1.5% \$163,084 - \$450,161 - \$212,891 - \$130,613 - \$13,061 10% - \$1,132,895	\$0 15% 15% of Op. Labor \$163,084 1.5% 0.015 x TCI \$163,084 - 100% of Maint. Labor \$450,161 - q*Cost*[op hr/yr] \$212,891 - See parameters below \$130,613 - See parameters below \$13,061 10% 0.100 x Cat Repl				

Indirect Annual Costs								
Indirect Annual Costs:								
Overhead		\$195,701	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)			
Property Tax		\$108,723	1.0%	0.0100 x TCI	OAQPS (1%)			
Insurance		\$108,723	1.0%	0.010 x TCI	OAQPS (1%)			
General Administrative		\$217,446	2.0%	0.020 x TCI	OAQPS (2%)			
Total Indirect Annual Costs	\$630,593		-	DAC				

Capital Recovery Cost						
Equipment Life (years)		10	-	n	Vendor Supplied	
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06	
Capital Recovery Factor	0.1424		-	CRF = i/(1-(1+i)^-n)	-	
Capital Recovery Cost (CRC)	\$1,547,969		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)	

Total Annual Costs	\$3,311,457	-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)

Cost Effectiveness Analysis:

		Reference
Uncontrolled NOx (tpy)	200.35	Calculated below
Controlled NOx Emissions (tpy)	22.55	Calculated below
NOx Reduction (tpy)	177.80	Calculated below
Total Annual Costs	\$3,311,457	Calculated above
Cost Effectiveness (\$/ton/yr)	\$18,625	OAQPS Egn 2.58 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines TG Compression SCR Cost Effectiveness Analysis

Design Parameters:			
Enter values in boxes below. Where default value is ava Required data is highlighted yellow.	iilable, entered value	will override default.	
Combustion Unit Sizing			
			Reference
Turbine heat capacity:	418.00	MMBtu/hr	
Duct burner heat capacity, if applicable:	284.64	MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
0	r	lb NOx/MMscf	
0	15.00	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)	ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:	0.08	lb NOx/MMBtu	
0	r	lb NOx/MMscf	
0	r	ppmv @ 3% O2	
or (default)	ppmv @ 3% O2	
Controlled NOx concentration:		lb NOx/MMBtu	
0		lb NOx/MMscf	Market and the property of the
0	2	ppmv @ 15% O2	Most stringent limit identified as BACT
Natural Gas Properties			
			Reference
HHV [Default: 1050 Btu/scf]	1077	Btu/scf	GTP Fuel Gas Specificaiton
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
·			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where de	fault value is availab	e, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis o	f the parameters bel	ow:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	4		
Calculated Power demand:	155.7	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Natural Gas Turbines TG Compression SCR Cost Effectiveness Analysis

•			
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska in 2017.
Aqueous Ammonia Costs: Enter values below or parame	stors to ostimato		
Aqueous Animonia Costs. Enter values below or parame	ters to estimate.		Reference
Aqueous ammonia cost:	\$5.67	\$/gallon	Ammonia cost per Brenntag quote (June 15, 2015).
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	
If aqueous ammonia consumption rate not known, estim	nate on the basis of t	he parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m_{sol})	70.53	lb/hr	OAQPS (Section 4.2, Ch. 2)
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	9.1	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
			Reference
Initial catalyst cost:	\$419,909		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	Vendor Supplied
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$130,613		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

^{*} OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.4

APPENDIX A.4

LNG Power Generation Turbines

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

Cost Quantification:

	<u> </u>				
			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
			Direct Cap	ital Costs	
Purchased Equipment:					
Purchased Equipment Costs	\$4,100,000		-	Α	AeriNOx Quote (1/7/2020)
Ammonia System	\$0		-	В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	$C = 0.00 \times A$	Included in Purchased Equipment Costs
Freight		\$205,000	5%	$D = 0.05 \times (A+B)$	OAQPS (5% of PE)
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$4,305,000		-	PE	
Direct Installation Costs:					
Foundation & Supports		\$430,500	10%	0.10 x PE	OAQPS (4-12% of PE)
Erection and Handling		\$1,506,750	35%	0.35 x PE	OAQPS (14-50% of PE)
Electrical		\$258,300	6%	0.06 x PE	OAQPS (1-8% of PE)
Piping		\$344,400	8%	0.08 x PE	OAQPS (1-30% of PE)
Insulation		\$86,100	2%	0.02 x PE	OAQPS (1-7% of PE)
Painting		\$172,200	4%	0.04 x PE	OAQPS (1-4% of PE)
Site Preparation	\$45,000		-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$2,843,250		-	DI	
Total Direct Capital Costs (DC)	\$7,148,250		-	DC = PE + DI	
			Indirect Ca	pital Costs	
Indirect Costs:					
Engineering & Supervision		\$645,750	15%	0.15 x PE	OAQPS (10-20% of PE)
Construction and Field Expenses		\$430,500	10%	0.10 x PE	OAQPS (5-20% of PE)
Contractor Fees		\$215,250	5%	0.05 x PE	OAQPS (0-10% of PE)
Startup-up		\$43,050	1%	0.01 x PE	OAQPS (1-2% of PE)
Performance Testing		\$43,050	1%	0.01 x PE	OAQPS (1% of PE)
Total Indirect Costs (TIC)	\$1,377,600		-	IC	
Capital Investment:					
Project Contingency		\$1,278,877.50	15%	$E = 0.15 \times (DC + IC)$	OAQPS (15% of DC & TIC)
Preproduction Cost		\$196,094.55	2%	$F = 0.02 \times (DC+IC+Cont)$	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$4,077	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below
Total Capital Investment	\$10,004,899		-	TCI = DC + IC + E + F + G	

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

Direct Annual Costs							
irect Annual Costs:							
Operating Labor			-		Vendor Supplied		
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)		
Maintenance Labor		\$150,073	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)		
Maintenance Materials		\$150,073	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)		
Annual Reagent Cost		\$106,283	-	q*Cost*[op hr/yr]	See parameters below		
Annual Electricity Cost		\$188,137	-	See parameters below	See parameters below		
Catalyst Replacement		\$78,424	-	See parameters below	See parameters below		
Catalyst Disposal Cost		\$7,842	10%	0.100 x Cat Repl	Engineering Estimate		
Fuel Penalty Costs (specify)			-		Vendor Supplied		
Other Maintenance Cost (specify)			-		Vendor Supplied		
otal Direct Annual Costs	\$680,834		-	DAC			

Indirect Annual Costs							
Indirect Annual Costs:							
Overhead		\$180,088	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)		
Property Tax		\$100,049	1.0%	0.0100 x TCI	OAQPS (1%)		
Insurance		\$100,049	1.0%	0.010 x TCI	OAQPS (1%)		
General Administrative		\$200,098	2.0%	0.020 x TCI	OAQPS (2%)		
Total Indirect Annual Costs	\$580,284		-	DAC			

Capital Recovery Cost							
Equipment Life (years)		10	-	n	Vendor Supplied		
Interest Rate	7.00%	7.00%	-	i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06		
Capital Recovery Factor	0.1424		-	CRF = i/(1-(1+i)^-n)	-		
Capital Recovery Cost (CRC)	\$1,424,472		-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)		
Total Annual Costs	\$2,685,591		-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)		

Cost Effectiveness Analysis:

103.50	
13.80	
89.70	
	13.80

Total Annual Costs	\$2,685,591	
Cost Effectiveness (\$/ton/yr)	\$29,940	

Reference

Calculated below	1
Calculated below	
Calculated below	

Calculated above
OAQPS Eqn 2.58 (Section 4.2, Ch. 2)

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

Design Parameters:			
Enter values in boxes below. Where default value is ava Required data is highlighted yellow.	ilable, entered value	will override default.	
Combustion Unit Sizing			
			Reference
Turbine heat capacity:	430.00	MMBtu/hr	
Duct burner heat capacity, if applicable:		MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or	15	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)		ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or		ppmv @ 3% O2	
or (default)		ppmv @ 3% O2	
Controlled NOx concentration:		lb NOx/MMBtu	
		Ib NOx/MMscf	
or or		ppmv @ 15% O2	Most stringent limit identified as BACT
OI.		ppinv@13%02	Wost stringent mint dentaled as 5/101
Natural Gas Properties			
	-		Reference
HHV [Default: 1050 Btu/scf]	1087	Btu/scf	LNG Fuel Gas Specification
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where def	ault value is availabl	e, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis of	the parameters bel	ow:	<u> </u>
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	3		
Calculated Power demand:	137.6	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Power Generation Natural Gas Turbine Power Gen SCR Cost Effectiveness Analysis

•		-	
			Electricity pricing per Department of Energy, annual retail
			sales of electricity to industrial customers in Alaska in
Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	2017.
Aqueous Ammonia Costs: Enter values below or parame	eters to estimate.		
			Reference
			Ammonia cost as specified in AKLNG Supporting Data (USAL-CB-
			SRZZZ-00-000005-500): \$0.30/pound (Weekly Fertilizer Review,
Aqueous ammonia cost:	\$2.24	\$/gallon	4/2015)
Aqueous ammonia storage volume:		gallons	
or	14	days' worth	Engineering Estimate
Aqueous ammonia consumption rate:		gal/hr	
If aqueous ammonia consumption rate not known, estim	ate on the basis of the	parameters below:	
Stored NH3 concentration [Default: 19.4%]		wt%	
NH3 solution mass flow rate (m _{sol})	42.15	lb/hr	OAQPS
NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Calculated Aqueous ammonia consumption rate:	5.4	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Catalyst Costs:			
			Reference
Initial catalyst cost:	\$252,127		OAQPS (Section 4.2, Ch. 2)
Catalyst replacement frequency:	3	years	
Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost	\$78,424		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

^{*} OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix A.5

APPENDIX A.5

LNG Compressor Turbines

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

Cost Quantification:

			Default %	EPA Equation /	
Cost Category	Project Cost	Default Estimate	Applied	Estimate Basis	Reference
	•	•			•
			Direct Ca	pital Costs	
Purchased Equipment:					
Purchased Equipment Costs	\$7,800,000		-	Α	AeriNOx Quote (1/7/2020)
Ammonia System	\$0		-	В	Included in Purchased Equipment Costs
Instrumentation & Controls		\$0	0%	C = 0.00 x A	Included in Purchased Equipment Costs
Freight		\$390,000	5%	D = 0.05 x (A+B)	OAQPS (5% of PE)
Taxes (Enter sales tax rate in "% Applied")		\$0	0.0%	TaxRate x (A+B+C)	No sales tax in Alaska
Total Purchased Equipment Cost (PE)	\$8,190,000		-	PE	
Direct Installation Costs:					
Foundation & Supports		\$819,000	10%	0.10 x PE	OAQPS (4-12% of PE)
Erection and Handling		\$2,866,500	35%	0.35 x PE	OAQPS (14-50% of PE)
Electrical		\$491,400	6%	0.06 x PE	OAQPS (1-8% of PE)
Piping		\$655,200	8%	0.08 x PE	OAQPS (1-30% of PE)
Insulation		\$163,800	2%	0.02 x PE	OAQPS (1-7% of PE)
Painting		\$327,600	4%	0.04 x PE	OAQPS (1-4% of PE)
Site Preparation	\$45,000		-	Project-Specific	AeriNOx Quote (1/7/2020)
Total Direct Installation Cost (DI)	\$5,368,500		-	DI	
otal Direct Capital Costs (DC)	\$13,558,500		-	DC = PE + DI	
	<u>.</u>				
			Indirect Ca	apital Costs	
ndirect Costs:					
Engineering & Supervision		\$1,228,500	15%	0.15 x PE	OAQPS (10-20% of PE)
Construction and Field Expenses		\$819,000	10%	0.10 x PE	OAQPS (5-20% of PE)
Contractor Fees		\$409,500	5%	0.05 x PE	OAQPS (0-10% of PE)
Startup-up		\$81,900	1%	0.01 x PE	OAQPS (1-2% of PE)
Performance Testing		\$81,900	1%	0.01 x PE	OAQPS (1% of PE)
Fotal Indirect Costs (TIC)	\$2,620,800		-	IC	
	•	•			
Capital Investment:					
Project Contingency		2426895	15%	E = 0.15 x (DC+IC)	OAQPS (15% of DC & TIC)
Preproduction Cost		\$372,123.90	2%	F = 0.02 x (DC+IC+Cont)	OAQPS (2% of DC & TIC & Proj Contingency)
Inventory Capital (initial reagent fill)		\$11,035	-	G = [Storage Gal] x [Reagent \$/gal]	See parameters below
Total Capital Investment	\$18,989,354		-	TCI = DC + IC + E + F + G	

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

			Direct Annua	l Costs	
virect Annual Costs:					
Operating Labor			-		Vendor Supplied
Supervisory Labor		\$0	15%	15% of Op. Labor	OAQPS (15% of Op Labor)
Maintenance Labor		\$284,840	1.5%	0.015 x TCI	OAQPS (1.5% of TCI)
Maintenance Materials		\$284,840	-	100% of Maint. Labor	OAQPS (15% of Maint. Labor)
Annual Reagent Cost		\$287,707	-	q*Cost*[op hr/yr]	See parameters below
Annual Electricity Cost		\$425,728	-	See parameters below	See parameters below
Catalyst Replacement		\$212,293	-	See parameters below	See parameters below
Catalyst Disposal Cost		\$21,229	10%	0.100 x Cat Repl	Engineering Estimate
Fuel Penalty Costs (specify)			-		Vendor Supplied
Other Maintenance Cost (specify)			-		Vendor Supplied
otal Direct Annual Costs	\$1,516,638		-	DAC	

Indirect Annual Costs							
Indirect Annual Costs:							
Overhead		\$341,808	60.0%	0.600 x Op/Super/Maint Labor & Mtls	OAQPS (60% of Op/Super/Maint. Labor & Mtls)		
Property Tax		\$189,894	1.0%	0.0100 x TCI	OAQPS (1%)		
Insurance		\$189,894	1.0%	0.010 x TCI	OAQPS (1%)		
General Administrative		\$379,787	2.0%	0.020 x TCI	OAQPS (2%)		
Total Indirect Annual Costs	\$1,101,383		-	DAC			

Capital Recovery Cost							
Equipment Life (years)	10	-	n	Vendor Supplied			
Interest Rate	7.00% 7.00		i	7% per Agrium US Inc, Kenai Nitrogen Operations Facility Air Quality Control Construction Permit AQ0083CPT06			
Capital Recovery Factor	0.1424	-	CRF = i/(1-(1+i)^-n)	-			
Capital Recovery Cost (CRC)	\$2,703,657	-		OAQPS Eqn 2.54 (Section 4.2, Ch. 2)			
				·			
Total Annual Costs	\$5,321,677	-	TAC = DA + IDAC + CRC	OAQPS Eqn 2.56 (Section 4.2, Ch. 2)			

Cost Effectiveness Analysis:

Uncontrolled NOx (tpy)	280.17	
Controlled NOx Emissions (tpy)	37.36	
NOx Reduction (tpy)	242.81	
	·	
Total Annual Costs	\$5,321,677	
Cost Effectiveness (\$/ton/yr)	\$21,917	

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

Design Parameters:			
Enter values in boxes below. Where default value is avail Required data is highlighted yellow.	ilable, entered value	will override default.	
Combustion Unit Sizing			
			Reference
Turbine heat capacity:	1164.00	MMBtu/hr	
Duct burner heat capacity, if applicable:		MMBtu/hr	
NOx Emission Rates			
			Reference
Turbine uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or	15.00	ppmv @ 15% O2	Assumption for baseline/uncontrolled emissions
or (default)		ppmv @ 15% O2	
Duct burner uncontrolled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	
or		ppmv @ 3% O2	
or (default)		ppmv @ 3% O2	
Controlled NOx concentration:		lb NOx/MMBtu	
or		lb NOx/MMscf	Most string and limit identified as DACT
or	2	ppmv @ 15% O2	Most stringent limit identified as BACT
Natural Gas Properties			
			Reference
HHV [Default: 1050 Btu/scf]	1087	Btu/scf	LNG Fuel Gas Specification
F-factor (dry) [Default: 8710 dscf/MMBtu]		dscf/MMBtu	EPA 40 CFR Part 60 Appendix A, Method 19, Table 19-2
Operational Parameters			
•			Reference
Max annual op hours [Default: 8760 hr/yr]	8760	hr/yr	
Annual Electricity Costs: Enter values below. Where defi	ault value is availabl	e, entered number overrides default.	
			Reference
Power demand:		kW	Calculated below
If power demand is not known, estimate on the basis of	the parameters belo	w:	
delta P duct [Default: 3 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
delta P catalyst (per layer) [Default: 1 in H2O]			OAQPS Eqn 2.48 (Section 4.2, Ch. 2)
number of layers of catalyst	2		
Calculated Power demand:	311.4	kW	OAQPS Eqn 2.48 (Section 4.2, Ch. 2)

Alaska LNG Project Compressor Driver Natural Gas Turbine SCR Cost Effectiveness Analysis

Aqueous Ammonia Costs: Enter values below or parameters to estimate. Reference Ammonia cost as specified in AKLNG Supporting Data (USAL-CB-SRZZZ-00-00005-500): 50.30/pound (Weekly Fertilizer Review, 4/2015) Aqueous ammonia cost: \$2.24 \$/gallon	•		•	
Electricity Cost [Default: 0.1572 \$/kWh] Aqueous Ammonia Costs: Enter values below or parameters to estimate. Aqueous Ammonia Costs: Enter values below or parameters to estimate. Aqueous ammonia cost: Aqueous ammonia cost: Aqueous ammonia cost: Aqueous ammonia cost: Aqueous ammonia consumption rate: If aqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration [Default: 19.4%] NH3 solution mass flow rate (m ₁₀₀) NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: Initial catalyst cost: Stored NH3 concentration Stored NH3 concentrati				Electricity pricing per Department of Energy, annual retail
Aqueous Ammonia Costs: Enter values below or parameters to estimate. Reference Ammonia cost as specified in AkLNG Supporting Data (USAL-CB-SRZZZ-00-000005-500): \$0.30/pound (Weekly Fertilizer Review, 4/2015) Aqueous ammonia storage volume:				sales of electricity to industrial customers in Alaska in
Reference Ammonia cost as specified in AKING Supporting Data (USAL-CB-SRZZZ-00-000005-500); \$0.30/pound (Weekly Fertilizer Review, 4/2015) Aqueous ammonia storage volume: Aqueous ammonia consumption rate: Aqueous ammonia consumption rate: Aqueous ammonia consumption rate: Aqueous ammonia consumption rate in the basis of the parameters below: Stored NH3 concentration [Default: 19.4%] NH3 solution mass flow rate (m ₅₀) NH3 solution mass flow rate (m ₅₀) NH3 solution density [Default: 7.782 lb/gal) Calculated Aqueous ammonia consumption rate: 14.7 gal/hr Calculated Aqueous ammonia consumption rate: Calculated below Calculated below Calculated below Engineering Data Calculated below Engineering Data OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) Reference OAQPS (Section 4.2, Ch. 2) Catalyst replacement frequency: 3 years Vendor Supplied	Electricity Cost [Default: 0.1572 \$/kWh]	0.16	\$/kWh	2017.
Aqueous ammonia cost: Aqueous ammonia storage volume: or 14 days' worth Aqueous ammonia consumption rate: Aqueous ammonia consumption rate: Aqueous ammonia consumption rate: Aqueous ammonia consumption rate: Aqueous ammonia consumption rate in the basis of the parameters below: Stored NH3 concentration [Default: 19.4%] NH3 solution mass flow rate (m _{sol}) NH3 solution mass flow rate (m _{sol}) NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: 14.7 gal/hr Calculated Delow Calculated below OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) Catalyst Costs: Reference Initial catalyst cost: See2_502 OAQPS (Section 4.2, Ch. 2) Vendor Supplied	Aqueous Ammonia Costs: Enter values below or parame	ters to estimate.		
Aqueous ammonia cost: Aqueous ammonia storage volume: Aqueous ammonia consumption rate: If aqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration [Default: 19.4%] NH3 solution mass flow rate (m _{sol}) NH3 solution mass flow rate (m _{sol}) NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: 1 1.7 28 lb/gal Calculated Aqueous ammonia consumption rate: Calculated below Calcul	,			
Aqueous ammonia cost: Aqueous ammonia storage volume: or 14 days' worth Aqueous ammonia consumption rate: [F aqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration [Default: 19.4%] NH3 solution mass flow rate (m _{sol}) NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: [Stored NH3 concentration [Default: 19.4%] NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: [Stored NH3 concentration [Default: 19.4%] NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: [Stored NH3 concentration [Default: 19.4%] NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: [Stored NH3 concentration [Default: 19.4%] NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: [Stored NH3 concentration [Default: 19.4%] NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: [Stored NH3 concentration [Default: 19.4%] NH3 solution density [Default: 7.782 lb/gal] Calculated Delow [Stored NH3 concentration [Default: 19.4%] [Stored NH3 c				
Aqueous ammonia storage volume: or 14 days' worth Engineering Estimate Aqueous ammonia consumption rate: gal/hr Calculated below faqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration Default: 19.4% wt% NH3 solution mass flow rate (m _{sol}) 114.10 lb/hr Calculated below NH3 solution density Default: 7.782 lb/gal Engineeering Data Calculated Aqueous ammonia consumption rate: 14.7 gal/hr DAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) Catalyst Costs: Reference DAQPS (Section 4.2, Ch. 2) Vendor Supplied Vendor Supplied Vendor Supplied Vendor Supplied Vendor Supplied NH3 solution density Default: 7.782 lb/gal DAQPS (Section 4.2, Ch. 2) Catalyst replacement frequency: 3 years Vendor Supplied Vendor S		40.04	A. II	
Aqueous ammonia consumption rate: gal/hr Calculated below faqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration [Default: 19.4% wt% NH3 solution mass flow rate (m _{sol}) 114.10 b/hr Calculated below NH3 solution density [Default: 7.782 b/gal] 7.782 b/gal Engineeering Data Calculated Aqueous ammonia consumption rate: 14.7 gal/hr OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) Catalyst Costs: \$682,502 Catalyst replacement frequency: 3 years Yendor Supplied Vendor Supplied Stimate Calculated below Calc		\$2.24		
Aqueous ammonia consumption rate: gal/hr Calculated below faqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration [Default: 19.4%]	Aqueous ammonia storage volume:		10	
If aqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration [Default: 19.4%] NH3 solution mass flow rate (m _{sol}) NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: 14.7 gal/hr Calculated below Engineeering Data OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) Catalyst Costs: Reference Initial catalyst cost: Catalyst replacement frequency: 3 years	or	14	days' worth	Engineering Estimate
If aqueous ammonia consumption rate not known, estimate on the basis of the parameters below: Stored NH3 concentration [Default: 19.4%] NH3 solution mass flow rate (m _{sol}) NH3 solution density [Default: 7.782 lb/gal] Calculated Aqueous ammonia consumption rate: 14.7 gal/hr Calculated below Engineeering Data OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) Catalyst Costs: Reference Initial catalyst cost: Catalyst replacement frequency: 3 years	ı			
Stored NH3 concentration [Default: 19.4%] wt% NH3 solution mass flow rate (m _{sol}) 114.10 lb/hr NH3 solution density [Default: 7.782 lb/gal] 7.782 lb/gal Calculated Aqueous ammonia consumption rate: 14.7 gal/hr Catalyst Costs: Reference Initial catalyst cost: \$682,502 Catalyst replacement frequency: 3 years Vendor Supplied	Aqueous ammonia consumption rate:		gal/hr	Calculated below
NH3 solution mass flow rate (m _{sol}) NH3 solution density [Default: 7.782 b/gal] Calculated Aqueous ammonia consumption rate: 14.7 gal/hr Catalyst Costs: Reference Initial catalyst cost: Catalyst replacement frequency: 3 years Calculated below Engineeering Data OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) OAQPS (Section 4.2, Ch. 2) Vendor Supplied	If aqueous ammonia consumption rate not known, esting	nate on the basis of the	parameters below:	
NH3 solution density [Default: 7.782 b/gal] Calculated Aqueous ammonia consumption rate: 14.7 b/gal gal/hr Catalyst Costs: Reference Initial catalyst cost: Catalyst replacement frequency: 3 years NH3 solution density [Default: 7.782 b/gal]	Stored NH3 concentration [Default: 19.4%]		wt%	
Calculated Aqueous ammonia consumption rate: 14.7 gal/hr Catalyst Costs: Reference Initial catalyst cost: Catalyst replacement frequency: 3 years OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2) OAQPS (Section 4.2, Ch. 2) Vendor Supplied	NH3 solution mass flow rate (m _{sol})	114.10	lb/hr	Calculated below
Catalyst Costs: Reference Initial catalyst cost: \$682,502 Catalyst replacement frequency: 3 years Vendor Supplied	NH3 solution density [Default: 7.782 lb/gal]	7.782	lb/gal	Engineeering Data
Reference Initial catalyst cost: Catalyst replacement frequency: 3 years Vendor Supplied	Calculated Aqueous ammonia consumption rate:	14.7	gal/hr	OAQPS Eqn 2.32-2.34 (Section 4.2, Ch. 2)
Initial catalyst cost: \$682,502 OAQPS (Section 4.2, Ch. 2) Catalyst replacement frequency: 3 years Vendor Supplied	Catalyst Costs:			
Catalyst replacement frequency: 3 years Vendor Supplied				Reference
	Initial catalyst cost:	\$682,502		OAQPS (Section 4.2, Ch. 2)
ADECD C. H	Catalyst replacement frequency:	3	years	Vendor Supplied
Interest Kate 7.00% % ADEC Default	Interest Rate	7.00%	%	ADEC Default
Annual Catalyst Replacement Cost \$212,293 OAQPS Eqn 2.51 (Section 4.2, Ch. 2)	Annual Catalyst Replacement Cost	\$212,293		OAQPS Eqn 2.51 (Section 4.2, Ch. 2)

^{*} OAQPS refers to the EPA Air Pollution Control Cost Manual, Sixth Edition and subsequent revisions.

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B

APPENDIX B – 7^{TH} EDITION COST EFFECTIVENESS CALCULATIONS – EPA DEFAULT ANALYSIS

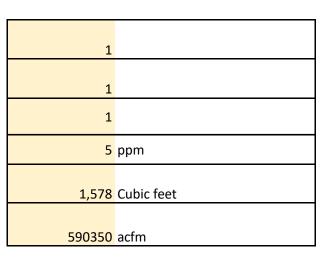
ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.1

APPENDIX B.1

GTP Power Generation Turbines

Data Inputs Enter the following data for your combustion unit: • Industrial Is the combustion unit a utility or industrial boiler? What type of fuel does the unit burn? • Natural Gas Is the SCR for a new boiler or retrofit of an existing boiler? **New Construction** Complete all of the highlighted data fields: Not applicable to units burning fuel oil or natural gas 418 MMBtu/hour Type of coal burned: What is the maximum heat input rate (QB)? Not Applicable **1,077** Btu/scf Enter the sulfur content (%S) = percent by weight What is the higher heating value (HHV) of the fuel? HHV per GTP Fuel Gas specifications. What is the estimated actual annual fuel consumption? 3,399,888,579 scf/Year Not applicable to units buring fuel oil or natural gas Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided. Enter the net plant heat input rate (NPHR) 9.486 MMBtu/MW Coal Type If the NPHR is not known, use the default NPHR value: Fuel Type Default NPHR Bituminous Coal 10 MMBtu/MW Sub-Bituminous Fuel Oil 11 MMBtu/MW Lignite 8.2 MMBtu/MW Natural Gas Please click the calculate button to calculate weighted average values based on the data in the table above. Plant Elevation 46 Feet above sea level For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the O Method 1 catalyst replacement cost. The equations for both methods are shown on rows 85 O Method 2 and 86 on the *Cost Estimate* tab. Please select your preferred method: Not applicable

Enter the following design parameters for the proposed SCR:


Number of days the SCR operates (t _{SCR})	365	days			
Number of days the boiler operates (t _{plant})	365	days			
Inlet NO_x Emissions (NOx_{in}) to SCR	0.055	lb/MMBtu			
Outlet NO _x Emissions (NOx _{out}) from SCR	0.0074	lb/MMBtu			
Stoichiometric Ratio Factor (SRF)	1.050				
*The SRF value of 1.05 is a default value. User should enter actual value, if known.					
Notes: Inlet Nox 15 ppmv per Gas Turbine Vendor. Outlet NOx 2 ppmv per EPA.					
Estimated operating life of the catalyst (H _{catalyst})	26,280	hours			
Estimated SCR equipment life * For industrial boilers, the typical equipment life is between 20 and 25 years.	20	Years*			
, , , , , , , , , , , , , , , , , , , ,					
Concentration of reagent as stored (C _{stored})	19	percent			
Density of reagent as stored (ρ_{stored})	58	lb/cubic feet			
Number of days reagent is stored (t _{storage})	14	days			
Select the reagent used Ammo	nia 🔻				

Number of SCR reactor chambers (n_{scr})

Number of catalyst layers (R_{layer})

Number of empty catalyst layers (R_{empty})

Ammonia Slip (Slip) provided by vendor Volume of the catalyst layers ($Vol_{catalyst}$) (Enter "UNK" if value is not known) Flue gas flow rate ($Q_{fluegas}$) (Enter "UNK" if value is not known)

Gas temperature at the SCR inlet (T)

Base case fuel gas volumetric flow rate factor (Q_{fuel})

750 °F

1412.32 ft³/min-MMBtu/hour

Densities of typical SCR reagents:

50% urea solution 71 lbs/ft^3 29.4% aqueous NH_3 56 lbs/ft^3

Enter the cost data for the proposed SCR:

Desired dollar-year

CEPCI for 2017

Annual Interest Rate (i)

S.5 Percent*

Reagent (Cost_{reag})

Electricity (Cost_{elect})

Catalyst cost (CC _{replace})

Operator Labor Rate

Operator Hours/Day

Desired dollar-year

2017

567.5 Enter the CEPCI value

5.5 Percent*

0.1600 \$/gallon for 19% and provided the second se

2017			
567.5	Enter the CEPCI value for 2017 541.7 2016 CEPCI		
5.5	Percent*		
5.670	\$/gallon for 19% ammonia		
0.1600	\$/kWh		
227.00	\$/cubic foot (includes removal and disposal/regeneration of existing catalyst and installation of new catalyst		
60.00	\$/hour (including benefits)*		
4.00	hours/day*		
a :	maraly to allow far availability of a well known sect index to enreadsheet		

CEPCI = Chemical Engineering Plant Cost Index

* 5.5 percent is the default bank prime rate. User should enter current bank prime rate (available at https://www.federalreserve.gov/releases/h15/.)

Ammonia cost per Brenntag quote (June 15, 2015).

Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska: https://www.eia.gov/electricity/data.php#sales

* \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, life known

\$60/hour is a default value for the operator labor rate. User should enter actual value, if known.

* 4 hours/day is a default value for the operator labor. User should enter actual value, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

0.005	
0.03	

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Annual Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	418	MMBtu/hour	
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	3,399,888,579	scf/Year]
Actual Annual fuel consumption (Mactual) =		3,399,888,579	scf/Year	
Heat Rate Factor (HRF) =	NPHR/10 =	0.95		
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction	
Total operating time for the SCR (t_{op}) =	CF _{total} x 8760 =	8760	hours	
NOx Removal Efficiency (EF) =	$(NOx_{in} - NOx_{out})/NOx_{in} =$	86.6	percent	
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	19.91	lb/hour	
Total NO _x removed per year =	$(NOx_{in} x EF x Q_B x t_{op})/2000 =$	87.19	tons/year	
NO _x removal factor (NRF) =	EF/80 =	1.08		1
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{\text{fuel}} \times QB \times (460 + T)/(460 + 700)n_{\text{scr}} =$	590,350	acfm	1
Space velocity (V _{space}) =	$q_{flue gas}/Vol_{catalyst} =$	374.11	/hour	
Residence Time	1/V _{space}	0.00	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia	not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	New Construction	0.80]

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) Y -1), where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer	0.3157	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	1,578.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	615	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	4	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	707	ft ²
Reactor length and width dimensions for a square	(A \)0.5	26.6	foot
reactor =	(A _{SCR})	20.0	ieet
Reactor height =	$(R_{layer} + R_{empty}) x (7ft + h_{layer}) + 9ft$	30	feet

Reagent Data:

Type of reagent used Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/mole

Density = 58 lb/ft³

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	8	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	41	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	5	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	1,800	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	228.83	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

 $TCI = 86,380 \text{ x } (200/B_{MW})^{0.35} \text{ x } B_{MW} \text{ x } ELEVF \text{ x } RF$

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7,850 \times (2,200/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour:

TCI = $10,530 \times (1,640/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_B \times ELEVF \times RF$

Total Capital Investment (TCI) =

\$5,952,307

in 2017 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$724,437 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$501,193 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$1,225,630 in 2017 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$29,762 in 2017 dollars
Annual Reagent Cost =	$m_{sol} x Cost_{reag} x t_{op} =$	\$260,858 in 2017 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$320,732 in 2017 dollars
Annual Catalyst Replacement Cost =		\$113,086 in 2017 dollars
	$n_{scr} \times Vol_{cat} \times (CC_{replace}/R_{laver}) \times FWF$	
Direct Annual Cost -	Tiscr A Voicat A (Coreplace/ Nayer) A 1 VVI	¢724 427 in 2017 dollars
Direct Annual Cost =		\$724,437 in 2017 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

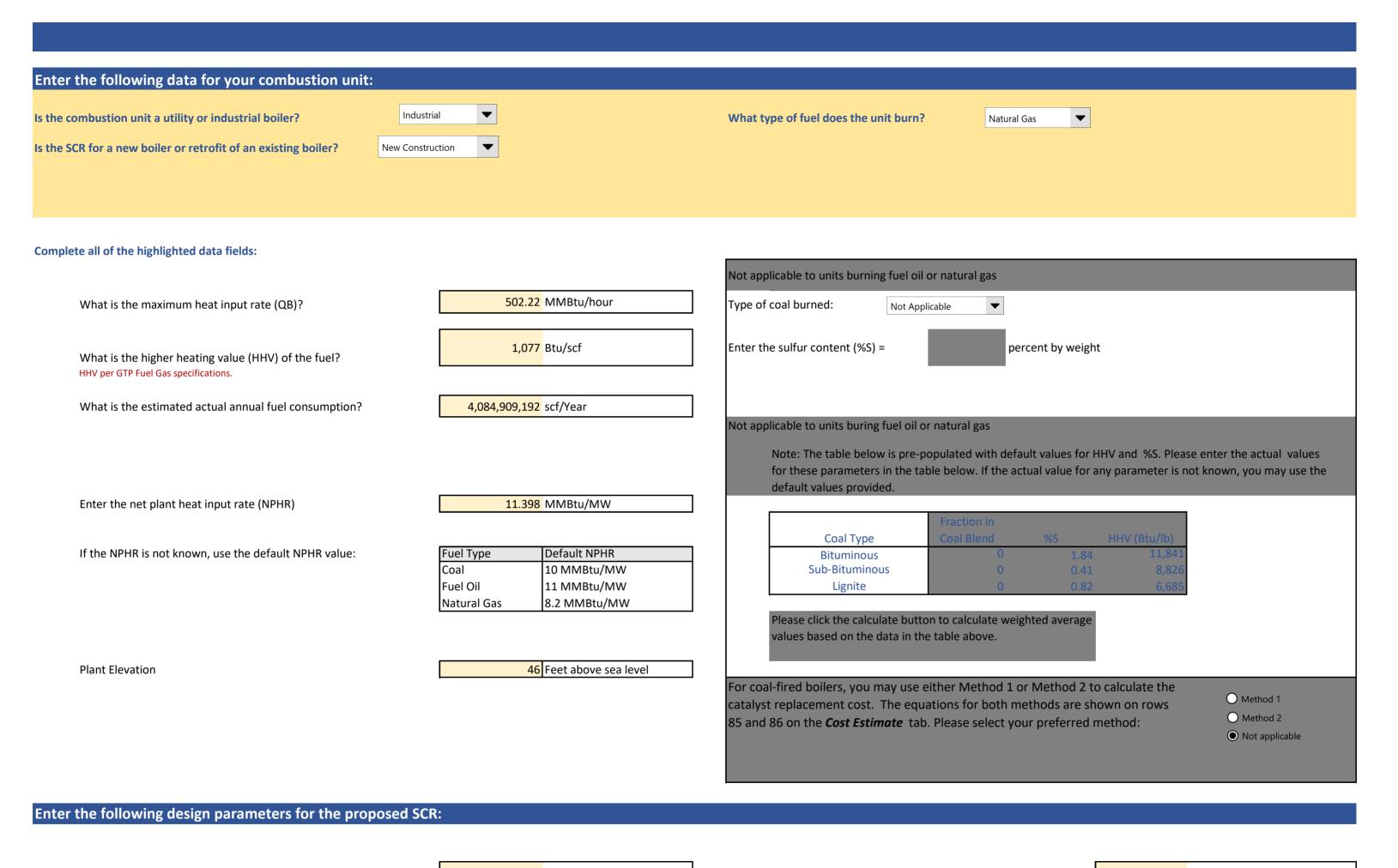
Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$2,985 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$498,208 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$501,193 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$1,225,630 per year in 2017 dollars		
NOx Removed =	87 tons/year		
Cost Effectiveness =	\$14,056 per ton of NOx removed in 2017 dollars		

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.2


APPENDIX B.2

GTP CO₂ Compressor Turbines

Number of days the SCR operates (t_{SCR})

Number of days the boiler operates (t_{plant})

GTP BACT ANALYSIS 7th Edition EPA Cost Control Manual

365 days

365 days

Number of SCR reactor chambers (n_{scr})

Number of catalyst layers (R_{layer})

Number of empty catalyst layers (R_{emoty}) Inlet NO_x Emissions (NOx_{in}) to SCR 1 0.06452 lb/MMBtu Outlet NO_x Emissions (NOx_{out}) from SCR Ammonia Slip (Slip) provided by vendor 5 ppm 0.0074 lb/MMBtu Volume of the catalyst layers (Vol_{catalyst}) Stoichiometric Ratio Factor (SRF) 1.050 (Enter "UNK" if value is not known) 1,929 Cubic feet *The SRF value of 1.05 is a default value. User should enter actual value, if known. Flue gas flow rate (Q_{fluegas}) (Enter "UNK" if value is not known) 268183 acfm Notes: Weighted average inlet Nox (Main Burner - 0.055 lb/MMBtu, Supplemental Firing - 0.08 lb/MMBtu) per Gas Turbine Vendor. Outlet NOx 2 ppmv per EPA. Estimated operating life of the catalyst (H_{catalyst}) 26,280 hours 750 °F Gas temperature at the SCR inlet (T) Estimated SCR equipment life 20 Years* * For industrial boilers, the typical equipment life is between 20 and 25 years. 534.00 ft³/min-MMBtu/hour Base case fuel gas volumetric flow rate factor (Q_{fuel}) Concentration of reagent as stored (C_{stored}) 19 percent Density of reagent as stored (ρ_{stored}) 58 lb/cubic feet Number of days reagent is stored (t_{storage}) Densities of typical SCR reagents: 14 days 50% urea solution 71 lbs/ft³ 29.4% aqueous NH₃ 56 lbs/ft³ Select the reagent used \blacksquare Ammonia Enter the cost data for the proposed SCR: Desired dollar-year 2017 CEPCI = Chemical Engineering Plant Cost Index CEPCI for 2017 567.5 Enter the CEPCI value for 2017 2016 CEPCI 5.5 percent is the default bank prime rate. User should enter current bank prime rate (available at https://www.federalreserve.gov/releases/h15/.) Annual Interest Rate (i) 5.5 Percent* Ammonia cost per Brenntag quote (June 15, 2015). Reagent (Cost_{reag}) 5.670 \$/gallon for 19% ammonia Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers Electricity (Cost_{elect}) 0.1600 \$/kWh n Alaska: https://www.eia.gov/electricity/data.php#sales \$/cubic foot (includes removal and disposal/regeneration of existing \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, f known. Catalyst cost (CC replace) 227.00 catalyst and installation of new catalyst \$60/hour is a default value for the operator labor rate. User should enter actual value, if known. **Operator Labor Rate** 60.00 \$/hour (including benefits)*

Maintenance and Administrative Charges Cost Factors:

users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

Operator Hours/Day

0.005
0.03

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet

4.00 hours/day*

4 hours/day is a default value for the operator labor. User should enter actual value, if known.

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	502	MMBtu/hour
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	4,084,909,192	scf/Year
Actual Annual fuel consumption (Mactual) =		4,084,909,192	scf/Year
Heat Rate Factor (HRF) =	NPHR/10 =	1.14	
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction
Total operating time for the SCR (t_{op}) =	CF _{total} x 8760 =	8760	hours
NOx Removal Efficiency (EF) =	$(NOx_{in} - NOx_{out})/NOx_{in} =$	88.6	percent
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	28.70	lb/hour
Total NO _x removed per year =	$(NOx_{in} x EF x Q_B x t_{op})/2000 =$	125.70	tons/year
NO _x removal factor (NRF) =	EF/80 =	1.11	
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{\text{fuel}} \times QB \times (460 + T)/(460 + 700)n_{\text{scr}} =$	268,183	acfm
Space velocity (V _{space}) =	$q_{flue gas}/Vol_{catalyst} =$	139.03	/hour
Residence Time	1/V _{space}	0.01	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for subbituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00	
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =		
Elevation Factor (ELEVF) =	14.7 psia/P =		
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia
Retrofit Factor (RF)	New Construction	0.80	

Not applicable; factor applies only to coal-fired boilers

Not applicable; elevation factor does not apply to plants located at elevations below 500 feet.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
acare 1101 111 140001 (1 111)	(interest rate) $(1/((1+ interest rate)^{Y} - 1)$, where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer		Fraction

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst volume (Vol _{catalyst}) =	$2.81 \times Q_B \times EF_{adj} \times Slipadj \times NOx_{adj} \times S_{adj} \times (T_{adj}/N_{scr})$	1,929.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	279	ft ²
Height of each catalyst layer (H _{layer}) =	$(Vol_{catalyst}/(R_{layer} \times A_{catalyst})) + 1$ (rounded to next highest integer)	3	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	321	ft ²
Reactor length and width dimensions for a square	(Λ \0.5	17.9	foot
reactor =	(A _{SCR})	17.9	ieet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	50	feet

Reagent Data:

Type of reagent used Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/moleDensity = 58 lb/ft^3

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	11	lb/hour
Reagent Usage Rate (m _{sol}) =	$m_{reagent}/Csol =$	59	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	8	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	2,600	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	297.52	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

 $TCI = 86,380 \text{ x } (200/B_{MW})^{0.35} \text{ x } B_{MW} \text{ x } ELEVF \text{ x } RF$

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7.850 \times (2.200/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour:

 $TCI = 10,530 \times (1,640/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_B \times ELEVF \times RF$

Total Capital Investment (TCI) = \$6,706,591 in 2017 dollars	Capital Investment (TCI) =	\$6,706,591 in 2017 dollars
--	----------------------------	-----------------------------

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$872,673 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$564,372 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$1,437,045 in 2017 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$33,533 in 2017 dollars
Annual Reagent Cost =	$m_{sol} \times Cost_{reag} \times t_{op} =$	\$376,057 in 2017 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$417,003 in 2017 dollars

Appendix B.2 - BACT Cost Effectiveness (CO2 Compressor Generator)

GTP BACT ANALYSIS 7th Edition EPA Cost Control Manual

Annual Catalyst Replacement Cost =	\$46,080 in 2017 dollars
$n_{scr} \times Vol_{cat} \times (CC_{replace}/R_{layer}) \times FWF$	
Direct Annual Cost =	\$872,673 in 2017 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

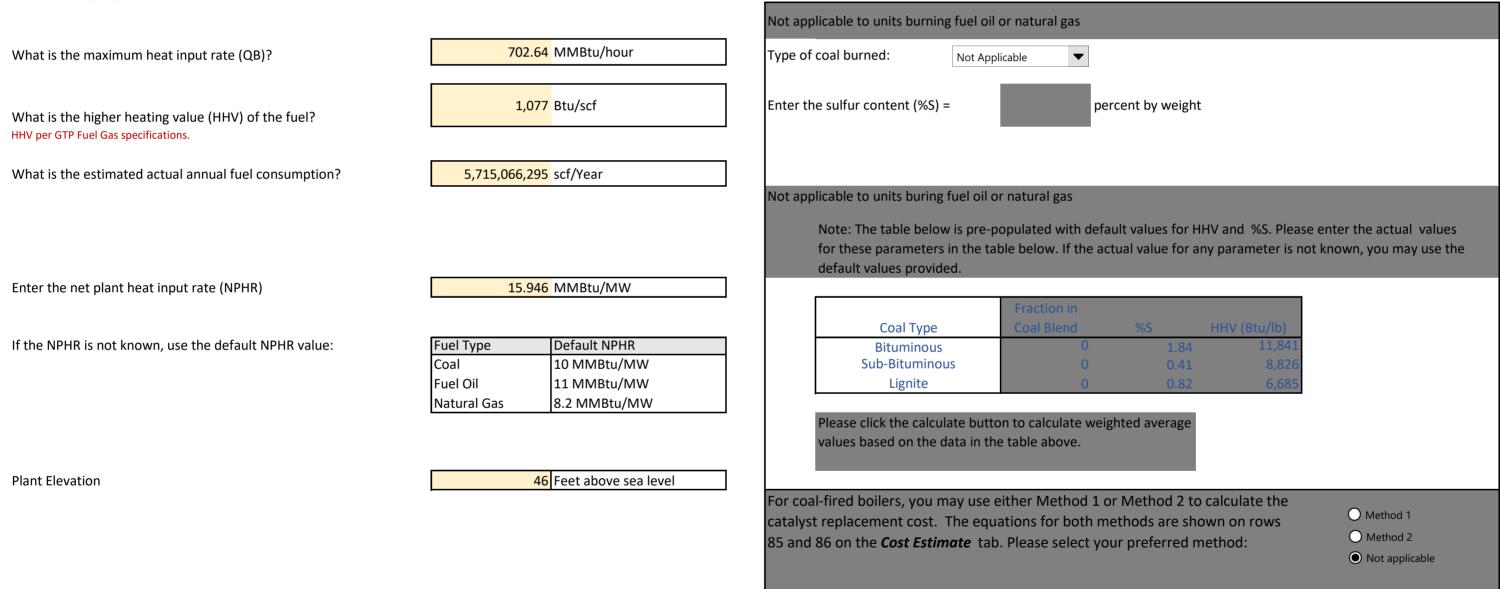
Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$3,030 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$561,342 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$564,372 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$1,437,045 per year in 2017 dollars
NOx Removed =	126 tons/year
Cost Effectiveness =	\$11,432 per ton of NOx removed in 2017 dollars

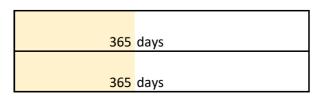
ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.5


APPENDIX B.3

GTP Treated Gas Compressor Turbines

Data Inputs

Enter the following data for your combustion unit: • Industrial Is the combustion unit a utility or industrial boiler? What type of fuel does the unit burn? \blacksquare Natural Gas New Construction Is the SCR for a new boiler or retrofit of an existing boiler?


Complete all of the highlighted data fields:

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})

Number of days the boiler operates (t_{plant})

Number of SCR reactor chambers (n_{scr})

Number of catalyst layers (R_{layer})

1
3

Inlet NO _x Emissions (NOx _{in}) to SCR	0.0651 lb/MMBtu	Number of empty catalyst layers (R _{empty})	1
Outlet NO _x Emissions (NOx _{out}) from SCR	0.0074 lb/MMBtu	Ammonia Slip (Slip) provided by vendor	5 ppm
Stoichiometric Ratio Factor (SRF)	1.050	Volume of the catalyst layers (Vol _{catalyst}) (Enter "UNK" if value is not known)	2,692 Cubic feet
*The SRF value of 1.05 is a default value. User should enter actual value, if known.	1.030	Flue gas flow rate (Q _{fluegas})	z,092 Cubic feet
		(Enter "UNK" if value is not known)	385879 acfm
Notes: Weighted average inlet Nox (Main Burner - 0.055 lb/MMBtu, S	upplemental Firing - 0.08 lb/MMBtu) per Gas Turk	bine Vendor. Outlet NOx 2 ppmv per EPA.	
Estimated operating life of the catalyst (H _{catalyst})	26,280 hours		
Estimated SCR equipment life	20 Years*	Gas temperature at the SCR inlet (T)	750 °F
* For industrial boilers, the typical equipment life is between 20 and 25 years.		Base case fuel gas volumetric flow rate factor (Q _{fuel})	549.18 ft ³ /min-MMBtu/hour
Concentration of reagent as stored (C _{stored})	19 percent		
Density of reagent as stored (ρ_{stored})	58 lb/cubic feet		
Number of days reagent is stored (t _{storage})	14 days	Densities of typical S	CR reagents:
		50% urea solution	71 lbs/ft ³
		29.4% aqueous NH ₃	56 lbs/ft ³
Select the reagent used Ammon	ia 🔻		
the cost data for the proposed SCR:			
	2017		
Desired dollar-year	2017	i	

Desired dollar-year	2017	
CEPCI for 2017	567.5 Enter the CEPCI value for 2017 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	5.5 Percent*	* 5.5 percent is the default bank prime rate. User should enter current bank prime rate (available at https://www.federalreserve.gov/releases/h15/.)
Reagent (Cost _{reag})	5.670 \$/gallon for 19% ammonia	Ammonia cost per Brenntag quote (June 15, 2015).
Electricity (Cost _{elect})	0.1600 \$/kWh	Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers in Alaska: https://www.eia.gov/electricity/data.php#sales
Catalyst cost (CC _{replace})	\$/cubic foot (includes removal and disposal/regeneration of existing 227.00 catalyst and installation of new catalyst	* \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, if known.
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60/hour is a default value for the operator labor rate. User should enter actual value, if known.
Operator Hours/Day	4.00 hours/day*	* 4 hours/day is a default value for the operator labor. User should enter actual value, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

0.00
0.0

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	703	MMBtu/hour
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	5,715,066,295	scf/Year
Actual Annual fuel consumption (Mactual) =		5,715,066,295	scf/Year
Heat Rate Factor (HRF) =	NPHR/10 =	1.59	
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction
Total operating time for the SCR (t_{op}) =	CF _{total} x 8760 =	8760	hours
NOx Removal Efficiency (EF) =	$(NOx_{in} - NOx_{out})/NOx_{in} =$	88.7	percent
NOx removed per hour =	$NOx_{in} x EF x Q_B =$	40.58	lb/hour
Total NO _x removed per year =	$(NOx_{in} \times EF \times Q_B \times t_{op})/2000 =$	177.74	tons/year
NO _x removal factor (NRF) =	EF/80 =	1.11	
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{fuel} \times QB \times (460 + T)/(460 + 700)n_{scr} =$	385,879	acfm
Space velocity (V _{space}) =	$q_{flue gas}/Vol_{catalyst} =$	143.34	/hour
Residence Time	1/V _{space}	0.01	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for subbituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00	
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =		
Elevation Factor (ELEVF) =	14.7 psia/P =		
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.7	psia
Retrofit Factor (RF)	New Construction	0.80	

Not applicable; factor applies only to coal-fired boilers

Not applicable; elevation factor does not apply to plants located at elevations below 500 feet.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
	(interest rate) $(1/((1+ interest rate)^{Y} - 1)$, where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer		Fraction

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst volume (Vol _{catalyst}) =	$2.81 \times Q_B \times EF_{adj} \times Slipadj \times NOx_{adj} \times S_{adj} \times (T_{adj}/N_{scr})$	2,692.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	402	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	462	ft ²
Reactor length and width dimensions for a square	(Λ \0.5	21.5	foot
reactor =	(A _{SCR})	21.5	ieet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	50	feet

Reagent Data:

Type of reagent used Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/moleDensity = 58 lb/ft^3

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	16	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	83	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	11	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	3.600	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	480.91	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

 $TCI = 86,380 \times (200/B_{MW})^{0.35} \times B_{MW} \times ELEVF \times RF$

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7.850 \times (2.200/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour:

 $TCI = 10,530 \times (1,640/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_B \times ELEVF \times RF$

To	otal Capital Investment (TCI) =	\$8,342,517	in 2017 dollars
----	---------------------------------	-------------	-----------------

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$1,311,798 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$701,397 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$2,013,195 in 2017 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$41,713 in 2017 dollars
Annual Reagent Cost =	$m_{sol} \times Cost_{reag} \times t_{op} =$	\$531,735 in 2017 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$674,044 in 2017 dollars

Appendix B.3 - BACT Cost Effectiveness (Treated Gas Compressor Generator)

GTP BACT ANALYSIS 7th Edition EPA Cost Control Manual

Annual Catalyst Replacement Cost =	\$64,306 in 2017 dollars
$n_{scr} \times Vol_{cat} \times (CC_{replace}/R_{layer}) \times FWF$	
Direct Annual Cost =	\$1,311,798 in 2017 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$3,129 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$698,269 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$701,397 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$2,013,195 per year in 2017 dollars
NOx Removed =	178 tons/year
Cost Effectiveness =	\$11,327 per ton of NOx removed in 2017 dollars

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.5

APPENDIX B.4

LNG Power Generation Turbines

Data Inputs Enter the following data for your combustion unit: Industrial \blacksquare Is the combustion unit a utility or industrial boiler? • What type of fuel does the unit burn? Natural Gas Is the SCR for a new boiler or retrofit of an existing boiler? **New Construction** Complete all of the highlighted data fields: Not applicable to units burning fuel oil or natural gas 430 MMBtu/hour Type of coal burned: What is the maximum heat input rate (QB)? Not Applicable

Enter the net plant heat input rate (NPHR)

If the NPHR is not known, use the default NPHR value:

What is the higher heating value (HHV) of the fuel? HHV per LNG Fuel Gas specifications - RR9 - Appendix D.

What is the estimated actual annual fuel consumption?

Fuel Type Default NPHR
Coal 10 MMBtu/MW
Fuel Oil 11 MMBtu/MW
Natural Gas 8.2 MMBtu/MW

1,087 Btu/scf

3,465,317,387 scf/Year

Plant Elevation

Elevation per RR9 - Appendix D, Section 1.1.

9.759 MMBtu/MW

131 Feet above sea level

For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows 85 and 86 on the *Cost Estimate* tab. Please select your preferred method:

Method 1Method 2Not applicable

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})

Number of days the boiler operates (t_{plant})

Inlet NO_x Emissions (NOx_{in}) to SCR

Outlet NO_x Emissions (NOx_{out}) from SCR

Stoichiometric Ratio Factor (SRF)

365	days
365	days
0.0553	lb/MMBtu
0.0074	lb/MMBtu
1.050	
-	

Number of SCR reactor chambers (n_{scr})

Number of catalyst layers (R_{layer})

Number of empty catalyst layers (R_{empty})

Ammonia Slip (Slip) provided by vendor Volume of the catalyst layers (Vol_{catalyst}) (Enter "UNK" if value is not known)

1	
2	
1	
1	
5	ppm
1,635	Cubic feet

The SRF value of 1.05 is a default value. User should enter actual value, if known. Flue gas flow rate (Q_{fluegas}) (Enter "UNK" if value is not known) 351168 acfm Notes: Inlet Nox 15 ppmv per Gas Turbine Vendor. Outlet NOx 2 ppmv per EPA. Estimated operating life of the catalyst (H_{catalyst}) 26,280 hours Gas temperature at the SCR inlet (T) 341 °F Estimated SCR equipment life 20 Years * For industrial boilers, the typical equipment life is between 20 and 25 years. 816.67 ft³/min-MMBtu/hour Base case fuel gas volumetric flow rate factor (Q_{fuel}) Concentration of reagent as stored (C_{stored}) 19 percent Density of reagent as stored (p_{stored}) 58 lb/cubic feet Number of days reagent is stored (t_{storage}) 14 days Densities of typical SCR reagents: 50% urea solution 71 lbs/ft³ 29.4% aqueous NH₃ 56 lbs/ft³ Select the reagent used \blacksquare Ammonia

Enter the cost data for the proposed SCR:

Desired dollar-year 2017 541.7 2016 CEPCI CEPCI = Chemical Engineering Plant Cost Index CEPCI for 2017 567.5 Enter the CEPCI value for 2017 5.5 percent is the default bank prime rate. User should enter current bank prime rate (available at https://www.federalreserve.gov/releases/h15/.) Annual Interest Rate (i) 5.5 Percent* Ammonia cost based on \$0.30/pound (Weekly Fertilizer Review, 4/2015) Reagent (Cost_{reag}) 2.240 \$/gallon for 19% ammonia Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers 0.1600 \$/kWh Electricity (Cost_{elect}) n Alaska: https://www.eia.gov/electricity/data.php#sales \$/cubic foot (includes removal and disposal/regeneration of existing \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, Catalyst cost (CC replace) 227.00 catalyst and installation of new catalyst \$60/hour is a default value for the operator labor rate. User should enter actual value, if known. 60.00 \$/hour (including benefits)* Operator Labor Rate 4 hours/day is a default value for the operator labor. User should enter actual value, if known. Operator Hours/Day 4.00 hours/day*

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) = 0.005 0.03

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Annual Heat Input Rate (Q_B) =	HHV x Max. Fuel Rate =	430	MMBtu/hour	
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	3,465,317,387	scf/Year	
Actual Annual fuel consumption (Mactual) =		3,465,317,387	scf/Year	
Heat Rate Factor (HRF) =	NPHR/10 =	0.98		
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction	
Total operating time for the SCR (t_{op}) =	CF _{total} x 8760 =	8760	hours	
NOx Removal Efficiency (EF) =	$(NOx_{in} - NOx_{out})/NOx_{in} =$	86.7	percent	
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	20.61	lb/hour	1
Total NO _x removed per year =	$(NOx_{in} \times EF \times Q_B \times t_{op})/2000 =$	90.26	tons/year	1
NO _x removal factor (NRF) =	EF/80 =	1.08		1
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{\text{fuel}} \times QB \times (460 + T)/(460 + 700)n_{\text{scr}} =$	351,168	acfm	1
Space velocity (V _{space}) =	$q_{flue gas}/Vol_{catalyst} =$	214.78	/hour	
Residence Time	1/V _{space}	0.00	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.6	psia	not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	New Construction	0.80		

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) Y -1), where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer	0.3157	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	1,635.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	366	ft ²

Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3	feet
---	--	---	------

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	421	ft ²
Reactor length and width dimensions for a square	() 0.5	30 F	foot
reactor =	(A _{SCR}) ^{0.5}	20.5	ieet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	40	feet

Reagent Data:

Type of reagent used Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/moleDensity = 58 lb/ft^3

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	8	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	42	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	5	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	1,900	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n/(1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	238.28	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

 $TCI = 86,380 \text{ x } (200/B_{MW})^{0.35} \text{ x } B_{MW} \text{ x } ELEVF \text{ x } RF$

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7.850 \times (2.200/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour:

 $TCI = 10,530 \text{ x} (1,640/Q_B)^{0.35} \text{ x} Q_B \text{ x} ELEVF \text{ x} RF$

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_R \times ELEVF \times RF$

Total Capital Investment (TCI) = \$6,062,828 in 2017 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$529,557 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$510,450 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$1,040,007 in 2017 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$30,314 in 2017 dollars
Annual Reagent Cost =	$m_{sol} x Cost_{reag} x t_{op} =$	\$106,678 in 2017 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$333,980 in 2017 dollars
Annual Catalyst Replacement Cost =		\$58,585 in 2017 dollars

 $n_{scr} x Vol_{cat} x (CC_{replace}/R_{laver}) x FWF$

Direct Annual Cost =		\$529,557 in 2017 dollars
	Indirect Annual Cost (IDAC)	
	IDAC = Administrative Charges + Capital Recovery Costs	
Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$2,992 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$507,459 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$510,450 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$1,040,007 per year in 2017 dollars
NOx Removed =	90 tons/year
Cost Effectiveness =	\$11,522 per ton of NOx removed in 2017 dollars

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix B.5

APPENDIX B.5

LNG Compressor Turbines

Data Inputs Enter the following data for your combustion unit: Industrial • Is the combustion unit a utility or industrial boiler? • What type of fuel does the unit burn? Natural Gas Is the SCR for a new boiler or retrofit of an existing boiler? **New Construction** Complete all of the highlighted data fields: Not applicable to units burning fuel oil or natural gas 1164 MMBtu/hour Type of coal burned: What is the maximum heat input rate (QB)? Not Applicable **1,087** Btu/scf Enter the sulfur content (%S) = percent by weight What is the higher heating value (HHV) of the fuel?

Enter the net plant heat input rate (NPHR)

HHV per LNG Fuel Gas specifications - RR9 - Appendix D.

What is the estimated actual annual fuel consumption?

If the NPHR is not known, use the default NPHR value:

Plant Elevation

Elevation per RR9 - Appendix D, Section 1.1.

26.417 MMBtu/MW

9,380,533,579 scf/Year

uel Type	Default NPHR
	10 MMBtu/MW
uel Oil	11 MMBtu/MW
latural Gas	8.2 MMBtu/MW

131 Feet above sea level

Not applicable to units buring fuel oil or natural gas Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided. Coal Type Bituminous **Sub-Bituminous** Lignite Please click the calculate button to calculate weighted average values based on the data in the table above.

For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows 85 and 86 on the *Cost Estimate* tab. Please select your preferred method:

O Method 1 O Method 2 Not applicable

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})

Number of days the boiler operates (t_{plant})

Inlet NO_x Emissions (NOx_{in}) to SCR

Outlet NO_x Emissions (NOx_{out}) from SCR

Stoichiometric Ratio Factor (SRF)

365	days
365	days
0.0553	lb/MMBtu
0.0074	lb/MMBtu
1.050	

Number of SCR reactor chambers (n_{scr})

Number of catalyst layers (R_{layer})

Number of empty catalyst layers (R_{empty})

Ammonia Slip (Slip) provided by vendor Volume of the catalyst layers (Vol_{catalyst}) (Enter "UNK" if value is not known)

1	
2	
1	
5	ppm
4,080	Cubic feet

The SRF value of 1.05 is a default value. User should enter actual value, if known. Flue gas flow rate (Q_{fluegas}) (Enter "UNK" if value is not known) 1535885 acfm Notes: Updated assumes inlet Nox 15 ppmv. Outlet NOx 2 ppmv per EPA. Estimated operating life of the catalyst (H_{catalyst}) 26,280 hours 970 °F Gas temperature at the SCR inlet (T) Estimated SCR equipment life 20 Years * For industrial boilers, the typical equipment life is between 20 and 25 years. 1319.49 ft³/min-MMBtu/hour Base case fuel gas volumetric flow rate factor (Q_{fuel}) Concentration of reagent as stored (C_{stored}) 19 percent Density of reagent as stored (p_{stored}) 58 lb/cubic feet Number of days reagent is stored (t_{storage}) 14 days Densities of typical SCR reagents: 50% urea solution 71 lbs/ft³ 29.4% aqueous NH₃ 56 lbs/ft³ Select the reagent used \blacksquare Ammonia

Enter the cost data for the proposed SCR:

2017 Desired dollar-year 567.5 Enter the CEPCI value for 2017 2016 CEPCI 541.7 CEPCI = Chemical Engineering Plant Cost Index CEPCI for 2017 5.5 percent is the default bank prime rate. User should enter current bank prime rate (available at 5.5 Percent* https://www.federalreserve.gov/releases/h15/.) Annual Interest Rate (i) 2.240 \$/gallon for 19% ammonia Ammonia cost based on \$0.30/pound (Weekly Fertilizer Review, 4/2015) Reagent (Cost_{reag}) Electricity pricing per Department of Energy, annual retail sales of electricity to industrial customers 0.1600 \$/kWh Electricity (Cost_{elect}) n Alaska: https://www.eia.gov/electricity/data.php#sales \$/cubic foot (includes removal and disposal/regeneration of existing \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, catalyst and installation of new catalyst Catalyst cost (CC replace) 60.00 \$/hour (including benefits)* \$60/hour is a default value for the operator labor rate. User should enter actual value, if known. Operator Labor Rate 4.00 hours/day* 4 hours/day is a default value for the operator labor. User should enter actual value, if known. Operator Hours/Day

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) = 0.005 0.03

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units	
Maximum Annual Heat Input Rate (Q _B) =	HHV x Max. Fuel Rate =	1,164	MMBtu/hour	
Maximum Annual fuel consumption (mfuel) =	(QB x 1.0E6 x 8760)/HHV =	9,380,533,579	scf/Year	
Actual Annual fuel consumption (Mactual) =		9,380,533,579	scf/Year	
Heat Rate Factor (HRF) =	NPHR/10 =	2.64		1
Total System Capacity Factor (CF _{total}) =	(Mactual/Mfuel) x (tscr/tplant) =	1.000	fraction	
Total operating time for the SCR (t_{op}) =	CF _{total} x 8760 =	8760	hours	
NOx Removal Efficiency (EF) =	$(NOx_{in} - NOx_{out})/NOx_{in} =$	86.7	percent	
NOx removed per hour =	$NOx_{in} x EF x Q_B =$	55.78	lb/hour	
Total NO _x removed per year =	$(NOx_{in} \times EF \times Q_B \times t_{op})/2000 =$	244.32	tons/year	
NO _x removal factor (NRF) =	EF/80 =	1.08		1
Volumetric flue gas flow rate (q _{flue gas}) =	$Q_{\text{fuel}} \times QB \times (460 + T)/(460 + 700)n_{\text{scr}} =$	1,535,885	acfm	1
Space velocity (V _{space}) =	$q_{flue gas}/Vol_{catalyst} =$	376.44	/hour	
Residence Time	1/V _{space}	0.00	hour	
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.00		
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =			Not applicable; factor applies only to coal-fired boilers
Elevation Factor (ELEVF) =	14.7 psia/P =			Not applicable; elevation factor does
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.6	psia	not apply to plants located at elevations below 500 feet.
Retrofit Factor (RF)	New Construction	0.80		1

^{*} Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
(,	(interest rate)(1/((1+ interest rate) Y -1), where Y = H _{catalyts} /(t _{SCR} x 24 hours) rounded to the nearest integer	0.3157	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q_B x EF _{adj} x Slipadj x NOx_{adj} x S_{adj} x (T_{adj}/N_{scr})	4,080.00	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	1,600	ft ²

[neight of each catalyst layer (n _{laver}) =	$(Vol_{catalyst}/(R_{layer} \times A_{catalyst})) + 1$ (rounded to next highest integer)	2	feet
			,

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	1,840	ft ²
Reactor length and width dimensions for a square	(A \)0.5	42.0	foot
reactor =	(A _{SCR}) ^{0.5}	42.9	reet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	37	feet

Reagent Data:

Type of reagent used Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/moleDensity = 58 lb/ft^3

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	22	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	114	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	15	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	5,000	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$(1+i)^n/(1+i)^n - 1 =$	0.0837
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (Coalf \times HRF)^{0.43} =$	989.80	kW
	where $A = (0.1 \times QB)$ for industrial boilers.		

Cost Estimate

Total Capital Investment (TCI)

TCI for Oil and Natural Gas Boilers

For Oil and Natural Gas-Fired Utility Boilers between 25MW and 500 MW:

 $TCI = 86,380 \text{ x } (200/B_{MW})^{0.35} \text{ x } B_{MW} \text{ x } ELEVF \text{ x } RF$

For Oil and Natural Gas-Fired Utility Boilers >500 MW:

 $TCI = 62,680 \times B_{MW} \times ELEVF \times RF$

For Oil-Fired Industrial Boilers between 275 and 5,500 MMBTU/hour:

 $TCI = 7.850 \times (2.200/Q_B)^{0.35} \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers between 205 and 4,100 MMBTU/hour:

 $TCI = 10,530 \text{ x} (1,640/Q_B)^{0.35} \text{ x} Q_B \text{ x} ELEVF \text{ x} RF$

For Oil-Fired Industrial Boilers >5,500 MMBtu/hour:

 $TCI = 5,700 \times Q_B \times ELEVF \times RF$

For Natural Gas-Fired Industrial Boilers >4,100 MMBtu/hour:

 $TCI = 7,640 \times Q_R \times ELEVF \times RF$

Total Capital Investment (TCI) = \$11,582,176 in 2017 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$1,880,178 in 2017 dollars
Indirect Annual Costs (IDAC) =	\$972,751 in 2017 dollars
Total annual costs (TAC) = DAC + IDAC	\$2,852,930 in 2017 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

nnual Maintenance Cost =	$0.005 \times TCI =$	\$57,911 in 2017 dollars
nnual Reagent Cost =	$m_{sol} x Cost_{reag} x t_{op} =$	\$288,765 in 2017 dollars
nnual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$1,387,308 in 2017 dollars
nnual Catalyst Replacement Cost =		\$146,194 in 2017 dollars
	nnual Maintenance Cost = nnual Reagent Cost = nnual Electricity Cost = nnual Catalyst Replacement Cost =	nnual Reagent Cost = $m_{sol} x Cost_{reag} x t_{op} =$ nnual Electricity Cost = $P x Cost_{elect} x t_{op} =$

 $n_{scr} x Vol_{cat} x (CC_{replace}/R_{laver}) x FWF$

Direct Annual Cost =		\$1,880,178 in 2017 dollars
	Indirect Annual Cost (IDAC) IDAC = Administrative Charges + Capital Recovery Costs	
Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$3,323 in 2017 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$969,428 in 2017 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$972,751 in 2017 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$2,852,930 per year in 2017 dollars
NOx Removed =	244 tons/year
Cost Effectiveness =	\$11,677 per ton of NOx removed in 2017 dollars

	Alaska Gasline Development Corporation	Date: January 10, 2020
ALASKA LNG	Alaska Department of Environmental Conservation	
	BACT AQ1524CPT01 and AQ1539CPT01	
	Information Request	
	Public	Appendix C

APPENDIX C – SUPPORTING INFORMATION LNG COMPRESSOR TURBINES

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix C.1

APPENDIX C.1

AeriNOx SCR Quote (January 2020)

Lisa Kiehl

From: Loran Novacek < Inovacek@aerinox-inc.com>

Sent: Tuesday, January 7, 2020 5:08 PM

To: Joel LeBlanc

Cc: Bart Leininger; Lisa Kiehl
Subject: RE: SCR Sizing and Quote

Hi Joel,

Below is a very rough budgetary but should get you ballpark. This is for a horizontal duct from the turbine outlet flange to the top of the stack. I am assuming a 150ft stack height for now. We will need more customer requirements to pull together better pricing for the entire exhaust and SCR system. If CEMS is required we can include this in our scope since it allows us to drop our analyzer, used for closed loop control and use the CEMS for the feedback.

I am planning to be in the Houston area next week. Would you have time for a meeting?

ITEM	DESCRIPTION	BUDGETARY PRICE (USD)
001	SCR-OXICAT SYSTEM (Per Unit)	GTP TG COMP \$4,100,000
	1 x Ducting / SCR Housing / Silencer	GTP ACID GC \$3,500,000
	 1 Layer of SCR Catalyst with CS modules Ducting from Turbine Outlet to SCR 	GTP LNG \$4,100,000
	 Expansion joint at Turbine Outlet Ducting from SCR to Tailpipe 	LNG MRC \$7,800,000
	 Silencer / Tailpipe with Test Ports, 150ft Height 	
	1 x Tempering Air System (2 x Blowers)1 x Ammonia Injection Grid	
	 1 x Recycle Gas Skid, each including: 	
	o 1 x Two-Phase Injection Lance for ammonia/air	
	 1 x Static mixer 1 x Ventilator fan 	
	 1 x Ventilator fan 1 x SCR Control System with Touch-screen and PLC 	
	1 x Ammonia/Air Dosing Panel	
	■ 1 x Ammonia Pump Station (2 x 100% pumps)	
	1 x Ammon Storage Tank, SS304	
	 Engineering, Operation & Maintenance Documentation 	
002	COMMISSIONING	\$45,000
	(Based on Time and Material Only – Per Unit)	
	Estimated 10 man-days (Per Turbine) for the commissioning of	
	the emission control system to meet the required emissions	
	levels, plus all travel expenses and accommodations. We can	
	provide qualified personnel to supervise installation at the rate	
	of \$1,350 per man-day, plus all travel expenses. Commissioning time/expenses will be billed per the time and material rates.	
	time, expenses will be bliled per the time and material rates.	
003	CONSTRUCTION SUPERVISION	\$120,000
	(Based on Time and Material Only – Per Unit)	
	Estimated 60 man-days (Per Turbine) for the construction	
	supervision/support of the emission control system. Includes	

estimated travel expenses and accommodations. Construction supervision is based time/expenses will be billed per the time and material rates. NOT REQUIRED

PRICE

The given prices for the SCR Emissions Control System are net prices, FCA Point of Manufacture per Incoterms 2010. All prices are in US dollars. Not included are duties, fees or taxes. Taxes will be included on each invoice unless a tax-exempt certificate is supplied.

PAYMENT

25% of the order value upon initial order;

20% of the order value with approval of engineering documents

20% of the order value upon release for manufacturing

30% of the order value with 'ready to ship' of hardware

5% of the order value after successful commissioning, not to exceed six (6) months after delivery

All payments are to be paid within 30 days after each date of invoice, net.

SCHEDULING & DELIVERY

Delivery of the drawings and technical documents is as follows:

- Preliminary Engineering Drawings Approximately 20 weeks after receipt of a purchase order for preliminary drawings with final drawings approximately 12 weeks after customer review/approval
- Ready for Shipment of the hardware is approximately 32 weeks after engineering approval

EMISSION CONTROL SYSTEM DESIGN PARAMETERS:

Parameter	Unit	GTP TG COMP	GTP GAS COMP	GTP LNG COMP	LNG MRC
Estimated Reagent Flow Rate, Based on 19% Aqueous Ammonia, Per Turbine	GPH	8.5	5.5	8.5	14
Aqueous NH3 Tank Size	USG	15,000	10,000	15,000	25,000
Total System Backpressure Contribution (AIG + SCR + Ducting / Silencer / Tailpipe)	inH₂O	<10	<10	<10	<10
Air Consumption, Per Turbine (Based on 87 psi nominal, max 160 psi, Per ISO 1.2.4	cfm	25	15	25	25

EMISSIONS GUARANTEE & WARRANTY

Emission*	Units	Current Turbine Out	Required Stack Out*
NOx as NO ₂ **	ppm @15% O ₂	15	2

^{*} based on 1 hour averaging with the turbine operating at 100% load

Not included in the scope of supply:

Load signal from the turbine (4-20 mA or 0-5 VDC)

^{**}Maximum 20% volume of NOx is present as NO₂

Appendix C.1 -BACT Cost Effectiveness

- Unit running signal (Digital dry contact, closed when turbine is running)
- Internet connection for remote SCR PLC access and data logging
- Ethernet connection for service requirements
- Structural and civil work necessary to complete the installation
- Aqueous Ammonia Solution (assumed to be delivered to the site)
- Heat tracing of Ammonia tank or Ammonia lines
- Air compressor for aqueous ammonia atomization (available as an option)
- Provision for electricity and connection of the power supply to the enclosure
- System integration (design and engineering) with the building structure
- Connection to the local supply and disposal network
- Platforms and other support structures not listed herein
- Any 3rd party emission certification of stack test
- Installation of all hardware
- Shipping and crating

Regards,

Loran Novacek
Chief Executive Officer

AeriNOx® Inc.

100 S. Cherry Ave, Ste 6B Eaton, CO 80615 Main: 970-454-5639, Ext10

Cell: 970-443-3868

Email: lnovacek@aerinox-inc.com
Web: www.aerinox-inc.com

AeriNOx

From: Joel LeBlanc < jleblanc@algcorp.com> Sent: Friday, January 3, 2020 5:01 PM

To: Loran Novacek < Inovacek@aerinox-inc.com>

Cc: Bart Leininger <bleininger@algcorp.com>; Lisa Kiehl <lkiehl@algcorp.com>

Subject: RE: SCR Sizing and Quote

We made some updates to the data, some of which include a correction for power output. The updates are included in the attachment.

With regards to the NOx emissions requirement, the SCR outlet should meet 2 ppm NOx.

ASHWORTH LEININGER GROUP

Los Angeles · San Francisco · Houston · Denver

Joel LeBlanc, P.E. | Houston General Manager T: 281.806.5830 | C: 346.246.8036 | F: 805.764.6011 2219 Sawdust Rd, Suite 1604, Spring, TX 77380 jleblanc@algcorp.com | www.algcorp.com

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix C.2

APPENDIX C.2

Brentag Ammonia Cost Quote (2015)

IIDC					Calculation No. USAG-EC-PCCAL-		00147						
URS	CA	LCULATIO	ON SHEET		Project No.								
					31409								
Project Title:		A	Alaska LNG		Sheet No1	of	6						
Subject/Feature:		SCR, CO, and A	Ammonia Costs for Pre-	BACT	Rev:	Α							
SCR Ammonia Supplier 19% Aq. Ammonia ISO Container Size Density	\$/gal gallons Ib/gal	Brenntag \$5.67 6000 7.74	<u>Univar</u> \$3.20 5000 7.83	•	ot supply density.		Ref 1, 2 1, 2 2						
Container Weight FOB	lb	46,440 Prudhoe Bay Area	39,150 Anchorage	Assumed value	e of 7.74								
Trucking Cost # Trucks From		1 Prudhoe Bay Area	1 Anchorage										
То		Prudhoe Bay Area	Prudhoe Bay Area										
Distance	mi	0	860	Fairbanks to P miles per Ref 3	rudhoe bay is 500 3.		3						
Fuel Efficiency	mi/gal	4	4	Assumed aver	age to/from site		3						
Truck Cost	\$/100 lb freight	\$0.00	\$19.92	Ref 3, Escalate	anks to Prudhoe Bay ed 2012 cost @ usted for milage.		3						
Fuel Surcharge Total Transit Cost	\$/gal fuel per container	\$0.00 \$0	\$5.98 \$10,370	Assumed 30%									
Delivered Ammonia Cost	\$/gal \$/gal	\$0.00 \$5.67	\$2.07 \$5.27										

URS		Calculation No. USAG-EC-PCCAL-00-000147
	CALCULATION SHEET	Project No. 31409
Project Title:	Alaska LNG	Sheet No. 2 of 6
Subject/Feature:	SCR, CO, and Ammonia Costs for Pre-BACT	Rev: A
	_	·

SCR Catalyst

•		Case A	Case B		Case C	Case D		Ref.
Reference (for turbine data)		[7]	[7]	[7]	[7]	[7]	[7]	[8]
Reference for Cost								[3]
		No heat	with heat	DLN1+	DLN1			
Gas Turbine		LM6000	LM6000	Frame6	Frame6	Heater	PGT25+	Frame 7EA
Drive		Power Gen	Power Gen	Mechanical	Mechanical			Mechanical
Exhaust Stream								
Mass Flow	[lb/hr]	1,135,408	1,082,488	1,291,288	1,291,288	243,609	648,000.00	2,293,200.00
Volume Flow	[ACFM]	657,282	626,647	747,520	747,520	93,493	379,037.00	1,464,659
	[SCFM]	251,314	239,600	285,816	285,816	105,688	139,688	511,156
Stack Diameter	[ft]	10	10	13	10			
SCR Catalyst Replacement Cost		\$ 187,567.22	\$ 178,824.94	\$ 213,318.29	\$ 213,318.29	\$ 78,879.67	\$ 104,255.47	350,000

Notes

¹⁾ Scaled costs from 2012 budgetary price for Frame 7EA [3] based on ACFM. New costs include 9% escalation to 2015 dollars as discussed in reference [5].

ALASKA LNG	Alaska Gasline Development Corporation Alaska Department of Environmental Conservation BACT AQ1524CPT01 and AQ1539CPT01 Information Request	Date: January 10, 2020
	Public	Appendix C.3

APPENDIX C.3

GTP Cost Estimate Basis for SCR Cost Evaluation (Confidential)

PRIVILEGED AND CONFIDENTIAL - DO NOT RELEASE

GTP Cost Factors for SCR Cost Control Calculation

Cost Category	GTP Cost Estimate Basis Line Item (see MFS and North Slope Estimate tabs)	Cost Estimate %	AGDC Factor ¹	EPA Factor ²	Comments Regarding AGDC Approach
Direct Capital Costs					
Instrumentation & Controls			0%	10%	Included in purchased equipment
Freight				5%	
	FREIGHT TO MODULE FABRICATION SITE	10%	11%		Freight from US Vendor to MFS
	MISC FREIGHT TO NORTH SLOPE	1%	11%		Freight from Lower-48 to North Slope
Taxes (Enter sales tax rate in "% Applied")			0%	3%	No sales tax in Alaska.
Direct Installation Costs:					
Foundation & Supports	NS- EARTHWORK, STRUCTURAL STEEL	9%	9%	8 - 12%	50% of North Slope module pile foundations and supporting structural steel installation cost ratio
Frantian and Handling	MFS -STRUCTURAL STEEL	30%	31%	14 - 40%	40% of the Structural Steel portion of the MFS installation cost ratio
Erection and Handling	NS - MECHANICAL / HVAC EQUIPMENT	1%	31%	14 - 40%	Mechanical portion of the MFS installation cost ratio
Electrical	MFS- ELECTRICAL, INSTRUMENATION	4%	4%	1 - 4%	50% of Electrical portion of the MFS installatin cost ratio, includes instrumentation
Piping	MFS - PIPING	5%	5%	2%	10% of Piping portion of the MFS installation cost ratio
Insulation	MFS-INSULATION	7%	7%	1%	30% Insulation portion of the MFS installation cost ratio
Indirect Capital Costs					
Indirect Costs:					
Engineering & Supervision				10%	
	MFS- GENERAL CONTRACTOR CM	5%	16%		MFS site engineering and construction management
	NS- CONTRACTOR CM @ SITE	11%			North Slope engineering and construction management
Project Contingency			15%	3%	Level IV Cost Estimate Basis contingency

^{1 -} Cost factors updated in January 2020 based on revised evaluation of potential costs.

^{2 -} EPA factors as described in EPA Air Pollution Control Cost Manual, 6th Edition, EPA/452/B-01-001, January 2002.

PRIVILEGED AND CONFIDENTIAL - DO NOT RELEASE

Source Gas Treatment Plant Class IV Estimate Optimization Phase

Document: AKLNG-4010-BBB-EST-DOC-00001(Confidential)

CLIENT: Alaska LNG

PROJECT: Gas Treatment Plant **LOCATION:** Prudhoe Bay, Alaska

JOB NO.: 31409

REV NO.: 0

OPTIMIZATION PHASE - GAS TREATMENT PLANT

OVERALL MFS SUMMARY

DATE: 07-Jul-16 PREPARED BY: IJH / MLH WAGE RATE (Blended): \$25.18

ACCT.	DESCRIPTION		DIRECT HIRE		TOTAL	[%]	WEIGHT	WEIGH
ACC1.	DESCRIPTION	HOURS	LABOR	MATERIALS	TOTAL	COSTS	[ST]	[MT]
01	DEMOLITION							
02	IMPROVEMENTS TO SITE							
03	EARTHWORK							
04	CONCRETE							
05	STRUCTURAL STEEL	31,158,788	\$784,221,019	\$276,495,489	\$1,060,716,508	43%	111,420	100,359
06	MECHANICAL / HVAC EQUIPMENT	362,723	\$8,893,708	\$779,091,787	\$787,985,495	32%	49,923	45,172
11	PIPING	4,993,879	\$123,298,190	\$114,826,059	\$238,124,249	10%	31,587	28,601
12	ELECTRICAL	421,615	\$10,959,269	\$146,699,119	\$157,658,388	6%	13,759	12,432
13	INSTRUMENATION	225,375	\$5,735,712	\$58,324,827	\$64,060,539	3%	1,154	1,045
14	PAINTING	84,698	\$2,163,784	\$10,497,706	\$12,661,490	1%	1,108	998
15	INSULATION	844,154	\$23,414,643	\$79,739,753	\$103,154,396	4%	8,048	7,117
16	ARCHITECTURAL	179,802	\$5,065,259	\$20,823,161	\$25,888,421	1%	5,517	4,911
	DIRECT COSTS	38,271,034	\$963,751,585	\$1,486,497,901	\$2,450,249,486	100%	222,516	200,630
31	GENERAL CONTRACTOR CM	846,644	\$135,463,000		\$135,463,000			
32	CRAFT LABOR RELATED EXPENSES	0.0,0	4 100, 100,000		INCL. IN WAGE RATE			
33	TEMPORARY FACILITIES				INCL. IN WAGE RATE			
41	CONSTR EQUIP, TOOLS, SUPPLIES				INCL. IN WAGE RATE			
42	SMALL TOOLS & CONSUMABLES				INCL. IN WAGE RATE			
49	CONSTRUCTION CAMP (Not Included)				INCL. IN WAGE RATE			
51	STARTUP CRAFT SUPPORT ALLOWANCE				INCL. IN WAGE RATE			
22	FREIGHT TO MODULE FABRICATION SITE	10%	of Materials	\$148,649,790	\$148,649,790			
	INDIRECT COST	846,644	\$135,463,000	\$148,649,790	\$284,112,790			
	TOTAL MODULE FABRICATION SHOP	39,117,678	\$1,099,214,585	\$1,635,147,691	\$2,734,362,276			

PRIVILEGED AND CONFIDENTIAL - DO NOT RELEASE

Gas Treatment Plant Class IV Estimate Optimization Phase AKLNG-4010-Source

BBB-EST-DOC-00001(Confidential) Document:

CLIENT: Alaska LNG
PROJECT: Gas Treatment Plant
LOCATION: Prudhoe Bay, Alaska

JOB NO.: 31409 REV NO.: 0

OPTIMIZATION PHASE - GAS TREATMENT PLANT NORTH SLOPE SITEWORK

DATE: 07-Jul-16 PREPARED BY: IJH / MLH WAGE RATE (Blended): \$87.95

ACCT.	DESCRIPTION	FABRICATION	(CHINA & NORTH	I AMERICA)		DIRECT HIRE			CONTRACTORS	TOTAL [%] C		WEIGHT	WEIGHT
ACC1.	DESCRIPTION .	HOURS	LABOR	MATERIALS	HOURS	LABOR	MATERIALS	HOURS	Total	TOTAL	[%] Costs	[ST]	[MT]
01	DEMOLITION												
02	IMPROVEMENTS TO SITE												
03	EARTHWORK	417,136	\$19,509,499	\$82,356,940	594,618	\$52,326,431	\$15,886,804	659,829	\$324,191,851	\$494,271,525	51%		
04	CONCRETE	440.047	#0.740.040	#5 700 070	540.040	047.044.400	#40.000.000			Φ 7 Ε 440 004	00/	4.4	40
05	STRUCTURAL STEEL	410,317	\$9,740,919	\$5,760,672	543,342	\$47,814,108	\$12,096,622 \$638,919			\$75,412,321	8%	14	13
06	MECHANICAL / HVAC EQUIPMENT	EC 066	¢4 224 044	¢04 EGE 074	326,428	\$28,725,665				\$29,364,584	3%	3,128	2,838
11	PIPING	56,066	\$1,331,011	\$84,565,274	219,249	\$19,293,890	\$13,318,545			\$118,508,719	12%	520	472
12	ELECTRICAL				455,918	\$40,117,666	\$26,005,762			\$66,123,428	7%	1,421	1,289
13	INSTRUMENATION				11,826	\$849,691	\$27,375,692			\$28,225,383	3%	664	603
14	PAINTING				21	\$1,859	\$5,776			\$7,635	0%	0	0
15	INSULATION				2,694	\$237,031	\$30,217			\$267,248	0%	5	5
16	ARCHITECTURAL												
	MODULE INTERCONNECTS				1,778,464	\$156,504,832				\$156,504,832	16%		
	DIRECT FIELD COSTS	883,519	\$30,581,428	\$172,682,886	3,932,559	\$345,871,173	\$95,358,337	659,829	\$324,191,851	\$968,685,675	84%	5,753	5,220
32	CRAFT LABOR RELATED EXPENSES & INDIRECT CRA	FT			1,110,073	\$97,631,689	\$0			\$97,631,689	4%		
32	CRAFT TRAVEL						\$31,067,241			\$31,067,241			
41	SCAFFOLDING				705,193	\$62,022,218	\$6,004,627			\$68,026,845	2%		
51	START-UP & COMMISSIONING				509,572	\$44,817,168				\$44,817,168	2%		
42	SMALL TOOLS AND CONSUMABLES									INCL. IN WAGE RATE			
41	TEMPORARY FACILITIES				1,547,992	\$136,146,942	\$39,466,880			\$175,613,822	6%		
41	CONSTRUCTION EQUIPMENT				1,107,891	\$97,439,752	\$103,460,869			\$200,900,621	7%		
41	CONSTRUCTION EQUIPMENT HEAVY LIFT CRANES				356,446	\$31,349,625	\$38,500,000			\$69,849,625			
41	CRAFT BUSSING				499,846	\$43,961,772	\$4,500,000			\$48,461,772	2%		
22	MISC FREIGHT TO NORTH SLOPE				,	. , ,	. , .,		\$18,000,000		1%		
22	LOGISTICS								\$695,642,241	\$695,642,241	25%		
51	CONTRACTOR CM @ SITE				1,758,387	\$304,201,000				\$304,201,000	11%		
51	CONTRACTOR CM @ ANCHORAGE				236,234	\$30,237,952				\$30,237,952	1%		
	INDIRECT FIELD COSTS	883,519	\$30,581,428	\$172,682,886	11,764,194	\$1,193,679,289	\$318,357,955	659,829	\$1,037,834,092	\$2,753,135,650	100%	2.84	