

DONLIN GOLD PROJECT

Analysis of Crooked Creek Stream Temperature

Draft September 28, 2021

Project No.: 0011341

Prepared by BGC Engineering Inc. for: **Donlin Gold LLC**

TABLE OF REVISIONS

ISSUE	DATE	REV	REMARKS
DRAFT	September 28, 2021		Original issue for comment

LIMITATIONS

BGC Engineering Inc. (BGC) prepared this document for the account of Donlin Gold LLC. The material in it reflects the judgment of BGC staff in light of the information available to BGC at the time of document preparation. Any use which a third party makes of this document or any reliance on decisions to be based on it is the responsibility of such third parties. BGC accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this document.

As a mutual protection to our client, the public, and ourselves, all documents and drawings are submitted for the confidential information of our client for a specific project. Authorization for any use and/or publication of this document or any data, statements, conclusions or abstracts from or regarding our documents and drawings, through any form of print or electronic media, including without limitation, posting or reproduction of same on any website, is reserved pending BGC's written approval. A record copy of this document is on file at BGC. That copy takes precedence over any other copy or reproduction of this document.

TABLE OF CONTENTS

TABLE	E OF REVISIONS	. ii
LIMITA	ATIONS	. ii
LIST C	OF TABLES	iii
LIST C	OF FIGURES	iii
LIST C	OF APPENDICES	iv
ACRO	NYMS AND ABBREVIATIONS	
1.	INTRODUCTION	
2.	BACKGROUND	
2.1.	Study Area	. 2
2.2.	Available Data	. 5
3.	ANALYSIS	
3.1.	Model Framework	10
3.2.	2005 Data Analysis	12
3.2.1.	Data	12
	Results	15
3.2.3.	Potential Temperature Effects of Treated Water	18
3.3.	Other Years	
4.	LIMITATIONS	22
5.	SUMMARY AND CONCLUSIONS	23
6.	CLOSURE	24

LIST OF TABLES

Table 3-1. Drainage areas at streamflow gages and modelled nodes.

LIST OF FIGURES

Figure 2-1.	Proposed mine	water mar	agement ove	rview.			3
Figure 2-2.	Schematic (https://commor	ns.wikimed	of lia.org/w/inde>		oorheic id=91553685).	zone	4
Figure 2-3.	Schematic show open pit in Ame				er table around the pro	posed	4
Figure 2-4.	Donlin Gold clin	nate and h	ydrometric sta	ations.			6
Figure 2-5.	Crooked Creek	daily strea	im temperatur	e at CCA	C for the period 2005-2	2011.	7
Figure 2-6.		,	•		ER for the period 2005 in 2010 at this station.	-2011.	8
Figure 2-7.	Anaconda Cree	k daily stre	eam temperatu	ure at ANI	DA for the period 2005	-2011.	_
							9
Figure 3-1.	Modelling frame	work.					10

11

- Figure 3-2. Average daily stream temperature at CCAC, AMER and ANDA for July and August 2005.
- Figure 3-3. Average daily discharge at CCAC, AMER and ANDA for July and August 2005.

14

- Figure 3-4. Modelled stream temperature at modelling node Q₃ (Crooked Creek at American) for baseline and mining conditions in July and August 2005.
- Figure 3-5. Modelled stream temperature at modelling node CCAC for baseline and mining conditions in July and August 2005.
- Figure 3-6. Modelled stream temperature at modelling node CCAC for baseline and mining conditions in July and August 2005. Two mining conditions are shown, one where the addition of treated water is neglected and the other where it is included.

LIST OF APPENDICES

APPENDIX A DAILY STREAMFLOW AND STREAM TEMPERATURE DATA

- APPENDIX B EXAMPLE CALCULATION
- APPENDIX C PLOTS OF PREDICTED CHANGES IN CROOKED CREEK STREAM TEMPERATURE

ACRONYMS AND ABBREVIATIONS

Acronyms and abbreviations used in this report:

CWA	Clean Water Act
EED	Environmental Evaluation Document
FEIS	Final Environmental Impact Statement
Project	Donlin Gold Project
SRS	Seepage Recovery System
TSF	Tailings Storage Facility

1. INTRODUCTION

The Final Environmental Impact Statement (FEIS) for the Donlin Gold Project (Project) includes a section on potential changes in stream temperature in Crooked Creek in the mine site area. Specifically, the FEIS includes the following statement¹:

"Maximum recorded stream temperatures for Crooked Creek at Crevice Creek in June, July, and August are 45.8°F, 51.6°F, and 50.1°F, respectively. Under summer low flow conditions during mining operations, reductions in groundwater inputs to Crooked Creek could cause stream temperatures in reaches near the mine to be close to or above the State of Alaska's water quality temperature standard of 55.4°F for egg/fry incubation and spawning and 59.0°F for migration and rearing."

The statement was taken directly from the May 2013 Environmental Evaluation Document (EED) prepared by ARCADIS (2013) for Donlin Gold. The statement was addressed in Section 11.2.3.3 in ADEC's Response to Comments (RTC) issued in May 2020 in upholding the Clean Water Act (CWA) Section 401 certification of the project's CWA Section 404 permit.

The EED statement was a qualitative and general assessment of the potential for exceedance of the applicable temperature water quality standards, considering baseline water temperatures (that are below the standards) and the EED's predicted loss of some colder groundwater inputs to Crooked Creek due to planned pit-dewatering. A detailed quantitative analysis was not performed for the EED or the FEIS to define the magnitude and frequency of potential temperature changes in Crooked Creek. As a result of the Section 401 certification appeal which is focused, in part, on this issue, BGC Engineering Inc. (BGC, May 18, 2021) was requested by Donlin Gold to complete a quantitative analysis to further define potential changes in Crooked Creek stream temperatures that may occur because of the proposed Project. Results of that analysis and the methodology used by BGC are provided herein.

¹ FEIS, page 3.13-101.

2. BACKGROUND

2.1. Study Area

The intent of the analysis is to estimate the potential change in stream temperature during operations as a result of reduced surface and subsurface (i.e., groundwater) inflows to Crooked Creek. The watersheds for two Crooked Creek tributaries – American Creek and Anaconda Creek – will be directly impacted by the Project (Figure 2-1). An open pit and contact water dams will intercept almost all the surface runoff and groundwater flows in American Creek, while a tailings storage facility (TSF) and seepage recovery system (SRS) will collect surface and groundwater flows from about 75% of the Anaconda Creek watershed.

Groundwater modelling also indicates that water will be removed from Crooked Creek by the pit dewatering system with the maximum occurring at around year 20 of operations, when maximum pit drawdown occurs (BGC, July 18, 2014; BGC, May 6, 2016). In the valley bottom of Crooked Creek, surface flows are conveyed in the Crooked Creek channel. Flows are also conveyed subsurface in the alluvial sediments that mantle the valley bottom, a region that is referred to as the hyporheic zone. The hyporheic zone is the region of sediment and porous space beneath and alongside a stream bed, where there is mixing of shallow groundwater and surface water (Figure 2-2).

There are two important attributes of the hyporheic zone. First, water in the channel moves at a much faster rate compared to the hyporheic zone. Second, stream water enters the hyporheic zone temporarily, but eventually the stream water re-enters the surface channel or contributes to groundwater storage. The rate of hyporheic exchange is influenced by streambed structure, with shorter water flow paths created by streambed roughness. Longer flow paths are induced by geomorphic features, such as stream meander patterns, pool-riffle sequences, large woody debris dams, and other features.

The hyporheic zone and its interactions influence the volume of stream water that is moved downstream. Gaining reaches indicate that groundwater is discharged into the stream as water moves downstream, so that the volume of water in the main channel increases from upstream to downstream. Conversely, when surface water infiltrates into the groundwater zone (thereby resulting in a net loss of surface water), then that stream reach is considered to be "losing" water. A particular segment of a stream may be "gaining" or "losing" at different periods of the year, e.g., during the freshet or in July when stream temperatures are highest.

As shown in Figure 2-3, the pit dewatering system will draw down the surrounding water table. That drawdown includes the water table in the valley bottom of Crooked Creek, resulting in the removal of some water from the saturated alluvial sediments in the Crooked Creek valley bottom (i.e., the hyporheic zone).

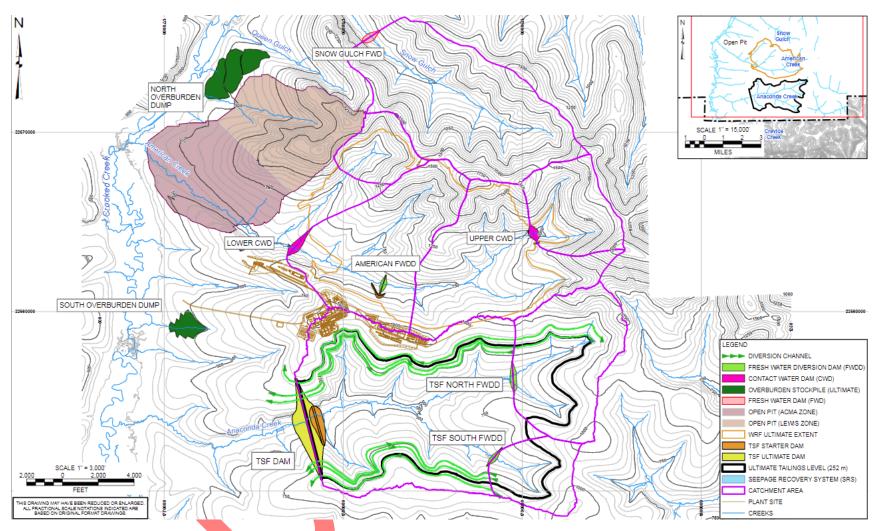


Figure 2-1. Proposed mine water management overview.

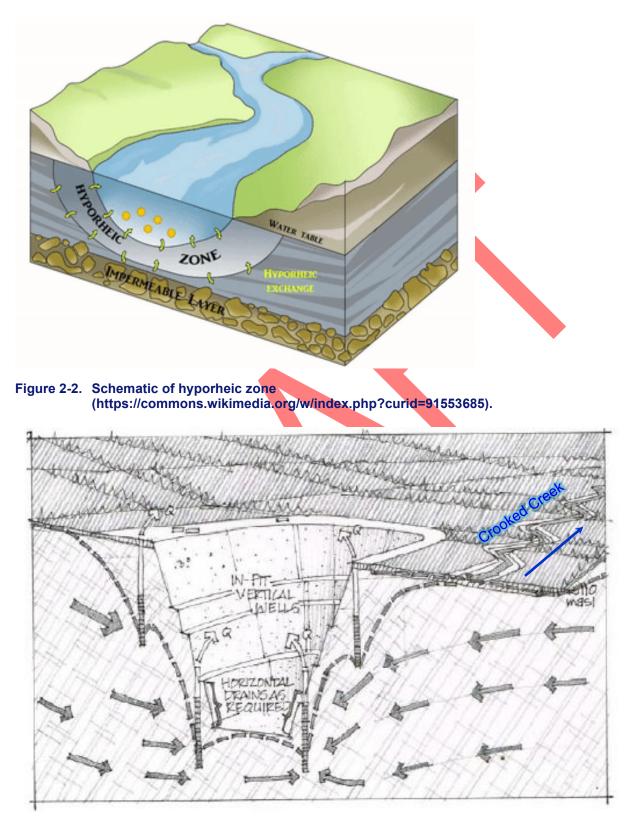


Figure 2-3. Schematic showing conceptual drawdown of water table around the proposed open pit in American Creek (BGC, July 18, 2014).

2.2. Available Data

As part of baseline studies for the Project, streamflow was continuously measured at several hydrometric stations, as illustrated on Figure 2-4. A full description of these stations and available data is provided in BGC (June 14, 2012). For the purposes of this analysis, the key stations are those located on Crooked Creek above Crevice Creek (CCAC), American Creek (AMER), and Anaconda Creek (ANDA). At these stations, a level logger measured water level (which was converted to streamflow discharge using rating curves) and water temperature every 30 minutes, during the open water season (typically early June to late September). These stations have overlapping flow monitoring data for 2005-2009 and 2011². Figure 2-5 shows daily average stream temperature measured at CCAC for the period 2005-2011.

Figure 2-5 demonstrates that stream temperatures in 2005 were much warmer compared to other years. A similar trend is observed in the AMER and ANDA records (Figure 2-6 and Figure 2-7). This trend is consistent with air temperatures recorded at the Camp Station weather station, the location of which is shown on Figure 2-4. For the period 2006-2010, the average May-September air temperature recorded at Camp Station was 51.4°F compared to 58.3°F in 2005. These figures demonstrate that the maximum monthly stream temperatures noted in the EED and FEIS text (i.e., June, July, and August temperatures of 45.8°F, 51.6°F, and 50.1°F) are based on the 2005 CCAC records.

To estimate the magnitude of potential temperature increases, BGC first modeled the 2005 conditions with Project impacts, as this dataset represents the warmest period of Crooked Creek stream temperatures within the available record. The analysis also focused on July and August, as stream temperatures are highest in these months. However, all other years with concurrent records were also modelled by BGC.

The daily streamflow and stream temperature data used in the analysis are provided in Appendix A. The available data were collected at 30-minute intervals but averaged on a daily basis for the analysis.

² Continuous flow monitoring was discontinued at all stations in 2011 because sufficient baseline data were collected to support the EIS and permitting processes.

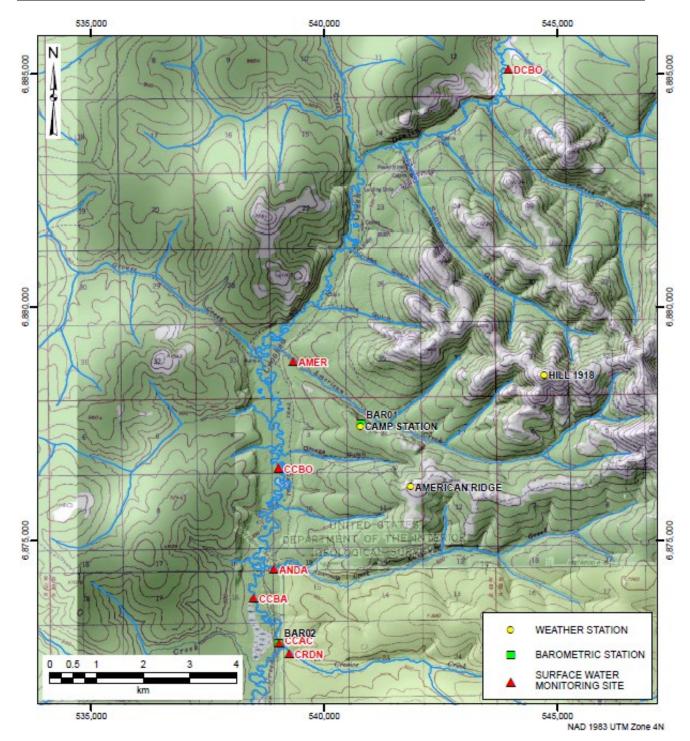


Figure 2-4. Donlin Gold climate and hydrometric stations.

Figure 2-5. Crooked Creek daily stream temperature at CCAC for the period 2005-2011.

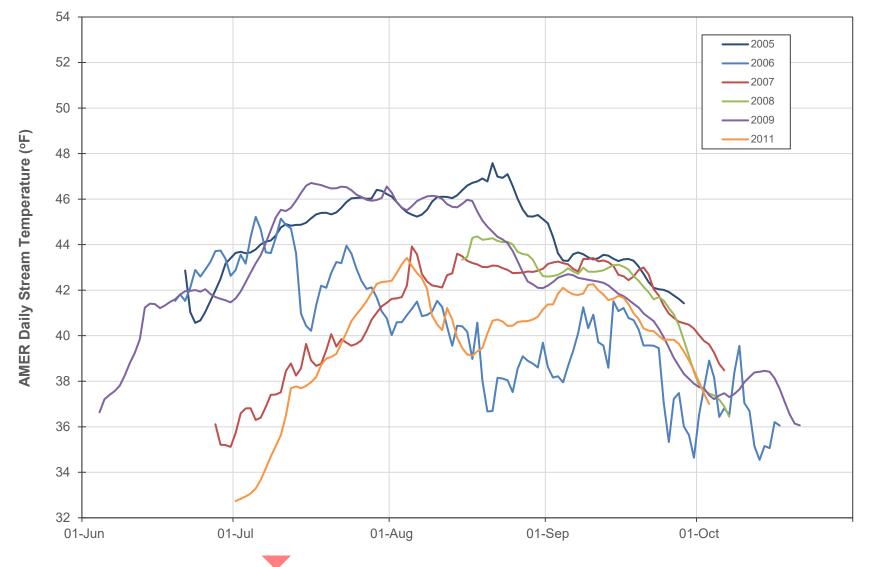


Figure 2-6. American Creek daily stream temperature at AMER for the period 2005-2011. No flows or stream temperature were measured in 2010 at this station.

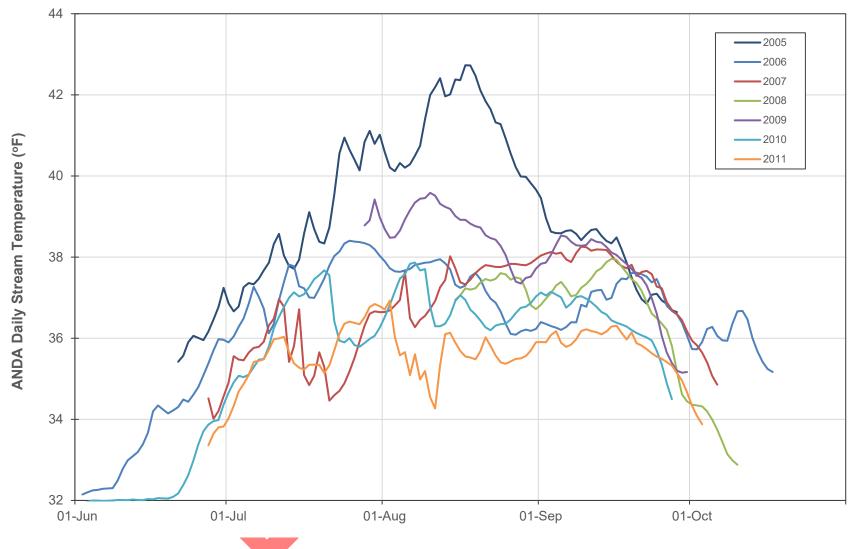


Figure 2-7. Anaconda Creek daily stream temperature at ANDA for the period 2005-2011.

3. ANALYSIS

3.1. Model Framework

Figure 3-1 shows the modelling framework adopted for the analysis. The green dots represent the three streamflow gages where both discharges and stream temperatures are known: CCAC, AMER, and ANDA. The orange dots represent the modelled nodes. Table 3-1 summarizes the drainage areas at each of the nodes for baseline and end of mine life Project conditions.

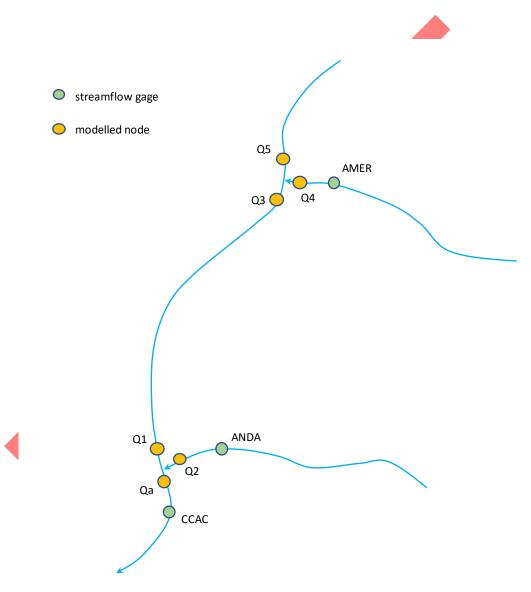


Figure 3-1. Modelling framework.

Node	Name	Drainage /	Area (sq. mi.)
Node		Baseline	Project Impacted
CCAC	Crooked Creek above Crevice Creek	111.9	97.8
Qa	Crooked Creek at Anaconda Creek	108.0	94.0
Q1	Crooked Creek above Anaconda Creek	100.3	92.3
Q ₂	Anaconda Creek at Crooked Creek	7.7	1.7
ANDA	Anaconda Creek	7.6	-
Q ₃	Crooked Creek at American Creek	77.5	69.5
Q4	American Creek at Crooked Creek	8.0	0
AMER	American Creek	6.8	-
Q ₅	Crooked Creek above American Creek	69.6	69.6

Table 3-1. Drainage areas at streamflow gages and modelled nodes.

1. The drainage area of American Creek at the confluence with Crooked Creek is actually 6.9 sq.mi. However, the open pit will extend outside of the American Creek catchment. As a result, the reduction in drainage area at Crooked Creek is modelled as 8.0 sq. mi.

As a first step, daily streamflows at the streamflow gages (CCAC, AMER, ANDA) were adjusted by drainage area to the various model nodes to determine 2005 baseline conditions. For example, daily streamflows at AMER were adjusted to the confluence (Q₄) by multiplying the AMER discharge by the drainage area ratio (8.0/6.8). Next, it was assumed that the stream temperatures measured at the streamflow gages were similar at the nearby confluences (i.e., $T_{CCAC} = T_{Qa}$, $T_{ANDA} = T_{Q2}$, $T_{AMER} = T_{Q4}$). It was also assumed that the stream temperature at Q₁ was equal to that at Q₃.

Daily stream temperatures for 2005 baseline conditions were then calculated for the remaining modelling nodes (Q_5 and Q_1) using the following mixing equation (Bartholow, 2004):

$$\frac{[Q_1 \cdot T_1 + Q_2 \cdot T_2 + \dots Q_n \cdot T_n]}{[Q_1 + Q_2 + \dots Q_n]}$$

where

 T_j = temperature below the junction

 Q_n = discharge of source *n*

 T_n = temperature of source n

The Project impacts were then evaluated by considering that:

- 6.0 sq. mi. of Anaconda Creek would no longer report to Crooked Creek due to the construction of the TSF and SRS.
- The American Creek drainage (8.0 sq.mi.) would no longer report to Crooked Creek due to the excavation of the open pit and the collection of contact water in the Lower Contact Water Dam.
- The dewatering wells would remove an estimated 0.79 cfs from the hyporheic zone of Crooked Creek. This flow was derived from the integrated ground and surface water flow

models that were subject to expert review during the EIS process. (see BGC, October 12, 2016).

So, for example, if the streamflow and stream temperature on a given day in American Creek was 2 cfs and 40°F, then the flow and temperature in Crooked Creek was adjusted by removing a stream flow of 2 cfs with a temperature of 40°F.

It was assumed that the temperature of the water lost from the hyporheic zone of Crooked Creek due to the dewatering wells (0.79 cfs) would have a temperature of 35.6°F, which is the average groundwater temperature measured in the wells and vibrating wire plezometers installed near to and east of the Project. This temperature reflects data collected in a network of 40 groundwater monitoring locations over a variable period extending from June 2007 to March 2014. Groundwater temperatures fluctuate over a narrower range than surface water (typically less than 3°F at each well) because they are not exposed to transient warming influences from seasonal ambient air temperature and solar radiation. Crooked Creek water directly removed by the dewatering wells would be captured mainly from the hyporheic zone, which is expected to have a temperature similar to or slightly cooler than that of the creek (e.g., Malard, Tockner, Dole-Olivier, & Ward, 2002). In general, hyporheic temperatures are highly dynamic both spatially and temporally, due to the interaction between in-stream flow regime, groundwater table, in-stream water temperature, and hyporheic exchange (Marzadri, Tonina, & Bellin, 2013). By conservatively assigning the colder average annual groundwater temperature to the Crooked Creek water removed by the dewatering wells, the effects of these complex interactions are ignored.

Implicit in this analysis is that the recorded flows at all three gages represent a combination of surface runoff and groundwater inflows. Therefore, the losses of groundwater contributions to Crooked Creek from the American and Anaconda creek drainages are assumed to be captured by the removal of total streamflows for these creeks.

An example calculation is provided in Appendix B.

3.2. 2005 Data Analysis

3.2.1. Data

Figure 3-2 and Figure 3-3 show the average daily stream temperature and discharge measured at CCAC, AMER and ANDA for the months of July and August 2005. Of note is that stream temperatures at ANDA are notably cooler than those at AMER. This difference is interpreted as a greater percentage of inflow at ANDA being contributed by groundwater, which is consistent with the watershed topography – Anaconda Creek has a more subdued topography than American Creek, which is more conducive to slower runoff processes.

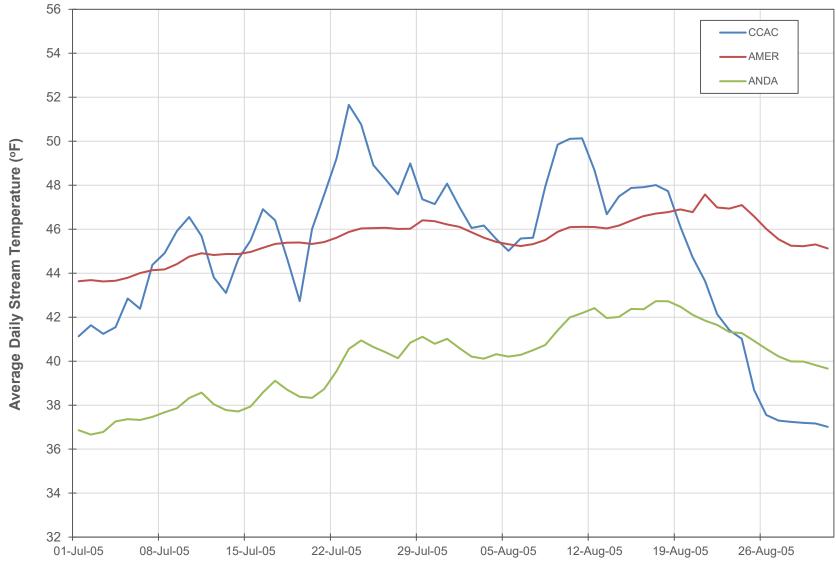


Figure 3-2. Average daily stream temperature at CCAC, AMER and ANDA for July and August 2005.

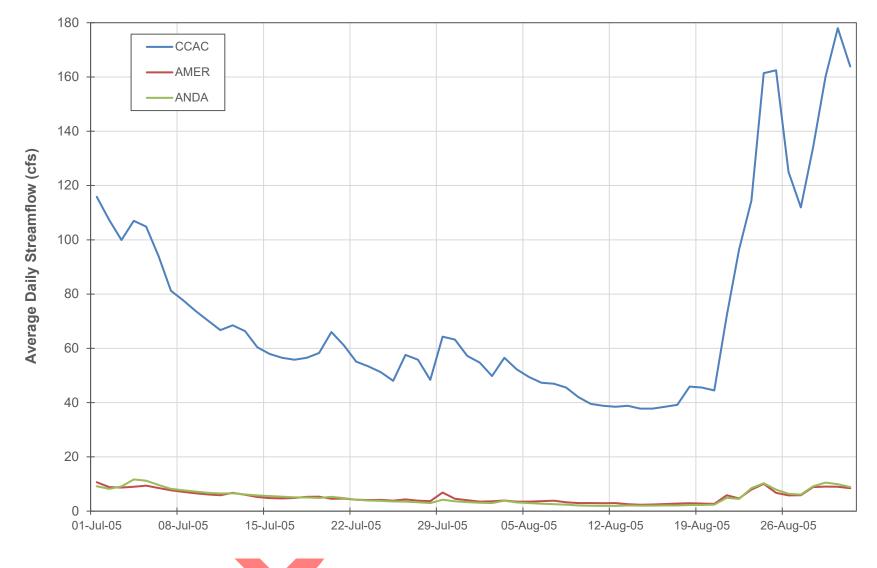
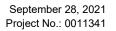
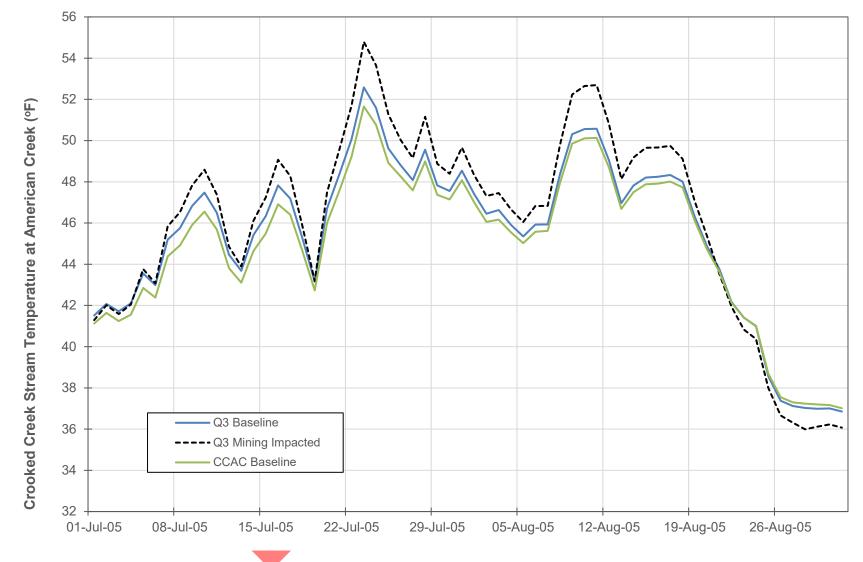


Figure 3-3. Average daily discharge at CCAC, AMER and ANDA for July and August 2005.


3.2.2. Results


The results of the analysis are presented in Figure 3-4 for node Q_3 (Crooked Creek at American). These results indicate that the maximum July 2005 stream temperature is predicted to increase from 52.6°F to 54.8°F, while the maximum August 2005 stream temperature is predicted to increase from 50.6°F to 52.7°F. Under baseline conditions, slightly warmer stream temperatures are calculated at Q_3 relative to CCAC as the modelling node is located upstream of Anaconda Creek, which has colder stream temperatures compared to American Creek and Crevice Creek.

The results of the analysis are presented in Figure 3-5 for node CCAC. These model results indicate that the maximum July 2005 stream temperature is predicted to increase from 51.7°F to 54.5°F, while the maximum August 2005 stream temperature is predicted to increase from 50.1°F to 52.5°F.

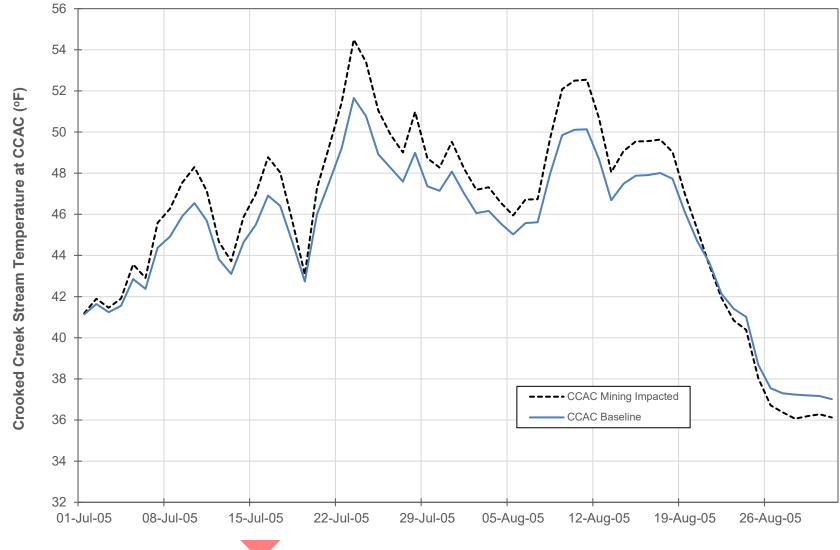

Using the warmest year in the available record of continuous monitoring (i.e., 2005), the predicted increases in Crooked Creek stream temperatures would remain below the State of Alaska's water quality temperature standards of 55.4°F for egg/fry incubation and spawning areas and 59.0°F for migration routes and rearing areas (Department of Environmental Conservation, March 5, 2020). In fact, for most of the time during 2005, the values would be well below the most restrictive standard (55.4°F).

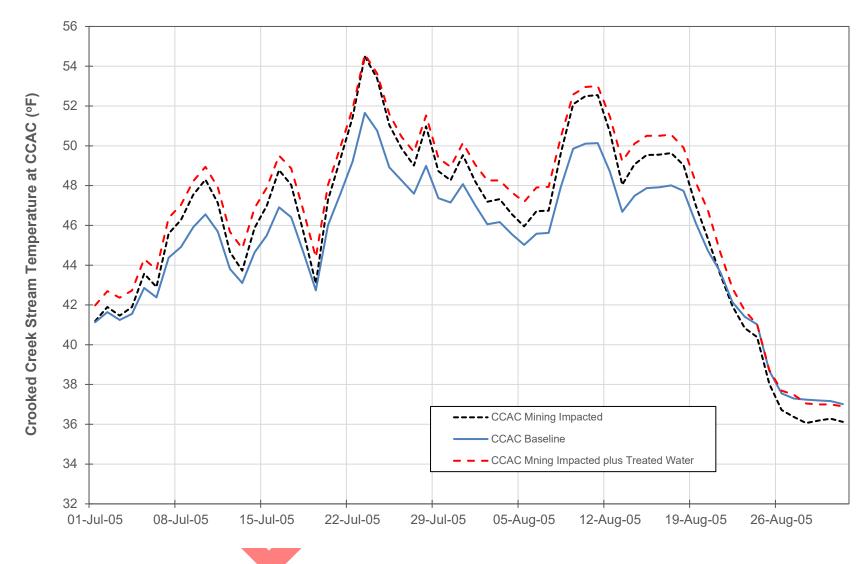
Figure 3-4. Modelled stream temperature at modelling node Q₃ (Crooked Creek at American) for baseline and mining conditions in July and August 2005.

Figure 3-5. Modelled stream temperature at modelling node CCAC for baseline and mining conditions in July and August 2005.

3.2.3. Potential Temperature Effects of Treated Water

Under average precipitation conditions, the Project is expected to operate with a water surplus (BGC, December 7, 2016). Therefore, Donlin will generally treat and discharge contact water to Crooked Creek during late spring through early fall – this discharge is authorized under an Alaska Pollutant Discharge Elimination System (APDES) permit. The discharge to Crooked Creek would be between American Creek and Anaconda Creek. The contact water would be initially treated with a high-rate clarifier (HRC) and greensand filter, followed by reverse osmosis (RO) as required (Hatch, May 8, 2015). During operations, the average monthly treatment and discharge rate is predicted to be 2,370 gallons per minute (gpm, 5.3 cfs) in July and 2,644 gpm (5.9 cfs) in August (BGC, December 7, 2016).

This treated water is expected to have a water temperature that is well below 55.4°F, as a majority of the water to be treated will be sourced from the pit dewatering activities and subsurface flows collected in the TSF Seepage Recovery System (BGC, December 7, 2016). Nonetheless, a sensitivity analysis was conducted by accounting for the introduction of treated water with an assumed temperature of 55.4°F. The exercise was conducted using the 2005 data: introducing 5.3 cfs of treated 55.4°F water to Crooked Creek in July and 5.9 cfs in August. The results of the analysis are provided in Figure 3-6. Slightly warmer temperatures are modelled with the addition of treated water, but maximum stream temperatures remain below the State of Alaska's water quality temperature standards of 55.4°F for egg/fry incubation and spawning areas and 59.0°F for migration routes and rearing areas.


As a further sensitivity, BGC assumed that the treated water had a temperature of 40°F, which is more consistent with the expected temperature of the discharge given the source waters and that the treatment plant should not cause significant warming. Results of this sensitivity run are provided in Figure 3-7 and show that the modelled increase in temperature is reduced with the addition of cooler treated water. This result suggests that ensuring the treated water is relatively cool could act as a potential mitigation strategy if warmer than predicted temperatures are observed.

3.3. Other Years

The calculations completed for 2005 were repeated for 2006, 2007, 2009, and 2011. The analysis could not be completed for 2008 due to limited data at CCAC (Figure 2-5) or 2010 due to a lack of data at AMER (Figure 2-6).

Plots showing modelled stream temperature at modelling nodes Q_3 (Crooked Creek at American) and CCAC for baseline and Project conditions are provided in Appendix C for years 2006, 2007, 2009, and 2011. Those plots show that predicted increases in Crooked Creek stream temperatures would remain below the State of Alaska's most restrictive water quality temperature standard of 55.4°F for egg/fry incubation and spawning areas. This result is expected given that for the period 2006-2011 the stream baseline temperatures were consistently below those observed in 2005 (see Figure 2-2).

The plots provided in Appendix C show that stream temperatures in Crooked Creek are predicted to decrease for some periods. These instances arise when the monitored stream temperatures in American Creek and Anaconda Creek are higher than those in Crooked Creek (e.g., 2006).

Figure 3-6. Modelled stream temperature at modelling node CCAC for baseline and mining conditions in July and August 2005. Two mining conditions are shown, one where the addition of treated water is neglected and the other where it is included at 55°F.

BGC ENGINEERING INC.

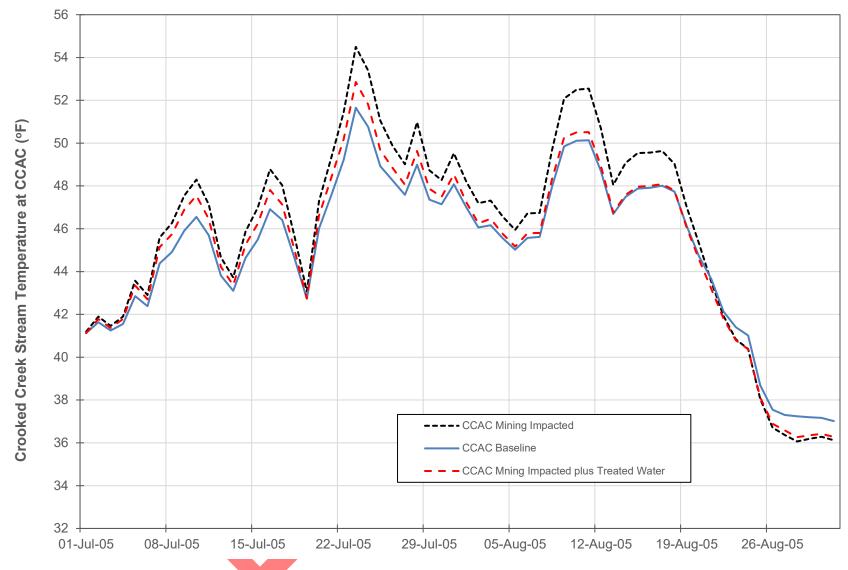


Figure 3-7. Modelled stream temperature at modelling node CCAC for baseline and mining conditions in July and August 2005. Two mining conditions are shown, one where the addition of treated water is neglected and the other where it is included at 40°F.

4. LIMITATIONS

Modelling stream temperatures can be a complex undertaking. As noted by Benyahya, Caissie, St-Hilaire, Ouarda and Bobée (2007):

"The thermal regime of rivers is affected by heat exchanges in which both meteorological factors and physical factors and physical characteristics are important. Meteorological factors affecting the temporal variability of energy exchanges include the annual cycle of incoming solar radiation as well as short-term conditions of wind speed, humidity and air temperature among others. The natural processes of heating and cooling highly depend on meteorological conditions as well as stream physical and hydrological characteristics. Stream characteristics affecting energy exchange include riparian vegetation (especially in small streams), stream aspect, channel geomorphology, valley topography, location of tributaries and groundwater inflows."

The analysis adopted by BGC did not account for all these factors. Other factors not considered in the analysis include:

- Losing and gaining reaches, where the volume of hyporheic flow varies along the creek.
- The potential removal of riparian vegetation along Crooked Creek due to the proposed Project. This factor is not considered significant because there are no plans for the riparian zone of Crooked Creek to be disturbed, except for one bridge crossing.

5. SUMMARY AND CONCLUSIONS

BGC was retained by Donlin Gold to assess potential changes in Crooked Creek stream temperatures that may occur because of the proposed Donlin Gold Project. The Project will intercept surface and groundwater flows from the American Creek and Anaconda Creek tributary drainages. There will also be a loss of flows in Crooked Creek due to pit dewatering. Concerns have been raised that the interception of these flows will cause increases in Crooked Creek stream temperature that could cause exceedances of Alaska water quality standards.

Seasonal discharge and stream temperature data are available for the period 2005-2011 in Crooked Creek, American Creek, and Anaconda Creek at stations CCAC, AMER, and ANDA. Using these data and dilution mixing equations, BGC evaluated the potential impact of the Project on stream temperatures in Crooked Creek at various locations.

For the period 2005-2011, the highest stream temperatures in Crooked Creek were observed in 2005. Model results for this year can be summarized as follows:

- At node Q₃ (Crooked Creek at American), the maximum July 2005 stream temperature would have increased from 52.6°F to 54.8°F, while the maximum August 2005 stream temperature would have increased from 50.6°F to 52.7°F.
- At node CCAC, the maximum July 2005 stream temperature would have increased from 51.7°F to 54.5°F, while the maximum August 2005 stream temperature would have increased from 50.1°F to 52.5°F.

These predicted increases indicate that Crooked Creek stream temperatures would remain below Alaska's lowest water quality temperature standard of 55.4°F for egg/fry incubation and spawning areas. A similar conclusion was reached for the other years with available stream flow and temperature data. The small, modelled increases in Crooked Creek stream temperature are consistent with the relatively small magnitude of both flows in American Creek and Anaconda Creek (that would be cutoff because of the Project) and Crooked Creek flows that would be potentially removed by the dewatering wells (Figure 3-3).

Finally, a sensitivity analysis in which the effect of treated water discharges from the project on Crooked Creek stream temperatures, in which the treated water was assumed to have a temperature of 40°F, shows that the modelled increase in Crooked Creek temperature is reduced with the addition of cooler treated water (Figure 3-7). This result indicates that ensuring the treated water is relatively cool could act as a potential mitigation strategy if warmer than predicted temperatures are observed in Crooked Creek during operations.

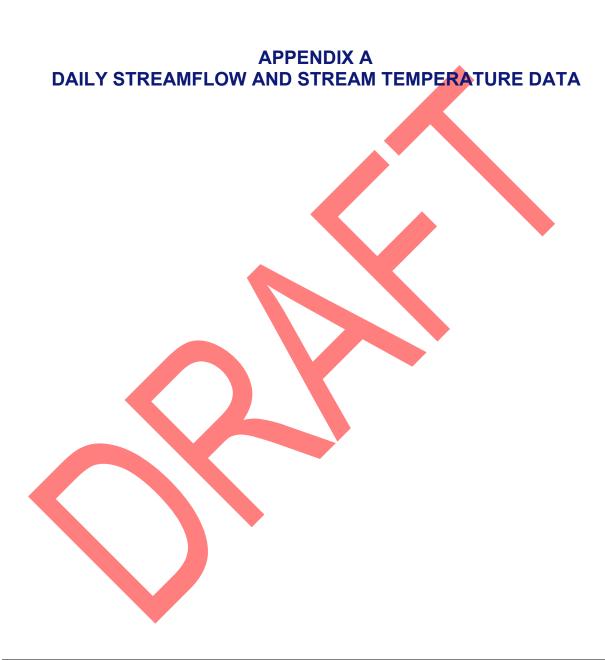
6. CLOSURE

We trust the above satisfies your requirements at this time. Should you have any questions or comments, please do not hesitate to contact us.

Yours sincerely,

BGC ENGINEERING INC. per:

Hamish Weatherly, M.Sc., PG Principal Hydrologist


Reviewed by:

Trevor Crozier, M.Eng., P.Eng. (BC) Principal Hydrogeological Engineer

HW/TC/sf/

REFERENCES

- ARCADIS. (2013 May). *Environmental Evaluation Document, Donlin Gold Project* [Report]. Prepared for Donlin Gold, LLC.
- Bartholow, J.M, (2004). *Stream Segment Temperature Model (SSTEMP) Version 2.0.* US Geological Survey computer and documentation. https://www.sciencebase.gov/catalog/item/53ea4091e4b008eaa4f4c457
- Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T.B.M.J., & Bobée, B. (2007). A Review of Statistical Water Temperature Models. *Canadian Water Resources Journal, 32*(3), 179-192. https://www.tandfonline.com/doi/pdf/10.4296/cwrj3203179
- BGC Engineering Inc. (2021, May 18). *Proposal for Analysis of Crooked Creek Streamflow Temperature (Draft)* [Proposal]. Prepared for Donlin Gold LLC.
- BGC Engineering Inc. (2016, December 7). *Water Resources Management Plan 2016 Update* [Design Memorandum]. Doc. No. EN-0011209.0088. Prepared for Donlin Gold.
- BGC Engineering Inc. (2016, October 12). *Predicted Changes in Streamflow for Individual Facilities* [Design Memorandum]. Doc. No. EN-0011209.0085. Prepared for Donlin Gold.
- BGC Engineering Inc. (2016, May 6). *Groundwater model predicted changes for groundwater contributions to streamflow due to open pit dewatering Rev01* [Memorandum]. Doc. No. PM-0011209.0082. Prepared for Donlin Gold LLC.
- BGC Engineering Inc. (2014, July 18). *Donlin Gold Project, Numerical Hydrogeologic Model* [Report]. Doc. No. ER-0011165.0229A. Prepared for Donlin Gold.
- BGC Engineering Inc. (2012, June 14). Donlin Creek Gold Project, Hydrometric Stations Data and Installation Summary (Draft) [Report]. Doc. No. DC12-003.Prepared for Donlin Gold.
- Elibaio91 Own work. CC BY-SA 4.0. https://commons.wikimedia.org/w/index.php?curid=91553685
- Hatch. (2015, May 8). Donlin Gold: Advanced Water Treatment Options, Process Design Basis – Process Plant Water Management Philosophy [Report]. Prepared for Donlin Gold.
- Malard, F., Tockner, K., Dole-Olivier, M.J., & Ward, J.V. (2002), A landscape perspective of surface-subsurface hydrological exchange in river corridors. *Freshwater Biology, 47*, 621–640. https://doi.org/10.1046/j.1365-2427.2002.00906.x
- Marzadri, A., Tonina, D., & Bellin, A. (2013). Effects of stream morphodynamics on hyporheic zone thermal regime. *Water Resources Research, 49*(4), 2287-2302. https://doi.org/10.1002/wrcr.20199
- State of Alaska, Department of Environmental Conservation. (2020, March 5). 18 AAC 70, Water Quality Standards.

BGC ENGINEERING INC.

Table A-1. Daily stream temperature and flow data at American Creek (AMER).

	Temperature (°F)									
	2005	2006	2007	2008	2009	2010	2011			
01-Jun										
02-Jun										
03-Jun										
04-Jun					36.6					
05-Jun					37.2					
06-Jun					37.4					
07-Jun					37.6					
08-Jun					37.8 38.2					
09-Jun 10-Jun					38.8					
11-Jun					39.2					
12-Jun					39.8					
13-Jun					41.2					
14-Jun					41.4					
15-Jun					41.4					
16-Jun					41.2					
17-Jun					41.3					
18-Jun					41.5					
19-Jun		41.5			41.6					
20-Jun	42.0	41.8			41.8					
21-Jun	42.9	41.5			42.0					
22-Jun 23-Jun	41.0 40.6	42.1 42.9			42.0 42.0					
23-Jun 24-Jun	40.6	42.9			42.0					
24-Jun 25-Jun	40.7	42.0			41.9					
26-Jun	41.5	43.2			41.8					
27-Jun	42.0	43.7	36.1		41.7					
28-Jun	42.5	43.7	35.2		41.6					
29-Jun	43.2	43.4	35.2		41.6					
30-Jun	43.4	42.6	35.1		41.5					
01-Jul	43.6	42.9	35.7		41.6		32.7			
02-Jul	43.7	43.6	36.6		41.9		32.8			
03-Jul	43.6	43.2	36.8		42.3		32.9			
04-Jul	43.7	44.3	36.8		42.8		33.1			
05-Jul	43.8	45.2	36.3		43.2		33.3			
06-Jul 07-Jul	44.0 44.1	44.7 43.7	36.4 36.9		43.5 44.1		33.7 34.2			
08-Jul	44.2	43.6	37.4		44.6		34.7			
09-Jul	44.4	44.3	37.4		45.2		35.2			
10-Jul	44.8	45.1	37.5		45.5		35.6			
11-Jul	44.9	44.9	38.5		45.5		36.5			
12-Jul	44.8	44.7	38.8		45.6		37.7			
13-Jul	44.9	43.6	38.2		45.9		37.8			
14-Jul	44.9	41.0	38.6		46.3		37.7			
15-Jul	45.0	40.4	39.6		46.6		37.8			
16-Jul	45.2	40.2	38.9		46.7		38.0			
17-Jul	45.3	41.3	38.7		46.7		38.2			
18-Jul 19-Jul	45.4 45.4	42.2 42.1	38.8 39.4		46.6 46.5		38.7 39.0			
20-Jul	45.3	42.1	40.1		46.5		39.1			
21-Jul	45.4	43.2	39.5		46.5		39.2			
22-Jul	45.6	43.2	39.8		46.5		39.7			
23-Jul	45.9	44.0	39.7		46.5		40.1			
24-Jul	46.0	43.6	39.6		46.4		40.6			
25-Jul	46.1	42.9	39.6		46.2		40.9			
26-Jul	46.1	42.4	39.8		46.1		41.2			
27-Jul	46.0	42.1	40.2		46.0		41.5			
28-Jul	46.0	42.1	40.7		45.9		41.9			
29-Jul	46.4	41.7	41.0		46.0		42.3			
30-Jul 31-Jul	46.4 46.2	41.1 40.8	41.3 41.4		46.0 46.6	L	42.4 42.4			
01-Aug	46.2	40.8	41.4		46.8		42.4			
01-Aug 02-Aug	45.9	40.0	41.6	-	46.3	-	42.4			
02-Aug	45.6	40.6	41.7		45.6		43.1			
04-Aug	45.4	40.9	42.2		45.5		43.4			
05-Aug	45.3	41.2	43.9		45.7		43.1			
06-Aug	45.2	41.5	43.6		45.9		42.7			
07-Aug	45.3	40.9	42.7		46.0		42.5			
08-Aug	45.5	40.9	42.4		46.1		42.0			
09-Aug	45.9	41.1	42.2		46.1		40.9			
10-Aug	46.1	41.5	42.2		46.1		40.5			
11-Aug	46.1	41.3	42.1		46.0		40.2			

		D	ischarge (cf	s)		
2005	2006	2007	2008	2009	2010	2011
		7.5		13.0		
		7.0		12.1		
	20.9	22.9		10.6		
	19.2	14.2		10.2		
	17.5			9.9		
	16.3	11.2		9.2		
	15.6	8.5		8.5		
	14.4	9.7		7.6		
	13.6	9.1		7.2		
	13.0	9.1		6.8		
	12.2	5.1		6.1		
	12.2			7.0		
	11.4			15.3		
	10.7			11.5		
	10.1			10.8		
	12.0			10.4		
	12.9	7.4		10.0		
	10.9	6.7		9.4		
	10.2			8.9		
	11.0	5.3		9.1		
11.1	10.9			9.5		
12.0	10.4	5.2		9.7		
11.4	9.5			10.1		
10.4	8.9			9.3		
10.4	8.7			9.7		
9.2	8.7	0.0		9.0		
8.3	8.2	8.8		8.3		-
8.2	8.2	6.7		8.1		
7.5	8.3	5.4		7.3		
10.2	12.4	5.0		6.7		
10.7	9.7	5.3		6.2		6.1
8.9	9.2	11.4		5.7		5.6
8.7	8.4	8.9		5.4		5.2
9.0	7.8	8.4		5.3		5.0
9.4	7.2	7.1		5.1		4.8
8.5	8.4	7.1		4.6		4.6
7.7	11.1	7.1		4.2		4.7
7.1	11.6	6.4		4.6		4.6
6.6	8.5	7.3		4.4		4.6
6.2	7.7	7.2		3.3		4.6
5.9	10.9	15.4		2.9		6.4
6.7	8.6	13.8		2.6		10.7
6.1	8.6	11.3		2.6		7.5
5.2	9.1	17.1		2.7		6.4
4.8	11.5	22.4		2.7		6.1
4.7	14.1	19.9		2.4		5.7
4.8	11.7	19.3		2.5		6.4
5.3	10.8	18.6		2.9		7.7
5.3	10.7	21.4		3.0		7.9
4.6	10.0	20.9		2.5		6.2
4.6	9.8	17.5		2.3		5.9
4.2	9.7	18.2		2.1		5.8
4.1	10.5	16.2		2.0		6.0
4.1	9.8	14.9		2.0		6.4
3.8	10.7	14.3		1.9		6.3
4.3	9.9			2.2		6.3
		13.2				
3.9	9.7	12.7		2.0		6.1
3.7	9.1	12.3		2.1		6.5
6.9	9.9	12.0		2.0		7.3
4.6	11.5	12.1		1.4		7.1
4.1	11.1	11.8		8.0		7.4
3.5	10.6	11.7		4.5		7.7
3.6	11.3	11.1		3.5		15.6
3.9	11.0	11.0		3.2		12.1
3.5	11.0	11.7		2.9		15.0
3.5	14.1	19.1		3.2		14.7
3.7	11.8	17.2	1	3.5		14.3
3.8	11.8	15.9		2.9		17.8
3.3	11.8	16.2		2.9		
J.J				2.9		18.1 22.1
20						
3.0 3.0	11.6 16.8	16.0 15.7		2.5		19.1

Table A-1. Daily stream temperature and flow data at American Creek (AMER).

	Temperature (°F)										
	2005	2006	Te 2007	mperature 2008	(°F) 2009	2010	2011				
12 440	46.1	40.4	42.7	2008	45.8	2010	41.2				
12-Aug 13-Aug	46.0	40.4 39.6	42.7		45.8		41.2				
13-Aug 14-Aug	46.0	40.4	42.7		45.6		39.9				
14-Aug 15-Aug	46.4	40.4	43.5	43.3	45.8		39.5				
16-Aug	46.6	40.4	43.3	43.5	45.8		39.2				
17-Aug	46.7	39.0	43.2	44.3	45.9		39.1				
18-Aug	46.8	40.6	43.1	44.4	45.5		39.3				
19-Aug	46.9	38.0	43.0	44.2	45.1		39.5				
20-Aug	46.8	36.7	43.0	44.2	44.8		40.1				
21-Aug	47.6	36.7	43.1	44.3	44.6		40.7				
22-Aug	47.0	38.1	43.1	44.2	44.3		40.7				
23-Aug	46.9	38.1	43.0	44.1	44.2		40.6				
24-Aug	47.1	38.0	42.9	44.1	44.1		40.4				
25-Aug	46.6	37.5	42.8	44.0	43.7		40.4				
26-Aug	46.0	38.6	42.8	43.7	43.3		40.6				
27-Aug	45.5	39.1	42.8	43.6	42.8		40.6				
28-Aug	45.2	38.9	42.8	43.6	42.4		40.6				
29-Aug	45.2	38.8	42.8	43.3	42.3		40.7				
30-Aug	45.3	38.6	42.9	42.9	42.1		40.8				
31-Aug	45.1	39.7	42.9	42.6	42.1		41.2				
01-Sep	44.9	38.6	43.2	42.6	42.2		41.4				
02-Sep	44.3	38.2	43.2	42.6	42.4		41.4				
03-Sep	43.6	38.2	43.3	42.7	42.5		41.8				
04-Sep	43.3	38.0	43.2	42.8	42.6		42.1				
05-Sep	43.3	38.7	43.1	43.0	42.7		41.9				
06-Sep	43.6	39.3	42.9	42.8	42.7		41.8				
07-Sep	43.7	40.1	42.8	42.7	42.5		41.8				
08-Sep	43.6	41.2	43.4	43.0	42.5		41.9				
09-Sep	43.4	40.3	43.4	42.8	42.5		42.2				
10-Sep	43.4	40.9	43.4	42.8	42.4		42.3				
11-Sep	43.4	39.7	43.3	42.8	42.4		42.0				
12-Sep	43.6	39.6	43.3	42.9	42.3		41.8				
13-Sep	43.5	38.6	43.2	43.0	42.2		41.6				
14-Sep	43.4	41.5	43.1	43.1	42.0		41.6				
15-Sep	43.3	41.1	42.7	43.1	41.8		41.7				
16-Sep	43.4	41.2	42.6	43.0	41.7		41.7				
17-Sep	43.4	40.8	42.4	42.9	41.6		41.4				
18-Sep	43.3	40.7	42.6	42.6	41.4		41.0				
19-Sep	43.0	40.3	42.9	42.4	41.2		40.7				
20-Sep	42.7	39.6	43.0	42.1	41.0		40.3				
21-Sep	42.4	39.6	42.7	41.9	40.8		40.2				
22-Sep	42.1	39.6	42.0	41.6	40.6		40.2				
23-Sep	42.0	39.5	41.8	41.7	40.3		40.0				
24-Sep	42.0	37.1	41.3	41.5	39.9		39.8				
25-Sep	41.9	35.3	41.0	41.2	39.5		39.8				
26-Sep	41.8	37.2	40.8	40.9	39.0		39.8				
27-Sep	41.6	37.5	40.6	40.5	38.7		39.6				
28-Sep	41.4	36.0	40.6	39.8	38.3		39.3				
29-Sep		35.6	40.5	39.1	38.1		38.9				
30-Sep		34.6	40.3	38.4	37.9		38.5				
01-Oct		36.5	40.0	37.8	37.7		38.0				
02-Oct		37.7	39.8	37.6	37.7		37.5				
03-Oct		38.9	39.6	37.5	37.4		37.0				
04-Oct		38.2	39.2	37.4	37.2						
05-Oct		36.4	38.8	37.2	37.4						
06-Oct		36.8	38.5	36.9	37.5						
07-Oct		36.5		36.4	37.3						
08-Oct		38.4			37.4						
09-Oct		39.6			37.6						
10-Oct		37.0			38.0						
11-Oct		36.7			38.2						
12-Oct		35.1			38.4						
13-Oct		34.5			38.4						
14-Oct		35.2			38.5						
15-Oct		35.1			38.4						
16-Oct		36.2			38.1						
17-Oct		36.1			37.7						
18-Oct					37.1						
19-Oct					36.5						
20-Oct					36.1						
21-Oct					36.1						

Discharge (cfs)											
2005	2006	2007	2008	2009	2010	2011					
3.0	19.4	18.9		2.2		31.8					
2.5	19.4	15.9		3.4		33.6					
2.4	25.8	19.5		3.2		34.8					
2.5	24.3	17.2		5.9		32.6					
2.6	24.4	16.5	7.1	4.2		28.6					
2.8	23.7	15.8	8.4	3.3		25.2					
2.9	39.5	15.8	7.3	4.0		22.2					
2.8	33.3	15.3	6.8	4.6		20.5					
2.7	32.3	14.9	6.6	4.3		21.5					
5.9	29.6	14.2	6.0	4.5		19.9					
4.7	28.9	13.4	6.1	4.5		17.5					
7.9	25.0	12.7	6.0	4.3		16.5					
10.0	22.5	12.0	5.5	4.3		15.6					
		11.6									
6.7	20.3		5.0	4.0		15.0					
5.8	19.5	11.0	5.2	3.7		14.0					
5.9	18.1	10.6	5.4	3.7		13.1					
8.9	17.0	10.7	4.7	3.4		12.4					
9.1	15.9	10.1	4.4	3.2		11.8					
9.0	14.6	9.6	4.5	3.2		11.6					
8.4	14.2	9.9	4.6	3.7		12.5					
7.6	13.4	9.6	4.4	3.7		11.4					
7.3	13.2	9.4	4.3	4.3		10.9					
8.9	12.3	9.5	4.5	3.4	1	11.5					
8.7	11.3	8.8	4.4	2.8		11.2					
8.2	11.3	8.3	4.4	2.6		10.2					
13.3	11.2	8.1	3.9	2.6		10.2					
			1	-							
11.4	12.0	7.9	4.7	2.8		9.4					
10.5	12.8	11.2	5.0	3.7		9.2					
12.4	11.1	12.0	4.4	3.1		9.8					
11.3	12.5	10.7	4.4	2.8		9.0					
11.7	12.1	10.0	4.1	2.8		8.5					
16.4	12.8	10.1	3.9	2.9		8.2					
14.8	11.7	10.0	4.8	2.9		8.1					
15.0	13.4	9.9	4.7	2.6		8.1					
19.9	14.2	9.7	4.0	2.5		7.7					
26.2	13.1	10.2	4.0	2.7		7.4					
24.2	13.0	12.5	4.0	2.5		7.2					
24.5	13.1	14.8	4.3	2.4		8.4					
24.5	12.8	21.0	4.8	2.4		9.6					
23.8	12.4	21.4	5.1	2.5		8.4					
22.3	12.7	23.7	4.6	2.5		8.0					
21.4	13.0	23.4	4.6	2.7		7.6					
21.0	13.9	24.1	9.4	2.8		7.8					
20.4	12.3	24.0	8.2	2.6		8.3					
20.3	11.2	27.0	7.7	2.6		7.8					
18.4	11.5	23.6	6.7	2.4		7.8					
17.5	11.5	23.4	6.2	2.5		7.7					
17.3	10.7	22.3	6.2	2.3		7.5					
27.5	10.7	21.0	6.2	2.6		7.4					
	9.8	20.3	6.2	2.8		7.4					
		20.3	6.3	2.8		7.2					
	10.2										
	10.0	20.7	7.1	2.3		6.9					
	10.0	19.2	6.9	5.2							
	10.4	18.6	6.6	3.8							
	9.6	18.9	6.6	6.0							
	10.5	19.0	6.3	6.1							
	11.5		5.6	13.6							
	19.3		6.9	10.6							
	20.5		7.9	10.3							
	24.4		1	9.6							
	26.2		1	9.8							
	25.4										
			+	10.8							
	24.8			11.1							
	23.6		L	11.2							
	22.3			10.9							
	21.1			10.6							
	20.0			9.8							
			1	11.6							
			1	14.2							
			1	13.4							

Table A-2. Daily stream temperature and flow data at Anaconda Creek (ANDA).

	Temperature (°F)								
	2005	2006	2007	2008	2009	2010	2011		
01-Jun									
02-Jun		32.1				31.9			
03-Jun		32.2				32.0			
04-Jun		32.2				32.0			
05-Jun		32.3				32.0			
06-Jun		32.3				32.0			
07-Jun		32.3				32.0			
08-Jun		32.3				32.0			
09-Jun		32.5				32.0			
10-Jun		32.8				32.0			
11-Jun		33.0				32.0			
12-Jun		33.1				32.0			
13-Jun		33.2				32.0			
14-Jun	-	33.4				32.0			
15-Jun	-	33.7				32.0			
16-Jun	-	34.2				32.0			
17-Jun		34.3				32.1			
18-Jun		34.2				32.0			
19-Jun		34.1				32.0			
20-Jun	25.4	34.2				32.1			
21-Jun	35.4	34.3				32.2			
22-Jun	35.6	34.5				32.4 32.6			
23-Jun	35.9	34.4							
24-Jun	36.1	34.6				33.0			
25-Jun 26-Jun	36.0 36.0	34.8 35.1				33.4 33.7			
			24 E				22.4		
27-Jun 28-Jun	36.2 36.5	35.4 35.7	34.5 34.0			33.9 34.0	33.4 33.6		
29-Jun	36.8	36.0	34.0			34.0	33.8		
30-Jun	30.8	36.0	34.2			34.0	33.8		
01-Jul	36.9	35.9	34.0			34.4	34.0		
02-Jul	36.7	36.0	35.6			34.9	34.3		
03-Jul	36.8	36.3	35.5			35.1	34.7		
04-Jul	37.3	36.5	35.5			35.0	34.9		
05-Jul	37.4	36.8	35.6			35.1	35.1		
06-Jul	37.3	37.3	35.8			35.3	35.4		
07-Jul	37.5	37.0	35.8			35.5	35.4		
08-Jul	37.7	36.7	35.9			35.5	35.5		
09-Jul	37.9	36.1	36.3			35.8	35.7		
10-Jul	38.3	36.4	36.5			36.2	36.0		
11-Jul	38.6	36.9	37.0			36.5	36.0		
12-Jul	38.0	37.4	36.8			36.8	36.0		
13-Jul	37.8	37.8	35.4			37.0	35.7		
14-Jul	37.7	37.8	35.8			37.1	35.4		
15-Jul	37.9	37.3	36.7			37.0	35.3		
16-Jul	38.6	37.2	35.1			37.1	35.2		
17-Jul	39.1	37.0	34.8			37.3	35.3		
18-Jul	38.7	37.0	35.1			37.5	35.3		
19-Jul	38.4	37.2	35.7			37.6	35.3		
20-Jul	38.3	37.5	35.3			37.7	35.1		
21-Jul	38.7	37.8	34.5			37.6	35.3		
22-Jul	39.5	38.0	34.6			36.4	35.7		
23-Jul	40.6	38.1	34.7			35.9	36.1		
24-Jul	40.9	38.3	34.9			35.9	36.4		
25-Jul	40.6	38.4	35.2			36.0	36.4		
26-Jul	40.4	38.4	35.5	ļ		35.8	36.4		
27-Jul	40.1	38.4	35.9			35.8	36.3		
28-Jul	40.8	38.3	36.3	ļ	38.8	35.9	36.5		
29-Jul	41.1	38.3	36.6		38.9	36.0	36.8		
30-Jul	40.8	38.2	36.7		39.4	36.1	36.8		
31-Jul	41.0	38.0	36.6		39.0	36.3	36.8		
01-Aug	40.6	37.9	36.6		38.7	36.5	36.7		
02-Aug	40.2	37.7	36.7		38.5	36.8	36.9		
03-Aug	40.1	37.6	36.8		38.5	37.1	36.0		
04-Aug	40.3	37.6	36.9		38.7	37.5	35.6		
05-Aug	40.2	37.7	37.6		38.9	37.6	35.7		
06-Aug	40.3	37.7	36.5		39.2	37.8	35.1		
07-Aug	40.5	37.8	36.3		39.3	37.9	35.6		
08-Aug	40.7	37.8	36.5		39.4	37.7	35.0		
09-Aug	41.4	37.9	36.6		39.5	37.7	35.2		
10-Aug	42.0	37.9	36.7		39.6	36.8	34.5		
11-Aug	42.2	37.9	36.9		39.5	36.3	34.3		

Discharge (cfs)										
2005	2006	2007	2008	2009	2010	2011				
					4.2					
	14.4				3.8					
	12.0		1		3.8					
	10.7				3.3					
	9.7		1		3.1					
	9.1				3.1					
	8.6				3.7					
	8.3				4.0					
	7.7				4.7					
	7.2				9.0					
	7.5	5.2			10.0					
	7.3	5.2			6.3					
	6.8				5.4					
	6.4				8.0					
	6.9				6.7					
	9.2				10.5					
	7.2				8.9					
	7.4				6.6					
	8.0				5.7					
12.0	8.5				5.2					
10.7	12.4				4.5					
10.0	7.2				4.2					
9.5	6.0				4.2					
9.7	5.5				4.9					
8.9	5.1				5.8					
8.2	4.9	10.4			4.9	7.3				
7.7	4.8	6.7			5.6	6.3				
7.2	4.8	4.8			4.6	5.7				
8.1	7.5	3.7	1		4.3	5.6				
9.1	6.3	3.3	1		4.2	5.6				
8.2	5.3	10.1			4.1	5.1				
9.1	5.0	8.6			4.1	4.9				
11.7	4.4	6.7			4.8	4.6				
11.2	4.0	5.5	1		5.5	4.4				
9.6	5.0	5.0	1		5.0	4.1				
8.2	8.0	4.6	1		4.9	3.9				
7.7	11.1	3.9			4.4	3.9				
7.2	6.5	4.6			4.3	3.8				
6.8 6.5	5.3 5.5	4.0 11.2			3.9 3.6	3.8 4.3				
6.6	5.0	14.4			3.9	8.1				
6.2	4.9	8.3			3.5	7.2				
5.8	5.7	14.0			3.5	5.6				
5.6	7.1	23.2			3.4	5.2				
5.3	10.4	13.8			3.5	4.5				
5.1	8.3	11.6			3.4	4.6				
5.0	6.8	10.9			3.7	6.2				
4.8	6.3	13.7			4.3	8.4				
5.3	5.7	16.4			10.4	6.3				
4.8	5.4	12.1			25.7	5.4				
4.2	5.3	12.5			10.2	5.0				
3.9	6.0	11.3			7.8	4.9				
3.8	5.8	10.1			8.2	5.1				
3.6	6.5	9.2			9.7	4.9				
3.5	6.2	8.3			7.9	5.1				
3.3	5.7	7.8			7.3	5.2				
3.0	5.4	7.2			7.4	4.9				
4.2	5.8	6.8		0.9	7.5	5.2				
3.6	7.2	6.7		1.3	7.6	5.3				
3.4	7.7	6.6		1.1	6.9	5.4				
3.1	7.5	6.8		5.3	6.4	5.4				
3.0	7.9	6.3		4.6	6.4	13.1				
3.8	7.3	6.3	1	3.5	6.6	10.0				
3.2	6.8	6.9		3.3	7.6	10.0				
3.0	8.2	19.1		2.8	7.6	12.0				
			+							
2.8	7.3	16.2	+	3.0	8.9	10.5				
2.6	6.8	12.2	+	2.9	9.5	21.1				
2.4	6.8	11.3	+	2.8	9.7	15.7				
2.1	7.0	10.4 9.8		2.9	17.5	30.5				
2.0	11.8			2.7	11.7	18.8				

Table A-2. Daily stream temperature and flow data at Anaconda Creek (ANDA).

	Temperature (°F)										
	2005	2006	Tei 2007	2008	(°F) 2009	2010	2011				
12-Aug	42.4	37.9	37.3	2008	39.3	36.3	35.3				
12-Aug 13-Aug	42.4	37.8	37.3		39.2	36.4	36.1				
13-Aug 14-Aug	42.0	37.8	37.4		39.2	36.6	36.1				
-				20.0			35.9				
15-Aug	42.4	37.3	37.7	36.9	39.0	36.9					
16-Aug	42.4	37.2	37.4	37.1	38.9	37.1	35.7				
17-Aug	42.7	37.3	37.3	37.2	38.9	36.9	35.5				
18-Aug	42.7	37.5	37.4	37.2	38.8	36.7	35.5				
19-Aug	42.5	37.6	37.6	37.2	38.8	36.6	35.5				
20-Aug	42.1	37.5	37.7	37.4	38.7	36.4	35.7				
21-Aug	41.8	37.2	37.8	37.5	38.5	36.3	36.0				
22-Aug	41.6	37.0	37.8	37.4	38.5	36.2	35.8				
23-Aug	41.3	36.9	37.8	37.5	38.4	36.3	35.6				
24-Aug	41.3	36.7	37.8	37.6	38.3	36.3	35.4				
25-Aug	40.9	36.4	37.8	37.6	38.0	36.4	35.4				
26-Aug	40.6	36.1	37.8	37.4	37.7	36.5	35.4				
27-Aug	40.2	36.1	37.8	37.5	37.4	36.6	35.5				
28-Aug	40.0	36.2	37.8	37.5	37.3	36.8	35.5				
29-Aug	40.0	36.2	37.8	37.2	37.5	36.8	35.6				
30-Aug	39.8	36.2	37.9	36.8	37.5	36.9	35.7				
31-Aug	39.7	36.2	37.9	36.7	37.7	37.0	35.9				
01-Sep	39.5	36.4	38.0	36.8	37.8	37.1	35.9				
01-Sep 02-Sep	39.0	36.4	38.1	37.0	37.9	37.1	35.9				
02-Sep 03-Sep	33.0	36.3	38.1	37.0	37.5	37.1	36.1				
03-Sep 04-Sep	38.6	36.3	38.1	37.1	38.3	37.1	36.2				
	38.6	36.2	38.1	37.3	38.5	37.0	35.9				
05-Sep	38.6										
06-Sep		36.3	37.9	37.2	38.5	36.8	35.8				
07-Sep	38.7	36.4	37.9	37.0	38.4	36.9	35.8				
08-Sep	38.6	36.4	38.1	37.1	38.3	37.0	36.0				
09-Sep	38.4	36.8	38.3	37.2	38.3	37.0	36.2				
10-Sep	38.6	36.8	38.2	37.3	38.3	37.0	36.2				
11-Sep	38.7	37.1	38.2	37.5	38.4	36.9	36.2				
12-Sep	38.7	37.2	38.2	37.6	38.4	36.8	36.1				
13-Sep	38.5	37.2	38.2	37.7	38.4	36.7	36.1				
14-Sep	38.4	37.0	38.2	37.9	38.2	36.6	36.2				
15-Sep	38.3	37.0	38.0	38.0	38.1	36.4	36.3				
16-Sep	38.5	37.3	37.9	37.9	38.0	36.4	36.3				
17-Sep	38.2	37.5	37.8	37.8	37.9	36.3	36.1				
18-Sep	37.9	37.5	37.7	37.6	37.8	36.3	36.0				
19-Sep	37.5	37.6	37.8	37.5	37.7	36.2	36.1				
20-Sep	37.2	37.6	37.5	37.4	37.6	36.1	35.9				
21-Sep	37.0	37.6	37.6	37.2	37.5	36.1	35.8				
22-Sep	36.9	37.5	37.7	36.9	37.3	36.0	35.7				
23-Sep	37.1	37.4	37.6	36.6	37.0	35.9	35.6				
24-Sep	37.1	37.5	37.3	36.5	36.6	35.7	35.5				
25-Sep	36.9	37.2	37.2	36.4	36.0	35.3	35.5				
25-Sep 26-Sep	36.8	36.8	36.9	36.2	35.6	34.9	35.5				
26-Sep 27-Sep	36.8	36.8	36.9	35.8	35.6	34.9	35.4				
						34.3					
28-Sep	36.6	36.6	36.6	35.2	35.2		35.1				
29-Sep		36.4	36.4	34.6	35.2		35.0				
30-Sep		36.1	36.2	34.4	35.2		34.7				
01-Oct		35.7	35.9	34.4			34.3				
02-Oct		35.7	35.8	34.3			34.1				
03-Oct		35.9	35.6	34.3			33.9				
04-Oct		36.2	35.4	34.2							
05-Oct		36.3	35.1	34.0							
06-Oct		36.1	34.9	33.7							
07-Oct		35.9		33.4							
08-Oct		35.9		33.1							
09-Oct		36.4		33.0							
10-Oct		36.7		32.9							
11-Oct		36.7									
12-Oct	1	36.5			1	1					
13-Oct		36.0									
13-Oct 14-Oct		35.7									
	+										
15-Oct	+	35.4									
16-Oct		35.2									
17-Oct		35.2									
18-Oct											
19-Oct											
20-Oct 21-Oct											

			Discharge (cf			
2005	2006	2007	2008	2009	2010	2011
1.9	18.2	12.8		2.5	11.1	67.3
2.1	15.4	11.0		2.4	11.5	71.1
2.0	28.7	14.9		3.0	12.1	56.9
2.0	23.2	12.6		2.9	13.6	41.7
2.1	21.4	11.3	6.1	4.4	18.6	33.1
2.1	20.4	10.2	6.3	4.2	37.4	26.6
2.3	64.8				26.7	22.6
		10.1	6.1	3.4		
2.3	45.5	9.8	5.7	3.3	22.7	18.9
2.4	38.3	9.3	5.4	3.2	21.5	20.6
4.9	33.2	8.8	5.0	3.0	20.1	22.9
4.5	34.7	8.3	5.1	3.0	17.8	17.7
8.4	29.0	7.9	4.9	3.0	19.2	15.6
10.3	24.4	7.3	4.8	3.1	18.4	13.9
7.9	21.2	7.2	4.7	3.1	16.9	13.1
6.4	19.5	6.7	4.8	3.1	15.3	12.0
6.1	17.4	6.4	5.0	2.8	14.5	11.0
9.2	16.6	6.4	4.9	2.7	15.0	10.2
9.2 10.5			1			
	15.2	6.3	4.8	2.8	14.6	9.5
10.0	14.0	6.0	4.7	2.6	14.6	9.4
8.9	13.5	6.2	4.6	2.5	17.3	10.3
7.6	12.5	6.3	4.3	2.5	17.0	9.6
7.6	11.9	5.8	4.2	2.4	16.4	9.2
9.2	11.2	5.9	4.4	3.1	23.4	11.6
9.2	10.7	5.5	4.5	3.0	25.1	12.8
8.8	10.2	5.1	4.7	2.9	31.8	10.4
11.8	10.1	5.2	4.5	2.9	26.4	9.6
	11.5		4.9			
10.8		5.2	-	3.1	27.0	8.9
9.6	14.6	7.6	5.1	3.2	26.8	8.8
10.9	11.9	9.2	4.7	3.6	28.4	9.7
10.5	13.0	8.3	4.4	3.7	24.5	9.1
10.5	11.2	7.7	4.4	3.5	21.4	8.7
14.4	10.9	7.3	4.5	3.7	20.6	8.5
13.1	10.1	7.0	5.3	3.6	19.2	8.1
12.7	11.7	6.9	5.5	3.8	18.2	7.9
16.2	13.6	7.0	5.3	3.9	16.7	7.7
22.2	12.5	7.8	5.2	3.6	15.9	7.5
18.7	11.5	10.9	5.3	3.5	15.0	7.4
17.5	11.2	15.2	5.2	3.7	14.7	8.0
16.5	10.9	28.9	5.5	3.6	13.8	10.7
15.3	10.6	23.8	6.2	3.6	12.9	8.7
14.8	10.6	27.1	6.3	3.5	12.6	8.2
15.7	10.9	23.4	6.2	3.6	12.2	7.9
17.2	12.0	22.6	9.3	3.6	11.4	7.9
16.1	10.5	22.4	9.8	3.6	11.4	8.6
15.5	10.1	27.3	9.0	3.5		8.3
14.3	10.2	23.0	8.2	3.7		8.4
14.5	10.2	23.0	7.9			8.2
				3.6		
13.5	9.7	21.4	8.6	3.5		8.0
	9.5	19.5	7.7	3.2		7.8
	9.3	18.4	7.6	3.3		7.5
	9.3	17.5	7.6			7.4
	8.9	17.9	7.8			7.4
	8.9	16.1	7.7			5.1
	9.1	15.2	7.4			
	8.7	15.9	7.3			
	9.6	15.6	7.2			
	11.1	13.0	7.6			
			1			
	27.1		12.7			
	29.1		14.4	ļ		
	34.8					
	31.4					
	29.2					
	27.3					
	25.7					
	23.6					
	21.2		1			
	20.0					
			L			
			1		1	

Table A-3. Daily stream temperature and flow data at Crooked Creek (CCAC).

			То	mporaturo	(°E)		
	2005	2006	2007	mperature 2008	2009	2010	2011
01-Jun	2005	2000	2007	2000	32.3	2010	34.1
02-Jun					32.4		33.9
03-Jun					32.5		34.1
04-Jun					32.7		33.7
05-Jun					32.9		33.8
06-Jun					33.0		34.0
07-Jun					33.1		33.0
08-Jun					32.7		32.0
09-Jun					32.9		32.0
10-Jun					33.3		32.0
11-Jun					33.9	33.1	32.1
12-Jun					34.4	34.2	32.1
13-Jun					34.4	33.3	32.2
14-Jun					35.3	34.1	32.3
15-Jun					34.3	33.6	32.4
16-Jun					33.9	33.5	32.4
17-Jun					34.1	33.6	32.8
18-Jun					34.6	33.6	34.1
19-Jun					35.1	34.1	34.8
20-Jun	36.4				35.0	34.6	35.3
21-Jun	34.0				34.8	34.8	35.7
22-Jun	34.5				35.0	35.3	35.3
23-Jun	37.2	34.1		L	35.0	35.8	35.9
24-Jun	40.6	34.7			34.9	36.3	34.5
25-Jun	41.7	35.0		L	35.1	36.8	34.1
26-Jun	42.5	35.1	21.0		35.1	37.1	34.5
27-Jun	44.0	35.3	34.0		35.1	37.5	34.5
28-Jun	44.3	35.5 35.6	34.1		34.9	37.4	34.5 34.5
29-Jun	45.8		34.5		34.7 34.9	37.2	
30-Jun 01-Jul	43.9 41.1	35.7	34.9		34.9	37.6 37.9	34.5
	-	35.4 35.6	35.0				34.6
02-Jul 03-Jul	41.6 41.2		35.0		36.2	38.0 38.2	35.1 35.8
03-Jul 04-Jul	41.2	35.6 35.8	35.0 35.2		36.9 37.7	38.3	36.5
05-Jul	41.0	35.9	35.6		38.2	38.3	37.0
06-Jul	42.3	36.1	35.0		38.7	38.3	37.0
00-Jul	44.4	36.3	36.4		39.6	38.3	37.4
08-Jul	44.9	37.1	36.6		40.6	38.2	37.8
09-Jul	45.9	36.3	37.0		40.8	38.6	37.9
10-Jul	46.6	36.0	37.4		40.9	39.2	38.1
11-Jul	45.7	36.0	37.5		41.1	39.5	38.2
12-Jul	43.8	36.3	38.9		41.7	39.9	37.7
13-Jul	43.1	36.7	42.7		42.5	40.4	37.7
14-Jul	44.6	36.6	41.9		42.9	40.4	37.3
15-Jul	45.5	36.2	39.7		42.9	40.4	37.2
16-Jul	46.9	36.1	39.4		43.0	40.5	37.3
17-Jul	46.4	35.9	39.0		43.1	40.9	37.7
18-Jul	44.6	35.9	38.5		42.9	41.5	37.1
19-Jul	42.7	36.1	38.2		42.6	41.8	37.3
20-Jul	46.0	36.2	38.5		42.6	41.3	37.0
21-Jul	47.6	36.4	39.2		42.8	40.6	37.2
22-Jul	49.2	36.6	39.9		42.9	39.5	37.9
23-Jul	51.7	36.8	40.1		42.7	38.6	38.7
24-Jul	50.8	37.0	39.8		42.5	38.4	39.2
25-Jul	48.9	37.3	39.6		42.5	38.2	39.4
26-Jul	48.3	37.3	39.5		42.5	38.0	39.6
27-Jul	47.6	37.4	39.4		42.5	38.2	39.9
28-Jul	49.0	37.6	39.4		42.7	38.4	40.4
29-Jul	47.4	37.5	39.5		42.8	38.4	40.8
30-Jul	47.1	37.2	39.6		43.0	38.6	40.7
31-Jul	48.1	37.2	39.7		42.6	39.2	40.3
01-Aug	47.0	37.2	39.8		42.3	39.9	40.1
02-Aug	46.1	37.0	39.7		41.8	40.5	40.0
03-Aug	46.2	36.8	39.6		41.6	40.9	40.1
04-Aug	45.6	36.7	39.6		42.0	41.2	39.6
05-Aug	45.0	36.7	40.6		42.5	41.3	39.0
06-Aug	45.6	36.8	41.6		42.7	41.2	38.4
07-Aug	45.6	36.8	43.2		42.9	40.9	37.5
08-Aug	48.0	36.9	42.8		43.0	40.7	37.2
09-Aug	49.8	36.9	42.2		43.0	40.2	36.9
10-Aug	50.1	37.3	41.5		43.3	40.3	36.7
11-Aug	50.1	37.4	40.9		43.2	40.0	36.2

			Discharge (cf			
2005	2006	2007	2008	2009	2010	2011
			161	148		135
			164	154		163
			159	149		131
			158	140		109
			155	142		96
			157	131		92
			195	122		88
			176	117		88
			156	112		83
			146	105		80
			139	102	107	76
			146	99	141	74
			178	149	112	72
			183	161	99	70
			178	129	167	67
			191	114	143	65
			177	124	164	63
			161	111	104	61
			153	102	149	60
470			147	104	105	66
172	101		146	108	96	72
145	184		216	129	89	86
132	159		198	134	84	219
122	142		218	136	85	141
125	132		181	127	88	101
113	125		164	128	97	129
102	121	194	158	124	89	117
95	117	137	175	116	86	102
90	113	105	280	106	83	95
97	151	90	499	100	78	92
116	164	86	463	95	75	88
107	134	150	329	90	72	82
100	123	172	275	85	72	78
107	112	135	235	81	78	74
105	103	132	203	79	90	71
94	111	114	183	76	94	68
81	181	107	163	73	86	67
78	349	96	168	71	79	67
74	202	97	161	71	78	65
70	151	96	101	69	76	65
67	172	179	131	66	74	65
69	169	236	124	63	68	86
66	145	216	120	62	67	93
60	147	280	115	61	66	78
58	166	567	108	61	64	72
57	228	383	112	61	65	69
56	201	304	131	60	61	67
57	166	259	129	61	61	77
58	150	287	114	65	66	98
66	139	345	104	65	87	90
61	129	285	111	61	151	77
55	125	263	110	58	130	72
53	137	240	103	56	103	69
51	137	209	108	56	96	71
48	143	186	98	55	112	71
58	150	168	95	56	115	70
56	136	162	99	56	101	68
48	129	151	92	58	96	66
64	132	144	87	63	104	78
63	169	143	85	62	105	78
57	201	143	83	90	105	76
55	186	141	81	90 116	99	75
55		144	79	87	99 91	
	186		1			121
57	182	133	77	81	85	171
52	170	140	75	76	91	154
49	189	234	73	73	105	195
47	185	341	71	71	106	155
47	170	269	70	68	115	225
46	165	227	69	65	111	211
42	162	200	66	64	213	267
40	222	184	66	63	182	248
	285	172	71	61	152	197

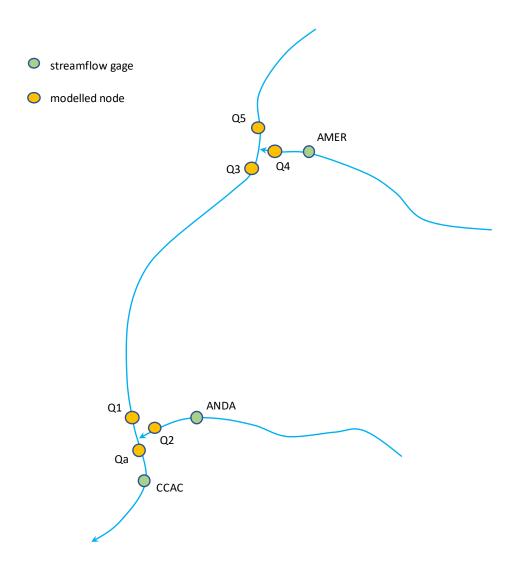
Table A-3. Daily stream temperature and flow data at Crooked Creek (CCAC).

			_		(9-)		
	2005	2006	Tei 2007	mperature 2008	(°F) 2009	2010	2011
12-Aug	48.7	37.1	40.9	2008	43.2	39.6	36.4
12-Aug 13-Aug	46.7	36.6	40.5		43.2	39.2	37.3
14-Aug	47.5	36.8	40.7		43.0	38.9	37.1
15-Aug	47.9	37.5	41.1	38.5	42.9	39.0	36.8
16-Aug	47.9	36.5	40.5	38.6	42.9	39.5	36.6
17-Aug	48.0	35.9	39.1	38.8	43.1	39.1	36.7
18-Aug	47.7	36.7	38.6	38.9	42.8	38.8	36.8
19-Aug	46.1	36.8	38.6	39.0	42.4	40.3	37.0
20-Aug	44.7	36.9	38.5	39.1	42.1	39.6	37.4
21-Aug	43.7	36.3	38.4	39.3	41.7	38.5	37.7
22-Aug	42.1	36.0	38.4	39.4	41.5	37.8	37.4
23-Aug	41.4	36.0	38.3	39.5	41.4	37.8	37.1
24-Aug	41.0	35.8	38.2	39.8	41.1	37.8	36.9
25-Aug	38.7	35.5	38.3	39.8	40.7	37.6	36.8
26-Aug	37.6	35.3	38.4	39.8	40.1	37.5	36.9
27-Aug	37.3	35.4	38.5	39.9	39.8	37.6	36.9
28-Aug	37.2	35.5	38.6	39.8	39.8	37.9	36.9
29-Aug	37.2	35.6	38.7	39.4	40.0	37.8	37.1
30-Aug	37.2	35.6	38.7	38.9	40.2	37.9	37.3
31-Aug	37.0	35.6	38.7	38.8	40.6	38.2	37.6
01-Sep	36.8	35.7	38.8	38.9	40.6	38.3	37.6
01-Sep	36.6	35.8	38.8	39.2	40.8	38.0	37.5
02-3ep 03-Sep	36.5	35.8	38.8	39.3	40.8	38.2	37.5
03-Sep 04-Sep	36.6	35.8	38.8	39.5	41.0	38.3	37.7
04-Sep 05-Sep	36.5	35.8	38.8	39.5	41.5	38.3	37.9
05-Sep 06-Sep	36.7	35.8	38.8	39.7	41.0	39.0	37.4
00-Sep 07-Sep	36.8	35.8	38.8	39.3	41.7	38.2	37.2
07-Sep 08-Sep	36.7	35.8	38.8	39.3	41.0	38.0	37.2
08-Sep 09-Sep	36.6	36.3	38.8		41.4	37.9	37.5
				39.5		37.9	-
10-Sep 11-Sep	36.8	36.6	38.6	39.6	41.1	37.5	37.8 37.7
	36.7	36.8	38.3	39.8	41.3		
12-Sep	36.9	36.7	38.0	40.0	41.1	37.3	37.6
13-Sep	37.0	36.5	37.8	40.0	40.9	37.2	37.5
14-Sep	36.9	36.5	37.7	39.9	40.7	37.2	37.7
15-Sep	36.8	36.9	37.5	40.0	40.6	37.2	38.0
16-Sep	37.0	36.9	37.6	39.8	40.5	37.2	38.1
17-Sep	37.0	36.9	37.7	39.7	40.2	37.2	37.9
18-Sep	37.1	36.9	37.7	39.5	40.0	37.2	37.7
19-Sep	36.9	36.9	37.8	39.2	40.0	37.2	37.5
20-Sep	36.6	36.9	39.6	38.9	39.9	37.2	37.5
21-Sep	36.6	36.9	38.6	38.7	39.7	37.2	37.4
22-Sep	36.6	36.7	37.8	38.4	39.3	37.1	37.5
23-Sep	36.7	36.6	37.2	38.0	38.6	37.1	37.4
24-Sep	36.7	36.9	36.7	37.9	38.2	37.0	37.2
25-Sep	36.7	36.5	36.5	37.8	37.8	36.6	37.2
26-Sep	36.9	36.1	36.4	37.7	37.3	36.0	37.0
27-Sep	36.8	36.0	36.2	37.4	36.9	35.6	37.0
28-Sep	36.5	36.0	36.2	36.9	36.6		36.6
29-Sep	36.4	36.0	36.2	36.5	36.5		36.3
30-Sep		35.9	36.1	36.2	36.4		35.8
01-Oct		35.8	36.0	36.0			35.2
02-Oct		35.6	36.0	36.0			35.0
03-Oct		35.7	35.9	35.8			34.9
04-Oct		35.9	35.9	35.6			
05-Oct		36.0	35.7	35.3			
06-Oct		35.9	35.6	35.0			
07-Oct	ł	35.7		34.7			
08-Oct	ł	35.7		34.4			
09-Oct	ł	35.9		34.1			
10-Oct		36.2					
11-Oct		35.9					
12-Oct		35.3					
13-Oct	-	34.9					
14-Oct		34.8					
15-Oct		34.6					
16-Oct		34.6	L				
17-Oct		34.6					
18-Oct							
19-Oct	1						
20-Oct							

2005	2000		ischarge (cf		2010	201
2005	2006	2007	2008	2009	2010	201
38	340	212	75	59	138	307
39	298	209	73	61	132	617
38	389	239	80	66	131	566
38	396	232	79	73	143	429
38	382	213	74	85	220	338
39	352	191	72	73	444	280
46	670	187	75	66	541	243
46	881	181	72	64	361	21:
44	644	171	69	62	295	214
72	541	161	67	61	263	262
96	516	153	65	61	236	224
114	479	145	65	61	243	189
161	407	137	63	62	257	169
162	358	135	61	61	222	164
125	329	132	60	59	196	165
112	296	126	60	58	189	149
134	275	131	61	57	204	136
160	253	134	59	55	183	129
178	236	124	58	54	176	125
164	220	124	58	54	208	130
139	201	129	58	56	223	128
128	189	126	56	58	197	123
139	175	125	56	62	275	128
150	165	123	57	62	325	143
137	156	113	58	59	443	131
169	150	115	56	58	364	120
175	156	113	58	57	369	112
153	200	147	59	58	367	108
165	171	179	58	59	362	113
170	186	175	57		315	111
				58		
156	171	163	57	57	276	106
214	161	152	56	57	246	103
218	149	145	61	57	224	102
217	159	141	73	56	205	99
237	189	137	68	56	189	99
378	176				176	95
		146	65	56		
378	161	171	64	56	164	92
348	156	207	62	56	153	91
316	152	387	63	55	145	93
285	147	416	65	54	138	91
265	147	442	68	53	132	91
261	147	395	67	52	132	88
329	170	359	79	53	122	84
301	155	338	112	56	117	89
294	146	387	99	55	111	91
276	144	358	90	54	88	92
259	145	341	82	53	82	87
244	141	337	77	53	91	84
	138	316	76	52	89	82
	135	304	74	53	83	80
	135	295	73	53	81	
	131	302	81	52	81	
	130	284	85	63	81	1
	137	267	79	77	80	
	136	270	75	77	81	ļ
	139	271	72	80	75	<u> </u>
	158		69	124	79	
	337		67	153	73	1
	450			155	69	
			65			
	537		65	137	62	
	526		60	119		
	516		58	108		
	458		58	103		
					t	
	422		55	99	ļ	
	380		55	95	L	
	344		53	91		
					1	1
	322		53	83		
	322		53	83		

APPENDIX B EXAMPLE CALCULATION

BGC ENGINEERING INC.


B.1. INTRODUCTION

The following example calculation is for July 1, 2005. On that day, the following daily average streamflows and stream temperatures were measured at the three hydrometric stations:

- CCAC = 115.8 cfs, 41.1 °F
- AMER = 10.7 cfs, 43.6°F
- ANDA = 9.1 cfs, 36.9°F

B.2. EXISTING CONDITIONS

First, daily average streamflow was estimated for existing (i.e., undisturbed) conditions at the modelling nodes shown in the schematic below.

Streamflow Discharge - Node Qa

$$Q_a = Q_{CCAC} \cdot \frac{A_{CANA}}{A_{CCAC}}$$

where Q_{CCAC} = discharge at CCAC, A_{CC_ANA} = watershed area of Crooked Creek at Anaconda Creek, A_{CCAC} = watershed area at CCAC, and Q_a = discharge of Crooked Creek at Anaconda Creek.

$$Q_a = 115.8 \, cfs \cdot \frac{108 \, mi^2}{111.9 \, mi^2}$$
$$Q_a = 111.8 \, cfs$$

Streamflow Discharge - Node Q2

$$Q_2 = Q_{ANDA} \cdot \frac{A_{ANDA_mouth}}{A_{ANDA}}$$

where Q_{ANDA} = discharge at ANDA, A_{ANDA_mouth} = watershed area of Anaconda Creek at its mouth, and A_{ANDA} = watershed area at ANDA.

$$Q_{2} = 9.1 \, cfs \cdot \frac{7.7 \, mi^{2}}{7.6 \, mi^{2}}$$
$$Q_{2} = 9.3 \, cfs$$

Streamflow Discharge - Node Q1

$$Q_1 = Q_a - Q_2$$

 $Q_1 = 111.8 \ cfs - 9.3 \ cfs$
 $Q_1 = 102.6 \ cfs$

where node Q_1 is Crooked Creek before Anaconda Creek.

Streamflow Discharge – Node Q₃

$$Q_3 = Q_{CCAC} \cdot \frac{A_{CC_AMER}}{A_{CCAC}}$$

where Q_3 = discharge of Crooked Creek at American Creek and A_{CC_AMER} = watershed area of Crooked Creek at American Creek.

$$Q_3 = 115.8 \, cfs \cdot 77.5 \, mi^2 / 111.9 \, mi^2$$

BGC ENGINEERING INC.

$$Q_3 = 80.3 \ cfs$$

Streamflow Discharge - Node Q4

$$Q_4 = Q_{AMER} \cdot \frac{A_{AMER_mouth}}{A_{AMER}}$$

where Q_{AMER} = discharge at AMER, A_{AMER_mouth} = watershed area of American Creek at its mouth, and A_{AMER} = watershed area at AMER.

$$Q_4 = 10.7 \ cfs \cdot \frac{8.0 \ mi^2}{6.8 \ mi^2}$$

 $Q_4 = 12.6 \ cfs$

Streamflow Discharge - Node Q5

$$Q_5 = Q_3 - Q_4$$

 $Q_5 = 80.3 \ cfs - 12.6 \ cfs$
 $Q_5 = 67.7 \ cfs$

where node Q_5 is Crooked Creek before American Creek.

Next undisturbed stream temperature was estimated at the various modelling nodes.

Streamflow Temperature - Node Qa

$$T_a = T_{CCAC}$$
$$T_a = 41.1^o F$$

Streamflow Temperature – Node Q₂

$$T_2 = T_{ANDA}$$
$$T_2 = 36.9^o F$$

Streamflow Temperature - Node Q1

Stream temperature at node Q_1 was estimated using the following mixing equation (Bartholow, 2004):

$$T_{j} = \frac{[Q_{1} \cdot T_{1} + Q_{2} \cdot T_{2} + \dots Q_{n} \cdot T_{n}]}{[Q_{1} + Q_{2} + \dots Q_{n}]}$$
$$T_{1} = \frac{[T_{a} \cdot (Q_{1} + Q_{2}) - (Q_{2} \cdot T_{2})]}{Q_{1}}$$

$$T_1 = \frac{[41.1(102.6 + 9.3) - (9.3 \cdot 36.9)]}{102.6}$$
$$T_1 = 41.5^o F$$

Streamflow Temperature – Node Q₃

$$T_3 = T_1$$
$$T_3 = 41.5^o F$$

Streamflow Temperature - Node Q₄

$$T_4 = T_{AMER}$$
$$T_4 = 43.6^o F$$

Streamflow Temperature - Node Q₅

$$T_{5} = \frac{[T_{3}.(Q_{4} + Q_{5}) - (Q_{4} \cdot T_{4})]}{Q_{5}}$$
$$T_{5} = \frac{[41.5 \cdot (12.6 + 67.7) - (12.6 \cdot 43.6)]}{67.7}$$
$$T_{5} = 41.1^{o}F$$

B.3. MINING CONDITIONS

Discharges and stream temperatures at the various modelling nodes were then calculated for mining (i.e., disturbed) conditions, with much of the surface and groundwater flow in American Creek and Anaconda Creek being intercepted by mine infrastructure before reaching Crooked Creek.

Modelling Node Q₃

The disturbed discharge at node Q_3 is equal to discharge at node Q_5 , as the entire American Creek catchment will be intercepted by mining activities, minus the loss in Crooked Creek flows due to open pit dewatering wells (2.0 cfs).

$$Q_{3d} = Q_5 - Q_{dewatering}$$

$$Q_{3d} = 67.7 \ cfs - 2.0 \ cfs$$

$$Q_{3d} = 65.7 \ cfs$$

$$T_{3d} = \frac{\left[Q_5 \cdot T_5 - Q_{dewatering} \cdot T_{groundwater}\right]}{Q_5 - Q_{dewatering}}$$

$$T_{3d} = \frac{\left[67.7 \cdot 41.1 - 2 \cdot 35.6\right]}{67.7 - 2}$$

$$T_{3d} = 41.3^{o}F$$

Modelling Node Q1

$$\begin{array}{ll} Q_{1d} = Q_1 - Q_4 - Q_{dewatering} & T_{1d} = T_{3d} \\ Q_{1d} = 102.6 \ cfs - 12.6 \ cfs - 2.0 \ cfs & T_{1d} = 41.3^o F \\ Q_{1d} = 88.0 \ cfs & \end{array}$$

Modelling Node Q₂

$$Q_{2d} = Q_2 \cdot \frac{A_{ANDA_disturbed}}{A_{ANDA_mouth}} \qquad T_{2d} = T_2$$

$$Q_{2d} = 9.3 cfs \cdot \frac{1.7 mi^2}{7.7 mi^2}$$

$$Q_{2d} = 2.0 cfs$$

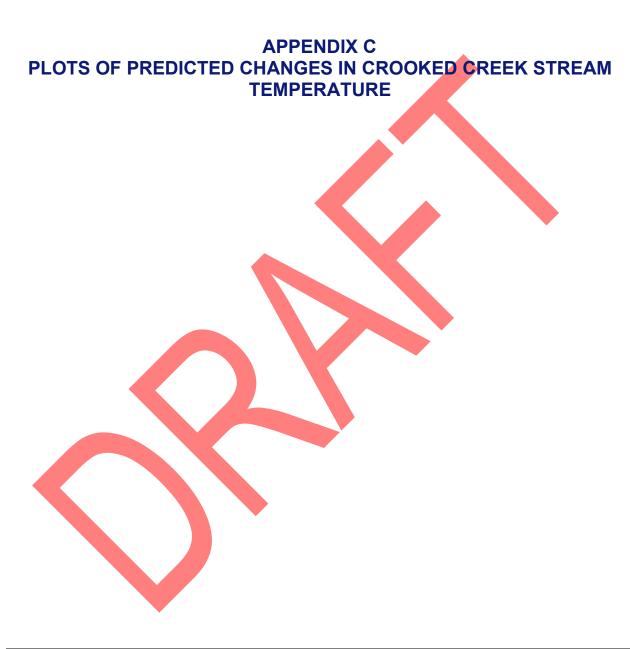
where $A_{ANDA_distubed}$ = watershed area of Anaconda Creek that drains into Crooked Creek downstream of the TSF and SRS.

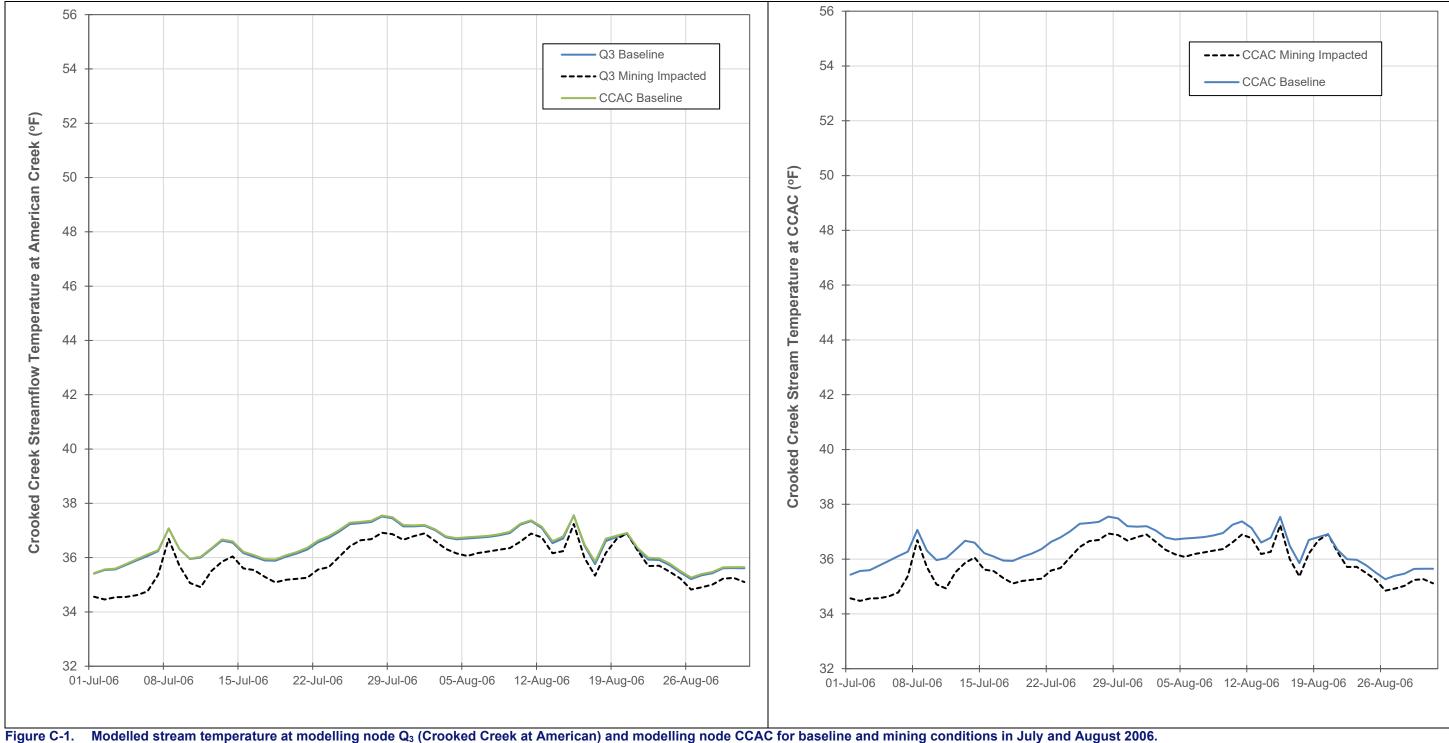
Modelling Node Qa

Finally, at node Q_a:

$$Q_{ad} = Q_{1d} + Q_{2d}$$

$$Q_{ad} = 88 cfs + 2 cfs$$


$$Q_{ad} = 90.0 cfs$$


$$T_{ad} = \frac{[Q_{1d} \cdot T_{1d} + Q_{2d} \cdot T_{2d}]}{Q_{1d} + Q_{2d}}$$

$$T_{ad} = \frac{[88 \cdot 41.3 + 2 \cdot 36.9]}{88 + 2}$$

$$T_{ad} = 41.2^{o}F = T_{ccAc_disturbed}$$

In this example, the undisturbed stream temperature at CCAC on July 1, 2005 was 41.1°F compared to a stream temperature of 41.2°F with the proposed project.

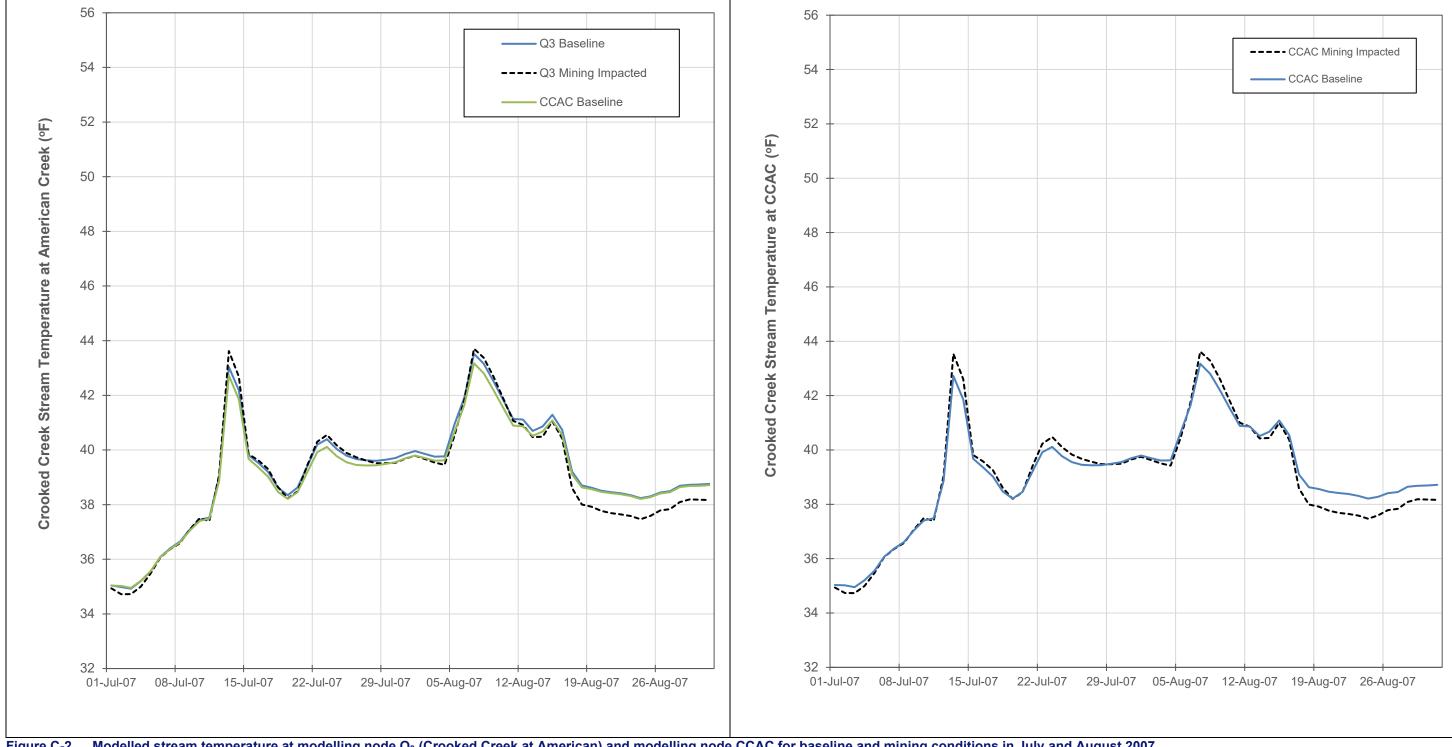


Figure C-2. Modelled stream temperature at modelling node Q₃ (Crooked Creek at American) and modelling node CCAC for baseline and mining conditions in July and August 2007.

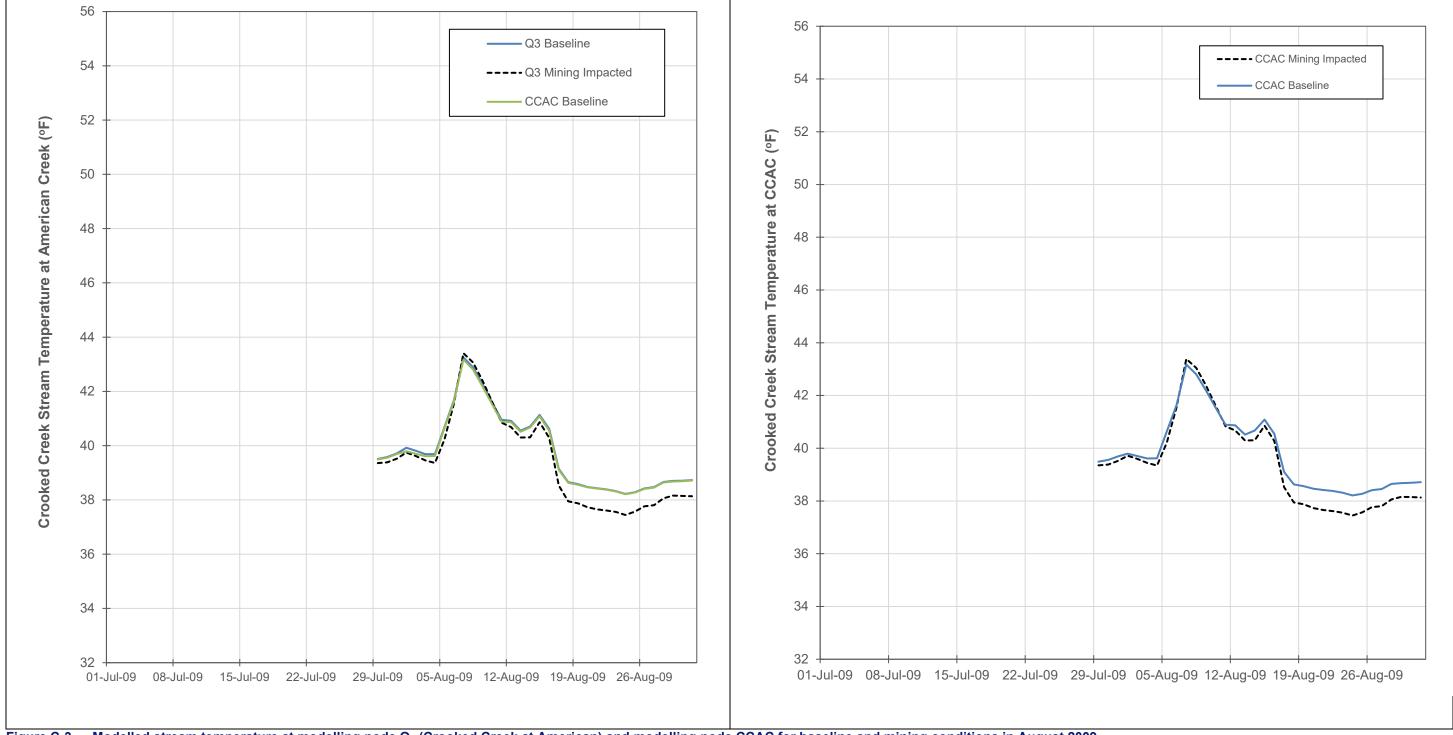


Figure C-3. Modelled stream temperature at modelling node Q₃ (Crooked Creek at American) and modelling node CCAC for baseline and mining conditions in August 2009.

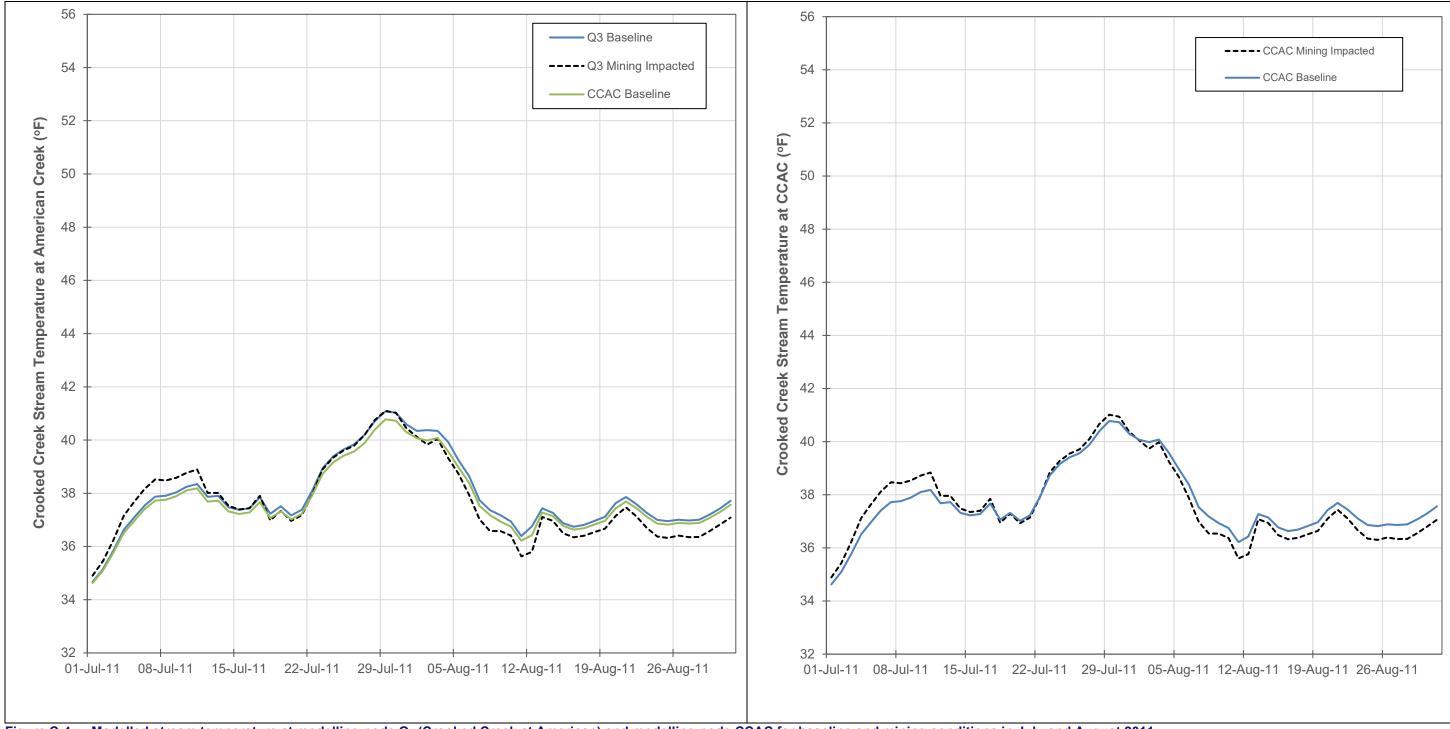


Figure C-4. Modelled stream temperature at modelling node Q₃ (Crooked Creek at American) and modelling node CCAC for baseline and mining conditions in July and August 2011.