

# Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

**September 12, 2025** 

3041-AIR-RTA-00002

Alaska LNG Project 8 Star Alaska, LLC www.alaska-Ing.com

### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

**PUBLIC** 

3041-AIR-RTA-00002 Revision No. 0 09/12/2025 Page 2

# REVISION HISTORY

| Rev                 | Date      | Description | Originator | Reviewer  | Approver       |
|---------------------|-----------|-------------|------------|-----------|----------------|
| 0                   | 9/12/2025 | For Use     | ALG/EXP    | Lisa Haas | Adam Prestidge |
|                     |           |             |            |           |                |
|                     |           |             |            |           |                |
|                     |           |             |            |           |                |
|                     |           |             |            |           |                |
|                     |           |             |            |           |                |
| Approver Signature* |           | 12 Dg       |            |           |                |

<sup>\*</sup>This signature approves the most recent version of this document.

#### **MODIFICATION HISTORY**

| Rev | Section | Modification |
|-----|---------|--------------|
|     |         |              |
|     |         |              |
|     |         |              |
|     |         |              |
|     |         |              |
|     |         |              |
|     |         |              |

#### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

3041-AIR-RTA-00002 Revision No. 0 09/12/2025 Page 3

PUBLIC

#### **TABLE OF CONTENTS**

| AC  | CRONYMS AND ABBREVIATIONS                                              |    |
|-----|------------------------------------------------------------------------|----|
| ΕX  | ECUTIVE SUMMARY                                                        |    |
|     | INTRODUCTION                                                           |    |
|     |                                                                        |    |
| 2.  | SOURCE IMPACT ANALYSES                                                 |    |
|     | 2.1. Model Selection                                                   |    |
|     | 2.2. Meteorological Data                                               | 8  |
|     | 2.3. Emission Rates                                                    | 8  |
|     | 2.4. NO <sub>2</sub> Modeling                                          | 8  |
|     | 2.5. Background Ambient Air Data                                       | 9  |
| 3.  | MODELING RESULTS                                                       | 10 |
| 4.  | CONCLUSION                                                             | 11 |
| 5.  | REFERENCES                                                             | 12 |
| Lis | st of Tables                                                           |    |
|     | Table 1: Pollutants Modeled                                            |    |
|     | Table 2: Background NO <sub>2</sub> Concentrations for Hourly Modeling | 9  |
|     | Table 3: Background Pollutant Concentrations                           | 9  |
|     | Table 4: Maximum Impacts Compared to the AAAQS                         | 10 |
|     | Table 5: Maximum Modeled Impacts Compared to the Class II Increments   | 10 |

## **List of Appendices**

- A: Wind Rose from Data Collected at the A-Pad Monitoring Station (2015-16-17-29-20)
- B: Meteorological Data Recovery
- C: Offsite Source Emission Rates Used in Modeling
- D: Modeling Files

#### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

3041-AIR-RTA-00002 Revision No. 0 09/12/2025 Page 4

## PUBLIC

#### **ACRONYMS AND ABBREVIATIONS**

| AAAQS | .Alaska Ambient Air Quality Standard             |
|-------|--------------------------------------------------|
| ADEC  | .Alaska Department of Environmental Conservation |
| AGDC  | .Alaska Gasline Development Corporation          |
| CCP   | .Central Compressor Plant                        |
| CGF   | .Central Gas Facility                            |
| EPA   | .Environmental Protection Agency                 |
| GTP   | .Gas Treatment Plant                             |
| PVMRM | .Plume Volume Molar Ratio Method                 |
| SIL   | .Significant Impact Level                        |
| TAR   | .Technical Analysis Report                       |

### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

**PUBLIC** 

| 3041-AIR-RTA-00002 |
|--------------------|
| Revision No. 0     |
| 09/12/2025         |
| Page 5             |

#### **EXECUTIVE SUMMARY**

The Alaska Gasline Development Corporation (AGDC) submitted Air Quality Construction Permit Application (Permit No. AQ1524CPT02) for the Alaska LNG Gas Treatment Plan (GTP). The purpose of the application was to obtain Alaska Department of Environmental Conservation (ADEC) approval of an extension for the existing construction permit (Permit No. AQ1524CPT01), and to request ADEC grant a new permit for the GTP facilities. The permit and request were subsequently transferred to 8 Star Alaska, LLC (8 Star).

In response to the application, ADEC requested an update to the source impact modeling analyses conducted for the permit issued in 2020. The dispersion modeling analyses were updated using inputs and methodology used by ADEC for the existing permit with the following updates/changes:

- Current versions of AERMET and AERMOD were used;
- More recent meteorological data and background pollutant concentrations were considered and used in the analysis; and
- Emission rates for offsite sources were updated based on the most recent actual emissions data available.

Updated analyses confirmed that all modeled pollutant concentrations remain below the applicable ambient air quality standard and associated Class II increments. No significant differences from the prior modeling analyses performed in 2020 were identified.

#### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

**PUBLIC** 

| 3041-AIR-RTA-00002 |
|--------------------|
| Revision No. 0     |
| 09/12/2025         |
| Page 6             |

#### 1. INTRODUCTION

On February 10, 2025, the Alaska Gasline Development Corporation (AGDC) submitted the Air Quality Construction Permit Application (Permit No. AQ1524CPT02) for the Alaska LNG Gas Treatment Plan (GTP). The purpose of the submittal was to obtain Alaska Department of Environmental Conservation (ADEC) approval of an extension for the existing construction permit (Permit No. AQ1524CPT01), and to request ADEC grant a new permit for the GTP facilities. The permit and request were subsequently transferred to 8 Star Alaska, LLC (8 Star). On February 12, 2025, ADEC granted the extension of the permit, and began processing/preparing the new Construction Permit.

On February 25, 2025, ADEC requested an update to the prior source impact analyses using newer EPA and ADEC guidance and tools. Since the prior analyses were prepared between 2017 and 2020, ADEC requested a "refresh" of the analyses to inform potential issuance of the new Construction Permit.

The source impact analysis prepared for the Construction Permit issued on August 13, 2020 was updated as requested by ADEC, and is summarized in this report. The modeling techniques used in the update were identical to those that were used in ADEC's prior analysis, unless otherwise specified in this report. ADEC's prior evaluation is summarized in Sections 5 (modeling approach and methodology) and 6 (modeling results) of the Technical Analysis Report (TAR). The TAR is incorporated by reference in this report.

\_

Alaska Department of Environmental Conservation, Air Permit Program. August 13, 2020. Review of AGDC's Ambient Demonstration for the Alaska LNG Project's Gas Treatment Plant, Construction Permit AQ1524CPT01.

#### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

| 3041-AIR-RTA-00002 |  |
|--------------------|--|
| Revision No. 0     |  |
| 09/12/2025         |  |
| Page 7             |  |

PUBLIC

#### 2. SOURCE IMPACT ANALYSES

This section describes the modeling approach used for the source impact analyses. Per ADEC guidance, modeling was performed for all pollutants and averaging periods where original modeling showed an exceedance of the respective Significant Impact Level (SIL). The approach was to rerun the model using identical inputs and methodology but with updated versions of the model, meteorological data, and background pollutant concentrations. In addition, emission rates for offsite sources were updated based on the most recent actual emissions data available.

The pollutants included in the updated modeling, and their respective averaging periods that exceeded the SIL, are shown in Table 1.

**Pollutant Averaging Period** AAAQS Class II Increment h8h 1-hr  $NO_2$ HY Annual HY PM-10 24-hr h6h h2h PM-2.5 24-hr h8h h2h 1-hr h4h h2h h2h  $SO_2$ 3-hour 24-hr h2h h2h

**Table 1: Pollutants Modeled** 

#### **Table Notes:**

h2h = the maximum high second-high concentration from any year.

h4h = the multi-year average of the high fourth-high daily maximum 1-hour concentrations.

h6h = the high sixth-high 24-hour concentration over five years.

h8h = high eighth-high. For purposes of 1-hour NO<sub>2</sub>, the h8h is the five-year average of the high, eighth-high of the daily maximum 1-hour NO<sub>2</sub> concentrations. For purposes of 24-hour PM-2.5, the h8h is the five-year average of the high, eighth-high of the 24-hour PM-2.5 concentrations.

HY = highest annual average from any year.

-- = there is no AAAQS/increment (as applicable) for this pollutant/averaging period.

#### 2.1. Model Selection

The original modeling performed by ADEC used EPA's AERMOD Modeling System (AERMOD), version 15181. Met data for that modeling was processed using AERMET, version 15181. For the updated modeling, the current version 24142 was used for both AERMOD and AERMET.

### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02

**PUBLIC** 

| 3041-AIR-RTA-00002 |
|--------------------|
| Revision No. 0     |
| 09/12/2025         |
| Page 8             |

#### 2.2. Meteorological Data

The original modeling used a five-year dataset based on surface data collected at the A-Pad monitoring station for the years 2009-2013 with concurrent upper air data from the nearest NWS upper air station, which is located in Utqiagvik (formerly known as Barrow). ADEC policy requires the use of meteorological data sets within a reasonable 10-year recency for use in permit applications and other modeling demonstrations. For consistency with prior modeling, the most recent available meteorological data from the same sites was requested from ADEC. ADEC provided raw and preprocessed data from the same sites for the five years 2015-2017 and 2019-2020. The data was reviewed and found to meet data capture requirements and therefore was determined acceptable for use in this modeling project.

A wind rose for the 5-year dataset is provided in Appendix A. Data recovery is provided in Appendix B.

#### 2.3. Emission Rates

For GTP sources, the modeling for this project used emission rates identical to those used in the original ADEC modeling. For the offsite sources (Central Compressor Plant and Central Gas Facility), 2023 actual emission rates per the ADEC Point Source Emission Inventory were used with the exception of emissions from emergency generators and emergency firewater pumps. The emission rates used for the emergency engines in the original modeling were also used for the updated modeling work. The 2023 emission rates for the offsite sources are provided in Appendix C.

#### 2.4. NO<sub>2</sub> Modeling

Modeling for NO<sub>2</sub> followed the same procedures and techniques that were followed in the original modeling with updates where appropriate. As in the original ADEC modeling, PVMRM was used in the conversion from NOx to NO<sub>2</sub>. In the original modeling, PVMRM was an "alternative" technique (a beta option) that required approval on a case-by-case basis. In version 24142 of AERMOD, PVMRM is one of the default options. The same hourly background ozone data used in the original modeling was also used for the updated modeling, with the years in the original file adjusted to match the new meteorological data set. The same in-stack NO<sub>2</sub>-to-NOx ratios were used but the background NO<sub>2</sub> concentrations were updated based on data provided by ADEC for the years 2015, 2016, 2019, 2020, and 2021. NO<sub>2</sub> background concentrations varied by windspeed using the same approach described in Section 5.15 of the TAR; Table 2 compares the background NO<sub>2</sub> concentrations used in the original modeling and the updated modeling for this project.

State of Alaska Department of Environmental Conservation, Temporal Requirements for Modeling Data Set Utilization, May 1, 2024.

Retrieved from: https://dec.alaska.gov/Applications/Air/airtoolsweb/PointSourceEmissionInventory. Accessed June 27, 2025.

# Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 PUBLIC

3041-AIR-RTA-00002 Revision No. 0 09/12/2025 Page 9

Table 2: Background NO<sub>2</sub> Concentrations for Hourly Modeling

| Wind Speed (Ws)  | NO <sub>2</sub> Concentration (ppbv) |                          |  |  |
|------------------|--------------------------------------|--------------------------|--|--|
| Category (m/s)   | Original ADEC Modeling               | Current Project Modeling |  |  |
| Ws < 1.54        | 25.9                                 | 14.5                     |  |  |
| 1.54 ≤ Ws < 3.09 | 22.3                                 | 16.9                     |  |  |
| 3.09 ≤ Ws < 5.14 | 15.9                                 | 18.5                     |  |  |
| 5.14 ≤ Ws < 8.23 | 10.3                                 | 13.27                    |  |  |
| 8.23 ≤ Ws < 10.8 | 10.7                                 | 9.7                      |  |  |
| Ws ≥ 10.8        | 13.4                                 | 13.4                     |  |  |

#### 2.5. Background Ambient Air Data

Updated background ambient air data for this modeling analysis was provided by ADEC. The hourly background NO<sub>2</sub> data used in the hourly NO<sub>2</sub> modeling is described in Section 2.4 above and is added directly to the hourly NO<sub>2</sub> concentrations within AERMOD. Background concentrations for other pollutants and averaging periods are added to modeled concentrations manually. Those background values are shown in Table 3 below.

**Table 3: Background Pollutant Concentrations** 

| Pollutant       | Averaging Period                                            | Ambient Air Concentration         |  |
|-----------------|-------------------------------------------------------------|-----------------------------------|--|
| NO <sub>2</sub> | Annual                                                      | 7.0 ppb (13.2 ug/m <sup>3</sup> ) |  |
| PM-10           | 24-hr 2 <sup>nd</sup> High                                  | 40 ug/m <sup>3</sup>              |  |
| PM-2.5          | 98 <sup>th</sup> Percentile of 24-hr concentration          | 7 ug/m³                           |  |
|                 | 99 <sup>th</sup> Percentile of Daily Max 1-hr concentration | 8.5 ppb (22.3 ug/m <sup>3</sup> ) |  |
| SO <sub>2</sub> | 3-hr 2 <sup>nd</sup> High                                   | 0.0 ppb (0.0 ug/m³)               |  |
|                 | 24-hr 2 <sup>nd</sup> High                                  | 40 ug/m <sup>3</sup>              |  |

# Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 PUBLIC

| 3041-AIR-RTA-00002 |
|--------------------|
| Revision No. 0     |
| 09/12/2025         |
| Page 10            |

#### 3. MODELING RESULTS

Modeling results for the cumulative AAAQS and increment modeling are shown in Tables 4 and 5 below. As was shown in the original ADEC modeling, modeled concentrations are below the AAAQS less than the Class II increment for all pollutants and averaging periods. Modeling files will be submitted under separate cover. A list of modeling files generated for this project is provided in Appendix D.

**Table 4: Maximum Impacts Compared to the AAAQS** 

| Pollutant       | Averaging<br>Period | Modeled Conc.<br>(μg/m³) | Background<br>Conc. (µg/m³) | Total Impact<br>(μg/m³) | AAAQS (μg/m³) |
|-----------------|---------------------|--------------------------|-----------------------------|-------------------------|---------------|
| NO <sub>2</sub> | 1-hr                | 135.3                    | Included in<br>model        | 135.3                   | 188           |
|                 | Annual              | 11.4                     | 13.2                        | 24.6                    | 100           |
| PM-10           | 24-hr               | 18.7                     | 40.0                        | 58.7                    | 150           |
| PM-2.5          | 24-hr               | 14.1                     | 7.0                         | 21.1                    | 35            |
|                 | 1-hr                | 21.9                     | 22.3                        | 44.2                    | 196           |
| SO <sub>2</sub> | 3-hour              | 23.7                     | 0.0                         | 23.7                    | 1300          |
|                 | 24-hr               | 15.3                     | 2.6                         | 17.9                    | 365           |

**Table 5: Maximum Modeled Impacts Compared to the Class II Increments** 

| Pollutant       | Averaging Period | Modeled Conc. (μg/m³) | Class II Increment<br>(µg/m³) |  |  |
|-----------------|------------------|-----------------------|-------------------------------|--|--|
| NO <sub>2</sub> | Annual           | 8.5                   | 25                            |  |  |
| PM-10           | 24-hr            | 9.6                   | 30                            |  |  |
| PM-2.5          | 24-hr            | 4.2                   | 9                             |  |  |
|                 | 3-hour           | 23.5                  | 512                           |  |  |
| SO <sub>2</sub> | 24-hr            | 11.3                  | 91                            |  |  |

| Source Impact Modeling Analysis –       | 3041-AIR-RTA-00002 |
|-----------------------------------------|--------------------|
| Gas Treatment Plant                     | Revision No. 0     |
| PSD Construction Permit No. AQ1524CPT02 | 09/12/2025         |
| PUBLIC                                  | Page 11            |

#### 4. CONCLUSION

The results of the updated modeling analysis confirm compliance with all Ambient Air Quality Standards and associated Class II increments. Notably, all modeling results were consistent with the values previously modeled by ADEC in issuing the Construction Permit for the project in 2020.

# Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 PUBLIC

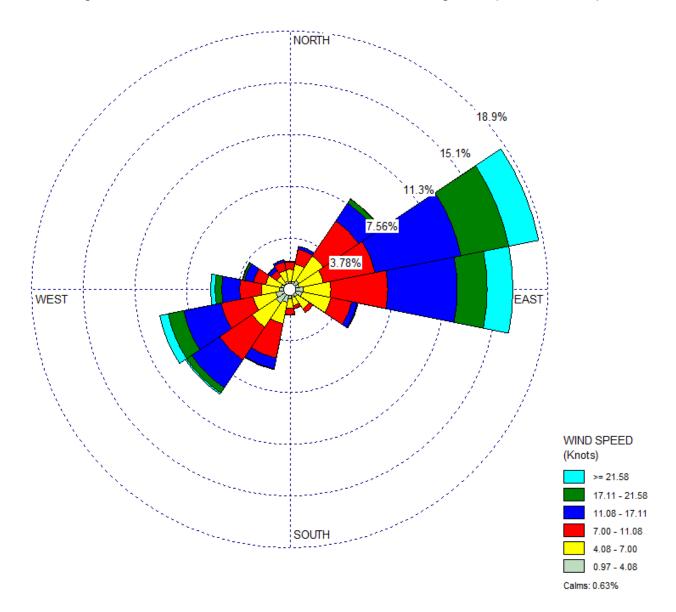
| 3 | 3041-AIR-RTA-00002 |
|---|--------------------|
|   | Revision No. 0     |
|   | 09/12/2025         |
|   | Page 12            |

#### 5. REFERENCES

- Alaska Department of Environmental Conservation, Air Permit Program. August 13, 2020. Review of AGDC's Ambient Demonstration for the Alaska LNG Project's Gas Treatment Plant, Construction Permit AQ1524CPT01.
- Alaska Department of Environmental Conservation. Point Source Emission Inventory. Retrieved from: https://dec.alaska.gov/Applications/Air/airtoolsweb/PointSourceEmissionInventory. Accessed June 27, 2025.

| ΑL | _AS | KA | LN | IG |
|----|-----|----|----|----|
|----|-----|----|----|----|

| Source Impact Modeling Analysis –                           | 3041-AIR-RTA-00002 |
|-------------------------------------------------------------|--------------------|
| Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 | Revision No. 0     |
| PUBLIC                                                      | 09/12/2025         |


## **APPENDIX A**

Wind Rose from Data Collected at the A-Pad Monitoring Station (2015-16-17-29-20)

| ΑL            | ASKA | L | N   | G |
|---------------|------|---|-----|---|
| <b>/</b> ~\ L |      | _ | ייו | J |

| Source Impact Modeling Analysis –                           | 3041-AIR-RTA-00002 |
|-------------------------------------------------------------|--------------------|
| Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 | Revision No. 0     |
| PUBLIC                                                      | 09/12/2025         |

Figure A-1: Wind Rose from Data Collected at the A-Pad Monitoring Station (2015-16-17-29-20)



| Al | LA: | SK. | A | L | N | G |
|----|-----|-----|---|---|---|---|
|----|-----|-----|---|---|---|---|

| Source Impact Modeling Analysis –                           | 3041-AIR-RTA-00002 |
|-------------------------------------------------------------|--------------------|
| Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 | Revision No. 0     |
| PUBLIC                                                      | 09/12/2025         |

## **APPENDIX B**

**Meteorological Data Recovery** 

#### Source Impact Modeling Analysis – Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 PUBLIC

3041-AIR-RTA-00002 Revision No. 0

09/12/2025

Table B-1: Data Capture Rates for the Model-Ready Meteorological Input Data

| Time Period | WS02   | WD02   | SA02   | VV02   | SV02   | TT02   | TT01   | DT01   | INSO   |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 2015 Q1     | 98.4%  | 98.4%  | 98.4%  | 76.0%  | 76.0%  | 99.9%  | 99.9%  | 99.9%  | 97.5%  |
| 2015 Q2     | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 100.0% |
| 2015 Q3     | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 99.9%  |
| 2015 Q4     | 99.7%  | 99.7%  | 99.7%  | 99.7%  | 99.7%  | 99.6%  | 99.6%  | 99.6%  | 100.0% |
| 2015 Total  | 99.5%  | 99.5%  | 99.5%  | 94.0%  | 94.0%  | 99.8%  | 99.8%  | 99.8%  | 99.3%  |
| 2016 Q1     | 95.6%  | 95.6%  | 95.6%  | 97.1%  | 97.1%  | 99.3%  | 99.3%  | 99.3%  | 98.8%  |
| 2016 Q2     | 99.6%  | 99.6%  | 99.6%  | 99.6%  | 99.8%  | 99.6%  | 99.6%  | 99.6%  | 99.8%  |
| 2016 Q3     | 98.3%  | 98.3%  | 98.3%  | 98.4%  | 98.4%  | 98.4%  | 98.4%  | 98.4%  | 98.4%  |
| 2016 Q4     | 93.7%  | 93.7%  | 93.7%  | 89.0%  | 89.3%  | 99.0%  | 99.0%  | 99.0%  | 99.3%  |
| 2016 Total  | 96.8%  | 96.8%  | 96.8%  | 96.0%  | 96.1%  | 99.1%  | 99.1%  | 99.1%  | 99.1%  |
| 2017 Q1     | 97.2%  | 97.2%  | 97.2%  | 97.1%  | 97.1%  | 99.2%  | 99.2%  | 99.2%  | 98.1%  |
| 2017 Q2     | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 99.8%  | 98.8%  |
| 2017 Q3     | 99.9%  | 100.0% | 99.9%  | 99.9%  | 99.9%  | 100.0% | 100.0% | 100.0% | 100.0% |
| 2017 Q4     | 93.5%  | 93.5%  | 93.5%  | 89.9%  | 89.9%  | 99.7%  | 99.7%  | 99.7%  | 99.9%  |
| 2017 Total  | 97.6%  | 97.6%  | 97.6%  | 96.7%  | 96.7%  | 99.7%  | 99.7%  | 99.7%  | 99.2%  |
| 2019 Q1     | 90.2%  | 93.2%  | 90.2%  | 98.9%  | 98.9%  | 99.4%  | 99.4%  | 99.4%  | 100.0% |
| 2019 Q2     | 98.8%  | 98.8%  | 98.8%  | 98.8%  | 98.8%  | 98.8%  | 98.8%  | 98.8%  | 99.7%  |
| 2019 Q3     | 99.9%  | 99.9%  | 99.9%  | 99.9%  | 99.9%  | 99.9%  | 99.9%  | 99.9%  | 99.9%  |
| 2019 Q4     | 95.3%  | 95.3%  | 95.3%  | 98.4%  | 98.4%  | 98.4%  | 98.4%  | 98.4%  | 98.6%  |
| 2019 Total  | 96.1%  | 96.8%  | 96.1%  | 99.0%  | 99.0%  | 99.1%  | 99.1%  | 99.1%  | 99.5%  |
| 2020 Q1     | 98.9%  | 98.9%  | 98.9%  | 98.9%  | 98.9%  | 98.9%  | 98.9%  | 98.9%  | 98.9%  |
| 2020 Q2     | 99.0%  | 99.0%  | 99.0%  | 99.0%  | 99.0%  | 99.0%  | 99.0%  | 99.0%  | 99.9%  |
| 2020 Q3     | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% |
| 2020 Q4     | 99.7%  | 99.7%  | 99.7%  | 99.7%  | 99.7%  | 99.7%  | 99.7%  | 99.7%  | 100.0% |
| 2020 Total  | 99.4%  | 99.4%  | 99.4%  | 99.4%  | 99.4%  | 99.4%  | 99.4%  | 99.4%  | 99.7%  |

| Source Impact Modeling Analysis –                           | 3041-AIR-RTA-00002 |
|-------------------------------------------------------------|--------------------|
| Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 | Revision No. 0     |
| PUBLIC                                                      | 09/12/2025         |

#### **APPENDIX C**

#### Offsite Source Emission Rates Used in Modeling

Note: Table C-1 below shows the emission rates used in the modeling for offsite sources. Sources not shown in the table were modeled with the emission rates used in the original modeling. Hourly emission rates were based on the annual emission rates divided by the number of hours of operation for each source.

Source Impact Modeling Analysis – 3041-AIR-RTA-00002

Gas Treatment Plant
PSD Construction Permit No. AQ1524CPT02

PUBLIC

3041-AIR-RTA-00002

Revision No. 0

09/12/2025

Table C-1: Offsite Source Emission Rates Used in Modeling

| F        | Modeling  | Emission | Bereitelber                                                | 2        | 2023 Emission Rates (ton/yr) |                  |                   | 2023  |          | 2023 Emissio    | n Rates (lb/hr   | )                 |
|----------|-----------|----------|------------------------------------------------------------|----------|------------------------------|------------------|-------------------|-------|----------|-----------------|------------------|-------------------|
| Facility | Source ID | Unit     | Description                                                | NOx      | SO <sub>2</sub>              | PM <sub>10</sub> | PM <sub>2.5</sub> | Hours | NOx      | SO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| ССР      | 701       | 21       | TEG Reboiler (Tag No. NGH-21-1503)                         | 0.00E+00 | 0.00E+00                     | 0.00E+00         | 0.00E+00          | 0     | 0.00E+00 | 0.00E+00        | 0.00E+00         | 0.00E+00          |
| ССР      | 702       | 22       | TEG Reboiler (Tag No. NGH-21-1504)                         | 0.00E+00 | 0.00E+00                     | 0.00E+00         | 0.00E+00          | 0     | 0.00E+00 | 0.00E+00        | 0.00E+00         | 0.00E+00          |
| ССР      | 703       | 19       | Glycol Heater (Tag No. NGH-21-1501)                        | 1.59E+00 | 1.18E-01                     | 1.21E-01         | 6.70E-03          | 6626  | 4.80E-01 | 3.56E-02        | 3.64E-02         | 2.02E-03          |
| ССР      | 704       | 20       | Glycol Heater (Tag No. NGH-21-1502)                        | 5.87E-01 | 4.35E-02                     | 4.46E-02         | 1.04E-02          | 2135  | 5.50E-01 | 4.07E-02        | 4.18E-02         | 9.74E-03          |
| ССР      | 801       | 01       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1801) | 5.62E+02 | 1.21E+01                     | 1.09E+01         | 3.09E-01          | 8711  | 1.29E+02 | 2.77E+00        | 2.51E+00         | 7.09E-02          |
| ССР      | 802       | 02       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1802) | 1.11E+01 | 3.54E+00                     | 1.23E+01         | 3.14E-01          | 8745  | 2.54E+00 | 8.09E-01        | 2.80E+00         | 7.18E-02          |
| ССР      | 803       | 03       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1803) | 5.45E+02 | 1.17E+01                     | 1.06E+01         | 2.99E-01          | 8727  | 1.25E+02 | 2.68E+00        | 2.43E+00         | 6.85E-02          |
| ССР      | 804       | 04       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1804) | 5.39E+02 | 1.16E+01                     | 1.05E+01         | 2.96E-01          | 8664  | 1.24E+02 | 2.67E+00        | 2.42E+00         | 6.84E-02          |
| ССР      | 805       | 05       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1805) | 5.11E+02 | 1.10E+01                     | 9.94E+00         | 2.81E-01          | 8146  | 1.25E+02 | 2.69E+00        | 2.44E+00         | 6.89E-02          |
| ССР      | 806       | 06       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1806) | 5.25E+02 | 1.16E+01                     | 1.05E+01         | 2.96E-01          | 8122  | 1.29E+02 | 2.84E+00        | 2.58E+00         | 7.28E-02          |
| ССР      | 807       | 07       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1807) | 5.37E+02 | 1.15E+01                     | 1.05E+01         | 2.95E-01          | 8733  | 1.23E+02 | 2.64E+00        | 2.39E+00         | 6.76E-02          |
| ССР      | 808       | 08       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1808) | 5.31E+02 | 1.14E+01                     | 1.03E+01         | 2.92E-01          | 8744  | 1.22E+02 | 2.61E+00        | 2.37E+00         | 6.68E-02          |
| ССР      | 809       | 09       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1809) | 5.57E+02 | 1.19E+01                     | 1.08E+01         | 3.06E-01          | 8684  | 1.28E+02 | 2.75E+00        | 2.50E+00         | 7.05E-02          |
| ССР      | 810       | 10       | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1810) | 5.08E+02 | 1.09E+01                     | 9.89E+00         | 2.79E-01          | 8091  | 1.26E+02 | 2.69E+00        | 2.44E+00         | 6.90E-02          |

Source Impact Modeling Analysis – 3041-AIR-RTA-00002

Gas Treatment Plant
PSD Construction Permit No. AQ1524CPT02

PUBLIC

3041-AIR-RTA-00002
Revision No. 0

09/12/2025

| F        | Modeling  | eling Emission | Paradata.                                                          | 2023 Emission Rates (ton/yr) |                 |                  |          | 2023  | 2023 Emission Rates (lb/hr) |                 |                  |          |
|----------|-----------|----------------|--------------------------------------------------------------------|------------------------------|-----------------|------------------|----------|-------|-----------------------------|-----------------|------------------|----------|
| Facility | Source ID | Unit           | Description                                                        | NOx                          | SO <sub>2</sub> | PM <sub>10</sub> | PM2.5    | Hours | NOx                         | SO <sub>2</sub> | PM <sub>10</sub> | PM2.5    |
| ССР      | 811       | 11             | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1811)         | 5.37E+02                     | 1.15E+01        | 1.04E+01         | 2.95E-01 | 8740  | 1.23E+02                    | 2.63E+00        | 2.39E+00         | 6.74E-02 |
| ССР      | 812       | 12             | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1812)         | 5.66E+02                     | 1.21E+01        | 1.10E+01         | 3.11E-01 | 8691  | 1.30E+02                    | 2.79E+00        | 2.54E+00         | 7.15E-02 |
| ССР      | 813       | 13             | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1813)         | 5.65E+02                     | 1.21E+01        | 2.11E+01         | 3.10E-01 | 8714  | 1.30E+02                    | 2.78E+00        | 4.84E+00         | 7.12E-02 |
| ССР      | 814       | 17             | Glycol Heater (Tag No. NGH-18-1491)                                | 1.73E+00                     | 1.28E-01        | 1.32E-01         | 7.40E-03 | 4031  | 8.58E-01                    | 6.37E-02        | 6.52E-02         | 3.67E-03 |
| ССР      | 815       | 18             | Glycol Heater (Tag No. NGH-18-1492)                                | 2.39E+00                     | 1.77E-01        | 1.81E-01         | 1.02E-02 | 5310  | 8.98E-01                    | 6.66E-02        | 6.82E-02         | 3.84E-03 |
| ССР      | 832       | 16             | Glycol Heater (Tag No. NGH-18-1410)                                | 2.00E+00                     | 1.81E-01        | 1.86E-01         | 1.04E-02 | 4923  | 8.11E-01                    | 7.37E-02        | 7.55E-02         | 4.23E-03 |
| ССР      | 833       | 14             | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1876)         | 5.98E+02                     | 1.23E+01        | 1.12E+01         | 3.15E-01 | 8432  | 1.42E+02                    | 2.92E+00        | 2.65E+00         | 7.47E-02 |
| ССР      | 834       | 15             | Combustion Turbine Gas Compressor<br>(Tag No. NGT-18-1878)         | 6.04E+02                     | 1.24E+01        | 1.13E+01         | 3.18E-01 | 8639  | 1.40E+02                    | 2.87E+00        | 2.61E+00         | 7.36E-02 |
| CGF      | 1101      | 05             | Combustion Turbine Booster<br>Compressor (Tag No. NGI-19-1801)     | 5.09E+02                     | 8.05E+00        | 7.30E+00         | 2.06E-01 | 8653  | 1.18E+02                    | 1.86E+00        | 1.69E+00         | 4.76E-02 |
| CGF      | 1102      | 06             | Combustion Turbine Booster<br>Compressor (Tag No. NGI-19-1802)     | 5.13E+02                     | 8.11E+00        | 7.35E+00         | 2.08E-01 | 8650  | 1.19E+02                    | 1.87E+00        | 1.70E+00         | 4.80E-02 |
| CGF      | 1103      | 07             | Combustion Turbine MI Compressor<br>(Tag No. NGI-19-1805)          | 4.57E+02                     | 7.23E+00        | 6.56E+00         | 1.85E-01 | 8587  | 1.06E+02                    | 1.68E+00        | 1.53E+00         | 4.31E-02 |
| CGF      | 1104      | 08             | Combustion Turbine MI Compressor<br>(Tag No. NGI-19-1855)          | 4.34E+02                     | 6.86E+00        | 6.22E+00         | 1.76E-01 | 8017  | 1.08E+02                    | 1.71E+00        | 1.55E+00         | 4.38E-02 |
| CGF      | 1105      | 09             | Combustion Turbine Refrigerant<br>Compressor (Tag No. NGI-19-1806) | 2.91E+02                     | 9.20E+00        | 8.34E+00         | 2.35E-01 | 8399  | 6.92E+01                    | 2.19E+00        | 1.99E+00         | 5.61E-02 |
| CGF      | 1106      | 10             | Combustion Turbine Refrigerant<br>Compressor (Tag No. NGI-19-1856) | 2.77E+02                     | 8.76E+00        | 7.94E+00         | 2.24E-01 | 8065  | 6.87E+01                    | 2.17E+00        | 1.97E+00         | 5.56E-02 |
| CGF      | 1107      | 12             | Hot Oil Heater (Tag No. NGI-19-1401)                               | 3.39E+01                     | 2.28E+00        | 3.15E+00         | 1.78E-01 | 8683  | 7.80E+00                    | 5.26E-01        | 7.27E-01         | 4.11E-02 |
| CGF      | 1108      | 13             | Hot Oil Heater (Tag No. NGH-19-1402)                               | 3.40E+01                     | 3.09E+00        | 3.17E+00         | 1.79E-01 | 8718  | 7.80E+00                    | 7.09E-01        | 7.26E-01         | 4.11E-02 |

Source Impact Modeling Analysis – 3041-AIR-RTA-00002
Gas Treatment Plant
PSD Construction Permit No. AQ1524CPT02

PUBLIC

3041-AIR-RTA-00002
Revision No. 0
09/12/2025

| Facility | Modeling  | g Emission | Unit                                                               | 2023 Emission Rates (ton/yr) |          |                 |                  | 2023<br>Hours | 2023 Emission Rates (lb/hr) |          |          |          |
|----------|-----------|------------|--------------------------------------------------------------------|------------------------------|----------|-----------------|------------------|---------------|-----------------------------|----------|----------|----------|
| Facility | Source ID | Unit       |                                                                    | PM <sub>2.5</sub>            | NOx      | SO <sub>2</sub> | PM <sub>10</sub> |               | PM2.5                       |          |          |          |
| CGF      | 1109      | 14         | Hot Oil Heater (Tag No. NGH-19-1403)                               | 2.44E+01                     | 2.22E+00 | 2.27E+00        | 1.28E-01         | 5963          | 8.18E+00                    | 7.44E-01 | 7.62E-01 | 4.31E-02 |
| CGF      | 1115      | 11         | Combustion Turbine Refrigerant<br>Compressor (Tag No. NGI-19-1857) | 3.72E+02                     | 1.18E+01 | 1.07E+01        | 3.01E-01         | 8524          | 8.72E+01                    | 2.76E+00 | 2.50E+00 | 7.06E-02 |
| CGF      | 1116      | 3          | Combustion Turbine Gas Compressor<br>(Tag No. NGI-19-1885)         | 8.12E+02                     | 1.49E+01 | 1.35E+01        | 3.82E-01         | 8337          | 1.95E+02                    | 3.58E+00 | 3.24E+00 | 9.15E-02 |
| CGF      | 1117      | 1          | Combustion Turbine Gas Compressor<br>(Tag No. NGI-19-1883)         | 8.08E+02                     | 1.48E+01 | 1.35E+01        | 3.80E-01         | 8290          | 1.95E+02                    | 3.58E+00 | 3.25E+00 | 9.17E-02 |
| CGF      | 1118      | 4          | Combustion Turbine Gas Compressor<br>(Tag No. NGI-19-1886)         | 8.39E+02                     | 1.54E+01 | 1.40E+01        | 3.95E-01         | 8582          | 1.96E+02                    | 3.59E+00 | 3.26E+00 | 9.20E-02 |
| CGF      | 1119      | 2          | Combustion Turbine Gas Compressor<br>(Tag No. NGI-19-1884)         | 8.43E+02                     | 1.55E+01 | 1.41E+01        | 3.97E-01         | 8588          | 1.96E+02                    | 3.61E+00 | 3.27E+00 | 9.24E-02 |

| Al | LAS | KA | LI | <b>NG</b> |
|----|-----|----|----|-----------|
|----|-----|----|----|-----------|

| Source Impact Modeling Analysis –                           | 3041-AIR-RTA-00002 |
|-------------------------------------------------------------|--------------------|
| Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 | Revision No. 0     |
| PUBLIC                                                      | 09/12/2025         |

## **APPENDIX D**

**Modeling Files** 

| Source Impact Modeling Analysis –                           | 3041-AIR-RTA-00002 |
|-------------------------------------------------------------|--------------------|
| Gas Treatment Plant PSD Construction Permit No. AQ1524CPT02 | Revision No. 0     |
| PUBLIC                                                      | 09/12/2025         |

Table D-1: Modeling Files

| File Name                                               | Modeling<br>Analysis | Pollutant         | Averaging Period | Met Data Years   | Standard                                                                                   |
|---------------------------------------------------------|----------------------|-------------------|------------------|------------------|--------------------------------------------------------------------------------------------|
| NO2_1hr rerun_2015-2020_NO2,DTA, .LST, .GRF             | NAAQS/AAAQS          | NO <sub>2</sub>   | 1 hr             | 2015/16/17/19/20 | Five-year average of the high, eighth-high of the daily maximum 1-hour NO2 concentrations. |
| NO2_Annual rerun 2015_NO2,DTA, .LST, .GRF               | NAAQS/AAAQS          | NO <sub>2</sub>   | Annual           | 2015             |                                                                                            |
| NO2_Annual rerun 2016_NO2,DTA, .LST, .GRF               | NAAQS/AAAQS          | NO <sub>2</sub>   | Annual           | 2016             |                                                                                            |
| NO2_Annual rerun 2017_NO2,DTA, .LST, .GRF               | NAAQS/AAAQS          | NO <sub>2</sub>   | Annual           | 2017             | Highest annual average from any year.                                                      |
| NO2_Annual rerun 2019_NO2,DTA, .LST, .GRF               | NAAQS/AAAQS          | $NO_2$            | Annual           | 2019             | inom any year.                                                                             |
| NO2_Annual rerun 2020_NO2,DTA, .LST, .GRF               | NAAQS/AAAQS          | NO <sub>2</sub>   | Annual           | 2020             |                                                                                            |
| PM10_24hr rerun_2015-2020_PM10,DTA, .LST, .GRF          | NAAQS/AAAQS          | PM <sub>10</sub>  | 24 hr            | 2015/16/17/19/20 | High sixth-high 24-hour concentration over five years.                                     |
| PM25_24hr rerun_2015-2020_PM25,DTA, .LST, .GRF          | NAAQS/AAAQS          | PM <sub>2.5</sub> | 24 hr            | 2015/16/17/19/20 | Five-year average of the high, eighth-high of the 24-hour PM-2.5 concentrations.           |
| SO2_1hr rerun_2015-2020_SO2,DTA, .LST, .GRF             | NAAQS/AAAQS          | SO <sub>2</sub>   | 1 hr             | 2015/16/17/19/20 | Multi-year average of the high fourth-high daily maximum 1-hour concentrations.            |
| SO2_3hr_24hr rerun 2015_2015-2020_OTHER,DTA, .LST, .GRF | NAAQS/AAAQS          | SO <sub>2</sub>   | 3 hr, 24 hr      | 2015             |                                                                                            |
| SO2_3hr_24hr rerun 2016_2015-2020_OTHER,DTA, .LST, .GRF | NAAQS/AAAQS          | SO <sub>2</sub>   | 3 hr, 24 hr      | 2016             | Maximum high second-                                                                       |
| SO2_3hr_24hr rerun 2017_2015-2020_OTHER,DTA, .LST, .GRF | NAAQS/AAAQS          | SO <sub>2</sub>   | 3 hr, 24 hr      | 2017             | high concentration from                                                                    |
| SO2_3hr_24hr rerun 2019_2015-2020_OTHER,DTA, .LST, .GRF | NAAQS/AAAQS          | SO <sub>2</sub>   | 3 hr, 24 hr      | 2019             | any year.                                                                                  |
| SO2_3hr_24hr rerun 2020_2015-2020_OTHER,DTA, .LST, .GRF | NAAQS/AAAQS          | SO <sub>2</sub>   | 3 hr, 24 hr      | 2020             |                                                                                            |

Source Impact Modeling Analysis – 3041-AIR-RTA-00002

Gas Treatment Plant
PSD Construction Permit No. AQ1524CPT02

PUBLIC

3041-AIR-RTA-00002
Revision No. 0

9/12/2025

| File Name                                               | Modeling<br>Analysis | Pollutant         | Averaging<br>Period | Met Data Years | Standard                              |  |  |
|---------------------------------------------------------|----------------------|-------------------|---------------------|----------------|---------------------------------------|--|--|
| NO2_ann increment rerun 2015_NO2,DTA, .LST, .GRF        | PSD increment        | NO <sub>2</sub>   | Annual              | 2015           |                                       |  |  |
| NO2_ann increment rerun 2016_NO2,DTA, .LST, .GRF        | PSD increment        | NO <sub>2</sub>   | Annual              | 2016           |                                       |  |  |
| NO2_ann increment rerun 2017_NO2,DTA, .LST, .GRF        | PSD increment        | NO <sub>2</sub>   | Annual              | 2017           | Highest annual average from any year. |  |  |
| NO2_ann increment rerun 2019_NO2,DTA, .LST, .GRF        | PSD increment        | NO <sub>2</sub>   | Annual              | 2019           | - Hom any year.                       |  |  |
| NO2_ann increment rerun 2020_NO2,DTA, .LST, .GRF        | PSD increment        | NO <sub>2</sub>   | Annual              | 2020           |                                       |  |  |
| PM10_24hr rerun 2015_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>10</sub>  | 24 hr               | 2015           |                                       |  |  |
| PM10_24hr rerun 2016_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>10</sub>  | 24 hr               | 2016           | Maximum high second-                  |  |  |
| PM10_24hr rerun 2017_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>10</sub>  | 24 hr               | 2017           | high concentration from               |  |  |
| PM10_24hr rerun 2019_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>10</sub>  | 24 hr               | 2019           | any year.                             |  |  |
| PM10_24hr rerun 2020_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>10</sub>  | 24 hr               | 2020           |                                       |  |  |
| PM25_24hr rerun 2015_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>2.5</sub> | 24 hr               | 2015           |                                       |  |  |
| PM25_24hr rerun 2016_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>2.5</sub> | 24 hr               | 2016           | Maximum high second-                  |  |  |
| PM25_24hr rerun 2017_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>2.5</sub> | 24 hr               | 2017           | high concentration from               |  |  |
| PM25_24hr rerun 2019_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>2.5</sub> | 24 hr               | 2019           | any year.                             |  |  |
| PM25_24hr rerun 2020_2015-2020_OTHER,DTA, .LST, .GRF    | PSD increment        | PM <sub>2.5</sub> | 24 hr               | 2020           |                                       |  |  |
| SO2_3hr_24hr rerun 2015_2015-2020_OTHER,DTA, .LST, .GRF | PSD increment        | SO <sub>2</sub>   | 3 hr, 24 hr         | 2015           |                                       |  |  |
| SO2_3hr_24hr rerun 2016_2015-2020_OTHER,DTA, .LST, .GRF | PSD increment        | SO <sub>2</sub>   | 3 hr, 24 hr         | 2016           | Maximum high second-                  |  |  |
| SO2_3hr_24hr rerun 2017_2015-2020_OTHER,DTA, .LST, .GRF | PSD increment        | SO <sub>2</sub>   | 3 hr, 24 hr         | 2017           | high concentration from               |  |  |
| SO2_3hr_24hr rerun 2019_2015-2020_OTHER,DTA, .LST, .GRF | PSD increment        | SO <sub>2</sub>   | 3 hr, 24 hr         | 2019           | any year.                             |  |  |
| SO2_3hr_24hr rerun 2020_2015-2020_OTHER,DTA, .LST, .GRF | PSD increment        | SO <sub>2</sub>   | 3 hr, 24 hr         | 2020           |                                       |  |  |