Report of the Expert Peer Review of Sulfolane Reference Doses for the Alaska Department of Environmental Conservation

Volume Two - Appendix

Expert Panel:
Dr. Andrew Maier (Panel Chair)
Dr. Susan Griffin
Dr. Richard Hertzberg
Dr. Michael Luster
Dr. Deborah Oudiz
Dr. Stephen Roberts

Toxicology Excellence for Risk Assessment

December 18, 2014
Appendix A. Meeting Handouts (panel biographical sketches, conflict of interest information, charge questions, agenda, and additional handouts)
Welcome

Welcome to this expert peer review meeting of a toxicological reference dose (RfD) for sulfolane. This handout includes an agenda, as well as information about how the peer review has been organized, ground rules for the meeting, and panel biographical sketches and conflict of interest information.

The scientific documents and public technical comments for the sulfolane RfD review are posted on the web at: http://www.tera.org/Peer/sulfolane/index.html.
Agenda

Location: University of Alaska, Fairbanks
Wood Center, Conference Room EF

Tuesday, September 16, 2014

8:00am Arrival & Registration

8:30am Meeting Convenes\(^1\)
Welcome, Ms. Jacqueline Patterson, TERA
Panel Introductions and Conflict of Interest/Bias Disclosures, Panel
Meeting Process and Ground Rules, Panel Chair

9:00am Background
Presentation, Tamara Cardona, Contaminated Sites Program, Division of Spill
Prevention and Response, Alaska DEC and Stephanie Pingree Buss, SPB Consulting
for Alaska DEC
-- Clarifying Questions from the Panel
-- Clarifying Questions and Comments from RfD Authors

9:45am Panel Discussion

12:00pm Lunch

1:00pm Panel Discussion, continued

5:00pm Meeting Adjourns

Wednesday, September 17, 2014

8:00am Registration

8:30am Meeting Reconvenes

8:45am Panel Discussion, continued

1:00pm Lunch

2:00pm Panel Discussion, continued

4:00pm Meeting Adjourns

\(^1\) The Chair will call a break mid-morning and mid-afternoon. At the end of each session, RfD authors will have an opportunity to ask the panel clarifying questions.
Ground Rules for Meeting Observers

The peer review meeting is open to the public and interested persons are invited to attend as observers. Observers are invited to listen and are expected to remain quiet during the meeting. Because the panel review is a scientific meeting, there will be no public comment period during the meeting, however Alaska Department of Environmental Conservation (ADEC) personnel will be available to answer general questions on the sulfolane project after the panel concludes their deliberations each day.

It is important that the meeting attendees remember that the panel members must remain independent and should not be influenced by any party. Therefore, we ask observers to refrain from discussing the RfDs or related issues with the panel members during the breaks unless a panel member initiates the discussion. Panel members will be asked to summarize any relevant conversations for the rest of the panel and audience when the meeting reconvenes after the break.

No pictures, audio, or visual recording, are allowed at the meeting.

The purpose of the meeting is to obtain the consensus opinion of the panel of experts as a whole after their full deliberation and discussion of the RfDs. During the meeting, panelists will make statements and ask questions as they work through the issues to form their individual and collective opinions. Statements or opinions expressed during the discussions may not reflect the panelist’s or the panel’s final thinking on the subject. Therefore, it would be inappropriate to quote individual expert’s statements from the meeting. The final meeting report will contain the official recommendations and conclusions of the panel.
Peer Review Process

ADEC has tasked Toxicology Excellence for Risk Assessment (TERA) with conducting an independent, expert peer review of the available RfDs for sulfolane. A sulfolane RfD will be used by ADEC to develop cleanup levels for groundwater in North Pole, Alaska. TERA is an independent non-profit organization with a mission to protect public health through the best use of toxicity and exposure information in the development of human health risk assessments. As a non-profit organization, TERA organizes independent peer reviews on chemical assessments or other risk assessment work products to meet the needs of public and private sponsors.

The purpose of the peer review is to convene a group of experts to evaluate the scientific basis and appropriateness of the document(s) and related conclusions. Peer review is a critical review of a work product that is conducted by qualified individuals who are independent of those who performed the work, but are collectively equivalent in technical expertise (i.e., peers) to those who performed the work. The peer review involves an in-depth assessment of the assumptions, calculations, alternate interpretations, methodology, and conclusions of the material under review.

ADEC, as the sponsor of the peer review, is paying for the direct costs of conducting the peer review meeting and TERA’s labor costs to organize and convene the peer review. TERA’s responsibilities include identifying and recruiting scientists with relevant expertise, identifying and managing conflict of interest and bias issues, organizing and conducting the meeting, and drafting and finalizing the meeting report. The peer reviewers for this meeting have been offered and accepted an honorarium for their service.

TERA has developed its peer review and consultation program following principles highlighted by the U.S. Office of Management and Budget (OMB) and utilizing approaches used by U.S. EPA, the National Academy of Sciences, EPA’s Science Advisory Board, and the International Life Sciences Institute (ILSI) Policies and Procedures for its Model Peer Review Center of Excellence.

Selection of the Panel and Evaluation of Potential Conflict of Interest and Bias Issues

The sulfolane peer reviewers are recognized technical experts who have been selected for their relevant scientific technical knowledge and independence. Collectively, the panel has expertise in toxicology, immunology, human health risk assessment, RfD methods and derivation, contaminated site assessments, biostatistics, and benchmark dose modeling. The experts have background and experience with the government, university, industry, and non-profit sectors. Each selected expert has been screened for potential conflicts of interest and every effort was made to avoid conflicts of interest and biases that would prevent a panel member from giving an independent opinion on the subject.

TERA, as the independent group convening the peer review, was solely responsible for selecting the panel. TERA’s final selection of the panel members was based upon the
candidates’ scientific experience and credentials, the overall need for coverage of the charge questions, conflict of interest and bias considerations, and the individuals’ interest and availability. Experts serve on the panel as individuals and provide their personal scientific opinions on the issues under discussion during the meeting; they do not serve as representatives of their employers or any other group with whom they may be affiliated.

In order to protect the independence of the panel’s review, the experts’ names are not being shared or released prior to the meeting. TERA has not identified the panel members to ADEC or anyone other than the panel. Panel members have been asked to refrain from discussing the review with others.

Development of the Charge
TERA has reviewed the group of RfDs and the background document prepared by ADEC and developed the charge to peer reviewers. The purpose of the charge is to identify the important relevant scientific issues and questions, and provide a framework for the panel discussions. The sulfolane panel charge covers the key aspects and decision points for the derivation of an RfD. The charge also includes open ended questions to insure that the experts will cover all relevant issues in their discussions.

Prior to the Peer Review Meeting
TERA sent a package of review materials to the panel approximately one month prior to the meeting. The review package included the ADEC background document, copies of the RfDs, key references, and the peer review charge. The panel reviewed these materials prior to the meeting. The meeting materials have been posted on the meeting web page - http://www.tera.org/Peer/sulfolane/index.html. The authors of the subject RfDs and others were invited to provide written technical comments on the materials. These technical public comments have been posted to the web page and shared with the panel.

The Peer Review Meeting
The purpose of the peer review meeting is to have the expert panel evaluate the RfDs and reach conclusions based on the science. Therefore, the discussions will be limited to the panel members. During their discussions, the panel may seek clarification on the individual RfDs from the RfD authors. At several points in the agenda, the chair will ask the attending RfD authors in they have any clarifying questions for the panel.

The meeting chair will facilitate the panel in their discussions to cover the issues and questions from the charge. Individual panelists will be asked to share their opinions and defend them with scientific data and analysis. The panel will attempt to achieve consensus on the key points and charge questions. If unanimous consensus is not achieved, the meeting report will discuss minority opinions to reflect the full range of opinions of the panel.

Meeting Report
TERA scientist(s) will work with the panel to prepare a draft meeting report that will summarize the panel’s discussions, conclusions, and recommendations. This report will
not be a transcript of the meeting; rather it will summarize the key discussions and conclusions. The report text will not attribute comments to specific panelists as it is the consensus opinion of the panel as a whole that is the important result of the peer review. During the finalization of the meeting report, the panel may clarify their conclusions; the panel’s conclusions and recommendations are not final until the final meeting report is released.

The final meeting report will be the official record of the peer review and include copies of any presentation slides, a list of attendees, panel biographical sketches and conflict of interest/bias information, handouts from the meeting, and any public comments. The final meeting report will be made available on the TERA meeting web page.
Expert Panel Biographic Sketches

Dr. Susan Griffin
Dr. Griffin is a Senior Toxicologist with the Superfund Program at the U.S. Environmental Protection Agency (EPA) in Denver, Colorado. Dr. Griffin has a doctorate in Veterinary Toxicology and Pharmacology from the University of California, Davis and is a Diplomate of the American Board of Toxicology. Dr. Griffin has extensive experience in assessing human health risks and communicating the results to diverse parties. She has completed several hundred human health baseline risk assessments for hazardous waste sites, provides expert toxicological and risk assessment advice to EPA and the Department of Justice on Superfund sites, and designs and manages research investigations to obtain scientifically sound bases for risk assessment activities. She chaired the workgroup that developed the Integrated Exposure Biokinetic Uptake Model for Lead for the U.S. Superfund Program and has served as an expert consultant to the Food and Drug Administration (FDA) on the Dental Products Panel. She is actively involved in writing and developing U.S. Superfund guidance documents, and developing chemical toxicity values for EPA’s Integrated Risk Information System (IRIS) data base as a consensus reviewer. Dr. Griffin has worked with U.S. Agency for International Development in Romania and has consulted with the Chilean Ministry of Mines on arsenic exposures and health effects at the Chuquicamata Mine. Dr. Griffin has published on risk assessment issues and methods.

Dr. Richard Hertzberg
Dr. Richard Hertzberg has a special term appointment with the Argonne National Laboratory, Environmental Science Division, developing methods and case studies for cumulative health risk assessment. He is also an adjunct professor in the Department of Environmental Health at Emory University, where he teaches graduate courses in risk assessment. In addition, he works as a private consultant focusing on dose-response modeling, cumulative risk assessment, and statistical approaches for toxic interactions in chemical mixtures, and he is a Toxicology Excellence for Risk Assessment (TERA) Fellow. Dr. Hertzberg received his doctorate in biomathematics from the University of Washington. Dr. Hertzberg retired from the EPA in 2006. As a Senior Scientist at EPA’s National Center for Environmental Assessment (NCEA) he led the research program on mixture risk assessment and was instrumental in writing the EPA mixture risk guidelines. He initiated the use of categorical regression for dose-severity modeling, and the interaction-based hazard index for mixture risk assessment. Dr. Hertzberg has extensive experience with mathematical modeling for quantitative risk assessment, specializing in bio-mathematical dose-response models of human toxicology, quantitative health risk estimation of chemical mixtures, quantitative methods for cumulative risk assessment of chemical and nonchemical stressors for cumulative risk assessment, and teaching of quantitative methods for health risk assessment. He has served on external review and advisory panels to the U.S. Geologic Survey, the Agency for Toxic Substances and Disease Registry (ATSDR), the Health Council of the Netherlands, The Lovelace Respiratory Research Institute, and the National Institute of Occupational Health.
(NIOSH). Dr. Hertzberg was awarded the Distinguished Achievement Medal in Environmental Statistics from the American Statistical Association.

Dr. Michael Luster
Dr. Michael I. Luster is a Research Professor in the School of Public Health at West Virginia University. Dr. Luster received his Ph.D. in Microbiology (Immunology) from Loyola University of Chicago. He retired as Chief of the Toxicology and Molecular Biology Branch at NIOSH in 2006. His work at NIOSH included studies on the effects of environmental and occupational agents on the immune system, including applied research (development of methods and mathematical models to minimize uncertainties in risk assessment) and basic research. He has authored or co-authored over 360 publications and eight books in the area of immunotoxicology and is on the editorial board of numerous journals. Dr. Luster has served on advisory committees for the National Academy of Sciences, EPA, FDA, U.S. Consumer Product Safety Commission, International Life Sciences Institute (ILSI), World Resource Institute, Soap and Detergent Association, and others. He was a member of the World Health Organization (WHO) Committee on Immunotoxicology in Risk Assessment and EPA’s committee to develop immunotoxicology assessment guidelines. He is a recipient of the Alice Hamilton Award for excellence in occupational safety and health research from NIOSH and the Frank Blood Award from the Society of Toxicology.

Dr. Andrew Maier
Dr. Andrew Maier is an Associate Professor of Environmental Health at the University of Cincinnati, where he has led a research program on occupational toxicology and risk assessment since 2013. Previously he served as the Director for the non-profit organization TERA and currently he serves as Chair of the TERA Fellows Program. Dr. Maier also works with NIOSH as a Toxicology Fellow. Dr. Maier has a Ph.D. in Toxicology from the University of Cincinnati with a focus on the molecular mechanisms of toxicity. In his capacity as a toxicologist and risk assessor, he has evaluated the toxicity of hundreds of chemicals and prepared toxicity assessments including derivation of reference doses and occupational exposure limits, critical examination of mode of action and human relevance considerations in support of dose-response assessments, and estimation of cancer risk. He is certified in comprehensive industrial hygiene practice by the American Board of Industrial Hygiene (CIH) and is a Diplomate of the American Board of Toxicology (DABT). Dr. Maier has served on many advisory and peer review panels and has chaired workshops and peer reviews on toxicity and risk assessments, risk methods and frameworks, and occupational health research.

Dr. Deborah Oudiz
Dr. Deborah Oudiz has been retired for the last five years. Prior to retirement, she was a Senior Toxicologist for the California Department of Toxic Substances Control in the California Environmental Protection Agency. She received her Ph.D. from the University of Cincinnati, Department of Environmental Health, followed by a National Cancer Institute (NCI) Postdoctoral Traineeship at University of California, San Francisco and further postdoctoral work at the University of California, Davis. Her research interests include male reproductive toxicology and work with mouse chimera
models for determining maternal and paternal contributions to early embryonic deaths. During her tenure with California EPA, she oversaw and developed risk assessments in support of remediation of hazardous waste sites. Dr. Oudiz was instrumental in establishing a program for the evaluation of school sites for hazardous chemicals. She was responsible for developing guidance for these programs on a variety of toxicology and human exposure issues including lead-based paint, arsenic, naturally occurring asbestos, pesticides, and PAHs (poly aromatic hydrocarbons). In addition she has extensive experience in risk communication with communities, press, and other interested parties. Dr. Oudiz currently lives in Homer, Alaska where she is on the board of the Alaska Center for Coastal Studies and is a member of Cook Inletkeeper.

Dr. Stephen Roberts

Dr. Stephen Roberts is Director of the Center for Environmental & Human Toxicology at the University of Florida, and a Professor with joint appointments in the College of Veterinary Medicine, the College of Medicine, and the College of Public Health and Health Professions. He received his Ph.D. from the University of Utah College of Medicine and subsequently completed a National Institutes of Health (NIH) individual postdoctoral fellowship in pharmacokinetics at the State University of New York Buffalo. He has previously served on the faculties of the University of Cincinnati and the University of Arkansas for Medical Sciences. Dr. Roberts conducts research in a number of areas of toxicology, including mechanisms of toxicity, toxicokinetics, nanotoxicology, and risk assessment. His research has been funded by several federal agencies, including the National Institutes of Health (NIH), the EPA, and the Department of Defense. His teaching responsibilities at the University of Florida include graduate courses in toxicology and risk assessment, as well as invited lectures in other graduate and professional courses. Dr. Roberts has served on numerous advisory boards and committees. He currently serves as an advisor to the Florida Department of Environmental Protection, and he is a member the Chemical Assessment Advisory Committee of the Science Advisory Board for the EPA. He receives funding from government and private parties to conduct basic and applied research on toxicology and risk assessment. Dr. Roberts is a Fellow of the Academy of Toxicological Sciences (ATS).
Conflict of Interest Screening

To facilitate the evaluation of potential conflict of interest (actual and perceived) and bias situations for the peer review candidates, TERA identified a list of individuals and other parties that have been involved with derivation of sulfolane toxicity values or the evaluation of sulfolane toxicity for this site. This list included potentially responsible parties (current owner is Flint Hills Resources of Alaska - a wholly-owned subsidiary of Koch Industries - and former owner is the Williams Company) and their consultants who have worked on sulfolane or the site assessment, those individuals or organizations who have developed toxicity values for sulfolane that are being evaluated in this peer review, and Alaska state agencies and those organizations who have provided support to DEC on sulfolane. The candidates were asked to consider their recent financial and other relationships with these parties when completing the conflict of interest questionnaire, as well as any current and past activities or interest in sulfolane.

TERA evaluated each candidate expert for conflict of interest and determined that none of the panel members has any conflicts of interest for their participation on this peer review. None of the six selected experts has a current financial interest or involvement with any of these parties that would constitute a conflict of interest. TERA also evaluated the potential for each candidate to be biased or less than objective in their scientific opinions for this review. Some of the selected panel members have past or current professional relationships with one or more of the identified parties. TERA evaluated these situations and concluded that none of these relationships would cause the panel member to be biased for this review. In the interests of transparency, the following information is being provided.

Dr. Susan Griffin is a Senior Toxicologist with the Region 8 Superfund Program of the U.S. EPA. The EPA’s National Center for Environmental Assessment (NCEA) office developed a sulfolane value (PPRTV) that is being considered by the panel. Dr. Griffin did not participate in the development or any review of the PPRTV. She works in Region 8, which is not part of EPA’s Office of Research and Development where NCEA is located. Dr. Griffin and TERA do not believe that her employment by the EPA will interfere with her objective and critical review of all the sulfolane values.

Dr. Richard Hertzberg provided scientific support on chemical mixtures to EPA’s NCEA from his retirement in 2006 until 2013. None of this work was related to the EPA sulfolane PPRTV. Dr. Hertzberg and TERA do not believe that his previous employment or consulting with NCEA will interfere with his objective and critical review of all the sulfolane values.

Dr. Michael Luster. None.

Dr. Andrew Maier. None

Dr. Debbie Oudiz. None
Dr. Stephen Roberts. None

Toxicology Excellence for Risk Assessment (TERA). TERA has organized this peer review for the State of Alaska. TERA is being paid for this work under a subcontract with ERM Alaska, Inc. TERA has no current financial or other interest with sulfolane or the North Pole Refinery. TERA has no previous financial or other interest or involvement with the refinery and has not done any work on sulfolane in the past. TERA currently has a project with a law firm representing Koch Industries Inc. (Flint Hills Resources of Alaska is a subsidiary of Koch Industries) that involves a facility outside the State of Alaska and a different chemical substance. TERA discussed this situation with Alaska DEC and Koch Industries and neither had concerns or issues with TERA not being able to organize this peer review for DEC in an objective and unbiased manner. TERA is disclosing this information in the interests of transparency.
Charge Documentation

Introduction
ADEC has tasked TERA with conducting an independent, expert peer review of the available RfDs for sulfolane. A sulfolane RfD will be used by ADEC to develop cleanup levels for groundwater in North Pole, Alaska.

Background from ADEC webpage: “The discovery in late 2009 of sulfolane in drinking water wells near the North Pole Refinery, about 15 miles east of Fairbanks, has led to an extensive investigation of contaminated groundwater. The plume is nearly 2.5 miles wide and 3 miles long, one of the largest in the state. Flint Hills Resources of Alaska, the current refinery owner, responded quickly to offer affected residents an alternate drinking water source. Sulfolane, an emerging contaminant, was at first not officially listed as a hazardous chemical, and its long-term health effects from exposure have not yet been studied. This event has been unprecedented for the Contaminated Sites Program due to the number of properties affected with private drinking water wells and the size of the plume. For an overview in more detail, see Frequently Asked Questions (http://dec.alaska.gov/spar/csp/sites/north-pole-refinery/index.htm).”

Reference Doses

Charge to Peer Reviewers
The peer reviewers are asked to use independent professional scientific judgment to evaluate the reference doses. The panel should draw upon US EPA risk methods and guidance for
BMD modeling, as these are the commonly accepted methods used in the US to derive RfDs that are used to develop protective cleanup levels for contaminated sites.

The following questions and topics should be used to frame your discussion of the scientific information and issues regarding derivation of a RfD for sulfolane and to identify the most adequate RfD.

1. The subject RfDs selected HLS (2001) or Zhu et al. (1987) as the principal study. Discuss the strengths and weaknesses of the key studies and the available toxicity data on sulfolane. Are there additional relevant references that should be considered for the RfD and if so, explain the reasoning for considering them.

2. Discuss the endpoints and effects seen in the toxicity studies and potential mode(s) of action.
 a. Based on assessment of toxicological relevance, which endpoints should be considered for derivation of a RfD?
 b. What dosimetric adjustments should be made for the relevant endpoints?
 c. Discuss the no and lowest observed adverse effect levels (NOAELs and LOAELs). Evaluate the endpoints for suitability for benchmark dose (BMD) modeling and discuss model fit.
 d. Which is the most scientifically defensible point of departure (POD) for a sulfolane RfD?

3. Discuss the basis for selection of uncertainty factors. What are the most appropriate values for the standard factors commonly used?

4. Please identify any additional scientific issues or questions that the panel should discuss.

5. Please discuss which of the RfDs reflects the best use of the currently available data, and why.

6. Discuss the overall confidence in the selected RfD(s) and what additional studies or analyses, if any, would help reduce uncertainty or increase confidence.

References

Zhu, ZH; Sun, ML; Li, ZS; Yang, ZC; Zhang, TB; Heng, ZC; Xiao, BL; Li, QQ; Peng, QY; Dong, YH; Jiang, S; Jiang, J. 1987. "An investigation of maximum allowable concentration of sulfolane in surface water." J. West China Univ. Med. Sci. 18(4):376-380.
Registered Meeting Attendees

<table>
<thead>
<tr>
<th>Attendee</th>
<th>Position/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcia Bailey</td>
<td>US EPA</td>
</tr>
<tr>
<td>Joshua Banks</td>
<td>Alaska State Legislature</td>
</tr>
<tr>
<td>Chad Blystone*</td>
<td>NIEHS</td>
</tr>
<tr>
<td>Brandon Brefczynski</td>
<td>ADEC</td>
</tr>
<tr>
<td>Stephanie Buss</td>
<td>SPB Consulting</td>
</tr>
<tr>
<td>Matt Buxton</td>
<td>Fairbanks Daily News-Miner</td>
</tr>
<tr>
<td>Tamara Cardona</td>
<td>ADEC</td>
</tr>
<tr>
<td>Cindy Christian</td>
<td>ADEC</td>
</tr>
<tr>
<td>James Clark</td>
<td>Law Office of James F. Clark</td>
</tr>
<tr>
<td>Kim DeRuyter</td>
<td>ADEC</td>
</tr>
<tr>
<td>Katie Diedrich</td>
<td>ADEC</td>
</tr>
<tr>
<td>James Durant*</td>
<td>ATSDR</td>
</tr>
<tr>
<td>William Farland</td>
<td>William H Farland Consulting</td>
</tr>
<tr>
<td>Sheila Fleming*</td>
<td>US EPA</td>
</tr>
<tr>
<td>Rena Flint</td>
<td>ERM</td>
</tr>
<tr>
<td>Annette Gatchett*</td>
<td>US EPA</td>
</tr>
<tr>
<td>Mark Gebbia</td>
<td>Williams</td>
</tr>
<tr>
<td>Richard Guillaume</td>
<td>Landowner</td>
</tr>
<tr>
<td>David Guttenberg</td>
<td>Alaska Legislature</td>
</tr>
<tr>
<td>Ali Hamade</td>
<td>State of Alaska Department of Health and Social Services</td>
</tr>
<tr>
<td>Laurie Haws</td>
<td>ToxStrategies</td>
</tr>
<tr>
<td>James Holler*</td>
<td>ATSDR</td>
</tr>
<tr>
<td>Laura Hill</td>
<td>The Williams Companies, Inc.</td>
</tr>
<tr>
<td>Lon Kissinger</td>
<td>US EPA</td>
</tr>
<tr>
<td>Adam Kushner</td>
<td>Hogan Lovells US LLP</td>
</tr>
<tr>
<td>Jason Lambert</td>
<td>US EPA</td>
</tr>
<tr>
<td>Kira Lynch*</td>
<td>US EPA</td>
</tr>
<tr>
<td>Brian Magee</td>
<td>Arcadis</td>
</tr>
<tr>
<td>Scott Masten*</td>
<td>NIEHS</td>
</tr>
</tbody>
</table>
Independent Expert Peer Review of the Chronic Oral Reference Doses (RfDs) for Sulfolane

September 16-17, 2014

Toxicology Excellence for Risk Assessment (TERA)

David Mayfield*
Gradient

Koch Remediation & Environmental Services

Steve Mulder
DOL

Samantha Straus
Office of Representative David Guttenberg

Bill O’Connell
ADEC

Linda Tape
Flint Hills Resources

Jane Paris
ERM

Chad Thompson
ToxStrategies

Jacqueline Patterson
TERA

Tiffany Von Horn
Fairbanks Sewer & Water

Dan Petersen*
US EPA

Scott Wesselkamper*
US EPA

Lorenz Rhomberg*
Gradient

Alison Willis
TERA

John Risher*
ATSDR

Tammie Wilson
State of Alaska Legislature

Jennifer Roberts
ADEC

Ted Wu
ADEC

David Smith

Jay Zhao*
US EPA
Appendix B Slides from ADEC presentation
Sulfolane Reference Doses
TERA Peer Review of Sulfolane RfDs Meeting
September 16, 2014
Alaska
Department of Environmental Conservation
Division of Spill Prevention and Response
Contaminated Sites Program
Tamara Cardona, PhD
Stephanie Pingree Buss*
What is sulfolane?

- Industrial solvent used during gasoline production
- Used to separate aromatic compounds from hydrocarbon mixtures and to purify natural gas
- Low vapor pressure
- Highly soluble in water
- Not well absorbed through skin

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>120.18</td>
</tr>
<tr>
<td>Freezing point</td>
<td>27.4 - 27.8 °C</td>
</tr>
<tr>
<td>Specific Gravity (30/20 °C)</td>
<td>1.265</td>
</tr>
<tr>
<td>Vapor Pressure (27.6 °C)</td>
<td>0.0062 mm Hg</td>
</tr>
<tr>
<td>Henry’s Law constant</td>
<td>4.6×10^{-6} atm-m3/mole</td>
</tr>
<tr>
<td>Solubility in water (25 °C)</td>
<td>≥ 100 g/L</td>
</tr>
</tbody>
</table>
Sulfolane in North Pole, Alaska

- Sulfolane discovered in private drinking water wells in 2009
- Alternative water supplies
- Current sulfolane plume approx. 2.5 miles wide by 3 miles long.
Why an Expert, Peer-Review?

- Developing a cleanup level involves many steps. For DEC, the reference dose is a key component in the calculation that determines a cleanup level.

- To ensure the most scientifically sound groundwater cleanup level for sulfolane, DEC is seeking the panel’s expert, independent recommendation on the oral, chronic reference dose.
Key Studies

Zhu et al. 1987
- 6-month study in guinea pigs
- Hepatic effects, change in cell counts, dispersion of spleen white pulp
- No effect level = 0.25 mg/kg-d

Huntingdon Life Sciences 2001
- 13-week study in rats
- Reduction in lymphocytes, monocytes, LUC counts in females
- No observed effect level = 2.9 mg/kg-d
Zhu et al. 1987

- Acute toxicity in mice, white rats, and guinea pigs
- 90-day study in white rats and guinea pigs
 - Guinea pigs were more sensitive to sulfolane than rats
- 6-month study in guinea pigs
- Mutagenicity Test (Ames, mice marrow erythroyte micronucleus, SCE assay)
- Teratogenicity test

<table>
<thead>
<tr>
<th>Species</th>
<th>(\text{LD}_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>2504 mg/kg</td>
</tr>
<tr>
<td>Rats</td>
<td>2343 mg/kg</td>
</tr>
<tr>
<td>Guinea pigs</td>
<td>1445 mg/kg</td>
</tr>
</tbody>
</table>
Zhu et al. 1987 – 6 month toxicity study

- Guinea pigs – 40 each dose group, equal numbers male/female
- Dose groups: 0.25, 2.5, 25, 250 mg/kg and control
- Biochemical and pathological evaluations
- Change rates in fatty deposits showed dose-response relationship
- Dose groups 2.5, 25 and 250 mg/kg
 - Fatty deposits change in the liver tissue
 - Shrinkage of spleen white pulp
 - Decreasing cell counts in spinal marrow
- Authors noted:
 - Chronic threshold at 2.5 mg/kg
 - No effect dose at 0.25 mg/kg
Huntingdon Life Sciences, 2001

- 13-week exposure in drinking water
 - CD rats, 20 animals per dose group (10 males/10 females)
 - Good Laboratory Practices
 - Battery of tests conducted
 - Males – hydrocarbon nephropathy at 400 mg/L or more
 - Females – reduced lymphocytes, monocyte, LUC counts at 100 mg/L or more
 - Not seen in males
 - No observed effect level = 8.8 mg/kg-d for males and 2.9 mg/kg-d for females

<table>
<thead>
<tr>
<th>DW conc. (mg/L)</th>
<th>0</th>
<th>25</th>
<th>100</th>
<th>400</th>
<th>1,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male dose (mg/kg-d)</td>
<td>0</td>
<td>2.1</td>
<td>8.8</td>
<td>35.0</td>
<td>131.7</td>
</tr>
<tr>
<td>Female dose (mg/kg-d)</td>
<td>0</td>
<td>2.9</td>
<td>10.6</td>
<td>42.0</td>
<td>191.1</td>
</tr>
</tbody>
</table>
Available Sulfololane RfDs

<table>
<thead>
<tr>
<th>Source</th>
<th>Principal Study</th>
<th>Test Species</th>
<th>Endpoint</th>
<th>Modeling Approach</th>
<th>Point of Departure (mg/kg-day)</th>
<th>Composite Uncertainty Factor</th>
<th>Reference Dose (mg/kg-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCME, 2006</td>
<td>HLS 2001</td>
<td>Rat (female)</td>
<td>WBC counts</td>
<td>NOAEL</td>
<td>NOAEL = 2.9</td>
<td>300</td>
<td>0.0097</td>
</tr>
<tr>
<td>ATSDR, 2010</td>
<td>Zhu et al. 1987</td>
<td>Guinea pig</td>
<td>Hepatic effects, changes in serum ALP, WBC counts</td>
<td>NOAEL</td>
<td>NOAEL = 0.25</td>
<td>100</td>
<td>0.0025</td>
</tr>
<tr>
<td>ATSDR, 2011</td>
<td>Zhu et al. 1987</td>
<td>Guinea pig</td>
<td>Dispersion of spleen white pulp</td>
<td>BMD</td>
<td>BMDL10 = 1.5</td>
<td>1,000</td>
<td>0.002</td>
</tr>
<tr>
<td>TCEQ, 2011</td>
<td>HLS 2001</td>
<td>Rat (female)</td>
<td>WBC counts</td>
<td>BMD</td>
<td>BMDL1SD = 16.1, BMDLHED = 3.9</td>
<td>300</td>
<td>0.013</td>
</tr>
<tr>
<td>US EPA, 2012</td>
<td>HLS 2001</td>
<td>Rat (female)</td>
<td>WBC counts</td>
<td>NOAEL</td>
<td>NOAEL = 2.9</td>
<td>3,000</td>
<td>0.001</td>
</tr>
<tr>
<td>Magee, 2012</td>
<td>HLS 2001</td>
<td>Rat (female)</td>
<td>WBC counts</td>
<td>BMD</td>
<td>BMDL = 11.64</td>
<td>1,000</td>
<td>0.01</td>
</tr>
<tr>
<td>Thompson et al., 2013</td>
<td>HLS 2001</td>
<td>Rat (female)</td>
<td>WBC counts</td>
<td>BMD</td>
<td>BMDL1SD = 16, BMDLHED = 3.9</td>
<td>300</td>
<td>0.01</td>
</tr>
<tr>
<td>Health Canada, 2014</td>
<td>HLS 2001</td>
<td>Rat (female)</td>
<td>Lymphocytes</td>
<td>BMD</td>
<td>BMDL1SD = 4.12</td>
<td>1,000</td>
<td>0.00412</td>
</tr>
</tbody>
</table>
Uncertainty Factor Differences

<table>
<thead>
<tr>
<th>Source (By Date)</th>
<th>U_{FA}</th>
<th>U_{FD}</th>
<th>U_{FH}</th>
<th>U_{FL}</th>
<th>U_{FS}</th>
<th>U_{FC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCME, 2006</td>
<td>10</td>
<td>3*</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>300</td>
</tr>
<tr>
<td>ATSDR 2010</td>
<td>10</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>ATSDR, 2011</td>
<td>10</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>10</td>
<td>1,000</td>
</tr>
<tr>
<td>TCEQ (Haney), 2011</td>
<td>--</td>
<td>3</td>
<td>10</td>
<td>--</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>US EPA, 2012</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>3,000</td>
</tr>
<tr>
<td>Magee, 2012</td>
<td>10</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>10</td>
<td>1,000</td>
</tr>
<tr>
<td>Thompson et al., 2013</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>--</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>Health Canada, 2014</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Notes:
* - Based on the CCME application of uncertainty factors, this value was used to account for adequate, but not extensive dataset; subchronic-chronic extrapolation; and serious effects concerns (CCME 2006).
Questions
Appendix C Slides from panel discussion on model selection
Method for Choosing a Model

Remove those where:
1- Numerical problems (wrong variance model)
2- Unacceptable lack of fit p-value (if LoF<0.1)
3- Over-specified model (higher order polynomials are identical to linear)
 (Remaining models have very close AIC’s)
4- Scaled residuals too high
Exponential Model 4, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Level for BMDL

Mean Response

log dose (log mg/kg-d)

11:32 06/21 2014
Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL.
Table 3.2 BMDS Model Results Summary for White Blood Cell Count (Log-transformed Doses, Concurrent Controls)

| Model Type | Constant Variance Model (Y/N) | Homogeneity Variance (p-value) | Goodness of Fit (p-value) | AIC | Scaled Residual Near BMD | BMD/ BMDL Ratio | BMD (mg/kg-day) | BMDL (mg/kg-day) | BMDS Wizard Notes
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. (M2)</td>
<td>Y</td>
<td>0.036</td>
<td>0.391</td>
<td>113.87</td>
<td>-1.24</td>
<td>1.52</td>
<td>2.32</td>
<td>9.18</td>
<td>1.52</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>Y</td>
<td>0.036</td>
<td>0.227</td>
<td>115.83</td>
<td>-1.31</td>
<td>1.61</td>
<td>2.46</td>
<td>10.67</td>
<td>1.53</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>Y</td>
<td>0.036</td>
<td>0.223</td>
<td>115.87</td>
<td>-1.22</td>
<td>2.08</td>
<td>2.30</td>
<td>8.95</td>
<td>1.11</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>Y</td>
<td>0.036</td>
<td>0.237</td>
<td>116.26</td>
<td>-1.87E-05</td>
<td>1.53</td>
<td>2.10</td>
<td>7.20</td>
<td>1.37</td>
</tr>
<tr>
<td>Hill</td>
<td>Y</td>
<td>0.036</td>
<td>0.254</td>
<td>116.16</td>
<td>-0.16</td>
<td>1.47</td>
<td>2.03</td>
<td>6.59</td>
<td>1.38</td>
</tr>
<tr>
<td>Power</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Linear</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Exp. (M2)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>1.70</td>
<td>3.53</td>
<td>32.96</td>
<td>2.08</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>N</td>
<td>0.036</td>
<td>0.0679</td>
<td>110.90</td>
<td>0.252</td>
<td>1.83</td>
<td>3.90</td>
<td>48.43</td>
<td>2.13</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>2.01</td>
<td>3.53</td>
<td>32.96</td>
<td>1.75</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>N</td>
<td>0.036</td>
<td>0.022</td>
<td>112.76</td>
<td>0.494</td>
<td>2.58</td>
<td>3.64</td>
<td>37.26</td>
<td>1.41</td>
</tr>
<tr>
<td>Hill</td>
<td>N</td>
<td>0.036</td>
<td>0.0276</td>
<td>112.37</td>
<td>0.0849</td>
<td>1.57</td>
<td>2.29</td>
<td>8.92</td>
<td>1.46</td>
</tr>
<tr>
<td>Power</td>
<td>N</td>
<td>0.036</td>
<td>0.0630</td>
<td>111.05</td>
<td>0.147</td>
<td>1.54</td>
<td>4.02</td>
<td>54.88</td>
<td>2.62</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Linear</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
</tbody>
</table>

Notes: Full data, WBC, log(dose+1), concurrent controls
Table 3.2 BMDS Model Results Summary for White Blood Cell Count (Log-transformed Doses, Concurrent Controls)

| Model Type | Constant Variance Model (Y/N) | Homogeneity Variance (p-value) | Goodness of Fit (p-value) | AIC | Scaled Residual Near BMD | BMD/ BMDL Ratio | BMD (mg/kg-day) | BM DL (mg/kg-day) | BMDS Wizard Notes
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. (M2)</td>
<td>Y</td>
<td>0.036</td>
<td>0.391</td>
<td>113.87</td>
<td>-1.24</td>
<td>1.52</td>
<td>2.32</td>
<td>9.18</td>
<td>1.52 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>Y</td>
<td>0.036</td>
<td>0.227</td>
<td>115.83</td>
<td>-1.31</td>
<td>1.61</td>
<td>2.46</td>
<td>10.67</td>
<td>1.53 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>Y</td>
<td>0.036</td>
<td>0.223</td>
<td>115.87</td>
<td>-1.22</td>
<td>2.08</td>
<td>2.30</td>
<td>8.95</td>
<td>1.11 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>Y</td>
<td>0.036</td>
<td>0.237</td>
<td>116.26</td>
<td>-1.87E-05</td>
<td>1.53</td>
<td>2.10</td>
<td>7.20</td>
<td>1.37 (wrong variance model)</td>
</tr>
<tr>
<td>Hill</td>
<td>Y</td>
<td>0.036</td>
<td>0.254</td>
<td>116.16</td>
<td>-0.16</td>
<td>1.47</td>
<td>2.03</td>
<td>6.59</td>
<td>1.38 (wrong variance model)</td>
</tr>
<tr>
<td>Power</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Linear</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M2)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>1.70</td>
<td>3.53</td>
<td>32.96</td>
<td>Alternate (viable model)</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>N</td>
<td>0.036</td>
<td>0.0679</td>
<td>110.90</td>
<td>0.252</td>
<td>1.83</td>
<td>3.90</td>
<td>48.43</td>
<td>Questionable (GoF p < 0.1)</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>2.01</td>
<td>3.53</td>
<td>32.96</td>
<td>Alternate (lowest BM DL)</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>N</td>
<td>0.036</td>
<td>0.022</td>
<td>112.76</td>
<td>0.494</td>
<td>2.58</td>
<td>3.64</td>
<td>37.26</td>
<td>Questionable (GoF p < 0.1)</td>
</tr>
<tr>
<td>Hill</td>
<td>N</td>
<td>0.036</td>
<td>0.0276</td>
<td>112.37</td>
<td>0.0849</td>
<td>1.57</td>
<td>2.29</td>
<td>8.92</td>
<td>Questionable (GoF p < 0.1)</td>
</tr>
<tr>
<td>Power</td>
<td>N</td>
<td>0.036</td>
<td>0.0630</td>
<td>111.05</td>
<td>0.147</td>
<td>1.54</td>
<td>4.02</td>
<td>54.88</td>
<td>Questionable (GoF p < 0.1)</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>Recommended (lowest AIC)</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>Recommended (lowest AIC)</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>Recommended (lowest AIC)</td>
</tr>
<tr>
<td>Linear</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>Recommended (lowest AIC)</td>
</tr>
</tbody>
</table>

Wrong variance model
Table 3.2 BMDS Model Results Summary for White Blood Cell Count (Log-transformed Doses, Concurrent Controls)

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Constant Variance Model (Y/N)</th>
<th>Homogeneity Variance (p-value)</th>
<th>Goodness of Fit (p-value)</th>
<th>AIC</th>
<th>Scaled Residual Near BMD</th>
<th>BMD/BMDL Ratio</th>
<th>BMD (mg/kg-day)</th>
<th>BMDL (mg/kg-day)</th>
<th>BMDS Wizard Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. (M2)</td>
<td>Y</td>
<td>0.036</td>
<td>0.391</td>
<td>113.87</td>
<td>-1.24</td>
<td>1.52</td>
<td>2.32</td>
<td>9.18</td>
<td>1.52 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>Y</td>
<td>0.036</td>
<td>0.227</td>
<td>115.83</td>
<td>-1.31</td>
<td>1.61</td>
<td>2.46</td>
<td>10.67</td>
<td>1.53 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>Y</td>
<td>0.036</td>
<td>0.223</td>
<td>115.87</td>
<td>-1.22</td>
<td>2.08</td>
<td>2.30</td>
<td>8.95</td>
<td>1.11 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>Y</td>
<td>0.036</td>
<td>0.237</td>
<td>116.26</td>
<td>-1.87E-05</td>
<td>1.53</td>
<td>2.10</td>
<td>7.20</td>
<td>1.37 (wrong variance model)</td>
</tr>
<tr>
<td>Hill</td>
<td>Y</td>
<td>0.036</td>
<td>0.254</td>
<td>116.16</td>
<td>-0.16</td>
<td>1.47</td>
<td>2.03</td>
<td>6.59</td>
<td>1.38 (wrong variance model)</td>
</tr>
<tr>
<td>Power</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Linear</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 (wrong variance model)</td>
</tr>
<tr>
<td>Exp. (M2)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>1.70</td>
<td>3.53</td>
<td>32.96</td>
<td>2.08 (viable model)</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>N</td>
<td>0.036</td>
<td>0.0679</td>
<td>110.90</td>
<td>0.252</td>
<td>1.83</td>
<td>3.90</td>
<td>48.43</td>
<td>2.13 (GOF p < 0.1)</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>2.01</td>
<td>3.53</td>
<td>32.96</td>
<td>1.75 (lowest BMDL)</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>N</td>
<td>0.036</td>
<td>0.022</td>
<td>112.76</td>
<td>0.494</td>
<td>2.58</td>
<td>3.64</td>
<td>37.26</td>
<td>1.41 (GOF p < 0.1)</td>
</tr>
<tr>
<td>Hill</td>
<td>N</td>
<td>0.036</td>
<td>0.0276</td>
<td>112.37</td>
<td>0.0849</td>
<td>1.57</td>
<td>2.29</td>
<td>8.92</td>
<td>1.46 (GOF p < 0.1)</td>
</tr>
<tr>
<td>Power</td>
<td>N</td>
<td>0.036</td>
<td>0.0630</td>
<td>111.05</td>
<td>0.147</td>
<td>1.54</td>
<td>4.02</td>
<td>54.88</td>
<td>2.62 (GOF p < 0.1)</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 (lowest AIC)</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 (lowest AIC)</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 (lowest AIC)</td>
</tr>
<tr>
<td>Linear</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 (lowest AIC)</td>
</tr>
</tbody>
</table>

Questionable fit
Table 3.2 BMDS Model Results Summary for White Blood Cell Count (Log-transformed Doses, Concurrent Controls)

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Constant Variance Model (Y/N)</th>
<th>Homogeneity Variance (p-value)</th>
<th>Goodness of Fit (p-value)</th>
<th>AIC</th>
<th>Scaled Residual Near BMD</th>
<th>BMD/ BMDL Ratio</th>
<th>BMD (mg/kg-day)</th>
<th>BMDL (mg/kg-day)</th>
<th>BMDS Wizard Notes^b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. (M2)</td>
<td>Y</td>
<td>0.036</td>
<td>0.391</td>
<td>113.87</td>
<td>-1.24</td>
<td>1.52</td>
<td>2.32</td>
<td>9.18</td>
<td>1.52 3.58</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>Y</td>
<td>0.036</td>
<td>0.227</td>
<td>115.83</td>
<td>-1.31</td>
<td>1.61</td>
<td>2.46</td>
<td>10.67</td>
<td>1.53 3.60</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>Y</td>
<td>0.036</td>
<td>0.223</td>
<td>115.87</td>
<td>-1.22</td>
<td>2.08</td>
<td>2.30</td>
<td>8.95</td>
<td>1.11 2.02</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>Y</td>
<td>0.036</td>
<td>0.237</td>
<td>116.26</td>
<td>-1.87E-05</td>
<td>1.53</td>
<td>2.10</td>
<td>7.20</td>
<td>1.37 2.95</td>
</tr>
<tr>
<td>Hill</td>
<td>Y</td>
<td>0.036</td>
<td>0.254</td>
<td>116.16</td>
<td>-0.16</td>
<td>1.47</td>
<td>2.03</td>
<td>6.59</td>
<td>1.38 2.98</td>
</tr>
<tr>
<td>Power</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 6.14</td>
</tr>
<tr>
<td>Poly. (4^c)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 6.14</td>
</tr>
<tr>
<td>Poly. (3^c)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 6.14</td>
</tr>
<tr>
<td>Poly. (2^c)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 6.14</td>
</tr>
<tr>
<td>Linear</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97 6.14</td>
</tr>
<tr>
<td>Exp. (M2)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>1.70</td>
<td>3.53</td>
<td>32.96</td>
<td>2.08 6.99</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>N</td>
<td>0.036</td>
<td>0.0679</td>
<td>110.90</td>
<td>0.252</td>
<td>1.83</td>
<td>3.90</td>
<td>48.43</td>
<td>2.13 7.42</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>2.01</td>
<td>3.53</td>
<td>32.96</td>
<td>1.75 4.75</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>N</td>
<td>0.036</td>
<td>0.022</td>
<td>112.76</td>
<td>0.494</td>
<td>2.58</td>
<td>3.64</td>
<td>37.26</td>
<td>1.41 3.10</td>
</tr>
<tr>
<td>Hill</td>
<td>N</td>
<td>0.036</td>
<td>0.0276</td>
<td>112.37</td>
<td>0.0849</td>
<td>1.57</td>
<td>2.29</td>
<td>8.92</td>
<td>1.46 3.32</td>
</tr>
<tr>
<td>Power</td>
<td>N</td>
<td>0.036</td>
<td>0.0630</td>
<td>111.05</td>
<td>0.147</td>
<td>1.54</td>
<td>4.02</td>
<td>54.88</td>
<td>2.62 12.68</td>
</tr>
<tr>
<td>(4^c)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 12.66</td>
</tr>
<tr>
<td>(3^c)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 12.66</td>
</tr>
<tr>
<td>(2^c)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 12.66</td>
</tr>
<tr>
<td>Linear</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61 12.66</td>
</tr>
</tbody>
</table>

Overparameterized (all reduce to linear)
(but not screened because of AIC values: were too close)
Table 3.2 BMDS Model Results Summary for White Blood Cell Count (Log-transformed Doses, Concurrent Controls)

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Constant Variance Model (Y/N)</th>
<th>Homogeneity Variance (p-value)</th>
<th>Goodness of Fit (p-value)</th>
<th>AIC</th>
<th>Scaled Residual Near BMD</th>
<th>BMD/ BMDL Ratio</th>
<th>BMD (mg/kg-day)</th>
<th>BMDL (mg/kg-day)</th>
<th>BMDS Wizard Notes b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. (M2)</td>
<td>Y</td>
<td>0.035</td>
<td>0.391</td>
<td>113.87</td>
<td>-1.24</td>
<td>1.52</td>
<td>2.32</td>
<td>9.18</td>
<td>1.52</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>Y</td>
<td>0.036</td>
<td>0.227</td>
<td>115.83</td>
<td>-1.31</td>
<td>1.61</td>
<td>2.46</td>
<td>10.67</td>
<td>1.53</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>Y</td>
<td>0.036</td>
<td>0.223</td>
<td>115.87</td>
<td>-1.22</td>
<td>2.08</td>
<td>2.30</td>
<td>8.95</td>
<td>1.11</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>Y</td>
<td>0.036</td>
<td>0.237</td>
<td>116.26</td>
<td>-1.87E-05</td>
<td>1.53</td>
<td>2.10</td>
<td>7.20</td>
<td>1.37</td>
</tr>
<tr>
<td>Hill</td>
<td>Y</td>
<td>0.036</td>
<td>0.254</td>
<td>116.16</td>
<td>-0.16</td>
<td>1.47</td>
<td>2.03</td>
<td>6.59</td>
<td>1.38</td>
</tr>
<tr>
<td>Power</td>
<td>Y</td>
<td>0.035</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Linear</td>
<td>Y</td>
<td>0.035</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Exp. (M2)</td>
<td>N</td>
<td>0.035</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>1.70</td>
<td>3.53</td>
<td>32.96</td>
<td>2.08</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>N</td>
<td>0.036</td>
<td>0.0679</td>
<td>110.90</td>
<td>0.252</td>
<td>1.83</td>
<td>3.00</td>
<td>48.43</td>
<td>2.13</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>2.01</td>
<td>3.53</td>
<td>32.96</td>
<td>1.75</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>N</td>
<td>0.036</td>
<td>0.022</td>
<td>112.76</td>
<td>0.494</td>
<td>2.58</td>
<td>3.64</td>
<td>37.26</td>
<td>1.41</td>
</tr>
<tr>
<td>Hill</td>
<td>N</td>
<td>0.035</td>
<td>0.0276</td>
<td>112.37</td>
<td>0.0849</td>
<td>1.57</td>
<td>2.29</td>
<td>8.32</td>
<td>1.46</td>
</tr>
<tr>
<td>Power</td>
<td>N</td>
<td>0.035</td>
<td>0.0630</td>
<td>110.05</td>
<td>0.147</td>
<td>1.54</td>
<td>4.02</td>
<td>54.88</td>
<td>2.62</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Linear</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
</tbody>
</table>

Residuals too high
<table>
<thead>
<tr>
<th>Model Type</th>
<th>Constant Variance Model (Y/N)</th>
<th>Homogeneity Variance (p-value)</th>
<th>Goodness of Fit (p-value)</th>
<th>AIC</th>
<th>Scaled Residual Near BMD</th>
<th>BMD/ BMDL Ratio</th>
<th>BMD (mg/kg-day)</th>
<th>BMDL (mg/kg-day)</th>
<th>BMDS Wizard Notes¹,²,³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. (M2)</td>
<td>Y</td>
<td>0.036</td>
<td>0.391</td>
<td>113.87</td>
<td>-1.24</td>
<td>1.52</td>
<td>2.32</td>
<td>9.18</td>
<td>1.52</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>Y</td>
<td>0.036</td>
<td>0.227</td>
<td>115.83</td>
<td>-1.31</td>
<td>1.61</td>
<td>2.46</td>
<td>10.67</td>
<td>1.53</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>Y</td>
<td>0.036</td>
<td>0.223</td>
<td>115.87</td>
<td>-1.22</td>
<td>2.08</td>
<td>2.30</td>
<td>8.95</td>
<td>1.11</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>Y</td>
<td>0.036</td>
<td>0.237</td>
<td>116.26</td>
<td>-1.87E-05</td>
<td>1.53</td>
<td>2.10</td>
<td>7.20</td>
<td>1.37</td>
</tr>
<tr>
<td>Hill</td>
<td>Y</td>
<td>0.036</td>
<td>0.264</td>
<td>116.16</td>
<td>-0.16</td>
<td>1.67</td>
<td>2.03</td>
<td>6.59</td>
<td>1.38</td>
</tr>
<tr>
<td>Power</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Linear</td>
<td>Y</td>
<td>0.036</td>
<td>0.357</td>
<td>114.10</td>
<td>-1.44</td>
<td>1.39</td>
<td>2.73</td>
<td>14.29</td>
<td>1.97</td>
</tr>
<tr>
<td>Exp. (M2)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>1.70</td>
<td>3.53</td>
<td>32.96</td>
<td>2.08</td>
</tr>
<tr>
<td>Exp. (M3)</td>
<td>N</td>
<td>0.036</td>
<td>0.0679</td>
<td>110.90</td>
<td>0.252</td>
<td>1.83</td>
<td>3.90</td>
<td>48.43</td>
<td>2.13</td>
</tr>
<tr>
<td>Exp. (M4)</td>
<td>N</td>
<td>0.036</td>
<td>0.130</td>
<td>109.17</td>
<td>0.394</td>
<td>2.01</td>
<td>3.53</td>
<td>32.96</td>
<td>1.75</td>
</tr>
<tr>
<td>Exp. (M5)</td>
<td>N</td>
<td>0.036</td>
<td>0.022</td>
<td>112.75</td>
<td>0.494</td>
<td>2.58</td>
<td>3.64</td>
<td>37.26</td>
<td>1.41</td>
</tr>
<tr>
<td>Hill</td>
<td>N</td>
<td>0.036</td>
<td>0.0276</td>
<td>112.37</td>
<td>0.0849</td>
<td>1.57</td>
<td>2.29</td>
<td>8.92</td>
<td>1.46</td>
</tr>
<tr>
<td>Power</td>
<td>N</td>
<td>0.036</td>
<td>0.0630</td>
<td>111.05</td>
<td>0.147</td>
<td>1.54</td>
<td>4.02</td>
<td>54.88</td>
<td>2.62</td>
</tr>
<tr>
<td>Poly. (4*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Poly. (3*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Poly. (2*)</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
<tr>
<td>Linear</td>
<td>N</td>
<td>0.036</td>
<td>0.136</td>
<td>109.06</td>
<td>0.177</td>
<td>1.51</td>
<td>3.96</td>
<td>51.23</td>
<td>2.61</td>
</tr>
</tbody>
</table>

Notes:

Recommended!

¹: ln BMD
²: Nm
³: BMDL

BMDS Wizard Notes: Alternate (viable model), Questionable (GoF p < 0.1), Recommended (lowest AIC), Unusable (wrong variance model).
Method for Choosing a Model

Remove those where:
1- numerical problems (wrong variance model)
2- unacceptable lack of fit p-value (if LoF<0.1)
3- over-specified model (higher order polynomials are identical to linear)
4- Scaled residuals too high
5- Winner? Linear model, using log(dose)

In preparing the meeting report, the presenting panel member noted the following clarification on this presentation:
2- unacceptable lack of fit p-value (if LoF<0.1)
Would be more clearly communicated by using p instead of LoF:
2- unacceptable lack of fit p-value (if p<0.1)
Please note that the lack of fit p-value works in reverse to the usual significance p-value, in that higher p indicates acceptable fit, thus screening out models (removing from consideration) would use p < 0.1.