# SOUTHEAST SUBAREA CONTINGENCY PLAN

# HAZARDOUS MATERIALS SECTION

| PART ONE   | HAZMAT RESPONSE                                                   |
|------------|-------------------------------------------------------------------|
|            | A. Initial Notification of Response AgenciesC-1                   |
|            | B. RecognitionC-1                                                 |
|            | C. Evaluation                                                     |
|            | D. EvacuationC-5                                                  |
|            | E. Direction and Site/Entry ControlC-5                            |
|            | F. Command and ControlC-6                                         |
|            | G. Communications                                                 |
|            | H. Warning Systems & Emergency Public NotificationC-6             |
|            | I. Health and Medical ServicesC-6                                 |
| PART TWO   | RESPONSIBLE PARTY HAZMAT ACTION C-7                               |
|            | A. Discovery and Notification                                     |
|            | B. Removal Action                                                 |
| PART THREE | STATE HAZMAT ACTIONC-8                                            |
|            | A. AuthorityC-8                                                   |
|            | B. Response PolicyC-8                                             |
|            | C. State Response Capabilities                                    |
|            | D. Responsibilities                                               |
| PART FOUR  | FEDERAL HAZMAT ACTION C-10                                        |
|            | A. AuthorityC-10                                                  |
|            | B. JurisdictionC-10                                               |
|            | C. Response PolicyC-10                                            |
| PART FIVE  | SUBAREA HAZMAT RISK ASSESSMENT C-12                               |
|            | A. GeneralC-12                                                    |
|            | B. FacilitiesC-13                                                 |
|            | C. Transportation                                                 |
|            | D. ReferencesC-21                                                 |
| Table:     | C-1: Number of Facilities with Extremely Hazardous SubstancesC-13 |
| PART SIX   | RADIOLOGICAL AND BIOLOGICAL ISSUES                                |

(This page intentionally blank)

## HAZMAT: PART ONE – HAZMAT RESPONSE

### A. <u>INITIAL NOTIFICATION OF RESPONSE AGENCIES</u>

All hazardous material releases in excess of the reportable quantity (RQ) must be reported by the responsible party to the National Response Center. Any release regardless of the amount is required to be reported to the State of Alaska, Department of Environmental Conservation (ADEC). Upon notification of a release, the NRC shall promptly notify the appropriate FOSC. The FOSC shall contact the ADEC. If the state receives notification first, the state shall notify the FOSC promptly. An emergency notification list is provided at the front of the Response Section to this plan. The FOSC and the SOSC (ADEC) will relay the notification to local communities, resource agencies, medical facilities, and others as necessary.

The community's local on-scene coordinator (LOSC) is in command and control until he or she determines that there is no longer an imminent threat to public safety. The LOSC can at any time request higher authority to assume command and control of an incident. Local emergency plans should be consulted for any specific directions or guidelines. The local fire department and/or the Local Emergency Planning Committee should have the most current records on local storage of hazardous materials that are in quantities that meet federal reporting requirements.

### B. <u>RECOGNITION</u>

The recognition of chemical or physical hazards is essential to dealing with a release safely. Chemical and physical hazards may be confronted by emergency response personnel when responding to a hazardous material incident. Chemical hazards include biological, radioactive, toxic, flammable, and reactive hazards. Physical hazards include slips, trips and falls, compressed gases, materials handling, thermal, electrical and noise hazards, and confined spaces.

Once a hazardous material has been identified it is important to determine the hazards and properties. Thousands of substances exhibit one or more characteristics of flammability, radioactivity, corrosiveness, toxicity, or other properties which classify them as hazardous. For any particular hazardous category, the degree of hazard varies depending on the substance.

The degree of hazard is a relative measure of how hazardous a substance is. For example, the Immediately Dangerous to Life and Health (IDLH) concentration of butyl acetate in air is 10,000 parts per million (ppm); the IDLH for tetrachloroethane is 150ppm. Tetrachloroethane is therefore far more toxic (has a higher degree of hazard) when inhaled in low concentration than butyl acetate. Vapors from butyl acetate, however, have a higher degree of explosive hazard than tetrachloroethane vapors which are not explosive.

Once the substance(s) has been identified, the hazardous properties and degree of hazard can be determined using reference materials. Chemical properties and the health hazards associated with the various materials transported in the Cook Inlet Subarea can be found in the USCG CHRIS Manual, the DOT Hazardous Materials Guide, and CAMEO (Computer-Aided Management of Emergency Operations) computer programs. Industry experts can be consulted as well. An excellent resource is the CHEMTREC 24-hour information number, 800-424-9300, supported by the Chemical Manufacturers Association. Additional references are provided below.

Although appropriate references give information about a substance's environmental behavior, additional field data will likely be required. Most frequently, air monitoring and sampling are needed to verify and identify the presence of hazardous materials, to calculate concentrations, and to confirm dispersion patterns.

#### Available references for HAZMAT and response organization information:

Many of the following items can also be found at ADEC offices and with local fire departments.

- The Unified Plan, which addresses the Unified Command Structure in Annex B, Appendix II, and also provides statewide Hazmat response guidance in Annex L, available at <a href="http://alaskarrt.org/Documents.aspx?f=173">http://alaskarrt.org/Documents.aspx?f=173</a> or <a href="http://dec.alaska.gov/spar/perp/plans/uc.htm">http://dec.alaska.gov/spar/perp/plans/uc.htm</a>
- Commandant Instruction #16465.30
- National Contingency Plan (40 CFR part 300)
- The Alaska Incident Management System (AIMS) Guide (November 2002 Revision 1) <u>http://dec.alaska.gov/spar/perp/docs/AIMS\_Guide-Complete(Nov02).pdf</u>
- Coastal Sensitivity Atlas
- USCG CHRIS Manual
- DOT Emergency Response Guidebook (current edition) <u>http://phmsa.dot.gov/hazmat</u>
- CHEMTREC, Chemical/Hazardous Substance information, 800-424-9300
- SAX Dangerous Properties of Hazardous Materials
- IMDC Codes
- Material Safety Data Sheets (MSDS) <u>http://www.hazard.com/msds/index.php</u>
- NFPA Fire Protection Guide On Hazardous Materials
- NIOSH/OSHA/USCG/EPA Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities. Also, the NIOSH/OSHA Pocket Guide Book <u>http://www.cdc.gov/niosh/npg/npg.html</u>
- HartCrowser, Inc., 1999. <u>1998 Statewide Hazardous Material Inventory</u>. Prepared for Alaska Department of Environmental Conservation, Division of Spill Prevention and Response.
- HartCrowser, Inc., 1999. <u>Alaska Level A and B Hazardous Material Response Resources</u>. Prepared for Alaska Department of Environmental Conservation, Division of Spill Prevention and Response.
- HartCrowser, 2000. <u>Evaluation of Chemical Threats to the Alaska Public</u>. Prepared for Alaska Department of Environmental Conservation, Division of Spill Prevention and Response.
- State of Alaska Tier Two Summary Report (available through ADEC). The tier two data can be reviewed using the CAMEO program. The basic report is available at <u>www.ak-prepared.com/serc/</u>
- <u>Alaska Statewide Oil and Hazardous Substance Inventory for Reporting Year 2008</u>, Ecology and Environment. Prepared for U.S. Environmental Protection Agency, Region 10.
  - <u>Statewide Hazardous Materials Commodity Flow Study</u>, Nuka Research and Planning Group, 2010. Prepared for the Alaska Department of Environmental Conservation and the Alaska Department of Military and Veterans Affairs. The basic report is available at http://dec.alaska.gov/spar/perp/hazmat/study.html
  - Oil and Chemical Response Reference Library at the Marine Safety Office in Valdez. This library consists of a Macintosh Computer System with CAMEO, plus all of the publications listed above. A complete library listing is maintained and updated as new/revised publications/programs are received.
  - Spill Tactics for Alaska Responders (STAR) Manual, April 2006 <u>http://dec.alaska.gov/spar/perp/star/docs.htm</u>

### C. <u>EVALUATION</u>

To properly evaluate a hazardous materials release, the incident must be characterized. Incident characterization is the process of positively identifying the substance(s) involved and evaluating the actual or potential public health and environmental impacts. Characterizing a hazardous substance incident is generally a two-phase process, an initial characterization followed by a more comprehensive characterization.

### 1. Initial Characterization

The initial characterization is based on information that is readily available or can be obtained fairly rapidly to determine what hazards exist and if immediate protective measures are necessary. During this initial phase, a number of key decisions must be made regarding:

- Imminent or potential threat to public health.
- Imminent or potential threat to the environment.
- Immediate need for protective actions to prevent or reduce the impact.
- Protection of the health and safety of response personnel.

If the incident is not immediately dangerous to human life or sensitive environments, more time is available to evaluate the hazards, to design plans for cleanup, and to establish safety requirements for response personnel. Information for characterizing the hazards can be obtained from on-scene intelligence (records, placards, eye witnesses, etc.), direct-reading of instruments, and sampling. Depending on the nature of the incident and the amount of time available, various combinations of this information gathering process are used. The following outline describes an approach to collecting data needed to evaluate the impact of a hazardous materials incident.

- An attempt should be made to gather as much information as possible, such as:
  - Description and exact location of the incident.
  - Date and time of occurrence.
  - Hazardous materials involved and their physical/chemical properties.
  - Present status of incident.
  - Potential pathways of dispersion.
  - Habitation population at risk.
  - Environmentally sensitive areas endangered species, delicate ecosystems.
  - Economically sensitive areas industrial, agricultural.
  - Accessibility by air, roads and waterways.
  - Current weather and forecast (next 24 to 48 hours).
  - Aerial photographs/video when possible.
  - A general layout and mapping of the site.
  - Available communications.
- Off-site reconnaissance (that which is not in the "hot-zone" and can be conducted in Level D) should be the primary inspection for initial site characterization when the hazards are largely unknown or there is no urgent need to go on-site. Off-site reconnaissance consists of visual observations and monitoring for atmospheric hazards near the site. Collecting of off-site samples may identify substance migration or indicate on-site conditions.

Off-site reconnaissance would include the following:

- The general layout and mapping of the site.
- Monitoring ambient air with direct-reading instruments for: Organic and inorganic vapors, gases, and particulates Oxygen deficiency Specific materials, if known Combustible gases and radiation
- Identifying placards, labels, or markings on containers or vehicles.
- Noting the configuration of containers, tank cars, and trailers.
- Noting the types and numbers of containers, tank cars, trailers, buildings, and impoundments.
- Identifying any leachate or runoff.
- Looking for biological indicators: dead vegetation, animals, insects or fish.
- Noting any unusual odors or conditions.
- Observing any vapors, clouds, or suspicious substances.
- Taking off-site samples of air, surface water, ground water (wells), drinking water, site runoff, and soil.
- Reviewing the Dangerous Cargo Manifest.
- Conducting interviews with workers, witnesses, observers, or inhabitants.
- An on-site survey (conducted in a minimum of Level B protection until hazards can be determined) may be necessary if a more thorough evaluation of hazards is required. On-site surveys require personnel to enter the restricted or hot zone of the site. Prior to any personnel conducting an on-site survey, an entry plan must be developed that addresses what will be initially accomplished and prescribes the procedures to protect the health and safety of response personnel. On-site inspection and information gathering would include the following:
  - Monitoring ambient air with direct-reading instruments for:

Organic and inorganic vapors, gases, and particulates Oxygen deficiency Specific materials, if known Combustible gases and radiation

- Observing containers, impoundments, or other storage systems and noting: Numbers, types, and quantities of materials. Condition of storage systems (state of repair, deterioration, etc.) Container configuration or shape of tank cars, trailers, etc. Labels, marking, identification tags, or other indicators of material Leaks or discharges from containers, tanks, ponds, vehicles, etc.
- Noting physical condition of material: Solids, liquids, gases
  - Color
  - Behavior (foaming, vaporizing, corroding, etc.)
- Determining potential pathways of dispersion air, surface water, ground water, land surface, biological routes
- Taking on-site samples of storage containers, air, surface water, ground water (wells), drinking water, site runoff, and soil.

### 2. Comprehensive Characterization

Comprehensive characterization is the second phase, a phase which may not be needed in all responses. It is a more methodical investigation to enhance, refine, and enlarge the information base obtained during the initial characterization. This phase provides more complete information for characterizing the hazards associated with an incident. As a continuously operating program, the second phase also reflects environmental changes resulting from any response activities.

Information obtained off-site and during the initial site entries can be sufficient to thoroughly identify and assess the human and environmental effects of an incident. But if it is not, an environmental surveillance program needs to be implemented. Most of the same type of information collected during the preliminary inspection is needed, but more detailed and extensive. Instead of one or two ground water samples being collected, for instance, a broad and intensive ground water survey may be needed over a long period of time.

Results from preliminary inspections provide a screening mechanism for a more complete environmental surveillance program to determine the full extent of contamination. Since mitigation and remedial measures may cause changes in the original conditions, a continual surveillance program can be used to identify and track fluctuations or ramifications.

### D. <u>EVACUATION</u>

Neither the Coast Guard nor the EPA has the authority to order an evacuation of facilities or communities in the event of a release; this authority lies with local or state entities. However, evacuation should be strongly recommended to local civil authorities (police, fire departments, etc.) whenever a hazardous release poses a threat to surrounding personnel. With a release of hazardous materials, the area should be isolated for at least 100 meters in all directions until the material is identified. Only trained and properly equipped personnel should be allowed access.

Quick evacuation tables are located in the back of the DOT Emergency Response Guidebook. Evacuation should always begin with people in downwind and in low-lying areas. Continual reassessment is necessary to account for changes in weather wind, rate of release, etc. CAMEO should be used to provide an air plume trajectory model for downwind toxic plume distances. Again, constant reassessment will be required.

Issues concerning disaster assistance should be referred to DMVA's Division of Homeland Security and Emergency Management.

### E. <u>DIRECTION AND SITE/ENTRY CONTROL</u>

The purpose of site control is to minimize potential contamination of emergency response personnel, protect the public from any hazards, and prevent unlawful entry onto the site which may result in an additional release of material, destruction of evidence, or prolong the cleanup effort. The degree of site control necessary depends on site characteristics, site size, and the surrounding community.

Several site control procedures should be implemented to reduce potential exposure and ensure an effective, rapid cleanup is conducted:

- Secure site, and establish entry control points.
- Compile a site map.
- Prepare the site for subsequent activities.
- Establish work zones.
- Use the buddy system when entering.

- Establish and strictly enforce decontamination procedures.
- Establish site security measures.
- Set up communications networks.
- Enforce safe work practices.

For complete guidance on Direction and Site Entry/Control, refer to the NIOSH/OSHA/USCG/EPA Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (Publication No. 85-115).

### F. <u>COMMAND AND CONTROL</u>

The local government on-scene coordinator (LOSC) is in command and control until he or she determines that there is no longer an imminent threat to public safety. The LOSC can at any time request higher authority to assume command and control of an incident. All applicable local emergency plans should be consulted. After the LOSC has determined that public safety is not at risk, then the Unified Command response organization will assume command and control of the incident.

Government response organization in the State of Alaska is based on the Unified Command structure of the Incident Command System (ICS), which is outlined in the Alaska Incident Management System (AIMS) Guide. The Unified Command brings together the FOSC, the SOSC, and the Responsible Party's Incident Commander (along with the LOSC, if participation is warranted and available) into one governing unit. The ICS and the Unified Command structure are discussed in further detail in the **Unified Plan, Annex B,** and in the **AIMS Guide**.

### G. <u>COMMUNICATIONS</u>

A communications plan for all sections of the ICS will be established by the Incident Commander. At this time, a pre-established generic communications plan accounting for the various police, fire, federal, state, and local frequencies has not been established. State and federal communications resources are listed in **the Unified Plan, Annex E, Appendix V** and in the *Resources Section* of this plan.

### H. WARNING SYSTEMS & EMERGENCY PUBLIC NOTIFICATION

For FOSC/SOSC access to emergency broadcast systems refer to the **Unified Plan, Annex E, Appendix III, Tab V.** For a listing of radio, newspaper, and television contacts refer to the Information Directory in the *Resources Section* of this plan.

Public Information/Community Relations guidelines and information are provided in the **Unified Plan**, **Annex I.** 

### I. <u>HEALTH AND MEDICAL SERVICES</u>

For hospital and clinic information refer to the *Response Section* and to the Community Profiles in the *Resources Section* of this plan.

### HAZMAT: PART TWO - RESPONSIBLE PARTY HAZMAT ACTION

### A. <u>DISCOVERY AND NOTIFICATION</u>

Any person in charge of a vessel or a facility shall report releases of hazardous materials in excess of the reportable quantity (RQ) as defined in Table 1 of 49 CFR 172.101 to the National Response Center (NRC) 24-hour telephone number, 800-424-8802, in accordance with the National Contingency Plan. Any release regardless of the amount is required to be reported to the State of Alaska. Notification of the State can be done by contacting the Department of Environmental Conservation either at the local office or through the 24-hour telephone number, 800-478-9300.

If direct reporting to the NRC is not immediately practicable, reports may be made to the USCG OSC for the geographic area where the release occurs. The Environmental Protection Agency's predesignated FOSC may also be contacted through the regional 24-hour response telephone number (206-553-1263). All such reports shall be promptly relayed to the NRC. If it is not possible to notify the NRC or the predesignated FOSC immediately, reports may be made immediately to the nearest USCG unit.

**Note:** Additional emergency contact information for federal and State reporting is presented on page one in the *Response Section* of this plan.

# In any event, the person in charge of the vessel or facility involved in a hazardous material release shall notify the NRC and the State of Alaska as soon as possible.

As much information as possible shall be reported. This will include, but is not limited to, the following:

- Location of the release
- Type(s) of material(s) released
- An estimate of the quantity of material released
- Possible source of the release
- Date and time of the release.
- Population and/or environment at risk.

### B. <u>REMOVAL ACTION</u>

The responsible party shall, to the fullest extent possible, perform promptly the necessary removal action to the satisfaction of the predesignated FOSC and SOSC.

Regardless of whether or not a cleanup will be conducted, the responsible party shall cooperate fully with all federal, state, and local agencies to ensure that the incident is handled in a safe, proper manner.

## HAZMAT: PART THREE – STATE HAZMAT ACTION

### A. <u>AUTHORITY</u>

The Alaska Department of Environmental Conservation (ADEC) is mandated by statute to respond promptly to a discharge of oil or a hazardous substance (AS 46.08.130). Additionally, the ADEC may contract with a person or municipality in order to meet response requirements or to establish and maintain a containment and cleanup capability (i.e. personnel, equipment, supplies) (AS 46.09.040).

### B. <u>RESPONSE POLICY</u>

The ADEC is currently operating in accordance with an August 1992 policy decision which precludes ADEC personnel from responding to situations which require Level A/B protection. A reduction in FY 93 funding resulting in corresponding decreases in the level of equipment, training, and overall readiness. ADEC personnel are prohibited from responding with or using personal protective equipment beyond the Level C protection category (as defined in EPA standards).

For additional information regarding the State's general response policy, refer to the **Unified Plan**, **Annex A**, **Appendix VI**, **Tab C**.

### C. <u>STATE RESPONSE CAPABILITIES</u>

The ADEC has entered into local response agreements with the Fairbanks North Star Borough (FNSB), the Municipality of Anchorage (MOA), the City of Valdez, the City of Kodiak, the City and Borough of Juneau, and the City of Ketchikan. These teams (along with the 103<sup>rd</sup> Civil Support Team, the EPA team, and other teams in the State) comprise the Statewide Hazmat Response Team. In the event of a hazmat release requiring immediate response, the ADEC predesignated SOSC may request support from any of the Hazmat Response Teams. These teams maintain a Level A entry capability and can respond beyond their jurisdictional boundaries at the request of the SOSC. The teams are to be used strictly for emergency response operations. Once the immediate hazard is dealt with, the teams will be released to return to their home station. Post-response recovery operations will be handled by the responsible party (if known) or through ADEC response term contractors or Federal contractors.

ADEC currently maintains several term contracts for hazmat assessment, contaminated sites and hazmat/unknowns response, and oil spill response. These term contractors are listed in the **Unified Plan**, **Annex E**. Several of these term contractors possess limited hazmat response capability.

Another state asset is the 103<sup>rd</sup> Civil Support Team (CST), based at Fort Richardson, Alaska. The 103<sup>rd</sup> CST can be requested through DMVA's Division of Homeland Security and Emergency Management, State Emergency Operations Center (SEOC – 428-7100 or 1-888-462-7100). The primary focus of the team is weapons of mass destruction (WMD), including chemical and biological warfare agents and toxic industrial chemicals. The 103<sup>rd</sup> CST maintains Level A entry capability and a wide variety of detection instruments and support equipment. The 103<sup>rd</sup> CST can be utilized in an advisory role for hazard modeling or medical assessment and in an assist mode to perform entries alone or in conjunction with other first responders.

# NOTE: The communities of Ketchikan and Juneau have created their own Hazmat Response Teams and are available for responses outside their jurisdiction.

### D. <u>RESPONSIBILITIES</u>

State agency roles and responsibilities are clearly defined in the **Unified Plan, Annex A**. During a hazmat incident, the State On-Scene Coordinator's anticipated and prioritized response objectives are as indicated below:

- <u>Safety</u>: Ensure the safety of persons involved, responding or exposed form the immediate effects of the incident.
- <u>Public Health</u>: Ensure protection of public health and welfare from the direct or indirect effects of contamination of drinking water, air, and food.
- <u>Environment</u>: Ensure protection of the environment, natural and cultural resources, and biota from the direct or indirect effects of contamination.
- <u>Cleanup</u>: Ensure adequate containment, control, cleanup, and disposal by the responsible party or take over when cleanup is inadequate.
- <u>Restoration</u>: Ensure assessment of contamination and damage and restoration of property, natural resources, and the environment.
- <u>Cost Recovery</u>: Ensure recovery of costs and penalties to the Oil and Hazardous Substance Release Response Fund for Response, containment, removal, remedial actions, or damage.

# HAZMAT: PART FOUR – FEDERAL HAZMAT ACTION

### A. <u>AUTHORITY</u>

Section 311 of the Federal Water Pollution Control Act (FWPCA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 are the principal authorities for federal response to discharges of oil and releases of hazardous substances. The procedures and standards for conducting responses are contained in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 CFR 300). Under the NCP and the Alaska Federal/State Unified Plan, each Coast Guard Captain of the Port for coastal zones, or EPA representatives for inland zones, coordinates federal activities on-scene as either the predesignated federal on-scene coordinator (FOSC) or as the first federal official in the absence of the predesignated FOSC. The FOSC objective is to ensure rapid, efficient mitigation of actual or threatened pollution releases or discharges.

### B. JURISDICTION

The NCP identifies the Coast Guard COTP for Southeast Alaska (Commanding Officer, Sector Juneau) as the predesignated FOSC for the coastal zone. The FOSC will respond to hazardous substance releases, or threats of release, occurring in the coastal zone and not involving DOD vessels or DOD facilities, which originate from

- Vessels;
- Facilities, other than hazardous waste management facilities, when the release requires immediate action to prevent risk of harm to human life, health, or the environment;
- Hazardous waste management facilities, or illegal disposal areas, when the FOSC determines emergency containment or other immediate removal actions are necessary prior to the arrival of the EPA OSC.

For all shoreside incidents in the coastal zone, once the immediate threat to human life, health, or the environment has been abated and the character of the response changes to a long-term cleanup or site remediation, the FOSC responsibilities will be transferred from the USCG COTP to a designated EPA official.

# NOTE: The Local On-Scene Coordinator (LOSC) would be the person in charge as long as there is an immediate threat to public health or safety. The LOSC may defer to the FOSC or SOSC (per the Unified Plan, Annex B).

### C. <u>RESPONSE POLICY</u>

The USCG will follow the policy guidance contained in COMDTINST M16465.30, "Policy Guidance for Response to Hazardous Chemical Releases", and the Marine Safety Manual, Volume VI, Chapter 7 when responding to a hazardous chemical release.

The USCG and other federal agencies in Alaska will maintain a "conservative" Level D response capability level. "Conservative" response consists of recommending evacuating the affected area and maintaining a safe perimeter while attempting to positively identify the pollutant and outlining a clear course of action. Federal personnel, with the exception of specialized teams (e.g., the National Strike Force and the Pacific Strike Team), will not enter a hazardous environment. This response posture is appropriate due to insufficient numbers of trained or equipped personnel to allow a safe and proper entry into a hazardous environment and the low risk of a chemical release in the area. Refer to the **Unified** 

Plan for a description of the National Strike Force and other special forces.

Level D protection is primarily work uniform/coveralls, safety boots, safety goggles and a hard hat. This provides minimal protection. Level D must not be worn for "entry" into any hazardous materials situation. It does NOT provide protection from chemicals. Level D protection strictly applies to non-hazardous environments (i.e., Command Post, Cold Zone, etc.).

In situations requiring an entry into a hazardous environment, federal agencies will rely on the capabilities of the USCG Pacific Strike Team, EPA Emergency Response Teams (ERTs), state and local hazmat response teams, if available, and industry or commercial resources.

In implementing this conservative response posture, the COTP for Southeast Alaska will carry out all the FOSC functions not requiring entry of unit personnel into a hazardous environment. These functions include

- Conducting preliminary assessment of the incident;
- Carrying out COTP measures such as restricting access to affected areas, controlling marine traffic (safety zones), notifying affected agencies, coordinating with state and local agencies, and assisting as resources permit;
- Conducting local contingency planning;
- Indentifying responsible parties, and informing them of their liability for removal costs;
- Carrying out "first aid" mitigation if the situation warrants and capability exists;
- Monitoring cleanup activities.

The CAMEO (Computer-Aided Management of Emergency Operations) computer programs will be an important part of any chemical release incident. The CAMEO chemical database with Codebreaker and Response Information Data Sheets modules provide a rapid means of identifying chemicals and their associated hazards. The ALOHA air modeling program, part of CAMEO, provides a rapid means of developing a downwind hazard evaluation. MSO Anchorage Port Operations Department personnel and/or the NOAA SSC will be responsible for operating the CAMEO programs during a hazardous chemical release for the FOSC. ADEC and EPA also maintain CAMEO to assist in their response efforts. Programs for the ALOHA model need to be frequently updated to account for changing wind and weather conditions, source strength, and other variable conditions.

## HAZMAT: PART FIVE - SUBAREA HAZMAT RISK ASSESSMENT

### A. <u>GENERAL</u>

The Southeast Subarea includes the City and Borough of Juneau, Haines Borough, Ketchikan Gateway Borough, City and Borough of Sitka, City and Borough of Yakutat, the cities of Petersburg and Wrangell, and many other smaller towns and villages. This is a region characterized by isolated coastal communities. Road access is only to Canada and only through the towns of Haines, Skagway and Hyder.

Several facilities within the subarea store and use chemicals categorized as extremely hazardous substances. Large quantities of flammable petroleum products, such as propane and gasoline, also are stored at many facilities within the subarea. Some facilities store and utilize compressed gasses. This part provides general information on the location of extremely hazardous substances within the Southeast Subarea.

### **1.** Chemical Inventory

In the compilation of 2011 Tier Two submissions, 44 facilities reported the storage/use of Extremely Hazardous Substances (EHS) above the established reportable quantity. Sulfuric acid was reportedly used at 24 facilities and anhydrous ammonia at 17 facilities.

Based on tier two reports contained in the CAMEO database, the most prevalent extremely hazardous substances in the region are:

- ammonia and anhydrous ammonia
- sulfuric acid

Extremely hazardous substances are generally transported into the subarea from ports via water and delivered either direct to facilities or transported to facilities by truck over local road systems. Some substances may be shipped by air or come into the area aboard fishing-industry vessels.

### 2. Chemical Risks

This subsection identifies the hazards associated with the most common extremely hazardous substances present within the subarea in amounts greater than the federally-mandated threshold planning quantities. The properties of each substance and how they affect humans are discussed below. Of the extremely hazardous substances known to be present, ammonia poses the greatest threat.

*Ammonia/Anhydrous ammonia* is a colorless gas with a characteristic odor. The term "anhydrous" is used to distinguish the pure form of the compound from solutions of ammonia in water. Like chlorine, ammonia is neither explosive nor flammable, but will support combustion. Anhydrous ammonia readily dissolves in water to form an aqua ammonia solution. Anhydrous ammonia is considerably lighter than air and will rise in absolutely dry air. As a practical matter, however, anhydrous ammonia immediately reacts with any humidity in the air and will often behave as a heavier gas. The chemical reacts with and corrodes copper, zinc and many alloys.

Anhydrous ammonia affects the body in much the same way as chlorine gas. Like chlorine, anhydrous ammonia gas is primarily a respiratory toxicant. In sufficient concentrations, the gas affects the mucous membranes, the respiratory system and the skin. In high concentrations it can cause convulsive coughing, difficult and painful breathing, and death. Anhydrous ammonia will cause burns if it comes in contact with skin or eyes.

*Sulfuric acid* is a dense, colorless, oily liquid. It is highly reactive with a large number of other substances and is readily soluble in water with release of heat. Fumes are released from the liquid through evaporation, and heat as a result of fire or other chemical reaction can significantly increase emissions. Both the liquid and its solutions will cause burns if allowed to come in contact with skin or

eyes. Fumes are highly toxic, and reaction of the acid with a variety of substances can produce other toxic gases.

### 3. Response Capability

There are two Level A Hazmat response teams (Juneau and Ketchikan) in the Southeast Subarea. In the event of a hazardous substance release, the ADEC should be contacted and they can take action to activate these teams which are part of the Statewide Hazmat Response Team. This formally agreed arrangement allows ADEC to request a Level A Hazmat team to respond to an event anywhere in the state, as long as the requested Hazmat Team can spare the services of the equipment and trained personnel.

In addition, several of the larger industrial facilities within the subarea are required to have Risk Management Plans (RMPs) for chemicals exceeding threshold quantities under 40 CFR Part 68 regulations. The RMPs contain emergency response plans for mitigating facility releases. Large bulk fuel production and storage facilities within the subarea also are required to maintain Facility Response Plans and specific levels of response equipment to mitigate oil releases in accordance 40 CFR Part 112.20 regulations.

Several communities in the Southeast Subarea have developed and maintain local emergency management plans, or all-hazard plans, to respond to a variety of emergencies including hazardous substance releases.

### B. <u>FACILITIES</u>

Table C-1 identifies communities with industrial facilities that store and utilize extremely hazardous substances (EHS) in significant quantities. Emergency responders should refer to the CAMEO database program to determine specific chemical hazards at a particular facility, based on Tier Two reporting requirements.

| Table C-1: Number of Facilities with Extremely Hazardous Substances (EHS) |                        |                   |  |
|---------------------------------------------------------------------------|------------------------|-------------------|--|
| EHS                                                                       | Max Daily Amount (lbs) | No. of Facilities |  |
| Sulfuric Acid                                                             | 44,997                 | 24                |  |
| Ammonia, Anhydrous                                                        | 147,579                | 17                |  |
|                                                                           |                        |                   |  |
| Total                                                                     | 192,576                | 41                |  |

Notes:

1. The Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) categorizes certain dangerous chemicals as Extremely Hazardous Substances (EHS).

- 2. The above table summarizes the most common extremely hazardous substances (EHS) present above the associated threshold quantities (TQ) as reported by facilities in the Southeast Subarea on Tier Two forms. Facilities in other communities within the subarea may have these and other extremely hazardous substances at quantities below the EHS TQ.
- 3. Consult the CAMEO database for information on all chemicals reported by facilities within the Southeast Subarea.

#### C. TRANSPORTATION

The following pages contain information from the Statewide Hazmat Commodity Flow Study conducted in 2010. The information provided is specific to the Southeast Subarea.

Statewide Hazardous Material Commodity Flow Study

### 5. ANALYSIS BY SUBAREA

#### 5.1 Southeast Alaska

Transportation of hazardous materials within the Southeast Alaska Subarea (SEAK) was primarily via marine transportation mode through inside passage route(s). Some shipments reportedly then continued on to other areas of Alaska via the marine and highway transportation modes. There were no shipments reported via air, pipeline, and/or rail in this subarea. For pipelines and rail, this is readily apparent since there are no pipelines in Southeast Alaska, and the railroad that runs from Skagway into Canada transports primarily tourists. However, the lack of air shipments is likely indicative of the data gap that exists for air cargo shipments and not an accurate reflection of reality. The breakdown of hazardous materials volumes from year to year by Hazard Class is depicted in Figure 5-1 below.

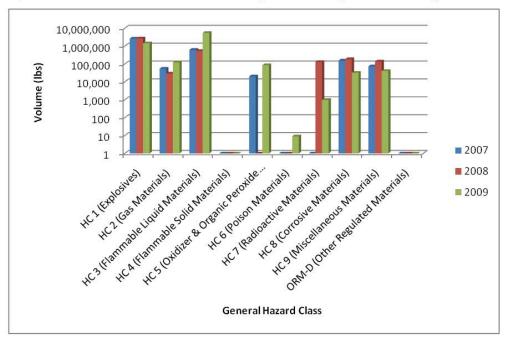



Figure 5-1. Volumes of Hazardous Materials Shipped into SEAK presented on a log scale

Figures 5-2, 5-3 and 5-4 depict the breakdown of hazardous materials shipments within the Southeast Alaska Subarea by a percentage of total volume shipped. It is interesting that the percentages by hazard class remained very consistent between 2007 and 2008 with HC 1 (Explosives) commodities dominating the volume. In 2009 that trend shifted due to a significant increase in HC 3 (Flammable Liquid Materials) commodities with a corresponding 50% drop in HC 1 shipments.

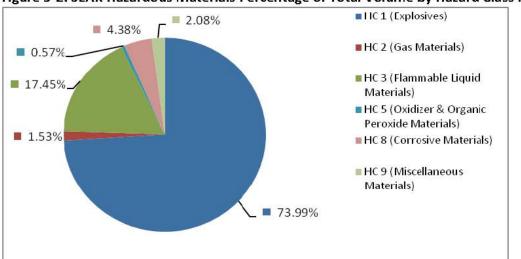
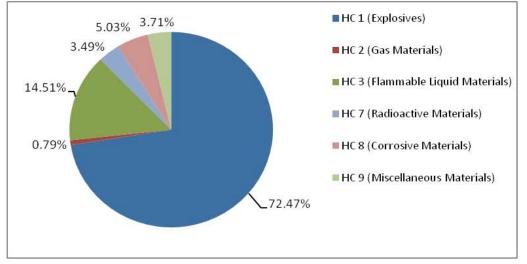




Figure 5-2. SEAK Hazardous Materials Percentage of Total Volume by Hazard Class for 2007







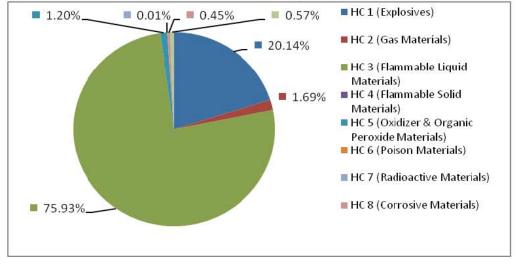



Table 5-1 below lists the actual volumes of commodities transported within the Southeast Alaska Subarea by calendar year.

| Hazard Class                                 | 2007                  | 2008                  | 2009                  |
|----------------------------------------------|-----------------------|-----------------------|-----------------------|
|                                              | (Total Volume in Ibs) | (Total Volume in lbs) | (Total Volume in Ibs) |
| HC 1 (Explosives)                            | 2,644,646             | 2,690,563             | 1,444,784             |
| HC 2 (Gas Materials)                         | 54,713                | 29,263                | 121,517               |
| HC 3 (Flammable Liquid Materials)            | 623,868               | 538,750               | 5,446,316             |
| HC 4 (Flammable Solid Materials)             | :<br>1944             | -                     |                       |
| HC 5 (Oxidizer & Organic Peroxide Materials) | 20,207                |                       | 86,388                |
| HC 6 (Poison Materials)                      | -                     | -                     | 9                     |
| HC 7 (Radioactive Materials)                 |                       | 129,487               | 975                   |
| HC 8 (Corrosive Materials)                   | 156,593               | 186,928               | 32,186                |
| HC 9 (Miscellaneous Materials)               | 74,389                | 137,762               | 40,911                |
| ORM-D (Other Regulated Materials)            | -                     | -                     | _                     |

Table 5-1. Volumes of Hazard Class Transported within SEAK Subarea by Calendar Year

A more detailed evaluation of each hazard class category is provided below. A threshold volume for this analysis was established at 10,000 lbs and this provided an adequate level of detail for the types of commodities shipped.

<u>HC 1 Explosives</u>: The primary explosives that were transported through the Southeast Alaska Subarea were within HCs 1.1, 1.4 and 1.5 with the highest volume in HC 1.5 from year to year. The total volume of HC 1 commodities shipped did not display a great deal of change between 2007 and 2008, but decreased by nearly 50% in 2009. Table 5-2 lists the primary HC 1 commodities shipped within the SEAK Subarea.

| Hazard<br>Class | Hazardous Material Description (Greater than 10,000 lbs Shipped) | UN ID<br>Number |
|-----------------|------------------------------------------------------------------|-----------------|
| 1.1             | Explosive, Blasting, Type E                                      | 0241            |
|                 | Cord, Detonating                                                 | 0065            |
|                 | Boosters                                                         | 0042            |
|                 | Torpedoes                                                        | 0330            |
| 1.4             | Articles, Explosive, N.O.S.                                      | 0349            |
|                 | Detonators, Electric                                             | 0255            |
| 4               | Detonator Assemblies, Non-Electric                               | 0361            |
| 1.5             | Explosive, Blasting, Type E or Agent Blasting, Type E            | 0332            |
|                 | Explosive, Blasting, Type B or Agent Blasting, Type B            | 0331            |
|                 | Ammonium Nitrate-Fuel Oil Mixture                                | 0331            |

Table 5-2. Primary Hazard Class 1 Commodities Shipped within the SEAK Subarea

<u>HC 2 Gas Materials</u>: HCs 2.1 and 2.2 were the gas materials transported through the Southeast Alaska Subarea between 2007 and 2009. Table 5-3 lists the primary HC 2 commodities shipped within the SEAK Subarea.

| Hazard<br>Class | Hazardous Material Description (Greater than 10,000 lbs Shipped) | UN ID<br>Number |
|-----------------|------------------------------------------------------------------|-----------------|
| 2.1             | None                                                             |                 |
| 2.2             | Aerosols                                                         | 1950            |
|                 | Nitrogen, Compressed                                             | 1066            |
|                 | Fire Extinguishers                                               | 1044            |
|                 | Liquefied Gas, N.O.S.                                            | 3163            |
|                 | Carbon Dioxide                                                   | 1013            |
|                 | Dichlorodifluoromethane or Refrigerant Gas R12                   | 1028            |
|                 | Compressed Gas, N.O.S.                                           | 1956            |

 Table 5-3. Primary Hazard Class 2 Commodities Shipped within the SEAK Subarea

Volumes shipped through the Subarea were low when compared with other Subareas. HC 2.2 saw an approximate 80% increase in volume between 2008 and 2009.

<u>HC 3 Flammable Liquid Materials</u>: HC 3.0 transported through the Southeast Alaska Subarea saw a 10-fold increase between 2008 and 2009. Table 5-4 lists the primary HC 3 commodities shipped within the SEAK Subarea.

Table 5-4. Primary Hazard Class 3 Commodities Shipped within the SEAK Subarea

| Hazard<br>Class | Hazardous Material Description (Greater than 10,000 lbs Shipped) | UN ID<br>Number |
|-----------------|------------------------------------------------------------------|-----------------|
| 3.0             | Paint                                                            | 1263            |
|                 | Flammable Liquids, N.O.S.                                        | 1993            |
|                 | Petroleum Distillates, N.O.S. or Petroleum Products, N.O.S.      | 1268            |
|                 | Adhesives                                                        | 1133            |
|                 | Acetone                                                          | 1090            |
|                 | Alcohols, N.O.S.                                                 | 1987            |
|                 | Flammable Liquids, Corrosive, N.O.S.                             | 2924            |
|                 | Xylenes                                                          | 1307            |
|                 | Butanols                                                         | 1120            |
|                 | Fuel, Aviation, Turbine Engine                                   | 1863            |
|                 | Ethyl Methyl Ketone                                              | 1193            |
|                 | Diesel Fuel, Fuel Oil, Gas Oil or Heating Oil Light              | 1202            |
|                 | Combustible Liquid, N.O.S.                                       | 1993            |
|                 | Methanol                                                         | 1230            |

The sharp increase in HC 3 commodities between 2008 and 2009 appears to be the result of an addition of significant shipments of "DIESEL FUEL, FUEL OIL, GAS OIL or HEATING OIL LIGHT" equaling nearly 4.7 million pounds.

<u>HC 4 Flammable Solid Materials</u>: There were no Flammable Solid Materials transported within this Subarea during this time period according to the data evaluated.

<u>HC 5 Oxidizer and Organic Peroxide Materials</u>: HC 5.1 and 5.2 were shipped in 2007 and HC 5.1 was shipped in 2009. While there was an approximate 75% increase in HC 5.1 between 2007 and 2009, there were no discernible trends noted. There were no HC 5.1 or 5.2 materials shipped in 2008 in this Subarea. Table 5-5 lists the primary HC 5 commodities shipped within the SEAK Subarea.

Table 5-5. Primary Hazard Class 5 Commodities Shipped within the SEAK Subarea

| Hazard<br>Class | Hazardous Material Description (Greater than 10,000 lbs Shipped) | UN ID<br>Number |
|-----------------|------------------------------------------------------------------|-----------------|
| 5.1             | Oxidizing Liquid, N.O.S.                                         | 3139            |
|                 | Hydrogen Peroxide Aqueous Solutions                              | 2014            |

There were no HC 5.2 commodities shipped that exceeded 10,000 lbs in volume.

<u>HC 6 Poisons</u>: A very small amount of HC 6.1 (Mercuric Chloride) was reported being shipped in 2009 within the Southeast Alaska Subarea. The small volume was retained for reporting purposes because it is classified as an EHS. There were no HC 6.1 or 6.2 commodities shipped that exceeded 10,000 lbs in volume.

<u>HC 7 Radioactive Materials</u>: HC 7.0 was transported in 2008 and 2009 within the Southeast Alaska Subarea. A sharp decrease was noted in volume between 2008 and 2009. Table 5-6 lists the primary HC 7 commodities shipped within the SEAK Subarea.

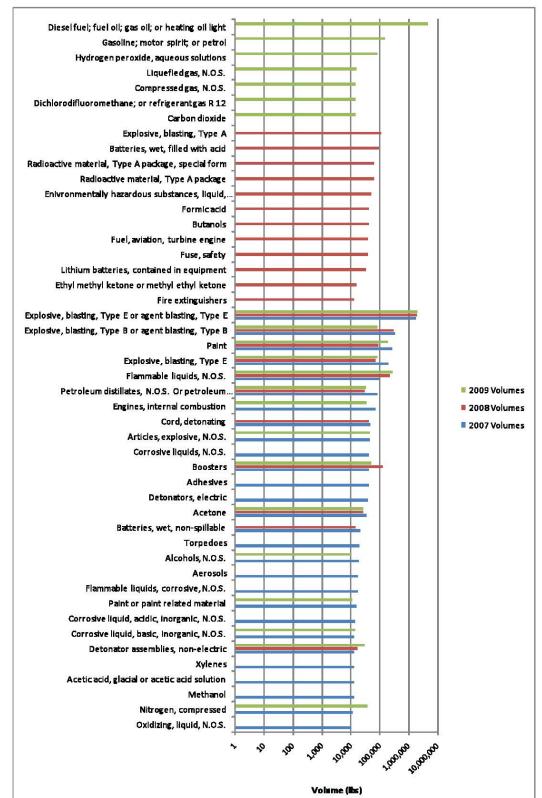
Table 5-6. Primary Hazard Class 7 Commodities Shipped within the SEAK Subarea

| Hazard<br>Class | Hazardous Material Description (Greater than 10,000 lbs Shipped) | UN ID<br>Number |
|-----------------|------------------------------------------------------------------|-----------------|
| 7.0             | Radioactive Material, Type A Packaging, Special Form             | 3332            |
|                 | Radioactive Material, Type A Package                             | 2915            |

In 2009, there were no HC 7.0 commodities shipped that exceeded 10,000 lbs.

<u>HC 8 Corrosive Materials</u>: Shipments of HC 8.0 in the Southeast Subarea varied from year to year with the volume increasing between 2007 and 2008 and then sharply decreasing between 2008 and 2009. Table 5-7 lists the primary HC 8 commodities shipped within the SEAK Subarea.

| Hazard<br>Class | Hazardous Material Description (Greater than 10,000 lbs Shipped) | UN ID<br>Number |
|-----------------|------------------------------------------------------------------|-----------------|
| 8.0             | Corrosive Liquids, N.O.S.                                        | 1760            |
|                 | Batteries, Wet, Non-Spillable                                    | 2800            |
|                 | Batteries, Wet, Filled with Acid                                 | 2794            |
|                 | Formic Acid                                                      | 1779            |
|                 | Paint or Paint Regulated Material                                | 3066            |
|                 | Corrosive Liquid, Acidic, Inorganic, N.O.S.                      | 3264            |
|                 | Corrosive Liquid, Basic, Inorganic, N.O.S.                       | 3266            |
|                 | Acetic Acid, Glacial or Acetic Acid Solution                     | 2879            |


Table 5-7. Primary Hazard Class 8 Commodities Shipped within the SEAK Subarea

<u>HC 9 Miscellaneous Materials</u>: The volume of HC 9.0 commodities shipped within the Southeast Alaska Subarea saw a dramatic increase between 2007 and 2008 and then dropped below the 2007 levels in 2009. The sharp increase in 2008 could be attributable to the increase in the Alaska Permanent Fund Dividend checks during this timeframe. Table 5-8 lists the primary HC 9 commodities shipped within the SEAK Subarea.

Table 5-8. Primary Hazard Class 9 Commodities Shipped within the SEAK Subarea

| Hazard<br>Class | Hazardous Material Description (Greater than 10,000 lbs Shipped) | UN ID<br>Number |
|-----------------|------------------------------------------------------------------|-----------------|
| 9.0             | Engines, Internal Combustion                                     | 3166            |
|                 | Lithium Batteries, Contained in Equipment                        | 3091            |
|                 | Vehicle, Flammable Gas Powered                                   | 3166            |

Figures 5-5 depicts the volumes of hazardous materials shipped each year within SEAK by Hazardous Material Name for volumes exceeding 10,000 pounds.



# Figure 5-5. Hazardous Material Commodities by Hazardous Material Name (Greater than for SEAK, for 2007 through 2009, presented on a log scale

#### D. <u>REFERENCES</u>

Alaska Federal/State Preparedness Plan for Response to Oil & Hazardous Substance Discharges/Releases (Unified Plan) Change 3 January 2010, Alaska Regional Response Team, 2010 (as amended).

<u>1998 Statewide Hazardous Material Inventory</u>, HartCrowser, 1999. Prepared for Alaska Department of Environmental Conservation, Division of Spill Prevention and Response.

<u>Alaska Level A and B Hazardous Material Response Resources</u>, HartCrowser, 1999. Prepared for Alaska Department of Environmental Conservation, Division of Spill Prevention and Response.

<u>Evaluation of Chemical Threats to the Alaska Public, HartCrowser</u>, 2000. Prepared for Alaska Department of Environmental Conservation, Division of Spill Prevention and Response.

<u>Alaska Statewide Oil and Hazardous Substance Inventory for Reporting Year 2008</u>, Ecology and Environment. Prepared for U.S. Environmental Protection Agency, Region 10.

<u>Statewide Hazardous Materials Commodity Flow Study</u>, Nuka Research and Planning Group, 2010. Prepared for the Alaska Department of Environmental Conservation and the Alaska Department of Military and Veterans Affairs. <u>http://dec.alaska.gov/spar/perp/hazmat/study.html</u>

### HAZMAT: PART SIX - RADIOLOGICAL AND BIOLOGICAL ISSUES

Procedures for radiological response are included in the Unified Plan, Annex J.

Presently, a biological response is not addressed, and procedures are not under development for biological issues.