

Land Acknowledgement

My home and office are located on the traditional land of the Lower Tanana Dene people in an area that is now known as Fairbanks, Alaska.

EAnton Larsen Bay

Geographic Response Strategy (GRS)

GRSs are pre-approved response equipment deployment strategies for specific geographic locations that first responders use to immediately prevent and/or mitigate environmental damage following a spill.

- Developed in early 2000s as PDFs
- Limited validation by stakeholders
- Converted to GIS by SofAK and USCG 2021-2022

PR

Geographic Response Strategy (GRS) Validation and Visualization

- Objectives
- Data Collection
- Data Processing
- Archive and Visualization
- What's next

Objectives

- 1. Validate GRS in Alaska using UAS observational flights and GRS Field App
- 2. Visualize results in online interfaces SofAK and NOAA

- 2D map GRS sites with UAS
 - electrooptical sensor (i.e. RGB digital camera)
 - Commercial-off-the-shelf-technology (COTS)
- Leverage GRS Field App
 - Validate GRS tactical recommendations in Ipad app
- Create GIS-consumable data for incorporation into SofAK and NOAA archive & visualization interfaces
 - Raw data formats
 - Orthomosaics
- Integrate approved validations into GRS online interfaces (SofAK and NOAA)

Data Collection

Collaborative effort to validate GRS sites across Alaska

- University of Alaska Fairbanks (UAF), International Arctic Research Center (IARC)
- Native Village of Unalakleet (NVU)
- United States Coast Guard (USCG), Sector ANC
- National Oceanic and Atmospheric
 Administration (NOAA), Office of Response and Restoration (ORR)
- Alaska Department of Environmental Conservation (ADEC), Spill Prevention and Response (SPAR)

GRS Evaluation Team at Kalsin Bay, Kodiak, Alaska, 2021. Image credit: ADEC

Data Collection

- Validated all road-accessible GRS sites on Kodiak Island (2021)
 - Seven GRS sites flown with UAS (UAF IARC)
 - Digital updates via GRS Field App
- Validated key road-accessible GRS sites on Seward Peninsula (2022)
 - Five GRS sites flown with UAS (UAF IARC and NVU)
 - Digital updates via GRS Field App

GRS sites validated on Seward Peninsula August, 2022.

NOTE: All GRS sites were validated through a combination of UAS data, boots-on-ground surveys, marine vessel-based surveys and information updated in the GRS Field App.

Data Collection NVU and IARC UAS Team

- Native Village of Unalakleet (NVU) UAS inspection team developed under DHS funding from ADAC (2020-2022)
- Trained to fly UAS by UAF's International Arctic Research Center (IARC) for
 - Bulk fuel facility/infrastructure inspection
 - Flood delineation
 - Oil spill detection and monitoring
 - Search and Rescue support
- Trained to process 2D and 3D data as orthomosaics and models in DroneDeploy
- Contracted by USCG via UAF to fly GRS 2022 validations

NVU and IARC UAS team November 2021. Photo courtesy of J. Garron

Data Collection

Skydio

Designed, assembled and supported in the USA

2D scan for linear and area mapping

3D scan for infrastructure inspections

360° obstacle avoidance via AI powered autonomy

- S2 Training/operational aircraft with electro-optical (RGB) sensor
- X2E Operational aircraft with electro-optical and longwave infrared (thermal) sensors

The Skydio Fleet - X2E with electro-optical and infrared sensors, X2E with electro-optical sensor, S2 with electro-optical sensor. Photo c/o R. Marlowe, AKDOT.

Data Collection

GRS Field App

- -Visualization of GRS for area
- -Supports editing in the field
- -Upload of approved and validated information into GIS (SofAK and ERMA)

Screenshots of GRS Collector App on an Ipad. Images c/ of Catherine Berg, NOAA OR&R

Data Processing

- Orthomosaic Creation (UAF IARC & NVU)
 - Pix4DMapper and DroneDeploy
 - GeoTIFF and Shape files

- GRS Field App Updates (NOAA ORR)
 - GRS sites with tactical recommendations loaded on field Ipad
 - Boots-on-ground tactical validation on Ipad
 - Upload approved validation to GRS GIS layer

Archive and Visualization

Version October 2022

UAS Data Collection

- -Skydio X2E
- -RGB and thermal images and video

Orthomosaic Creation

-DroneDeploy & Pix4DMapper

GRS Site Validation Support

- -Integrate approved GRS Collector App validation results
- -Integrate approved validated hard copy GRS updates (backlog)

Archive

GRS End Users

Operators

Planners

UAS GRS Validation Support: Archive and Visualization

NOAA Arctic ERMA CURRENT

NOAA Arctic ERMA BETA

Typhoon Merbok

Norton Sound, Alaska September 17, 2022

- 35 Alaska Native communities along Bering Strait and Yukon-Kuskokwim Delta impacted
- Flooding, fuel spills, water source contamination, homes/camps/connexes washed away, COASTAL EROSION
- GRS validations provided pre-storm high resolution data for pre- and post-storm assessments
 - UAF, NVU & USCG 1° UAS assessments
 - UAF, AVCP & FEMA 2° UAS assessments

Leveraging Assets and Partners During a Response

- Contracted NVU and AVCP through UAF for UAS collections
- Applied GRS UAS protocols for response and recovery assessments
- Collected imagery of 15 storm impacted communities*
- Identified consumable data formats for multiple end users
- Leveraged prototypical state and federal data delivery pathways
- Identified lessons learned for UAS applications during, 1) response and 2) recovery efforts

*UAF/NVU/AVCP UAS team only UAS team performing community assessments until mid-October

What's Next?

- Continue integration of UAS-based Orthomosaics into GRS Field App
- Codify long-term raw data delivery & storage to AK Geospatial Office
- Revision of UAS collection, processing, archiving protocol for GRS sites in Alaska
- Train USCG team to fly UAS for GRS validation and inspection support
- Edit and update GRS GIS layer with SofAK and NOAA

Golovin, AK post-Merbok UAS assessment.

Exercise and implement protocol in 2023

Special thanks to,

USCG Sector ANC: Jereme Altendorf, Matt Richards, Bryan Klostermeyer, and John Rice

NOAA ORR: Catherine Berg and Robb Wright

ADEC: Mike Donnellan and Rob Clark

UAF: Sam Jeffries, Mike DeLue, Bruce Crevensten, and Jen Delamere

